
IBM

Web-Enabling VM Resources

Erich Amrehn, Stephane Faure, Nicholas J. Gimbrone
Bruce J. Hayden, Stephen Record, Paul Sienicki

International Technical Support Organization

http://www.redbooks.ibm.com

This book was printed at 240 dpi (dots per inch). The final production redbook with the RED cover will
be printed at 1200 dpi and will provide superior graphics resolution. Please see “How to Get ITSO
Redbooks” at the back of this book for ordering instructions.

SG24-5347-00

International Technical Support Organization

Web-Enabling VM Resources

February 1999

SG24-5347-00

IBM

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 241.

 (February 1999)

This edition applies to VM/ESA Version 2 Release 3.0, EnterpriseWeb/VM, EnterpriseWeb Secure/VM,
VM:Webgateway Release 2.2 and Webshare.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Tables . xi

Preface . xii i
The Team That Wrote This Redbook . xiii
Comments Welcome . xv

Chapter 1. Introduction . 1
1.1 How Difficult Is Web Programming? . 1
1.2 Web Programming on VM . 1
1.3 VM for e-business . 3
1.4 Levels . 3
1.5 The Network Computing Environment . 4
1.6 How the World Wide Web Works . 4
1.7 Assumptions . 5
1.8 Environment . 6
1.9 Standards . 6
1.10 Summary . 7

Chapter 2. Introduction to Common Gateway Interface Programming 9
2.1 The Common Gateway Interface . 9
2.2 HTTP . 9

2.2.1 Request Header . 10
2.2.2 Response Header . 12

2.3 CGI Standard . 13
2.3.1 CGI Environment Variables . 14
2.3.2 Sending Data to a CGI Program . 15
2.3.3 Encoding . 16
2.3.4 Sending Data from a CGI Program to the Client 17

2.4 Characteristics of Web Transaction Processing 17
2.4.1 Creating a Web Transaction . 18
2.4.2 Summary . 19

Chapter 3. CGI Programs on VM/ESA . 21
3.1 A CGI Program Example . 21

3.1.1 Sample HTML and Data Files . 21
3.1.2 Sample CGI Program . 22
3.1.3 Sample CGI Program for VM:Webgateway 24

3.2 Fetching CGI Global Variables . 26
3.2.1 Webshare Global Variables . 26
3.2.2 EnterpriseWeb/VM Global Variables . 27
3.2.3 VM:Webgateway Global Variables . 28

3.3 Receiving User Input . 29
3.3.1 Using the Query String . 29
3.3.2 Enhancing Our Sample Program . 31
3.3.3 Using a FORM with POST . 35

3.4 Server Directives and Headers . 43
3.4.1 Sending Header Fields . 43
3.4.2 Reading Header Fields . 44
3.4.3 Making Efficient Use of the Browser′s Cache 44

 Copyright IBM Corp. 1999 iii

3.4.4 Examples of Reading and Writing Headers 46
3.4.5 Using Cookies . 47
3.4.6 National Language Considerations . 50
3.4.7 Serving HTML Directives as Data . 52
3.4.8 Server Push . 53

3.5 Filter Programming . 54
3.5.1 A Filter Example . 55
3.5.2 Processing SCRIPT Files . 56

3.6 Debugging Your CGI Programs . 57

Chapter 4. Web Access to Applications and Business Data 61
4.1 Useful Concepts . 61

4.1.1 Designing Applications for the Web . 62
4.1.2 Moving an Existing Application to the Web 64
4.1.3 Applications and Command Lines with Line Mode Output 64
4.1.4 3270 Full Screen . 65

4.2 Screen Scripting with VM:Webgateway CGI Extension 66
4.2.1 VM:Webgateway CGI Extension Description 66
4.2.2 VM:Webgateway CGI Extension Line Mode Support 67
4.2.3 VM:Webgateway CGI Extension Full Screen Support 73
4.2.4 Programmer Productivity Tools . 75
4.2.5 Using the WEBENABL Tool . 77

4.3 Byte File System . 81
4.4 Shared File System . 83
4.5 CMS Minidisks . 85
4.6 DB2 Databases . 86

4.6.1 DB2 World Wide Web Connection Version 1 86
4.6.2 REXX SQL . 103
4.6.3 DRDA - VSE Guest Sharing . 110

4.7 Office Vision/VM . 110
4.7.1 VM:Webgateway OfficeVision Interface 110
4.7.2 EnterpriseWeb Vision . 110

4.8 BookMaster . 110
4.9 MQSeries . 110

Chapter 5. Security Issues . 131
5.1 Security Concepts . 131
5.2 Types of Attacks . 132
5.3 Five Basic Components of Security . 133
5.4 What Data to Secure . 135
5.5 Security Issues on the Browser . 136

5.5.1 JavaScript . 137
5.5.2 Can You Trust the Displayed Information in a Frame 138
5.5.3 Can You Trust an IP Address or DNS Name 138
5.5.4 Client and Server Authentication . 139

5.6 Security for Application Writers . 141
5.6.1 Authorization . 141
5.6.2 Do Not Trust Incoming Data Validity 142
5.6.3 Forms: Get or Post . 142
5.6.4 Denial of Service . 143
5.6.5 Setting Security Profiles for URL Trees 143
5.6.6 Reentrant and Serially Reusable Resources and CGIs 144

5.7 Security Issues for Web Server Administrators 146
5.7.1 Secure Sockets Layer (SSL) . 146
5.7.2 Are Your CGIs Safe . 147

iv Web-Enabling VM Resources

5.7.3 Restricting the Ability to Run CGIs . 150
5.7.4 VM:Webgateway′s SVMWEBSHARE CGI Environment 151
5.7.5 Webshare and Security . 152
5.7.6 Initial Access Control Conditions . 152
5.7.7 Additional Server Configuration Suggestions 153

5.8 Security for Network Programmers . 153
5.8.1 Firewall Systems . 153
5.8.2 Ensure Server on TCP Port Is the Web Server 154

5.9 Security Summary . 154
5.10 References . 154

Chapter 6. Performance Issues . 157
6.1 What to Optimize . 157
6.2 Performance Issues of Browser Configuration 157

6.2.1 Browser Document Caching . 158
6.2.2 Browser Use of a Caching Proxy Server 159

6.3 Performance Issues for Application Writers 159
6.3.1 Performance Implications of SSL . 159
6.3.2 Reducing Browser Rendering Time 160
6.3.3 Reducing Web Server CPU . 162
6.3.4 Reduce CGI′s I/O . 169
6.3.5 Reduce Amount of Data Sent to the Browser 169
6.3.6 Serializable Server Resource Access 170
6.3.7 Reduce CGI′s Storage Needs . 171

6.4 Performance Issues for Web Server Administrators 171
6.4.1 Install Most Recent Software Levels 171
6.4.2 Performance Data Analysis . 172
6.4.3 VM Tuning Knobs for Service Virtual Machines 175
6.4.4 Tune Your I/O Systems, Especially SFS 176
6.4.5 Tuning the Web Server′s Virtual Storage Size 177
6.4.6 Tuning the Number of Servers and Workers 178
6.4.7 Web Server SVM Configuration . 180
6.4.8 DNS Impacts on Web Server Performance 181
6.4.9 Accounting Card Generation Cost . 182

6.5 Performance Summary . 182
6.6 References . 183

Chapter 7. Desktop Web Publishing to VM Web Servers 185
7.1 Summary of Steps Needed for Publishing 186
7.2 Overview of the BFS . 187
7.3 Directory Entries . 188

7.3.1 Standard File Pools . 188
7.3.2 Test File Pool . 190
7.3.3 VMNFS . 191
7.3.4 Added Directory Statements . 192

7.4 OpenEdition and OpenEdition Shell and Utilities 192
7.4.1 POSIX Terminology . 193

7.5 Some Common SFS and BFS Commands 194
7.5.1 ENROLL User in a File Pool . 195
7.5.2 Mount a User File Space over a Directory 195

7.6 Changing the HTM File Type . 196
7.6.1 VM:Webgateway BFS Access Setup 196
7.6.2 EnterpriseWeb/VM SFS Access . 197
7.6.3 NFS Client . 198
7.6.4 Set Up htmlbin or htmla . 200

Contents v

7.6.5 Show DOS Extensions . 200
7.7 NetObjects Fusion 3.0 . 200

7.7.1 Trial Version Publishing Limitations 201
7.7.2 NetObjects Fusion NFS Setup . 201
7.7.3 NetObjects Fusion FTP Setup . 201
7.7.4 NetObjects Fusion NFS Publishing . 202
7.7.5 NetObjects Fusion FTP to BFS Publishing 203

7.8 Netscape Composer 4.07 . 203
7.8.1 Netscape Composer NFS Publishing 203
7.8.2 Netscape Composer FTP Setup . 204
7.8.3 Netscape Composer FTP Publishing 205

7.9 Microsoft FrontPage Express . 206
7.9.1 Web Publishing Wizard . 207

Appendix A. Java . 209
A.1 Presentation . 209
A.2 Implementation Considerations . 211

A.2.1 JDK Levels . 211
A.2.2 Serving Java Code from VM Web Servers 212

A.3 Applets . 214
A.4 Java Servers . 223
A.5 A Rising New World . 225

Appendix B. Contents of the Associated CDs 227
B.1 Files on CD1 . 227

B.1.1 URL Root for the VM Web CD . 228
B.1.2 VM:Webgateway CGI Extension Sample 228
B.1.3 Database . 228
B.1.4 MQSeries . 229
B.1.5 Java . 230
B.1.6 Introductory Example . 231
B.1.7 Utilities . 232
B.1.8 Files from Web Server Solutions for VM/ESA 234
B.1.9 VM:Webgateway Tutorial . 234

B.2 Files on CD2 . 234
B.2.1 Webshare . 235

B.3 Files Available on the World Wide Web 235

Appendix C. Beyond Software Inc. Webshare - IBM Disclaimer 237

Appendix D. Special Notices . 241

Appendix E. Related Publications . 243
E.1 International Technical Support Organization Publications 243
E.2 Redbooks on CD-ROMs . 243
E.3 Other IBM Publications . 243
E.4 External Publications . 244
E.5 Web Sites . 244

How to Get ITSO Redbooks . 247
IBM Redbook Fax Order Form . 248

List of Abbreviations . 249

Index . 251

vi Web-Enabling VM Resources

ITSO Redbook Evaluation . 253

Contents vii

viii Web-Enabling VM Resources

Figures

 1. The Web and IT . 2
 2. e-business Road Map . 3
 3. Web-Enabling VM Resources . 5
 4. Sample PHONE DATA File . 21
 5. Sample HTML Prologue File PROLOG1 HTMLPART 22
 6. Sample HTML Footer File FOOTER HTMLPART 22
 7. Sample CGI Program Named PHONE1 CGI 23
 8. Result of Running the PHONE1 CGI Program 24
 9. Sample SELECT HTML Document . 32
10. Display of Sample SELECT HTML Document 32
11. Sample PHONE2 CGI Program . 33
12. Sample HTML Document Named UPDATE HTML with Input Fields . . . 36
13. UPDATE CGI Program, Part 1 of 5 . 38
14. UPDATE CGI Program, Part 2 of 5 . 40
15. UPDATE CGI Program, Part 3 of 5 . 40
16. UPDATE CGI Program, Part 4 of 5 . 41
17. UPDATE CGI Program, Part 5 of 5 . 42
18. Successful Telephone Number Update . 42
19. Example of Sending a Last-Modified Header Field 46
20. Example of Checking the If-Modified-Since Header 47
21. Example of Retrieving Cookie Header Fields 48
22. Example of Sending Set-Cookie Response Header Fields 50
23. Example of a Server Push CGI Program 53
24. Example Filter Program PHONE1 REXX . 56
25. VM:Webgateway CGI Extension Line Mode Implementation 68
26. VM:Webgateway CGI Extension Authentication 69
27. Sample Gateway CGI First Page . 70
28. Sample Gateway CGI Response . 70
29. LMCMD VMGW Code . 71
30. VM:Webgateway CGI Extension Full Screen Implementation 74
31. VM:Webgateway CGI Extension Full Screen Typical Sequence of

Commands . 75
32. NAMES Display by WEBENABL . 78
33. WEBENABL Menu . 79
34. WENENABL Trace Elements . 80
35. Sample CGI Program phonebfs.svmexec 82
36. Sample REXX Code Fragment Illustrating Locking 85
37. Application Flow for a Simple DB2 WWW Request 87
38. EMPQRY1 D2W Code . 89
39. EMPQRY1 D2W Output . 90
40. EMPQRYC1 D2W Code . 91
41. EMPQRYC1 D2W Input Request Output . 93
42. EMPQRYC1 D2W Report Request Output 93
43. EMPCHG1 D2W Code . 94
44. DB2 WWW EMPQRY2 D2W Rows . 98
45. DB2 WWW EMPQRY2 D2W Form . 99
46. EMPQRY3 D2W Selection Validation . 99
47. DB2 WWW EMPQRYC4 D2W JavaScript 100
48. Final Application First Page . 101
49. Final Telephone Update Page . 102
50. Final Request Result Page . 102

 Copyright IBM Corp. 1999 ix

51. REXX SQL Sample CGI Screen . 104
52. REXX SQL Sample Main Procedure . 105
53. JavaScript Controls . 106
54. Read Inputs . 107
55. Get the Department List . 108
56. Department Selection HTML Code . 108
57. Sample RXSQL CGI Output . 109
58. Message Exchange between Two MQSeries Applications 114
59. MQSMPUT CGI . 115
60. MQSMGET CGI . 118
61. MQSMBRW CGI Get Section . 119
62. MQSeries/CICS Bridge: Execution of a DPL Program 121
63. MQSMCICS CGI . 123
64. MQSeries/CICS Bridge: Execution of a 3270 Transaction 125
65. Rewritten Department Selection HTML Code 170
66. VMSYSU File Pool Server Directory . 189
67. VMSYSR File Pool Server Directory . 189
68. VMSYS File Pool Server Directory . 190
69. SFSTEST File Pool Server Directory . 191
70. VMNFS Server Directory Entry . 191
71. POSIXGROUP Directory Statements . 192
72. Directory Statements Added to FTPSERVE 192
73. Directory Statement Added to Publishing Userid 192
74. Optional User Directory Statements for Publishing Userid 192
75. Special Characters . 194
76. Typical BFS Root Tree Structure . 194
77. Change the HTM Translation Setting . 196
78. Set Up Publishing in NetObjects Fusion 202
79. Error Messages When Publishing in NetObjects Fusion (Trial Version) 203
80. Save File as .htmlbin . 204
81. Netscape Composer Publish Setup . 205
82. Publish Page or Folder of Pages . 206
83. Publish Page with Web Publishing Wizard 208
84. Java Virtual Machine Environment . 210
85. A Typical Java Development Environment 212
86. Adding Java Types to a VM:Webgateway Configuration 213
87. HTTP Processing of an HTML Document with Applet Tag 216
88. Pp User Interface . 219
89. Pp Screen . 222

x Web-Enabling VM Resources

Tables

 1. Common Request Header Fields . 11
 2. List of Common HTTP Response Status Codes 12
 3. Common Response Header Fields . 13
 4. CGI Environment Variables . 14
 5. CGI Server Directives . 17
 6. Common IBM Code Pages and Character Sets (ASCII Encoding) 51
 7. MQSeries Client TCP/IP Connection Basic Parameters 113
 8. IIH Header Content . 126
 9. Security Issue Cross-Reference . 134
10. PTFs Required for Publishing to BFS . 187
11. Some SFS and BFS Tasks and Commands 194

 Copyright IBM Corp. 1999 xi

xii Web-Enabling VM Resources

Preface

This redbook describes programming techniques that can be used with VM Web
servers on VM/ESA. Samples included in this book and on the accompanying
CD demonstrate how to connect Web clients (browsers) to data and applications
on a VM platform.

This redbook was written for the systems programming and development staff
engaged in the design and implementation of applications on the VM platform.

Familiarity with Web terminology, VM/CMS, CMS Pipelines and REXX is
assumed. A Web server operating on VM is assumed to be available. For Web
terminology, static page development, and the Web server install instructions,
consult the companion redbook Web Server Solutions for VM/ESA, SG24-4874.

The following VM Web servers are discussed:

• Webshare

• EnterpriseWeb Secure/VM

• EnterpriseWeb/VM

• VM:Webgateway Release 2.2

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Poughkeepsie
Center.

The project was planned and managed by:

Erich Amrehn, IBM International Technical Support Organization, Poughkeepsie
Center. He is a certified Senior IT Specialist at the International Technical
Support Organization, Poughkeepsie Center. Before joining the ITSO, he worked
as technical consultant to the IBM System/390 division for e-commerce on S/390
in Europe, the Middle East and Africa. He also has 13 years of VM experience in
various technical positions in Germany and other areas in Europe.

The authors of this document are:

Stephane Faure is an Advisory IT Specialist in Systems Management with IBM
Global Services in France. He has nine years of experience in the computing
field. He is part of the VM IBM French Support Center, where he is the
webmaster of a VM intranet site. He holds a degree in Computing from Gustave
Eiffel College, Bordeaux. His areas of expertise include VM/ESA, TCP/IP, AFP,
REXX programming, CMS Pipelines and DB2.

Nicholas J. Gimbrone is a Senior Software Engineer for Sterling Software, Inc. in
the United States, where he has worked for six years. He has 21 years of
experience in the computing field. He was the lead engineer in the creation of
VM:Webgateway Release 1.0 and has contributed to each of its seven releases
to date, including serving as the architectural lead for VM:Webgateway Release
2.2. Prior to working for Sterling Software, Inc. he worked for Cornell University
for 15 years after receiving his degree there. He is active with SHARE, where he

 Copyright IBM Corp. 1999 xiii

has served as member of the VM Cluster′s VM Technical Steering Committee for
the past eight years. His areas of expertise include VM/ESA, TCP/IP, application
performance, and REXX programming. He has written numerous papers and
articles on topics such as VM and the POSIX environment, VM and TCP/IP
performance, and running various flavors of UNIX under VM.

Bruce J. Hayden is an IT Specialist, Senior System Management Integrator with
IBM Global Services in the United States. He has 16 years of experience in the
computing field, all with IBM. He holds a bachelor′s degree in Computer
Science from the University of Missouri. He is currently part of the World Wide
VM Platform organization that supplies and supports the VM operating systems
and products used on IBM systems. He is part of a worldwide board that defined
the standard architecture and procedures used by IBM to install, maintain, and
use VM products and applications. His areas of expertise include VM/ESA, REXX
and CMS Pipelines programming, and Web programming.

Paul K. Sienicki is a Senior Infrastructure Specialist for Electronic Data Systems
(EDS) in the United States. He has 21 years of experience in the computing field.
He has 16 years of experience in software implementation. He holds a
bachelor ′s degree in Computer Science from Allentown College of St. Francis
DeSales. His areas of expertise include VM/ESA, TCP/IP, REXX.

Thanks to the following people for their invaluable contributions to this project:

Alan Altmark
IBM Endicott

Pam Bradford
Sterling Software, Inc.

Doug Breneman
IBM Endicott

Richard Lewis
IBM Gaithersburg

Mick Lickmann
IBM Hursley

Michael Ludé
Beyond Software Inc.

Ross Patterson
Sterling Software, Inc.

Stephen Record
IBM Böblingen/Endicott

Gary Richtmeyer
IBM Global Services

Romney White
IBM Endicott

Brian Wade
IBM Endicott

xiv Web-Enabling VM Resources

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 253 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com

Preface xv

xvi Web-Enabling VM Resources

Chapter 1. Introduction

What does Web-Enabling VM Resources mean? It means developing programs
that interface and access information on VM or that are accessed through the
VM system. The purpose of these programs is to create output in a format
viewable by a Web browser.

What is a VM resource? It could be any application or data located on a VM
minidisk, Shared File System (SFS) or Byte File System (BFS). This could
include databases like DB2/VM or other database products. Since VM supports
guest operating systems, a VM resource could include guest VSE or OS/390
(MVS) systems as well as associated products like CICS and IMS.

The development and debugging process on VM is quick and easy. The primary
tools for Web development are the REXX interpreter and CMS Pipelines. CMS
Pipelines provides a powerful data transformation and manipulation capability.
Pipelines is a great performer, too. This powerful data transformation
environment, when combined with VM′s excellent connectivity to guest systems,
other systems, and platforms, makes VM an excellent choice for Web-enabling
resources from many environments.

Therefore, VM′s strengths allow a short development cycle for gathering data
from many sources, the massaging of that data into information, and subsequent
serving of that information to be displayed on a Web browser.

1.1 How Difficult Is Web Programming?
The skill level needed to code Web programs on VM is low. If you know how to
code a REXX or CMS Pipelines (PIPE) program, you know the languages used,
and you have the basic skill level necessary to code Web programs on VM. Web
programs are known as Common Gateway Interface (CGI) programs. The shift
from VM development to VM CGI programming is easy.

Also, if you have worked with Script, General Markup Language (GML) or
BookMaster, the concept of a markup language (like HTML) should be familiar to
you.

1.2 Web Programming on VM
One of VM′s strengths is the interactive environment. REXX is an interpreter
that is easy to learn, use and debug. CMS Pipelines is a powerful data
manipulation tool that has good execution performance.

Another of VM′s strengths is and always has been the fact that the Service
Virtual Machine (SVM) is its own entity and can be tailored and replicated
without effect on other VM users or SVMs. Establishing several development
environments is relatively easy. In our test we had three different Web server
products handling different ports in one TCP/IP environment. The same
approach could be taken with one Web server product to provide different
development environments on one or more TCP/IP environments. The multiple
Web server environment capability is especially useful, as CGI program
development bugs can disrupt Web server operation. With VM/ESA there is no

 Copyright IBM Corp. 1999 1

need to have multiple hardware platforms only to provide test and scalability
facilities.

The stability of VM/ESA is unmatched, as shown by supporting material covered
later in this chapter. The need to recycle or an unexpected outage is much less
than for an average server farm.

In addition to the reasons outlined in the “VM/ESA As a Web Server” section of
Web Server Solutions for VM/ESA, SG24-4874, the strengths of VM and the S/390
platform marry well with the emerging needs of the Web and e-business.

Figure 1. The Web and IT

S/390 technology boasts the industry′s highest availability possible today: 99.99
percent, which translates to less than 10 minutes of unplanned downtime per
year. Since e-business is a 7x24 proposition, companies must ensure that their
systems are up and running at all times.

As noted by Mike Kahn, Chairman, Clipper Group, “The S/390 is better than
UNIX or Windows NT when it comes to running 24 hours by 7 days with very little
downtime and with the ability to scale.”

By using existing S/390 servers, businesses can avoid the added expense of a
separate platform to take advantage of the growing electronic business
marketplace. They also avoid expensive replication of storage.

According to Cost of Scalability, a 1996 comparative study by International
Technology Group, per user costs for S/390 were between 1.2 and 3.7 times
lower, depending on industry and application, than for UNIX servers. The report
points out that in S/390 installations, per user costs declined in direct proportion
to system size. In contrast, “Economies of scale were consistently weaker in

2 Web-Enabling VM Resources

UNIX server installations, due to duplication of servers, software and support
staff.”

That is why International Technology Group reports, in a study called Strategies
for Scalability, that “If S/390 is not on your information systems agenda for
electronic commerce, it should be placed there now. Your business will, quite
literally, soon be on the line.”

1.3 VM for e-business
The Internet makes it possible to conduct business in a whole new way:
e-business. e-business is a vehicle for transformation, in which companies take
what they have and transform their business processes, providing value to their
customers and partners in new ways. See Figure 2.

Figure 2. e-business Road Map

1.4 Levels
Most IT organizations pass through several phases in transforming themselves
to support e-business. The first important phase is often to give employees
access to the Internet or to static HTML pages on the intranet and or Internet.
On the intranet side, documents such as a company handbook are often
selected. With a home page on the World Wide Web, employees can find
distributors, addresses and telephone numbers, and send e-mail requests or
feedback.

The second or intermediate phase in becoming an e-business involves
connecting browsers to applications. CGI programs provide a method for linking
a Web server to existing data and applications, that reside on S/390.

Chapter 1. Introduction 3

Programmers can write CGI programs to access to virtually any kind of data or
program.

By obtaining access through a Web server to dynamic data and applications, the
Web-enabled data or applications have a much higher business value, not only
to the company, but also to the end user.

A company reaches the third or advanced phase of e-business when a very
large part of its daily business is conducted using Web-based and related
technologies. In this case, there will often be a requirement for confidential data
to be transmitted securely over public networks, intranets, or extranets.
Electronic business transactions may be conducted with both clients and
suppliers.

1.5 The Network Computing Environment
Network computing evolved from the client/server computing model, which
combines the ease-of-use features, such as a graphical user interface (GUI) and
the personal productivity applications of the personal computer, with critical
server-based business applications and data. The goals of client/server were
greater productivity at a reduced cost of computing. However, over time,
application development efforts began to target more application functions on
client workstations. Lack of standards, in turn, complicated the task of managing
and connecting those workstations. As a result, as consultant studies have
shown, client/server computing can be very expensive.

Network computing, by building on open Internet standards, overcomes the mix
of different, often incompatible client operating systems and GUIs by relying on
the universal client, the Web browser. Building on existing applications and data
cuts costs and time to market. Once these critical business assets become
available over the Web, security becomes essential. Three elements are
involved here: network security, system security, and transaction security.

Network security can be provided in a number of ways: packet filters, a proxy
server, a SOCKS server, Domain Name Services (DNS), and encrypted IP
tunnels. A VM server can connect to the public Web through one of these
methods. Another method to connect VM to the Internet and intranet is through
two independent IP stacks. Security is covered both in Chapter 1 of Web Server
Solutions for VM/ESA, SG24-4874 and in this publication in Chapter 5, “Security
Issues” on page 131.

System security starts with the integrity of the operating system. Since 1973,
there have been Statements of System Integrity for VM. Transaction security is
available on VM Web Servers supporting SSL.

1.6 How the World Wide Web Works
A Web browser is mainly a markup language interpreter but also does things
like handle Java and Javascript. The markup language is Hyper Text Markup
Language (HTML). The Web browser reads the HTML codes and formats the
information according to the code instructions. The Hypertext Transport Protocol
(HTTP) is how the Web browser communicates with the Web server.

4 Web-Enabling VM Resources

The HTTP protocol is sent from the system image containing the Web browser to
the system image containing the Web server over a network supporting the
Transmission Control Protocol (TCP).

As shown in Figure 3, the Web browser also sends data to the server in HTTP.
The server, depending on the data sent, can respond with HTML or launch a
program to process the request or data. The Web server communicates with the
program via the Common Gateway Interface (CGI). The CGI program is
launched and processes the information. The CGI program may acquire
information from other resources on the system or on the network. It may also
perform manipulation or transformation on the data. Then the CGI program
sends the information to the Web server and terminates. The output contains
headers and HTML. The Web server passes the HTML to the browser.

Figure 3. Web-Enabling VM Resources

The Web CGI program extends the functionality that the Web server provides.

1.7 Assumptions
This book is not intended to cover the installation or configuration of the needed
VM/ESA features and products, although examples of the installation or
configuration of a particular VM/ESA feature or product may be given in this
book. This information is solely for the purpose of explaining the environment
we used in Poughkeepsie.

It is assumed that all the features of VM/ESA 2.3.0, including TCP/IP function
level 310, as well as a Web server, are installed, configured, and available.

For information on installing a Web server, see the companion book Web Server
Solutions for VM/ESA, SG24-4874.

Chapter 1. Introduction 5

1.8 Environment
The software products and levels that were used for our environment follow.
Additional PTSs, APARs or product levels may have been necessary for a
particular function covered in this book. The function level dependencies will be
addressed in the appropriate area of the book.

VM/ESA Version 2 Release 3.0, service level 9802

CMS Level 14, Service Level 802

UM29016 VM61794 BFS synchronous I/O problem

VM TCP/IP Level 310, RSU 9804

UQ20816 PQ14734 FTP incorrectly translated binary files
UQ20817 PQ18558 FTP to BFS resulted in 0 length files

VM:Webgateway Release 2.2

VM:Webgateway Web Server Release 2.2 plus fixes:
W220940 - Set 8-character WEBSHARE CGIUSERS CGI var correctly
W220941 - Set WORKERWEBSHARE CGI environment vars correctly
W220945 - Access MDISK/SFS domain in WORKERWEBSHARE CGIs
W220929 - Prevent CGI003/CGJ003 abends

VM:Webgateway OfficeVision Interface Release 1.4
VM:Webgateway CGI Extension Release 1.3 plus fixes:

G130203 - VIGLMS0033E on VIG USER CONNECT
G130204 - RDTERM macro returning incorrect information

VM:Operator 2.4

EnterpriseWeb/VM Release 1.4 and EnterpriseWeb Secure/VM Release 1.2

PTF LVL WEB00431 - Changing HTM definition in Media Map. This PTF
applies to EWLOAD,EWMENU and EWMSG.

Webshare Release 1.2.4

1.9 Standards
The standards established for the Internet are called Requests For Comment
(RFCs). An RFC passes through many stages before being designated (if indead
it is) an accepted standard. Some standards and RFCs for the protocols
discussed follow. For RFCs, the information listed is the RFC number, title,
authors, date issued, file format and status.

HTML RFC1866 Hypertext Markup Language - 2.0. T. Berners-Lee & D.
Connolly. November 1995. (Format: TXT=146904 bytes) (Status:
PROPOSED STANDARD)

HTTP RFC1945 Hypertext Transfer Protocol -- HTTP/1.0. T. Berners-Lee, R.
Fielding & H. Frystyk. May 1996. (Format: TXT=137582 bytes)
(Status: INFORMATIONAL)

CGI The Common Gateway Interface is an Internet Draft. The draft
specification can be found at The National Center for Supercomputing
Applications. Web URLs are:

http://hoohoo.ncsa.uiuc.edu/cgi/
http://luna.bearnet.com/ietf-drafts/draft-robinson-www-interface-00.html

6 Web-Enabling VM Resources

1.10 Summary
In summary, the VM/ESA interactive environment makes Web CGI programming
a quick and easy task. REXX is the tool used to develop and debug CGI
programs. CMS Pipelines′ strength is high-performance data manipulation and
transformation. The excellent connectivity of VM/ESA facilitates data gathering
from many sources.

The VM/ESA platform provides a highly tailorable environment with the capability
of supporting several different servers. The multiple-server environment can
provide security through server isolation. VM/ESA has a track record of proven
stability. The scalabilty of VM/ESA presents a cost-effective growth curve.

Chapter 1. Introduction 7

8 Web-Enabling VM Resources

Chapter 2. Introduction to Common Gateway Interface Programming

One of the main strengths of a VM system is that programs can be developed
and debugged quickly using REXX. CMS Pipelines adds a powerful data
manipulation and transformation capability to REXX programs. This makes VM
an excellent platform to work with data for presentation or for further processing.
VM ′s excellent connectivity to other platforms makes it possible to gather data
from a variety of sources and present unique views of that data. To use all of
this power in the modern network connected world, a VM system must move
beyond the familiar 3270 interface for presenting its data. CGI programs that use
familiar VM concepts and run on VM systems let VM-gathered data be made
available to the wide audience of the Internet. And it is very easy, as you will
learn.

Before we show you how to create CGI programs on VM, let us introduce the
basic concepts and standards used on the World Wide Web that allow a Web
browser and a Web server to communicate with each other. Then we will
introduce how a Web server and a CGI program interface with each other, and
finally how you can use VM to do all of this.

2.1 The Common Gateway Interface
The CGI is a standard interface supported by a Web server that defines how
information is exchanged between a Web server and an external program (CGI
program). CGI programs can be written in any language supported by the
operating system on which the server is run. The language can be a compiled
programming language, like C, or it can be a scripting language, such as REXX.
The CGI program can even be written in a combination of languages such as a
REXX program calling a COBOL program to obtain data or a CMS Pipelines
program that calls REXX language stages for data processing.

The CGI standard applies to any platform or Web server, not just VM-based Web
servers. The implementation of the standard varies across platforms, as you
might expect, and indeed varies between Web servers. But the common
elements that make up the standard must be present in all implementations.
This chapter introduces the CGI standard and gives you an overview of how CGI
programs interact with Web servers and browsers.

2.2 HTTP
Let us first describe how a Web server and browser work together to display a
simple HTML document. You do not need to do any programming to make this
work, it is a function built into every Web server. But what really happens when
you enter the URL1 of this file on your Web browser screen? As you might
suspect, the Web browser and the server communicate with each other in a
standard, platform independent way. We will create an example to illustrate this
interaction.

1 For a description of a URL, see the “Internet Concepts” chapter of Web Server Solutions for VM/ESA, SG24-4874.

 Copyright IBM Corp. 1999 9

2.2.1 Request Header
Here is a very simple example of an HTML document:

<HTML><BODY><H1>Hello world!</H1></BODY></HTML>

We name this file hello.html and place it in the “root” directory of our Web
server.

Note: The file names that you are allowed to specify may be dependent on the
file system used by the Web server. Assume for this example that hello.html is
an allowable name.

The TCP/IP name of our system is wtscvmt.itso.ibm.com. So, to display this file
from a Web browser (our client), we enter the URL
http://wtscvmt.itso.ibm.com/hello.html. This specifies the protocol to be used,
the name of the system with the server, and the file name. The protocol used is
HTTP. This is the protocol that Web servers use to communicate with Web
browsers. It is much easier to understand HTTP if we just show you what will be
exchanged between the Web server and the client when the hello.html file is
requested.

The client sends the following text (called a header) to the server:

GET /hello.html HTTP/1.0
Accept: text/plain
Accept: text/html
Accept: text/*
User-Agent: Charlotte/2.1.0 VM_ESA/2.3.0 CMS/14
Host: wtscvmt.itso.ibm.com

-- A blank (null) line --

Notice that the lines that are sent are readable ASCII text. This set of lines is
called a request header and its format must comply with the RFC 1945 standard.
A blank (null) line in this context is not a sequence of space characters, but the
characters CR - LF - CR - LF. All headers must contain a blank line at the end.

This is the same format header used to send mail using TCP/IP. The first line of
the message is called the request line and contains the request method. This
GET method asks for the file /hello.html and also announces that the client is
using HTTP version 1.0 to communicate.

2.2.1.1 Request Header Fields
The series of lines following the request up to the blank line are called request
header fields. These provide information to the server about the client. Typically
they may specify what format of data the client will accept, who it is from,
encoding of data, authentication, and so forth. In the example, the Multipurpose
Internet Mail Extension (MIME) types that this client will accept are text/plain,
text/html, and any other text type (text/*). The client used is Charlotte 2.1.0
running on VM/ESA 2.3.0. The “host” field specifies where the request is sent.

There are other header lines that may be sent, depending on which client is
used and which level of HTTP is implemented. See Table 1 on page 11 for a list
of commonly used request header fields.

10 Web-Enabling VM Resources

Table 1. Common Request Header Fields

Accept Contains a list of MIME content types that the client will accept. Many browsers wil l
accept any type, so they list “*/*” as an acceptable type. Text only browsers may only
request text types, such as text/*.

Accept-Charset Lists the character sets preferred by the browser, in order of preference. A character set
of * means that any character set is accepted. An example is iso-8859-1,*. More
information is found in section 3.4.6, “National Language Considerations” on page 50.

Accept-Language Lists the languages preferred by the browser, in order of preference. For example
French, with an alternative of English, would be sent as “fr, en.”

Authorization If the server indicated that authorization is required to access the resource, then
authentication information is sent in this header field.

Note: This field′s name is a misnomer, as the HTTP Authorization field contains
authentication information, not authorization information. It is normally sent by
the browser in response to a response from the server with a status code of 401
(unauthorized) and containing an HTTP WWW-Authenticate field.

Content-Length Gives the length in bytes of the object sent to the server. If no object follows the request
header, this field is normally omitted.

Content-Type Gives the MIME content type of the object sent. The most common type for a POST
request is application/x-www-form-urlencoded. If no data is sent, this field is not sent.

Cookie This is a nonstandard field implemented by Netscape to allow the server to store a small
amount of data on the client. If the client has “cookie” information available to send with
the request, this field is included with that information. See 3.4.5, “Using Cookies” on
page 47 for more information.

Date The time and date the request was made, always expressed in Greenwich Mean Time
(GMT). See 3.4.3.1, “HTTP Time Stamp Formats” on page 45 for a list of the allowed
formats.

Host The domain name and port number of where the request is being sent.

If-Modified-Since If this is sent, it makes the request for an object conditional. The server can determine if
the object needs to be resent or if the object that the client has stored in its cache can be
reused. See 3.4.3.1, “HTTP Time Stamp Formats” on page 45 for a list of the allowed
formats.

User-Agent Provides information about the client software making the request.

If the client has data to send to the server, it creates a slightly different request:

POST /cgi-bin/hello HTTP/1.0
Accept: text/plain
Accept: text/html
Accept: text/*
User-Agent: Charlotte/2.1.0 VM_ESA/2.3.0 CMS/14
Host: wtscvmt.itso.ibm.com
Content-Length: 11
Content-Type: application/x-www-form-urlencoded

happy=yes

This example shows that the data sent by the client (in this example, happy=yes,
followed by a CR and LF for a total of 11 characters) is placed following a blank
line after the header.

Chapter 2. Introduction to Common Gateway Interface Programming 11

2.2.2 Response Header
Once the server receives the request, it responds back to the client with a
response header and some data. The format of the header is very similar to the
request header. Here is the actual response to our first example GET request:

HTTP/1.0 200 Ok
Content-Type: text/html
Content-Length: 49
Last-Modified: Thu, 22 Oct 1998 14:53:37 GMT
Server: VM:Webserver/02.2
Date: Thu, 22 Oct 1998 19:39:56 GMT

<HTML><BODY><H1>Hello world!</H1></BODY></HTML>

The first line is known as the status line. It shows that the server agrees to use
HTTP version 1.0 for communication and sends a response status code of 200,
which means that the server successfully processed the request. The string
“Ok” is just a readable text string that means the same thing as the response
status code.

Status codes of 200-299 indicate a successful transaction. Codes of 300-399
indicate that the requested object is not located at the address requested. It
may have been moved or can be found in the browser′s cache. Codes of
400-599 indicate an error of some type, with 400-499 indicating a client error
(such as bad syntax), and 500-599 indicating a server error. Some of the more
common ones are listed in Table 2.

Table 2. List of Common HTTP Response Status Codes

200 The request completed successfully.

202 The request was accepted, but processing was not completed or the results of the processing are
unknown.

203 The request was accepted, but only partial information was returned.

204 The request was accepted, but there is no new information to return. The browser should continue
to display the same document.

301 The requested document has been permanently moved to a new location. The new location should
also be sent as a response header field. Most browsers will automatically request the document at
this new location.

302 The requested document can be found in a new location. This response is very similar to the 301
response, but it does not indicate that the redirection is permanent. Most browsers will
automatically request the document at the new location.

304 The requested document has not been modified. This can only be returned if the browser has a
cached version of the document and sends to the server the “last modification date” of the
document that it has saved. If the server determines that the document in the browser ′s cache is
current, it tells the browser to use the cached version.

400 The syntax of the request was incorrect.

401 The request requires the client to be authorized. This response along with authorization and
authentication fields allow the client and server to negotiate data encryption and user authentication
schemes.

403 The request is for something that is forbidden. No explanation needs to be provided and no
authorization can be negotiated.

404 The request is for an object that cannot be found.

500 The server encountered an internal error and cannot process the request.

501 The server does not support the specified method of the request.

12 Web-Enabling VM Resources

2.2.2.1 Response Headers
The series of lines following the response up to the blank line are called
response header fields. They specify information about the object that follows
the header. In the example, the client is told that the object after the header is
MIME type text/html, is 49 bytes long (including its trailing CR and LF
characters), the date it was last changed, the server that is sending it, and the
date and time of the response. Other fields may be included for other types of
requests. Note that most fields are optional. See Table 3 for a list of commonly
seen response header fields.

Table 3. Common Response Header Fields

Date The date and time the response is sent, always expressed in Greenwich Mean Time
(GMT). See 3.4.3.1, “HTTP Time Stamp Formats” on page 45 for a list of the allowed
formats.

Location Contains a URL that the client should request instead. This is returned when the
server knows that the document has moved to a new location. Most browsers will
automatically request the document at the new location.

Server Contains an information string about the software running on the server. The program
and version are separated by a slash (/).

Set-Cookie This is a nonstandard response implemented by Netscape to allow the server to store
a small amount of data on the client. If the client supports this field, then it updates
the previous information that it has stored with this information or creates a new entry.

Content-Language Gives the language of the document sent in this response.

Content-Length Gives the length in bytes of the document sent to the client. (including any trailing CR
and LF characters)

Content-Type Gives the MIME content type of the object sent. Common types are text/html and
image/gif. Optionally, the character set associated with the object can be included.
An example of this field is text/html; charset=ISO-8859-4.

Expires Gives the date after which the object sent should be discarded if the client maintains a
local cache. See 3.4.3.1, “HTTP Time Stamp Formats” on page 45 for a list of the
allowed formats.

Last-Modified Gives the date and time that the original object was last changed. The client can save
this information along with the object in its cache so that it can issue a conditional GET
(which would include an If-Modified-Since field) the next time it requests the object.
See 3.4.3.1, “HTTP Time Stamp Formats” on page 45 for a list of the allowed formats.

The last line of the example is the actual HTML document. It wil l be “rendered”
(interpreted) by the client and shown on the browser window.

Once the document is shown, the client-server transaction is finished and the
connection is closed. The user may initiate another transaction by selecting a
document link on the browser screen or entering a new URL, which would start
the whole process over again. This interaction between the client and the server
is stateless, meaning that no “state” or memory of the transaction is saved by
the server.

2.3 CGI Standard
An HTTP URL may identify a file that contains a program to be run instead of an
HTML document to be shown. The server knows that the object referenced is a
program through server-specific configuration directives. Typically these
directives associate a file extension or the location of the file with whether or not
the object is executable, not the file name. If it is an executable program, the

Chapter 2. Introduction to Common Gateway Interface Programming 13

Web server invokes it as a separate process and communicates with it via the
CGI. The CGI standard specifies how the Web server passes data and variables
to the gateway program and how it receives data from the program. Any data
from the program is sent back to the client Web browser that made the request.
Since the CGI is a standard that is implemented by most Web servers, the basic
design of CGI programs is portable across platforms. Of course, how the
interfaces between the Web server and a CGI program actually work and how
variables are retrieved will likely be different across platforms. This section
discusses only the CGI standard. VM-specific implementations of the standard
are covered in Chapter 3, “CGI Programs on VM/ESA” on page 21.

2.3.1 CGI Environment Variables
Environment variables are used to pass data about the request from the client
and the server to the CGI program. The CGI standard specifies a number of
universal variables that all Web servers should implement. Web servers may
provide additional environment variables outside of the standard set. For
compatibility with potential future CGI standards, it is suggested that any
additional variables provided start with the characters “X_.” If your Web server
provides these and you use them in a CGI program, be aware that other Web
servers may not provide them. See Table 4 for a list of the standard
environment variables and a short description of them.

Table 4 (Page 1 of 2). CGI Environment Variables

AUTH_TYPE If the CGI program is access protected, this variable is set with the type of
authentication performed. In order for the client to be authenticated, it must have
returned an authorization response field. If the Web server authenticates the
client, this variable will be set to Basic. Other authentication types may be
implemented in the future.

CONTENT_LENGTH The length, in bytes, of any data sent by the client using the POST method. If no
data is sent (for example, the request was GET), the variable is undefined.

CONTENT_TYPE The MIME content type of the data sent from the client using the POST method. If
no data is sent (for example, the request was GET), the variable is undefined.
Most of the time, if data is sent the value is application/x-ww-form-urlencoded.

GATEWAY_INTERFACE The version of the CGI standard used by the server. The current standard is CGI
1.1, so this variable will be set to CGI/1.1.

HTTP_name This set of variables with names that begin with “HTTP_” contain additional
request header fields sent from the client. The name of each field is capitalized,
all dashes in the name converted to underscores, and the string HTTP_ is prefixed
to this name to form the variable name. For example, the variable
HTTP_ACCEPT_LANGUAGE contains the value en from the field Accept-Language: en
sent from the client.

Note: When the content of a request header field is already used to set another
environment variable (such as the Content-Length field setting the
CONTENT_LENGTH variable), it is permissible for the Web server to not set the
corresponding “HTTP_” variable.

PATH_INFO Extra path information that is present in the URL that invoked the CGI program.
This additional path information is not interpreted by the Web server but is made
available to the CGI program. It can identify a resource or a path to a resource to
be accessed by the CGI program. For example, in a URL of
http://wtscvmt.itso.ibm.com/cgi-bin/where/data/street, the /data/street part of
the URL would be placed in the PATH_INFO variable that is available to the
“where” CGI program. If no additional path information is provided in the URL,
this variable is undefined.

14 Web-Enabling VM Resources

Table 4 (Page 2 of 2). CGI Environment Variables

PATH_TRANSLATED If the PATH_INFO variable contains data, the Web server will attempt to translate
the resource referenced by the additional path data to a file system-specific path
name. Note that this is not set to the location of the CGI program. This value is
platform specific and might not be implemented by all Web servers.

QUERY_STRING The query string part of the URL, encoded in the normal URL encoding method.
This part of the URL is anything that follows the first question mark (?) in the
string. For example, in the URL
http://wtscvmt.itso.ibm.com/cgi-bin/where?street=pine, the QUERY_STRING is
set to street=pine Note that a CGI program must decode this string before using
it.

REMOTE_ADDR The numeric IP address of the client. Note that if the user is accessing the Web
server via an agent (for example, a firewall), this will be the address of the agent,
not the user′s client.

REMOTE_HOST The fully qualified domain name of the client. If this information is not available,
this variable is undefined. This is the domain name of the client identified in the
REMOTE_ADDR variable.

REMOTE_IDENT The remote user name that is retrieved by the server from the client. It is not
implemented by most Web servers.

REMOTE_USER If the AUTH_TYPE variable is set to Basic, then this variable is set to the
authorized user ID of the client. Otherwise it is undefined.

REQUEST_METHOD The HTTP method sent in the request from the client. Normally it is GET or POST,
but there are other methods such as PUT, HEAD, and DELETE that are not
implemented by all Web servers or clients.

SCRIPT_NAME The URL path and name that identifies the CGI program. The contents of this
variable and the SERVER_NAME and SERVER_PORT variables and a source of
infromation to map the port number to the protocol being served (sometimes
available as an added CGI variable) and a source of information to map the port
number to the protocol being served sometimes available as an added CGI
variable can be used to reconstruct the URL that references the CGI program.
See Figure 29 on page 71 for an example. For example, if the full URL
referencing the CGI program is http://wtscvmt.itso.ibm.com/cgi-bin/where, the
value of the SCRIPT_NAME variable is /cgi-bin/where.

SERVER_NAME The fully qualified domain name of the server. If the fully qualified name is not
known, then the variable is set to the IP address of the server.

SERVER_PORT The port number of the server that received this request. If a specific port
number was not specified in the request, the default port number for HTTP
requests is 80 and for HTTPS requests it is 443.

SERVER_PROTOCOL The protocol being used between the client and the server and its version number.
This allows a CGI program to use new protocol features if the client supports it.
The protocol in most common use is HTTP 1.0, so this variable would contain the
value HTTP/1.0. Usage of the HTTPS protocol does not affect the contents of this
variable.

SERVER_SOFTWARE The name and version of the software running on the Web server, in the format
name/version .

2.3.2 Sending Data to a CGI Program
If a Web browser client is requesting a simple HTML document from the server,
no additional data needs to be sent from the client except the URL of the
document (along with the normal header.) However, when the URL refers to a
CGI program, the client will frequently need to send additional data with the
request so that the CGI program can figure out what it needs to do. There are
four different ways the client can send data to a Web server using the HTTP

Chapter 2. Introduction to Common Gateway Interface Programming 15

protocol. They can be used separately or in combination. The Web server
receives this data and makes it available to the CGI program. The method the
CGI program uses to access this data depends on how the data is sent. The
methods are:

• The query string in the URL
• Extra path information in the URL
• Additional request header fields
• POST data sent following the request header

The query string and the extra path information are made available to the CGI
program via the QUERY_STRING and PATH_INFO environment variables
described in Table 4 on page 14. The query string can be explicitly coded in a
URL specification, but it may also be automatically supplied by a Web browser
from an ISINDEX HTML tag, from an ISMAP attribute on an IMG tag, or from an
HTML FORM using the GET method. The ISINDEX tag and the GET method for
forms are not used as often as the POST method to request data from a user.

Additional request header fields are made available as HTTP_name global
variables, where name is the name of the field. This is also described in Table 4
on page 14. These fields could be standard ones such as authorization
information or an If-Modified-Since field that identifies the date of the client′s
cached copy. Or they could be from a client with additional function, such as
Netscape cookie fields. How to use Netscape cookies will be described in 3.4.5,
“Using Cookies” on page 47.

Data sent using the POST method is made available to a CGI program by the
Web server via “standard input.” This form of input is meaningful in some
operating system environments, but in other environments where it does not
have a standard meaning it can be implemented in different ways. How Web
servers on VM provide this data is covered in 3.3.3, “Using a FORM with POST”
on page 35

2.3.3 Encoding
You should be aware that the input available to a CGI program may be URL
encoded and must be decoded before it can be used. URL encoding means that
all space characters are changed to plus signs (+) and any nonprintable or
special characters are changed to their ASCII hexadecimal code (in the ISO
Latin-1 character set) prefaced by a percent sign (%). Which characters are
“nonprintable” and “special” depends on where the string appears or how it will
be interpreted. This is defined by the HTTP standard. For safety, the client may
encode more characters than are necessary. Percent characters (%), plus signs
(+), and equals signs (=) in the original input string are always encoded. For
example, the string a?b may be encoded as a%3Fb if a question mark might be
interpreted incorrectly. Many Web servers provide utilities or functions that can
decode variables or input strings as needed.

Any query string data available in the QUERY_STRING variable is always URL
encoded. Extra path information in the PATH_INFO variable may be encoded. In
fact, the Web server may provide additional information about the PATH_INFO
value in the PATH_TRANSLATED variable. Data available in additional request
header fields is not encoded. POST data is FORM encoded if the
CONTENT_TYPE environment variable has a value of
application/x-www-form-urlencoded. Some Web servers will automatically decode
the POST data for you. There are also utilities available to assist with decoding.

16 Web-Enabling VM Resources

2.3.4 Sending Data from a CGI Program to the Client
Once the CGI program has completed its processing, it must send the results
back to the client. It does this by writing server directives and the actual data to
“standard output.” Just like standard input, this form of output is meaningful in
some operating system environments, but in other environments it can be
implemented in different ways. This is the only way a CGI program can pass its
results back to the server. The server directives are used by the server to
create the HTTP response header. The actual data is sent following the server
directives. Usually, this data will be an HTML document that is displayed on the
client. But it could be any type of data that the client is able to display. The
Content-Type server directive written by the CGI program specifies the type of
the data.

Server directives look a lot like normal HTTP response header fields, and in fact
most of them are. But they are called server directives in the CGI standard
because some of them are intercepted by the Web server and are used to create
the actual HTTP response header sent to the client. The ones that have meaning
to the Web server are listed in Table 5. Other HTTP response header fields
such as those listed in Table 3 on page 13 may also be written as server
directives as needed, and they will not be interpreted by the Web server.
However, you must not write any server directives that duplicate any of the fields
that the Web server will write automatically. For example, the header fields
Server and Date are server specific and will typically be written by the server in
any response.

Table 5. CGI Server Directives

Status This indicates to the server what status code is sent as the response. It must be of the
form Status: code string, where code is one of the response codes listed in Table 2 on
page 12 and string is a description of the status. If a status directive is not written, a
status of “200 OK” is assumed.

Content-Type This indicates the MIME type of the data returned to the client. It must be a valid MIME
type and in the form type/subtype.

Location This indicates to the server that the client should be redirected to a different URL, which is
specified on this field. A status directive of 301 or 302 must be returned with this field.
(See Table 2 on page 12 for a description of these codes.) Some servers wil l
automatically send a response code of “302 Redirection” if the CGI program sends this
field without a status directive. Most Web browsers will automatically send a request to
the new URL when they receive this field along with the 301 or 302 response code.

2.4 Characteristics of Web Transaction Processing
One of the most basic things to remember about HTTP is that it is a stateless
protocol. What this means is that the Web server and CGI program normally do
not retain any knowledge of previous transactions. A request comes to the Web
server, the CGI program referenced in the request is located and started, it runs,
and data is sent back to the user. When the CGI program ends, any variables
that were set are gone. Of course, the CGI program could have written data to a
file or used other mechanisms to remember something about the transaction.
But remember that the user might not continue the transaction at all (for
example, they power off their system) or they may continue the transaction
hours later. They may even use the same application the next day, but would be
surprised if the application did not start from the beginning.

Chapter 2. Introduction to Common Gateway Interface Programming 17

Another possibility is that the next request from the user may not even be
executed on the same Web server machine. For better performance, Web
servers such as Webshare and EnterpriseWeb/VM can be configured so that
more than one server machine can respond to requests. This allows requests to
be processed in parallel. EnterpriseWeb/VM may respond using the same
server machine but use a different execution thread. This means a CGI program
could run in parallel with itself on the same Web server. And VM:Webgateway
has the capability to define a collection of server worker machines that can run a
CGI program on any of them. The point here is that a CGI program must be
careful about any data that it stores between executions or data that it updates.
This makes the design of a CGI program a bit more complicated than simply
writing an EXEC running in a virtual machine.

2.4.1 Creating a Web Transaction
There are techniques that can be used to create a Web based transaction
involving a series of HTML documents and CGI programs. All of these
techniques send transaction identification data back and forth from the server to
the client back to the server, and so on. One way to think of it is that the
identification data sent to the client is “held” by the client until it begins another
transaction. When the server receives the transaction, it also receives the
identification data it sent in the previous transaction.

Note: This “identification data” is not necessarily authentication information (for
instance, a user ID and password) that identifies the client through some
verification scheme. It can be, but it can also be something as simple as
a time stamp generated when the user started the transaction that
identifies that user throughout the transaction. More information about
authentication can be found in section 5.5.4, “Client and Server
Authentication” on page 139.

2.4.1.1 Hidden Fields
One very common method of identification is hidden input fields on HTML forms.
The input form sent to the client contains fields that are not displayed on the
browser window but are sent back to the server when the form is submitted.
The identification information is stored in these hidden fields. This technique is
demonstrated in section 3.3.3, “Using a FORM with POST” on page 35.

2.4.1.2 Cookies
Another method is for the server to send a Cookie to the Web browser. A
Cookie is really just some name=value data that the Web browser stores on a
local storage device. It is implemented using a Set-Cookie response field (to
create a Cookie) and a Cookie request field (to send the saved data back to the
server.) But note that Cookies are an extension to the standard HTTP protocol,
which is not implemented by all Web browsers. Clients can also be configured
to refuse to accept Cookies. Despite these limitations, they are useful to save
preferences or to remember which pages were visited. The format of this data
and how to set and retrieve it is discussed in 3.4.5, “Using Cookies” on page 47.

2.4.1.3 Query String
If you remember from section 2.2.1, “Request Header” on page 10, the first thing
a client sends to the server is the request. The first word is GET or POST (most
of the time) and the second word of the request is the location of the resource.
The query string is anything that follows the “?” in the second word. Since it is
part of a URL, a CGI program that dynamically creates an HTML document

18 Web-Enabling VM Resources

containing hypertext links can place transaction identification information in the
query string part of the URLs. When the user selects one of these URLs, the
query string is sent to the server and to the CGI program that uses it to identify
the transaction. The user may also save a URL in a bookmark file, which would
also save the query string and thus the transaction identification data. A user
could move a bookmark file to a different client and still be identified by the
server.

2.4.2 Summary
This chapter has covered basic concepts and some of the standards used on the
World Wide Web. More information about Internet standards can be found in the
Web pages and publications listed in Appendix E, “Related Publications” on
page 243. The World Wide Web is still evolving, and new standards continue to
be proposed and adopted. We encourage you to continue to learn about recent
standards and technologies so that you can apply them to your Web
programming.

Chapter 2. Introduction to Common Gateway Interface Programming 19

20 Web-Enabling VM Resources

Chapter 3. CGI Programs on VM/ESA

Now that we have presented the HTTP protocol and the CGI standard, how does
all this apply to VM? We have already explained that VM is a very good system
for quickly and easily creating powerful programs. Now let us learn how to write
CGI programs using REXX and how to use the Web server products that are
available for VM.

3.1 A CGI Program Example
The previous chapter covered all kinds of things about what a CGI program can
do. Let us begin with a very simple CGI program that only outputs an ordinary
HTML document. As we move through this chapter we will learn how to create
dynamic output, read and write headers, and so forth.

Our initial CGI program outputs a table of telephone numbers to a Web browser.
We need a CGI program to do this because the table is a CMS file that does not
have any HTML encoding in it. Our program reads the table and inserts HTML
tags as needed to create a table in HTML format. Besides the table, we also
need other HTML tags to create a complete HTML document. So we have put
our HTML “prologue” and “footer” tags into separate files that are read by our
CGI program. If you use these same files in other CGI programs, it makes it
very easy to change the “look” of many pages of your Web site by just changing
one or two files.

3.1.1 Sample HTML and Data Files
For example, let us create a CGI program that will display a table of telephone
numbers and office data of a group of people. This data could reside on VM as
a DB2/VM table or be part of an office application. For this example, the data
will be in a simple file contained in SFS named PHONE DATA in directory
SFSTEST:VMWEBCD.WEBSHARE.DATA.Figure 4 shows the sample file.

*
* File of Telephone data and office data for the ITSO Intranet Dept.
*
* Num Name Phone number Loc Office Status
*----- -------------------- ------------ --- --------- ------
111111 John Q Public 888-555-1111 POK 8-2-C14 In
222222 Eric A Adams 888-555-2222 POK 8-2-C15 In
333333 Paul B Smith 888-555-3333 FRA 16-1-003 In
444444 Steven C Fritz 888-555-4444 FRA 16-1-007 In
555555 Nick D Grimes 888-555-5555 END 250-3-H09 In
666666 Bruce E Hardy 888-555-6666 END 250-3-H06 Out

Figure 4. Sample PHONE DATA File

Any line in the file that starts with an * will be ignored by the application. We
also use a common HTML prologue and footer that are contained in separate
files. Figure 5 on page 22 shows the prologue file and Figure 6 on page 22
shows the footer file.

 Copyright IBM Corp. 1999 21

<HTML><HEAD>
<TITLE>ITSO Telephone List</TITLE>
</HEAD>
<BODY>
<H1>ITSO Telephone List</H1>
<P>The ITSO Intranet department is listed below.</P>

Figure 5. Sample HTML Prologue File PROLOG1 HTMLPART

<HR>
{
Home Page |
IBM Home Page |
IBM Intranet

}
</BODY></HTML>

Figure 6. Sample HTML Footer File FOOTER HTMLPART

3.1.2 Sample CGI Program
Now that we have all the data needed, we write a CGI program that creates the
HTML document for the user to see. For this example, we assumed our Web
server is Webshare or any Web server that is compatible with the Webshare CGI
environment. We use REXX and CMS Pipelines to create our program, PHONE1
CGI, which you can see in Figure 7 on page 23.

Programming Note

You must be aware of the REXX command environment of your CGI program.
CGI programs run by a Webshare or EnterpriseWeb/VM server will always
have a CMS Pipelines default command environment upon entry into the
program. CGI programs run in Webshare compatibility mode by
VM:Webgateway also use the same default environment. Any external
EXECs, MODULEs, CMS, or CP commands executed by your CGI program
should be proceeded by “Address Command” or use the CMS Pipelines
COMMAND or CP stages.

22 Web-Enabling VM Resources

/* PHONE1 CGI program example */
PhoneFile = ′ PHONE DATA′ /* File of telephone number data */
DataDir = ′ SFSTEST:VMWEBCD.WEBSHARE.DATA′ /* data file location */

′ callpipe < PROLOG1 HTMLPART | *:′ / * Display the beginning HTML */
P1Q

′ output <TABLE BORDER=″1″>′ /* Set up the HTML table */
′ output <TH>Employee Number</TH>′ /* Put a title on each column */
′ output <TH>Name</TH>′
′ output <TH>Phone Number</TH>′
′ output <TH>Location</TH>′
′ output <TH>Office</TH>′
′ output <TH>Status</TH>′

P2Q
/* Get the telephone data from the file. */
′ callpipe <sfs′ PhoneFile DataDir ′ | stem phone.′

Do i=1 to phone.0 /* Format the file for display */
If left(phone.i,1) = ′ *′ then /* Ignore the comments */

iterate
′ output <TR>′ /* Beginning of a table row */
′ output <TD>′ substr(phone.i, 1, 6) ′ < /TD>′ /* Each */
′ output <TD>′ substr(phone.i, 8,20) ′ < /TD>′ /* table */
′ output <TD>′ substr(phone.i,29,12) ′ < /TD>′ /* cell */
′ output <TD>′ substr(phone.i,42, 3) ′ < /TD>′
′ output <TD>′ substr(phone.i,46, 9) ′ < /TD>′
′ output <TD>′ substr(phone.i,56, 5) ′ < /TD>′
′ output </TR>′ /* End of a table row */

End
′ output </TABLE>′

P3Q
′ callpipe < FOOTER HTMLPART | *:′ /* The ending HTML */

Exit RC

Figure 7. Sample CGI Program Named PHONE1 CGI

This program is not very complicated; it just uses simple REXX statements that
are probably familiar to you. The program performs three main actions:

�1� This part of the program just outputs the HTML prologue tags from the
PROLOG1 HTMLPART file and then outputs the tags that define the HTML
table. It uses callpipe and pipeline output commands to pass the HTML
data to the Web server because that is the interface used by Webshare.
No Status or other response fields are written by this program, which
means that the Web server will automatically output a status of 200 OK and
its default response fields.

�2� This part of the program reads the PHONE DATA file and formats it with
HTML tags. Each phone stem variable will contain one line of the PHONE
DATA file. The statements in the Do loop produce a beginning and ending
table data HTML tag (<TD></TD>) before every element in the PHONE
DATA file. (However, also see the discussion in 6.3.2.1, “Fast Rendering by
Avoiding HTML Tables” on page 161.)

�3� The last part of the code outputs the HTML tag that defines the end of the
table and then outputs the final HTML tags from the FOOTER HTMLPART
file.

Chapter 3. CGI Programs on VM/ESA 23

Readers who are experienced with CMS Pipelines know that this sample could
be written to use more pipelines functions. But very little CMS Pipelines
knowledge is needed to create a working CGI program as shown in Figure 7.
Later examples in this chapter will use more pipe features in the examples
because CMS Pipelines is a very powerful and useful feature of CMS REXX
programming and we would like to encourage you to learn about it and use it.

To run the CGI program, we enter the URL
http://wtscvmt.itso.ibm.com/∼ vmwebcd/learn/cgi/phone1 into our Web browser.
The result of this CGI program is shown in Figure 8.

Figure 8. Result of Running the PHONE1 CGI Program

3.1.3 Sample CGI Program for VM:Webgateway
If our Web server is VM:Webgateway and we are using the native CGI program
environment instead of the Webshare compatibility support, some changes need
to be made to the sample.

 Tip

We recommend that you use the native VM:Webgateway CGI program
commands if you are using this server and are writing a CGI program that
does not need to be portable among the VM Web server products. The
native commands are more flexible and give you more control over the CGI
environment than is available using the Webshare compatibility environment.

The most important difference between Webshare and VM:Webgateway native
CGI programs is the default REXX command environment. Native
VM:Webgateway CGI programs use CMS as the default environment just like a
normal CMS exec. Any execution of an external EXEC, MODULE, CMS, or CP

24 Web-Enabling VM Resources

command should use the “Command” environment. To run a CMS Pipelines
program in this environment, the PIPE command is used instead of CALLPIPE.

VM:Webgateway provides a CGI command that a CGI program uses to
communicate with the Web server. To write all or portions of an HTML
document to the Web browser, use:

CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING data

The command options instruct the Web server to translate the data provided in
EBCDIC to ASCII and add “carriage return/line feed” characters (EBCDIC
X′ 0D25′ before translation) to the end of the data. HTML documents do not
require a CRLF at the end of each record, but this makes viewing the file on an
ASCII-based system look similar to the record structure of CMS files. The CGI
command also supports the options VAR varname and STEM stemname in case
your data is contained within REXX variables instead of a STRING.

Going back to our previous example, in Figure 7 on page 23, after marker P1Q,
the line:

′ output <TABLE BORDER=″1″>′

is changed to:

CGIwrite=′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING′
CGIwrite ′<TABLE BORDER=″1″>′

Notice that the full CGI command is assigned to a variable so that it is easy to
write.

The pipe just before marker P1Q is changed to:2

′ PIPE < PROLOG1 HTMLPART′ ,
′ | change //CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING /′
′ | command′

This will read the PROLOG1 HTMLPART file and transform every line to a CGI
command by inserting the string CGI WRITE... at the beginning. The commands
are executed by the command stage.

A complete sample program is available on the VM Web CD as PHONE1
SVMEXEC.

2 Also see the note on page 28 for information on how to access the HTMLPART file.

Chapter 3. CGI Programs on VM/ESA 25

Performance Tip

Every time the CGI command is executed, data is sent from the CGI program
through the Web server to the client. This gives the client a fast response
but causes additional overhead in the server. To reduce this overhead, we
can issue fewer CGI commands with more data supplied each time. This is
very easy to do with the CMS Pipelines JOIN stage. Our pipeline becomes:

′ PIPE < PROLOG1 HTMLPART′ ,
′ | join * x0D25 65535′ ,
′ | change //CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING /′
′ | command′

The stage “join * x0D25 65535” takes all the records from PROLOG1
HTMLPART and joins them together into one record, inserting a CRLF
(X′ 0D25′) between each record. The number 65535 3 means that join will not
create a record larger than 65535 bytes; it will create another output record
for the additional records. This is essentially a blocking stage that takes the
small records from the file and makes a large “block” of data to write to the
Web server. The number 65535 was chosen as a trade-off between storage
use and Web server overhead. More information on overhead and
performance is found in Chapter 6, “Performance Issues” on page 157.
EnterpriseWeb/VM and Webshare automatically block data written to the
output stream, so blocking by the CGI program is not needed.

3.2 Fetching CGI Global Variables
As we learned in section 2.3.1, “CGI Environment Variables” on page 14, the CGI
standard specifies a set of environment variables that are made available by the
Web server to a CGI program. Remember that they are used to pass data about
the request from the client to the CGI program. Each different Web server
implementation specifies how a CGI program gets access to these variables.
Note that changing these variables will not have any effect on the Web server.
They are only used to pass data from the Web server about the client request to
the CGI program.

How to retrieve global variables for each VM Web server product is discussed in
the following sections.

3.2.1 Webshare Global Variables
CGI global variables are available to a CGI program in the GLOBALV group
HTTPD. For example, to retrieve the variables REQUEST_METHOD and
HTTP_USER_AGENT into variables with the same name, you code:

Address command ′ GLOBALV SELECT HTTPD GET REQUEST_METHOD HTTP_USER_AGENT′

Address command is necessary in the statement because the default REXX
programming environment of a Webshare CGI program is CMS Pipelines.

The CGI standard specifies that all request header fields sent with the request
are passed to the CGI program in global variables whose names begin with

3 VM:Webgateway release 2.2 worker machine support has a bug where CGI commands longer than 4096 bytes can abend the
Web server worker. This problem is expected to be fixed in release 3.0. If you are using VM:Webgateway release 2.2 and
worker machines, use 4000 for a blocking number instead of 65535 to avoid the problem.

26 Web-Enabling VM Resources

“HTTP_” (unless the data in the field is already available in another variable,
such as CONTENT_LENGTH.) Webshare provides some of the fields as global
variables in GLOBALV, but not all of them. All of the header fields are available
in the pipe secondary input stream to the CGI program. So, variables containing
the header fields can be retrieved and set with a short CMS Pipelines program.
When creating variables not set by the Web server, begin the variable names
with X_ so that you know they are an extension of the CGI standard. If the Web
server provides the header field contents in a variable, a CGI program should
use that variable. Here is the pipeline that sets the variables:

/* WEBSHARE/EWEB don′ t create variables for all header fields so, */
/* create ″extension variables″ of X_HTTP_name */
′ callpipe *.input.1:′ , /* Get header records */

′ | xlate w1 upper - _′ , /* Make proper variable names */
′ | spec fs : f1 1 f2-* strip 21′ , /* Expand for JOIN */
′ | sort 1-20′ ,
′ | join keylength 20 /, /′ , /* Combine matching hdrs */
′ | spec /=X_HTTP_/ 1 w1 next /=/ next 21-* next′ , / * Vars */
′ | varload′

This creates X_HTTP_name variables out of each header field, and does the
standard translation of any dashes in the field name to underscores in the
variable name.

Note: Webshare sets more variables in the HTTPD GLOBALV group than just
the standard CGI global variables. If you use these variables, remember that
they may not be implemented in all Web server installations.

3.2.2 EnterpriseWeb/VM Global Variables
CGI global variables are available using the same interfaces that are used in
Webshare. Since GLOBALV is a resource shared by all programs running under
one user ID, the GLOBALV group name of some of the global variables changes
depending on which EnterpriseWeb/VM thread the CGI program is using. The
name of the thread is passed to the CGI program in pipe input stream 2 and is
intended to be loaded to the variable eweb.thread using this statement:

′ callpipe *.input.2: | varload′

The variables whose values do not change when a different thread is used are
available in the HTTPD GLOBALV group. These variables are:

• GATEWAY_INTERFACE
• SERVER_NAME
• SERVER_PORT
• SERVER_SOFTWARE

All other global variables are found in a THREADn group where n is the value of
the eweb.thread variable. For example, to retrieve the variables
REQUEST_METHOD and HTTP_USER_AGENT into variables with the same name,
you code:

Address command,
′ GLOBALV SELECT THREAD′ | | eweb.thread ′ GET REQUEST_METHOD HTTP_USER_AGENT′

Address command is necessary in the statement because the default REXX
programming environment of an EnterpriseWeb/VM CGI program is CMS
Pipelines.

Just like Webshare, EnterpriseWeb/VM does not provide all of the HTTP request
header fields as GLOBALV variables. However, just like Webshare, they are

Chapter 3. CGI Programs on VM/ESA 27

available in the pipe secondary input stream to the CGI program and can be
retrieved using the same pipeline listed in section 3.2.1, “Webshare Global
Variables” on page 26. EnterpriseWeb/VM also makes all the header fields
available as GLOBALV variables named HEADER.x., where x counts from 1 to
the number of header fields; set in the HEADERn group, where n is the value of
the eweb.thread variable. Therefore, GLOBALV commands can be used instead
of the pipeline to retrieve the header fields, if desired.

Note: EnterpriseWeb/VM sets many more variables in the HTTPD GLOBALV
group than just the standard CGI global variables. If you use these variables,
remember that they may not be implemented in all Web server installations.

3.2.3 VM:Webgateway Global Variables
All CGI global variables are retrieved using the CGI GETVAR command. For
example, to retrieve the variables REQUEST_METHOD and HTTP_USER_AGENT
into variables with the same name, you code:

′ CGI GETVAR REQUEST_METHOD (VAR REQUEST_METHOD′
′ CGI GETVAR HTTP_USER_AGENT (VAR HTTP_USER_AGENT′

The name of the variable that is retrieved and the REXX variable receiving the
data do not need to have the same name. You can also retrieve all CGI global
variables with one call to CGI GETVAR and place all of them into a stem
variable. The statement is:

′ CGI GETVAR * (STEM GV.′

This sets the global variables REQUEST_METHOD and HTTP_USER_AGENT
under the gv. stem prefix as gv.request_method and gv.http_user_agent. More
information on performance issues related to CGI GETVAR can be found in
“VM:Webgateway Specific Considerations” on page 167.

 Tip

If you accidentally use a string as the tail of the stem name that is already
set as a variable in your program, you will get unexpected results! For
example, you may code:

′ CGI GETVAR * (STEM GV.′
query_string = gv.query_string

If later in your program, you reference gv.query_string, you will not get the
value you expect because the symbol “query_string” is now a variable. A
safer method is to force the stem tail names to be variable names that you
are not likely to use in your program. For example:

′ CGI GETVAR * (STEM GV.?′
query_string = gv.?query_string

If you do this, one thing to note is that the CGI command sets the variable
stem.0 with the names of all the variables retrieved. In this example, all the
variable names are found in the gv.?0 variable.

Note: VM:Webgateway makes more global variables available to a CGI program
than just the standard CGI global variables. Any additional variable
names begin with X_ so that you know that they are not standard
variables. If you use these variables, remember that they may not be
implemented in all Web server installations.

28 Web-Enabling VM Resources

Unlike Webshare and EnterpriseWeb/VM, VM:Webgateway does not
automatically access the disk or directory that contains the CGI program
that it is running. So you cannot assume that other files that need to be
read by the CGI program are available. VM:Webgateway provides a
global variable named X_SCRIPT_NAME_TRANSLATED that contains the
location of the CGI program that is running. This variable, along with the
CMS Pipelines “ < ” stage, can be used to gain access to other files a CGI
program needs. See the “Script_Location” subroutine in any of the
VM:Webgateway sample CGI programs supplied on the VM Web CD.

3.3 Receiving User Input
Now that we have shown how a CGI program on VM can create dynamic HTML
documents and we know how to get the global variables, let us see how to
receive user input. Section 2.3.2, “Sending Data to a CGI Program” on page 15
gave us a general overview of the ways a CGI program can receive input. All of
these methods are implemented in different ways in the VM Web server
products. We start with the query string.

3.3.1 Using the Query String
This is the simplest form of “user input” available to a CGI program. The query
string is anything that follows the “?” in the second word of the request line in
the request header.

A user could manually type in a URL that includes a query string, but it is usually
automatically included by the Web browser. There are four reasons it would be
included:

 1. An HTML FORM with METHOD=GET is submitted.
 2. An < I S I N D E X > HTML tag is specified in the header of the HTML document

currently displayed on the client and the user enters some data.
 3. An ISMAP attribute is specified on an < I M G > HTML tag and the user

selects some part of that image with the mouse.
 4. It is part of a URL specified in an HTML hypertext reference tag or a saved

bookmark entry that is selected.

It is important to remember that the query string data is always URL encoded by
the browser before it is sent. (See 2.3.3, “Encoding” on page 16 for a
description of encoding.) In addition, if the query string is generated by a FORM,
it will be form encoded. It must be decoded before you can use it, either by the
CGI program or automatically by the Web server.

The query string is passed to the CGI program as a global variable named
QUERY_STRING. Webshare compatible servers also pass the QUERY_STRING to
the CGI program as a normal REXX argument string. (But note that the
argument string may have one or more blanks appended to it.) First, you have
to determine what kind of data it contains. Data from a FORM with
METHOD=GET will create a QUERY_STRING with a value such as this example:

name=Jeff&company=IBM&title=Web+Programmer

Data from an HTML document with ISINDEX (sometimes called an ISINDEX
query) will create a QUERY_STRING with a value such as this example:

Jeff+%26+company%3DIBM

Note: The HTML <ISINDEX> tag allows a CGI program to receive data from a
client without creating an HTML FORM. It is a simple and quick way to

Chapter 3. CGI Programs on VM/ESA 29

prompt the user for input and receive the data. An HTML FORM allows
careful control of the input format and data structure and is usually better
suited for production applications.

A CGI program can determine if the query string is from an ISINDEX query or
from a FORM by examining the query string. An ISINDEX query never contains
unencoded equals signs (=). In other words, any equal signs in the query are
changed to the string %3D before they are sent. A query string from a FORM
will have one or more name=value strings from the form. So, the type of query
is easy to determine using REXX:

from_isindex = (pos(′ = ′ , query_string) = 0)

(But first make sure that the query string is not empty!)

Once you know how the query string was created, it still has to be decoded.
Webshare and EnterpriseWeb/VM make the decoded query string available as
the normal input stream (pipe input stream 0) to the CGI program but only if the
value of the REQUEST_METHOD variable is GET. If the REQUEST_METHOD is
POST, your CGI program has to decode the query string. Fortunately, there are
utilities available to do this. The following examples assume that the query
string is the result of an ISINDEX query. If it is the result of a FORM, see section
3.3.3, “Using a FORM with POST” on page 35, which discusses how to retrieve
FORM data.

3.3.1.1 Webshare
Webshare does not provide a utility to perform decoding. However, the CMS
Pipelines level that is included with CMS level 14 has a URLDEBLOCK stage that
will perform the decoding. The data must be translated from EBCDIC to ASCII
before decoding and then back to EBCDIC after decoding.

Parse arg query_string .
from_isindex = (pos(′ = ′ , query_string) = 0 & query_string <> ′ ′)
/* Is the query_string from an ISINDEX tag? */
If from_isindex then

′ callpipe var query_string′ ,
′ | xlate from 1047 to 819′ ,
′ | urldeblock′ ,
′ | xlate from 819 to 1047′ ,
′ | var isindex′

else
isindex=′ ′

The xlate (translate) stages translate the data from code page 1047 (EBCDIC
Latin 1/Open Systems) to 819 (ASCII ISO 8859 Latin Character Set 1) and back
again. This translation is the most widely recommended one to use for Internet
EBCDIC to ASCII translations. More information on code pages can be found in
section 3.4.6.1, “What is a Code Page?” on page 50.

 Note

If CMS Pipelines on your system does not have the URLDEBLOCK stage or
the mentioned codepages, you can get a recent version from the “runtime
library distribution” World Wide Web site. The URL is
http://pucc.princeton.edu/%7Epipeline4

30 Web-Enabling VM Resources

3.3.1.2 EnterpriseWeb/VM
EnterpriseWeb/VM provides an EWGET CMS Pipelines stage with a DECODED
option that will decode the query string. Here is an example of how to decode
the data from an ISINDEX query:

Parse arg query_string .
from_isindex = (pos(′ = ′ , query_string) = 0 & query_string <> ′ ′)
/* Is the query_string from an ISINDEX tag? */
If from_isindex then

′ callpipe var query_string′ ,
′ | ewget decoded′ ,
′ | var isindex′

else
isindex=′ ′

Note that the translation table used by EWGET DECODED cannot be specified,
however Beyond Software Inc. states that “the built-in translation tables should
work for all languages that use the Latin alphabet, such as English, French,
Swedish, German, Italian, and so on.”

3.3.1.3 VM:Webgateway
VM:Webgateway provides a CGI URLDECODE command to decode the query
string or any other URL-encoded data. To decode the query string, use the
MODE TRANSFORMED option. Here is an example of how to decode the data
from an ISINDEX query:

′ CGI GETVAR QUERY_STRING (VAR QUERY_STRING′
/* Is the query_string from an ISINDEX tag? */
from_isindex = (pos(′ = ′ , query_string) = 0 & query_string <> ′ ′)
If from_isindex then

′ CGI URLDECODE (VAR QUERY_STRING MODE TRANSFORMED′ ,
′ INTO ISINDEX.′ ,
′ TRANSLATE USENGLISH′

else
isindex.1 = ′ ′

This will place the decoded query string data into the variable isindex.1. A
translation table must be specified on this command so that any encoded
national language characters are translated to the correct EBCDIC characters.

3.3.2 Enhancing Our Sample Program
Let us enhance our telephone number application and use the QUERY_STRING
to search for records. Our CGI program will accept a QUERY_STRING that is
either the result of an ISINDEX query or from a FORM with METHOD=GET.
HTML forms are discussed in the next section, so we will not use one to send a
GET request to our CGI program. We have manually created an equivalent URL
in an HTML document that invokes our CGI program when selected. This is a
common practice that allows several different selections or queries to be
handled by one CGI program. The basic format of the query string when it is
used this way is name=value&name=value&.... Remember that any values must be
encoded. For example, if we previously ran our CGI program with a URL of

http://wtscvmt.itso.ibm.com/∼ vmwebcd/learn/cgi/phone1

4 The %7E that appears in this URL is an example of a URL encoded tilde character (∼). The tilde character is not correctly
displayed in all character sets, thus it is an example of an unsafe character which must be encoded for reliable transmission
across the Web.

Chapter 3. CGI Programs on VM/ESA 31

we will now run a new program named PHONE2 CGI and add a simple query
string to the end:

http://wtscvmt.itso.ibm.com/∼ vmwebcd/learn/cgi/phone2?location=POK

To make this easier for the user to select, we created a file named SELECT
HTML that has URL references to the three locations in our PHONE DATA file.
Figure 9 shows this file and Figure 10 shows what it looks like on a Web
browser.

<HTML><HEAD>
<TITLE>ITSO Telephone List</TITLE>
</HEAD><BODY>
<H1>ITSO Telephone List</H1>
<P>The ITSO Intranet department can be viewed in its entirety or by
site. Please select your preference from the list below:</P>

Entire Telephone Directory

Telephone Directory for Poughkeepsie

Telephone Directory for Endicott

Telephone Directory for France

<HR>
{
Home Page |
IBM Home Page |
IBM Intranet |

}
</BODY></HTML>

Figure 9. Sample SELECT HTML Document

Figure 10. Display of Sample SELECT HTML Document

32 Web-Enabling VM Resources

Now let us change to our PHONE CGI program to read the QUERY_STRING and
take action based on its content. If no query string is sent, the entire table is
displayed as before. If an ISINDEX query is sent, only records that contain the
specified string are displayed. Otherwise, we display only records for a
specified location. To enable an ISINDEX query, the PROLOG1 HTMLPART file is
renamed to PROLOG2 HTMLPART and an <ISINDEX> tag is added before the
</HEAD> tag. The modified program is shown in Figure 11.

/* PHONE2 CGI program example */
PhoneFile = ′ PHONE DATA′ /* File of telephone number data */
DataDir = ′ SFSTEST:VMWEBCD.WEBSHARE.DATA′ /* data file location */

Parse arg query_string . P1Q
parm.=′ ′ /* Initialize default values */
from_isindex = (pos(′ = ′ , query_string) = 0)
Select
When query_string = ′ ′ then nop /* Nothing to process */
When from_isindex Then

′ callpipe var query_string′ ,
′ | xlate from 1047 to 819′ , /* EBCDIC to ASCII */
′ | urldeblock′ ,
′ | xlate from 819 to 1047′ , /* ..and back */
′ | var isindex′

Otherwise
/* Webshare will make query string data available on stream 0 */
′ callpipe *:′ , P2Q

′ | xlate 1-* 05 40′ , /* In case of any tab chars */
′ | strip′ , /* Ignore any empty ones */
′ | locate 1′ ,
′ | xlate fieldsep = f1 upper′ , /* Upper case field name */
′ | specs ″=PARM.?″ 1 1-* next′ , / * Put it in varload fmt */
′ | varload′

End
Search=′ ′ /* Which entries to show. */
SearchHTML=′ ′ /* Any additional text to show. */
Select P3Q
When query_string = ′ ′ then nop /* Nothing to search for */
When from_isindex Then do
Search=′ | locate anycase 1-* ″ ′ isindex′ ″ ′
SearchHTML=′<P>The results of your search request are shown.</P>′

End
When parm.?location <> ′ ′ Then do
SearchArg = translate(left(parm.?location,3)) /* Search string */
Search=′ | locate 42-44 ″ ′ SearchArg′ ″ ′
SearchHTML=′<P>Only telephone numbers in location′ SearchArg,

′ are shown.</P>′
End
Otherwise

End

Figure 11 (Part 1 of 3). Sample PHONE2 CGI Program

Chapter 3. CGI Programs on VM/ESA 33

′ callpipe < PROLOG2 HTMLPART | *:′ / * Display the beginning HTML */
P4Q

If SearchHTML <> ′ ′ then /* Extra message to display? */
′ output′ SearchHTML

′ callpipe <sfs′ PhoneFile DataDir,P5Q
′ | nlocate 1-1 ″*″ ′ , /* Ignore ″comments″ in col. 1 */

Search, /* Maybe search for a location */
′ | stem phone.′ /* Save result */

Figure 11 (Part 2 of 3). Sample PHONE2 CGI Program

′ output <TABLE BORDER=″1″>′ /* Set up the HTML table */
′ output <TH>Employee Number</TH>′ /* Put a title on each column */
′ output <TH>Name</TH>′
′ output <TH>Phone Number</TH>′
′ output <TH>Location</TH>′
′ output <TH>Office</TH>′
′ output <TH>Status</TH>′ P6Q

Do i=1 to phone.0 /* Format the file for display */
′ output <TR>′ /* Beginning of a table row */
′ output <TD>′ substr(phone.i, 1, 6) ′ < /TD>′ /* Each */
′ output <TD>′ substr(phone.i, 8,20) ′ < /TD>′ /* table */
′ output <TD>′ substr(phone.i,29,12) ′ < /TD>′ /* cell */
′ output <TD>′ substr(phone.i,42, 3) ′ < /TD>′
′ output <TD>′ substr(phone.i,46, 9) ′ < /TD>′
′ output <TD>′ substr(phone.i,56, 5) ′ < /TD>′
′ output </TR>′ /* End of a table row */

End
′ output </TABLE>′
′ callpipe < FOOTER HTMLPART | *:′ /* The ending HTML */
Exit RC

Figure 11 (Part 3 of 3). Sample PHONE2 CGI Program

These notes refer to Figure 11 on page 33.

�1� The QUERY_STRING is passed to the CGI program as an argument. The
Web server may include some trailing blanks (which should not be there)
so we only get the first word. If it is empty, do nothing. If it is from an
ISINDEX query, decode it using URLDEBLOCK. (For more information
about URLDEBLOCK, see 3.3.1.1, “Webshare” on page 30.)

�2� If the query string is the result of an HTML form, read standard input,
transform the data and set variables. This will set a series of variables
named PARM.?name=value, where name is the name of the field from the form
and value is its value. In our example, if the query string contains the
string location=pok, then the VARLOAD stage will set PARM.?LOCATION=pok.
See the Tip on page 28 for an explanation of why we are setting variables
named PARM.?name instead of just naming them PARM.name.

Note: For historical reasons, Webshare makes the decoded query string
available as the normal input stream (pipe input stream 0).
EnterpriseWeb/VM and VM:Webgateway in Webshare compatibility
mode also do this. This is why our CGI program can read the

34 Web-Enabling VM Resources

decoded query string from pipe input stream 0 instead of decoding
the query_string variable.

�3� This select statement sets up the search based on how the query string
was decoded. If no query string was passed, the entire file is shown by
default. If the query string is from an ISINDEX search, then search the
entire telephone record for the string (case does not matter.) If the query
string is from a location variable sent to the program, then search for that
location.

�4� These two pipeline commands output the PROLOG2 HTMLPART file to the
client and output the “search” informational message if a search request
was made.

�5� This pipeline is based on the pipeline after marker P2Q in Figure 7 on
page 23 with additional stages in the middle. Instead of using a REXX “If”
statement to ignore comment lines, we use a pipelines NLOCATE stage.
Also, if a search string was specified, the stage placed in the Search
variable will be executed. CMS Pipelines has a rich set of stages that can
be used for selecting and manipulating data, so using pipeline stages for
selecting records is preferred.

�6� This part of the program is the same as PHONE1 CGI (see Figure 7 on
page 23) except that the “If” statement that ignored comment lines has
been removed.

3.3.2.1 VM:Webgateway Changes
The same changes and considerations explained in section 3.1.3, “Sample CGI
Program for VM:Webgateway” on page 24 still apply to our latest example. We
must also change how global variables are fetched and how the query string is
decoded. How to do this has been documented in section 3.2.3,
“VM:Webgateway Global Variables” on page 28. However, we have not
mentioned how to decode FORM data, but it is very similar to decoding the data
from an ISINDEX query. This statement will set values in the parm.?name stem in
the same manner as the pipeline at marker P2Q in Figure 11 on page 33:

′ CGI URLDECODE (VAR QUERY_STRING MODE TRANSFORMED′ ,
′ INTO PARM.?′ ,
′ TRANSLATE USENGLISH′

A complete sample program is available on the VM Web CD as PHONE2
SVMEXEC.

3.3.3 Using a FORM with POST
Our sample CGI program now has search capabilities but does not have a way
for users to update their own telephone number entries. We can add that
capability by sending the user an HTML FORM that has fields for the updated
data. It also specifies a CGI program to run when the data is submitted. We will
create a new HTML document that contains the update form and a new CGI
program that will process the update.

First, one small change is made to the existing PHONE2 CGI program. It
displays a hypertext link to the new update form on the telephone number
display window after the table. For Webshare and EnterpriseWeb/VM we write:

′ output </TABLE>′
′ output <P>Update your telephone entry</P>′

Chapter 3. CGI Programs on VM/ESA 35

Note: You may notice that the HREF refers to ″ . . / update.html″ instead of just
″update.html″ . This is called a relative path, because the path to the
referenced object is relative to the location of the current object. In this
case, the current URL location is the CGI subdirectory and the
update.html document is in the “base” directory. Relative path names
are used in all the examples in this chapter so that all references are
portable from server to server. More information can be found in the
section “Relative URL Addressing Inside an Application” in Web Server
Solutions for VM/ESA, SG24-4874.

VM:Webgateway and EnterpriseWeb/VM can store both CGI programs and
other objects in the same directory, so a separate CGI directory is not
necessary. Both of these products determine the content type of a file
from its file type instead of using a FILELIST file.

3.3.3.1 HTML Form
First let us look at the HTML input form in the file UPDATE HTML. Besides the
usual prologue, heading, and footer HTML tags, it contains an HTML form that
star ts wi th a <FORM> tag and ends wi th </FORM>. A better description of
forms and form elements is found in the section “Creating Forms” in Web Server
Solutions for VM/ESA, SG24-4874. See Figure 12, which shows the HTML
document, and the notes following it.

<HTML><HEAD>
<TITLE>ITSO Telephone Number Update</TITLE>
</HEAD><BODY>
<H1>ITSO Telephone Number Update</H1>
<FORM METHOD=POST ACTION=″cgi/update″> P1Q
<P>Please enter your new or updated Telephone information
and press the Submit button.</P>
<P>Employee Number:
<INPUT TYPE=″text″ NAME=″empnum″ SIZE=6 MAXLENGTH=8></P> P2Q

<P>Name:
<INPUT TYPE=″text″ NAME=″name″ SIZE=20 MAXLENGTH=20></P>

<P>Telephone number:
<INPUT TYPE=″text″ NAME=″phone″ SIZE=12 MAXLENGTH=12></P>

<P>Location (select one) P3Q
<INPUT TYPE=″radio″ NAME=″location″ VALUE=″POK″> Poughkeepsie
<INPUT TYPE=″radio″ NAME=″location″ VALUE=″END″> Endicott
<INPUT TYPE=″radio″ NAME=″location″ VALUE=″FRA″> France</P>

<P>Office location:
<INPUT TYPE=″text″ NAME=″office″ SIZE=9 MAXLENGTH=9></P>

<P>Status (select one):
<INPUT TYPE=″radio″ NAME=″status″ VALUE=″In″ CHECKED> In P4Q
<INPUT TYPE=″radio″ NAME=″status″ VALUE=″Out″> Out</P>
<INPUT TYPE=″hidden″ NAME=″version″ VALUE=″1.2″> P5Q

<P>Reset fields:
<INPUT TYPE=″reset″> P6Q
(Pressing this will clear all fields.)</P>

<P>Select to submit your responses:
<INPUT TYPE=″submit″ VALUE=″Submit″></P> P7Q

</FORM></BODY></HTML>

Figure 12. Sample HTML Document Named UPDATE HTML with Input Fields

The following notes refer to Figure 12.

36 Web-Enabling VM Resources

�1� This is the beginning of the HTML form. Notice that we have defined the
method that the Web browser will use to return data to the server (in this
case the POST instead of the GET.) The other thing you see in the FORM
tag is the action that defines what object in the Web server will receive the
data. In this case, it is our UPDATE CGI program.

�2� This is the first input definition in the form. It defines a text type input field
that should be wide enough on the screen to enter 8 characters (SIZE=8)
and not allow any more than 8 characters to be entered (MAXLENGTH=8). This
field also has a NAME of empnum, which is used by our CGI program to
identify the value entered into this field. You may also notice that between
the input fields in the form we can put any other text or HTML tags that are
needed to make the form readable and usable.

�3� This is another type of input definition. A radio type will be displayed on
the browser screen as a set of buttons that the user can “push” using the
mouse. Notice that the set of buttons all have the same name but different
values. Only one of the values (depending on which button was pushed)
will be sent to our CGI program.

�4� This is a radio button definition just like the last one, but notice that a
keyword of CHECKED has been added. This instructs the browser to initially
select this button instead of initializing the buttons without any of them
selected. If the user does not select another button of this group, this
default selection will be sent to the CGI program.

�5� This is a hidden input type. As the name implies, it is not shown on the
browser window but the name and its associated value are returned to the
CGI program. In this example, the “version” of the HTML form is sent to
the CGI program so that it can check to see if an old form was used. See
the discussion of cache validation on page 158 for background on the
importance of such tests for statically built forms.

�6� A reset input field defines a button that, when pressed, will reset all the
input fields to their initial values. This function is performed by the
browser, but only if a reset type field is present in the form. Whether or not
you provide this function on your forms depends on your application.

�7� The submit button is the button “pressed” by the users once they have
filled out the form and want to send it to the Web server. The Value field
defines what text is used to label the button; it is not sent to the CGI
program.

3.3.3.2 POSTTEST CGI Utility
Before we present the CGI program that will process this form, let us mention a
utility CGI program that will help you test and debug HTML forms and CGI
programs. The Webshare Web server comes with a sample program named
POSTTEST CGI. When POSTTEST is referenced as the ACTION of an HTML form,
it returns an HTML document that displays all of the HTML FORM input fields
and values sent from the client. It also displays all the environmental
information available to a CGI program, such as all of the header fields sent
from the client and all CGI global variables. It is very useful for debugging your
HTML forms before you write your CGI program.

Note: If you do not have the POSTTEST CGI program available on your Web
server, you can use the “Sample Universal CGI for Use with All VM Web
Servers” CGI program documented in an appendix of Web Server
Solutions for VM/ESA, SG24-4874 and available on the VM Web CD as
TEST CGI. This CGI program can be run on any VM Web server and will

Chapter 3. CGI Programs on VM/ESA 37

display HTML FORM INPUT fields as well as CGI global variables and
environment information.

In order to test our UPDATE HTML document before we create the UPDATE CGI
program, simply change the ACTION reference of the form (see P1Q in Figure 12
on page 36) to invoke POSTTEST CGI. This line of UPDATE HTML now reads:

<FORM METHOD=POST ACTION=″ /cgi-bin/posttest″>

A portion of the output from POSTTEST CGI looks like this example, showing all
input fields by name on the form and the value filled in by the user:

Results: (what you posted (if anything))
empnum=111111
name=John Q Public
phone=888-555-1111
location=POK
office=8-2-C14
status=In
version=1.2

3.3.3.3 Processing the Form
Now that we have written and tested the form that the user can fill out, we
present the UPDATE CGI program that actually updates our PHONE DATA file.
The following figures show the program with explanations following each figure.
VM:Webgateway changes are also described in the explanations. A complete
sample program is available on the VM Web CD as UPDATE SVMEXEC.

/* UPDATE CGI program example */
PhoneFile = ′ PHONE DATA′ /* File of phone number data */
DataDir = ′ SFSTEST:VMWEBCD.WEBSHARE.DATA′ /* data file location */
parm.=′ ′ /* Initialize default values */

′ callpipe (end %)′ ,
′ *:′ , /* Read input from the form */

′ | xlate 1-* 05 40′ , /* Convert any tab chars to space */
′ | strip′ , /* Ignore any empty ones */
′ | locate 1′ ,
′ | xlate fieldsep = f1 upper′ , /* Upper case field name */
′ | f:fanout′ ,
′ | specs ″=PARM.?″ 1 1-* next′ , / * Put it in varload format */
′ | varload′ ,
′%f:′ ,
′ | chop before string ″=″ ′ , /* Save just the field name */
′ | join * ″ ″ ′ , /* Make 1 string of names */
′ | var parm.?0′

Figure 13. UPDATE CGI Program, Part 1 of 5

Figure 13 shows a CMS Pipelines program that reads the form data sent using
the POST method from the form. The data sent from the Web browser is actually
URL form encoded See 2.3.3, “Encoding” on page 16 for more information on
encoding in ASCII, but the Web server decodes it and converts it to EBCDIC for
us. However, some characters may still cause problems, so this pipeline
converts any tab (EBCDIC X′ 05′) characters to a space and removes any leading
or trailing spaces and any empty lines. It then loads the parm.? stem variable
with our input data and the variable parm.?0 with the names of all the input fields.

38 Web-Enabling VM Resources

For a VM:Webgateway native CGI program, the CGI READ command is used to
read form data sent from the client and the CGI URLDECODE command to
decode it:

′ CGI READ 1 (VAR INPUT TRANSLATE USENGLISH′
′ CGI URLDECODE (VAR INPUT MODE TRANSFORMED INTO PARM.?′ ,

′ TRANSLATE USENGLISH′

The command CGI READ 1 actually reads all of the input data that is available, not
just one POST variable. The World Wide Web is an ASCII-based system and
“records” that we are used to seeing in CMS do not have the same meaning.
All the encoded data is loaded into one variable. TRANSLATE USENGLISH means
that we want the ASCII characters translated to EBCDIC using a built-in
translation table provided with VM:Webgateway. If TRANSLATE NONE is specified
instead, the input data is stored in the variables in ASCII.

To decode the input data, we once again use the CGI URLDECODE command
and place the results in a stem. CGI URLDECODE places data in the stem in
essentially the same way the CMS Pipelines program in Figure 13 on page 38
does.

 Note

A Web browser could post data to your CGI program with duplicate,
unreadable or missing field names. Also, the values returned with the fields
could be longer than you expected. This may happen when a new form is
being developed or because someone is being malicious. For example, if the
HTML form had more than one input field named ″phone″ or a field with
NAME=″++.&*″, these names will be sent to your CGI program! Make sure your
program will not abnormally terminate if unknown fields are sent. This is
also why the examples in this book read form variables into REXX stems
instead of directly setting variables. It prevents a malicious user from
manipulating critical variables in your CGI program by creating form
variables that match your variables.

In our simple example, duplicate or invalid field names are ignored. If your CGI
program needs to be able to handle duplicate names or fields with special
names, most Web servers have utilities that help process the input.
EnterpriseWeb/VM contains an EWGET utility to assign FORM POST input to a
set of stem variables in your CGI program. The CGI URLDECODE command of
VM:Webgateway has a predefined algorithm for how it assigns duplicate field
names to variables and how it translates “obscure” field names into valid REXX
variable names. Consult the programming documentation of each respective
Web server product for more details on these utilities.

Chapter 3. CGI Programs on VM/ESA 39

FormVars = parm.?0
FormError = 0
Do while FormVars <> ′ ′ /* Go through all form variables */

Parse var FormVars onevar FormVars
onevar = ′ ? ′ | | onevar
If parm.onevar = ′ ′ Then Do /* Are any of them blank? */

FormError = 1 /* If so - issue an error message */
Leave

End
End

Figure 14. UPDATE CGI Program, Part 2 of 5

Either the pipeline program in Figure 13 on page 38 or CGI URLDECODE has
placed the names of all the input fields into the variable parm.?0 and all the
values into parm.?name, where name is the name of each input field. In Figure 14,
a simple loop checks to make sure no input field on the form is empty. If it finds
an empty field, it sets a flag so that the user is informed of the error.

Select
/* Any field missing? */
When FormError Then Do P1Q
Update = ′not successful.′
Reason = ′ The failure was due to a blank or missing input field. ′
Action = ′ Please return to the′ ,

′ update screen and resubmit your update.′
End
When parm.?version /== ′1 .2 ′ Then Do P2Q
Update = ′not successful.′
Reason = ′ You have an old or incorrect level of the input form.′
Action = ′ Please return to the′ ,

′ update screen and reload the form.′
End
Otherwise P3Q
RC = UpdateFile()

If RC = 0 Then Do
Update = ′ successful.′
Reason = ′ Thank you for keeping your records up to date!′
Action = ′ ′

End
Else Do

Update = ′not successful.′
Reason = ′ The failure was due to a program error.′
Action = ′ Please notify system support.′

End
End

Figure 15. UPDATE CGI Program, Part 3 of 5

Next we process the form. In Figure 15, a Select statement is used to check for
some conditions:

�1� If any field is empty, we set some variables with friendly messages to the
user that are sent back in our response. Notice that we can include any
HTML tags that we like, even references back to the form that the user has
completed.

40 Web-Enabling VM Resources

�2� Here is where the hidden input field is examined. If the user used an old
version of the form and submitted it (due to the user′s Web browser using
an old copy of the form from its cache), this program does not accept their
input. See the discussion of cache validation on page 158 for background
on the importance of such tests for statically built forms.

�3� If there are no errors, a subroutine is called to update the file and
messages are created to tell the user if it worked. The subroutine is shown
in Figure 17 on page 42.

/* HTML document to output to tell the user if their update */
/* worked or failed. Also, give them a link to go to. */
out.1 =′<HTML><HEAD>′
out.2 =′<TITLE>ITSO Telephone Update</TITLE>′ P4Q
out.3 =′ < /HEAD><BODY>′
out.4 =′<H1>ITSO Telephone Update</H1>′
out.5 =′<P>Your update was′ Update ′ < /P>′
out.6 =′<P>′ Reason Action ′ < /P>′
out.7 =′<P>Return to the telephone′ ,

′ number table.</P>′
out.8 =′<HR>′
out.9 =′{′
out.10=′Home Page |′
out.11=′IBM Home Page |′
out.12=′IBM Intranet′
out.13=′}′
out.14=′ < /BODY></HTML>′
out.0=14

′ callpipe stem out. | *:′ P5Q

Exit RC

Figure 16. UPDATE CGI Program, Part 4 of 5

Figure 16 shows how a response is sent back to the user.

�4� This is a skeleton HTML document, assigned to a series of stem variables,
that is used to send a response to the user. Notice how the variables set
in Figure 15 on page 40 are used in the response. This is a very simple
example of a CGI program creating a dynamic HTML document.

�5� In a VM:Webgateway native CGI program, the output statement is:

′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STEM OUT.′

Chapter 3. CGI Programs on VM/ESA 41

UpdateFile:
/* Update the file */
/* Create a record with the data entered onto the form */
UpdateLine = left(parm.?empnum,6) left(parm.?name,20),

left(parm.?phone,12) left(parm.?location,3),
left(parm.?office,9) left(parm.?status,5)

′ callpipe (end ?)′ , /* Update the file */
′<sfs′ PhoneFile DataDir,

′ | c:strfind ″*″ ′ , /* Put all comments at the top */
′ | f:fanin′ ,
′ | >sfs′ PhoneFile Datadir,
′ ?c:′ ,
′ | preface var UpdateLine′ , /* Add in the update */
′ | sort unique 1.6′ , /* Keep only 1 employee number */
′ | f:′

Return RC

Figure 17. UPDATE CGI Program, Part 5 of 5

If all the fields are filled in, the subroutine in Figure 17 updates the PHONE DATA
file with the new data. This is a fairly simple CMS Pipelines program that adds
the new record to the file and then uses SORT UNIQUE to eliminate any
duplicate entries.

3.3.3.4 Successful Execution
If the user fills in the form correctly and submits the update, a screen like the
one shown in Figure 18 is shown.

Figure 18. Successful Telephone Number Update

42 Web-Enabling VM Resources

3.4 Server Directives and Headers
Back in 2.2.1, “Request Header” on page 10, we showed how the client sends
request header fields with its request and in 2.2.2, “Response Header” on
page 12, how the server sends response header fields with any response. The
request header fields are available to a CGI program so that the program can
change its response or discover other information about the client. Also, the CGI
program can send additional response header fields to the client to
communicate additional information about the transaction, such as the type of
the object being sent, a time stamp of the object being sent, or a cookie (see
3.4.5, “Using Cookies” on page 47 for more on cookies.)

3.4.1 Sending Header Fields
In section 2.3.2, “Sending Data to a CGI Program” on page 15, we said that a
CGI program can send server directives to the Web server, which creates the
status line and response header fields to send to the client. CGI programs are
not required to send any server directives because the VM Web server
automatically writes a response and some normal header fields if none are sent
by the program. The first directive that is sent is Status with one of the response
codes listed in Table 2 on page 12. Usually this is Status: 200 OK. Your CGI
program should also write out a Content-Type directive. For Webshare or
EnterpriseWeb/VM, instead of sending a Status directive, you output the actual
HTTP response line, like this:

′ output HTTP/1.0 200 OK′
′ output Content-Type: text/html′
′ output′

Since the HTTP protocol specifies that a blank (null) line must be sent between
the header and the actual object being sent, a Webshare CGI program must
send a blank (null) line at the end of the header.

VM:Webgateway has a command just for writing server directives: CGI WRITE
HEADER. Just like CGI WRITE DOCUMENT, it has options for STRING, VAR, and
STEM. VM:Webgateway does not send the response headers to the client until a
CGI WRITE DOCUMENT command is executed by the CGI program and then it
automatically inserts the required blank (null) line. To write the status and
content type, use the following code:

′ CGI WRITE HEADER (STRING Status: 200 OK′
′ CGI WRITE HEADER (STRING Content-Type: text/html′

 Tip

The Content-Length header field tells the client the length (in bytes) of the
data portion of the response. If it is not sent, the client reads data until the
connection is closed. If you know the length of the data to be sent, it is a
good idea to send this header field. If sent, the Content-Length header must
be exact to the byte. The client will know how much data to expect, be able
to display the percentage that has been loaded as it is received, and may be
able to keep the server connection open for receiving another data object.

If the data written by your CGI program is not an HTML document, then the
Content-Type header field you write must agree with the data you are writing.
For instance, if your CGI program sends an image you would use the following:

Chapter 3. CGI Programs on VM/ESA 43

′ CGI WRITE HEADER (STRING Status: 200 OK′
′ CGI WRITE HEADER (STRING Content-Type: image/gif′
′ PIPE <′ image_file ′ | stem image. | count bytes | var length′
′ CGI WRITE HEADER (STRING Content-Length:′ length
′ CGI WRITE DOCUMENT (TRANSLATE NONE STEM IMAGE.′

Notice that TRANSLATE NONE is specified so that the Web server does not translate
the data from EBCDIC to ASCII.

 Tip

You may have a CGI program that takes longer than average to gather data
in order to send a response (for instance, it has to access a remote system.)
Instead of not sending anything to the user until the data is gathered, the CGI
program could send the response header and the initial HTML “prologue”
tags so that the client gets an immediate response. For example:

′ CGI WRITE HEADER (STRING Status: 200 OK′
′ CGI WRITE HEADER (STRING Content-Type: text/html′
′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING′ ,

′<HTML><HEAD><TITLE>Query Results</TITLE></HEAD>′
/* Now begin processing the transaction */

However, do not send this response if your CGI program needs to sometimes
send a different response code, such as 404 Not Found when the request
cannot be processed. Only one status code can be sent in a response, and
once 200 Ok is sent, a different status code, such as 404, cannot be sent later.

3.4.2 Reading Header Fields
All header fields are made available to your CGI program as environment
variables that are named HTTP_name, where name is the name of each header field
(capitalized) and with all dashes in the name translated to underscores. See
section 3.2, “Fetching CGI Global Variables” on page 26 for information on how
to read these variables.

Note: Remember back in section 3.2.1, “Webshare Global Variables” on
page 26 we stated that Webshare and EnterpriseWeb/VM do not create
environment variables of all response header fields. Use the CMS Pipelines
program example shown in that section to read the header fields that are
available on pipe input stream 1 and set the proper variables.

3.4.3 Making Efficient Use of the Browser′s Cache
Many Web browsers maintain a cache of objects that they have received. This is
done so that frequently visited Web sites can appear to load much faster
because the data does not need to be sent over the network again. This is
especially important for graphic images, which can be large and numerous.
However, the Web is a dynamic media, and data does change, so the Web
browser ′s cache must be dynamic also. It is done by the Web server sending a
time stamp with each object which is stored in the cache, and the Web browser
sending back that time stamp whenever it requests an object. Web servers send
this information automatically for static HTML documents and graphic images
that are sent. A CGI program can also send this information with the HTML
document it is sending, if a “last modified date” can be determined.

44 Web-Enabling VM Resources

3.4.3.1 HTTP Time Stamp Formats
The HTTP protocol specifies formats for sending and receiving time stamps.
There are three allowed formats, presented here as examples in order of
preference. Times are always expressed as UTC (Coordinated Universal Time)
but the time zone designation is always given as GMT (Greenwich Mean Time.)

 1. Mon, 09 Nov 1998 09:10:18 GMT
This format is specified in RFC 1123 and is the required format when sending
a date. The day of the week and the month are always specified as English
abbreviations.

 2. Monday, 09-Nov-98 09:10:18 GMT
This is a commonly used format defined in RFC 850. Notice that the year is
only 2 digits.

 3. Mon Nov 9 09:10:18 1998
This format is defined by the ANSI C language asctime() format. A time zone
is not specified; it is assumed to be GMT.

Our CGI program could receive time stamps in any of these formats. However,
we should only send out time stamps in the first format.

3.4.3.2 Converting Time Stamps in REXX
REXX does not provide a built-in function to change time stamps from the local
time zone to UTC and back. The CSL function DateTimeSubtract can do this
conversion, along with some REXX code to create the proper format. We
created REXX function programs that convert file time stamps in ISODATE format
(YYYY-MM-DD HH:MM:SS) to the standard HTTP format and back. We named these
functions ISOHTTP and HTTPISO that are available on the VM Web CD. Here is
an example of their use from the command line. (They can also be called as
functions.)

ISOHTTP 1998-11-09 4:10:18
Input = 1998-11-09 4:10:18
Output= Mon, 09 Nov 1998 09:10:18 GMT

HTTPISO Mon, 09 Nov 1998 09:10:18 GMT
Input = Mon, 09 Nov 1998 09:10:18 GMT
Output= 1998-11-09 4:10:18

HTTPISO Thursday, 9-Nov-00 09:10:18 GMT
Input = Thu, 9-Nov-00 09:10:18 GMT
Output= 2000-11-09 4:10:18

The best way to get a time stamp of a file is to use the CMS Pipelines STATE
stage, because it can get the time stamp of a file in SFS without requiring the
directory to be accessed. Here is a function we added to the program:

GetISOdate: procedure
/* Use PIPE STATE to get a date/time stamp on a file. */
Parse arg file
′ callpipe var file′ ,

′ | state isodate′ , /* Get the date of the data file */
′ | spec 57-75 1′ , /* (in ISODATE format.) */
′ | var filedate′

Return RC filedate

Chapter 3. CGI Programs on VM/ESA 45

3.4.4 Examples of Reading and Writing Headers
We will change our PHONE CGI program so that it outputs the file time stamp on
the PHONE DATA file as a Last-Modified header field. Also, if the client sends
an If-Modified-Since header field, we will compare that time stamp with the file
time stamp. If they are the same, we only have to send a response of 304 Not
Modified instead of the entire HTML document.

3.4.4.1 The Last-Modified Header Field
Using the date and time conversion functions discussed in 3.4.3.2, “Converting
Time Stamps in REXX” on page 45, additional code is added to the PHONE2 CGI
program to create a Last-Modified header field. This code is shown in Figure 19.
The complete header must be written to the server before any of the HTML
document is sent, so this code fragment is inserted before the HTML “prologue”
is written. The updated program is named PHONET CGI (or PHONET SVMEXEC
for VM:Webgateway) on the VM Web CD.

Note: A Web browser saves in its cache only objects it receives from an HTTP
GET request. This means that an object sent as a result of an HTTP POST from
an HTML FORM will not be saved in the browser′s cache. The example given
here is invoked with an HTTP GET request, with additional parameters specified
in the query string of the request.

′ CGI WRITE HEADER (STRING Status: 200 OK′ /* Response and headers */
′ CGI WRITE HEADER (STRING Content-Type: text/html′

/*--*
 * Get the date stamp on our PHONE file and send it in
 * the correct HTTP format as the last modified date.
 --/
Parse value GetISOdate(PhoneFile DataDir) with RC filedate
If RC=0 then

Parse value ISOHTTP(filedate) with RC httpdate
If RC=0

then ′ CGI WRITE HEADER (STRING Last-Modified:′ httpdate
else ′ CGI EMSG (MSGFILE STRING 0690E RC=′ rc ′ from ISOHTTP(′ filedate′) ′

Figure 19. Example of Sending a Last-Modified Header Field

3.4.4.2 The Expires Header Field
If you know that the data sent to the client is only valid for a limited time, you
can tell the client with the Expires header field when it should delete it from its
cache. Its format is the same as the Last-Modified header field. This field is
fairly easy to create in REXX if the data expires in days instead of hours. For
example, if our data expires in two days, this example shows how to send an
Expires field that is approximately correct:

expires = date(′ B′) + 2 /* Data expires in 2 days or so. */
expires_header = left(date(′ W′ , expires,′ B′) , 3) ′ , ′ ,

date(′ N′ , expires,′ B′) ′23:59:59 GMT′
′ CGI WRITE HEADER (STRING Expires:′ expires_header

Note: If the level of REXX on your system does not allow date conversions using
the built-in DATE function, you may be able to use the DATECONVERT CMS
Pipelines stage if you have a recent level of pipes. See the note on page 30 for
information on how to obtain a more recent CMS Pipelines run time library.

46 Web-Enabling VM Resources

3.4.4.3 Inspecting If-Modified-Since
If the Web browser has a cached copy of the document that it is requesting, it
will send a request header field named If-Modified-Since with the time stamp of
the file in its cache. Our CGI program may optionally inspect this field and
compare the time stamp with the time stamp of the file requested. If they match,
the Web server does not need to send a new file to the client. This code
fragment is inserted near the beginning of the program. (The example shows
VM:Webgateway as the Web server.)

/*--*
 * Before we do any processing, see if we can skip all
 * of it because the browser has a good cached copy.
 --/
′ CGI GETVAR HTTP_IF_MODIFIED_SINCE (VAR CLIENT_DATE′
If client_date <> ′ ′ then

Call Check_Modified PhoneFile DataDir, client_date

It calls the Check_Modified subroutine shown in Figure 20.

Check_Modified:
/*--*
 * Convert the date from the If-Modified-Since header to ISODATE
 * format and compare with the date stamp on the file.
 * If they match, this routine never returns to the main program.
 --/
Parse arg file, client_date
Parse value GetISOdate(file) with RC filedate
If RC <> 0 then Return
Parse value HTTPISO(client_date) with RC cachedate
If RC <> 0 then Return
If filedate == cachedate then do

/* They match! Just write our status and exit */
′ CGI WRITE HEADER (STRING Status: 304 Not Modified′
Exit

end
Return

Figure 20. Example of Checking the If-Modified-Since Header

3.4.5 Using Cookies
In 2.4.1, “Creating a Web Transaction” on page 18, we discussed different ways
to save “state” information across Web transactions. One way mentioned was
to use Cookies (sometimes called Netscape cookies.) Netscape introduced this
mechanism so that a Web browser can store on a local storage device specific
state information sent by the server. The Web server sends a Set-Cookie header
field with a normal HTTP response. The cookie data in this field is stored by the
Web browser. Then, whenever the cookie domain is a tail match for the
document and the cookie path is a prefix match for the document path, the
cookie data is automatically sent back as Cookie request header fields. For
example, if the cookie had been sent with DOMAIN=acme.com and
PATH=/coyote, and if the browser were requesting the document
http://westcoast.acme.com/coyote/orderhistory.html, the browser would return
the cookie.

Chapter 3. CGI Programs on VM/ESA 47

 Note

Cookies are not universal because not all Web browsers implement them.
Receiving cookies can sometimes be turned off in a browser that does
support them. Also, if too many cookies are received, the Web browser is
allowed to arbitrarily delete some. For these reasons, you should not
absolutely rely on cookies always working.

The data sent in a cookie header field is name=value data similar to data received
from an HTML FORM. Program techniques similar to those used to read FORM
data are used to read cookie data.

3.4.5.1 Cookie Example
As an example, we will use cookie data to preload some data on our telephone
data change form. If the user has filled out this form in the past, a cookie is sent
that saves the employee number and name. Then, when the form is presented
again, they do not have to fill in the employee number and name fields again.

Reading Cookies To request the form, the server runs a small CGI program
instead, shown in Figure 21.

/* UPDATEFM CGI program example */
/* Retrieve cookie data and display the UPDATEFM HTMLPART document */

/* WEBSHARE/EWEB don′ t create variables for all headers, so */
/* create ″extension variables″ of X_HTTP_name */
′ callpipe *.input.1:′ , /* Get header records */ P1Q

′ | xlate w1 upper - _′ , /* Make proper variable names */
′ | spec fs : f1 1 f2-* strip 21′ , /* Expand for JOIN */
′ | sort 1-20′ ,
′ | join keylength 20 /, /′ , /* Combine matching hdrs */
′ | spec /=X_HTTP_/ 1 w1 next /=/ next 21-* next′ , / * Vars */
′ | varload′

cookie.=′ ′
If symbol(′ X_HTTP_COOKIE′) = ′VAR′ then

′ callpipe var x_http_cookie′ , /* Get values from cookies */ P2Q
′ | split ″ ; ″ ′ ,
′ | strip′ ,
′ | xlate fs = f1 upper′ ,
′ | xlate fs = f2-* || blank ″ blank′ ,
′ | change //=COOKIE.?/′ ,
′ | varload′

′ callpipe < UPDATEFM HTMLPART′ , /* Read the form */
′ | change ″&&EMPNUM&&″ ′ cookie.?empnum′ ″ ′ , / * Put in data */ P3Q
′ | change ″&&NAME&&″ ′ translate(cookie.?empname,′ ′ , ′ + ′) ′ ″ ′ ,
′ | *:′

Exit

Figure 21. Example of Retrieving Cookie Header Fields

Some notes about this example:

P1Q This pipe retrieves all of the header fields sent from the client and sets the
proper variables. See 3.2.1, “Webshare Global Variables” on page 26 for
more information. EnterpriseWeb/VM also places the cookie data in

48 Web-Enabling VM Resources

GLOBALV variables that can be used instead of reading the header fields.
See the product documentation for more information on how to use these
variables. For VM:Webgateway, all you need to do is retrieve the header
variable using the command CGI GETVAR HTTP_COOKIE (VAR HTTP_COOKIE.

P2Q If a cookie is sent, it will be in the form name=value; name=value. This CMS
Pipelines program sets cookie.?name variables for each cookie sent. The
cookie name is translated to upper case and any special pipeline delimiter
characters in the cookie′s value are translated to blanks. In the example,
the delimiter characters are the vertical bar (|) and the double quote (″).
More information on special handling of data from Web browsers can be
found in section 5.6.2, “Do Not Trust Incoming Data Validity” on page 142.

P3Q In our HTML form, we changed the INPUT lines for the employee number
and the name to be:

<INPUT TYPE=″text″ NAME=″empnum″ VALUE=″&&EMPNUM&&″ SIZE=6 MAXLENGTH=8>

<INPUT TYPE=″text″ NAME=″name″ VALUE=″&&NAME&&″ SIZE=20 MAXLENGTH=20>

This pipe fills in the VALUE field in the form with any cookie data that was
sent. If no data was sent, no initial value is specified. This is a simple
example of how useful a CGI program is for creating dynamic HTML
documents.

Writing Cookies To set a cookie, you send a Set-Cookie response header field.
This field has several rules and optional parameters that are not described in
this document. For a complete description, see:
http://home.netscape.com/newsref/std/cookie_spec.html. The fields we are
concerned with are name=, path=, and expires=.

name=
This is the name of the value to save, and its value. The value should not
contain space, semicolons, or comma characters.

path=
Specifies the URL path under the current domain for which the cookie is
valid. This keeps cookies that you sent from being read by other servers in
other domains.

expires=
Defines the date at which the cookie expires and should be deleted. The
Netscape standard defines the format of this time stamp as Day, dd-Mon-yyyy
hh:mm:ss GMT. Notice that this is a slightly different format from any of the
formats given in 3.4.3.1, “HTTP Time Stamp Formats” on page 45.

Figure 22 on page 50 shows the code added to the phone number update CGI
program (UPDATE CGI), which is named UPDATECO CGI and UPDATECO
SVMEXEC on the VM Web CD. This example shows part of UPDATECO
SVMEXEC.

Chapter 3. CGI Programs on VM/ESA 49

/*--*
 * Send cookie data to the browser.
 * First, write the status header and then any Set-Cookie headers.
 * The cookie will expire in 14 days at midnight GMT.
 --/
′ CGI WRITE HEADER (STRING Status: 200 OK′
′ CGI WRITE HEADER (STRING Content-Type: text/html′
If Success = 1 then do

/* Set the path variable with the same path as this CGI program */
/* (that is, everything in script_name up to the last ″ / ″) */
′ CGI GETVAR SCRIPT_NAME (VAR SCRIPT_NAME′
Parse value reverse(script_name) with ′ / ′ path
path = reverse(path)
expires = date(′ B′)+14 /* This cookie expires in 14 days */
/* Form the rest of the required parts of the cookie header */
/* Time stamp must be in the standard format with dashes ″-″ */
c_rest = ′ path=′ path′ ; ′ ,

′ expires=′ left(date(′ W′ , expires,′ B′) , 3) ′ , ′ ,
translate(date(′ N′ , expires,′ B′) , ′ -′ , ′ ′) ′23:59:59 GMT;′

′ CGI WRITE HEADER (STRING′ ,
′ Set-Cookie: EMPNUM=′ parm.?empnum′ ; ′ c_rest

′ CGI WRITE HEADER (STRING′ ,
′ Set-Cookie: EMPNAME=′ translate(parm.?name,′ + ′ , ′ ′) ′ ; ′ c_rest

end

Figure 22. Example of Sending Set-Cookie Response Header Fields

Notice that the cookie expires 14 days from today. We also read the
SCRIPT_NAME variable to find out the URL path to our program and set the
cookie path value to match it.

3.4.6 National Language Considerations
The Internet is a world-wide network (hence the name World Wide Web) and
different languages and sets of characters (symbols) are used in different places.
Most computer systems use an 8-bit byte to store characters and symbols, but
there are far more than 256 characters and symbols. A code page defines the
translation of 8-bit binary values to displayable characters and symbols. The
HTTP protocol uses the term character set instead of code page, and we will use
both terms in this section.

3.4.6.1 What is a Code Page?
In 8-bit ASCII and EBCDIC, there are only 256 possible values to represent a very
large number of symbols. Groups of symbols with common attributes are called
character sets. Each symbol in the set must be assigned a unique numeric value
(called a code point) within the 256 values that are available to create a code
page. However, a character set may have more than 256 symbols, so many
code pages are required to create useful groupings for different applications.
For example, the set of symbols commonly used in the United States is different
from the set used in Sweden. Both countries may use the same “character set”
because there are common characters (Latin alphabet, numerals, and some
“special characters”). But each country would use a different code page
because there are differences in the symbols that are most commonly used.
Sometimes the same symbol is used, but is assigned a different code point,
perhaps because different languages sort the character differently in their
alphabet.

50 Web-Enabling VM Resources

Code pages and character sets are important because to correctly display a
symbol on a client′s browser window, a Web server and a CGI program must
know which character set is used by the browser and the character set of the
data stored on the server. The character sets acceptable to the browser are
listed on the Accept-Charset header field. If this field is sent, the Web server
sets the HTTP_ACCEPT_CHARSET global variable with the field′s value. The CGI
program can examine this field and perform the necessary translation to
correctly display the data on the client. If the client provided multiple acceptable
character sets, the CGI program must inform the browser which character set it
is using in the Content-Type header field, like this example:

Content-Type: text/html; charset=ISO-8859-1

IBM systems use code page numbers to define character sets. Most character
sets have an equivalent code page number, but we did not find a complete
reference source for this information. Many of the ISO-8859 standard character
sets are shown in Table 6.

Table 6. Common IBM Code Pages and Character Sets (ASCII Encoding)

819 ISO-8859-1 Latin 1 (or “8-bit ASCII”)

912 ISO-8859-2 Latin 2

913 ISO-8859-3 Latin 3

914 ISO-8859-4 Latin 4

915 ISO-8859-5 Latin/Cyril l ic

1089 ISO-8859-6 Latin/Arabic

813 ISO-8859-7 Latin/Greek

916 ISO-8859-8 Latin/Hebrew

920 ISO-8859-9 Latin 5 Turkey and western Europe

919 ISO-8859-10 Latin 6 (Baltic/Scandinavian)

874 ISO-8859-11 Latin/Thai

923 ISO-8859-15 Latin 9 (Similar to Latin 1 but includes the Euro symbol)

3.4.6.2 Translations
When you enter data from a 3270-equivalent terminal, the code page you are
using depends on how your terminal session is customized. Unfortunately, CMS
does not retain the code page used to create a file in the file directory, so the
code page number associated with each file is unknown. This is not a problem
unless the files need to be correctly displayed on devices that use a different
code page or need to be translated to a different encoding method. Then, a
correct translation requires that both the source and target code pages are
known to create a correct translation table.

We could not find a standard source for these translation tables. TCP/IP for VM
includes several translation tables for various languages as TCPXLATE files.
The CONVXLAT utility supplied with TCP/IP converts these files to a binary form
that FTP and VM:Webgateway can use. The name of the translation table is
specified as the TRANSLATE option on the CGI command in VM:Webgateway. It
is also used in the TRANSLATE option of the CONFIG FILETYPE command to
associate a file type to a set of characteristics.

Chapter 3. CGI Programs on VM/ESA 51

For EnterpriseWeb/VM, use the transport filter specification in your media map
file to associate a static file type to a translation table. CMS Pipelines also
provides support for code page translations with the xlate stage. Consult the
online pipelines help information (via PIPE HELP XLATE) for information on what
conversions are supported on your level of CMS Pipelines.

3.4.6.3 Using Languages
Some Web browsers allow the user to configure a language preference of
responses from a server. This preference is sent to the Web server in the
Accept-Language header field. Language codes in this field are listed in order of
preference. For example, a header of Accept-Language: fr, en says that the
client prefers a response in French but will also accept English. The actual
language of the object sent is given in the Content-Language response header
field.

For example, if you have HTML “prologue” files available in English, French, and
Danish, you can display the correct one with a routine like this:

...
prologue. =′ ENGLISH′ /* This is the default */
prologue.EN=′ ENGLISH′ /* Define some other languages */
prologue.FR=′ FRENCH′
prologue.DA=′ DANISH′
languages = ′ en fr da′ /* List of ones we have */
/* Earlier we fetched the CGI variable HTTP_ACCEPT_LANGUAGE... */
response_lang = HTTP_ACCEPT_LANGUAGE||′ , en′ /* English if unknown */
Do While response_lang <> ′ ′

Parse Var response_lang lang ′ , ′ response_lang
Parse Var lang lang ′ -′ /* Remove any additional data */
lang = Strip(lang)
If Wordpos(lang,languages) > 0 Then Leave /* Do we have this one?*/

End /* While response_lang <> ′ ′ */
/* Webshare example of output */
′ output HTTP/1.0 200 OK′
′ output Content-Type: text/html′
′ output Content-Language:′ lang /* Tell which language we used */
′ output′
... optionally handle the character set issues here
′ callpipe <′ prologue.lang ′ HTMLPART | *:′ /* Output the correct one*/
... rest of our program

3.4.7 Serving HTML Directives as Data
By now you have undoubtedly noticed that HTML has several reserved
characters which have special meaning. As such, these characters can not be
directly displayed by including them in a data stream. For instance, if a <
character is sent to the browser in an HTML data stream, then the next
character will be interpreted as the start of an HTML tag name. Neither it nor
the < will be rendered as data characters. In fact, no data until the > is likely to
be rendered as literal data, all of it being interpreted as part of the HTML tag.

In order to display a < , > , & or ″ you must provide the browser with a special
order, a symbolic name for the character to display, rather than these raw
characters. In particular, you must make the following changes:

< into <
> into >
& into &

52 Web-Enabling VM Resources

″ into "

While there are many other characters that you can display by using a symbolic
name for them, the above must be displayed in this manner. Refer to an HTML
reference source (such as the RFC) for a full list of these symbolic names.

The VM:Webgateway CGI Extension routine VIGRTNS HTMLSAFE (described in
4.2.4, “Programmer Productivity Tools” on page 75) provides a tool to
accomplish this transformation on a data string containing these characters. We
could not find any documented EnterpriseWeb/VM facilities to address this need,
but the problem is quite solvable using standard CMS Pipelines coding
techniques.

3.4.8 Server Push
A Web server can send more than one object to the client in one transaction
using a server push technique. It is more complex than sending a single object
because response header fields have to be sent between each object. Also, it is
not supported by all Web browsers. It is useful if your CGI program is
presenting a series of documents or images to the user. The Web server keeps
the connection to the client open and sends the next document after a period of
time that is immediately displayed. In order for this to work, the data sent to the
Web server from your CGI program has to be sent immediately to the client
without first buffering it in the server. Consider the simple CGI program in
Figure 23 that does server push:

/* SRVPUSH SVMEXEC (environment SVMEXEC) */
′ CGI WRITE HEADER (STRING Status: 200 OK′
′ CGI WRITE HEADER (STRING′ ,

′ Content-type: multipart/x-mixed-replace;boundary=ECURB′

cmd_doc = ′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING′

cmd_doc ′ --ECURB′
cmd_doc ′ Content-type: text/plain′
cmd_doc ′ ′
cmd_doc ′ Found 1 peanut′
cmd_doc ′ --ECURB′
′ CP SLEEP 3 SEC′
cmd_doc ′ Content-type: text/html′
cmd_doc ′ ′
cmd_doc ′<p>Found 2 peanuts</p>′
cmd_doc ′ --ECURB′
′ CP SLEEP 3 SEC′
cmd_doc ′ Content-type: text/html′
cmd_doc ′ ′
cmd_doc ′<h1>Found 3 peanuts</h1>′
cmd_doc ′ --ECURB--′
exit

Figure 23. Example of a Server Push CGI Program

Notice that there is only one space in the Content-type line, and that there must
be a null line between the Content-type line and each part of the document.
Also notice that each boundary must be preceded by exactly two hyphens, and
the last boundary is followed by two hyphens. The string used as the boundary
string is arbitrary. When this CGI program is run, it displays the message Found

Chapter 3. CGI Programs on VM/ESA 53

1 peanut for three seconds before the next message is displayed. It ends and
closes the connection when the last boundary string is written.

Note: This example uses the CP SLEEP command to simply illustrate some
process, which takes time. Running this example in a VM:Webgateway
SVM would cause the entire server to wait. If your CGI program has to
actually wait on an external event or a period of time, use standard CMS
multitasking facilities to perform the wait. Then, other threads of
execution in the SVM could proceed as this one waits. If commands such
as CP SLEEP are to be used, we recommend that all such processing
actually be performed in a VM:Webgateway worker environment, such as
WORKEREXEC. For further discussion of related issues refer to 6.3.6,
“Serializable Server Resource Access” on page 170, 5.6.4, “Denial of
Service” on page 143 and 5.7.2.4, “Monopolization of Web Server SVM
Resources” on page 150. For further information on CMS′s multitasking
facilities, refer to Exploiting Recent CMS Function: A User′s Guide to CMS
Application Multitasking, SG24-5164.

3.4.8.1 Using Server Push in Applications
Server push can be useful in Web applications that are long running or require
server access to remote resources. For example, queries that must reference
multiple databases or systems to create responses will take much longer than a
simple access of local data. Users would not see any response from the server
until the entire transaction completes. They may think the server is not working
and press “stop” on their browser or request another document. For these
kinds of applications, using server push to immediately return a response
(saying “Please wait while I perform the search”) and then returning the results
many seconds later lets the users know that the server is working on their
request. But keep in mind that not all Web browsers support receiving multiple
objects in the same transaction.

We have included on the VM Web CD a simple example of a long-running
transaction. TIMEQRY WRKEXEC is a VM:Webgateway CGI program that asks
for a node name as a search input string. When the string is received (as the
query string), the program uses RSCS to send a command to a remote system
and waits for the response. While the remote system is responding, a “Please
Wait” screen is displayed. When the remote system responds, the response is
shown to the user. This program must be run in a VM:Webgateway worker
machine. It will not work on the server because the CGI program uses IUCV and
the server must have exclusive use of IUCV.

3.5 Filter Programming
Filter is a term normally associated with CMS Pipelines programming (or even
real plumbing). Just as in real plumbing, the input data “stream” is changed in
some way by the filter and then sent to the output data “stream.” Filter
implementations in VM Web servers follow the same model. They are designed
to let users with a Web browser request unformatted data that is then “filtered”
or transformed into viewable data for display.

Do not confuse filter programs with CGI programs that run in the CMS Pipelines
programming environment. Both types of programs use pipelines for all input
and output and have pipelines as the default command environment. Both also
transmit any data written to the primary output stream to the client for display.
The important difference is the source of data for the primary input stream. A

54 Web-Enabling VM Resources

CGI program is provided data from the client (usually as a result of an HTML
form) as its primary input stream. A filter program is provided the object
identified by the URL path as its input. For example, a URL of
http://wtscvmt.itso.ibm.com/sg245347.script provides the SG245347 SCRIPT file
as input to the filter.

How does the server know that a file should be filtered? VM Web servers use
the file type of a file specified in a URL to determine how to process a request.
To use filters, you must configure one or more file types that identify a filter that
is used to return data to the client. Then, when a file with that file type is
referenced in a URL, the filter is called with that file available to the input stream
of the filter and any output is sent to the client.

3.5.1 A Filter Example
Our PHONE1 CGI program, which we saw in Figure 7 on page 23, can be
changed into a filter program. All this CGI program does is “transform” the
PHONE DATA into a form that is viewable on a Web browser. If we change our
URL that references http://wtscvmt.itso.ibm.com/∼ vmwebcd/learn/cgi/phone1 to
instead reference http://wtscvmt.itso.ibm.com/∼ vmwebcd/data/phone.data, we
can “filter” the file instead. For the VM:Webgateway Web server, we configured
it to call the PHONE1 filter for DATA type files with this command:

SMSG VMWEBSRV CONFIG FILETYPE ADD DATA FILE TRANSLATE USENGLISH
CONTENT-TYPE text/html SSI NO FILTER WORKERPIPE /PHONE1/

Notice that this command specifies that objects with a file type of DATA are
FILES (instead of CGI programs), what translation and content type to use and
the name of the filter. The name of the filter, PHONE1, is enclosed within
forward slash (“/”) characters because the syntax of the command requires a
delimiter character before and after the filter name.

Figure 24 on page 56 shows the sample filter program PHONE1 REXX. This filter
must be placed on a disk or directory that is part of the server′s CMS search
order. Notice that the name of the data file does not appear anywhere in this
example. This is because the Web server has already located the file and
provided it as the pipeline′s primary input stream.

Chapter 3. CGI Programs on VM/ESA 55

/* PHONE1 REXX filter program example */
/* This filter must be accessible by the server */

′ callpipe < PROLOG1 HTMLPART | *:′ / * Display the beginning HTML */

′ output <TABLE BORDER=″1″>′ /* Set up the HTML table */
′ output <TH>Employee Number</TH>′ /* Put a title on each column */
′ output <TH>Name</TH>′
′ output <TH>Phone Number</TH>′
′ output <TH>Location</TH>′
′ output <TH>Office</TH>′
′ output <TH>Status</TH>′

/* Get the telephone data from the file and display */
′ callpipe *:′ ,

′ | nlocate 1-1 ″*″ ′ ,
′ | spec ″<TR>″ next′ ,

′″<TD>″ next 1.6 next ″</TD>″ next′ ,
′″<TD>″ next 8.20 next ″</TD>″ next′ ,
′″<TD>″ next 29.12 next ″</TD>″ next′ ,
′″<TD>″ next 42.3 next ″</TD>″ next′ ,
′″<TD>″ next 46.9 next ″</TD>″ next′ ,
′″<TD>″ next 56.5 next ″</TD>″ next′ ,

′ ″< /TR>″ next′ ,
′ | *:′

′ output </TABLE>′

′ callpipe < FOOTER HTMLPART | *:′ /* The ending HTML */
Exit RC

Figure 24. Example Filter Program PHONE1 REXX

Filter programs in VM:Webgateway can utilize additional CMS Pipelines input
and output streams defined by the server. Input stream 1 (the secondary input
stream) contains the proposed HTTP header fields that the server will send to
the client. The filter program can decide to modify, delete, or send additional
header fields to the client. It does this by writing them to output stream 1. Input
stream 2 contains filter variables. These have the same name as CGI variables
(see Table 4 on page 14 for a list of the standard ones) but the values are based
on the file being filtered. Output stream 2 accepts server log records and output
stream 3 accepts any messages to be written on the server′s console. More
information on VM:Webgateway filters is found in the product′s documentation.

We have also provided, on the VM Web CD, a sample filter named TEST REXX.
This filter creates an HTML document that displays the contents of all the filter
input streams. It should be useful in developing and debugging filter programs
that use data from the additional input streams.

3.5.2 Processing SCRIPT Files
The Document Composition Facility (more commonly known as SCRIPT) and
BookMaster are very commonly used on S/390 systems to create documents,
manuals, memos, books, and so forth. Many installations have large numbers of
BookMaster documents on their VM systems. Since BookMaster is a markup
language like HTML, transforming BookMaster documents to HTML documents is
desirable because it makes the documents available to a broader audience.

56 Web-Enabling VM Resources

A tool has been written by Gary Richtmeyer of IBM Global Services named B2H
EXEC (BookMaster to HTML converter) that does this conversion. It is available
from the VM download library (http://www.ibm.com/s390/vm/download) and is also
available on the VM Web CD.

Note: You may want to check if a newer level is available from the download
library than the level available on the VM Web CD.

B2H is ideal for filtering SCRIPT files for display on a Web browser. B2H EXEC
can be called as a CMS Pipelines stage, so a complete B2H filter can be written
as:

/* B2HQUICK REXX */
′ callpipe *.input.0: | rexx (B2H EXEC) | *.output.0:′

From this very simple example, we can add additional features that utilize B2H
options, filter variables, and HTTP headers. On the VM Web CD,5 you will find a
complete program named B2HFILTR REXX. This program demonstrates how to
serve a pre-translated HTML file instead of the SCRIPT file (if one is found), how
to output a Last-Modified header field and how to examine the incoming
If-Modified-Since header field. It also supports multiple option files for B2H so
that the same filter can be used on multiple types of input files.

3.6 Debugging Your CGI Programs
We all try to write perfect programs, but we usually have a few bugs to find and
eliminate. REXX has excellent tracing capabilities, but debugging a CGI program
that is running on a Web server is a bit different from debugging on your own
user ID. Ideally, you would turn tracing on in your program, log onto the Web
server console and watch your program run. But you do not want to interrupt
your production Web server with your debugging work. Also, you may have
several Web server machines running in parallel - which one do you log on to?

Clearly the ideal solution is one or more additional Web server IDs dedicated to
development and debugging. We recommend that CGI developers be given their
own dedicated single test Web server to use in program development. By only
using one SVM user ID and dedicating that test environment to one CGI
developer, it becomes easy for a developer to log onto these user IDs and use
normal CMS Pipelines and REXX development techniques to develop programs.
Customize these servers to connect to a different TCP/IP port (other than port 80
or any other well known port.) Then, specify the URL of the CGI program but
with the port number of your debug server. For instance, if you start a Web
server on port 8080, specify the URL as
http://wtscvmt.itso.ibm.com:8080/∼ vmwebcd/cgi/program.cgi. As long as you are
careful to either not hard code absolute URLs in your HTML and CGIs, or to
parameterize the host name and port portion, you will find it easy to develop
applications on a different port or even a different VM system from the one that
will be used in production. If you are running VM:Webgateway and use worker
machines, your test Web server also needs to have its own (single) worker
machine.

If your Web server program allows it, you can simply run the Web server code in
your own virtual machine and execute and debug your CGI programs. You will

5 See B.1.7.1, “BookMaster to HTML Conversion Tools” on page 232 for more information.

Chapter 3. CGI Programs on VM/ESA 57

still need to configure it to use an unallocated TCP/IP port and have access to
the Web server code. We did not use this method to debug CGI programs, but it
should not be difficult to do with Webshare or EnterpriseWeb/VM.
VM:Webgateway requires additional resources that may make this method of
debugging more difficult to set up.

To test your CGI programs:

• Use POSTTEST CGI or TEST CGI (included on the VM Web CD) to debug your
HTML forms before you begin debugging your CGI program. See 3.3.3.2,
“POSTTEST CGI Utility” on page 37 for more information.

• Use a REXX compiler program to debug the syntax of your program before
running it on the Web server. For instance, to use IBM′s REXX compiler for
this purpose, enter REXXC PROGRAM CGI A (NOCOMPILE SOURCE SLINE TRACE. (See
6.3.3.1, “Use a REXX Compiler” on page 163 for additional motivations for
the use of a REXX compiler for program development.)

• Run your program using several Web browsers and check its behavior on
each. If you also intend to support VM/CMS users (for example, the
Charlotte browser), be sure to test using that browser also.

• For repeatable regression testing, consider creating one or more HTML
documents that contain many hypertext link anchors referencing your CGI
program with various query string values that exercise different paths
through your program. Or create a series of forms with hidden input fields
for each variable and only display a series of “submit” buttons to test each
one. You may also be able to use a Web crawler type application in
conjunction with these pages to automatically regression test your
application.

And when you are looking for a bug:

• Use the “View HTML source” function of your browser to see what is really
being sent to the client.

• Insert Call diag 8,′ MSG userid′ var statements into your CGI program to see
intermediate values as the program executes.

• Write intermediate output files (usually within CMS Pipelines programs) as
the program executes.

Other very handy utilities are TCPSNIFF EXEC and WEBSNIFF EXEC, included on
the VM Web CD. TCPSNIFF EXEC was written by John Hartmann, the author of
CMS Pipelines, as a demonstration of how easy it is to write a TCP/IP server as
a pipeline. WEBSNIFF EXEC is an improved version of TCPSNIFF that is better
suited for debugging Web transactions. It defaults to ASCII to EBCDIC
translations for its log file and also deblocks the lines into records at the CRLF
breaks. The log file shows all data sent between the client and server and is
especially useful when you need to look at headers and responses.

To use WEBSNIFF to trace the transactions between a browser and a Web server
running on wtscvmt.itso.ibm.com port 82, enter:

WEBSNIFF 7654 wtscvmt.itso.ibm.com 82

The number 7654 is the port that your user ID has connected to TCP/IP, and any
connections on this port will automatically connect to the domain and port
specified. The URL that is specified to the Web browser is
http://wtscvmt.itso.ibm.com:7654/path. (Assuming you are logged on to
wtscvmt.itso.ibm.com.) To stop WEBSNIFF, enter STOP on the console. Then

58 Web-Enabling VM Resources

examine the WEB TRACE file created on your A disk. Lines from the client (the
Web browser) are identified with a C in the first column and lines from the server
are identified with an S.

Chapter 3. CGI Programs on VM/ESA 59

60 Web-Enabling VM Resources

Chapter 4. Web Access to Applications and Business Data

Web-enabling applications sounds complicated, but it does not have to be.
There are some basic rules that help keep it simple. This chapter describes
these rules and offers some examples.

This chapter describes:

• Some Web application design concepts
• Alternatives that you will be faced with
• What to consider before porting applications to the Web
• How to access VM and non-VM resources
• Sample procedures that show you how to use VM product resources

4.1 Useful Concepts
Client/server migrations in the past almost always required you to develop brand
new applications. Now, Web enabling gives you many more alternatives in
porting applications and application interfaces to the Web. However, many of
the same concepts apply. There is still a client requesting services and a server
expected to provide these services. The client is the Web browser and the
server is the Web server. You should think about how your application fits into
the following three layers:

• The presentation layer, which is the logic of the application that interacts with
the user. It includes functions for managing the interaction between the user
and the application, such as screen formatting, and keyboard and mouse
handling. In the Web environment, these functions are dedicated to browser,
JavaScript code to improve browser abilities, or Java applets.

• The function or business layer, which includes such activities as performing
calculations, data enrichment and any rules defined by the user that
determine what particular processing should take place. It is not concerned
with end-user interactions or any database activity. CGIs fit into this
category, but Java applets may also be involved.

• The data management layer, which consists of both the code that requests a
database change, such as SQL, and the database processing itself. It also
includes CGIs performing data access and Web “enablers” (also known as
connectors).

Web design is less flexible than client/server architecture because browser
capabilities do not permit any data management processing. As a consequence,
Web applications fit into three styles:

• Distributed Presentation

Some portions of the user interface are placed on the user node and others
on the server node. For example, “screen scraping” tools transform 3270
host presentations to HTML document directives: At the same time, two
different representations exist for the same application screen.

• Remote Presentation

All presentation tasks are managed by the user node.

• Distributed Function

 Copyright IBM Corp. 1999 61

Some part of the application logic resides on the user side and must also
communicate with server side code. Applets may work in this style,
processing user input data before sending it back to the server where a CGI
will accomplish what can only be done on the Web server host.

4.1.1 Designing Applications for the Web
The following sections discuss considerations to keep in mind when designing
Web applications.

4.1.1.1 Application Interface
Designing Web applications will make you change your thinking about how
applications are presented to the user. You should keep in mind that 3270
“green” screens have a limited amount of space available to display data
compared to most Web browser windows. The HTML documents displayed on
the Web browser window may also contain “mouse actions,” such as push
buttons, selection boxes, and so forth. As a result, you will need fewer
application screens to navigate through the entire application. Do not try to
transplant 3270 screen hierarchies onto the Web browser. The need to make the
user click and click again through several screens can easily be avoided on Web
pages.

To shorten the navigation through your Web application, you can use:

• Long HTML pages with HTML anchors

• HTML frames

They permit you to manage several independent logical windows on the
same physical browser window. One frame can be used as a menu that can
control the other frame contents. This feature is not supported by all Web
browsers, and some users feel that frames are awkward to use and would
prefer not to interact with them. (Also refer to the information in 5.5.2, “Can
You Trust the Displayed Information in a Frame” on page 138.) If you do
make use of them, consider presenting a path through your application that
does not use them (as found on many existing Internet pages).

• A variety of input methods that are available in HTML forms

Besides the keyboard, a user can use a mouse to select radio and push
buttons, select check boxes, and select items from a list.

• JavaScript procedures that allow you to perform some checking on the input
data before the data is sent to the server

User interaction with the browser for simple field checking is much faster
than sending the data to the server for verification. However, you may find
that many browsers will have disabled JavaScript due to the considerations
outlined in 5.5.1, “JavaScript” on page 137. In addition, if you do make use
of JavaScript, remember that there is no formal definition of the language,
and that each browser may implement a different and incompatible variation
of the language. You must be careful to make sure that you use just the
subset of all variations of all browsers that your user community′s browsers
implement, which is a non-trivial problem that leads to many broken pages
in the Internet.

• Java applets, which can be very powerful

They allow you to provide in one piece of code all the interface design and
the validations of the input data. If you intend to use a lot of Java applets as

62 Web-Enabling VM Resources

front end interfaces, you may want to use Java development tools such as
VisualAge for Java. Moreover, there are plenty of Java applet sources on
the Internet that help in designing useful interfaces.

You must also think about your potential users′ habits and environments:

• What browsers do they run (vendor, version)?
• What plug-ins do they already have or can obtain trivially?
• Do they support JavaScript?
• Do they support Java?
• What size (resolution) is their screen?
• Does it support graphics and color?
• Are they connected with high-speed LANs or low-speed dial connections?
• Do they run high-speed processors or old PCs?

A valuable rule is to never expect an HTML document to appear the same way it
does on your own browser.

When you create a CGI program, the CGI environment variable
HTTP_USER_AGENT contains the identification of the browser that referenced the
CGI. You can use it to check for browser types and levels that are unsupported
by your application and then warn the users about potential problems. A good
tip is also to create a help HTML document on your server that indicates the
optimal browser configuration to use for your site. Even better is to make sure
that your HTML pages will run on all the popular browsers (vendor, version,
helpers) used by your entire user community.

4.1.1.2 Application Logic
There are new things you should keep in mind while developing for the Web. A
Web server does not just act like a new network interface. All data goes through
the Web server, and a CGI program may or may not run in its own private virtual
machine. Your Web site may also be a group of Web servers sharing system
resources. You should do the following:

• Only run well tested CGI programs in production. If the CGI program abends
it can also stop the entire Web server (even if a simple REXX error is not a
problem), because a CGI program may run on the Web server machine
(instead of a separate worker machine),

• Make sure the server is always available for incoming HTTP requests.
Long-running CGI programs can keep the Web server machine busy so that
it cannot process incoming requests. Refer to 5.6.4, “Denial of Service” on
page 143 for additional considerations.

• Be aware of VM resource sharing. In a regular VM system, resources are
typically shared between VM user IDs. With a Web server, you may have
Web applications that may run in one or several VM Web servers or
VM:Webgateway workers:

− If your Web application runs in a multitasking server virtual machine,
look for possible conflicts between CGIs running in different threads at
the same time that may try to use the same resources. You should also
check if the code used in the CGI program really supports a
multithreading environment. Some programs appear to run OK in a
thread, but they keep the thread active until it ends. This effectively
disables the CPU sharing mechanism of multitasking applications.

Chapter 4. Web Access to Applications and Business Data 63

− If your Web application runs in several server virtual machines, make
sure that the rules for sharing resources between user IDs on a VM
system are followed. See also 5.6.6, “Reentrant and Serially Reusable
Resources and CGIs” on page 144 for more information.

Refer to 6.3.6, “Serializable Server Resource Access” on page 170 and
5.7.2.4, “Monopolization of Web Server SVM Resources” on page 150 for
additional considerations.

• Address new security considerations as they develop. See 5.10,
“References” on page 154 for additional sources of information.

4.1.2 Moving an Existing Application to the Web
There are several things you should remember when considering moving an
existing application to the Web:

• Existing application interface design is based on 3270 limitations:

− Screen size
− Limited character formats (fonts, colors)
− No “point and click” interfaces
− No graphics

• Existing applications run in separate CMS user IDs:

− Authentication was checked by VM/ESA when the user logged on and
does not need to be verified again.

− Program execution environment is persistent and long running.
− Usually only one application runs at a time.

• Existing application screen navigation may also be influenced by 3270
limitations.

• Programming styles differ. For example, many full screen VM applications
give the users some kind of “command line” so that they can enter any
command while the application is running.

• Operating system architecture also impacts migration. Normally, a VM user
must use his own virtual machine to run an application. A Web user running
an application may have to share Web server services with other Web users.

• The entire network environment may be different. The Web flow uses the IP
network. Response time may be different from SNA terminals or local
screens. You may need to consider retuning your network.

4.1.3 Applications and Command Lines with Line Mode Output
Applications that can display “line mode” output in response to some input are
probably the easiest applications to move. Included in this set are applications
that have programming APIs that can be used in CGI programs to create a Web
version of the application.

• Simple commands

Simple commands are applications that accept all their input from the
command line and output their results before exiting. In other words, they
behave like simple CMS commands, such as LISTFILE. These are pretty
easy to invoke using a CGI program. All the CGI program needs to do is:

− Pass the command and parameters to VM/ESA.
− Receive the command output in some buffer.
− Format this output into an HTML document.

64 Web-Enabling VM Resources

− Send the response back to the server, which will send it to the browser.

• Multiple response applications

These are commands or applications that interact with the user. For
instance, they may prompt the user for more information before performing
their work. They can be somewhat more difficult to invoke from a CGI
program, but this is usually not impossible. Here are some approaches you
can take:

− Modify the application in such a way that it delivers all the output from
one single call. You may need to add additional command parameters
that used to be typed at program prompts.

− Use a “screen scraping” tool as described in section 4.2, “Screen
Scripting with VM:Webgateway CGI Extension” on page 66.

Applications that need the user′s virtual machine environment may also be
easier to migrate to the Web using screen scraping tools. They usually run
applications in the original user′s environment.

4.1.4 3270 Full Screen
Since it is not easy to capture and manipulate a 3270 screen in a program, Web
enablement of 3270 full screen applications requires more work to migrate the
applications. Fortunately, some tools exist that can help you move these more
complex applications to the Web more easily and more quickly.

4.1.4.1 Writing a New Web-Oriented Interface
If the application you intend to port into the Web is too rooted in 3270 design and
characteristics, it could be easier to develop a completely new application that
will just access the same data and perform the same logic.

4.1.4.2 Modify 3270 Applications to Help Web Enablement
Writing a brand new application may not be worth the effort, though. You would
rather reuse as much of the existing application as you can. If the way your old
application accessed its data is not too “session oriented,” you could do some
restructuring of the application to make it fit the Web programming model better.
Think about splitting the 3270 application into two or more of the following
modules:

• Modules extracting the data
• Modules dealing with the application logic
• Modules responsible for displaying the data

Depending on the complexity of your application, you will be able to share
modules between the 3270 and Web versions of the application.

4.1.4.3 Use Web Terminals
TN3270 (Telnet 3270) emulations within Web browsers are delivered by several
companies. The advantage of these implementations is that there is nothing
more that must be installed to put your 3270 application “within” a Web browser.
However:

• The 3270 operations may be confusing for a Web user.
• It does not take advantage of Web interface languages.
• There is no need of any Internet browser to get TN3270 emulation.
• What is the added value?

Chapter 4. Web Access to Applications and Business Data 65

4.1.4.4 Use a Screen Scraping Tool
Instead of displaying the 3270 screen directly on the browser, it is better to use
screen scraping tools that act as a gateway between the HTML interface and the
3270 screen.

The VM:Webgateway CGI Extension function, which is a standard part of the
VM:Webgateway server, can do this. We will show how this product interacts
with a 3270 application and helps porting 3720 screens to the Web in 4.2,
“Screen Scripting with VM:Webgateway CGI Extension.”

4.2 Screen Scripting with VM:Webgateway CGI Extension
Most business applications use a 3270 full screen interface or need a specific
user environment. Porting them to the Web without any help often means
writing a new application and coping with new issues, such as:

• User authentication has to be adapted to Web applications.
• Data may be accessed from a different place than the user′s virtual machine.
• Internal application logic and checking must be reconsidered.

For these and other reasons, 3270 screen scraping tools provide quick and easy
ways to enable applications for Web users. These products manage the CGI
program interface to the 3270 application screens. To screen scrape an
application means to:

 1. Interpret full screen prompts
 2. Emulate user keystrokes
 3. Interpret, reformat, combine multiple screen sources, and send back to the

Web server the application data from the 3270 screens

The application that runs is the same you have used previously:

• User authentication is still verified by the same VM security routines,
including both the VM directory and any other existing VM-based
authentication tests.

• User authorizations are still based upon VM security facilities, such as RACF,
SFS access control lists, and the VM directory.

• Data validations are still made by the old application.
• Data integrity is checked by the same code.
• The application environment is unchanged: it is the user′s virtual machine.

The only concern is to reformat the existing input and output from 3270 screen
styles to the Web′s GUI style. This interface may be just a slightly new design of
a 3270 application, or you can enhance the Web interface to completely change
the navigation and add new functions that did not exist in the 3270 application.

4.2.1 VM:Webgateway CGI Extension Description
VM:Webgateway CGI Extension6 is the VM:Webgateway component that extends
the CGI programs that run on this server to facilitate Web enhancement of
existing VM applications.

VM:Webgateway CGI Extension is a set of commands and utilities called from
VM:Webgateway CGI programs. They help CGI programmers with the following:

6 The former product VM:Webserver Gateway.

66 Web-Enabling VM Resources

• Keeping a 3270 session active between multiple HTTP exchanges
• Acting as a session manager for the 3270 session
• Extracting data from a 3270 session

VM:Webgateway CGI Extension can run two modes of operation:

• CMS line mode is when the target application has a line mode interface but
needs to run on a particular user′s virtual machine, or when the line mode
application requires several responses from the user.

• 3270 full screen mode is when the target application has a full-screen
interface or when the application is not located on the local VM system. This
mode of operation requires VM:Operator to be installed and running the 3270
sessions. With this mode, you can Web-enable all 3270 full screen-based
applications, including CMS, VSE, OS/390, and CICS applications.

In both of these modes, CGI programs must run on the server virtual machine in
the SVMEXEC environment; they cannot run on worker machines.

VM:Webgateway CGI Extension is described in VM:Webgateway Tutorial, with an
example of a Web-enhanced full screen application.

You can also find a presentation on the Sterling Software, Inc. Web site showing
how VM:Webgateway compares to NT and UNIX Webenablers. To view it, you
need to use the Microsoft PowerPoint Animation Player that you can download
from the following URL:

http://officeupdate.microsoft.com/index.htm#PowerPointdownloads

The VM:Webgateway CGI Extension presentation is at:

http://www.vm.sterling.com/multimedia/gateway.htm

4.2.2 VM:Webgateway CGI Extension Line Mode Support
When a line mode application depends on the VM user ID environment, regular
CGI execution in a Web server or worker machine cannot totally emulate this
environment. Therefore, it is safer to run the application in the original user ID
virtual machine. The VIG USER commands are routines that help in creating and
controlling such an execution.

The VM:Webgateway CGI Extension can also be used to run line mode
procedures requiring multiple inputs from the user.

4.2.2.1 VIG USER Commands
This virtual machine operation interface is the set of these VIG USER commands:

VIG USER ABEND Terminates the command that is currently running on the
user ′s virtual machine and reinitializes the user ID.

VIG USER CONNECT Connects to a user ID and creates an IUCV connection
between VM:Webgateway and the user ID.

VIG USER ENTER Invokes application programs on a user ID or responds to
console prompts. The application response can be
retrieved in REXX stem VIG_USER_OUTPUT.

VIG USER LEVEL Returns a return code that indicates the functional level of
VIGUSER MODULE.

Chapter 4. Web Access to Applications and Business Data 67

VIG USER RELEASE Releases exclusive control of a user′s virtual machine.

VIG USER RESERVE Obtains exclusive control of a user′s virtual machine.

VIG USER WAITINIT Makes the CGI program wait until the user ID has finished
logging on.

The Web interface communicates with the VIGUSER MODULE running in the user
virtual machine thru an IUCV connection. If the user virtual machine is to be
autologged, the initialization of the VIGUSER MODULE has to be done in
PROFILE EXEC or in SYSPROF EXEC. This module simulates keystrokes and
traps command outputs in order to send them to the VM:Webgateway CGI
Extension interface.

To initialize this module in REXX, call it as follows:

VIGUSER INIT VMWEBSRV

where VMWEBSRV is the name of your VM:Webgateway server virtual machine.
If your user ID is to be used from more than one server, you may list multiple
server user IDs on this command line. See the VM:Webgateway CGI Extension
online documentation for more information. Figure 25 shows the full
implementation of the line mode interface.

Figure 25. VM:Webgateway CGI Extension Line Mode Implementat ion

68 Web-Enabling VM Resources

4.2.2.2 Example of Line Mode Scripting
The sample presented in Figure 29 on page 71 is a Web interface to line mode
commands that the Web user will type in a form entry field.

When a user submits a command using the HTML form, we have asked
VM:Webgateway to check that they entered their VM user ID and password
previously in order to know in which VM virtual machine the user has to log on.
So, you may want to ensure that the LMCMD VMGW procedure is protected by
VM:Webgateway security mechanisms. We accomplish this using a VMWEBSRV
DIRMAP file placed in the same directory as the CGI and containing:

* Start our basic security tests for serving URLs in this directory.
SELECT

WHEN FILE * VMGW
* We have a VM:Webgateway CGI Extension based CGI filetype.
SELECT

* Base our client authentication upon the VM directory.
REALM VM:Webserver Gateway CGI authentication
PASSWORD VMDIR
* Authenticate the client′ s knowledge of a VM user ID
WHEN USER *

* They got it right, allow it.
ALLOW

OTHERWISE
* They got it wrong, disallow it, no overrides!
DENY
SKIP ALL

END SELECT
END SELECT

Note: See the discussion in 6.3.3.2, “Reduce CPU Cost of URL Resolution and
Basic Security” on page 164 for performance hints on constructing DIRMAPs.

This file insures that access of LMCMD VMGW will set off a popup window
asking for user ID and password to be checked with VM directory. At CGI call it
will pop up a window onto the browser screen resembling the one shown in
Figure 26.

Figure 26. VM:Webgateway CGI Extension Authentication

Chapter 4. Web Access to Applications and Business Data 69

Moreover, the user ID virtual machine should have initialized the interfacing
module, VIGUSER, as described in section 4.2.2.1, “VIG USER Commands” on
page 67.

After the authentication process, the user is presented with the first page
(Figure 27).

Figure 27. Sample Gateway CGI First Page

When the user enters a command on the form shown in Figure 27, the CGI
program executes the command in the user virtual machine and sends back the
response to the browser, as shown in Figure 28.

Figure 28. Sample Gateway CGI Response

You can find the CGI code in Figure 29 on page 71.

70 Web-Enabling VM Resources

/* LMCMD VMGW : line mode connection to a user ID */

/* FORM method is POST */
′ CGI READ 1 (TRANSLATE USENGLISH VAR ARGSTRING′
′ CGI URLDECODE (VAR ARGSTRING INTO PARMS.′

/* X_SCRIPT_NAME_TRANSLATED gives the place from where CGI was */
/* loaded to find HTML file */

′ CGI GETVAR X_SCRIPT_NAME_TRANSLATED (VAR WHEREAMI′ P1Q
MYDIR=word(whereami,4)

′ CGI GETVAR X_SERVER_SCHEME (VAR X_SERVER_SCHEME′ P2Q
′ CGI GETVAR SERVER_NAME (VAR SERVER_NAME′
′ CGI GETVAR SERVER_PORT (VAR SERVER_PORT′
′ CGI GETVAR SCRIPT_NAME (VAR SCRIPT_NAME′
MYURL=X_SERVER_SCHEME′ : / / ′ SERVER_NAME′ : ′ SERVER_PORT||SCRIPT_NAME

′ CGI WRITE HEADER (STRING Status: 200 OK′
′ CGI WRITE HEADER (STRING Content-type: text/html′

address command ′ PIPE < LMCMDH HTML ′ mydir, P3Q
′ | change \%MYURL%\′ MYURL′ \ ′ ,
′ | stem htmlfile.′

′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STEM HTMLFILE.′

/* parametered call or initial call ? */
If SYMBOL(′ PARMS.CMD′) = ′VAR′ then do

/* it is not the first call P4Q */
Cmd = translate(PARMS.Cmd)

/* This requires that the CGI has AUTHHEADERPASS authorization. */
′ CGI GETVAR HTTP_AUTHORIZATION (VAR AUTH_HDR′ P5Q
If auth_hdr = ′ ′ Then

Call Error ′ Can′ ′ t run. Not protected by authentication′
Else Do

Call VIGRTNS ′ USERPASS′ P6Q
If Result = 0 Then Parse Var vigrtns_result . userid ′ : ′ pswd

End

/* Connect to user ID P7Q */
′ VIG USER CONNECT ′ userid
If Result <> 0 Then Call Error ′ Can not Connect ′ result

/* Pass the entered command P8Q */
′ VIG USER ENTER ′ Cmd
If Result <> 0 Then Call Error ′ Can not ENTER ′ result

/* Displays the result P9Q */
CmdRc=″<HR>The command ″Cmd″ was executed with return code ″ ,

VIG_USER_RETCODE″ . ″
′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF VAR CMDRC′
′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING <PRE>′
′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STEM VIG_USER_OUTPUT.′
′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING </PRE><HR>′

 End /* SYMBOL(′ PARMS.CMD′) = ′VAR′ */

Figure 29 (Part 1 of 2). LMCMD VMGW Code

Chapter 4. Web Access to Applications and Business Data 71

/* Ends HTML document */
′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING </BODY></HTML>′
 exit 0

 Error:
 parse arg etext

/* write trace in server A disk */
 address command ″PIPE var etext | >> GATECGI ″userid″ A″
 Return

Figure 29 (Part 2 of 2). LMCMD VMGW Code

The following notes should help you to understand the code in Figure 29 on
page 71:

�1� The CGI is intended to be served from an SFS directory. It has to read an
HTML file (LMCMDH VHTML) placed in the same directory as the CGI
program. Using X_SCRIPT_NAME_TRANSLATED avoids the need to code
the directory name; the program retrieves it at execution time. Moreover,
the procedure will run wherever it is. The only requisite is that the HTML
file must be there also. In a production level application you should also
handle the case of a non-SFS domain being returned. See the
VM:Webgateway online documentation for more information.

�2� The HTML file will be modified to provide the CGI URL, so the CGI reads
environment variables to rebuild its own URL.

�3� Here is the substitution of the variable %MYURL% in the HTML code:

<HTML>
<HEAD>
 <TITLE>The Linemode Interface</TITLE>
</HEAD>
<BODY>
 <H1><Center>The Linemode Interface</Center></H1>
 <HR>
<FORM action=″%MYURL%″ method=″post″ name=″QRDR″>

<INPUT type=″text″ size=″30″ name=″Cmd″>
<INPUT type=″submit″ name=″Sub″ value=″Submit″>

CP commands must be prefixed by CP and REXX procedures by EXEC.

</FORM>

It can also be done with the VIG SUBSTITUTE command described in 4.2.4,
“Programmer Productivity Tools” on page 75.

�4� The program tests the CMD variable to determine if this is the first call of
the procedure. This variable is sent only when the user fills the HTML
form. If the variable is found, the procedure has to execute this command
and send back the result.

�5� The CGI must ensure that the user was requested to provide a user ID and
password. We will need this information to log on to the virtual machine.

72 Web-Enabling VM Resources

 Important

Although VM:Webgateway Tutorial suggests using the
HTTP_AUTHORIZATION header for this validation, we do not believe
that this is the correct CGI variable to use because the existence of this
request header does not prove that the data in the header has been
authenticated. We believe that you should verify that the CGI variable
X_AUTH_VERIFIED has been set to 1 (REXX′s true setting), in order to
validate that the CGI is protected by VM:Webgateway′s security
profiling.

While this does not prove that the AUTHORIZATION header was verified
(since the authorization verification could have been based upon other
criteria), it does verify that some criteria was checked, rather than
simply attesting to the existence of the AUTHORIZATION header. Since
VIGRTNS USERPASS is documented as also testing that the
AUTHORIZATION header is present, it does not make sense to
duplicate that effort in your CGI rather than simply relying upon
VIGRTNS′s processing.

�6� Read the authentication data. In a production level application you should
also handle the case of a return code other than 0 from the VIGRTNS
USERPASS call. See the VM:Webgateway CGI Extension online
documentation for more information.

�7� Connect to the VIGUSER interface running in the user virtual machine. If
the virtual machine is logged off, VM:Webgateway CGI Extension will
autolog it.

�8� Execute the command.

�9� Retrieve command results from VIG USER variables.

VM:Webgateway provides sample line mode applications that demonstrate how
to implement a Web interface to some common VM commands, such as QT
VMGW giving VM time or RDR VMGW listing the user′s reader contents. A
skeleton is also provided to help line mode interface programming: SKELUSER
XVMGW. You will find all these files on the 194 minidisk of the VM:Webgateway
service virtual machine.

4.2.3 VM:Webgateway CGI Extension Full Screen Support
VM:Webgateway Tutorial covers full-screen Web-enabling considerations
extensively. It includes an example of migrating a 3270 application to the Web to
demonstrate various techniques, such as the conversion of multiple 3270 screens
into a single HTML document and the addition of functions that did not already
exist in the original 3270 application.

In this redbook we do not go into extensive detail on the use of the
VM:Webgateway CGI Extension interfaces for full screen support because the
VM:Webgateway Tutorial has done such a good job of presenting this material.
Instead, we are including the tutorial on the VM Web CD, as described in B.1.9,
“VM:Webgateway Tutorial” on page 234, and strongly recommend that you
examine it. It shows that Web enabling is not just putting on new clothes, but
instead may be more like changing to a better tailor.

VM:Operator, which comes with VM:Webgateway, needs to be up and running to
control logical devices, as shown in Figure 30 on page 74.

Chapter 4. Web Access to Applications and Business Data 73

Figure 30. VM:Webgateway CGI Extension Full Screen Implementation

4.2.3.1 VIG SESSION Commands
There are far more VIG SESSION commands than VIG USER commands because
the full screen controls need to be tighter. They need to control each character
position on the screen and have to simulate more control keystrokes.

We will only describe the more frequently encountered controls here. Refer to
the VM:Webgateway CGI Extension online documentation for a full description of
all VIG SESSION subcommands.

VIG SESSION CREATE Is used to ask VM:Operator to create a new logical
device session.

VIG SESSION DESTROY Tears down a session.

VIG SESSION FIELD Puts data in a 3270 entry zone.

VIG SESSION PRESS Simulates a keystroke.

VIG SESSION WAIT Waits for the screen to be updated.

4.2.3.2 Typical Structure of a Full Screen Scripting CGI
A typical application will look like Figure 31 on page 75.

74 Web-Enabling VM Resources

VIG SESSION CREATE VMOPER GATEWAY SESSION1 /* Create a session */

VIG SESSION FIELD 1 userid /* Supply userid */
VIG SESSION FIELD 2 password /* and password */
VIG SESSION PRESS ENTER /* Initiate logon sequence */

VIG SESSION WAIT /* Wait for screen to update*/
...
Invoke the application, step through interactions
produce and display output for the browser
...

VIG SESSION PRESS PF3 /* Exit application */

VIG SESSION FIELD 1 LOGOFF /* Type LOGOFF on cmd line */
VIG SESSION PRESS ENTER /* and execute it */

VIG SESSION DESTROY /* Tear down the session */

Figure 31. VM:Webgateway CGI Extension Full Screen Typical Sequence of Commands

The application is as easy to code as the PC robots used for years to pilot 3270
screens. The same simple techniques apply and do not require any new
learning. The big advantage is that the code is in your server in one single
version that you maintain on the host. You do not have to deliver a new version
of your program to thousands of PCs each time the 3270 application is modified.

VM:Webgateway includes sample full screen applications providing Web
interfaces to some common VM commands. A skeleton is also provided to help
full screen interface programming: SKELSESS XVMGW. You will find all of these
files together with the line mode samples on the 194 minidisk of the
VM:Webgateway service virtual machine.

Full screen scripting may also be used to access 3270 applications other than
local VM ones. A good example provided as a sample in VM:Webgateway is the
LOC VMGW CGI, which uses the CICS 3270 screens from the U.S. Library of
Congress and creates a friendly front end to allow browsing of their catalog.
This program logs on a local user ID and then calls the VM Telnet protocol to log
on to the Library of Congress system. The same kind of thing is possible with
SNA connected hosts: On the VM logo, use the DIAL VTAM command in the
COMMAND field rather than the standard LOGON field.

4.2.4 Programmer Productivity Tools
The programmer productivity tools comprise a set of CGI helpers:

64ENCODE Converts data to base64 format.

This format survives translation from one character format to
another (for example, from EBCDIC to ASCII). It may be used to
protect the values of hidden variables from server translation and
to guard against the coincidental presence of HTML reserved
characters that may affect HTML interpretation. The only
parameter of 64ENCODE is the string to be protected and the
returned string should be found in VIGRTNS_RESULT.

Chapter 4. Web Access to Applications and Business Data 75

64DECODE Decodes encoded base64 format data to its original format (same
use as 64ENCODE).

DIALVTAM Accesses a VTAM application. The VTAM application can be
running on a system other than the system that is running
VM:Webgateway.

Before invoking the DIALVTAM routine, your CGI program must
create the 3270 session using the VIG SESSION CREATE
command, and the 3270 session must be displaying the VM logon
banner screen.

The routine parameters are the VTAM user ID, the target
application ID and the logmode to be used.

HTMLSAFE Converts HTML reserved characters in a string into a format that
a Web browser can display.

These characters are reserved for HTML tags; if you need to
include one of them, the routine transforms them into equivalent
HTML entities:

< into <
> into >
& into &
″ into "

The string to process is the procedure parameter. Output is
directed into the VIGRTNS_RESULT variable.

SUBSTITUTE Assigns the HTML in a specified CMS file to a REXX variable in
your CGI program. The HTML file can contain VIG:VAR
references that the SUBSTITUTE routine replaces with the
corresponding values of REXX variables from your CGI program.

You have to code the references to your REXX variable in the
HTML file formatted as

VIG:VAR(rexx_variable)

When SUBSTITUTE is called with the file name as parameter, it
will try to resolve all VIG:VAR references. The resulting HTML
code will be set to the VIGRTNS_RESULT variable.

This is a way to separate CGI development from HTML design.

USERPASS If the HTTP Authorization header is present, the USERPASS
routine stores the user ID and password from the header into the
VIGRTNS_RESULT REXX variable. If the HTTP Authorization
header is not present, the USERPASS routine either ends (if a
realm7 is not specified) or has the Web browser issue a user
ID/password challenge (if a realm is specified).

VMLOGON Logs on a VM user ID and invokes the specified full screen
command from the CMS command line.

The routine can be run after a 3270 session is created by VIG
SESSION COMMAND. It supports the following parameters :

• User ID

7 A realm is simply a way of grouping user name and password information so that the browser need not prompt the user for a
new name and password if subsequent requests access the same realm.

76 Web-Enabling VM Resources

• Password
• LOGON command parameters
• Name system or address to IPL
• Command to enter after the user ID is logged on

The VMLOGON command handles the different virtual machine
states (logged off, disconnected, logged on).

WEBENABL Web enables screens of a 3270 session. See section 4.2.5,
“Using the WEBENABL Tool” for more information.

4.2.5 Using the WEBENABL Tool
WEBENABL is a powerful tool that can be used for two distinct but related
purposes:

 1. If you have a full-screen 3270 application that has many different screens,
you may not have time to write code to enhance all the screens. Or you may
have a full-screen 3270 application that contains some screens that are used
infrequently, and you do not want to take the time to write code to Web
enhance these screens.

In these sorts of situations, the WEBENABL routine can be used to process
and present the screens that your CGI program is not Web enhancing.

Figure 32 on page 78 shows the result of using WEBENABL on the familiar
3270 panel constructed by the CMS NAMES command.

Chapter 4. Web Access to Applications and Business Data 77

Figure 32. NAMES Display by WEBENABL

 2. To trace the WEBENABL TN3270 inside the browser interface.

Each user action and all 3270 screen field content is then kept in a trace file
that can be used to help create your VIG SESSION scripts. This is fully
described in VM:Webgateway Tutorial.

To produce a trace, invoke the WEBENABL routine from your browser using
the following sort of URL:

http://yourserver/VM:Webserver/gateway/webenabl.vmgw

The WEBENABL Display Menu will appear, asking you to set WEBENABL
parameters, as illustrated in Figure 33 on page 79.

78 Web-Enabling VM Resources

Figure 33. WEBENABL Menu

To activate the tracing facility, simply identify a user ID to receive the trace
output. When the session is completed, the trace file is sent by the Web
server to the reader of the specified user ID. This trace will contain a lot of
information:

• All the 3270 screens (in a visual display)
• All the commands you entered, transformed into their VIG SESSION

equivalents
• Additional comments on screen structures
• Descriptions of I/O flows

These traces can be used to help you to create your own gateway CGIs.
Just run a trace session, and the information you need will be in the trace
file.

Figure 34 on page 80 is a hand-annotated small part of a trace file from a
session in which we logged onto a user virtual machine and edited a file.
The complete trace file was 1400 lines long (420 lines without the imbedded
3270 screen captures).

Chapter 4. Web Access to Applications and Business Data 79

16:56:24 VMYLGS357I VIG SESSION TRACE START LS8105SF
* Connection to logical device
16:56:34 VMYLGS357I VIG SESSION CONNECT B1459C7FF7B2F78200E31BF800000002
* Pressing the CLEAR button on logo screen
16:56:34 VMYLGS357I VIG SESSION PRESS CLEAR 20 17
* Receiving :
* Enter one of the following commands:
*
* LOGON userid (Example: LOGON VMUSER1)
* DIAL userid (Example: DIAL VMUSER2)
* MSG userid message (Example: MSG VMUSER2 GOOD MORNING)
* LOGOFF
* UNDIAL
* login
16:56:34 VMYLGS357I VIG SESSION FIELDREF ALL
16:56:34 VMYLGS357I VIG SESSION TRACE COMMENT ScreenField 001: Length=0139 Location=23 001

InputField=001
16:56:34 VMYLGS357I VIG SESSION TRACE COMMENT ScreenField 002: Length=0018 Location=24 061

Protected
16:56:34 VMYLGS357I VIG SESSION TRACE COMMENT ScreenField 003: Length=1760 Location=24 080

Protected
16:56:34 VMYLGS357I VIG SESSION FIELDREF INPUT
16:56:34 VMYLGS357I VIG SESSION DETACH
16:56:51 VMYLGS357I VIG SESSION CONNECT B1459C7FF7B2F78200E31BF800000005
16:56:51 VMYLGS357I VIG SESSION ACTION
16:56:51 VMYLGS357I VIG SESSION FIELDREF INPUT
16:56:51 VMYLGS357I VIG SESSION FIELD 1 logon myuserid
16:56:51 VMYLGS357I VIG SESSION PRESS ENTER 23 1
* password
16:57:07 VMYLGS357I VIG SESSION FIELD 1 mypassword
16:57:07 VMYLGS357I VIG SESSION PRESS ENTER 23 1
* RACF message causes HOLDING status so I press PA2
16:57:21 VMYLGS357I VIG SESSION PRESS PA2 23 1
*
16:57:49 VMYLGS357I VIG SESSION FIELD 1 filel
16:57:49 VMYLGS357I VIG SESSION PRESS ENTER 23 1
*
16:58:21 VMYLGS357I VIG SESSION PRESS PF8 10 1
* Press PF11 on eleventh line
16:58:54 VMYLGS357I VIG SESSION PRESS PF11 11 1
*
16:58:54 VMYLGS356I Keyboard is locked
16:58:54 VMYLGS361I Screen input operation: Read/Modified, 3 bytes
16:58:54 VMYLGS355I Screen output operation: Erase/Write, 35 bytes; keyboard is Unlocked
16:58:54 VMYLGS360I VIG SESSION PRESS completed
16:58:54 VMYLGS355I Screen output operation: Write, 52 bytes; keyboard is Unlocked
16:58:54 VMYLGS355I Screen output operation: Write, 54 bytes; keyboard is Unlocked
16:58:54 VMYLGS355I Screen output operation: Write, 37 bytes; keyboard is Unlocked
16:58:54 VMYLGS355I Screen output operation: Erase/Write, 1261 bytes; keyboard is Unlocked
* ending XEDIT
16:59:05 VMYLGS357I VIG SESSION PRESS PF3 2 7
* ending FILELIST
16:59:16 VMYLGS357I VIG SESSION PRESS PF3 11 1
* LOGOFF
16:59:24 VMYLGS357I VIG SESSION FIELD 1 logoff
16:59:25 VMYLGS357I VIG SESSION PRESS ENTER 23 1

Figure 34. WENENABL Trace Elements

80 Web-Enabling VM Resources

4.2.5.1 Line Mode Application Demonstration
The LMCMD VMGW line mode interface can be run in any user ID, but if the user
virtual machine is to be autologged, the initialization of the VIGUSER MODULE
has to be done in the PROFILE EXEC or in SYSPROF EXEC.

You can also start it from the CMS command line and leave your user ID logged
on:

LINK VMRMAINT 193 493 RR
ACCESS 493 fm
VIGUSER INIT VMWEBSRV

If you intend to use VM:Webgateway CGI Extension, you may copy the VIGUSER
module on the Y disk and initialize it in SYSPROF EXEC.

To access the sample CGI from the browser, we used the following URL:

http://wtscvmt.itso.ibm.com/∼ vmwebcd/cgigateway/lmcmd.vmgw

The VMGW type of the CGI indicates the CGI is a REXX procedure running in a
VM:Webgateway virtual machine.

4.3 Byte File System
The Byte File System (BFS) emulates a UNIX-like file system on CMS. It can be
an excellent place to store HTML documents that are served by your Web server
because the application requires UNIX directory structures or file names.
VM:Webgateway can be configured to serve HTML documents from BFS and also
read and execute CGI programs that are stored in BFS. The changes needed to
read data or run a VM:Webgateway CGI program from a BFS directory are not
extensive.

The easiest way to read BFS files from a CGI program is to use CMS Pipelines.
The <oe stage can read data directly from a BFS file and automatically deblock
the data into records. The < stage will automatically call the <oe stage when the
file specification is BFS. Here is an example of reading a BFS file:

PIPE <oe /../VMBFS:VMSYS:ROOT/home/cmsps/pages/phone.data

 Attention

The normal PIPE help files do not document the <oe stage. Help is available
using the command PIPE HELP <oe (or on some systems, PIPE AHELP <oe.)
These commands view the author ′s help files instead of the normal CMS help
files. Enter PIPE HELP MENU to see a menu of all help topics.

As this is written, only VM:Webgateway supports BFS directories for data and
CGI programs. The CGI program support does not include Webshare
compatibility programs when the program is executed from a BFS directory.8

A modified version of the sample CGI program PHONE1 SVMEXEC follows
Figure 35 on page 82. See 3.1.2, “Sample CGI Program” on page 22 for the
original data files. See also 3.1.3, “Sample CGI Program for VM:Webgateway”

8 This limitation exists as a part of the definition of the Webshare compatibility mode. This defines that the source directory is
accessed on the server, but CMS does not support a BFS directory as an argument to the CMS ACCESS command.

Chapter 4. Web Access to Applications and Business Data 81

on page 24 for the native VM:Webgateway CGI program. The modified sample
CGI program is named phonebfs.svmexec.

/* phonebfs.svmexec program example */
/* (type SVMEXEC is configured as ENVIRONMENT SVMEXEC or WORKEREXEC)*/
Address Command
PhoneFile = ′ phone.data′ /* file name changed for BFS */
DataDir = ′ / . . / VMBFS:VMSYS:ROOT/home/cmsps/pages/′
/* BFS location of the Phone file */

P1Q
/* Define variables that make it easy to write the CGI output. */
CGIwrite=′ CGI WRITE DOCUMENT (TRANSLATE USENGLISH CRLF STRING′
CGIpipe=′ join * x0D25 65535′ , /* Block lines for efficiency */

′ | change //′ CGIwrite ′ / ′ , /* Insert the WRITE command */
′ | command′

?Access = 0 /* Was a disk accessed? */
CGIlocation = Script_Location() /* Find location of this CGI */

P2Q
′ PIPE <oe′ CGIlocation||′ / prolog1.htmlpart′ , /* Write prolog tags */

′ | ′ CGIpipe

CGIwrite ′<TABLE BORDER=″1″>′ /* Set up the HTML table */
CGIwrite ′<TH>Employee Number</TH>′ /* Put a header on each column */
CGIwrite ′<TH>Name</TH>′
CGIwrite ′<TH>Phone Number</TH>′
CGIwrite ′<TH>Location</TH>′
CGIwrite ′<TH>Office</TH>′
CGIwrite ′<TH>Status</TH>′

/* Get the telephone data from the file. */
′ PIPE <oe′ DataDir||PhoneFile ′ | stem phone.′

Do i=1 to phone.0 /* Format the file for display */
If left(phone.i,1) = ′ *′ then /* Ignore the comments */

iterate
CGIwrite ′<TR>′ /* Beginning of a table row */
CGIwrite ′<TD>′ substr(phone.i, 1, 6) ′ < /TD>′ /* Each */
CGIwrite ′<TD>′ substr(phone.i, 8,20) ′ < /TD>′ /* table */
CGIwrite ′<TD>′ substr(phone.i,29,12) ′ < /TD>′ /* cell */
CGIwrite ′<TD>′ substr(phone.i,42, 3) ′ < /TD>′
CGIwrite ′<TD>′ substr(phone.i,46, 9) ′ < /TD>′
CGIwrite ′<TD>′ substr(phone.i,56, 5) ′ < /TD>′
CGIwrite ′ < /TR>′ /* End of a table row */

End
CGIwrite ′ < /TABLE>′

′ PIPE <oe′ CGIlocation||′ / footer.htmlpart′ , /* Write ending tags */
′ | ′ CGIpipe

If ?Access = 1 then /* Did we access a disk? */
′ RELEASE′ CGIlocation /* If so - clean up. */

Exit RC

Figure 35 (Part 1 of 2). Sample CGI Program phonebfs.svmexec

82 Web-Enabling VM Resources

Script_location: Procedure expose ?Access
/* Find out where this CGI is located */
/* This will be used by PIPE ″<″ stage will work with ″domains″ */
/* of SFS, BFS, or CMS. For MDISK, the disk is accessed. */
′ CGI GETVAR X_SCRIPT_NAME_TRANSLATED (VAR′ xlocation
Parse var xlocation . . type location . vaddr .
If type = ′ MDISK′ then do

call CSL ′ DMSGETFM rc rs location′ /* Get a free filemode */
If rc <> 0 then

′ CGI EMSG (MSGFILE STRING 0699E RC=′ rc ′ from DMSGETFM′
Else do

′ ACCESS′ vaddr location
If rc <> 0 then

′ CGI EMSG (MSGFILE STRING 0698E RC=′ rc ′ from ACCESS′
?Access = 1 /* Remember we accessed a disk. */

end
end
Return location

Figure 35 (Part 2 of 2). Sample CGI Program phonebfs.svmexec

The following notes describe the BFS access in Figure 35 on page 82.

P1Q The variable PhoneFile contains the file name of the file containing the
data. The variable DataDir contains the directory that the PhoneFile is
located in.

P2Q The CGIlocation variable has been set to the directory that the CGI was
served from. The following information consists of the CGI line from the
sample, followed by the resultant BFS file location:

′ PIPE <oe′ CGIlocation||′ / prolog1.htmlpart′ , /* Write prolog tags */
/../VMBFS:VMSYS:ROOT/home/cmsps/pages/htbin/prolog1.htmlpart

′ PIPE <oe′ DataDir||PhoneFile ,
/../VMBFS:VMSYS:ROOT/home/cmsps/pages/phone.data

′ PIPE <oe′ CGIlocation||′ / footer.htmlpart′ , /* Write ending tags */
/../VMBFS:VMSYS:ROOT/home/cmsps/pages/htbin/footer.htmlpart

The VM:Webgateway setup for the user can be found in 7.6.1, “VM:Webgateway
BFS Access Setup” on page 196. An overview of the POSIX (UNIX) Style
terminology and the directory structure commonly found in the BFS on VM can
be found in 7.4.1, “POSIX Terminology” on page 193. See Chapter 7, “Desktop
Web Publishing to VM Web Servers” on page 185 for information on how to
publish and serve Web pages developed with desktop Web publishing tools.

4.4 Shared File System
The Shared File System (SFS) is mentioned many times in this book for storing
data and CGI programs. SFS has been available for CMS for quite awhile and is
a very stable file system. It has advantages over CMS minidisks, especially for
CGI programming. One big advantage of using SFS for Web serving and
programming is the capability to truly create a hierarchical file structure. True
subdirectories can free you from the need to make countless entries into a
Webshare or EnterpriseWeb/VM FILELIST or VM:Webgateway DIRMAP files.

Chapter 4. Web Access to Applications and Business Data 83

The CGI program examples in this book reside in an SFS and use SFS for data
files. The sample VM Web CD that comes with this book (see Appendix B,
“Contents of the Associated CDs” on page 227 for a list of the contents) is
designed to be loaded into SFS directories.

An easy way to access SFS data from a CGI program is to use CMS Pipelines.
For VM:Webgateway native CGI programs, use the PIPE command, and for
Webshare and EnterpriseWeb/VM CGI programs, use the CALLPIPE
subcommand. The < stage will call the <sfs stage if a directory is specified
instead of a file mode. Here is an example of reading a file:

PIPE < filename filetype Filepool:userid.subdir

The > stage will write an SFS file if an SFS directory name is specified by calling
the >sfs stage. It is a very good idea to use the <sfs and >sfs stages to read
and write SFS files because this forces CMS Pipelines to use the newer CMS file
interfaces. These interfaces understand the SFS file system and automatically
preserve aliases and authorizations on files that are updated. A CMS access of
the SFS directory is not necessary for PIPE or CALLPIPE to read or write files
contained within the directory.

SFS Directory Control directories perform better than the default File Control
directories, but with some loss of flexibility. You give up the file level control of
access permissions and the ability to create aliases. They operate much like a
CMS minidisk. For directories with frequent updates by different individuals, or
updated by CGI programs in a multiple Web Server environment, file control
directories are desired.

If you are going to read a file, obtain updates, and then update the file, you must
remember that multiple copies of your CGI program could be running on
different servers or workers at the same time. Therefore, you must make sure
the file is locked for updating before you begin reading it. SFS will implicitly lock
a file when it is opened for updating, as long as the file remains opened while
your program performs the update. If your program is using CMS commands or
CMS Pipelines programs that close the file after reading it, then you must first
lock the file with either the CREATE LOCK or the DMSCRLOC CSL routine before
you read any file that you intend to update. After an update, commit the change
and then clear the lock.

Figure 36 on page 85 shows a code fragment that obtains a lock, performs an
update, and then returns the lock. It contains a loop that waits for the lock to
become available if it is used by another server. If the CGI program containing
this code fragment is running in a Web server worker machine, CP SLEEP can be
used to perform the wait. Otherwise, CMS multitasking routines should be used
to perform the wait so that other threads of execution in the server are allowed
to execute.

84 Web-Enabling VM Resources

file = ′ DATA FILE SFSTEST
:VMWEBCD.DATA′
/* File to be read and updated */
lock = ′ UPDATE SESSION′
Call CSL ′ DMSGETWU rc rs wuid′ /* Get a work unit */
/* Create an UPDATE SESSION lock on the file, within our work unit */
Call CSL ′ DMSCRLOC rc rs file′ length(file) ′ lock′ length(lock) ′ wuid′
/* If someone else has the lock, assume it will be available soon */
Do 10 while RC = 8 & (rs >= 2700 & rs <= 2900)

Address Command ′ CP SLEEP 1 SEC′ /* Wait just a bit */
Call CSL ′ DMSCRLOC rc rs file′ length(file) ′ lock′ length(lock) ′ wuid′

End
If RC < 0 | RC > 4 then do /* Look for failures */

If RC = 8 & (rs >= 2700 & rs <= 2900)
then say ′ Lock held by another user not released.′
else say ′ DMSCRLOC Return code=′ rc ′ Reason=′ rs

Signal Error
end
′ PIPE <sfs′ file ′ WORKUNIT′ wuid, /* Use our workunit to read file */

′ | locate /′ marker′ / ′ , /* Is the record in the file? */
′ | take 1′ ,
′ | count lines′ ,
′ | var found′

If found = 0 then do /* Record is not in the file */
/* Insert code that creates a new record here.. */
′ PIPE literal new RECORD′ , /* Add the record to the file */

′ | >>sfs′ file ′ WORKUNIT′ wuid
end
Call CSL ′ DMSCOMM rc rs wuid′ /* Commit our workunit */
If RC >= 8 then Signal Error /* Did it work? */
/* Remove the lock */
Call CSL ′ DMSDELOC rc rs file′ length(file) ′ wuid′

Exit:
Call CSL ′ DMSRETWU rrc rrs wuid′ /* Return the work unit */
Exit RC

Error: /* Something bad happened, roll back our update .. */
Call CSL ′ DMSROLLB rrc rrs wuid′
If rrc > 4 then say ′ ERROR IN ROLLBACK, RC=′ rrc ′ Reason=′ rrs
Signal Exit

Figure 36. Sample REXX Code Fragment Il lustrating Locking

4.5 CMS Minidisks
CMS minidisks are the “traditional” place to store data on a VM system. They
can also be utilized in a Web server environment, but they are not the best
choice for frequently updated data. We recommend that SFS or BFS be used for
this kind of environment. However, if the data is very infrequently updated or
already exists on minidisks, it does not need to be moved.

If you must access data stored on CMS minidisks, it is preferable to have the
information in the CMS search order of the Web server. However, if a CGI
program must write on a minidisk, it must access and release the disk each time
it performs an update. If a CGI program must read data from a minidisk that is

Chapter 4. Web Access to Applications and Business Data 85

frequently updated, it must perform a re-access of the disk anytime it reads a
file. Otherwise, it may read old data or encounter read errors. (It may
encounter read errors even after a re-access, so a retry mechanism should also
be used.) Care must be taken in all CGI programs that all read/write accessed
disks are released before program termination, even if the program abnormally
terminates. Otherwise, another Web server or worker will not be able to access
the disk.

If your Web server supports running multiple simultaneous CGI programs on a
Web server, we recommend that you do not run CGI programs that update mini
disks in this environment. Two or more CGI programs in one server may
attempt to access the same read/write disk with different access modes and
CMS does not allow multiple accesses of read/write disks. Therefore, one CGI
program will alter the environment of another one. Either use worker machines
or configure your Web server to only run one CGI program at a time in one
server (if this is possible.) Even if a CGI program is only linking and reading
data from a minidisk, it must be careful that the execution environment of
another CGI program does not change. See 5.6.6, “Reentrant and Serially
Reusable Resources and CGIs” on page 144 for more information on these
resources.

4.6 DB2 Databases
Relational databases have been the most popular warehouses for business data
for years. Part of this product family, DB2/VM has shown its performance and
reliability strengths. Added to these qualities, the REXX SQL interface eases and
accelerates DB2 developments, which is why accessing relational tables from
VM is the more efficient way to put them on the Web. Many DB2/VM sites
already run REXX SQL procedures. They may adapt their procedures to be
called by CGI programs, or use the cross platform IBM DB2 Web connector, DB2
World Wide Web Connection Version 1 (DB2 WWW).

4.6.1 DB2 World Wide Web Connection Version 1
DB2 WWW is a CGI gateway allowing Web access to DB2 databases. Application
developers write applications called “macro specification files.” These macro
files contain sections written with HTML and Structured Query Language (SQL)
that control the presentation and execution of the application. DB2 WWW′s
runtime engine substitutes the HTML and SQL definitions in the application,
allowing the user to submit SQL commands to a DB2 database and to view the
data returned from the operation. The application developer who knows HTML
and SQL can efficiently write an application and bring it into production.

This section describes the gateway and the samples we have included on the
VM Web CD in more detail. We also describe the process of developing
Web-enabled DB2 applications, including the development of SQL and DB2 WWW
macro files.

 Attention

If you prefer to install the DB2 WWW Demonstration and Samples before
continuing, see 4.6.1.6, “VM Web CD DB2 Sample Applications” on page 97.

86 Web-Enabling VM Resources

4.6.1.1 Control Flow for a Simple Application
Let us begin by reviewing the flow of an application request from the client (Web
browser) to the server.

Figure 37. Application Flow for a Simple DB2 WWW Request

Figure 37 shows the application flow for a simple request, where the client
initiates a request (providing no input) and the server returns the result of an
SQL query. The flow shown in Figure 37 assumes that the browser is displaying
an HTML page that has an option to start some DB2 processing. For example,
the browser might be displaying a menu of options, and selecting one option will
cause a DB2 request. The option on the screen would look like the following:

Click here to get a list of Employees

This would be encoded in HTML as:

Click here to get a list of Employees

This “menu” was sent to the client browser previously, and is not considered in
this control flow. When the user clicks on the appropriate option, the browser
sends the action request (encoded in the HTML page) to the server.

The server receives a GET request for the CGI program (db2www), with
parameters of the macro file name to be used (empqry1.d2w), and the section of
the macro to be used (in this instance, the report section).

Chapter 4. Web Access to Applications and Business Data 87

The server first examines control file directives to determine how to process the
user request. The request for /cgi-bin/db2www/empqry1.d2w/report is parsed to
the CGI environment as:

path = cgi-bin
script_name = db2www
path_info = /empqry1.d2w/report

Moreover, the CGI_Path parameter in Webshare and EnterpriseWeb/VM servers
needs to point to the directory to be interpreted as path information. Check DB2
World Wide Web Connection Version 1 requisites for minimum Web server
versions that support this parameter (see the VM Web CD file
/db2/db2www/install.htm).

The path information is only used to indicate the DB2 WWW macro file name and
parameter.

The db2www CGI program is distributed as part of DB2 World Wide Web
Connection Version 1 in object code form. Tailoring and configuration (for your
own applications) are done using macro files and an “ini” file that describes
where the macros are located:

* MACRO_PATH cms:* <-- in the CMS search order
* MACRO_PATH cms:B <-- on the B disk or dir.
* MACRO_PATH sf:dirid <-- on unaccessed SFS dirid
MACRO_PATH MYFP:WEB:WEBSHARE.D2WSAMP

A macro has four sections:

 1. A DEFINE section to define variables used in a macro

 2. An HTML input section to receive input from the client Web browser and to
place it in the SQL query

 3. An SQL section (could be one or more) to define the query and send it to the
database

 4. An HTML report section to invoke the SQL query and display the results to
the client Web browser

An example of a macro file is shown in Figure 38 on page 89.

88 Web-Enabling VM Resources

%define{ P1Q
LOGIN = ″WWWTS″
PASSWORD = ″WWWTST″
DATABASE = ″SQLDBA″
ow = ″SQLDBA″
dbtbl = ″employee″

%}
%SQL{ P2Q

SELECT * FROM $(ow).$(dbtbl)

%SQL_REPORT{ P3Q
<CENTER>
<TABLE BORDER>
<TR>
<TD>$(N1)</TD> P4Q
<TD>$(N2)</TD>
<TD>$(N3)</TD>
<TD>$(N4)</TD>
<TD>$(N5)</TD>
<TD>$(N6)</TD>

</TR>
%ROW{
<TR>
<TD>$(V1)</TD> P5Q
<TD>$(V2)</TD>
<TD>$(V3)</TD>
<TD>$(V4)</TD>
<TD>$(V5)</TD>
<TD>$(V6)</TD>

</TR>
%}
</TABLE>
</CENTER>
<pre>

%}
%}
%HTML_REPORT{ P6Q
<TITLE>DB2 Query of Employee table</TITLE>
<h1>Telephone Directory</h1>
<p>
<hr>

 %EXEC_SQL P7Q
 <p>
 <hr>
%}

Figure 38. EMPQRY1 D2W Code

Notes for Figure 38:

P1Q The DEFINE section allows you to define local variables for use with the
macro. Here we are defining the SQL user, SQL password, table owner
and table name that will be used in the SQL request. SQL user (LOGIN)
and SQL password (PASSWORD) are DB2 WWW system variables, while
table owner (ow) and table name (tc) are user variables. User variables
provide an easy way to dynamically build SQL commands and to
communicate from one macro to another.

Chapter 4. Web Access to Applications and Business Data 89

P2Q The SQL request to be executed is defined here. Although it is possible to
define and name many SQL requests, we have (in this case) one very
simple SELECT request, which will return the entire contents of one table.
The SQL in a section is executed when it is called by %EXEC_SQL in the
HTML report section.

P3Q This SQL Report subsection defines how the result of the query should be
sent to the user. You can use any HTML tags to format your output. Here
we are using an HTML 3 table. If you have no SQL report subsection, a
default table is displayed with column names at the top.

P4Q The DB2 column names are used as the table header names.

P5Q Each row of the resulting table generates a row of the HTML table.

P6Q This is the section of the macro file that is requested by the incoming client
request. You can place a title, HTML meta information, graphics, and any
other information you consider relevant in this section.

P7Q Following the information to be placed at the beginning of the output HTML
page, the SQL is executed and the results returned as defined in the
SQL_REPORT section (line P3Q). Following the output results, you can
place additional “footer” information to complete the page.

So, the employee table looked like this under ISQL:

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO
------ ------------ ------- --------------- -------- -------
000010 CHRISTINE I HAAS A00 3979
000020 MICHAEL L THOMPSON B01 3477
000030 SALLY A KWAN C01 0000
000050 JOHN B GEYER E01 6780
000060 IRVING F STERN D11 6423
000070 EVA D PULASKI D21 7831
000090 EILEEN W HENDERSON E11 5498
000100 THEODORE Q SPENSER E21 0973

Now, however, it looks as shown in Figure 39.

Figure 39. EMPQRY1 D2W Output

90 Web-Enabling VM Resources

This macro was called with the report parameter, so DB2 WWW searched for the
%HTML_REPORT section, executed %SQL actions and sent formatted output to
the Web browser.

Another type of DB2 WWW macro exists, which is the “input” macro. For such a
call, DB2 WWW CGI searches for a %HTML_INPUT section and sends it to the
browser. This section is supposed to contain form data that will be used to build
%SQL actions occurring after validation.

One DB2 WWW can handle both parameters, as in Figure 40.

%define{
LOGIN = ″WWWTS″
PASSWORD = ″WWWTST″
DATABASE = ″SQLDBA″
ow = ″SQLDBA″
tc = ″employee″

%}

Figure 40 (Part 1 of 4). EMPQRYC1 D2W Code

%SQL{ P1Q
select EMPNO, FIRSTNME, MIDINIT, LASTNAME , WORKDEPT, PHONENO

from $(ow).$(tc)
where EMPNO=′ $(employee)′

%SQL_REPORT{ P2Q
%ROW{
<FORM METHOD=″POST″

ACTION=″ /cgi-bin/db2www/empchg1.d2w/report″> P3Q
<INPUT TYPE=″hidden″ SIZE=″30″ P4Q

NAME=″empnum″ VALUE=″$(V1)″>
<INPUT TYPE=″hidden″ SIZE=″30″

NAME=″ow″ VALUE=″$(ow)″>
<INPUT TYPE=″hidden″ SIZE=″30″

NAME=″tc″ VALUE=″$(tc)″>
Please review and update the telephone number of

$(V2) $(V3) $(V4), Employee number $(V1) of dept $(V5)

<PRE>
Telephone Number:
<INPUT TYPE=″text″ SIZE=″30″ NAME=″phone″ VALUE=″$(V6)″>
</PRE>
<INPUT TYPE=″submit″ VALUE=″UPDATE″>

</FORM>
%}

%}
%SQL_MESSAGE{ P5Q
100 : ″No employees for this number.<p>″ : continue
%}

%}

Figure 40 (Part 2 of 4). EMPQRYC1 D2W Code

Chapter 4. Web Access to Applications and Business Data 91

%HTML_REPORT{ P6Q
<TITLE>Employee Informations</TITLE>
<P>
<H1>Employee Informations</H1>
<P>
%EXEC_SQL
<P>
<hr>

%}

Figure 40 (Part 3 of 4). EMPQRYC1 D2W Code

%HTML_INPUT{ P7Q
<TITLE>Phone Number Query</TITLE>
<P>
<H1>Phone Number Employee Information Query</H1>
<p>
Please enter your employee number.
<P>

 You must input a valid employee number
These employee numbers are valid for this demo:
000010, 000020, 000030

<FORM METHOD=″POST″

ACTION=″ /cgi-bin/db2www/empqryc .d2w/report″> P8Q
<hr>
<PRE>
Employee Number :
<INPUT TYPE=″text″ NAME=″employee″ SIZE=30> P9Q
</PRE>
<hr>
<INPUT TYPE=″submit″ VALUE=″SUBMIT QUERY″>

</FORM>

%}

Figure 40 (Part 4 of 4). EMPQRYC1 D2W Code

The URL to use this form would be encoded as:

Click here to modify phone number assignments

The input parameter informs DB2 WWW to display the %HTML_INPUT section
(P7Q) as in Figure 38 on page 89.

92 Web-Enabling VM Resources

Figure 41. EMPQRYC1 D2W Input Request Output

Once the user clicks SUBMIT, the action tag calls the same DB2 WWW macro
with the report parameter (P8Q). This next call executes %SQL statements (P1Q)
according to employee values entered at the first invocation (P9Q). Then, SQL
results are merged with %HTML_REPORT (P6Q):

Figure 42. EMPQRYC1 D2W Report Request Output

Chapter 4. Web Access to Applications and Business Data 93

This time, the telephone number extracted from the SQL database is displayed.
The Web user is able to modify it and to submit the update, which is processed
by another DB2 WWW (P3Q) macro.

You may have also noticed hidden variables (P4Q) to be passed to the updating
macro and inline processing of SQL return codes (P5Q).

The routine responsible for updating the employee table is shown in Figure 43.

%define{
LOGIN = ″WWWAUT″
PASSWORD = ″WWWAUTP″
DATABASE = ″SQLDBA″

%}
%SQL{
update $(ow).$(tc)
set phoneno=′ $(phone)′ where empno=′ $(empnum)′

%}
%HTML_REPORT{
<TITLE>Employee Telephone Update</TITLE>
<P>
<H1>Employee Telephone Update Result</H1>
<P>
%EXEC_SQL
<P>
Your information has been updated.
To review your updated
information, simply run another query.
<P>
<hr>
%}

Figure 43. EMPCHG1 D2W Code

In Figure 43, ow (table owner), tc (table name) and empnum (employee number)
are hidden variables on the form while phone variable was provided in a regular
entry zone.

4.6.1.2 Summary of Flow Control for a Simple Application
 1. The Web browser sends a request to the server, naming the CGI program to

be executed, the DB2 macro file to be used, and the section of the macro file
(input or report).

 2. The Web server receives the request, finds the CGI program, and starts it.
User environment data is passed to the CGI program.

 3. The CGI program reads the macro file, opens a connection to the database,
and executes SQL specified in the macro file. Results are prepared
according to the format in the macro, and then written to stdout by the CGI
program. The CGI program also performs standard processing, such as
specifying the content type to be sent to the browser.

 4. The Web server sends the result as an HTML document to the browser.

 5. The browser formats and displays the results to the user, as shown in
Figure 38 on page 89.

94 Web-Enabling VM Resources

4.6.1.3 Application Development Overview
Having reviewed how DB2 WWW applications work, we are in a position to
describe the application development process. Briefly, the steps involved in
writing a DB2 WWW application are:

• Designing and building DB2 tables for the application if they do not already
exist. There is nothing unique to DB2 WWW for this step, and you should
design and build tables in the same way as you would for any other
application using DB2 as the database.

• Setting up the appropriate access authority to the database, and binding the
appropriate plans.

• Writing SQL to retrieve, insert, and update data in the database tables. This
step is not significantly different than writing SQL for any other application.

• Designing the application presentation in HTML, for both user input and
reporting.

• Combining the SQL and HTML into DB2 WWW macro files, making them
available to the gateway program, and testing them.

• Making the application available by linking it to existing HTML pages.

The reference manual for DB2 World Wide Web Connection Version 1 is
available on your copy of the VM Web CD: Db2/Db2www/db2wdoc.htm

4.6.1.4 DB2 Security and Access Control
One of the attractions of the Web, based on the Internet, is that it vastly extends
the reach of your applications. If you decide to deploy an application on the
Internet, anyone with access to the Internet and a Web browser could potentially
use your application. Even if you restrict deployment to an intranet, the number
of users is potentially much higher than for business applications using other
interfaces (such as 3270).

You therefore need to think carefully about the security and integrity of your
data, and design a protection scheme that meets your needs. A major
advantage of using VM/ESA for your Web server is that it already has strong
access controls that have proved extremely difficult to defeat.

You will probably want to make some of your data generally accessible for
anyone who wants to see it. Examples would be “advertising data,” such as
interest rates for different products of banks, or lists of products with prices and
availability for distribution and retailing companies. For generally accessible
data, you will need to make sure that the database tables are accessible to all,
and especially to the user ID coded using the LOGIN DB2 WWW variable in the
DB2 WWW macro configuration file. It needs at least to be explicitly granted
CONNECT authority. We accomplished this by binding a plan to the appropriate
database, and then issuing the following DB2 command:

GRANT CONNECT TO user ID IDENTIFIED BY password

Then, of course, you have to set authorities on tables you intend to expose.

For some databases, or some actions, you will want to restrict access with an
online identification. For a further discussion of security see Chapter 5,
“Security Issues” on page 131.

Chapter 4. Web Access to Applications and Business Data 95

4.6.1.5 User Presentation
Like any other application, you will need to give some thought to how you
present the application to the user and you must decide how that application
interacts with the user. Some people have compared HTML conceptually to
3270, in that you describe both presentation and content and send it to a display
agent to present to the user.

But compare the 3270 screen with modern displays on the workstations and you
begin to see the potential of using a Web browser together with HTML to access
the corporate business information on enterprise servers and presenting it to the
user. As the Internet world, including HTML and the World Wide Web, is
evolving continuously, more possibilities will continue to become available. You
may already use formatted text with colors, still or animated images, sound and
video to give the most powerful and clear presentation of your data.

You will need to prepare how the application interacts with the user:

• Some sort of entry point for the application this could be a traditional style
menu, a set of push-button icons, an image map, or any other HTML
construct you wish to use. This would be like a “main menu” to launch the
application. You would prepare this in the same way as you prepare any
other HTML file, and can be one file or a group of files.

• User input forms if the initial query will be constructed using input from the
user, you will need to prepare input forms in HTML. These will be included
in DB2 WWW macro files.

However, you should test them first to ensure they work correctly outside
DB2 WWW. You can do your testing in the following way:

 1. Test the look of the form by simply displaying it in a Web browser. Most
browsers have a facility such as “Open File” or “Open File in Browser,”
which you can use to test the look of an HTML page without using a
network connection. You should make it a practice to test the look of
HTML pages this way as you are developing them. Also, remember that
the resolution you use on your screen may be different from the one that
your customers have and this could make the page look very different
from what you planned. You should also check that the page is correctly
displayed by the most important browsers for your users. Each browser
behaves differently, and we have made it a practice to look at each page
with Netscape, IBM Web Explorer, and Microsoft Internet Explorer at a
minimum.

 2. Test the way the form works, including the variables it passes to the
server, by connecting it to a simple CGI program that takes the input and
returns an HTML page l ist ing “variable=value.”

• Report pages

You need to decide how to present the result to the user. Since DB2 is
tabular, the simplest approach is to insert the data into an HTML 3.0 table.
Some browsers still do not support these tables, but the number of these
back-level browsers is diminishing rapidly, so you can use tables with the
confidence that most of the audience will see the output correctly. (However,
also see the discussion in 6.3.2.1, “Fast Rendering by Avoiding HTML
Tables” on page 161.)

It is possible, however, to use any other report format that seems
appropriate. You are limited only by your imagination. Bear in mind that
HTML is evolving rapidly, and the more advanced features you use, the more

96 Web-Enabling VM Resources

you restrict the audience that can view the output directly. As with any
technology decision, decide what you want to achieve before deciding which
HTML markup to use.

• Consider use of JavaScript

HTML is a powerful formatting language used to write hypermedia
documents for the World Wide Web. It is a subset of the Standard
Generalized Markup Language (SGML), so anyone who has used any
markup language before (such as SCRIPT or GML) to create documents will
find it easy to use and adapt to.

Although HTML is a powerful formatting language, it still has some
limitations for presenting application information. JavaScript is a compact,
object-based programming language for developing client and server
Internet applications. It lets you add a dynamic nature to Web pages.
Internet Web browsers that understand JavaScript, for example Netscape
Navigator, interpret JavaScript statements embedded in an HTML page.
With this interpreted language you will be able to tightly control all browser
events, but be careful about what JavaScript constructs you use, as each
browser that supports it uses a different implementation with potential
syntactic differences. (Also see the discussion in 5.5.1, “JavaScript” on
page 137.)

You will find “JavaScript Resources” at these Netscape and Yahoo Web
sites:

http://www.netscape.com
http://dir.yahoo.com/Computers_and_Internet/Programming_Languages/JavaScript

4.6.1.6 VM Web CD DB2 Sample Applications
We assume that the DB2 World Wide Web Connection Version 1 or DB2 WWW
demonstration package is already installed on your Web server. You can get the
demonstration package from either:

• Internet URL http://www.software.ibm.com/data/db2/www
• VM Web CD file /db2/db2www/db2www.vma
• The loaded VM Web CD files in the SFS directory

VMWEBCD.WEBSHARE.DB2WWW directory

The CD also contains the installation guide in file /db2/db2www/install.htm.
Follow those instructions if DB2WWW is not already installed on your system.

You also need to move some DB2WWW files to VM:

 1. Access the VMWEBCD.WEBSHARE.DB2WWW directory.
 2. Copy all D2W files to where you decided to put the demonstration package

files (the default is the D2W server subdirectory).
 3. Copy the EXEC file on a server-accessed disk or directory.

Since coding the macro files is relatively simple, you can follow the
demonstration applications on the VM Web CD to look at the macro source. See
the /db2/db2ind.html file for directions to the demonstrations and source code.

The demonstration macros require that you configure two SQL authorization IDs:

• DB2TS to query tables
• DB2AUT to change EMPLOYEE table

Chapter 4. Web Access to Applications and Business Data 97

The table used by the sample macros is the EMPLOYEE table delivered with the
DB2/VM product. It is a DB2/VM sample page, so it should already be installed.
You can find its description in DB2 for VM V5R1 Interactive SQL Guide and
Reference, SC09-2409.

If your database name is not SQLDBA, you will have to change the DATABASE
variable in the heading of DB2 WWW macros in the variable ow.

To grant appropriate authorities, the database administrator must install the
DB2WWW package and then issue the following DB2 commands:

GRANT CONNECT TO WWWTS IDENTIFIED BY WWWTST
GRANT CONNECT TO WWWAUT IDENTIFIED BY WWWAUTP
GRANT UPDATE ON SQLDBA.EMPLOYEE TO WWWAUT

WWWTS is the “query user” of the application. Since SQLDBA.EMPLOYEE is a
PUBLIC table, it just needs the authority to connect to the database to be
granted in order to read it.

WWWAUT is the SQL user authorized to modify the table and is only used in DB2
WWW macros updating the employee table.

The db2indx.html file points to five examples. Each example is a refinement in
the design of a small application modifying telephone number fields of the
database table.

• The first example is shown in Figure 38 on page 89.

• The second link lets you enter an employee number, change the telephone
number after SQL has retrieved it, and update the corresponding SQL
column. It is the example described in Figure 38 on page 89.

• The third example is a modified version of Figure 38 on page 89.

This form will only display employees of department E.

It adds the ability to this macro to select (with a button) an employee and
then to call the report part of the second example directly. The %ROW part
of %SQL_REPORT has been modified as described in Figure 44.

%ROW{
<TR>
<TD><INPUT TYPE=″radio″ NAME=″employee″ VALUE=″$(V1)″></TD>
<TD>$(V1)</TD>
<TD>$(V2)</TD>
<TD>$(V3)</TD>
<TD>$(V4)</TD>
<TD>$(V5)</TD>
<TD>$(V6)</TD>

</TR>
%}

Figure 44. DB2 WWW EMPQRY2 D2W Rows

A button appears in front of each employee row. Selecting one of these
buttons sets the employee variable to the first column of the SQL extracted
data (V1) for this row.

To call the next DB2 WWW macro, we insert a form definition in the
%HTML_REPORT part. See Figure 45 on page 99.

98 Web-Enabling VM Resources

<FORM METHOD=″POST″
ACTION=″ /cgi-bin/db2www/EMPQRYC2.d2w/report″>

%EXEC_SQL
<P>
<INPUT TYPE=″submit″

VALUE=″Change Phone Number of Selected Employee″>
</FORM>
%}

Figure 45. DB2 WWW EMPQRY2 D2W Form

The form calls the report part of Figure 40 on page 91 with the employee
number set in the employee variable. The %HTML_INPUT paragraph is now
useless and is deleted.

• The fourth example adds a new JavaScript in the first panel; for now, this
form can be sent without any button checked. JavaScript will check that an
employee is selected before submitting the form information. This is shown
in Figure 46.

<SCRIPT LANGUAGE=″JavaScript″>
<!-- Hide code from non-js browsers
function validateChoice() {

var i=″″
for (i in document.Choice.EMPLOYEE) {

if (document.Choice.EMPLOYEE•i“.checked==″1″) {
return true ;

}
}
alert(″You have not selected any employee.″) ;
return false;

}
// end hiding -->

</SCRIPT>

Figure 46. EMPQRY3 D2W Selection Validation

The JavaScript routine scans all EMPLOYEE buttons in the Choice form. If
one of them is checked, the form is sent to the Web server. If no employee
button is selected, an error message pops up on the browser and the form
transfer is cancelled.

The telephone modification form is also enhanced in order to ask the users
for their user ID and password. This information is passed to the routine that
updates the SQL table. EMPCHG3 sets the LOGIN and PASSWORD variables
from the previous form, suppressing the inline coding. Moreover, EMPCHG3
introduces two new variables:

SHOWSQL = ″Yes″
 MYLOG = %EXEC ″LOGMODIF $(EMPLOYEE) $(DBLOGIN)″

− SHOWSQL is set to “Yes,” which asks DB2 WWW to display the SQL
command submitted by the macro.

− MYLOG, which contains a dynamic call to a REXX procedure accessible
to the Web server. Each reference to MYLOG in HTML text will execute
LOGMODIF EXEC with the employee record modified and the SQL user
ID that requested the modification as parameters. LOGMODIF displays a

Chapter 4. Web Access to Applications and Business Data 99

message on the Web server console but you may use such a procedure
to do whatever you need...except to include output of called procedures
in an HTML document.

• The fifth version fixes the last two issues in this application:

− A user might not enter the user ID and password, so SQL update would
fail.

− DB2 WWW needs the user ID and password to be in uppercase.

The EMPQRYC4 macro contains JavaScript controls to insure that the user ID
and password fields are filled and then changes their values to uppercase
(Figure 47).

<SCRIPT LANGUAGE=″JavaScript″>
<!-- Hide code from non-js browsers
function validateForm()
{

formObj = document.Modification;
if ((formObj.phone.value == ″ ″) | |

(formObj.DBLOGIN.value == ″ ″) | |
(formObj.DBPASSWORD.value == ″″)) {
alert(″You have not filled in all the fields.″) ;
return false;

}
else {

formObj.DBLOGIN.value = formObj.DBLOGIN.value.toUpperCase() ;
formObj.DBPASSWORD.value = formObj.DBPASSWORD.value.toUpperCase()
return true;

}
}
// end hiding -->
</SCRIPT>

Figure 47. DB2 WWW EMPQRYC4 D2W JavaScript

The final application now looks as in Figure 48 on page 101, Figure 49 on
page 102, and Figure 50 on page 102.

100 Web-Enabling VM Resources

Figure 48. Final Application First Page

Chapter 4. Web Access to Applications and Business Data 101

Figure 49. Final Telephone Update Page

Figure 50. Final Request Result Page

To access the DB2 WWW sample macros from the browser, we used the
following URL:

http://wtscvmt.itso.ibm.com/∼ vmwebcd/db2www/db2indx.html

102 Web-Enabling VM Resources

4.6.1.7 The Future
Keep an eye on the World Wide Web for updates to DB2 gateway code.
Specifically, you should watch http://www.software.ibm.com/data/db2/www/.

4.6.2 REXX SQL
As seen in 4.6.1, “DB2 World Wide Web Connection Version 1” on page 86,
accessing DB2 tables with DB2 WWW Connection Version 1 does not require new
programming knowledge. It is an easy way to extract DB2 data and render it
into Web style. But there may still be reasons why you will prefer to write your
own DB2 access code, for example:

• You need better control of HTML output.
• You want to create very complicated HTML documents that involve different

SQL commands.
• You have skilled REXX SQL programmers.

4.6.2.1 Description of REXX SQL
REXX SQL (RXSQL) is an interface tool that allows REXX programs to access a
DB2/VM server using SQL statement packages in embedded RXSQL requests.
RXSQL performs some checking on the statements, transforms them into
standard runtime SQL operations, and passes them to a database manager. The
results of these transactions are returned to your program as REXX variables.

4.6.2.2 Sample of REXX SQL
We will modify the first HTML page of the sample DB2 WWW application shown
in Figure 48 on page 101 in order to permit selection of the department on the
same Web page. The page will be divided into two parts:

 1. The left side wil l contain the list of all departments found in the SQL table
displayed in a selection list. The Web user will select a department and ask
a refresh of the employee list display by clicking a button.

 2. The right side wil l display the former screen with the employee update
button. The employees list will be controlled by the form on the left side.

The final screen will look like Figure 51 on page 104.

Chapter 4. Web Access to Applications and Business Data 103

Figure 51. REXX SQL Sample CGI Screen

This modification introduces two difficulties:

 1. On the same page, there will be two separated SQL command outputs: The
list of the departments and the list of employees in the current department.

 2. The list of the departments needs only to be built on the first invocation.
When a user asks for a new employee list, we just have to change the right
side of the screen. Reading the SQL table for department names would be a
waste of resources.

We will address these issues in the sample solution we develop.

Figure 52 on page 105 is the core of our CGI.

104 Web-Enabling VM Resources

LOGIN = ″WWWTS″ P1Q
PASSWORD = ″WWWTST″
TABLE = ″SQLDBA.EMPLOYEE″
output ′<TITLE>RexxSQL Query of Employee Table</TITLE>′

call JScript P2Q
call GetForm P3Q

if curdept=′_ ′ then title=″Complete List of Employees″
else title = ″List of Employees in Department ″curdept

output ′<h1>′ title′ < /h1>′ ,
′<hr>′ ,
′<table>′

call DeptForm P4Q
call ListHead
call rxs ″CONNECT ″LOGIN″ IDENTIFIED BY ″PASSWORD
call rxs ″PURGE QNPRET″
call rxs ″PREPARE QNPRET SELECT * FROM ″TABLE″ WHERE WORKDEPT LIKE ′ ″ CURDEPT″%′″
call rxs ″OPEN QNPRET″
htmlrows=0
/* Main Loop */
do forever P5Q
call rxs ″FETCH QNPRET table_row.″
if rc_rxs =4 then leave /* End Of Table */
output ′<TR> ′ ,

′<TD><INPUT TYPE=″radio″ NAME=″EMPLOYEE″ VALUE=″ ′ table_row.1′″></TD>′ ,
′<TD>′ table_row.1′ < /TD>′ ,
′<TD>′ table_row.2′ < /TD>′ ,
′<TD>′ table_row.3′ < /TD>′ ,
′<TD>′ table_row.4′ < /TD>′ ,
′<TD>′ table_row.5′ < /TD>′ ,
′<TD>′ table_row.6′ < /TD>′ ,

′ < /TR>′
htmlrows = htmlrows + 1

end
call rxs ″CLOSE QNPRET″
call rxs ″COMMIT″
call rxs ″PURGE QNPRET″
output ′ < /TABLE>
′
/* if employees found, then permit modification */
if htmlrows>0 then ,
output ′<INPUT TYPE=″submit″ ′ ,

′ VALUE=″Change Phone Number of Selected Employee″>′
else output ′ Sorry, there is no employee in this department.′
output ′ < /FORM> ′ ,

′ < /CENTER>′ ,
′ < /TD> ′ ,
′ < /TABLE> ′ ,
′<P>′

exit

Figure 52. REXX SQL Sample Main Procedure

It contains the following:

�1� The “global” variables settings.

Chapter 4. Web Access to Applications and Business Data 105

�2� The JavaScript control of employee list buttons. The procedure that writes
the JavaScript code to the Web server is in Figure 53 on page 106.

JScript:
output ′<SCRIPT LANGUAGE=″JavaScript″> ′ ,

′<!-- Hide code from non-js browsers′
output ′ function validateChoice() { ′ ,

′ var i=″″ ; ′ ,
′ for (i in document.Choice.EMPLOYEE) ′ ,
′ if (document.Choice.EMPLOYEE•i“.checked==″1″) ′ ,
′ return true ; ′ ,
′ alert(″You have not selected any employee.″) ; ′ ,
′ return false; ′ ,
′ }′

output ′ // end hiding --> ′ ,
′ < /SCRIPT>′

return

Figure 53. JavaScript Controls

There are three output commands to send the text to the output filter.

When a line is written to the HTML output stream, the Web server
automatically adds the “line feed” control sequence at the end of the line
before sending it to the Web browser.

As HTML does not interpret line end sequences for formatting purposes, it
is possible to send an HTML document in just one line.

But when JavaScript code is embedded into an HTML document, the
JavaScript functions have to begin on a new line, as does the end
comment. This is the reason why there are three “output” commands.

Of course, in a real programming environment, you may prefer to write
JavaScript procedures in single files in order to peek at them with a disk
reading filter.

�3� The GetForm procedure (Figure 54 on page 107) reads the input stream,
decodes it, and sets the passed variables.

106 Web-Enabling VM Resources

/* Read the CGI parameters and update corresponding variables */
GetForm:

′ CALLPIPE (name GetForm)′ , /* read parms */
′ *:′ ,
′ | xlate 1-* 05 40′ ,
′ | strip′ ,
′ | locate 1′ ,
′ | xlate fieldsep = f1 upper′ ,
′ | change //=PARM./′ ,
′ | console′ ,
′ | varload′

if SYMBOL(′ PARM.SELDEPT′) = ′VAR′ then do /* assigned var ? */
/* Yes : user requested a new employee list */
CURDEPT=PARM.SELDEPT /* displayed department */
depttag=PARM.HIDNDEPT /* HTML code for department change */

end
else do
/* No : this is the first CGI call */
CURDEPT=′ _ ′ /* display all employees */
call List_dept /* build department selection code */

end
return

Figure 54. Read Inputs

This makes the difference between the initial call and a user-initiated call
to change the displayed department. When a Web user requests a new
department, the CGI is called with two variables:

• SELDEPT, which is the selected department to display
• HIDNDEPT, which contains the HTML code of the department selection

At the first invocation, the CGI is called without any parameter so that the
procedure sets the current department variable in order to display all
department employees, and calls List_dept to build the HTML code
controlling department selections as shown in Figure 55 on page 108.

Chapter 4. Web Access to Applications and Business Data 107

List_dept:
call rxs ″CONNECT ″LOGIN″ IDENTIFIED BY ″PASSWORD

call rxs ″PREPARE LSTDEP SELECT WORKDEPT ″ ,
″FROM ″TABLE

call rxs ″OPEN LSTDEP″
depnb=0
do forever
call rxs ″FETCH LSTDEP dep_row.″
if rc_rxs =4 then leave /* End Of Table */
depnb = depnb + 1
dep.depnb = translate(left(strip(dep_row.1),1))/* 1st char. */

end
dep.0 = depnb
″CALLPIPE stem dep. | SORT UNIQUE | stem dep.″ /* build the list */
depttag = ′<SELECT name=″SELDEPT″ Size=′ dep.0+1′ > ′ ,

′ <OPTION VALUE=_ SELECTED>All Employees′
do i=1 to dep.0
depttag = depttag || ′<OPTION VALUE=′ dep.i′>Dept ′ dep.i

end
depttag = depttag||′ < /SELECT>′
call rxs ″CLOSE LSTDEP″
call rxs ″COMMIT″
call rxs ″PURGE LSTDEP″

return

Figure 55. Get the Department List

The List_dept routine reads the SQL table, extracts the department names,
and puts them into a selection list. The selection of the “All Employees”
list is set as the default selection to ensure that there will always be one
selected item: in a selection list, once one item as been selected, you
cannot deselect it by clicking again above it. This tip avoids creating a new
JavaScript control that would ensure the selection of an item in the
selection.

�4� DeptForm (Figure 56) builds the department selection form and imbeds the
previously set depttag variable containing the selection list.

DeptForm:
output ′<TD VALIGN=″TOP″> ′ ,

′<FORM METHOD=″POST″ name=″ChgDpt″ ′ ,
′ ACTION=″rxsquery″> ′ ,
′ <INPUT TYPE=″hidden″ ′ ,
′ NAME=″HIDNDEPT″ VALUE=′ ′ ′ depttag′ ′ ′ > ′ ,

depttag′
 ′ ,
′ <INPUT TYPE=″submit″ VALUE=″Change Dept″> ′ ,
′< /FORM> ′ ,
′ < /TD>′

return

Figure 56. Department Selection HTML Code

�5� The main loop that reads employee items and fills the HTML rows.

The first HTML page now appears as in Figure 52 on page 105.

108 Web-Enabling VM Resources

Figure 57. Sample RXSQL CGI Output

4.6.2.3 VM Web CD DB2 Sample Application
If you have already installed DB2WWW, you can run the sample directly. If you
have not, you need to ensure that your server has the appropriate access to the
DB2 server:

• DB2 machine access is given by coding the following commands in the
server PROFILE EXEC:

″ACCESS VMSYS:SQLMACH.SQL.PRODUCTION. R″ P1Q
″SET LANGUAGE (USER ADD ARI″ P2Q
″EXEC SQLINIT DBNAME(SQLDBA)″ P3Q

P1Q Access the SQL code disk
P2Q Associate the SQL message repository
P3Q Prepare the SQL connection to data base SQLDBA

• Grant authorities to the WWWTS DB2 user ID:

GRANT CONNECT TO WWWTS IDENTIFIED BY WWWTST

The table used by the sample CGI is the EMPLOYEE table delivered with the
DB2/VM product. It is a DB2/VM sample page, so it should already be installed.
You can find its description in DB2 for VM V5R1 Interactive SQL Guide and
Reference, SC09-2409.

If DB2WWW samples are not installed, you cannot run the employee modification
form.

To access the REXX SQL sample CGI from the browser, we used the following
URL:

http://wtscvmt.itso.ibm.com/∼ vmwebcd/rxsql/cgi/rxsquery

Chapter 4. Web Access to Applications and Business Data 109

4.6.3 DRDA - VSE Guest Sharing
DB2/VM is part of the supporting databases that implemented the Distributed
Relational Database Architecture (DRDA). DRDA is a transparent way for
applications to access remote databases. The SQL program uses the local
Database Resource Manager to act on remote tables as it does for local tables
without any other particular method. The access to remote tables is handled by
your local DB2 server using DRDA facilities.

The local server communicates to other relational databases over APPC
conversations or TCP/IP networks (only in DB2/VM Version 6).

Once the local database administrator has customized DRDA access to another
database, your procedures will be able to use the remote tables just like local
tables. The VM database facilities could be used on any other remote DRDA
database.

4.7 Office Vision/VM
Two products already exist to access Office Vision/VM (OV/VM) accounts over
the Web. They provide a Web interface to OV/VM mail functions.

4.7.1 VM:Webgateway OfficeVision Interface
You will find an overview of VM:Webgateway OfficeVision Interface in Web Server
Solutions for VM/ESA, SG24-4874.

You can also visit the Sterling Inc. VM Software Division home page for both a
description and demonstration of the VM:Webgateway OfficeVision Interface:

http://www.vm.sterling.com

4.7.2 EnterpriseWeb Vision
Go to the Beyond Internet site for more information at the following URL:

http://www.beyond-software.com

4.8 BookMaster
Refer to 3.5.2, “Processing SCRIPT Files” on page 56 for information and an
example of on-demand conversion of BookMaster documents to HTML. The
tools used in the example can also be used for conversion of these documents
on a one-time basis to make static Web documents from your BookMaster
documents.

4.9 MQSeries
MQSeries messaging software enables business applications to exchange
information across over twenty different operating system platforms in a way that
is straightforward and easy for programmers to implement. The product
implementation consists of two portions: The server portion, which takes care of
message repositories and management handlers; and the client side, which
gives full MQSeries API support and code to communicate with the server part.
Implementations may vary according to the platform, depending on what parts

110 Web-Enabling VM Resources

are being used. The support included in VM/ESA since Version 2 Release 3 only
consists of the MQSeries client part.

MQSeries for VM/ESA is a client that runs on VM′s CMS component. Because it
is a client and not a full-function queue manager, the VM client will need to be
connected to a server running on another platform (OS/390, MVS/ESA, AIX, OS/2,
UNIX, Windows NT).

4.9.1.1 Terms
Some terms need to be defined before going further:

Message A byte string including application data and MQSeries
control data. The MQSeries control data is controlled by
API calls but data format is left free to programmers.
Except for the maximum length of a message, MQSeries
imposes no restrictions on the content or the format of the
data part of a message.

Queue The message repository. It is managed by a queue
manager and is identified by a name. It is not a stack.
Messages are processed as FIFO queues with priority
settings.

Queue Manager A task running under the MQSeries server. It can manage
several queues, and you can implement several in one
server.

MQSeries channel A logical link between the MQSeries server and MQSeries
client.

4.9.1.2 VM Implementation
MQSeries VM client code resides on the MAINT 193 minidisk. It includes:

AMQTEXT TXTLIB Code shared by all languages

AMQTEXTC TXTLIB C interface

AMQTEXTL TXTLIB COBOL and PL/I interface

AMQTEXTA TXTLIB Assembler interface

RXMQV MODULE REXX interface

CMQC H C header file

AMQOM MACLIB COBOL, PL/I and assembler includes

You will also find some samples for each language on the MAINT 193 disk.
These samples and the way to compile them are described in Appendix J of
VM/ESA CMS Application Development Guide, SC24-5761.

 APAR

Before testing any MQSeries VM client procedure, check first that APAR
VM61665 is applied on your system. You can check required VM product
levels in MQSeries Clients, GC33-1632.

Using MQSeries API from REXX programs involves three considerations:

 1. Setting up the VM environment:

• You need to access the following disks:

Chapter 4. Web Access to Applications and Business Data 111

− MAINT 193 or the disk where MQSeries client code resides
− Language Environment/370 libraries disk
− TCPIP disk (592) (must be accessed after the MQSeries code and

LE/370 libraries)

• Identify the needed libraries:

GLOBAL LOADLIB SCEERUN AMQLLIB

• Ask CMS to return GETMAIN storage at the end of commands:

SET STORECLR ENDCMD

• Load the RXMQV interface as a nucleus extension:

NUCXLOAD RXMQV (SYSTEM

 2. Setting up the MQSeries environment:

MQSeries uses CMS GLOBALV facilities to handle MQSeries network
interface parameters. The following variables must be declared in
GLOBALV:

MQSERVER Defines the MQSeries interface channel. It indicates:

• Server MQSeries channel name
• Protocol to access the MQSeries server (IP or APPC)
• Server IP address (number or name)
• Server port (only needed if you have to connect a port

other than the default one, which is 1414)

MQ_User_ID MQSeries user ID set by the MQSeries server
administrator. Only needed when authorization is required
on the server side.

MQ_PASSWORD Password belonging to the MQ_User_ID. Only needed
when authorization is required on the server side.

MQCHLTAB Indicates a file that lists all available MQSeries channels.
It is an alternative method to define channels: It is possible
to create a channel table on a server system that includes
definitions for both the client and server MQI channels, as
well as for other channels. This file would then be shipped
to a VM identified through the MQCHLTAB variable. The
channel table definitions would then be used instead of the
MQSERVER definition.

MQCCSID Character set to use.

MQTRACE CMS file name in which trace entries have to be written
(format is fn.ft.fm).

If you need to change the MQSeries interface or server in a procedure, you
need to change those parameters because they are unique. This means a
program cannot work with two different channels or servers at the same
time. It must terminate the running interface before connecting to the new
one. This limitation can be worked around in a number of different ways
because you can still get to multiple queue managers on a single host, and if
remote queues (queues belonging to other queue managers, whether they
are on the same node of the network or on a remote node) are defined on
that particular host, then you can get to those as well.

Another exposure of the use of GLOBALV is running two MQSeries CGIs at
the same time in a multitasking server. (See 5.6.6, “Reentrant and Serially
Reusable Resources and CGIs” on page 144 for a full discussion of this

112 Web-Enabling VM Resources

subject.) If you run VM:Webgateway you can avoid such a situation by using
use the worker machine environment for your CGI.

 3. Writing and running the procedure itself (that is, using the API functions).

These functions are described in MQSeries: Technical Reference, SC33-0850
and MQSeries: Application Programming Reference, SC33-1673.

The most used functions are:

INIT Initializes the REXX interface code

CONNECT Connects to the remote queue manager

OPEN Opens the remote queue

PUT Puts a message in the remote queue

GET Gets a message from the remote queue

CLOSE Closes the remote queue

DISCONNECT Disconnects from the remote queue manager

TERMINATE Ends the REXX interface calls

In order to run the sample programs or to use your own procedures, you have to
see your local MQSeries server administrator to get the following information
related to a TCP/IP connection:

Table 7. MQSeries Client TCP/IP Connection Basic Parameters. Parameters needed to write and run an
MQSeries application using a TCP MQSeries interface.

Information GLOBALV variable API call Set by
administrator

Server address MQSERVER

Server port number MQSERVER Yes

Channel interface name MQSERVER Yes

Queue manager name Yes Yes

Queue name Yes Yes

MQ_User_ID Yes

MQSeries password MQ_PASSWORD Yes

4.9.1.3 Possible Use of MQSeries VM Client
MQSeries VM Client allows you to connect to any other MQSeries application
that is running on a host that supports MQSeries client API, or is accessible
through a host that supports clients. The application you dialog with does not
have to know it dialogs with a VM program, it just has to exchange MQSeries
messages through message queueing facilities.

You can use MQSeries VM Client in the following ways:

• Put a message to be processed later by another application
• Put a message and scan an output queue to get the result
• Establish a dialog using MQSeries queues
• Browse a queue dynamically modified by a remote application

The most current implementation is the “put and get” queue application. It
offers good flexibility. The only matter to decide is the message format and

Chapter 4. Web Access to Applications and Business Data 113

protocol. You do not even have to know what the other application is that you
talk to. The message flow is explained in Figure 58 on page 114.

Figure 58. Message Exchange between Two MQSeries Applications

MQSeries bridges are available to help interface with other platform
applications. The MQSeries Client sends an MQSeries message that will be
processed by the bridge, locally contacting the application and getting back the
application results to an MQSeries output queue. For example, you may use the
MQSeries/CICS bridge or the MQSeries/IMS bridge to access OS/390 (MVS) and
VSE data. This allows you to:

• Access the data where it is.
• Retrieve data with a regular access method.
• Need only light interface development using a simple MQSeries API.
• Have the opportunity to use VM for easy and fast development upon OS/390

(MVS) and VSE large repositories of data. Take the advantages each system
offers.

The application you communicate with through MQSeries can also be a VM
application. This application might be local to your system, or to another
system. This is achieved by having both your code and the VM application make
use of message queues hosted on an MQSeries server. Your application is a
client placing requests on a queue. The VM application you are communicating
with is a client taking requests off a queue. This is illustrated in Figure 58.

4.9.1.4 Put a Message in a Queue
The first step in this communication is to know how to post requests. Figure 59
on page 115 shows you how to put a message in an MQSeries queue.

114 Web-Enabling VM Resources

/* MQSMPUT CGI : PUT A MESSAGE IN MQSERIES QUEUE */
 mqserver=translate(″MVS″)
Output ′<HTML><TITLE>MQSeries Put</TITLE>′
call GetForm
call mqput mqserver PutMsg
rcc7=word(RXMQV(′ DISC′) , 1)
rcc8=word(RXMQV(′ TERM′) , 1)
Output ′ < /HTML>′

exit
/* Read the CGI parameters and update corresponding variables */
GetForm:

′ CALLPIPE (name GetForm)′ , /* read parms */
′ *:′ ,
′ | xlate 1-* 05 40′ ,
′ | strip′ ,
′ | locate 1′ ,
′ | xlate fieldsep = f1 upper′ ,
′ | change //=PARM./′ ,
′ | varload′

PutMsg=PARM.PUTMSG
return
mqput:
parse arg server themessage
server=translate(server)

select P1Q
when server=″MVS″ then do
mqserver = ″9.12.14.227″
mqport = ″1414″
mquser = ″MQS2″
mqchan = ″MQICLIEN″

 qm = ″CSQ2″
 qn = ″SYSTEM.DEFAULT.LOCAL.QUEUE″

end
otherwise exit 8

end

Figure 59 (Part 1 of 2). MQSMPUT CGI

Chapter 4. Web Access to Applications and Business Data 115

address command ″GLOBALV SELECT CENV PURGE″
address command ″GLOBALV SELECT CENV SET MQSERVER ″ | | , P2Q

mqchan″ /TCP/″mqserver″(″mqport″)″
address command ″GLOBALV SELECT CENV SET MQ_USER_ID ″mquser
Output ″ Queue manager: ″qm″ Queue : ″qn″
″
rcc1=rxmqv(′ INIT′) P3Q
if (word(rcc1,1) <> 0) then do
Output ″Rc Initializing MQSeries interface ″rcc1
return ; end

rcc2=rxmqv(′ CONN′ , qm) P4Q
if (word(rcc2,1) <> 0) then do
Output ″Rc Connecting to MQI: ″rcc2
return ; end

oo = mqoo_output+mqoo_fail_if_quiescing P5Q
rcc3=rxmqv(′ OPEN′ , qn,oo,′ hqn′ , ′ ood.′)
if (word(rcc3,1) <> 0) then do
Output ″Rc Opening queue″ rcc3
return ; end

d.0 = length(themessage) P6Q
d.1 = themessage
imd.PER = MQPER_PERSISTENT
imd.FORM = MQFMT_STRING
imd.MSGTYPE = MQMT_DATAGRAM
imd.REPLYTOQ = ′ ′
imd.REPLYTOQMGR = ′ ′
imd.MSGID = MQMI_NONE
imd.CORRELID = MQCI_NONE
ipmo.opt = MQPMO_NO_SYNCPOINT
rcc5 = rxmqv(′ PUT′ , hqn,′ d.′ , ′ imd.′ , ′ omd.′ , ′ ipmo.′ , ′ opmo.′)
if (word(rcc5,1) <> 0) then Output ″Rc Error sending message ″rcc3
else ,
Output ″The message:<PRE>″themessage″</PRE> was successfully″ ,

″put in queue ″qn″ . ″ P7Q
rcc6=word(RXMQV(′ CLOSE′ , hqn, MQCO_NONE),1)
drop hqn d. imd. omd. ipmo. opmo.

return

Figure 59 (Part 2 of 2). MQSMPUT CGI

The MQSMPUT CGI is called from an HTML form, which sends the message to
add on the queue in the variable PutMsg. After retrieving the PutMsg content,
the CGI stores it in a queue, as follows:

�1� Setting up of the environment. This part of the program contains all the
MQSeries parameters that will be used. To run in your MQSeries
environment you just have to add your own MQSeries server parameters
and change the mqserver variable on the first line of the program.

�2� Setting the CMS GLOBALV variables. It is important to note the
concatenation string (||). There must be only one space between the name
of the variable and the value you assign to it.

�3� Initializing the REXX interface. This is a local initialization so it does not
need any queue name or queue manager name.

�4� Connecting to the queue manager. This is the first time the definitions are
used.

116 Web-Enabling VM Resources

�5� Before opening the queue, the open option variable (oo) is computed. The
different options are described in MQSeries: Application Programming
Reference, SC33-1673. You can also find a list of them in the CMQC H
header file on the MAINT 193 disk.

The OPEN function needs four parameters:

• The queue name that is supposed to be opened

• The open option variable

• The name of the variable that will receive the connection handle

This handle represents the connection to the message queuing queue
manager. It must be specified on all subsequent message queuing
calls issued by the application. It ceases to be valid when the MQDISC
call is issued.

• The name of the variable that will contain the open object descriptor

�6� Until the queue is available, the CGI prepares to put the message in the
queue by copying it into a stem variable and preparing the PUT
parameters, which are:

• The connection handle
• The stem containing the variable (index 1) and its length (index 0)
• The stem to use as input message descriptor
• The stem to write the final message descriptor used
• The stem to use as options to the PUT command
• The stem to write the final options used on the PUT command

�7� The queue is closed with a successful return code.

4.9.1.5 Get a Message from the Queue
Once you send an order message in a queue, you will need to read the
response. Figure 60 on page 118 shows you how to read a queue.

Chapter 4. Web Access to Applications and Business Data 117

/* MQSMGET CGI : Get messages from MQSeries Queue */
server = translate(″MVS″)
wtime = 2
output ′<HTML><TITLE>MQSeries Put</TITLE>′
Output ″<HR>Queue content :
<PRE>″
finalrc=4
select

when server=″MVS″ then do
...

end
otherwise exit 16

end

address command ″GLOBALV SELECT CENV PURGE″
address command ″GLOBALV SELECT CENV SET MQSERVER ″ | | ,

mqchan″ /TCP/″mqserver″(″mqport″)″
address command ″GLOBALV SELECT CENV SET MQ_USER_ID ″mquser
rcc1 = RXMQV(′ INIT′)
if (word(rcc1,1) <> 0) then do
Output ″Rc Initializing MQSeries interface ″rcc1
signal mqdisc ; end

rcc2 = RXMQV(′ CONN′ , qm)
if (word(rcc2,1) <> 0) then do
Output ″Rc Connecting to queue manager ″rcc2
signal MqDisc ; end

oo = mqoo_input_as_q_def+mqoo_fail_if_quiescing
rcc3 = RXMQV(′ OPEN′ , qn, oo, ′ hqn′ , ′ ood.′)
if (word(rcc3,1) <> 0) then do
Output ″Rc Opening queue″ rcc3
signal MqDisc ; end

i=0
do forever

g.0 = 200
g.1 = ′ ′
igmo.opt = MQGMO_WAIT + MQGMO_CONVERT P1Q
igmo.WAIT = 1000 * wtime

/* searching for messages */
rcc5 = RXMQV(′ GET′ , hqn,′ g.′ , ′ igmd.′ , ′ ogmd.′ , ′ igmo.′ , ′ ogmo.′)
if word(rcc5,1) = 2033 then leave
if (word(rcc5,1) <> 0) then do
Output ″Rc Reading message ″rcc5
finalrc=8
leave

end
i=i+1
Output g.1
finalrc=0

end
Output ″</PRE>″

if finalrc>4 then Output ″Error occurred while retrieving messages.″
if finalrc=4 then Output ″Sorry, no messages in queue.″
if finalrc=0 then Output i″ messages retrieved.″

Figure 60 (Part 1 of 2). MQSMGET CGI

118 Web-Enabling VM Resources

MqDisc:
rcc6=word(RXMQV(′ CLOSE′ , hqn, MQCO_NONE),1)
rcc7=word(RXMQV(′ DISC′) , 1)
rcc8=word(RXMQV(′ TERM′) , 1)
Output ″</HTML>″

exit

Figure 60 (Part 2 of 2). MQSMGET CGI

�1� The new parameter when reading a queue is the timer indicating how long
to wait for a message. In this program we will read all queued messages
until no new message arrives after waiting for two seconds.

The MQSMGET CGI reads messages so they are removed from the queue when
read. MQSeries allows you to just browse messages using different option
parameters. MQSMBRW CGI uses browsing options which changed the
message scanning routine as detailed in Figure 61.

oo = mqoo_browse+mqoo_fail_if_quiescing P1Q
rcc3 = RXMQV(′ OPEN′ , qn, oo, ′ hqn′ , ′ ood.′)
if (word(rcc3,1) <> 0) then do
Output ″Rc Opening queue″ rcc3
signal mqdisc; end

i=0
do forever

g.0 = 212
g.1 = ′ ′ P2Q
igmo.opt = MQGMO_NO_WAIT + MQGMO_BROWSE_NEXT+MQGMO_ACCEPT_TRUNCATED_MSG

/* searching for messages */
rcc5 = RXMQV(′ GET′ , hqn,′ g.′ , ′ igmd.′ , ′ ogmd.′ , ′ igmo.′ , ′ ogmo.′)
if word(rcc5,1) = 2033 then leave
if (word(rcc5,1) <> 0) then do
Output ″Error Browsing Queue ″qn″ Return code : ″rcc5
finalrc=8
leave

end
i=i+1
Output g.1
if debug=″Y″ then Say ″Read message : ″g.1
finalrc=0

end

Figure 61. MQSMBRW CGI Get Section

�1� The queue is opened in browse mode.

�2� MQGMO_NO_WAIT disables the timer mechanism.

Browsing an MQSeries queue is similar to the “peekto” CMS Pipelines filter
command. The message format can be checked by a browse section of the
program, which will choose whether to call the processing section (this is the
way the MQSeries/CICS bridge works). Another use is to read the message in
browse mode, process it, and only delete it from the queue if the process
completed successfully.

Here are the most common error messages you might encounter:

Chapter 4. Web Access to Applications and Business Data 119

2012 MQRC_ENVIRONMENT_ERROR: At connect time, it generally indicates you
are not able to connect the MQSeries server. If your GLOBALV variables
are correct, you need to check with the MQSeries server administrator if
the MQSeries server is up, especially the TCP/IP port listener task. Verify
also that your last program disconnected properly from the MQSeries
interface.

2042 MQRC_OBJECT_IN_USE: Trying to open the queue means that the queue is
not set as shared and another process has locked the queue access after
opening it. Queue property can be changed to permit concurrent access to
the same queue.

2079 MQRC_TRUNCATED_MSG_ACCEPTED: You tried to read a message larger
than the estimated length you expected. Change your application to fit the
message lengths.

2085 MQRC_UNKNOWN_OBJECT_NAME: Obvious!

To get the return code name without searching for it in the MQSeries: Technical
Reference, SC33-0850, you can edit the CMQC H header file and issue a find on
the decimal message number value returned by the MQSeries REXX interface.
To output this string in a program, you just have to add the following function in
your programs:

Find_MQ_RC: procedure
parse arg mqrc .
msgtxt=″″
″CALLPIPE < CMQC H * ″ ,

″ | LOCATE 10.5 /MQRC_/ ″ ,
″ | LOCATE /″mqrc″L/ ″ ,
″ | specs w2 1 ″ ,
″ | var msgtxt″

return msgtxt

4.9.1.6 MQSeries/CICS Bridge
The MQSeries/CICS Bridge enables an application not running in a CICS
environment to run a program or transaction on CICS/ESA and get a response
back. This non-CICS application can be run from any environment that has
access to an MQSeries network that encompasses MQSeries for OS/390
(MVS/ESA).

The MQSeries/CICS Bridge is supplied in a SupportPac you can find at
http://www.software.ibm.com/ts/mqseries/txppacs/ma1e.html or as a separately
installable feature of MQSeries for MVS/ESA Version 1.2.

Documentation for the bridge is provided in the User′s Guide in this SupportPac,
or in the seventh edition of the MQSeries for MVS/ESA System Management
Guide, SC33-0806.

A program is a CICS program if it can be invoked using the EXEC CICS LINK
command. It must conform to the Distributed Program Link (DPL) subset of the
CICS API, that is, it must not use CICS terminal or syncpoint facilities.

A CICS transaction is designed to run on a terminal. This transaction can use
BMS or TC commands. It can be conversational or part of a
pseudoconversation. It is permitted to issue syncpoints.

120 Web-Enabling VM Resources

4.9.1.7 MQSeries/CICS Bridge Modes
The CICS bridge allows an application to run a single CICS program or a “set” of
CICS programs (often referred to as a unit of work). It caters to the application
that waits for a response to come back before it runs the next CICS program
(synchronous processing), and to the application that requests one or more CICS
programs to run, but does not wait for a response (asynchronous processing).

The CICS bridge also allows an application to run a 3270-based CICS
transaction, without knowledge of the 3270 data stream.

The CICS bridge uses standard CICS and MQSeries security features and can be
configured to authenticate, trust, or ignore the requestor′s user ID.

4.9.1.8 Running CICS DPL Programs
Data necessary to run the program is provided in the MQSeries message. The
bridge builds a COMMAREA from this data, and runs the program using EXEC
CICS LINK.

Figure 62 shows the step sequence to process a single message to run a CICS
DPL program.

Figure 62. MQSeries/CICS Bridge: Execution of a DPL Program

These steps are:

 1. A message, with a request to run a CICS program, is put on the request
queue.

Chapter 4. Web Access to Applications and Business Data 121

 2. The CICS bridge monitor task, which is constantly browsing the queue,
recognizes that a “start unit of work” message is waiting
(CorrelId=MQCI_NEW_SESSION).

 3. Relevant authentication checks are made, and a CICS DPL bridge task is
started with the appropriate authority.

 4. The CICS DPL bridge task removes the message from the request queue.

 5. The CICS DPL bridge task builds a COMMAREA from the data in the
message and issues an EXEC CICS LINK for the program requested in the
message.

 6. The program returns the response in the COMMAREA used by the request.

 7. The CICS DPL bridge task reads the COMMAREA, creates a message, and
puts it on the reply-to queue specified in the request message. All response
messages (normal and error, requests and replies) are put on the reply-to
queue with default context.

 8. The CICS DPL bridge task ends.

In this scenario, a unit of work that is made up of many messages works in the
same way, with the exception that the CICS bridge task waits for the next
request message in the final step unless it is the last message in the unit of
work.

The structure a DPL bridge message must take is:

 1. MQMD (MQSeries message descriptor)

 2. MQCIH (CICS bridge header), except if you want to run a single DPL program
where AUTH is set to LOCAL or IDENTIFY

 3. Program name on eight first positions

 4. COMMAREA in message data beginning at the ninth position

There is another queue to consider: the dead letter queue. It contains all
messages rejected by the CICS bridge monitor.

4.9.1.9 MQSeries CICS DPL CGI Call Sample
See Figure 63 on page 123.

122 Web-Enabling VM Resources

/* MQSMCICS CGI : Run a DPL CICS program and Display the response */
NEW_SESSION = ″414d51214e45575f53455353494f4e5f434f5252454c494400″
MQCI_NEW_SESSION = x2c(NEW_SESSION) P1Q
ttime=5

call GetForm
call mqcon mqsrv
call mqput PutMsg
Output ″<HR>″
if rcput=0 then do

call mqget
if finalrc=4 then call mqdead

end
call mqdisc

exit
mqput:

parse arg CICSDPL COMMAREA
OPEN..
themessage = left(left(CICSDPL,8)||COMMAREA,300)P2Q
d.0 = length(themessage)
d.1 = themessage
... P3Q
imd.RTOQ = qni /* ReplyToQ */
imd.REPLYTOQMGR = qm
imd.MSGID = MQMI_NONE
imd.CID = MQCI_NEW_SESSION /* CorrelId */
rcc5 = rxmqv(′ PUT′ , hqn,′ d.′ , ′ imd.′ , ′ omd.′ , ′ ipmo.′ , ′ opmo.′)
...

return

Figure 63 (Part 1 of 3). MQSMCICS CGI

mqget:
OPEN...
zero=time(″E″)
wtime=ttime*1000 P4Q
do forever

g.0 = 1000
g.1 = ′ ′
igmo.opt = MQGMO_WAIT + MQGMO_CONVERT
igmo.WAIT = wtime
rcc5 = RXMQV(′ GET′ , hqn,′ g.′ , ′ igmd.′ , ′ ogmd.′ , ′ igmo.′ , ′ ogmo.′)
if word(rcc5,1) = 2033 then leave
if (word(rcc5,1) <> 0) then Error message...
if left(g.1,4)=″CIH ″ then , P5Q

Output ″Error: ″translate(substr(g.1,181),″ ″,x2c(″00″))
else Output ″Response: ″substr(g.1,9)

wtime = wtime - format(time(″R″) * 1000,,0)
if wtime<=0 then leave

end
return

Figure 63 (Part 2 of 3). MQSMCICS CGI

Chapter 4. Web Access to Applications and Business Data 123

/* Get messages from MQSeries Dead Message Queue */
mqdead:
...

return

Figure 63 (Part 3 of 3). MQSMCICS CGI

�1� For the bridge to start to process your message, you need to put it on the
CICS bridge input queue, but moreover you need to fill the correlation ID
message option variable with the MQCI_NEW_SESSION. Otherwise, your
messages will not be processed and you will find dead letter messages
about them in the dead letter queue.

�2� The format of the DPL request needs eight first characters to be the
program name. The CGI also forces the request message length to 300
because the CICS response buffer size is the same as the request
message length. If your request message is smaller than CICS output, data
is truncated without any error message.

�3� The message options are:

• RTOQ is the queue where the CICS bridge will put the response
message. Unlike the C variable name (ReplyToQ), the REXX interface
variable is RTOQ.

• As you needed to indicate the reply queue, you also need to indicate
the queue manager it belongs to.

• MSGID is the message identifier and is null in the sample, but in a
regular MQSeries application you may give it a value. As a result you
will indicate the value of this message ID in the GET message input
option, and MQSeries will only scan the messages with the same ID.
This is the normal way to share an MQSeries queue: All users send
messages to the same queue and read only their own messages
(based on MSGID and CorrelID).

• The correlation ID is generally used like MSGID, to restrict the queue
scan to only your message. Forcing the user to fill it with the
MQCI_NEW_SESSION value permits the CICS bridge to wake up only on
its messages. The REXX interface variable for the correlation ID is CID
(the C variable is CorrelID).

�4� The previous example of the GET method defined a wait interval of five
seconds, waited for five seconds for a message and waited again for five
seconds for each new message. As a consequence, the total wait time
was unpredictable. This sample shows how to set a maximum time
interval. The REXX elapsed time facility is used to subtract from a five
seconds counter (ttime variable). As the program does not know how
many response messages it will receive, it receives all messages during
this five-second interval.

Another method to wait for a response is to set a fairly short time-out
interval and go through a loop a number of times. This allows the CGI to
output progress messages letting the end user know what is happening.

�5� Once a message is received, the procedure checks if it is a message
prefixed with a CICS header message. If this header is present, it means
an error occurred during CICS bridge processing, so the program displays

124 Web-Enabling VM Resources

the error message. If no such header is present, the message is a CICS
program response.

The CEDF CICS command may be used to trace the transaction flow across the
MQSeries bridge. It makes it possible to display the COMMAREA passed to
CICS programs. The CICS task ID to trace is CKBP.

4.9.1.10 Running CICS 3270 Transactions
Data necessary to run the transaction is provided in the MQSeries message.
The CICS transaction runs as if it has a real 3270 terminal, but instead uses one
or more MQ messages to communicate between the CICS transaction and the
MQSeries application.

Unlike traditional 3270 emulators, the bridge does not work by replacing the
VTAM flows with MQSeries messages. Instead, the message consists of a
number of parts called vectors, each of which corresponds to an EXEC CICS
request. Therefore, the application is talking directly to the CICS transaction
rather than via an emulator, using the actual data used by the transaction
(known as application data structures or ADSs). Figure 64 shows the sequence
of steps taken to process a single message to run a CICS 3270 transaction.

Figure 64. MQSeries/CICS Bridge: Execution of a 3270 Transaction

 1. A message with a request to run a CICS program is put on the request
queue.

 2. The CICS bridge monitor task, which is constantly browsing the queue,
recognizes that a start unit of work message is waiting
(CorrelId=MQCI_NEW_SESSION).

Chapter 4. Web Access to Applications and Business Data 125

 3. Relevant authentication checks are made, and a CICS 3270 bridge task is
started with the appropriate authority.

 4. The CICS DPL bridge task removes the message from the request queue and
changes the task to run a user transaction.

 5. Vectors in the message provide data to answer all terminal-related input
EXEC CICS requests in the transaction.

 6. Terminal-related output EXEC CICS requests result in output vectors being
built.

 7. The MQ-CICS bridge exit builds all the output vectors into a single message
and puts this on the reply-to queue.

 8. The CICS 3270 bridge task ends.

4.9.1.11 MQSeries/IMS Bridge
MQSeries for MVS/ESA provides support in the IMS environment for online
message processing programs (MPPs), interactive fast path programs (IFPs), and
batch message processing programs (BMPs).

The MQSeries-IMS bridge is the component of MQSeries for OS/390 (MVS/ESA)
that allows direct access from MQSeries applications to applications on your IMS
system. This means that you can reengineer legacy applications that were
controlled by 3270-connected terminals to be controlled by MQSeries messages.
The bridge is an IMS Open Transaction Manager Access (OTMA) client (see
IMS/ESA V6 OTMA Guide and Reference, SC26-8743 for more information).

To submit an IMS transaction that uses the bridge, applications put messages on
an MQSeries queue as usual. The messages contain IMS transaction data; they
can have an IMS header (the MQIIH structure) or allow the MQSeries-IMS bridge
to make assumptions about the data in the message.

In VMWEBCD.WEBSHARE.MQSERIES, you can find a sample CGI to call IMS
programs: MQSMPIMS CGI. The overall structure is the same as the
MQSeries/CICS bridge. The only difference is that the CGI will build an IMS
Information Header (IIH), and will extract IMS responses from the IIH messages
returned back by the MQSeries/IMS bridge.

Table 8 (Page 1 of 2). IIH Header Content. MQSeries/IMS Bridge IIH header format.

Data type Length Name Description

String 4 StrucId Structure identif ier

Integer 4 Version Structure version number

Integer 4 StrucLength Length of MQIIH structure

Integer 4 Encoding Reserved

Integer 4 CodedCharSetId Reserved

String 8 Format Format name

Integer 4 Flags Reserved

String 8 LTermOverride Logical terminal override

String 8 MFSMapName Message format services map name

String 8 ReplyToFormat Format name of reply message

String 8 Authenticator RACF password or pass ticket

126 Web-Enabling VM Resources

Table 8 (Page 2 of 2). IIH Header Content. MQSeries/IMS Bridge IIH header format.

Data type Length Name Description

Bytes 16 TranInstanceId Transaction instance id

Byte 1 TranState Transaction state

Byte 1 CommitMode Commit mode

Byte 1 SecurityScope Security scope

Byte 1 Reserved Reserved

Documentation for the bridge is provided in:

• MQSeries for MVS/ESA System Management Guide, SC33-0806
• MQSeries: Application Programming Guide, SC33-0807
• MQSeries: Technical Reference, SC33-0850

4.9.1.12 MQSeries Bridge Tools
You will find several tools that help design an MQSeries bridge in the
VMWEBCD.WEBSHARE.MQSERIES directory These tools are as follows:

MGET MODULE Read messages and format them in various ways. Its
syntax is:

MGET <options> qname <qmgr>
where options can be:
-b = browse queue
-c = convert data
-d = assume the message data begins with a MQDLH

and print the MQDLH header.
-h = print MQMD header for each msg
-n<xxx> = get xxx messages, default value

of xxx is 1, default if -n flag
not specified is 999999 messages

-i<x> = open options: -iq _INPUT_AS_Q_DEF (default)
-is _INPUT_SHARED
-ie _INPUT_EXCLUSIVE

-q = quiet mode, that is, do not print
messages

-t<xxx> = set buffer size to xxx bytes.
Default of xxx is 1000.

-u = translate queue and qmgr to uppercase.
-w<xxx> = set wait interval xxx seconds. Default

of xxx is 5.

MGET C C source of MGET module.

MGET OUTPUT Sample MGET output.

MGETH OUTPUT Shows MQSeries message fields.

PROGTSVM MODULE A command processor to send IMS bridge messages.
Look in the C source prolog for a complete description.

SAMPLE DAT An input example to use with PROGTSVM.

PROGTSVM EXEC Sample EXEC to call PROGTSVM. You have to customize
it with your server parameters, then call it with the server
name and the DAT file you created.

PROGTSVM C C source of PROGTSVM module.

Chapter 4. Web Access to Applications and Business Data 127

READIMSG MODULE. Reads messages from the IMS/Bridge output queue and
displays the MQSeries fields and IIH structure.

READIMSG OUTPUT Sample OUTPUT from READIMSG.

READIMSG C Source file of the READIMSG MODULE.

CMQCBC H Header file for C compilation. Contains additional
structure definitions and message constants not provided
in CMQC H VM header file.

CMQ EXEC Sample REXX procedure to compile C programs (ignore
warning messages).

To use these programs, issue the following command:

GLOBAL LOADLIB SCEERUN AMQLLIB

Original C programs are available on:

http://www.software.ibm.com/ts/mqseries/txppacs/ma1c.html

In the ma1c package, you will also find the IAPMDI28 IMS program we used to
test the CGI.

We also used the sample IMS PART application (delivered with the IMS product).
The IMS command PART AN960C10 calls the PART IMS application that will
inquire a DB2 table and send back the description of a product.

4.9.1.13 VM Web CD MQSeries Sample Applications
To run the MQSeries samples:

 1. Update the PROFILE EXEC of the virtual machine that wil l run the MQSeries
CGI according to MQWEB EXEC in directory
VMWEBCD.WEBSHARE.MQSeries.

 2. Each CGI contains a sequence like the following:

select
when server=″MVS″ then do P1Q
mqserver = ″x.xx.xx.xxx″
mqport = ″1414″
mquser = ″MQU″
mqchan = ″MQCLIENT″

 qm = ″MYQ″
 qn = ″SYSTEM.DEFAULT.LOCAL.QUEUE″

end
otherwise exit 8

end

�1� Duplicate the when section according to your own settings and change
the server variable at the beginning. You must do this for every CGI.
These fields represent the basic information the MQServer
administrator should give you.

 3. The MQSMBRW HTML file contains a list of queues that can be selected for
browsing. Change this list to your local queue names.

 4. Bridge sample CGIs, MQSMCICS and MQSMPIMS need three more variables
to be customized:

• qno: the output queue for the program, that is, the bridge input queue
• qni: the input queue for the program, that is, the bridge output queue

128 Web-Enabling VM Resources

• qnd: the dead letter bridge queue

These parameters are customized by the bridge administrator.

To access the MQSeries sample CGIs from the browser, we used this URL:

http://wtscvmt.itso.ibm.com/∼ vmwebcd/mqseries/mqmain.html

Chapter 4. Web Access to Applications and Business Data 129

130 Web-Enabling VM Resources

Chapter 5. Security Issues

You are now an expert in Web-enabling VM resources. But have you considered
all of the security implications of making your corporate resources accessible via
the Web? In this chapter we review some technologies, and then show you how
to apply these technologies and related techniques to address these security
issues. We also learn that in questions of security, as with questions of
performance, there is only one correct answer: “it depends.”

We assume that you have already read the security section of Web Server
Solutions for VM/ESA, SG24-4874, which covers such concepts as the Secure
Socket Layer (SSL) protocol and firewalls.

In general, all points and issues raised in this chapter apply equally to all of
Webshare, EnterpriseWeb/VM, and VM:Webgateway (although there may be
differences in details). We have attempted to flag all cases that are particular to
only a subset of these products. We also suggest that you review the security
section of the “VM/ESA Web Server Feature Summary” in Web Server Solutions
for VM/ESA, SG24-4874.

You will find that these issues, and countermeasures, will in some form also be
applicable to your non-VM systems. Do not allow our listing of these issues as
they relate to VM in any way to lead you to believe that the problems non-VM
systems face in this area are any less severe. In our opinion most of these
exposures are actually less severe and/or more easily addressed on VM
systems.

It is also our opinion that many of the exposures presented in this chapter will
only apply to the most secure sites. We are providing you with a pessimistic
view that deals with the worst-case scenarios.

5.1 Security Concepts
One of the biggest problems with security is knowing how much is enough. Take
the example of a private house. You can imagine a series of increasingly secure
features:

• Curtains on the windows to prevent people from seeing in
• Locks on the doors, to stop a thief from walking in
• A big, ugly dog to keep unwanted visitors away
• An alarm system to detect intruders
• An electric fence, mine field and armed guards

Clearly, it is possible to have too much security. In general you should try to
aim for an appropriate level of security, based on the following three factors:

 1. The threat (what kind of neighborhood do you live in?)
 2. The value of what you are protecting (how many Van Gogh′s do you have?)
 3. The objective of your security measures

This last factor is less obvious than the other two, but equally important. To go
back to the example of the house: If the objective we are aiming for is “to stop a
thief from walking in,” the most appropriate security measure may well be the
locks on the doors.

 Copyright IBM Corp. 1999 131

In this book we are interested in creating an appropriate level of security that
prevents unauthorized people from accessing your Web server or other services
or data that might be available on the platform your are running your Web server
on.

The value of the data we are protecting varies enormously, so we have to be
constantly alert to make sure that our security level is appropriate.

The objectives of our security measures depend on what type of data we are
protecting. It is important to use consistent language for describing these
objectives, because the terms can be ambiguous. For example, if we talk about
a message being “authentic,” do we mean that we know it has not been
changed, or that we know where it came from?

5.2 Types of Attacks
The Internet is home to a variety of criminals who pose threats to the security of
World Wide Web communications. They may attempt a number of different types
of attacks. For example:

Passive Attacks
In a passive attack the perpetrator simply monitors the traffic being
sent to try to learn secrets. Such attacks can be either network
based (tracing the communications links) or system based (replacing
a system component with a Trojan Horse that captures data
insidiously). Passive attacks are the most difficult to detect. You
should assume that someone is eavesdropping on everything you
send across the Internet.

Active Attacks
In these, the attacker is trying to break through your defenses. There
are several types of active attack. For example:

• System access attempts, where the attacker aims to exploit
security loopholes to gain access and control over a client or
server system.

• Spoofing, where the attacker masquerades as a trusted system to
try to persuade you to send him secret information.

• Cryptographic attacks, where the attacker attempts to break your
passwords or decrypt some of your data.

Denial of Service Attacks
In this case the attacker is not so much trying to learn your secrets as
to prevent your operation, by redirecting traffic or bombarding you
with junk.

Social Engineering Attacks
One active attack method that has proven highly successful for
hackers is popularly know as the social engineering technique. This
involves persuading someone in an organization to part with sensitive
access control information, such as user IDs and passwords.

Several forms of this attack have been recorded, for example:

• Pulling rank: The attacker identifies new recruits in the
organization and telephones them, claiming to be a high-ranking
official who is out of the office. The targets are so nervous about

132 Web-Enabling VM Resources

creating a good impression that they will give out secret
information rather than appear to be obstructive.

• One of us: The attacker claims that a genuine systems
administrator told him to get in touch and arrange a guest
account or some other access. This needs an understanding of
the system support departments. By appearing to be just “one of
the gang” the attacker can persuade the targets to lower their
guard.

Social engineering attacks are the realm of the con artist, rather than
the cunning technician. Indeed, anyone could attempt them, given an
organization chart and a convincing telephone manner. As loopholes
in the software are progressively identified and patched up, you can
expect this kind of attack to become more common. The only defense
is to put good administrative procedures in place, and to apply them
rigidly.

5.3 Five Basic Components of Security
As you learned in Web Server Solutions for VM/ESA, SG24-4874, there are five
basic components to security. They are so basic to this topic that they are worth
repeating and expanding upon here. Note that to some degree each of these
components of security often intimately interrelates with the other components.

Information exchanges are secure if all of the following are true:

Authentication
You can identify with certainty both parties in the exchange. Not only
was the contract signed, but it was signed by the proper person. The
sender knows the receiver is authentic and not someone
masquerading as the receiver. Authentication ensures that someone
is who they say they are.

Authorization
The parties are actually allowed to share the information. Control of
access to the data has not been compromised. The server is allowed
to share this data with this client. In addition, when data is being
modified on the server, the client is allowed to modify this data.
Authorization often relies upon authentication to know what to
authorize.

Integrity
The information is not altered as it flows across the network. The
message received is the same as the message sent. For example,
financial transactions are unchanged. Encryption and digital
signatures ensure integrity.

Confidentiality
Your message content is private and not available to others as your
messages flow through the Internet. Encryption is used to ensure that
the message content is confidential and no one eavesdrops on your
communications.

Accountability
Neither the sender nor the receiver can deny that the exchange took
place. They both agree they took part in the exchange, and can
prove that the other did so also. For example, the receiver knows
that the sender signed the contract. Digital signatures assure

Chapter 5. Security Issues 133

accountability. Accountability often requires both authentication and
data integrity.

As you consider the questions of what to secure, why to secure it, and how to
secure it, you should always consider them in the light of these five basic
aspects of security.

Table 9 contains a summary of the security components addressed by each
section of this chapter. You may find some of the assignments in this table to be
relatively arbitrary due to the fuzzy nature of attempting to categorize some of
these threats and considerations. For a table of feature comparisons by product,
see the feature summary chapter of Web Server Solutions for VM/ESA,
SG24-4874.

Table 9 (Page 1 of 2). Security Issue Cross-Reference

Discussion/Technique Authentication Authorization Integrity Confidentiality Accountability

5.5.1, “JavaScript” on
page 137

√ √

5.5.2, “Can You Trust the
Displayed Information in
a Frame” on page 138

√ √

5.5.3, “Can You Trust an
IP Address or DNS Name”
on page 138

√

5.5.3.1, “Trusting IP
Addresses” on page 138

√

5.5.3.2, “Trusting DNS
Names” on page 139

√

5.5.4, “Client and Server
Authentication” on
page 139

√

5.5.4.1, “Means for
Servers to Authenticate
Clients” on page 140

√

5.5.4.2, “Means for
Clients to Authenticate
Servers” on page 140

√

5.6.1, “Authorization” on
page 141

√

5.6.2, “Do Not Trust
Incoming Data Validity”
on page 142

√ √ √

5.6.3, “Forms: Get or
Post” on page 142

√

5.6.4, “Denial of Service”
on page 143

√

5.6.5, “Setting Security
Profiles for URL Trees”
on page 143

√ √ √

5.6.6, “Reentrant and
Serially Reusable
Resources and CGIs” on
page 144

√ √

134 Web-Enabling VM Resources

Table 9 (Page 2 of 2). Security Issue Cross-Reference

Discussion/Technique Authentication Authorization Integrity Confidentiality Accountability

5.7.1, “Secure Sockets
Layer (SSL)” on page 146

√ √ √ √

5.7.2, “Are Your CGIs
Safe” on page 147

√ √

5.7.2.1, “Overly Strong
VM Privileges” on
page 147

√

5.7.2.2, “Overly Strong
Data Access” on
page 148

√

5.7.2.3, “General Rules of
Cleanliness” on page 149

√ √ √

5.7.2.4, “Monopol izat ion
of Web Server SVM
Resources” on page 150

√ √

5.7.2.5, “Full Access to
HTTP Authorization
Header and Password
Data Files” on page 150

√ √ √

5.7.3, “Restricting the
Ability to Run CGIs” on
page 150

√

5.7.4, “VM:Webgateway ′s
SVMWEBSHARE CGI
Environment” on
page 151

√

5.7.5, “Webshare and
Security” on page 152

√ √ √ √ √

5.7.6, “Initial Access
Control Conditions” on
page 152

√ √ √

5.7.7, “Additional Server
Configuration
Suggestions” on
page 153

√ √ √ √ √

5.8.1, “Firewall Systems”
on page 153

√ √

5.8.2, “Ensure Server on
TCP Port Is the Web
Server” on page 154

√ √ √ √

5.4 What Data to Secure
One of the first questions to ask yourself is: am I protecting the right data? All
too often, the approach is to protect either everything, or nothing. While at times
this will be the correct answer, often it is not. Take time to examine what data
you are publishing to and receiving from the World Wide Web, asking yourself
these questions about it as you go:

• What is the value of the data that is at risk?

Chapter 5. Security Issues 135

− Is this data already available by other delivery mechanisms? If so, what
are the characteristics of those delivery mechanisms? For instance, are
you giving away data on the Web for free that you are attempting to sell
via other delivery channels? (Note that this is not always a problem,
simply something that you should be aware of and make conscious
decisions about rather than simply letting it occur.) You need to
maintain a global picture of what data is being provided through all your
delivery channels. You may find data that you want to remove from
other channels (due to security considerations). You may also find data
being secured that does not need to be secured.

− What is the scope of its value and interest? For instance, staff,
customers, competitors. Are you publishing to the world information that
properly belongs only on your intranet? Are you making available to
your competitors information that will assist them and yet not aid you in
your marketing and sales efforts?

− What is the cost of its exposure to being read by unauthorized parties?
Compare this with the opportunities generated by making the information
available on the Web. Some considerations in this area might include,
will this cause lost business opportunities or create new ones?
Similarly, will it cause law suits or help to avoid them?

− What is the cost of the potential of it being modified by unauthorized
parties?

− Do we need to be able to prove that this information was sent from or to
the client?

− Do we need to be able to prove who the other party in a transaction
was?

• What will it cost to protect this data? Be sure to include all additional costs,
such as: additional hardware (for instance firewalls), extra system resource
consumed, and administrative costs to maintain the protections.

• What are the negative impacts of this protection? Include areas such as:
system performance and impact to other applications; application
functionality, and user productivity.

• How effective will the protections be?

Once you have the answers to these questions, you not only know whether the
data is worth protecting, but also whether protection is even appropriate.

5.5 Security Issues on the Browser
As the end consumer of information, the browser user often has what appears to
be the easiest time when it comes to security. However, upon taking a closer
look, this fallacy is quickly dispelled. Today we are all subject to many invasions
of our private lives. Many of the suppliers of information and other products will
in fact take such questionable steps as to sell information they have collected
about us to other suppliers. In addition, we are often the target for various forms
of con games and fraud. There is much to watch out for!

In addition to the issues we raise in this section, the security conscious
consumer should know what the benefits of an SSL secured connection are, as
well as what problems are not solved by SSL. See section 5.7.1, “Secure
Sockets Layer (SSL)” on page 146 for more information.

136 Web-Enabling VM Resources

5.5.1 JavaScript
JavaScript may represent one of the single largest security exposures to the
browsing user of any facility on the Web. Using this scripting language, it is
possible for the nefarious CGI programmer or HTML author to completely take
over the browser from the end user.

All fields displayed by the browser can be manipulated by JavaScript, thus
invalidating their believability. This includes the typical “status” line on the
bottom of the browser′s window, typically used to report the URL that a link on
the page will retrieve. It also includes the “location” text box on the top of the
browser ′s window, which reports the URL of the current document being
displayed.

These two fields in particular are of key importance in allowing browser users to
know where they are and where they are going. (See 5.5.3, “Can You Trust an
IP Address or DNS Name” on page 138 for more on this topic.) The fact that
they can no longer be believed when JavaScript is active, combined with the fact
that the browser user can only either turn off all JavaScript (if even that) or has
to accept all JavaScript (with no warning when a downloaded page contains
JavaScript), makes allowing JavaScript programs to run at all when surfing the
Internet extremely dangerous. See the following URL for an article on a
variation of this problem:

http://www.princetoninfo.com/felten.html

This problem and the problem outlined in 5.5.3.2, “Trusting DNS Names” on
page 139 are more fully described in the paper Web Spoofing: An Internet Con
Game by Edward W. Felten, Dirk Balfanz, Drew Dean and Dan S. Wallach. You
can find this paper at:

http://www.cs.princeton.edu/sip/pub/spoofing.pdf

The exposure outlined in 5.5.2, “Can You Trust the Displayed Information in a
Frame” on page 138 is a closely related variation on this theme which both
demonstrates how JavaScript can be abused, and how easily mislead users can
be by what they see in their browser′s window.

To add insult to injury, all action buttons can be taken over also, allowing even
attempts to close down the browser′s window to be intercepted and overridden.
This allows the nefarious CGI programmer or HTML author to complete the
takeover of the browser from the end user. Now, even attempts to close the
browser window can lead to it being reopened immediately with a URL of the
JavaScript programmer ′s choice. Having been the victim of such a page, we can
attest to the panic and fear it generates.

The security-aware browser users will configure their browser to disallow the
ability to run JavaScript programs. Unfortunately, this will not only disallow use
of these facilities by those who wish to take advantage of you, but also by those
who wish to legitimately use these facilities to enhance the presentation of their
information to you.

Chapter 5. Security Issues 137

5.5.2 Can You Trust the Displayed Information in a Frame
Many sites on the Internet make heavy use of HTML frames. While some users
love them, others hate them. But few would question their content, fully
believing that content does indeed come from the site that put up the frame.
According to Tasty Bits from the Technology Front in the November 17, 1998
issue, you cannot trust this information. (You can find this at http://tbtf.com/.)
It is possible for a nefarious site to literally “take over” a frame of an innocent
site. To quote from TBTF: “The ′ frame spoof′ vulnerability is breathtaking in its
scope and simplicity. It represents not so much a bug in the browsers′ code as
a flaw in the security policy they implement.”

This flaw can be taken advantage of both with JavaScript as well as with plain
HTML code. Both paths allow unauthorized information to be displayed in the
frame of an unsuspecting site.

5.5.3 Can You Trust an IP Address or DNS Name
The URL displayed in the browser′s location field is the primary method used by
end users to validate that they are interacting with the organization that the Web
page claims to be. As we learned in 5.5.1, “JavaScript” on page 137, this data
may be suspect due to modifications by the nefarious CGI programmer.
However, can and should the information in the browser′s location field be
believed at all?

Some people will answer this simple question with a resounding “no.” Others
will almost as strongly argue “yes.” It would seem from reading 5.5.1,
“JavaScript” on page 137 and 5.5.2, “Can You Trust the Displayed Information in
a Frame” that the no votes have it. But, as we said at the beginning of this
chapter, there is only one correct answer to most questions of security: “It
depends.” It is true, you cannot place complete trust in either of these values. It
is also true that you cannot place complete trust in most other forms of
authentication. There is always some element of risk, of not being able to be
one hundred percent sure. So the question should not be, are we completely
sure, but rather, are we confident enough. This question of degree is always
present in any question of trust.

5.5.3.1 Trusting IP Addresses
It has often been pointed out that “any workstation can change the IP address to
whatever it likes.” However, this is not necessarily the case, or even of interest.
If a workstation can make such a change to its IP configuration, it still needs to
actually successfully exchange IP packets with a host in order to take advantage
of this subterfuge. In order to accomplish this, the workstation either needs to
be on the same LAN as the target host, or it needs to have the cooperation of
the LAN bridges and IP routers between it and the target host. Normally this is
not as easy to achieve as the initial subterfuge was. Remember, in order to take
active advantage of this subterfuge, it must be possible for a full TCP connection
to be achieved, and for this to be done the data must flow in both directions.
Thus, most of the time, you can indeed trust the IP address to be correct,
because the cost of not doing so is larger than the cost of doing so.

In those cases where the cost of being wrong is too great to accept the risk,
there are other alternatives, such as the use of client certificates as discussed in
5.7.1, “Secure Sockets Layer (SSL)” on page 146. For a further reduction of risk,
and slightly higher cost, one can even combine multiple techniques for a higher
confidence level. For instance, combining a low trust level IP address test with a

138 Web-Enabling VM Resources

test of knowledge of a user ID and password pair, or a test of possession of a
client certificate leads to an even lower risk of being compromised.

5.5.3.2 Trusting DNS Names
The same basic analysis applies to performing security tests based on the
TCP/IP DNS name. The DNS name is resolved by performing a search of a
distributed database to map the IP address to the DNS name. While it is
possible to compromise this distributed database, it is not common to find such
compromised data in it. When combining tests based upon the DNS name with
other tests (as outlined for IP address testing), one can have a higher level of
confidence in the results than obtained by a single test alone.

However, of the two tests, it is fairly clear that the DNS name for an IP address
is far less reliable than the IP address itself. This is true for two reasons. First,
the DNS name is derived from the IP address, and thus inherits any questions of
the IP address′s validity. Second, the DNS database′s association between the
IP address and DNS name is a second place where incorrect information can be
injected. This makes the resulting name more suspect than the original,
potentially suspect IP address.

In general, it is also possible with both IP addresses and DNS names to place
greater trust in information that is about your firewall-protected intranet than
information that is about the Internet. However, as before, if the risk is high,
then even for intranets, additional authentication checks are justified to mitigate
that risk.

5.5.4 Client and Server Authentication
Authentication is the process of verifying that all parties in the communication
are who they say they are. While it is not always necessary to perform
authentication for all transactions, there are many cases where it is wise for the
server to at least authenticate the client, as in the following:

• Prior to checking client authorization (see 5.6.1, “Authorization” on
page 141)

• Whenever data is being accepted from the client to modify the server
• When tracking of resource use by client (not just by the client′s computer

system) is desired

Likewise, there are cases when the client should authenticate that the server is
who it claims to be. While it is relatively unlikely that the traffic destined for a
given DNS name will be diverted to a system other than the one it is supposed
to be associated with, this is possible. More common is the question of what
organization the DNS name in question is really associated with. For instance,
in many character sets the letter O and the numeric digit 0 are indistinguishable.
Likewise, there can be confusion over the uppercase letter I and the numeric
digit 1.

Thus, can you notice the difference between these two URLs?

http://WWW.IBM.Com/
http://WWW.1BM.Com/

Or between these two (a true case):

http://MICROSOFT.Com/ - the company
http://MICR0S0FT.Com/ - a site that spoofed the company

Chapter 5. Security Issues 139

It is just as difficult to know what company a cryptic domain name is associated
with. For instance, are both, or either, of these URLs associated with Merrill
Lynch, the Wall Street company?

http://www.merlyn.com/
http://www.ml.com/

They both put up pages that claim to be Merrill Lynch, but are they really? This
may not be important for casual work, but if you are about to make a financial
transaction, this could be the difference between making a valid investment in
the market and potentially succumbing to a con artist posing as a legitimate
corporation.

5.5.4.1 Means for Servers to Authenticate Clients
A server or CGI can authenticate its clients using any of the following
techniques. It is often possible, and desirable, to combine more than one of
these techniques for additional levels of confidence.

• Confirmation of the end user′s knowledge of a user ID and password:
− VM directory or other database of user IDs and passwords.
− External Security Manager (ESM) (for instance RACF or VM:Secure)

based authentication. Such testing might include use of interfaces such
as RACROUTE or VM diagnose X′ A0′ .

See 5.6.5, “Setting Security Profiles for URL Trees” on page 143 for more
information.

• Based upon confirmed knowledge of a user ID and its password, this
knowledge may be used to further categorize the user ID into an ACI (or
ACI-like) grouping. Examples include VM:Webgateway′s ability to identify
system administrators and system operators. See 5.6.5, “Setting Security
Profiles for URL Trees” on page 143 for more information.

• Client certificates. See 5.7.1, “Secure Sockets Layer (SSL)” on page 146 for
more information.

• Network location of the workstation the browser resides on, by using its IP
address. A related view is the DNS name associated with that IP address,
which may reveal organizational associations. See 5.6.5, “Setting Security
Profiles for URL Trees” on page 143 and 5.5.3, “Can You Trust an IP Address
or DNS Name” on page 138 for more information.

5.5.4.2 Means for Clients to Authenticate Servers
A client has fewer options for validating the identity of the server it is
communicating with (or, conversely, for the server to give the client validation of
who it is). These options are:

Trust of TCP/IP DNS resolution, and the correct delivery of the IP packets to the
correct host:
This includes trust in the ability of the browser user to recognize a
valid host name. This is a very weak method of validation, not so
much because it is easy to spoof either the DNS system or IP
addressing (see also 5.5.3, “Can You Trust an IP Address or DNS
Name” on page 138), but rather because it is trivially easy for the
nefarious CGI programmer to write a JavaScript program as part of
the data served and have that program override all browser displays
(including the location field). (See 5.5.1, “JavaScript” on page 137 for
more information on this exposure.)

Require an SSL connection:
As part of establishing an SSL connection, the server must validate
itself to the client. The browser user can then ask the browser to

140 Web-Enabling VM Resources

display the information from the server certificate that was used to
establish the connection, or the user can configure the browser to
prompt the user before even accepting the certificate (details depend
upon the browser in use). See 5.7.1, “Secure Sockets Layer (SSL)”
on page 146 for more information.

5.6 Security for Application Writers
In addition to having to face all of the same issues that application users have to
face (see 5.5, “Security Issues on the Browser” on page 136), the application
writer has additional issues to contend with.

In addition to the issues we raise in this section, the security conscious
consumer should know what the benefits of an SSL-secured connection are, as
well as what problems are not solved by SSL. See section 5.7.1, “Secure
Sockets Layer (SSL)” on page 146 for more information.

As application writers, we find that the easiest technique for performing CGI
development includes the use of a dedicated Web server environment for each
application writer. This not only simplifies work such as debugging your CGIs,
but it also makes it possible for you to explore the effects of running your CGI in
various security profiles. If you are blessed with such a development
environment, you will also want to review the information in 5.7, “Security Issues
for Web Server Administrators” on page 146.

5.6.1 Authorization
Once you know who the client is (authentication), the next task is to determine if
the client is allowed to perform the requested task (authorization, or access
control). There are many techniques that can be used to do this, each with its
own strengths, weaknesses and applicabilities. Some techniques of potential
use include:

• Server facilities to constrain access to the URL by server-supported
authorization tests. See 5.6.5, “Setting Security Profiles for URL Trees” on
page 143 for more information.

• A simple database of authorized user IDs (or any other authenticated value,
such as IP addresses, or a field from a client certificate), often referred to as
an Access Control List (ACL). This may be as simple as a hard coded test
for a user ID or ACI group name, or a small flat file listing authorized user
IDs or ACI groups. SFS′s authorization list (as displayed by QUERY AUTH) is
an example of this approach.

• Use of RACROUTE to query an ACL maintained by RACF.

• VM:Webgateway′s Dynamic Workers and normal VM access control facilities.
This provides only the authority of the data owner to data access. It does
not provide checking of the client for access. The authorization is based
upon that of the data owner, as controlled by existing normal VM/ESA access
control facilities.

• VM:Webgateway CGI Extension′s line mode and 3270 application interfaces
allow an application to run with the authorities of the transaction′s client.
The authorization is based upon that of the accessing client, as controlled by
existing normal VM/ESA access control facilities.

Chapter 5. Security Issues 141

5.6.2 Do Not Trust Incoming Data Validity
Realize that data that comes from the browser is always suspect. It should
always be validated by the CGI program itself. You cannot count on any
validation by the client, as you do not have any control over what that client is.
It is easy for a malicious client to present any data it wishes in its transaction.
This includes checks for missing and extra input, as well as ill-formed input such
as bad lengths, data types, and value boundaries. Validation checks should be
done on all data received, including the data in a hidden form variable, as they
all may be modified. See the note on page 39 for additional information. Of
particular interest is any value that is used directly in a program in such a way
as to potentially modify the behavior of that program when bad data is sent.

An example is a string that is used as part of a pipeline specification. In this
case, if the string contains the pipe separator character, the program will have
been altered to include a new, unintended stage. Such a stage might, for
instance, issue a CP command or otherwise harm the execution of the server.
An example might be:

′ CallPipe′ ,
′ <′ fileid_provided_by_client,
′ | ...′

which is fine, until it is passed a value containing the current pipe command
separator, such as:

fileid_provided_by_client = ′ INPUT FILE A | CP SLEEP′

which, in this case, would serve to completely hang this server. This could be
avoided by adding code to clean up the input before its use, in this case
something like the following:

Parse Var fileid_provided_by_client fileid_provided_by_client ′ | ′ rest
If rest<>′ ′ Then Signal BadInput
If Words(fileid_provided_by_client)<>3 Then Signal BadInput

Another problem is the use constructs, such as the following REXX statements:

Interpret data_from_client
Address ′ COMMAND′ data_from_client

This exposure, and similar ones, are also discussed in Writing WWW CGI Script
in REXX by R. L. A. Cottrell, available on the Web at:

http://www.slac.stanford.edu/˜cottrell/rexx/share/

While this paper assumes a non-VM runtime environment, most of the
techniques and issues that he raises are also valid in VM.

As with input from the client, also be suspect of any data that comes from a file
that can be modified by unauthorized parties.

5.6.3 Forms: Get or Post
As you design your forms, you should consider the sensitivity of the data which
you expect to receive from that form. When you use the GET method in a form
(see 3.3.2, “Enhancing Our Sample Program” on page 31), you receive the form
variables as a query string on the URL. When you use the POST method in a
form (see 3.3.3, “Using a FORM with POST” on page 35) you receive the form
variables as an attached document. While these two variations do not affect the
vulnerability of the data on the network, they do have very different
characteristics in both what is recorded at the server and what the browser user

142 Web-Enabling VM Resources

will see. These differences may be motivation for selection between these two
methods.

When GET is used, the query string with your encoded form data (including
hidden variable values on the form) is visible to both the browser user (as the
URL being displayed when the browser renders the resulting page of data from
your CGI) and to the Web server′s system administrator(s) (as the URL is
recorded on the SVM′s console and/or in the HTTP logs of the SVM). When
POST is used, the attached document will contain your encoded form data. This
attached document is not visible at the browser (although the browser does
typically have the ability to display the source document, and thus any hidden
variable values), and is not normally recorded on the SVM (except possibly
through debugging diagnostic output).

If the form contains data which you do not wish to have seen by the casual
browser user or to have recorded on the SVM, you should use the POST method
for your forms.

5.6.4 Denial of Service
When a server becomes so overloaded with work that it can no longer service all
incoming requests for work, there is a denial of service. This can occur both
innocently (for instance, due to a server that is too small for the presented
legitimate workload), and as a form of security attack. The denial of service can
also take on several forms. For instance, it may take the form of an
overwhelming number of requests, or it may take the form of causing the server
to handle no further requests for some period of time by monopolizing the
server, or causing it to crash, or otherwise not accept new incoming work.

Additionally, when a CGI program that runs in a Webshare compatibility mode is
executing on Webshare, EnterpriseWeb/VM, or in SVMWEBSHARE mode on
VM:Webgateway, the server can perform no other processing. A CGI running on
VM:Webgateway in SVMEXEC mode also monopolizes the server′s resources,
allowing other URLs to be serviced only when it calls the CGI command or
(under CMS 14 and later) when CMS Pipelines performs a thread blocking
operation. Either of these situations can lead to a denial of services to other
URLs.

This exposure can be somewhat addressed by the use of large numbers of
servers (for Webshare and EnterpriseWeb/VM), the use of large numbers of
workers and a worker-based CGI environment (VM:Webgateway), and the use of
VM:Webgateway CGI Extension′s interfaces to move application processing to
the end users′ virtual machines. Also refer to topics in Chapter 6, “Performance
Issues” on page 157 for more information on reducing the cost of serving a URL
(and thus the chance of experiencing a denial of service situation).

5.6.5 Setting Security Profiles for URL Trees
An important part of securing your CGIs is the appropriate securing of each part
of the URL tree in both the server′s root and in the user′s ID USERROOTs. While
Webshare has no real support in this area, both EnterpriseWeb/VM and
VM:Webgateway have extensive support for this important function.

EnterpriseWeb/VM′s support is based upon the existing network
pseudo-standard of HTACCESS files. The syntax and semantics of these files are
covered in the product documentation, EnterpriseWeb Secure/VM Installation

Chapter 5. Security Issues 143

Guide and Reference, and may be familiar to users of other non-VM-based Web
servers. This support allows access to be granted or denied based upon criteria
of:

• The HTTP method
• The IP address
• The DNS name
• The user ID
• A security group associated with the user ID
• A user-written exit
• The SSL X.509 client certificate (see 5.7.1, “Secure Sockets Layer (SSL)” on

page 146 for more information)

The access granted or denied is “all or nothing” on a directory-by-directory
level. No support is documented for finer grain access control.

We find that VM:Webgateway′s support is more functional and has easier to
understand syntax and semantics than a system based on HTACCESS files. This
is especially true for users who are familiar with CMS and REXX. The online
documentation for VM:Webgateway fully covers this topic with both its reference
materials and its task oriented materials. This support allows access to be
granted or denied based upon criteria of:

• The HTTP method
• The IP address
• The DNS name
• The user ID
• A security group associated with the user ID
• Whether the user ID is a product system administrator or operator
• The file ID being served
• The URL of the page this URL was found on (the HTTP Referer header)
• Whether there is a known DNS name for this IP address or not
• The return code of a user exit routine that will be passed a list of criteria for

its own analysis
• The standard SSL client certificate tag values (see 5.7.1, “Secure Sockets

Layer (SSL)” on page 146 for more information)

Access granted or denied is on a file-by-file basis. As with EnterpriseWeb/VM,
this access is built up by analysis of access control files at each directory level
of the URL. However, unlike EnterpriseWeb/VM, in VM:Webgateway the data
owner may optionally force the termination of further analysis of access control
records at any time.

For initial access control conditions you may want to see 5.7.6, “Initial Access
Control Conditions” on page 152 for more information about how the initial
access control status can be controlled.

For more information on this topic, refer to Web Server Solutions for VM/ESA,
SG24-4874 and to the specific product documentation.

5.6.6 Reentrant and Serially Reusable Resources and CGIs
CMS has many resources that are implicitly shared among all of the programs
concurrently or serially used in the virtual machine. A partial list of these
resources includes:

• GLOBALV settings
• GLOBAL xxxLIB lists

144 Web-Enabling VM Resources

• NUCXLOADed programs
• EXECLOADed programs and data files
• Virtual devices such as tape drives
• Unit record devices (readers, punches, printers, the console)
• The CMS file system search order
• Any statically named files, for instance profiles, configuration files and work

files
• VM ′s *System services, such as *MSG and *MONITOR

Often modification of any of these resources by one program will affect the next
program ′s execution. In addition, when running in a multithreaded,
multiprogrammed virtual machine, such as the VM:Webgateway server, changes
to one of these resources can actually affect other currently running programs.
These interactions must be considered as part of the security (and operational)
implications of allowing CGIs to be run at your site.

There are four classes of execution environments. These classes are listed here
in order of increasing complexity.

 1. The simplest, and safest, alternative with respect to this issue is to make use
of VM:Webgateway′s worker-based CGI environments. In this alternative
there is a simple, single-threaded, single-process mode of execution. You
are also provided with exit points to perform setup and cleanup of the worker
virtual machine ′s environment. In the extreme, the cleanup exit can even be
used to issue a CP LOGOFF to perform the ultimate in cleanup. We highly
recommend the VM:Webgateway worker-based CGI environments for sites
that are highly security conscious, and in general (for both security and
non-security reasons) for all sites that allow CGIs on user pages.

In addition, we recommend that the site implement a good cleanup exit
(VIWEXIT2) when using this environment. This exit should be used to clean
up all resources you are concerned with, or that are known to be potentially
left allocated by a misbehaving application environment. An extreme version
of this exit, for the most complex environments, is to simply issue a CP
LOGOFF in the exit, exercising the ultimate in VM cleanup for a logged-on
user ID.

 2. The next most complex of the environments is that of the WEBSHARE-based
servers, EnterpriseWeb/VM and Webshare. In these servers each CGI runs
in an separate virtual machine. However, the CGI runs serially to the
serving of other URLs, including the running of other CGIs in the same virtual
machine. In other words, each URL is served by a dedicated server that is
currently processing only that one URL. The Web server does not need to
worry about multiple CGIs running in one user ID at one time. However, this
can still expose the CGI to changes in the execution environment (resources
such as those listed at the start of this section) that purposefully or
accidentally occur.

We recommend that this class of CGI environments only be used by sites
that can exercise careful control over the CGIs that are to be run, primarily
only those that run from the server′s URL root tree. We do not recommend
this class of CGI environments for sites which allow CGIs to run from user
pages.

 3. The next most complex of the environments relative to this issue are
VM:Webgateway′s SVM-based CGI environments. In these environments
there are multiple threads of execution present, and actions on one thread
will undoubtedly affect the execution of other threads. In addition,

Chapter 5. Security Issues 145

VM:Webgateway has requirements for more than simple CLASS G VM
privileges. This means that all CGIs that run in the server are executing on
a privileged user ID. While VM/ESA is a very secure operating system, once
you are executing in a virtual machine with more than simple CLASS G
privileges, the degree of security is greatly compromised.

We recommend that these environments only be used for sites that have a
high degree of trust in their enabled CGIUSER user IDs and those that run
only system administrator-provided CGIs (those on the server′s root).

 4. VM:Webgateway CGI Extension-based CGIs are an interesting mix of both
class 1 and class 3. Since the application is running in a dedicated user ID,
much of the description applies to these client user IDs. Also, since the
controlling CGI is running in a class 3 environment, all of the complexities of
that environment apply. In addition to those complexities, there are new
ones associated with the maintenance of a long-term session on the client
user ID in use.

5.7 Security Issues for Web Server Administrators
In addition to having to face all of the same issues that application users (see
5.5, “Security Issues on the Browser” on page 136) and application writers (see
5.6, “Security for Application Writers” on page 141) have to face, the systems
programmer or system administrator has additional issues to contend with.

5.7.1 Secure Sockets Layer (SSL)
The SSL protocol was introduced in Web Server Solutions for VM/ESA,
SG24-4874. Use of SSL will address several of the basic security issues. In
particular, it addresses the issues of confidentiality and integrity. It may also, by
use of its client certificates, be used to address the questions of authentication
and accountability. It does not address the question of authorization.

In order to use SSL to secure the data served by a URL, you must take two
steps:

• Make sure that the data is not served by the HTTP protocol, which does not
make use of SSL, and thus represents an unsecured serving of the data.
This can be accomplished by not making the data available to a server that
can serve the HTTP protocol. Alternately, it can be accomplished by
extending trust that the data in question is never served with the HTTP
protocol either by explicit configuration of the server, or by any CGI running
in the server.

• Configure the server to serve this data on a port configured for SSL
(normally port 443) and using the HTTPS protocol. See Web Server Solutions
for VM/ESA, SG24-4874 and your server′s documentation for detailed
information on how to configure your server for SSL.

No further effort is necessary to take advantage of this form of security. CGIs do
not need to know if they are running in an SSL or non-SSL environment, as the
interfaces, the data they read, and the data they write are all handled in a
consistent manner in both cases.

CGIs may want to make sure that they are running with SSL enabled before they
access sensitive data. EnterpriseWeb Secure/VM and VM:Webgateway Release
2.2 allows CGIs to test both SSL and the existence of a client certificate.

146 Web-Enabling VM Resources

The SSL protocol is only supported by EnterpriseWeb Secure/VM and
VM:Webgateway. It is not supported by EnterpriseWeb/VM or Webshare.

EnterpriseWeb Secure/VM and VM:Webgateway Release 2.2 has support for the
fetching of client certificates, making basic security (authorization) decisions
based upon those client certificates, and presenting their values as CGI
variables. This support can be configured to either never fetch the client
certificate or to always require a valid client certificate. When client certificates
are being fetched, the decision to reject SSL connections that are not associated
with a valid client certificate is left up to the data owner.

For more information on EnterpriseWeb Secure/VM refer to the “Encryption and
SSL” chapter of EnterpriseWeb Secure/VM Installation Guide and Reference for
more information. left up to the data owner.

The VM:Webgateway support for client certificates is not documented in Release
2.2, but is expected to be fully documented in the next release of the product
(Release 3.0 is expected to be available in early 1999). Until that time,
customers may contact Sterling Software Customer Services for further
information on the existing support in Release 2.2.

Before implementing SSL, you should consider the performance implications of
its use. See 6.3.1, “Performance Implications of SSL” on page 159 for more
information.

5.7.2 Are Your CGIs Safe
One of the glories of VM/ESA is how easy it is to write a REXX program.
However, perhaps the single largest exposure to the security of your system′s
data are the CGIs you use to provide access to that data on the Web. This is
especially true when you allow information providers to create their own CGIs
for their user pages, as these CGIs typically will not have been validated to be
safe by the system administrator. Some of the more critical exposures posed by
CGI programs are outlined in the following sections.

5.7.2.1 Overly Strong VM Privileges
All programs that run in a virtual machine have full access to the full power of
that virtual machine. This means that all CGIs running in the Web server can
make use of all CP commands and interfaces which the server has access to,
based upon that server′s privilege class.

EnterpriseWeb/VM Installation Guide and Reference and EnterpriseWeb
Secure/VM Installation Guide and Reference list VM class B as being required in
order to gain access to VM′s diagnose X′ 84′ for password checking. The
EWEBLOG userid need CLASS B MSGNOH for the logging server to use the
MSGNOH command. If CLASS B is not present the logging server will use MSG
instead. If a ESM package is used EnterpriseWeb/VM and EnterpriseWeb
Secure/VM defer the password checking to the ESM package and therefore
EnterpriseWeb/VM adn EnterpriseWeb Secure/VM should be fine with VM class
G.

VM:Webgateway Getting Started indicates that VM:Webgateway requires VM
classes BEG for operation, without explicitly listing the actual interfaces used. In
addition, the CP FORCE command is necessary for smooth operation of
VM:Webgateway workers. (We suggest that you call Sterling Software Customer
Services to request an explicit list of the interfaces actually required.)

Chapter 5. Security Issues 147

Specific ESM authorization will also be needed by both EnterpriseWeb/VM and
VM:Webgateway when they are running in an ESM environment. Compared to
Webshare′s ability to run in a class G user ID, this represents an additional
security exposure for any CGI run in the server on either EnterpriseWeb/VM or
VM:Webgateway.

EnterpriseWeb/VM has not addressed this exposure. VM:Webgateway addresses
this exposure with its dynamic worker facility, which allows CGIs to run in a
simple class G user ID.

We recommend that the VM privileged interfaces used by your Web server be
granted to that server by making use of VM/ESA′s class override facility. In
addition, we recommend the use of the worker facility in VM:Webgateway. This
way, only those specific CP commands and diagnoses that the server requires
are available to the server. Other, unneeded interfaces are thus not available
for potential misuse and abuse by CGIs. Contact your product′s provider for an
explicit list of all such required interfaces.

5.7.2.2 Overly Strong Data Access
As we said in 5.7.2.1, “Overly Strong VM Privileges” on page 147, all programs
that run in a virtual machine have full access to the full power of that virtual
machine. This means that all CGIs running in the Web server can make use of
all data access rights of that server. Thus, each CGI has access to the superset
of all data authorizations, both read and write, of all CGIs that might be run on
the server. As a part of this, they have the ability to write modified data into
EXECLOADed storage and the server′s own CMS search order. They could
serve (or modify, if the server has write access) data other than the data which
is intended to be served, either inadvertently through a programming error, or
maliciously. (See 5.6.6, “Reentrant and Serially Reusable Resources and CGIs”
on page 144 for other related exposures.)

This means that all data that has PUBLIC read authority in what was formerly a
closed shop, now implicitly might be readable by the world (given a cooperating
CGI). Likewise, the same exposure exists for data that has weak write
protection, such as PUBLIC write in SFS or an ALL write password on a minidisk
(again, given a cooperating CGI). In addition, a malicious programmer could
modify other programs to perform this work, and thus disguise the source of the
violations.

While these exposures should not be taken lightly, there are techniques that you
can use to address them. These techniques include:

• Never use ALL passwords on minidisks or PUBLIC authorizations in SFS; use
ACI group-based authorizations and an ESM instead. For instance,
RACF/VM and SafeSFS from Safe Software, Inc. are ESMs for SFS that
provides ACI group-based access control lists (ACLs) (see
http://www.safesoftware.com/ for more information). Likewise, ESMs like
RACF and VM:Secure are good solutions for minidisk-based systems.

• Only give the Web server (or the data owner, if workers are used in
VM:Webgateway; or the client, if VM:Webgateway CGI Extension interfaces
are in use) authority to the resources it requires. For instance, do not enroll
them in filepools they should not access, and do not give them access to
minidisks that are sensitive.

• Enroll the Web server in an SFS filepool dedicated to holding materials to be
served on the World Wide Web. Have other VM-based applications which

148 Web-Enabling VM Resources

also access and/or maintain this information do so directly in this filepool,
thus avoiding the duplicate data problems.

• Make use of VM:Webgateway′s worker facilities and VM:Webgateway CGI
Extension′s interfaces to completely avoid the need to give the Web server
SVM access to these sensitive applications and their data.

• For EnterpriseWeb/VM and Webshare, since you cannot use worker facilities
or client-based authorizations to contain a CGI′s ability to access data that
was not intended for it, you must take more extreme steps. We suggest
isolating such sensitive environments to a separate TCP port served by a
separate, isolated set of Web server SVMs. While this will incur greater
administrative overhead costs for your Web environment, it is the only way
to contain such access reliably.

5.7.2.3 General Rules of Cleanliness
The following is a list of general rules and guidelines on how to achieve and
maintain a clean and safe set of CGIs in your Web server. These rules are very
similar to the steps most sites take when deploying any new application or
modification to an existing application.

• Institute and enforce standards and guidelines for CGI programs.

• Perform code reviews of all CGIs run on the Web server. As a part of this,
you will need to control access to the file system areas that are allowed to
contain CGIs. This ensures that no unauthorized parties can create CGIs in
the server′s URL tree. See 5.7.3, “Restricting the Ability to Run CGIs” on
page 150 for additional information on authorization of users to run CGIs.

• Do not allow the CGI program to be read by those who are not authorized to
modify it. Such read access may lead to a form of “security by obscurity.” It
is often the case that the way a shortcoming in a CGI program is discovered
by reading its source to find its deficiencies.

• Provide and require the use of test servers to aid in validation of the runtime
behavior of CGI programs.

• Make use of the security features built into the Web server. An excellent
example is VM:Webgateway′s dynamic worker facility, which allows a CGI to
run with only the VM authorities of the CGI owner, not the full authority of the
Web server. Workers eliminate the exposure to the misuse of both the
server ′s CP privilege class and its wider access to file system materials.

• Inspect all disks and directories that are accessed by a CGI program using
CMS ACCESS. Make sure that no system commands are overridden and
make sure the CMS file mode is released at CGI end, including all error exits
from the CGI such as REXX NoValue and Syntax exit paths.

Since WEBSHARE style CGIs by definition include the accessing of the disk
or directory that they reside on, it follows that a WEBSHARE mode CGI
should never be allowed to run on the Web server from a disk or directory
that is not under direct control of these rules.

• When denying access to a resource, do not reveal who is authorized to
access that resource. An example is when a CGI contains additional
authorization checks for its use. In general, do not give overly detailed
reasons for any access denial. While this is in direct conflict with good
human factors and usability recommendations (which would have you give
explicit and detailed reasons and explanations for the denial), such decisions

Chapter 5. Security Issues 149

are sometimes necessary to preserve good security. The challenge is to
attempt to meet the needs of both of these considerations.

5.7.2.4 Monopolization of Web Server SVM Resources
A CGI program can monopolize the server′s resources, such as CPU cycles,
DASD I/O, DASD space, network I/O and logical units of work on database
servers (for instance locking a database record for update or just opening an
SFS file under a work unit that is never closed). In addition, in a multithreaded
server, such as VM:Webgateway, any machine synchronous operation or wait
state that is misused can severely impact the server and other URLs. An
extreme case of this, which is very easy to inadvertently code, is the CGI that
uses the CP SLEEP command to wait for some condition. While this is relatively
harmless in VM:Webgateway workers and Webshare-based servers, it is a
disaster for a VM:Webgateway server. For an example of such a CGI, refer to
3.4.8, “Server Push” on page 53.

In our opinion, the best solutions for this class of exposures are use of
single-threaded CGI execution environments (such as VM:Webgateway workers
and the Webshare-based servers) and code review of your CGIs. In addition, we
recommend that the site implement good clean-up procedures to be used after
each CGI runs. See 5.6.6, “Reentrant and Serially Reusable Resources and
CGIs” on page 144 and 6.3.6, “Serializable Server Resource Access” on
page 170 for more discussion on this topic.

5.7.2.5 Full Access to HTTP Authorization Header and Password
Data Files
The CGI program could collect the information from any HTTP AUTHORIZATION
header present on the request. This would allow it to potentially collect user ID
and password pairs from any password repository that it might use for end-user
authentication.

Disable the ability of a CGI to see the HTTP AUTHORIZATION header in
VM:Webgateway by coding the AUTHHEADERPASS NO characteristic for CGIs for
which you do not wish to allow access to user ID and password information.

If you are running VM:Webgateway, we recommend that you take advantage of
VM ′s ability to encrypt the user ID passwords in the CP directory. This prevents
a CGI from simply reading unencrypted passwords. It does not prevent a copy of
the directory from being exported, or exhaustive search techniques by the CGI
itself. For these exposures, as well as the CGI exporting or examining the
contents of a password file, you will need to make use of VM:Webgateway′s
worker facilities to isolate the CGI code from these data sources. Also see
5.7.2.2, “Overly Strong Data Access” on page 148 for more information on this
topic.

5.7.3 Restricting the Ability to Run CGIs
If all CGIs are only resident in the server′s URL tree, then there is less
opportunity for an errant CGI to be run. This is similar to not allowing every end
user to write programs to access your databases, choosing instead to only allow
those programs which are validated and made available for all to use. Each of
the Web servers offers a method to restrict which user IDs can run CGIs.

150 Web-Enabling VM Resources

In Webshare and EnterpriseWeb/VM this is an “all or nothing” configuration
setting made with the CGIUSERS configuration statement. This statement takes
the form:

CGIUSERS userid1 userid2 userid3 ...

to provide a list of user IDs that are allowed to use any configured CGI file type
to run a CGI program in the server.

In VM:Webgateway there is a finer granularity method, with higher administrative
cost, to enable who may run CGIs from their private URL trees. The CONFIG
CGIUSER command explicitly lists each filetype that a user ID may run as a CGI.
The syntax of this command is:

CONFIG CGIUSER ADD userid filetype

5.7.4 VM:Webgateway′s SVMWEBSHARE CGI Environment
VM:Webgateway has two means of running Webshare compatibility mode CGIs:
in the server (CGI environment SVMWEBSHARE), and in a worker (CGI
environment WORKERWEBSHARE). While the programming APIs for these two
environments are essentially identical, there are significant differences in the
security profiles of these two modes of operation.

When running in a WORKERWEBSHARE environment, the running CGI is isolated
in a worker virtual machine. This worker virtual machine has only been given
the security profile of the CGI′s owner (by making use of VM/ESA′s diagnose
X′ D4′ support). There are no other threads of execution when running in this
mode. The CGI has almost complete control over the virtual machine. This is
tighter security than the CGI environment of either a Webshare or
EnterpriseWeb/VM-based server.

When running in a SVMWEBSHARE environment, the running CGI is in a shared,
threaded, multiprocessing environment, the VM:Webgateway server virtual
machine. This virtual machine has a security profile that is much more open
than that of a worker. As with any CGI on Webshare or EnterpriseWeb/VM, and
all other SVM-based CGI environments on VM:Webgateway (currently only
SVMEXEC), an SVMWEBSHARE environment CGI has the full superset of VM
privileges needed to access and run all of the data and CGIs that it may be
called upon to serve. In addition, as with all other SVM-based CGI environments
on VM:Webgateway, the CGI program needs to share the virtual machine′s
resources with other CGIs and the serving of other static content files. This
leads to some special security considerations for this SVMWEBSHARE CGI
environment.

An implicit part of the definition of the environment of a WEBSHARE-compatible
CGI environment is that the file system that the CGI was found on will, if
necessary and possible, be added to the list of CMS ACCESSed minidisks and
SFS directories. The action of fulfilling this assumption modifies a key part of the
execution environment for the virtual machine, specifically the CMS search
order. This can lead to incorrect results if this newly accessed file system
contains file IDs that were used from later in the CMS search order and are
referenced during the execution of the CGI. When running in a single-threaded,
single-processing environment (such as Webshare and EnterpriseWeb/VM), this
does not pose a major security issue. However, when run in a multiprocessing
virtual machine, such as VM:Webgateway, this can materially affect other work in
the server. This is especially true if the server is configured with a URL root of
the CMS search order.

Chapter 5. Security Issues 151

We recommend against the use of the VM:Webgateway SVMWEBSHARE CGI
environment by CGIUSER-authorized user IDs. We recommend that the more
secure VM:Webgateway WORKERWEBSHARE CGI environment be used instead.

5.7.5 Webshare and Security
The base Webshare package contains essentially no support for security. (See
Web Server Solutions for VM/ESA, SG24-4874, for an overview of its facilities.)
However, there are local modifications to the product which add some very basic
security features (as well as rudimentary SSI support). The document Server
Side Processing for WebShare on VM/CMS available from
http://miamiu.muohio.edu/∼ jdkinne/ssp/ssp.html describes modifications to
Webshare that add Server Side Include (SSI) processing, including the ability to:

• Restrict the IP addresses to which an HTML document can be delivered
• Include dynamic information in documents, such as:

− The number of times a document has been served
− The last modification date of a document
− The current date

• Include the contents of other files

While these extensions are important and useful, we cannot in good faith
recommend the use of Webshare or these extensions to any site that has
security concerns that are not addressed by the base package. We base this
decision on the statement contained in the disclaimer for these extensions to the
package. It reads in part:

“Warranty of WebShare Server Side Processing: This software is provided with
no warranty. It is not warranted for any purpose. Use it at your own risk.
Neither the author nor any other party shall be held liable for any damages
resulting from the use of this software.... Actually making the modifications to
Webshare discussed in this paper and distribution, publication or sale of such
modifications is prohibited without the approval of Beyond Software...”

We do not believe that any site with security concerns should accept these
terms.

5.7.6 Initial Access Control Conditions
In EnterpriseWeb/VM the initial assumption is that a file may be served. All
access control that may be applied by the techniques outlined in 5.6.5, “Setting
Security Profiles for URL Trees” on page 143 is due to the explicit actions of the
data owner who creates and maintains the access control files.

In VM:Webgateway the same is true for both the server′s root and, by default, for
USERPAGEs. However, the system administrator of VM:Webgateway can choose
to configure an initial access control file that contains standard product access
control file records to set the starting condition for allowing or denying service.
See VM:Webgateway′s online documentation on “Initial ACCESS File” for more
information.

152 Web-Enabling VM Resources

5.7.7 Additional Server Configuration Suggestions
You should be very careful when configuring your Web server. In addition to the
points raised elsewhere in this chapter, consider the following aspects of your
configuration:

EnterpriseWeb/VM Server Configuration Suggestions

• Configure AUTOINDEX OFF to prevent the dynamic generation of
an index of files on a minidisk with no INDEX HTML file present.

• Configure USERWEBSPECIFY OFF to prevent the browser from
being able to surf your site for minidisks that may not be intended
for serving on the Web.

• Do not configure USERWEBLINKP CHALLENGE COOKIE to prevent
building cookies containing the link password of minidisks.

• Consider not serving user data files at all. This is accomplished
by the configuration setting of USERWEBS OFF.

• We recommend that you use great care when configuring the
ability to map a file type to a command via the product′s media
map file. The lack of built-in sanity and security testing of
URL-provided parameters and arguments makes this a very
powerful facility, which could be easily misused in the ways we
outline in 5.6.2, “Do Not Trust Incoming Data Validity” on
page 142.

VM:Webgateway Server Configuration Suggestions

• Consider not serving user data files at all. This is accomplished
by the CONFIG USERPAGES OFF command.

5.8 Security for Network Programmers
In many ways, while the network programmers′ life may be a harried one, they
can rest easier when it comes to security and the World Wide Web. In large
part, this is because the amount of control that they can exercise over this niche
of their world is limited.

5.8.1 Firewall Systems
In a car or a building, a firewall is a fireproof wall that is used to prevent the
spread of fire from one place to another. Firewalls in networking are similar to
firewalls in cars and homes. They are systems that act as barriers to prevent or
control the transmission of data. They protect resources from access by
unauthorized remote users. There are several types of firewalls, but in general
they all accomplish this same shared goal. Their primary difference lies in how
they decide what data is allowed to pass and how they let that data pass.
Firewall systems are typically set up at the corporate level of network
connectivity, and maintained by the corporation′s network programmers. They
serve both to protect the corporate intranet data from being exposed to the
outside world, and to isolate portions of the corporate network from access to
the outside world. As such, they are often an appropriate and simple means to
provide security for your Web transactions. They provide an easy path to simple
“all or nothing” security solutions.

Use of firewalls addresses aspects of several of the basic security issues. In
particular, it partially addresses the issues of confidentiality (only those inside of
firewall can see the data it is protecting), authentication (the client and server
can both be known to be either inside the firewall, or authenticated by the

Chapter 5. Security Issues 153

firewall), and authorization (due to its form of partial authentication). It does not
address the question of integrity or accountability.

For a further discussion of this topic see Web Server Solutions for VM/ESA,
SG24-4874.

5.8.2 Ensure Server on TCP Port Is the Web Server
In VM/ESA′s TCP/IP product it is possible for any user ID to connect to any port
that is not reserved for use by a configured user ID. Thus, if you start a Web
server without reserving a port for its user ID in the TCP/IP configuration, you
are opening yourself to the potential of another user ID on the system gaining
control of the port, and thus subverting the data flow. This could allow that user
ID to gain access to sensitive information such as the client′s user ID and
password. This also would allow for a class of denial of services attack.

These problems will be avoided if the user ID of the Web server is bound to a
specific port in the TCP/IP configuration file, PROFILE TCPIP.

In addition, another form of denial of service related to the use of the VM/ESA
TCP/IP port reservation interface is to prevent the server from listening on the
reserved port for new connections. This can be solved by making use of the
AUTOLOG configuration records in PROFILE TCPIP. VM TCP/IP starts all virtual
machines on its current AUTOLOG list when it starts execution. If a virtual
machine on the AUTOLOG list has reserved a TCP port with the PORT
statement, but is not accepting connections on that port, TCP/IP attempts to
FORCE that virtual machine and start it again. An exception is the case where
the PORT statement specifies NOAUTOLOG.

We suggest that you always reserve the ports in use by your Web server virtual
machine, and that this virtual machine be placed in the AUTOLOG list in the
PROFILE TCPIP configuration file.

5.9 Security Summary
While we have presented you here with a list of pundits′ questions and “rules of
thumb” suggested answers, remember that few of these should be applied to
your site without first performing your own analysis of both questions and
answers.

The single most important question, of course, is: what is right for your site.
Remember that this is not an area of static questions or answers; you should
reexamine both on a regular basis, because “things change.” We also hope that
you will approach the problem creatively.

5.10 References
The following are additional references on security on the World Wide Web:

• Web Server Solutions for VM/ESA, SG24-4874 gives an introduction to several
Web servers on VM/ESA, including the security features they offer. In
addition, it provides a basic introduction to security issues in a Web
environment.

154 Web-Enabling VM Resources

• The World Wide Web Security FAQ at:
http://www.w3.org/Security/Faq/www-security-faq.html

• A general overview of writing CGIs in REXX, including security concerns, is
Writing WWW CGI Script in REXX by R. L. A. Cottrell, available on the Web
at: http://www.slac.stanford.edu/∼ cottrell/rexx/share/

• http://www.vm.sterling.com/conferences/teleconf.html#ssl is the transcript of
the Sterling Software teleconference on Addressing Web Security Issues from
October 21, 1997.

• http://www.safesoftware.com/ for information on SafeSFS, an ESM for SFS
that provides ACI group-based access control lists (ACLs).

• The Princeton University Secure Internet Programming Web site at
http://www.cs.princeton.edu/sip/ is an excellent source of information on
exposures found in mobile code systems such as Java, JavaScript, and
ActiveX.

• The Tasty Bits from the Technology Front Web pages at http://tbtf.com offer
a wonderful source of information on new technology. You can often find
mention of new security issues for the Web mentioned at this site. The site
is fully searchable, and an e-mail list exists for receiving regular posting of
new information.

Chapter 5. Security Issues 155

156 Web-Enabling VM Resources

Chapter 6. Performance Issues

You are now an expert at Web-enabling VM resources, and you know that your
data is appropriately secured. You are now running a Web site that is rich in
content and you have an ever-growing base of consumers of its contents. But,
you are now hearing complaints from those once happy consumers about how
long it takes to access data from your site, and your capacity planners are
asking if you plan to continue to grow in your capacity needs as rapidly as you
have recently been growing. Perhaps it is time to investigate where your
resources are being consumed, and improve the efficiency of your more
resource-intensive CGIs.

As you read this chapter, remember that when it comes to questions of
performance, there is only one correct answer: “It depends.”

6.1 What to Optimize
Everyone hears something different when they hear the term “performance.”
What do we mean when we use the term here? It depends. Yes, as you may
have feared, every one of these many different aspects of performance is
important in its own context. And just to make things interesting, these many
aspects of performance are sometimes in direct conflict with each other or with
other important considerations such as usability, human factors, and security. A
partial list of interesting views of performance includes:

• Browsing user ′s wall clock time
• Browser resources
• Network bandwidth and resources
• Server CPU use
• Server memory use, both allocated and working set size
• Server I/O
• Server elapsed wall clock time
• Serialization of access to serializable server resources
• Load presented to secondary VM SVMs such as SFS, DB2, and the ESM
• Server ′s system-wide CPU use
• Server ′s system-wide memory use, both allocated and working set size
• Server ′s system-wide I/O
• Load presented by the server to other non-VM-based servers, such as

MQSeries servers and other TCP/IP-based systems

6.2 Performance Issues of Browser Configuration
As the end consumer of information, it may seem that the browser user can do
little to affect performance. However, there are several basic aspects of browser
configuration, all relating to document caching, that can have a great effect on
the load it places upon your applications, the Web server and the network.

 Copyright IBM Corp. 1999 157

6.2.1 Browser Document Caching
In our opinion, the single largest knob on Web server performance is how the
Web browser cache is configured. Every document that can be served out of the
browser ′s cache is a URL that does not need to be serviced by the Web server.
There are two basic knobs on most browsers′ cache settings (although you may
find variations):

 1. Cache size
How much memory and DASD storage should be used to hold copies of the
documents you fetch from the Web server? In general, the larger the setting,
the better performing the Web browser will tend to be. This is because if a
copy of a document is resident locally in the browser′s cache, there is no
need to fetch the document across the network at what is typically lower
speed than local DASD access. A document is removed from the cache
when the cache becomes full (or shortly thereafter), typically based upon the
date and time of last use of the document (that is, the least recently used
documents would be removed until the cache′s configured size is no longer
exceeded).

 2. Cache validation timing
Whenever there is a cache, there is implicitly a cache validation algorithm in
place to provide a way to make sure that the local cached copy is the same
as the copy that would have been retrieved from the network if that cached
copy did not exist. In HTTP the algorithm consists of asking the Web server
if a document has changed since the last time it was modified. (See the
Last-Modified and Expires headers in Table 3 on page 13 and the
If-Modified-Since header in Table 1 on page 11 for more information.)
Typical browsers allow the browser user to select when this algorithm is
invoked. Three common settings, in order of increasingly higher
performance (and lower exposure to the use of bad cache data), are:
a. Every time the URL is to be displayed. This setting is the only one that

can hope to maintain a valid cache.
b. The first time a URL is to be displayed during a browser session (that is,

since the browser application was started).
 c. Never. This setting is almost guaranteed to often display out of date

cached copies of data.
The browser will typically provide its user with one or more methods to
override this algorithm and either explicitly check the cached copy′s validity
or unconditionally fetch a new copy of the document from the Web server.

Also refer to 3.4.3, “Making Efficient Use of the Browser′s Cache” on
page 44 for additional information.

Some browsers also include separate configuration controls for documents that
were received over an SSL connection. These documents will typically not be
stored on DASD, under the assumption that this might represent an
unreasonable potential for their content to be compromised.

One last consideration for these caches and their size is the effects they will
have on the backups of the system that the browser resides upon. Typically the
contents of this cache (usually represented as multiple files in a single dedicated
directory or folder) have no long term interest, tend to contain large numbers of
frequently changing files, and have no real value if they were to be lost or
restored. We suggest that you strongly investigate configuring your PC backup
facilities (such as the ADSTAR Distributed Storage Manager (ADSM) and Norton
Utilities) to not back up the browser cache′s folder.

158 Web-Enabling VM Resources

6.2.2 Browser Use of a Caching Proxy Server
If your site has a caching proxy server, it is wise to configure your browser to
make use of this resource. You will typically find that the response of such a
local service is far better than the response of a remote service by the true data
owner. This is due to the tendency for a “locality of reference” that occurs when
many browsers are seeking the same data, for instance the data on an intranet
site, which may actually reside in a non-local host.

6.3 Performance Issues for Application Writers
In addition to having to face all of the same issues that application users have to
face (see 6.2, “Performance Issues of Browser Configuration” on page 157), the
application writer has additional issues to contend with.

As application writers, we find that the easiest technique for performing CGI
development includes the use of a dedicated Web server environment for each
application writer. This not only simplifies work such as debugging your CGIs,
but it also makes it possible for you to explore the performance implications of
various changes to your CGIs. If you are blessed with such a development
environment, you will also want to review the information in 6.4, “Performance
Issues for Web Server Administrators” on page 171.

6.3.1 Performance Implications of SSL
In 5.7.1, “Secure Sockets Layer (SSL)” on page 146 you learned how SSL can
address some of your security issues. However, SSL also has negative
performance implications.

The SSL protocol is session oriented. This is done to help improve performance
by reducing the cost of the encryption work and amortizing the cost of
authentication over multiple transactions. A session has two phases:

 1. Initialization

This phase consists of all of the one-time start-up costs for the SSL session.
This includes:

• Establish authentication of server to client.
• Optionally fetch a client certificate from client for use by code on the

server.
• Use server′s public/private RSA key pair to exchange a shared secret

key.
This is a relatively high-cost phase in resources consumed due to the many
request/response data transfers and the cost of public key encryption.

 2. Transparent data transfer, making use of the shared secret key for
symmetric encryption

During this phase multiple HTTP transactions (request URLs and response
documents) are exchanged over one or more TCP connections. Each new
TCP connection requires a relatively fast, low-cost “reconnection” of the new
TCP connection to the existing SSL session. This is a relatively low-cost
phase compared to phase one, both due to the low cost of reconnection to
an existing SSL session compared to establishment of a new one, and the
low cost of symmetric key encryption compared to public key encryption.

Given the small, low-cost nature of serving many URLs, phase one costs can
easily be double the cost of a typical URL. However, by being able to amortize

Chapter 6. Performance Issues 159

this cost over the serving of many URLs, the incremental cost per URL can
easily be reduced to an acceptable value. Luckily, the cost of phase two
represents a relatively low incremental cost over that of serving the same URL
without SSL. Laboratory measurements have shown that an increase in server
CPU of 10-20% can be expected for the use of HTTPS compared to HTTP. This is
consistent with the measurements by Goldberg, Buff, and Schmitt in A
Comparison of HTTP and HTTPS Performance, available at:
http://www.cs.nyu.edu/artg/research/comparison/comparison.html.

Based upon these results, we make the following recommendations:

• Use SSL only when you need it. Do not use SSL when you do not need the
facilities that it provides.

• Due to the high cost of phase one of SSL session creation it is critically
important to make use of an SSL session caching scheme. For
EnterpriseWeb/VM this is an optional additional server (EnterpriseWeb
Secure/VM) that we strongly recommend that you install. For
VM:Webgateway this is automatically handled by the server when SSL is
enabled.

• For the same reason, it is critical that the session cache size and expiration
configuration be liberal enough to allow significant work to be accomplished
during each session. The goal is to not require repeated establishment of a
session with the same client. In EnterpriseWeb/VM there is no apparent
knob for the cache size (which is coded to 10 MB), but cache life is
controlled by the SSLSessionKeyLife configuration setting. The default
setting of 100 seconds for SSLSessionKeyLife seems too small to us, and we
recommend that you increase it significantly. In VM:Webgateway there are
no knobs for either of these controls. We suggest that you request such
knobs from Sterling Software Customer Services.

• There is a nontrivial cost to both the fetching and the analysis of client
certificates. We recommend that you not configure for their use unless your
site′s applications require the benefits they bring. Both EnterpriseWeb/VM
and VM:Webgateway have configuration options to allow for this. However,
these two products have significantly different support in this area.
EnterpriseWeb/VM′s option only allows for the client certificate to either not
be fetched at all, or to require that it be present. VM:Webgateway′s option
allows for the client certificate to either not be fetched at all, or to optionally
fetch it if it exists, leaving the choice of how to handle an SSL connection
with no client certificate up to the data owner to accept or reject.

• As with all HTTP configurations, the use of caching by the browser is of
critical importance. For more information see 6.2.1, “Browser Document
Caching” on page 158.

6.3.2 Reducing Browser Rendering Time
Let us be realistic: all that your end users really care about is the wall clock time
it takes for their browser to display the information they requested. They could
care less how much resource is consumed on any of their workstations, the
network, or the Web server. It is a very simple equation for them: less wall clock
time is good. What is more, they do not even care if the request is being met
out of their local cache or from your Web server. Even when it is a local cache
copy, they still need to have the document rendered in a timely and efficient
manner. There are several steps you can take to address reducing the cost of
the rendering time for your documents.

160 Web-Enabling VM Resources

6.3.2.1 Fast Rendering by Avoiding HTML Tables
Limit the use, size and complexity of tables, as in our experience they tend to be
slow to render. But, do use them when they are important to the presentation of
the material. There is no value in having a page that is fast to render, but
whose content is not easily understood.

6.3.2.2 Fast Delivery of Start of Document
An important step towards the appearance of quick service time is to reduce the
time from initiation of the request to the first visual response to the request. If
the end users can see the browser render a title and the first few lines of your
page quickly, they are more willing to wait longer for the reception of the last
few words of your page. One of the easiest techniques for reducing this time to
initial response is to be sure to send all headers and the first few lines of your
output early during your processing. See the performance tip on page 26 for
more information.

This may also be in direct conflict with the goal of reducing the server′s CPU,
especially as achieved by blocking the output. See 6.3.3, “Reducing Web Server
CPU” on page 162 and in particular 6.3.3.4, “Reduce CPU Cost of CGIs” on
page 167 for more information.

6.3.2.3 Avoid Multiple Fetches of the Same URL
Browsers need to use a pessimistic scheme for mapping URLs to cache entries.
They must do this to ensure that they do not use a cache entry that actually
represents data for a different URL than the one entered.

Most Web servers treat their URLs as a case sensitive string. This makes sense
when mapping a URL into a file system that has a case sensitive file naming
scheme, as with CMS′s BFS file system. Thus, as a part of proper cache
management, browsers treat URLs as case sensitive mixed case strings.
However, CMS′s minidisk and SFS file systems are used in CMS in a case
insensitive manner, specifically by folding their file IDs to upper case. All three
of the VM Web servers treat these two file systems the same way, as strictly
upper case. This means that many different mixed case URLs will actually
resolve to the same upper case file ID.

In addition, while DNS names are by definition case insensitive, they are
sensitive to the exact sequence of characters used. Thus, even though it
appears to you that two names are “the same” (for instance WTSCPOK and
WTSCPOK.ITSO.IBM.Com), the browser will treat them as being different and
unique for the purposes of its cache management. Some browsers may even
treat this name in a case sensitive manner, even though this may not be
required.

Always refer to URLs in both HREF tags and the SRC attribute of IMG tags using
the identical character string for links to the same data. This includes both the
same case for all characters in the string, and the same host name form. This
allows the browser to recognize when a URL matches data in its cache.

Chapter 6. Performance Issues 161

6.3.2.4 Efficient Rendering of Images
Help the browser to display as much information to its users as soon as
possible:

• Keep the count of images on a page, and their size (in bytes transferred) to
a minimum. This will reduce the number of HTTP connections created (in
HTTP 1.0) and the number of URLs to be served. It will also minimize
network bandwidth consumed and delays incurred.

• Allow clients to see full graphical images before all of the image data is sent
by using “interlaced GIF” files. See the discussion of images in HTML in
Chapter 1 of Web Server Solutions for VM/ESA, SG24-4874 for more
information on this topic.

• Tell the browser the size of images. This reduces the work to render pages,
allowing the browser to perform basic layouts and rendering of text before it
actually fetches the image. Thus, the end user can often gather the
information of interest from the page before the images are fully fetched,
(when working on a slow link). To accomplish this, always include the
HEIGHT and WIDTH attributes on HTML IMG tags. This allows the browser to
render the text of a page before the images are completely fetched from the
server. See Web Server Solutions for VM/ESA, SG24-4874 for more
information on this topic.

EnterpriseWeb/VM includes a pipeline filter utility named EWIMGSIZ, which
scans source HTML looking for IMG tags. For each tag found, it attempts to
add these additional attributes to help improve the performance of the page.
It supports the GIF, JPEG, and PNG formats (with file types of GIF, JPG, and
PNG, respectfully). Refer to the EnterpriseWeb Secure/VM Installation Guide
and Reference for more information.

You can also use your browser′s view pageinfo facilities to potentially identify
these image characteristics.

6.3.2.5 Getting the Browser to Display ″nn% of ##K″ Progress
Messages
While not strictly a performance improvement, a good human factor is to include
a Content-Length header in outgoing HTML data streams. As explained in 3.4.1,
“Sending Header Fields” on page 43, this allows the browser to display a
percentage retrieved number while the document is being served to it. However,
this means that you cannot generate the header until all of the data is
generated, and that you will have to completely buffer all of that output data.
This is not a good idea. It is far better to start serving the data to the browser as
soon as possible, and to avoid having to buffer all output before starting to send
any data to the browser. By avoiding this unnecessary buffering (just to send
this header), you get the advantage of overlapping some of the network transfer
time and browser rendering time, with the time to generate the data stream.
This advantage far outweighs the disadvantage of the browser not having this
byte count.

6.3.3 Reducing Web Server CPU
One of the first areas people think about when discussing server performance is
the CPU utilization of the server. Reducing the CPU utilization typically reduces
the total response time. However, the CPU component of the response time is
often not the dominant factor. Often other delays, such as I/O time, server
queuing time, and network time dominate the total response time equation.
Thus, we hope that you do not dwell completely upon this one factor in the

162 Web-Enabling VM Resources

performance of your Web environment. But that said, reduction of CPU
utilization is still a laudable goal, even if it results in some trade-offs where other
resource utilizations, such as server memory use, may be increased.

6.3.3.1 Use a REXX Compiler
If your CGIs contain much REXX logic (as opposed to being primarily CMS
Pipelines CALLPIPE commands), they will very likely benefit greatly from
compilation with one of the available CMS REXX compilers. In addition, the code
of all three VM Web servers is known to benefit from compilation. Sterling
Software, Inc. and Beyond Software Inc. are distributing their Web server in
compiled form, as well as in source form, to facilitate both product maintenance
and optional compilation with an alternate compiler.

There are four execution environments for your REXX code:

• IBM REXX/370 Compiler, 5695-013
This REXX environment tends to produce the fastest running object code.
However, use of compile time options to allow for runtime tracing of the
program tends to greatly impact the runtime speed of the code it generates.
In our experience this impact tends to make that code run slower than the
interpreted code environment.

• Sterling Software, Inc.′s VM:ProRexx product
This REXX compiler tends to be the fastest at compile time, but does not
produce quite as fast a runtime program. Allowing for runtime tracing of the
compiled program tends to produce programs that run faster than any of the
other environments. However, its runtime tracing facilities are limited to
TRACE C output. This product is no longer marketed by Sterling Software,
Inc..

• Sterling Software, Inc.′s VRXUTIL tool
This compiler is shipped with their Automated Install Manager (AIM) system
and has the same compile time and runtime characteristics as the
VM:ProRexx product.

• VM/ESA CMS interpreted execution of REXX source
The default execution environment. For some classes of REXX programs,
this environment is still the highest performing one.

We recommend you take the following steps to compile your code:

• Compile complex, large, and long-running CGIs with a REXX compiler. Then,
measure the effects to make sure it is faster, as in some cases the resulting
code can actually be slower than the interpreted REXX. In our experience
with REXX compilers, we have seen results that range on the down side from
a doubling in CPU consumed to on the up side a 90% reduction in CPU
consumed. In general, the more application logic that exists as REXX
clauses, the better the results of compilation. This includes logic for
significant string handling, mathematical operations, and significant flow of
control structure. On the other hand, code that is characterized as straight
line flow of control to invoke a small number of host commands will typically
not benefit from compilation.

• Compile all product code. Both Beyond Software Inc. and Sterling Software,
Inc. have stated that their product code runs fastest when compiled. Use
IBM ′s REXX compiler if available, otherwise for VM:Webgateway use
VM:ProRexx from Sterling Software, Inc. or the VRXUTIL compiler that they
have built into recent releases of most of their product line.

• Install the runtime support for the compiler of your choice into a DCSS. This
reduces the total system-wide storage needs, by allowing this storage to be

Chapter 6. Performance Issues 163

shared. Instructions for this installation come with each of the compilers. If
you use more than one of these compilers at your site, be sure to not
overlap these DCSSes, as you may need all of them to be available in a
single virtual machine at a single time.

• When compiling with the IBM REXX compiler, do not enable the support of
the TRACE statement. Use of the NOTRACE option is recommended for the
best performance. (But, as always, be sure to make measurements to
confirm this.)

6.3.3.2 Reduce CPU Cost of URL Resolution and Basic Security
Every piece of work your Web server performs includes resolving a URL to a
local file to serve or CGI to run. Whatever steps you can take to streamline this
process will result in lower CPU and I/O costs to the Web server.

• Optimize VM:Webgateway′s DIRMAP and Webshare-based products′
FILELIST files.
− In general, minimize the number of lines in the files.
− Reduce the count of, or (in the extreme) eliminate comments in DIRMAPs

and FILELISTs. Keep whatever comments are important for the long
term understandability and maintainability of the file. We do not
recommend making copies of the file with comments in them to be
maintained in parallel. We do recommend combining block comments
into a single long line rather than multiple short lines. This reduces the
number of lines to process and maintains the information for long-term
understanding of the file. The following example shows both good and
bad comment forms:

* This is a good way to write your comments, all on one line. .
* Empty lines and lines with just ″*″ are not recommended.

*
* Lines
* with
* few
* words
* on
* them
* are
* not
* recommended.

− In EnterpriseWeb/VM, use EWCOMP to compile all password, HTACCESS,
and FILELIST files. See the EnterpriseWeb Secure/VM Installation Guide
and Reference for more information.

− When serving data out of SFS or BFS, it is preferable to make use of the
native file system′s hierarchical nature rather than making use of either
DIRMAPs or FILELISTs. We know that this works for VM:Webgateway
and believe it to work in EnterpriseWeb/VM (although we could not find
positive confirmation of this intention in EnterpriseWeb Secure/VM
Installation Guide and Reference).

− On VM:Webgateway, make use of the wild card character support in
DIRMAPs whenever possible to reduce the number of FILE statements
present. This will both make maintenance of the DIRMAP easier, and
significantly speed up URL resolution (compared to parsing large
numbers of FILE records).

− Order your DIRMAP and FILELIST files by the rate of URL reference
(most frequently referenced at the top, least frequently at the bottom).

164 Web-Enabling VM Resources

• Use as simple a security profile as you can to meet your needs. The more
security statements needed, the slower the URL resolution for every URL
that is in a directory at or below their level in the analysis tree. Place the
security profiles as close to the URL tree leaves as possible, leaving the
nodes and files with no security needs that are near the URL tree root free
from the cost of the analysis of the security profiles. See 5.6.5, “Setting
Security Profiles for URL Trees” on page 143 for more information.

• Use a flat URL directory structure (little depth to the file system′s tree to
minimize directory depth). If DIRMAPs are used, beware that this may slow
things down unless wild cards are used heavily to reduce the size of the
DIRMAP.

This flat nature is often in direct conflict with usability and maintainability
considerations. You will need to decide which is more important for your
site and the application in question. In addition, when very large numbers of
files exist, it may be faster to segregate these into many smaller directories
rather than making use of a flat directory structure. The only way to be sure
is to experiment when you have performance issues.

• Avoid a “residual path” on a CGI′s URL. A residual path is the portion of the
path that was not used to resolve the URL to the CGI′s file ID. This residual
path is communicated to the CGI via the CGI variables:

PATH_INFO The string representing the portion of the URL path
left over.

PATH_TRANSLATED The resulting file ID from performing URL resolution
on the PATH_INFO value.

See Table 4 on page 14 for more information on these variables.

From these definitions you can see that when such a residual exists, it must
be resolved as a URL (an expensive process) to set the required CGI
variable PATH_TRANSLATED. You should only use this technique when the
string to be passed is really a URL and you want to know in your CGI how
that URL resolves. In all other cases, it is preferable to pass this information
as a URL QUERY_STRING (in CGI variable terms).

6.3.3.3 Reduce CPU Cost of Static Documents
While a VM Web server will likely tend to have more content generated by CGIs
than from static documents, the following points are still worth considering as
optimizations:

• Avoid Server Side Include (SSI) processing. In VM:Webgateway this is
invoked by serving a file with a file type associated with the SSI
characteristic. In EnterpriseWeb/VM this is invoked by serving a file with a
file type that includes the SSIPSV, TEMPLATE or TEMPLATEPSW transport
filter in addition to the server-wide setting of the SSI configuration records.

SSI processing requires that the server perform analysis of the HTML source
looking for SSI directives. (See Web Server Solutions for VM/ESA, SG24-4874
for more information on SSI.) This processing not only causes extra server
overhead, but it also prevents the browser from being able to cache a
resulting page of data. This may then require the server to re-serve the
same data repeatedly, which in turn also causes extra server overhead.

For those files that you do wish to use SSI for, consider the following
techniques to improve the performance of serving them:

− On VM:Webgateway, use a directory that is close to the root of the
directory structure the included file resides in. The security profile

Chapter 6. Performance Issues 165

should be as simple as possible, ideally with open access for all. This
will minimize the cost of URL resolution and basic security analysis for
these includes.

− For documents where delivery performance is paramount, “compile” the
parsable document into its equivalent static document. This can be done
in one of two ways:

- Create a simple program to resolve these SSI directives and create
an output document that will then be used on the server as the file to
be served. Such a program, and its source, would not even need to
support the full official SSI language. It would only need to perform
the processing needed for your documents and could use any
directive language you care to formulate.

- Fetch the document through the browser with full SSI resolution
enabled. The browser can then be instructed to save the document′s
source to a file (or the file can be fetched from the browser′s
document cache). This saved, fully resolved copy of the file can then
be uploaded to the Web server and served as a normal non-SSI
static document. A VM-based browser, such as Charlotte, which may
be obtained from Beyond Software Inc., is ideal for this type of
processing.

• When serving binary data, such as GIF and JPEG images, audio files, and
movie files such as MPEGs, store the data in the file system in as large a
record size as is practical. This will reduce the work spent processing the
data on the server. A simple method of achieving this is to reblock these
source data files in the CMS file system using a CMS Pipelines command
such as:

′ PIPE′ ,
′ <′ fn ft fm,
′ | fblock 65535′ ,
′ | > ′ fn ft fm

This will reduce the number of records processed by CMS and the server,
and thus reduce the total server resource consumption to serve the file.

You may wish to consider performing the same sort of optimization to your
static HTML files, although since you cannot break the lines at arbitrary
points, you will want to exercise more care on how they are blocked. For
instance, you could use:

′ PIPE′ ,
′ <′ fn ft fm,
′ | join * x0D25 65535′ ,
′ | > ′ fn ft fm

The stage join * x0D25 65535 takes all the records from the input file and
joins them together into one record. We have the JOIN stage insert a CRLF
(X′ 0D25′) between each record (as would be done when serving a file
containing EBCDIC records) to help make the document more readable with
the browser ′s VIEW DOCUMENT facilities. The number 65535 means that join
will not create a record larger than 65535 bytes; it will create another output
record for the additional records. This is essentially a blocking stage that
takes the small records from the file and makes a large “block” of data to
write to the Web server. The number 65535 was chosen as a trade-off
between storage use and Web server overhead, and because it is the
longest variable format file logical record length that CMS supports. See the
performance tip on page 26 for additional information.

166 Web-Enabling VM Resources

6.3.3.4 Reduce CPU Cost of CGIs
In addition to the recommendations in 6.3.3.1, “Use a REXX Compiler” on
page 163, there are steps particular to CGIs that you can take to minimize their
CPU costs:.

• Buffer output data into large blocks before sending it from the CGI to its
output streams. This has two benefits to reduce CPU utilization. First, it
minimizes the number of commands issued to transfer data. Second, it
allows the VM TCP/IP server to process large blocks of data at a single time.
Both of these aspects have the effect of amortizing fixed costs over a larger
number of bytes, achieving a lower cost per byte for processing the data (the
basic “buffering is good for performance” rule).

EnterpriseWeb/VM will perform this operation for you, as controlled by its
DEFAULTBLOCK configuration record and the “blocking” field of the
MEDIAMAP file (for all types of data). For VM:Webgateway each invocation
of CGI WRITE DOCUMENT is a write to the network; for efficiency, you should
block up data for this write. See the performance tip on page 26 and 6.3.3.3,
“Reduce CPU Cost of Static Documents” on page 165 for more information.

Do not delay output too long to accomplish this. Be sure to send the
headers without waiting for the document body. If there is a stage in the
processing that takes substantial wall clock time, flush existing data to the
browser to take advantage of the parallel processing nature of the
server/network/browser configuration. See the discussion in 6.3.2.2, “Fast
Delivery of Start of Document” on page 161 for more information.

• Avoid use of CMS STACK if a REXX variable interface exists. In our
experience, most commands that provide both of these interfaces perform
better with the REXX variable interface.

VM:Webgateway Specific Considerations The following recommendations apply
only to VM:Webgateway CGI environments.

• Run CPU and I/O intensive CGIs in a worker environment. You can use the
accounting support in VM:Webgateway to help identify CGIs that have these
characteristics.

• Use CGI GETVAR * if more than five CGI variables are needed by the CGI.
This interface will fetch all the CGI variables to the local REXX variable pool
in about the same amount of CPU utilization as it takes to fetch just five
variables. The other variables are thus fetched “for free.”

• Avoid fetching CGI variables more than once. It is more efficient to share
these variables among your subroutines. If your CGI is completely contained
within one source file, then we suggest making use of global variables that
are exposed in all of your procedures. For example:

/* My Sample CGI. */
/* Show how to share REXX variables globally. */
Address ′ ′
Signal On Novalue

/* Initialize a global data structure. */
Global. = ′ ′

/* And some specific option settings we will use globally. */
/* We use the convention of never assigning a value to a */
/* variable name which begins with an ″_″, thus we can always */
/* use them as part of a stem based variable and know that */
/* the value fetched from the stem will be the one we expect. */
Global._Debug = (1=1)

Chapter 6. Performance Issues 167

Global._Owner = ′ LS8105NG′

/* Fetch our CGI variables for everyone to use. */
′ CGI GETVAR * (STEM GLOBAL._CGIVARS.?′

/* ... main line code ... */
/* Call a subroutine to do some work... */
Call Subr1

Exit 0

/**/
/* Subroutine 1 optionally displays all incoming CGI vars. */
/* */
/* We need access to our global data structures, expose them. */
/**/
Subr1: Procedure Expose Global.
/* Check a global variable to see if debugging is enabled. */
If Global._Debug Then Do

/* Make use of the existing global. stem rather than */
/* fetching the values again. */
/* Display all the CGI variables on the console. */
Tails = Global._CGIVars.?0
Do While Tails<>′ ′

Parse Var Tails Tail Tails
xTail = ′ ? ′ Tail
′ CP MSG′ Global._Owner Tail ′= ″ ′Global._CGIVars.xTail′ ″ ′
End /* While Tails<>′ ′ */

End /* Global._Debug */
Return

For a further discussion of this topic and VM:Webgateway CGI Extension
programming, see the note on page 72.

6.3.3.5 Reduce CPU Cost of Active Images
When you place an HTML IMG tag inside an A tag, you create an image that you
can click to invoke a URL. When you also code an ISMAP or USEMAP attribute
on that IMG tag, you create an image that will result in the invoking of one of
several URLs. The image becomes an active map for resolving to any of a
number of target URLs. The costs of these two attributes vary tremendously.

• Make use of client-side active images in preference to server-side active
images. The proposed USEMAP attribute of the IMG tag used in combination
with the MAP tag as supported by some browsers (and a part of HTML
proposed standards) is more efficient than the ISMAP attribute. USEMAP
allows the browser to directly map the x,y coordinate of the image to a URL
to fetch. ISMAP requires the invoking of a URL on a Web server to perform
this mapping. Thus, compared to ISMAP′s server-side active image
processing, the USEMAP client-side active image offloads processing from
the Web server to the browser and avoids the need to process an extra URL
for the selection process.

The USEMAP approach only works if all browsers that will render the page
support this capability. The only way to be sure if the browsers of interest to
you support this construct is to test it on each of them. Some HTML
references may provide this information to you also. Refer to an HTML
reference for more information on the details of these HTML constructs. One
such reference can be found online at http://www.w3.org/TR/REC-html32.html.

168 Web-Enabling VM Resources

You can find programs on the Web to help you convert your server-side
image maps into the directives appropriate for client-side use. For instance,
see http://www.popco.com/popco/convertmaps.html.

• When using server-side imagemap processing, order the contents of the
imagemap such that more frequently used areas of the image appear earlier
in the map file (within the bounds of ability to do so, due to the fact that the
map is by definition a “first match” mapping).

6.3.4 Reduce CGI′s I/O
Real I/O, even on today′s highly cached controllers, is a necessary evil to be
minimized:

• Make use of the INSTORE and OUTSTORE stages in CMS Pipelines-based
CGIs which read a file repeatedly in one invocation. Refer to Melinda
Varian′s Streamlining Your Pipelines paper, found at
http://pucc.princeton.edu/∼ pipeline/, for more information.

• EXECLOAD data files read repeatedly by CMS Pipelines-based CGIs, which
read a file repeatedly across many invocations. Make use of
EnterpriseWeb/VM′s PRELOAD configuration directive to help achieve this.
In VM:Webgateway you will need to perform such operations either in the
CGI itself, or in the PROFILE for the Web server. However, beware of the
issues raised in 5.6.6, “Reentrant and Serially Reusable Resources and
CGIs” on page 144.

• Make use of REXX′s associative storage rather than making multiple passes
over your data files.

6.3.5 Reduce Amount of Data Sent to the Browser
Reducing the amount of data sent to the browser has several benefits. It will
tend to reduce all of the following:

• The CPU used by the server (see also 6.3.3, “Reducing Web Server CPU” on
page 162 for more information)

• The time to render the document on the browser (see also 6.3.2, “Reducing
Browser Rendering Time” on page 160 for more information)

• The CPU used by the VM TCP/IP server (see also 6.4.3.1, “VM/ESA TCP/IP
Server” on page 175 for more information)

• The network resources consumed

Send as little data as possible; avoid sending data that does not contribute to the
page ′s content. These steps will help reduce the time the end users spend
waiting for your information to be rendered on their browser. They will also
reduce the resources consumed on shared facilities such as the network and the
server. When the end user is on an old, low-power PC (for instance a 100 MHz
PC or even a 20 MHz MacII), or connected to the network via a low-speed LAN
or dial-up connection, these steps can make the difference between your Web
site being usable for the user and a frustrated user that will not return to your
site no matter how valuable the data you have to share.

• Do not send extra white space (spaces that will be eliminated by the browser
when it renders the document). The code in Figure 53 on page 106 and
Figure 56 on page 108) is a good example of what not to do. In these
examples, by eliminating the trailing blanks from each line we maintain the
readability of the code, and yet reduce the amount of data sent by one third
to one half. Even more of a reduction can be had if leading blanks are
eliminated, which can be accomplished with no readability impact simply by
moving the leading quote to precede the first non-blank character on each

Chapter 6. Performance Issues 169

line. Making these changes to Figure 56 on page 108 would result in the
code shown in Figure 65 on page 170, which is just as readable in your CGI
as the original code is.

DeptForm:
output ′<TD VALIGN=″TOP″> ′ ,

′<FORM METHOD=″POST″ name=″ChgDpt″ ′ ,
′ ACTION=″rxsquery″> ′ ,

′<INPUT TYPE=″hidden″ ′ ,
′ NAME=″HIDNDEPT″ VALUE=′ ′ ′ depttag′ ′ ′ > ′ ,

depttag′
′ ,
′<INPUT TYPE=″submit″ VALUE=″Change Dept″> ′ ,

′< /FORM>′ ,
′ < /TD>′

return

Figure 65. Rewritten Department Selection HTML Code

• Do not send HTML comments.
• If appropriate, send an HTTP Last-Modified header and respond to HTTP

If-Modified-Since headers (available in the CGI variable
HTTP_IF_MODIFIED_SINCE). See the Last-Modified and Expires headers in
Table 3 on page 13 and the If-Modified-Since header in Table 1 on page 11
for more information. Also refer to 3.5.2, “Processing SCRIPT Files” on
page 56 for an example of their use.

• Audio and video data files tend to be very large, as are animated GIF files.
When appropriate, make references to such data files optional, requiring the
client to actually request them explicitly via a link rather than inline
references. This allows the client to decide if they are worth waiting for.

• Do not serve static content using a CGI or an SSI filetype characteristic. The
browser will not be able to cache these results, and thus may require
retransmission of the same data repeatedly as a page is revisited by the
client.

• Use image tuning software such as GIF Lube or GIF Wizard to reduce the
size of your graphics with no loss of quality.

6.3.6 Serializable Server Resource Access
As discussed in 5.6.6, “Reentrant and Serially Reusable Resources and CGIs” on
page 144, most of the resources in a virtual machine are not owned by an
execution thread, but rather belong to the virtual machine as a whole. When
accessing such resources, it is important to do so in an environment where you
truly have complete control of the resource, and are not delayed excessively
long by a resource allocator waiting for other threads to free up access to the
resource.

For example, in VM:Webgateway the server′s code makes use of the *MSG
system service. As such, it is impossible for a CGI to make use of this resource
in the server. However, the resource is available for use in the VM:Webgateway
worker-based CGI environments. This type of application is thus forced to run in
workers on VM:Webgateway.

Another example is waiting for access to an SFS file that another thread (or user
ID) has locked for write. In this case, access to the resource is controlled by an
SFS work unit. There can be many of these work units in a single virtual
machine at one time. There are no issues of tying up the entire virtual machine

170 Web-Enabling VM Resources

by the temporary consumption of this resource. A CGI programmer can make
decisions about other aspects of resource control and locating the execution of
the CGI in a worker or a server based upon the other characteristics of the
program. For instance, if the wait for the resource is expected to be long, and
there are no other considerations that would require use of a worker-based
execution environment, it would be wise to locate this type of CGI in the server,
where it can happily coexist with other similar CGIs without tying up the serially
reusable resource of a worker user ID.

A final example involves use of machine synchronous interfaces such as
diagnoses and CP commands. If a long-running CP command is going to be run
(for instance the CP VMDUMP command as part of diagnosing a CGI, or some of
the long-running VM class D commands like CP SPTAPE), this will completely
block all other execution on the user ID for the duration of the command. Use of
such facilities such should be restricted to a single-threaded execution
environment, such as a VM:Webgateway worker or EnterpriseWeb/VM servers.

For further discussion of related issues refer to 5.6.4, “Denial of Service” on
page 143 and 5.7.2.4, “Monopolization of Web Server SVM Resources” on
page 150.

6.3.7 Reduce CGI′s Storage Needs
This is a relatively low priority goal on most systems today. Typically you will
achieve greater benefit by performing other optimizations, and may even want to
make use of algorithms that consume more storage in order to achieve a lower
runtime. However, even so, the best solution is one that is efficient in both CPU
time and storage space.

Our recommendation is to avoid buffering large amounts of data and control
structure in your program′s data structures. In CMS Pipelines, try to avoid
buffering stages such as BUFFER and SORT when processing large amounts of
data. In REXX, avoid large numbers of variables, especially large stems, and
storing large values (that is, avoid long strings).

6.4 Performance Issues for Web Server Administrators
In addition to having to face all of the same issues that application users (see
6.2, “Performance Issues of Browser Configuration” on page 157) and
application writers (see 6.3, “Performance Issues for Application Writers” on
page 159) have to face, the systems programmer or systems administrator has
additional issues to contend with.

6.4.1 Install Most Recent Software Levels
Software development in the Web area is moving fast. You will typically not only
find advances in function, but also in capacity, efficiency and reliability
characteristics. You should endeavor to keep up with recent releases of
software not only in the base operating system and its services (such as TCP/IP),
but also in all application server environments (such as the Web server and data
base engines). In particular, we strongly recommend upgrading your VM TCP/IP
server to Level 310 (or later). (See 1.8, “Environment” on page 6 for information
on the releases of software the work in this book is based on.)

Chapter 6. Performance Issues 171

6.4.2 Performance Data Analysis
Compared to many other systems, VM/ESA applications are blessed with a
wealth of information sources about aspects of their performance. Each of these
sources provides a slightly different view of the performance and resource
consumption aspects of an application. They each also have their own impacts
upon the system being measured, because the very act of measuring the
performance and resource utilization of a system tends to, in some way, alter
that performance and resource utilization. Thus, in choosing an information
source for your data analysis, you need to consider not only which of these
sources are most easily available for your site and the application in question,
but also which will cause the smallest perturbation in the parameters you wish
to measure.

Often the simplest and most direct measures are forgotten or overlooked. But
they can often provide a wealth of information and insight, especially when
performance problems are caused by error conditions. Thus, it is common to
find quick, simple solutions to the class of problems revealed by these sources.

6.4.2.1 Console Logs
Console logs contain just such information. They will typically record error
conditions that arise during the servicing of a request. Error handling and
recovery is often an expensive and time consuming process. In addition, it is
common to perceive a failure to deliver a document in a timely manner as a
performance problem, when in fact it may be a more basic failure of the
application to ever return the results due to error conditions. These failures may
show up as informational or warning messages during startup of the server, or
they may show up during the actual serving of a transaction. Alternately, you
may simply collect information on which transactions are taking too long from
information such as time stamps in the console. Keep your eyes open for any
and all hints from this source, as insight can come from almost any of the
normal messages, as well as the abnormal ones. One common case of this
class is failures in the configuration and operation of the DNS server. Failures in
this area of a Web server environment can often add 30 seconds to the servicing
of a transaction, which, except for this delay, runs correctly. (See 6.4.8, “DNS
Impacts on Web Server Performance” on page 181 for more information.) One
of your first and most important sources of information is thus one of the easiest
to obtain, and comes at a cost that almost everyone accepts as a given.

6.4.2.2 HTTP Transaction Logs and Analysis Tools
For a Web server, the next most obvious source of information are your HTTP
logs. Both EnterpriseWeb/VM and VM:Webgateway record this information in the
CERN/NCSA standard log format. With EnterpriseWeb/VM, how this information
is recorded is controlled by the LOGPIPE configuration directive, and what is
recorded (standard or extended log format as defined by NCSA) is controlled by
the LOGFORMAT directive. With EnterpriseWeb/VM the information is recorded
as one record in the log file, just like on UNIX-based servers. With
VM:Webgateway the information is recorded in multiple console messages in the
extended format as defined by NCSA′s server. Since a single message rarely
holds the entire contents of a log file record, Sterling Software, Inc. provides the
VIWLOGEX tool to process a server console and reconstitute the multiple
messages into a single record.

As with the console logs, you can often easily discern interesting and revealing
information from direct reading of these logs. Correlation of the information in

172 Web-Enabling VM Resources

them with other messages recorded on the console may also make the
information in the log more useful. Unfortunately, neither vendor documents the
format of these logs, or where to find a formal definition of this format. Luckily,
we have the Web itself to help us discern this information, although we found no
definitive definition of the format for all servers. In general, a log record is
composed of the following values, in order:

 1. Client host, recorded as either the DNS name or the IP number
 2. RFC 931 “IDENT” user ID value or “ - ”
 3. User ID from any HTTP authorization header present in request or “ - ”
 4. Date and time of request, enclosed in square brackets, with the value in

GMT or the local time zone depending upon the server in question
 5. HTTP request line, enclosed in double quotes and potentially containing

blanks
 6. HTTP response status code
 7. Bytes of response sent, where the count may or may not include the data in

the HTTP response header depending upon the server in question
 8. Optionally present “extended” fields, enclosed in quotes:

a. HTTP Referer header from request or “”
b. HTTP User-Agent header from request or “”

In addition to manual inspection of the raw log data, you can also gain
information by performing statistical analysis of the data. For instance, such
analysis will quickly reveal which URLs are most frequently visited. This allows
you to concentrate your efforts on what may be the more important CGIs and
tuning parameters, rather than on ones which may not even be used. In
addition, analysis of frequency of HTTP response codes may reveal poor use of
caching in browsers, and similar site-wide issues that are not directly related to
the Web server′s configuration. Given the information on the format of these
records, it is possible to construct your own data reduction tools to perform this
statistical analysis. However, you may find that such tools already exist on the
network, and that it is quicker to pick up such a free tool rather than developing
your own or buying a commercial package. A quick search of the Web reveals
that there are many such tools available. One that caught our eye is Analog,
which, based upon network surveys, describes itself as “The most popular log
file analyzer in the world.” More information on this tool can be found at
http://www.statslab.cam.ac.uk/∼ sret1/analog/. Additional information on log file
analysis tools can be found at

http://dir.yahoo.com/Computers_and_Internet/Software/Internet...
.../World_Wide_Web/Servers/Log_Analysis_Tools

or with your favorite search engine.

6.4.2.3 Accounting Cards and Resource Consumption Data
An often ignored source of information are accounting cards. While the normal
VM LOGON and LOGOFF records are not of much use in this particular case,
both EnterpriseWeb/VM and VM:Webgateway allow you to generate
application-based accounting cards that could be of great value.

VM:Webgateway provides cards containing the following information:

• User ID of the Web server SVM
• User ID that owns the data that was served
• Date and time of the record
• User ID supplied by the Web browser user, with an indication if it was

validated against the VM directory

Chapter 6. Performance Issues 173

• IP address and TCP port of the client and server
• A unique counter for use in correlation with the server′s console
• Virtual CPU and I/O used by the SVM and any worker that may have been

used
• Byte count of data served from the TCP port
• Additional flag bits and bytes as described in the product documentation

For EnterpriseWeb/VM there is no standard definition of what an accounting card
contains because their creation is completely performed by site-provided code.
While this provides you with more freedom to make the card useful for your
sites′ needs, it also presents you with more implementation work to get benefits
from this source of information. However, it is easy to see how most of the
information provided by VM:Webgateway could also be collected and
summarized in EnterpriseWeb/VM.

With this information and the information from the console log, one can quickly
zero in on the URLs that are consuming the most resources either individually or
in aggregate. Unfortunately, no analysis tools exist to aid in this process.

Further information on accounting card generation can be found in your
product ′s documentation and in 6.4.9, “Accounting Card Generation Cost” on
page 182.

6.4.2.4 Real Time Monitor VM/ESA (RTM VM/ESA)
We are mentioning this data source for completeness, as no source of
information should be ignored. However, we do not believe that it will provide
you with any significant information, primarily due to its real-time nature and
lack of the ability to easily correlate its information with the workload details in
your Web servers. That said, you may still find its information of use, as it may
help to identify in real time when your Web servers are incurring heavy load,
and thus point to time frames for further analysis of other data sources.

6.4.2.5 VM Monitor Data and Reduction Tools
The VM monitor data stream contains information from two basic sources, CP
and monitor-enabled applications running in SVMs.

The CP monitor data stream and its reduction tools provide a wealth of data on
the operation of your VM system. All of the normal performance analysis
techniques apply for Web servers when using these tools, just as they would for
any other SVM on your system. The details of these are beyond the scope of
this book, and we refer you to the normal sources for VM measurement based
upon VM monitor data for further information.

The application data which some SVMs add to the VM monitor data stream is
also a potentially wealthy source of information. Whether this potential is
realized or not depends upon two factors, the SVM actually placing valuable,
documented data into the data stream, and suitable analysis programs for its
reduction. It is these two points that make the CP data in the data stream of so
much valuable use, and the same can be said of selected other applications
(such as SFS and VM TCP/IP), which make use of the data stream. It is also
these two points that make this data source for Web servers of questionable use.

While EnterpriseWeb/VM has the ability to produce the data, Beyond Software
Inc. has not documented what information it is placing in the data stream (stating
that it is proprietary information), and only one reduction tool vendor, Velocity

174 Web-Enabling VM Resources

Software, is capable of performing analysis of the data. As a consequence,
while the data exists, it has no value as useful information unless you explicitly
purchase products from these two vendors, and then only assuming that the
reports produced by Velocity′s product are fully documented (unlike the raw data
which Beyond Software Inc.′s product produces). Since we did not have access
to the Velocity product, we could not evaluate if the potential value of this
information source has been realized by these reports.

VM:Webgateway from Sterling Software, Inc. does not today make use of this
data stream.

We hope that in the future both of these vendors will not only produce a fully
documented data stream, but that multiple data reduction tools will also exist for
their products.

6.4.3 VM Tuning Knobs for Service Virtual Machines
As always, it is critical that you properly set VM′s tuning knobs for all of your
SVMs, including the ones associated with Web serving:

• Set CP QUICKDSP ON for all servers in any way associated with interactive
or multiuser work loads. These include:
− All of the Web server user IDs
− All worker user IDs on VM:Webgateway
− All networking user IDs such as TCPIP and VTAM
− All database user IDs such as DB2
− All SFS server user IDs

• Set CP SHARE
VM:Webgateway

As you would for other multiuser servers. While we found that a
setting of 100 on our idle test system worked fine in a production
or more heavily loaded environment, a higher setting is desirable.

EnterpriseWeb/VM (and Webshare)
Beyond Software Inc.′s recommended 1200 is very likely far too
high. Since these are single-URL-at-a-time servers, we
recommend leaving the SHARE settings for these servers at 100
or perhaps slightly higher.

• If you are analyzing your CP MONITOR data, run with a CP MONITOR sample
rate of 1 minute. If you are not analyzing it, do you still want to collect it?

• When running on VM/ESA 1.1.0 up through (at least) 2.3.0 avoid using Single
Console Image Facility (SCIF, VM′s “secondary user” support) for user IDs
that generate high volumes of console output. CP injects a hard 1-second
wait when more than 23 I/O ops/sec are attempted to such a user ID.

6.4.3.1 VM/ESA TCP/IP Server
As you add load to your Web server, you are also adding load to your VM TCP/IP
SVM. You should review your tuning of this machine on a regular basis. Refer
to the information in Appendix A of Web Server Solutions for VM/ESA, SG24-4874,
the IBM documentation on this product and the presentations of Bill Bitner found
at http://www.ibm.com/s390/vm/devpages/BITNER/ for more information on this
topic. Also see the OS/390 informational APARs II08848 and II08849 for some
general TCP/IP performance tuning tips. Some knobs to look at include:

• Sufficient buffer allocations -- the negative effects of over-allocation are
eliminated with VM TCP/IP level 310.

• Maximum Segment Size -- generally, bigger is better.

Chapter 6. Performance Issues 175

• Datagram size -- normally, bigger is better, especially in an intranet
environment.

• Network attachment device settings (if any are externalized).
• Server CP settings.

6.4.4 Tune Your I/O Systems, Especially SFS
No matter what else you do to improve your system′s performance, if your I/O
system ′s performance is off, you will suffer, especially in a Web server
environment.

• We recommend that you serve documents out of local SFS servers rather
than remote SFS servers. We have observed that the APPC communication
with the SFS server is, for certain operations, virtual machine synchronous.
This showed up even in an environment where asynchronous interfaces to
SFS are being used. In our experience, this communication can represent a
significant percentage of the wall clock time to serve a URL when serving
data from remote SFS servers.

• Take steps to reduce and optimize normal CMS file system I/O. All minidisk
I/O done by CMS is via VM diagnoses, and all SFS I/O done by CMS to files
that are not in a data space is done with VM′s IUCV or APPC interfaces. In
both cases, CMS performs this I/O in a virtual machine synchronous manner.
This means that for normal CMS-driven I/O, there is no overlapping of any
I/O wait time with other processing in the CMS virtual machine.

You can reduce or eliminate these waits by a number of techniques:
− In SFS use DIRCONTROL directories for CMS ACCESSed SFS directories

and VM′s data space support on the SFS and Web server SVMs. This
will have the largest effect for Webshare, EnterpriseWeb/VM and
WEBSHARE compatibility mode CGIs and CMS domains in
VM:Webgateway. It will have no real benefit for VM:Webgateway in other
configurations. Be aware that while improving performance of I/O, this
may have negative side effects. For instance, your Web server SVM will
no longer immediately notice changes to files on these directories the
way it does with FILECONTROL directories. Lastly, the use of data
spaces in VM may have adverse effects upon your system′s real storage
utilization, leading to higher overheads in other aspects of your system′s
performance. As always, use caution when making such system tuning
decisions.

For these reasons we recommend against the use of DIRCONTROL
directories. See 6.4.7.1, “EnterpriseWeb/VM Configuration” on page 180
for more information and additional recommendations in this area.

− Use VM′s Mini Disk Caching (MDC) support or controller hardware cache
for all high use and important application minidisks.

− Make use of V-disks as appropriate, especially for both Web server and
worker CMS A-disks.

− Tune the server for SFS and BFS use Refer to the information in
Appendix B of Web Server Solutions for VM/ESA, SG24-4874 for more
information on this topic. Also refer to the many fine presentations by
Bill Bitner that you can find at
http://www.ibm.com/s390/vm/devpages/BITNER/.

− EXECLOAD all server REXX code. You will need to determine what to
load for Webshare. EnterpriseWeb/VM provides a PRELOAD
configuration directive to aid in this process. VM:Webgateway
completely automates this processing for you.

− EXECLOAD all “user exit” code that is REXX based.

176 Web-Enabling VM Resources

− EXECLOAD data files read repeatedly by CMS Pipelines from the CMS
search order. EnterpriseWeb/VM provides a PRELOAD configuration
directive to aid in this process. However, beware of the issues raised in
5.6.6, “Reentrant and Serially Reusable Resources and CGIs” on
page 144.

VM:Webgateway avoids many of these delays by using a thread synchronous
I/O technique for all I/O performed in service of URL roots in the SFS, BFS
and MDISK domains. This means that while the server is waiting for I/O to
complete for the servicing of one URL, it can perform work for the serving of
other URLs in parallel. I/O for the CMS domain in VM:Webgateway is still
subject to these considerations.

EnterpriseWeb/VM runs one thread per virtual machine. By doing this, it can
take advantage of CP′s scheduler, which is extremely efficient. Also, since
each is a separate virtual machine, I/O and/or processing can be done in
parallel; this takes full advantage of S/390 architecture and N-way
processors.

6.4.5 Tuning the Web Server′s Virtual Storage Size
Be certain to set the virtual storage size of your Web server and worker virtual
machines to be large enough to handle peek needs. For EnterpriseWeb/VM and
Webshare, since both of these Web servers are single-threaded virtual
machines, this is relatively straight forward. You simply need to establish the
storage needs of the CGI with the largest storage needs plus the CMS and
product code overheads and use the maximum of that number or the vendor′s
recommended storage size. The same can be said for worker virtual machines
for VM:Webgateway, although we recommend that you treat these machines as
you would VM:Webgateway SVM that is single threaded (as outlined below). The
VM:Webgateway SVM is more complex, as it is a multithreaded virtual machine.

There are two basic approaches for sizing a virtual machine for an application
environment. The simplest is to fire up the application and verify that it works in
some virtual machine size, and then to declare that size as the right one. This is
quick and easy, and often incorrect. However, the second requires much more
effort, as you must answer the following questions:

• What are CMS′s storage needs, including its low storage use (NUCON
primarily), the CMS NSS, the CMSINST DCSS, FSTs for accessed disks and
directories, and its storage management tables (in a 2 GB virtual machine
this adds up to approximately 4 MB). In today′s CMS a reasonable start
estimate for a typical server is 8 MB.

• What DCSSs will be used, and what are their sizes and locations (to verify
that two DCSS that are simultaneously needed do not overlap, and to verify
that CMS′s storage layout is not so fragmented as to make it incapable of
returning large blocks of storage as needed).

 Tip

Since you have now identified all of the DCSSs that your virtual machine
is known to need, update the user ID′s PROFILE EXEC to either SEGMENT
RESERVE them or to actually attach them by making use of the
appropriate product interface (as is required by products such as
VM:ProRexx). This will insure that CMS does not make use of the
required storage locations before the DCSS is used in the application,
and thus insure that the DCSS can be attached when it is needed.

Chapter 6. Performance Issues 177

• What are the storage needs of the Web server code? This will include not
only the code, but also all EXECLOADed programs and data, data and
database caches, network buffers, control data structures, and similar
considerations.

• What is the maximum simultaneous active URL resolution count? In
Webshare-based servers and VM:Webgateway′s workers, this is 1.

• What is the maximum storage need of the most storage-intensive CGI to be
run?

These values can be used in the following formula to estimate the maximum
storage needs for your server:

Virtual size = CMSS + DCSS + (URLmax * CGImax)

where:

• CMSS = CMS ′s storage needs
• DCSS = DCSS storage needs
• URLmax = maximum URL count
• CGImax = maximum CGI storage

How to reduce the virtual machine size needed for a server?

• Eliminate SEGMENTs that are not actually needed, especially those below
the 16 MB line, as this storage is often in short supply and is required for
certain classes of storage requests.

• Reduce the storage needs of your most storage-intensive CGIs. See 6.3.7,
“Reduce CGI′s Storage Needs” on page 171 for more information.

6.4.5.1 VM:Webgateway SVM Virtual Storage Considerations
The VM:Webgateway Getting Started manual from Sterling Software, Inc.
contains an appendix that will lead you through the complete analysis of sizing
this virtual machine. As you work through this process, remember that virtual
storage in VM is cheap, and it is far better to make the virtual machine too large
than too small.

It is critical for this server′s performance to have a data base cache size that is
greater than the real data base′s size on disk. This is controlled by the
DATABASE record in the VMWEBSRV CONFIG file. Since the typical size of the
data base is 60-100 records, the shipped default of 1000 is more than sufficient
for the server′s performance. However, this default also wastes a large amount
of virtual address space.

If you wish to recover some of that address space, set the DATABASE record′s
CACHE to the next higher multiple of 100 greater than the record count for the
VMWEBSRV PFMDB file, with a minimum size of 100 and a maximum of 8192.

6.4.6 Tuning the Number of Servers and Workers
As stated in EnterpriseWeb Secure/VM Installation Guide and Reference, “the
single most effective thing that you can do to improve EnterpriseWeb/VM
performance is to ensure that you have enough servers to handle the load.” With
EnterpriseWeb/VM and Webshare we suggest that you start with more servers
than you believe you will ever need. The reason for this is that each server will
need to be authorized for access to the data (SFS authorizations and similar
considerations). Once you have an existing number of servers, it is difficult to

178 Web-Enabling VM Resources

add more to it and get all of the needed authorizations correct. Beyond Software
Inc. suggests the following formula for estimating the correct number of servers:

Number of servers = avnumopp * numofsimuser

where:

• avnumopp = average number of objects per page
• numofsimuser = number of simultaneous users

We believe that this is too conservative for this product, and that the formula
should be modified to read:

Number of servers > (maxumopp * maxnumofsimuser)

where:

• maxnumopp = maximum number of objects per page
• maxnumofsimuser = maximum number of simultaneous users

With VM:Webgateway we suggest that you start with one server and rely heavily
upon the use of workers. We suggest you add sufficient workers so as to always
have at least one worker unallocated.9 These workers can be added as needed,
as they do not need any authorization to access data (since they gain this
authorization by taking on the authorizations of the CGI owner). If you have
performance problems in this environment, we suggest that you contact Sterling
Software Customer Services for aid in resolving them. We suggest that the
following very conservative formula be used to determine the number of workers
to configure:

Number of workers > (maxnumopp * maxnumofsimuser)

where:

• maxnumopp = maximum number of objects per page
• maxnumofsimuser = maximum number of simultaneous users

We suggest that you run VM:Webgateway OfficeVision Interface-based services
out of a separate VM:Webgateway server from the other load on your system.
Likewise, if you have another major application, you may wish to create a
dedicated VM:Webgateway server for its use. We suggest that for good human
factors you make use of virtual hosting to create a separate DNS name for each
of these servers, allowing them to still be served out of the default TCP port
number, and even to be moved to a separate VM host without any impact upon
the externals of their DNS host name.

Also refer to the information in Appendix A of Web Server Solutions for VM/ESA,
SG24-4874 for more information on this topic.

9 At the time of this writing there is no easy method for determining if VM:Webgateway has run short of workers to meet current
needs. We suggest that you call Sterling Software Customer Services if you feel that you need such a facility.

Chapter 6. Performance Issues 179

6.4.7 Web Server SVM Configuration
Each of the Web servers has unique configuration options that present possible
knobs for controlling the performance characteristics of the server. Some of
these knobs have been discussed elsewhere in this chapter. We have created
this section to touch upon those that are not otherwise covered.

Both EnterpriseWeb/VM and VM:Webgateway have mechanisms to disable
generation of the CERN/NCSA logs. EnterpriseWeb Secure/VM Installation Guide
and Reference documents the process for EnterpriseWeb/VM. You will need to
contact Sterling Software Customer Services for further information for
VM:Webgateway, which uses the same method as in VM:Secure. Even though
this saves some small amount of server resource, we do not recommend that
you disable the collection of this information. We believe that you and the
customer support organizations of these two products will find this information
too useful to justify the marginal potential performance benefits of disabling it.

6.4.7.1 EnterpriseWeb/VM Configuration
Many of the following configuration recommendations are the defaults and the
settings recommended by Beyond Software Inc.. We have attempted to include
all of them for completeness.

• Configure as short a list as possible in the USERFILEPOOL and
USERWEBDISKS configuration records. Order the entries in these to place
the most likely to succeed first. Consider the use of a POOLEXIT as an
alternative. This would be set by a USEREXIT FILEPOOL record in a
EWXFPOOL EXEC.

• Also see the information in the EnterpriseWeb/VM “Turbo” Mode section of
EnterpriseWeb Secure/VM Installation Guide and Reference for further ideas
on improving the performance of this product.

• Install the product into a shared segment.
• Be sure to use multiple servers. See 6.4.6, “Tuning the Number of Servers

and Workers” on page 178 for more information.
• Be sure to make use of the SSL Session ID caching server.
• Configure ACCESSINT to the number of seconds you would like to check

minidisks and SFS DIRCONTROL directories for new or changed information.
Every ACCESSINT time interval a assembler routine runs to check without
reaccessing the minidisks or SFS DIRCONTROL directories if there are new
or changed data. EnterpriseWeb/VM only reaccesses the minidisks and SFS
DIRCONTROL directories if there are new or changed data.

• Configure APPLMON OFF, unless you really need and want the CP MONITOR
data it generates. See 6.4.2, “Performance Data Analysis” on page 172 for
other considerations.

• Configure DEFAULTBLOCK 61440 (the maximum, and default value). This
will significantly reduce server and VM TCP/IP overheads. Be sure to also
be careful about overriding this setting on any entries in your $EWEB
MEDIAMAP file. See 3.1.3, “Sample CGI Program for VM:Webgateway” on
page 24 for more information on this topic.

• Configure IDENT OFF.
• Configure IF_MODIFIED_SINCE ON.
• Configure LAST_MODIFIED ON.

180 Web-Enabling VM Resources

6.4.7.2 VM:Webgateway Configuration
Most of the recommendations for this product have been covered in other
sections of this chapter.

Run the listener in a “bound” mode for a single local IP address (running
multiple listeners, one for each possible IP address, if necessary). This
eliminates the work of looking up the local IP address (and possibly the DNS
name for it) for each connection (as is required for a listener that is not bound to
a specific local IP address). Alternately, consider setting up the product with a
modified TCPIP DATA file to disable DNS resolution. See 6.4.8, “DNS Impacts on
Web Server Performance” for more information on this topic.

6.4.8 DNS Impacts on Web Server Performance
Poor performance of your Domain Name System (DNS) server will have dramatic
effects on performance of your system′s Web server. In a Web server, the DNS
server is used to perform what is known as a “reverse lookup” to resolve an IP
address back to a DNS name. This is accomplished via the configuration of
special records in the DNS server to perform this mapping. It is not uncommon
to find that the DNS server may not be configured to respond to such requests in
a timely manner. More basically, the DNS server may not even be configured
for good performance for any requests, or may easily become overloaded.
Lastly, it is possible that the configuration of VM/ESA′s TCP/IP product may be
incorrect, leading to the queries being directed to the wrong server. Any or all
of these can lead to long service times for all URLs.

If you do not wish to perform security based upon DNS names (see 5.5.3, “Can
You Trust an IP Address or DNS Name” on page 138 and 5.6.5, “Setting Security
Profiles for URL Trees” on page 143 for more information on this topic), and do
not care about having these names in either the CERN/NCSA log or in the URLs
seen in some redirections, then disable DNS name resolution. This is an
extreme step, and we do not recommend it. We believe that it is far more
reasonable and cost effective to put time and effort into establishing a fast and
reliable name service for your site.

In VM the configuration of what DNS server to use is accomplished by
configuration records in the TCPIP DATA file. They are:

NSINTERADDR
Specifies the Internet IP address of the name server. LOOPBACK
(14.0.0.0) is the default value, and represents a name server on the
local VM system. If a name server will not be used, then do not code
an NSINTERADDR statement to disable DNS resolution.

NSPORTADDR
Specifies the foreign port of the Name Server. It has a default value
of 53, which is normally correct for a site.

RESOLVEVIA
Specifies how the resolver is to communicate with the name server.
TCP indicates use of TCP virtual circuits. UDP indicates use of UDP
datagrams. The default is UDP. UDP is the lower cost alternative
and is typically the right setting.

RESOLVERTIMEOUT
Specifies the time in seconds that the resolver will wait to complete
an open to the name server (either UDP or TCP). The default is 30
seconds. This is typically unimportant in a properly configured DNS

Chapter 6. Performance Issues 181

system, as requests will never time out. However, if there are
problems in the DNS system or its configuration on VM, this value will
lead to unacceptable Web server performance. Changes to this value
should be considered in the light of all the TCP/IP servers and clients
you run on VM. While a small value may be appropriate for Web
servers, it may be inappropriate for an e-mail server such as SMTP.

RESOLVERUDPRETRIES
Specifies the number of times the resolver should try to connect to
the name server when using UDP datagrams. The default is 1. As
with RESOLVERTIMEOUT, changes should be considered in light of
the total needs of your system.

You may find it appropriate to provide a different and unique copy of TCPIP
DATA for servers and clients with special needs. The long term maintenance
cost of such a decision should also be considered, as the cost of diagnosing
such a file that was not kept in synchronization with the master copy can quickly
override the benefit of its original creation. It is better to expend resources in
creating and maintaining a fast, reliable DNS server for your site than going
down the path of working around a problematic DNS server.

For EnterpriseWeb/VM the REVERSEDNS configuration record is an additional
level of control if these mappings will be attempted.

6.4.9 Accounting Card Generation Cost
In general, if you can avoid some processing overhead in a Web server, you
should do so. Accounting card generation falls in this category. If you do not
need accounting cards, they by all means do not generate them However, if you
do, then you should do so in a manner that generates as little additional
overhead as possible.

For EnterpriseWeb/VM you will need to generate your own code to collect and
build accounting cards. This is accomplished in the TRANEXIT (EWXTRANS
EXEC). As with all exits on any product, you should exercise care in making
sure that the coding of this exit is not only reliable and robust, but also efficient.

For VM:Webgateway these matters have already been addressed for you. To
enable accounting you need to simply use the CONFIG ACCOUNT command, as
documented in the product′s online documentation.

See 6.4.2, “Performance Data Analysis” on page 172 for other considerations.

6.5 Performance Summary
While we have presented you here with a list of pundits′ questions and “rules of
thumb” suggested answers, remember that few of these should be applied to
your site without first performing your own analysis of both questions and
answers.

The single most important question, of course, is: what is right for your site.
Remember that this is not an area of static questions or answers; you should
reexamine both on a regular basis, because “things change.” We also hope that
you will approach the problem creatively.

182 Web-Enabling VM Resources

6.6 References
The following are sources that you may also find of use. While some of these
resources are non-VM based, many of their tips and techniques apply in a VM
environment.

• Web Server Solutions for VM/ESA, SG24-4874.
• Exploiting Recent CMS Function: A User′s Guide to CMS Application

Multitasking, SG24-5164
• A Comparison of HTTP and HTTPS Performance by Goldberg, Buff, and

Schmitt, available at
http://www.cs.nyu.edu/artg/research/comparison/comparison.html.

• HTML 3.2 Reference Specification, available at
http://www.w3.org/TR/REC-html32.html. While this is not an Internet standard,
it is a reasonable overview of the HTML language.

• HTML 4.0 Reference Specification, available at
http://www.w3.org/TR/REC-html40.html. While this is not an Internet standard,
it is a reasonable overview of the HTML language.

• DNS and BIND; by Albitz, Paul and Cricket, Liu; published by O′Reilly.
• http://www.ibm.com/s390/vm/perf/
• http://www.ibm.com/s390/vm/devpages/BITNER/
• Here is an example of what IBM has done in this area for one of their OS/390

servers: http://www.networking.ibm.com/icserver/pub/icstun46.htm.
• You will find extensive information on tuning CMS Pipelines based

applications at http://pucc.princeton.edu/∼ pipeline/

Chapter 6. Performance Issues 183

184 Web-Enabling VM Resources

Chapter 7. Desktop Web Publishing to VM Web Servers

This chapter focuses on how to publish Web pages, from desktop Web publishing
tools to the VM Byte File System (BFS), even though it is possible to publish to
SFS and minidisks. Publishing to the BFS will be accomplished through the use
of either the Network File System (NFS) server or the File Transfer Protocol (FTP)
server. We discuss the following desktop Web publishing products:

• Netscape Composer

• Microsoft FrontPage Express

• NetObjects Fusion

Web page or Web site development with the use of a desktop Web publishing
tool is much easier than writing HTML tags. These PC-based tools give you the
possibility of designing a whole Web site or Web page without writing any HTML
tags at all. Furthermore, you have the What You See Is What You Get
(WYSIWYG) possibilities on the desktop, so you can see immediately how your
just-developed Web site or Web page looks. The use of such a Web publishing
tool does not limit the actual Web site to be served from a desktop Web server.
We will show you how to publish from the desktop to a VM Web server utilizing
NFS and BFS. The Network File System server (VMNFS), available with TCP/IP
310, supports the mounting of Shared File System (SFS) and (BFS) directories, in
addition to CMS minidisks. Current information on NFS on VM can be found at
http://www.ibm.com/s390/vm/NFS/.

The publishing of long-named Web pages to VM on CMS minidisks or SFS file
pools requires file name shortening. This name shortening requires later
manual adjustment to previously established hyperlinks in other pages. The use
of the BFS instead allows file names of up to 255 characters. Spaces and a
number of other special characters should still be avoided, because they are
classified as unsafe and need to be encoded to be used. The unsafe
classifications are stated in the HTTP RFC1945 and the URL RFC1738. The
publishing to VM from a desktop Web publishing tool is made much easier by
the presence and use of the BFS. NFS is the easiest tool for the publishing user
and recommended versus using FTP to place the file into BFS. The reason that
NFS is the easiest publishing target is that NFS appears to the desktop as
another PC network hard drive.

When publishing, or moving the file from the PC to VM, the file will either be
translated from ASCII to EBCDIC or moved in binary mode. A binary mode
transfer leaves the HTML page in its original ASCII character set. We
recommend the binary mode transfer. There is also a slight performance boost
in moving the page in binary mode, which is the result of avoiding a character
translation on the file. This benefit is obtained first when publishing and second
when the page is served by a Web server.

In addition, when publishing using the FTP capabilities of either Netscape
Composer or FrontPage, there is no choice: The HTML page will be moved in
binary mode.

Pages developed on VM, input to CGIs on VM, manually transferred files and
sample pages from the Web server products on VM are in EBCDIC mode.
Therefore the Web servers on VM come preconfigured with the standard Web
page file types set to .HTM or HTML and also with EBCDIC to ASCII translation.

 Copyright IBM Corp. 1999 185

If both desktop binary pages and EBCDIC pages are to be served, then the Web
server needs to know what file type is what format to serve the page in the right
format. To handle the binary type format, the VM Web servers come with
preconfigured file types. For VM:Webgateway Web Server the default file type is
HTMLBIN and for EnterpriseWeb/VM the default file type is HTMLA.

To utilize a non-standard desktop binary file type instead requires changing the
file type when you save or publish pages. This also needs attention when
looking for pages while creating links. You need to change the file type filter
from HMTL Files (*.htm, *.html) to All Files (*.*) to list the pages that have
been saved with the .HTMLBIN or .HTMLA file types.

If you plan to use the desktop default file types, then you have to change the VM
Web server default settings to reflect this. One way of doing this could be by
changing file type .HTM to the binary ASCII method of serving, and using file
type .HTML for the EBCDIC pages.

The following is an example:

.HTML All EBCDIC Web pages and links

.HTM All binary (ASCII) Web pages and links

Before changing the file type definitions, you need to make sure that all your
EBCDIC pages have a file type of .HTML. If you change the VM Web server
defaults you will not need to change the file type when publishing or searching
for files to link on your desktop Web publishing tool.

At present, only Sterling Software′s VM:Webgateway Web Server Release 2.2
provides built-in support for serving Web pages and executing CGIs from a BFS
directory.

Beyond Software′s EnterpriseWeb/VM contains support for SFS file pools, but
this file structure limits the file name and file type to 8 characters. To serve
pages from the BFS from either EnterpriseWeb/VM or Webshare, CGIs need to
be written.

7.1 Summary of Steps Needed for Publishing
Following is a summary of the steps necessary to publish from a desktop Web
publishing tool to a BFS directory. Either NFS or FTP will be used to move the
file from the desktop to VM. It is not the intention of this chapter to cover the
installation of NFS, FTP, BFS, VM:Webgateway or EnterpriseWeb/VM. The
summary points to the appropriate chapter where we discuss what steps are
needed in addition to the base installation, which we assume is already done.

• A BFS file pool is available on VM.

− Check that the PTFs in Table 10 on page 187 are applied.
− Sample file pool server directory entries can be found in 7.3.1, “Standard

File Pools” on page 188 and in 7.3.2, “Test File Pool” on page 190.

• An NFS server is available on VM.

− The directory entry we used can be found in 7.3.3, “VMNFS” on page 191

• Additional POSIX class directory entries are added to the directory. See
7.3.4, “Added Directory Statements” on page 192:

− GLOBALDEFS (see Figure 71 on page 192)

186 Web-Enabling VM Resources

− FTPSERVE (see Figure 72 on page 192)
− User entry (see Figure 73 on page 192)

• Enroll the NFS user into the BFS file pool.

− See 7.5.1, “ENROLL User in a File Pool” on page 195.

• A Web server is available on VM.

− If you have chosen to change the HTM file type then see 7.6, “Changing
the HTM File Type” on page 196.

− VM:Webgateway Web Server Release 2.2 is available.

Set up a user path in VM:Webgateway. See 7.6.1, “VM:Webgateway BFS
Access Setup” on page 196.

− EnterpriseWeb/VM using SFS.

Grant the EnterpriseWeb/VM server read access to user pages. See
7.6.2, “EnterpriseWeb/VM SFS Access” on page 197.

• NFS client software is available on the desktop.

− See 7.6.3, “NFS Client” on page 198.

• A new page file type is added to DOS.

− See 7.6.4, “Set Up htmlbin or htmla” on page 200.

• Change the setting in Windows Explorer to show DOS extensions.

− See 7.6.5, “Show DOS Extensions” on page 200.

• A desktop Web publishing tool is available. Following are the products we
used:

− See 7.7, “NetObjects Fusion 3.0” on page 200.
− See 7.8, “Netscape Composer 4.07” on page 203.
− See 7.9, “Microsoft FrontPage Express” on page 206.

Note: Free trial versions were used for our tests. These releases are known
to often have limitations or problems. We would recommend purchased
releases for more than a trial use.

7.2 Overview of the BFS
BFS files and directories are stored in file pools that are managed by the file
servers. The file servers also support the Shared File System (SFS). There are
many advantages that both the BFS and SFS have over minidisks. The primary
advantage of BFS over both CMS minidisks and SFS for desktop Web publishing
purposes is the long identification support (file name and file type).

Note: To utilize BFS for publishing, the following PTFs are needed for VM/ESA
V2.3.0, CMS 14 and TCP/IP Function Level 3.1.0

Table 10. PTFs Required for Publishing to BFS

PTF APAR Description

UM29016 VM61794 BFS synchronous I/O problem, CMS 14

UQ20816 PQ14734 FTP incorrectly translated binary files, TCP/IP 310

UQ20817 PQ18558 FTP to BFS resulted in 0 length files, TCP/IP 310

Chapter 7. Desktop Web Publishing to VM Web Servers 187

SFS is the component of VM/ESA that provides a hierarchical, managed file
system to CMS users, as opposed to the traditional CMS minidisk file system. If
you have performed a DDR install of VM/ESA Version 2 or later, then a sample
BFS structure and SFS will have been installed. Otherwise you may have to
build a BFS structure or install the Open Edition Shell.

Unlike the conventional record-oriented CMS file systems, both minidisk-based
and SFS, BFS treats files as nothing more than an ordered collection of bytes
like any other Unix file system. BFS has semantics, file naming conventions, and
file structures that are different from the conventional CMS file systems.

BFS allows files to be created and used in a Unix-style format. Like files in SFS,
BFS files are stored in CMS file pools. VM/ESA also provides a set of CMS
Pipeline stages and a set of OPENVM subcommands to support BFS. Some
native CMS commands (for example, XEDIT) also support access to BFS files and
directories, using extensions to the CMS record file system interface.

7.3 Directory Entries
Following are the directory entries or added directory statements for the servers
supporting NFS, BFS, FTP and the CMS user. The directory maintenance product
that was used was Directory Maintenance VM/ESA Release 5.0.

7.3.1 Standard File Pools
VM/ESA Version 2 Release 3 is shipped with a number of SFS file pools ready to
be installed by the installation process. Three of these predefined file pools are:

VMSYS SFS file pool for system resources; for example, program products

VMSYSU SFS file pool for general user data files and directories

VMSYSR CRR recovery server file pool for coordinated resource recovery
across multiple file pools and improved SFS performance

Here is the USER DIRECT entry for the VMSYSU file pool server, VMSERVU, that
we used here at the ITSO Center in Poughkeepsie for this residency.

188 Web-Enabling VM Resources

USER VMSERVU XXXXXXXX 32M 32M BG 1
ACCOUNT ITSXXXX
IPL 190
POSIXOPT SETIDS ALLOW
IUCV ALLOW
IUCV *IDENT RESANY GLOBAL
MACH XC
OPTION MAXCONN 2000 NOMDCFS APPLMON ACCT QUICKDSP SVMSTAT
SHARE REL 1500
XCONFIG ADDRSPACE MAXNUMBER 100 TOTSIZE 8192G SHARE
XCONFIG ACCESSLIST ALSIZE 1022
CONSOLE 0009 3215 T VMAINT
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A
LINK MAINT 0190 0190 RR
LINK MAINT 0193 0193 RR
LINK MAINT 019D 019D RR

* All but first R′ ed in samples
MDISK 0191 3390 2187 3 VMZP1P MR XXXX YYYY
MDISK 0301 3390 1923 10 VMZP1P R XXXX YYYY
MINIOPT NOMDC
MDISK 0302 3390 1933 14 VMZP1P R XXXX YYYY
MINIOPT NOMDC
MDISK 0303 3390 1950 14 VMZP1P R XXXX YYYY
MINIOPT NOMDC
MDISK 0304 3390 1947 3 VMZP1P R XXXX YYYY
MDISK 0305 3390 1964 6 VMZP1P R XXXX YYYY

Figure 66. VMSYSU File Pool Server Directory

For the VMSYSR file pool server, VMSERVR, we used:

USER VMSERVR XXXXXXXX 32M 32M BG
ACCOUNT ITSXXXX
IPL 190
IUCV ALLOW
IUCV *IDENT RESANY GLOBAL
MACHINE XA
OPTION MAXCONN 2000 APPLMON ACCT QUICKDSP SVMSTAT
SHARE REL 1500
CONSOLE 0009 3215 T OPERATOR
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A
LINK MAINT 0190 0190 RR
LINK MAINT 0193 0193 RR
LINK MAINT 019D 019D RR

* All WR′ ed in samples
MDISK 0191 3390 2190 2 VMZP1P WR XXXX YYYY
MDISK 0301 3390 1914 2 VMZP1P WR XXXX YYYY
MINIOPT NOMDC
MDISK 0302 3390 1912 1 VMZP1P WR XXXX YYYY
MINIOPT NOMDC
MDISK 0303 3390 1913 1 VMZP1P WR XXXX YYYY
MINIOPT NOMDC
MDISK 0304 3390 1916 2 VMZP1P WR XXXX YYYY
MINIOPT NOMDC
MDISK 0305 3390 1918 1 VMZP1P WR XXXX YYYY
MINIOPT NOMDC
MDISK 0306 3390 1919 2 VMZP1P WR XXXX YYYY
MINIOPT NOMDC
MDISK 0307 3390 1921 2 VMZP1P WR XXXX YYYY
MINIOPT NOMDC

Figure 67. VMSYSR File Pool Server Directory

For the VMSYS file pool server, VMSERVS, we used:

Chapter 7. Desktop Web Publishing to VM Web Servers 189

USER VMSERVS XXXXXXXX 64M 64M BG 1
ACCOUNT ITSXXXX
IPL 190
POSIXOPT SETIDS ALLOW
IUCV ALLOW
IUCV *IDENT RESANY GLOBAL
MACHINE XC
OPTION MAXCONN 2000 APPLMON ACCT NOMDCFS QUICKDSP SVMSTAT
SHARE REL 1500
XCONFIG ADDRSPACE MAXNUMBER 100 TOTSIZE 8192G SHARE
XCONFIG ACCESSLIST ALSIZE 1022
CONSOLE 0009 3215 T VMAINT
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A
LINK MAINT 0190 0190 RR
LINK MAINT 0193 0193 RR
LINK MAINT 019D 019D RR

* ALL BUT FIRST R′ ED IN SAMPLES
MDISK 0191 3390 2858 3 VMZP1P MR
MDISK 0301 3390 2861 2 VMZP1P MR
MINIOPT NOMDC
MDISK 0302 3390 2863 3 VMZP1P MR
MINIOPT NOMDC
MDISK 0303 3390 2866 3 VMZP1P MR
MINIOPT NOMDC
MDISK 0304 3390 2869 3 VMZP1P MR
MDISK 0305 3390 2872 36 VMZP1P MR
MDISK 0306 3390 2 100 VMZU1A MR

Figure 68. VMSYS File Pool Server Directory

7.3.2 Test File Pool
A test file pool was defined and used:

SFSTEST BFS and SFS file pool for test.

Following is the directory of the SFSTEST file pool server.

190 Web-Enabling VM Resources

USER SFSTEST XXXXXXX 32M 32M BG 1
* NOTE: THIS IS A TEST SFS GROUP FILE POOL MACHINE.

ACCOUNT ITS3000
IPL 190
IUCV ALLOW
IUCV *IDENT RESANY GLOBAL
MACHINE XA
OPTION MAXCONN 2000 NOMDCFS APPLMON ACCT
SHARE REL 1500
CONSOLE 0009 3215 T COSTA
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A
LINK MAINT 0190 0190 RR
LINK MAINT 0193 0193 RR
LINK MAINT 019D 019D RR

* ALL WR′ ED IN SAMPLES..
* 191 IS THE RUN AND BACKUP DISK

MDISK 0191 3390 2848 100 VMZU1R MR
* 250 IS THE CONTROL DISK

MDISK 0250 3390 2588 30 VMZU1R R
MINIOPT NOMDC

* 405 IS LOG1 DISK
MDISK 0405 3390 744 10 VMZU1R R
MINIOPT NOMDC

* 406 IS LOG2 DISK
MDISK 0406 3390 1036 10 VMZU1R R
MINIOPT NOMDC

* 260 IS CATALOG DISK 1 MDK00001 GROUP=1
MDISK 0260 3390 2618 10 VMZU1R R

* 310 IS A DATA DISK 1 MDK00002 GROUP=2
MDISK 0310 3390 2628 200 VMZU1R R

Figure 69. SFSTEST File Pool Server Directory

7.3.3 VMNFS
Following is the directory entry for the VMNFS server we used. VMNFS provides
the NFS server functions.

USER VMNFS XXXXXXXX 32M 64M BG
* PRIV: TCP/IP SVM. NETWORK FILE SERVER.
* PRIV: CLASS B NEEDED FOR DIAG X′84′ AND X′ 64 ′

ACCOUNT ITSXXXX
IPL CMS
IUCV RACFVM PRIORITY MSGLIMIT 255
POSIXINFO UID 0 GID 0
POSIXOPT QUERYDB ALLOW
MACHINE XA
OPTION QUICKDSP SVMSTAT ACCT MAXCONN 1024
CONSOLE 0009 3215
SPOOL 000C 3505 A
SPOOL 000D 3525 A
SPOOL 000E 1403 A
LINK MAINT 0190 0190 RR
LINK MAINT 019E 019E RR
LINK MAINT 019F 019F RR

* LINKS TO DISKS FOR TCP/IP V2R3 310 RSU 9804
LINK TCPMAINT 0591 0591 RR
LINK TCPMAINT 0592 0592 RR
LINK TCPMAINT 0198 0198 RR
MDISK 0195 3390 3253 10 VMZP1P MR
MDISK 0191 3390 2272 2 VMZP1P MR

Figure 70. VMNFS Server Directory Entry

Note: PCNFSD YES should be specified in VMNFS CONFIG.

Chapter 7. Desktop Web Publishing to VM Web Servers 191

7.3.4 Added Directory Statements
Directory statements added to GLOBALDEFS:

POSIXGROUP system 0
POSIXGROUP staff 1
POSIXGROUP bin 2
POSIXGROUP sys 3
POSIXGROUP adm 4
POSIXGROUP mail 6
POSIXGROUP security 7
POSIXGROUP nobody 4294967294

Figure 71. POSIXGROUP Directory Statements

Directory statements added to FTPSERVE:

POSIXINFO UID 0 GID 0
POSIXOPT QUERYDB ALLOW

Figure 72. Directory Statements Added to FTPSERVE

Directory statements added to the desktop publishing users directory entry (the
GNAME parameter is optional):

POSIXINFO UID 28 GNAME nobody

Figure 73. Directory Statement Added to Publishing Userid

The following optional directory statements add a default initial directory and
mount of the BFS file pool root. The statements eliminate the need to mount
(OPENVM MOUNT) and set directory (OPENVM SET DIR) to set up the user′s BFS
environment.

POSIXINFO IWDIR /home/cmsps
POSIXINFO FSROOT /../VMBFS:VMSYS:ROOT/

Figure 74. Optional User Directory Statements for Publishing Userid

7.4 OpenEdition and OpenEdition Shell and Utilities
The redbook OpenEdition for VM/ESA Implementation and Administration Guide,
SG24-4747, contains an outstanding description of the whole OpenEdition
environment. For your convenience, a short overview is included here.

OpenEdition for VM/ESA provides a POSIX-compliant file system called the Byte
File System (BFS). OpenEdition Shell and Utilities is an optional priced feature
of VM/ESA. It is recommended for an expanded set of capabilities and a
Unix-style environment.

You can set up and use BFS without the OpenEdition Shell and Utilities feature.
We installed the feature. You can (and we did), previous to the OpenEdition
install, use the LOADBFS BFS command to build an „OpenEdition-compliant tree
structure. For more information see ″1.1.11 Planning for OpenEdition for VM/ESA″
in VM/ESA Planning and Administration V2R3.0, SC24-5750. For compatibility

192 Web-Enabling VM Resources

with sites without the OpenEdition Shell and Utilities, only the BFS and OPENVM
commands are covered.

7.4.1 POSIX Terminology
Here are the definitions of some of the more common POSIX terms that arise
when using BFS:

Path name A character string that identifies a path to a file or
directory. OpenEdition supports path names up
to 1023 characters long.

Relative path name A path name that identifies the path to a file or
directory from the current working directory.
Relative path names do not begin with a slash (/).

Absolute path name A path name that identifies the path to a file or
directory from the file system root. Absolute path
names always begin with a slash (/).

File name A character string that names a file within a
directory. OpenEdition supports file names up to
255 characters long.

Directory A special file that contains directory entries.
Directory entries must be unique within a given
directory, but different directory entries can
associate different names to the same file.

Current (or working) directory The directory associated with a process (for
example, the shell) that is used to resolve relative
path names.

The characters used in file and path names should be drawn from the POSIX
portable character set, but this is not enforced by OpenEdition for VM/ESA. The
portable character set consists of:

• The uppercase letters A-Z
• The lowercase letters a-z
• The digits 0-9
• The special characters dot (.), underscore (_) and hyphen (-)

A compliant name cannot start with a hyphen. A valid POSIX file name might be:

karen.htmlbin

and its corresponding absolute path name might look like this:

/home/dave/pages/examples/karen.htmlbin

Note that everything up to and including the last slash (/) in this example is part
of the directory path, and everything after the last slash is the file name itself.
When the current directory is set to /home/dave, the relative path name is
pages/examples/karen.htmlbin.

Because the slash (/) is the path separator character, it cannot be used in a file
name. Also, because the standard OpenEdition shell interpreter assigns special
meanings to the following characters, it is not a good idea to use them in file or
directory names either:

Chapter 7. Desktop Web Publishing to VM Web Servers 193

(blank) * # / \ < > | & $? () { }

Figure 75. Special Characters

Make file names easy to remember. Unlike VM/ESA, which restricts both file
names and file types to eight (or less) characters, OpenEdition permits file
names to be up to 255 characters long. Use the dot (.) or the underscore (_) to
make file names more readable and easy to remember, for example:

will_jones_birthday_gift_list

Over the years, users of Unix-style operating systems have developed a set of
conventions for arranging the initial directories off of the main or root directory.
The POSIX BFS follows these conventions as implemented by OpenEdition for
VM/ESA, so you are likely to see a first-level directory structure that looks
something like this:

/ (← the root directory)
bin (contains executable commands)
dev (support for hardware devices)
etc (contains administration files, the toolbox)
home (contains user directories and files)
lib (symbolic link to /usr/lib libraries and shared libraries)
opt (contains DCE administration files)
tmp (contains system temporary files and work areas)
u (symbolic link to /home)
usr (contains system executable files, administration files, etc.)
var (contains log files, security and spool files, etc.)

Figure 76. Typical BFS Root Tree Structure

7.5 Some Common SFS and BFS Commands
Some readers may be new to BFS, and even to SFS. Therefore, the commands
listed in Table 11 may be useful.

Table 11 (Page 1 of 2). Some SFS and BFS Tasks and Commands

Task SFS command BFS command Shell

Enroll a user ENROLL USER
xyz

ENROLL USER xyz (BFS

Create a directory CREATE DIR dirid OPENVM CREATE DIR path mkdir

Erase a directory ERASE dirid OPENVM ERASE path rmdir

Create an alias CREATE ALIAS ... OPENVM CREATE LINK ...
OPENVM CREATE EXTLINK ...
OPENVM CREATE SYMLINK
...

ln

Define a fault
directory

ACCESS dir A OPENVM SET DIR path cd

Copy a file COPYFILE ... OPENVM GETBFS ...
OPENVM PUTBFS ...

cp

Erase a file ERASE fn ft fm OPENVM ERASE path rm

194 Web-Enabling VM Resources

To get more information about SFS commands, issue HELP CMS or HELP
SFSADMIN.

To get more information about BFS commands, issue HELP OPENVM or HELP
OPENVM MENU.

Table 11 (Page 2 of 2). Some SFS and BFS Tasks and Commands

Task SFS command BFS command Shell

Move a file or
directory

RELOCATE ... OPENVM RENAME ... m v

Xedit a file XEDIT fn ft fm XEDIT path (NAMET BFS ed

Set permissions GRANT AUTH ...
REVOKE AUTH ...

OPENVM PERMIT ... chmod

Get access to files ACCESS dir fm OPENVM MOUNT ...

Drop access to
files

RELEASE fm OPENVM UNMOUNT ...

List files and
directories

LISTFILE * * fm OPENVM LISTFILE ... ls

Change a group
or owner

- OPENVM OWNER ... chgrp
chown

Define or display
a creation mask

- OPENVM SET MASK ...
OPENVM QUERY MASK ...

umask

Execute an
application

- OPENVM RUN ... appl.
name

7.5.1 ENROLL User in a File Pool
A user could operate without being enrolled in a BFS file pool if the file pool has
<PUBLIC> enro l lment . Generally, users will be in file pools separate from
system use and OpenEdition Shell and Utilities use for performance reasons.

Enrolling users to a BFS file pool provides their own root, which can be mounted
separately or on top of any directory under their control.

When sharing a file pool for both SFS and BFS, and a user is enrolling in both,
the name of the file space needs to be different for the BFS enrollment. The
following CMSPS2 parameter is the file space name:

ENROLL USER CMSPS SFSTEST: ENROLL USER CMSPS2 SFSTEST: (BFS USER
CMSPS

If the user is just enrolling into a BFS file pool, the file space name can match
the user ID:

ENROLL USER CMSPS VMSYSU: (BFS USER CMSPS

7.5.2 Mount a User File Space over a Directory
For users to access their BFS directory from a CMS logon, either the optional
directory statements in Figure 74 on page 192 are used or the following action
needs to be taken at each logon or IPL CMS:

OPENVM MOUNT /../VMBFS:VMSYS:ROOT/ /

OPENVM SET DIR /home/cmsps

Chapter 7. Desktop Web Publishing to VM Web Servers 195

OPENVM MOUNT /../VMBFS:SFSTEST:CMSPS2/ /home/cmsps/

A permanent link can be established by creating an external link. The following
needs to be established by a user with write authority to the /home/ directory:

OPENVM CREATE EXTLINK /home/cmsps MOUNT /../VMBFS:SFSTEST:CMSPS2/

7.6 Changing the HTM File Type
For VM:Webgateway Web Server Release 2.2, the following shows how to list
and change the .HTM file type from EBCDIC to binary:

vmwebsrv q filetype htm
Filetype Characteristics
-------- ---
HTM FILE TRANSLATE USENGLISH CONTENT-TYPE text/html SSI NO FILTER NONE
Ready; T=0.01/0.01 14:23:27
vmwebsrv q filetype htmlbin
Filetype Characteristics
-------- ---
HTMLBIN FILE TRANSLATE NONE CONTENT-TYPE text/html SSI NO FILTER NONE
Ready; T=0.01/0.01 14:23:36
VMWEBSRV CONFIG FILETYPE REPLACE HTM FILE CONTENT-TYPE text/html

TRANSLATE NONE SSI NO FILTER NONE

Figure 77. Change the HTM Translation Setting

For EnterpriseWeb/VM, the following shows how to change the definition for the
HTM file type:

• Logon to EWEBADM.
• XEDIT $EWEB MEDIAMAP D
• Find /htm/.
• Change 8-bit to ASCII:

 htm text/html - 8bit -
 htm text/html - ascii -

• To avoid a problem of no translation occurring in the automatic index
function, either move the HTM record to precede the other htm... records in
the MEDIAMAP file, or obtain and install WEB PTF LVL WEB00431 from
Beyond Software.

• Key in file.
• Cycle EnterpriseWeb/VM servers.

7.6.1 VM:Webgateway BFS Access Setup
Define the appropriate BFS user path to VM:Webgateway:

VMWEBSRV SET USERROOT cmsps BFS
/../VMBFS:VMSYS:ROOT/home/cmsps/pages/

BFS read and execute access is needed for the Web server to serve pages and
to run CGI applications, respectively, from the user′s BFS. To establish the
authority for the owning user, mount the BFS file pool. Read permission will
need to be established for each directory within the directory tree structure.
Before files are created, you can set the mask and new files will then obtain the
mask permissions when they are created.

196 Web-Enabling VM Resources

OPENVM PERMIT /home/cmsps/ --- --- r-x (ADD OPENVM PERMIT
/home/cmsps/pages/ --- --- r-x (ADD OPENVM SET MASK rwx r-x r-x

If you plan to have the index.html file be a binary ASCII index.htm file, you need
to create a VMWEBSRV.DIRMAP file in the file folder containing the record
INDEX index htm:

• OPENVM MOUNT /../VMBFS:VMSYS:ROOT/ /
• OPENVM SET DIR /home/cmsps/
• XEDIT ../pages/VMWEBSRV.DIRMAP (NAMETYPE BFS
• Insert the following record:

− INDEX index htm

• FILE

7.6.2 EnterpriseWeb/VM SFS Access
Grant the appropriate SFS authorization to the EnterpriseWeb/VM server for the
user pages.

For serving user pages, grant the following:

GRANT AUTH SFSTEST:CMSPS.WEBSHARE. TO EWEB01 (READ NEWREAD

EnterpriseWeb/VM has a demo publishing CGI. To test, you will either need to
have the FASTPATH option turned on in the configuration, or remove the /vm/
directory from the links in the demo EWPUBSFS HTML file on the EWEBADMs
194 minidisk. We removed the /vm/ from EWPUBSFS HTML.

You will also need to add EWPUBSYS *CGI * to the HTBIN FILELIST on the
EWEBADMs 194 minidisk.

Grant write authority to the EnterpriseWeb/VM servers:

GRANT AUTH SFSTEST:CMSPS.WEBSHARE. TO EWEB01 (WRITE NEWWRITE

You are now ready to use the publishing demo:

• Open the browser and go to

http://your_server_domain_name/EnterpriseWeb/demos/sfspublish.html

Fill in the SFS directory:

sfstest:cmsps.webshare.

• Select Browse, then find and select the previously saved .htmla file.

• Select Publish.
The page will be published and then served to the browser.

Note: Do not leave this test demo executable in an “as is” state, because the
demo will allow loading files to any SFS directory that the EnterpriseWeb/VM
server has write authorization to without any browsing user authentication.

Chapter 7. Desktop Web Publishing to VM Web Servers 197

7.6.3 NFS Client
An NFS client will enable mounting the publishing user′s BFS directory on the
publishing user′s PC desktop as a network drive. There are several NFS clients
available. We used the NFS client contained in IBM eNetwork Communications
Suite for Windows 3.1, Windows 95 and Windows NT Version 1.1. This suite
contains FTP Software′s NFS client. An evaluation CD kit was available as of
October 1998. You can register for an evaluation CD at
http://www.software.ibm.com/enetwork/hostsolution/kit/

Check for current information about NFS clients and VM on the Web at
http://www.ibm.com/s390/vm/NFS/winnfs.html

7.6.3.1 NFS Client Install
We installed version 1.1 from the IBM eNetwork Communication Suite CD.

The steps to install the FTP Software′s NFS client included on the IBM eNetwork
Communications Suite CD are as follows:

• Insert the CD; the setup.exe should self-launch.
• Select to install FTP Software and TCP/IP applications.
• Select Next on the Network Access Suite 3.0 setup.
• Continue responding to install prompts.
• At the end of the installation the Install Wizard prompts for a reboot. We

recommend not selecting a reboot at this time.
• Select Exit from eNetwork Communications Suite.
• Then shut down and restart the PC.

The following are the client configuration tasks:

• To configure the NFS client to be able to find the VM/ESA NFS server, check
the Web for complete and current information at
http://www.ibm.com/s390/vm/NFS/winhosts.html

The steps we used were:

− Make sure there is an entry for the VM/ESA host in your
c:\windows\hosts file. If you do not have a hosts file, copy the sample
file called hosts.sam.

− To add the VM/ESA hostname and IP address, select Start, Program,
MS-DOS Prompt.

− Add the IP address (9.12.13.65) and hostname (wtscvmt) of the VM/ESA
NFS server.

− Be sure the host file has a blank line at the end of the file.
− Select Save then File.

• Next add the VM/ESA NFS Server to the NFS client configuration, as follows:

− Double click the Network Neighborhood icon.
− Double click Entire Network.
− Double click NFS Servers I have Configured.
− Click your right mouse button on an empty spot in that window to obtain

a list.
− Choose Properties.
− Fill in the new host name and click Add. Our hostname was wtscvmt.
− Select Close.
− Do not check Connect using TCP from the Properties panel for Drive

Options. VM ′s NFS server uses UDP.

198 Web-Enabling VM Resources

• Then add authentication for the NFS server connection:

− Right click on the host name you just added, wtscvmt.
− Select Properties.
− Select the Security tab.
− In the Username field, enter your VM user ID.
− In the Password field, enter the logon password for your VM user ID.
− Select Apply and Close.

• Now you are able to mount a BFS directory as a network drive. See
http://www.ibm.com/s390/vm/NFS/winbfs.html for current information. To
mount the BFS directory:

− Create an alias:

- Bring up Windows Explorer.
- Go to NFS Servers I Have Configured, as you did when you

configured the NFS server.
- Select the host, and click the right mouse button to obtain a list.
- Select Create Alias.
- Fill in the alias name that you want to use. We used wtscvmttrano.
- Fill in the Path, specifying the mount operands, as follows

/../VMBFS:VMSYSU:ROOT/home/cmsps,trans=no
- Select OK to create the alias.

− Issue the mount:

- Go to Windows Explorer.
- On the menu bar, select Tools.
- Select Map Network Drive.
- Fill in \\hostname\alias. (Note the backslash following hostname.)

We used \\wtscvmt\wtscvmttrano.
- Select OK.

Some recommendations and additional information:

• Be sure to write down aliases and parameters when the alias is created,
because you will need these alias names in later steps. You cannot list
existing aliases or their operands.

• Use /../VMBFS:FPCOOL:ROOT/u/jake,trans=no. The result of no translation is
that the files are stored in ASCII only, not EBCDIC.

• Access no-translation directories only from the desktop. If you must access
them from CMS, you should use the BFSLIST exec. BFSLIST can be
downloaded from

http://www.ibm.com/s390/vm/download/packages/

• For SFS directories, use sfstest:cmsps.webshare,record=binary,trans=no for
the Path information.

• For CMS minidisks use, cmsps.191,rw,record=binary for the Path information.

• If the network drive contains a mix of ASCII and EBCDIC information, we
recommend mounting the same file structure as a second network drive.
The second mount would have translation turned on. Everything written or
read to and from the second drive would have the ASCII to EBCDIC
translation performed. This is great for viewing text README.txt files on the
host and viewing host files containing text on the PC. To perform the second
mount of the same drive, repeat both the Create an alias and Issue the
mount steps. The path information would be:

Chapter 7. Desktop Web Publishing to VM Web Servers 199

− For BFS, use: /../VMBFS:FPCOOL:ROOT/u/jake,trans=yes,xlat=p
− For SFS, use: fpcool:jake.mission,record=nl,nlvalue=0D0A
− For CMS Mdisks, use: jake.191,rw,record=nl,nlvalue=0D0A

7.6.4 Set Up htmlbin or htmla
This step is not necessary if you have opened up .htm as a binary ASCII file type
in VM:Webgateway. This step can also be performed in Windows Explorer.

There is a need to create a new extension type in Windows 95 because the
desktop publishing performs a binary transfer of the HTML file to VM. Creating
this new extension type informs the Web server that the file is binary and ASCII.
The Web server does not perform an EBCDIC to ASCII translation when serving
the HTML page. Which file type you need to create depends on the Web server
you have. If you have VM:Webgateway Web Server, then define .htmlbin. If you
have EnterpriseWeb/VM or Webshare, then define .htmla.

A list of the tasks needed to create the new extension follows:

• Open Windows Explorer.
• Select View and Options.
• Select the File Types tab.
• Select New Type.
• Fill in the following:

− Description of Type: html to publish to BFS
− Associated extension: htmlbin
− Content Type (MIME): text/html

Select OK to save and exit.
• Select Close to save and exit.

7.6.5 Show DOS Extensions
Perform this step if you choose to use htmlbin or htmla instead of changing the
htm definition on the Web server.

Following are the steps to change the setting in Windows Explorer to show DOS
extensions:

• Open Windows Explorer.
• Select Folder.
• Select View and Options.
• Deselect Hide MS-DOS file extensions for file types that are registered.
• Select Apply and OK to save and exit.

7.7 NetObjects Fusion 3.0
The NetObjects Fusion 3.0 Trial product is available for a 30-day trial. The
product is located at

http://www.netobjects.com/products/html/download.html

200 Web-Enabling VM Resources

7.7.1 Trial Version Publishing Limitations
The trial version of NetObjects Fusion has publishing disabled. We saw the effect
in NFS and FTP. The FTP upload was successful in the version but NetObjects
Fusion does not recognize message 250 from the FTP server as a successful
upload. So NetObjects Fusion never believes that the publish was successful.
See Figure 79 on page 203.

7.7.2 NetObjects Fusion NFS Setup
If you have a trial version you will have to publish to the C: drive, then copy the
files to the NFS drive. If you have the full version, you can set up the NFS
network drive as a local publishing site.

When publishing forms created with NetObjects Fusion, you need to fill ACTION=“”
with the CGI name and subfolder, if any, like: <FORM NAME=“Guestbook Form”
ACTION=“” METHOD=POST> <FORM NAME=“Guestbook Form” ACTION=“htbin/test.svmexec”
METHOD=POST>.

To set up NetObjects Fusion 3.0 to publish using NFS:

• Bring up NetObjects Fusion.
• Select Publish and Publish Setup.
• Select Server Locations and Add.
• Decide on a Server Name and type in the chosen name.
• Select Local and Browse.

− Select the previously mounted NFS drive and the directory you wish to
publish to (full version).

− Or, select a folder on the C: drive (trial version).
• Change Rename the home page of each directory as to the Index selection.
• If appropriate, change Make the extension of each page from .html to the

planned file type.
• Select Replace spaces and other special characters with underscores.
• Select OK to save and close (twice).

Note: We used an extension of .htm for local publishing.

7.7.3 NetObjects Fusion FTP Setup
Following are the steps to set up FTP publishing in NetObjects Fusion:

• Bring up NetObjects Fusion.
• Select Publish and Publish Setup.
• Select Server location and Add.
• Fill in or select the following fields:

− ServerName.

− Select Remote.

− Remote Host.

− Base Directory.

− Name.

− Password.

− Select Replace spaces with.....

See Figure 78 on page 202.
• Select OK to save and exit twice.

Chapter 7. Desktop Web Publishing to VM Web Servers 201

Figure 78. Set Up Publishing in NetObjects Fusion

Note: Your site security may require you to not fill in the password. Also, we
actually used a subdirectory of /netf/.
NetObjects Fusion, when using FTP, will transfer the pages in text mode, which
will translate the pages to EBCDIC. Therefore, the file type extensions remain
.html.

7.7.4 NetObjects Fusion NFS Publishing
Following are instructions on how to publish to NFS:

• Select Publish on the tool bar.
• Select the Publish button on the right of the tool bar.
• Select the newly added local server from the location pulldown.
• Select OK to publish.
• If you have the trial version, then copy files from the local drive publish

folder to the NFS network drive.

202 Web-Enabling VM Resources

7.7.5 NetObjects Fusion FTP to BFS Publishing
Following are the steps for publishing pages with NetObjects Fusion to an FTP
site:

• Select Publish and Publish Site.
• Select the new remote site you created in the previous FTP setup procedure.
• Select OK to publish the pages. The pages will publish successfully, even

though, if you have the trial version, you will get the error messages shown
in Figure 79.

• Select Close to exit.

Figure 79. Error Messages When Publishing in NetObjects Fusion (Trial Version)

7.8 Netscape Composer 4.07
Netscape Composer is the Web page composition facility inside the Netscape
Communicator product. Netscape Communicator 4.07 was the version we used.

7.8.1 Netscape Composer NFS Publishing
We used a no-translation NFS network drive. We planned for an .htm file type.
We also used the .htmlbin file type. To publish using the network drive, perform
the following:

• Select File and Save As.
• Select the network drive letter you mounted earlier, and the appropriate

folder.
• Fill in the file name and add .htmlbin or .htm as planned. See Figure 80 on

page 204
• Select Save to save and exit.

Chapter 7. Desktop Web Publishing to VM Web Servers 203

Figure 80. Save File as .htmlbin

7.8.2 Netscape Composer FTP Setup
Following is how to set up FTP publishing:

• Select Edit and Preferences.
• Fill in Author Name.
• Expand Composer and select Publishing.
• Fill in the site address and browser address as shown in Figure 81 on

page 205.
• Select OK to save and exit.

204 Web-Enabling VM Resources

Figure 81. Netscape Composer Publish Setup

7.8.3 Netscape Composer FTP Publishing
The publishing setup could be performed the first time you publish. Following is
how to set up publishing:

• After the page is composed and saved as htmlbin or .htm as planned select
Publish.

• Fill in Page Title, HTML Filename, FTP Location, Username and Password.
See Figure 82 on page 206.

• Select OK to publish.
• Watch for error messages.

Chapter 7. Desktop Web Publishing to VM Web Servers 205

Figure 82. Publish Page or Folder of Pages

You can select all pages in a folder, unless files associated with this page are in
other folders.

7.9 Microsoft FrontPage Express
The FrontPage Express product is similar to Netscape Composer. An additional
function is the form creation capability.

When developing pages with Microsoft FrontPage Express, you will publish
utilizing NFS because the Web Publishing Wizard utilizing FTP does not operate
properly. The purchased version of FrontPage ′98 is reported to work properly
for FTP publishing. We did not test FrontPage ′98. A section on configuring Web
Publishing Wizard is included. The Microsoft FrontPage Express product is part
of the Internet Explorer 4.0 download. The level we used was version 2.0.2.1118.
Following are instructions on how to set up and publish with the Front Page
Express to an NFS network drive:

• Select Start and Programs.
• Select Internet Explorer and Front Page Express.
• Create a page.
• Select File and Save As.
• Clear out the Page Location field.
• Select As File.
• Select the previously created network drive and appropriate folder.

206 Web-Enabling VM Resources

• Fill in filename .htmlbin or .htm as appropriate.
• Select Save.

Note: When linking together pages in FrontPage Express, do the following:

• Select Insert and Hyperlink.
• Select the World Wide Web tab.
• Select http: in HyperLink Type.
• Fill in only the filename .htmlbin in the URL field.
• Select OK to complete the link.

7.9.1 Web Publishing Wizard
Following are the instructions on how to set up and publish with the Web
Publishing Wizard:

• Select Start and Programs.
• Select Internet Explorer and Web Publishing Wizard.
• Select Next.
• Select File or Folder and Next.
• Select New.
• Fill in Descriptive Name and Select Advanced.
• Select FTP and Next.
• Fill in the URL with a fully qualified FTP address:

ftp://wtscvmt.itso.ibm.com/../VMBFS:VMSYS:ROOT/home/cmsps/pages

• Select Next. See Figure 83 on page 208.
• Select Finish.
• Fill in User Name and Password.
• Select OK to publish.

Note: The preceding is for informational purposes only. The objective is to
assist in setting up FrontPage ′98.

Chapter 7. Desktop Web Publishing to VM Web Servers 207

Figure 83. Publish Page with Web Publishing Wizard

208 Web-Enabling VM Resources

Appendix A. Java

One of the reasons Java has become so popular is its value for enhancing
Internet World Wide Web content. The basic language of the WWW, HTML, is
easy to write and make available to WWW clients, but it lacks sophistication for
complicated tasks. For example, user interfaces such as dialog boxes can be
written in HTML, but there are limited facilities for ensuring consistency and
enforcing open standards. As a result, a WWW application that uses an HTML
user interface must check data entered by the client at the server. This defeats
some of the value of a client/server architecture; usually, data validation is
delegated to the client, where the speed of the client machine can be utilized
and network delays avoided.

Beyond providing smart interfaces in HTML documents, Java can perform any
tasks processed by other languages. Moreover, its broad library of standardized
functions permits programmers to ignore platform limitations.

A very interesting feature of integrated Java runtime environments in browsers
is the ability to let Java applets communicate with the host from which they are
loaded.

A.1 Presentation
Many books describe the Java development environment and the Java runtime
environment. We do not intend to replicate the information here, we will just
define some Java terms.

For more information about Java and VM, see VM/ESA Network Computing with
Java and NetRexx, SG24-5148.

For a list of Java books and reviews, consult:

http://www.ibm.com/java/education/books

The essential Java vocabulary consists of:

class The compiled Java code. Each class file represents a Java object. It
contains Java byte code produced by compilation.

JVM The Java Virtual Machine is the environment where Java code runs. It
can be imbedded in a browser. It interprets Java byte code to let it
run on the local platforms.

JIT Just In Time compilers are used in the JVM to avoid interpretation
performance issues. Some compile all Java byte code to hardware
instructions before Java program execution, others keep already
interpreted code in memory so as not to compile it again the next
time it is executed.

JDK The Java Developer Kit is the Java “libraries.” Each JVM runs a
specific JDK level.

applet Java code intended to run as part of an HTML page.

jar A Java archive is a set of Java classes in a single compressed file.
Jar files are used to send all applet code in only one network
download. The JVM then extracts the needed class files.

 Copyright IBM Corp. 1999 209

NetRexx NetRexx is an alternative to the Java language that takes advantage
of the JVM while not forcing the programmer to have to face the
complexities of the Java language. With NetRexx, you can create
programs and applets for the Java environment using REXX syntax.
For more information, visit Java and NetRexx pages on the VM/ESA
site at

http://www.ibm.com/s390/vm/java

The typical Java runtime environment looks like Figure 84.

Figure 84. Java Virtual Machine Environment

The Java byte code runs in the JVM environment. The JVM interprets the byte
code into local system code and manages JDK function calls. JVM and JDK
local implementation are responsible for interfacing with local system calls. With
such an architecture, the Java programmer does not have to care about specific
(operating system or hardware) architectures. For example, the Java Abstract
Windowing Toolkit (AWT), which manages graphic interfaces, contains a large
library of graphic components. The programmer writes only one piece of code
that will generate different graphic environment calls in various user execution
environments (X-Window, Presentation Manager, Windows).

The class loader is the JVM process that automatically loads class files needed
(that is referenced) by the current object. As a typical Java application is a set
of classes, you start the application by indicating the ″main″ file to be run to the
Java loader. The loader scans all classes needed to execute this file. All

210 Web-Enabling VM Resources

referenced objects not known by the Java virtual machine will be loaded by the
class loader from the same location as the ″main″ class. In an HTTP
environment, the class loader creates URL connections to download peripheral
objects (to be in the same URL path as the Java start object).

A.2 Implementation Considerations
The first consideration before starting any Java implementation is to check what
browsers will contact your site. While Java was first available in 1996, there are
still a lot of browsers that do not support it.

A.2.1 JDK Levels
Because of Java′s constant evolution and improvement, new levels of the JDK
are provided at a very high rate. Choosing the right JDK level for programming
is a Java-specific issue: the latest JDK versions include new functions that are
unknown by older versions, programming methods change (for example, AWT
event listening), bugs are fixed. All of this is moving fast!

To choose the appropriate JDK level, you have to consider three basic
environments:

• Development environment. This is where you write and test your code. It
may be a basic line mode environment or an Integrated Development
Environment (IDE) such as IBM VisualAge for Java.

• Compilation environment. You may compile Java code in your development
environment, but you may also choose to run it somewhere else. Some
considerations are as follows:

− Your development environment includes a very recent version of the JDK
and you want to verify with an older JDK compiler that your code is
compatible with old JVMs.

− You use an IDE but your code is intended to run in another system with
its own JDK. The safe way is to transfer the production Jav source to
your target system and to compile it there.

• Runtime environment. This is, in most cases, the user′s local JVM. In the
Web implementation it is the browser-controlled JVM. To determine the
version of a browser, JVM looks for the “Java Console” window of the
browser.

These environments could be on the same machine, each with a different JDK
level. It is common that a Java developer machine (see Figure 85 on page 212)
contains an operating system Java developer kit and an IDE with its own version
of the JDK and the browser JVM version.

Appendix A. Java 211

Figure 85. A Typical Java Development Environment

A safe approach could be to consider the lowest JVM level intended to run your
code as the JDK level you will develop with. It is the only choice if you cannot
control user browser versions.

Whatever level you use, you may indicate it clearly in your site help page with
links to obtain the latest browser versions (some browsers are delivered with
different JVM levels while the browser version stay the same! Do not use the
browser version as an indication to determine the imbedded JVM level).

A.2.2 Serving Java Code from VM Web Servers
In order to serve Java code from your favorite VM Web server, you may need to
change the server configuration.

A.2.2.1 Declaring Java Types
The Java byte code loaded from your VM Web server is considered binary code.
If the Web server ignores this detail, it may try to apply an EBCDIC to ASCII
translation that will cause “bad magic number” errors on the browser JVM when
it verifies the checksum included in the Java code.

On EnterpriseWeb/VM Release 1.4, no additional configuration is needed to
serve Java files.

On Webshare Release 1.2.4 you need to declare two new file types in HTTPD
CONFIG:

212 Web-Enabling VM Resources

type class 0 application/octet-stream binary
type jar 0 application/java-archive binary

On VM:Webgateway Web Server Release 2.2 we also added these file types
using the administration online interface as shown in Figure 86.

Figure 86. Adding Java Types to a VM:Webgateway Configuration

A.2.2.2 Naming Java Files
You also need to consider the way Java resource names are resolved on the
server. Unlike minidisk and SFS files, Java file names are case sensitive. The
first part of the name (before the dot) is not limited to eight characters, and the
browser JVM loader will check that the Java class file name is the same as the
Java class it contains. Moreover, the file type must be “class” in lower case.

The VM Web servers do not address Java class name issues similarly.

In the Webshare or EnterpriseWeb/VM server you may either use the
FILELIST facility to hide the real VM name, or the Web server will truncate
the class name to eight characters, translate it into uppercase and then look
for a CMS file with that name. The latter technique seems easier, but you
have to watch out for Java class names with the same eight first characters!

In VM:Webgateway you need either to use a DIRMAP file (which is case
insensitive) or preferably serve the Java files from BFS (which is case
sensitive).

To copy the Java code into the server file structure you may upload it from the
development environment without translation (binary mode) or upload the Java
source to the BFS environment, compile it with the IBM Java Port for VM/ESA
and copy the class file into your Web server tree.

Watch the IBM Java download page to obtain the latest version of the IBM Java
Port for VM/ESA:

http://www.ibm.com/java/jdk/download

Appendix A. Java 213

A.3 Applets
Since Java is relatively new, there are still many possibilities to explore before
understanding its full value. However, here are some early thoughts on the
value Java applets could provide for VM/ESA applications:

• Modern user interface, without the cost of writing user interfaces for many
different systems

One of the issues that a software builder faces today is the construction of
user interfaces for a wide variety of client machines. If you want to build a
client/server application with a graphical user interface (GUI), you may have
to write many different GUIs, depending on the types of client machines in
your organization. Take, for example, Lotus Notes. Lotus has had to provide
client GUIs for OS/2, Windows 3.1, Windows95 and NT, UNIX, and so on. You
face the same problem in your enterprise unless you have settled on only
one client operating system. If you plan to deploy an application on the
Internet, you have no control over the client machine type, and so the GUI
problem becomes almost insurmountable.

Java provides a windowing class library the Abstract Windowing Toolkit
(AWT)). With this, you can write one GUI that can be run on any machine
with the Java Virtual Machine installed, and with the capability to display GUI
windows. The implementation of the JVM on the client machine maps the
AWT to native windowing controls.

• Software distribution and maintenance minimized

Without Java, client/server application deployment requires the installation of
client software. This is already a difficult problem in an enterprise. If you
are planning to deploy an application on the Internet, you cannot depend on
quality systems support staff to install the client software, because the client
could be anywhere in the world. Furthermore, if you do make client software
available, you will have to be prepared to support customers who attempt to
install the software on a wide variety of client machine types, software
levels, and so on.

Java applets are dynamically downloaded applications. The download is
performed automatically by the client machine when the application is
started (perhaps by clicking a button on an HTML document in the client
browser). The client needs to have:

− An operating system
− A network connection and software that enables TCP/IP protocols
− A WWW browser that enables Java

Since this sort of configuration is now common (popular operating systems
provide all of this support now, and many client machines come preloaded
with such software), you can relax and let the server do all the work of
distributing up-to-date software, on demand. You do not have to worry about
back-level clients.

• Extending your operational applications to the Internet (or an intranet)
without recoding

All System/390 customers have existing applications that were designed and
implemented before the World Wide Web was even thought of. Many
applications were designed with 3270 interfaces in mind, so some level of
data validation was delegated to the 3270 device. For example, field widths
and types could be checked at the data entry station.

214 Web-Enabling VM Resources

The WWW provides very little to take the place of that data checking. HTML
has limited facilities inside the form element; and JavaScript (which could do
some checking) is not always enabled on WWW browsers.

Java allows you to deploy a user interface such as a dialog box, which
checks the data before sending it to the server. Thus, you could leave your
operational application unchanged and use the new Java applet to check and
format data. Application response and usability could be improved, since
basic checking and feedback to the user can be done on the client machine,
which is faster than going back to the server for each interaction.

• Improved presentation

You can use a Java applet to retrieve data from a VM/ESA server, and then
provide processing within the applet that allows the user to choose the
format of a presentation. You will need to be careful, however, about data
integrity if you plan to update the data from the client. That is, if you
download data, process it for a while, and then update it on the server, you
need some technique to ensure that you are not performing updates on data
that has already been updated by another application. This is a standard
client/server design issue, not restricted to Java.

As shown in Figure 87 on page 216, the HTML APPLET tag is the description of
imbedded Java programs.

Appendix A. Java 215

Figure 87. HTTP Processing of an HTML Document with Applet Tag

To load a Java applet into the browser JVM, you need to code into your HTML
document an APPLET tag in the form:

<APPLET CODE = appletFile.class P1Q
CODEBASE = codebaseURL P2Q
ALT = alternateText P3Q
NAME = appletInstanceName P4Q
WIDTH = pixels P5Q
HEIGHT = pixels P6Q
ALIGN = alignment P7Q
VSPACE = pixels P8Q
HSPACE = pixels P9Q
ARCHIVES = archive.jar > P10Q

< PARAM NAME = appletAttribute1 VALUE = appletValue1 > P11Q
< PARAM NAME = appletAttribute2 VALUE = appletValue2 >

.
</APPLET>

• P1QThis required attribute gives the name of the file that contains the applet′s
compiled Applet subclass. This file is relative to the base URL of the applet
and cannot be absolute.

• P2QThis optional attribute specifies the directory that contains the code for
the applet. If this attribute is not specified, the document′s URL is used.

216 Web-Enabling VM Resources

• P3QThis optional attribute specifies any text that should be displayed if the
browser understands the APPLET tag but cannot run Java applets.

• P4QThis optional attribute specifies a name for the applet instance, which
makes it possible for applets on the same page to find and communicate
with each other.

• P5QThis required attribute specifies the initial width, in pixels, of the applet
display area, not counting any windows or dialogs that the applet brings up.

• P6QThis required attribute specifies the initial height, in pixels, of the applet
display area, not counting any windows or dialogs that the applet brings up.

• P7QThis attribute specifies the alignment of the applet. The possible values
of this attribute are the same as those for the HTML IMG tag: left, right, top,
texttop, middle, absmiddle, baseline, bottom, absbottom.

• P8QThis attribute specifies the number of pixels above and below the applet.
It is treated the same way as the VSPACE attribute on the HTML IMG tag.

• P9QThis attribute specifies the number of pixels on each side of the applet. It
is treated the same way as the HSPACE attribute on the HTML IMG tag.

• P10QThis tag specifies that all files used by the applet are to be found in an
archive file created with the Java tool jar.

• P11QThis tag is the only way to specify an applet-specific attribute. Applets
access their attributes with the getParameter() method.

You can, of course, use CGI to create the HTML document, thereby controlling
the applet parameter number and values.

The Pp application is an example of how to convert a 3270 application to Java.

It shows you how to:

• Read a CMS file across an HTTP connection.

• Call a VM CGI, gathering its parameters like an HTML form.

• Read CGI outputs.

The original Web-enabled VM application is used to select a set of products from
a list and send an order to a server machine using RSCS facilities. The 3270
interface consists of a fullscreen product list built from a CMS file. The
navigation follows SAA standards; it allows users to select products, view
information on the products, scroll up and down in the list, and send the final
request.

The Pp Java application permits all of these. It adds a counter indicating how
many 3380 cylinders are needed to install the product set. Unlike a CGI
implementation, the Web server is only used at applet loading time and at final
FORM completion, where a VM CGI creates the RSCS file. All application
interactions are handled inside the applet, avoiding server processing

Once loaded, the applet:

• Reads APPLET tag parameters.
• Opens a URL connection to read the product list with the Web server.
• Initializes its AWT interface.
• Permits the user to:

− Add products to an order list.

Appendix A. Java 217

− Remove products previously selected from the order list.
− Open a frame to display details for a selected product

• Process the order, calling a VM CGI whose response will be displayed in a
new frame.

The APPLET tag should contain two parameters:

 <param name=SourceList value=″ / ∼ vmwebcd/java/products.txt″>
 <param name=TargetCGI value=″ /˜vmwebcd/cgi/ppord″>

SourceList parameter indicates the URL path to the product list. The URL
protocol, server and port are retrieved dynamically inside the applet. If the
applet is loaded from disk (by the Appletviewer tool, for example), this variable
must contain the file path. This allows the applet to be tested on a PC without
any Web server connection.

TargetCGI parameter is the URL path to the VM CGI that will process the applet
order. The order will appear to CGI like any POST HTML form request.

The Pp application is a set of six objects:

PpWindow The base object pointed to by the applet code parameter.

This object is responsible for:

• Retrieving the Web server protocol, address and port:

URL myURL = getCodeBase();
fileProtocol = myURL.getProtocol();
fileServer = ″ : / / ″+myURL.getHost()+″:″+myURL.getPort();

• Reading applet tag parameters:

String filePath = getParameter(″SourceList″) ;
String cgiPath = getParameter(″TargetCGI″) ;

• Creating an instance of the object that reads the CMS file:

myList = new PpList(fileProtocol,fileServer,filePath);

• Building the applet frame graphic design. The frame is divided
into three zones as shown in Figure 88 on page 219.

218 Web-Enabling VM Resources

Figure 88. Pp User Interface

The upper zone (welcomeText panel) contains text information.
The middle zone is occupied by a PpSelect object. The bottom
zone is the globalActions panel and contains the button to run the
order processing and the button that resets the order list content.

setLayout(new GridLayout(3,1));
welcomeText.setLayout(new FlowLayout());
welcomeText.setFont(new Font(″Courrier″ ,Font.PLAIN,12));
add(welcomeText);

selPanel = new PpSelect(myList.getVList());
add(″Cmde″ ,selPanel);

globalActions.setLayout(new FlowLayout());
bcom.setFont(new Font(″Helvetica″ ,Font.BOLD,18));
bcom.setBackground(Color.gray);
globalActions.add(bcom);
brst.setFont(new Font(″Helvetica″ ,Font.BOLD,18));
brst.setBackground(Color.gray);
globalActions.add(brst);
add(″Actions″ ,globalActions);

• Listening to user actions:

public boolean action(Event evt, Object arg) {
if (evt.target instanceof Button) {

 String bsel = (String)arg;
// adds a product to order list

 if (bsel.equals(selPanel.badd.getLabel())) selPanel.addPp(myList);
// remove product from order list

 else if (bsel.equals(selPanel.bdel.getLabel()))
selPanel.delPp(myList);

// get product details
 else if (bsel.equals(selPanel.bdetail.getLabel())) {

Appendix A. Java 219

String sel = (String)selPanel.inputList.getSelectedItem();
PpDetail winDetail = new PpDetail(myList.getPpack(sel));

 }
// send the order form

 else if (bsel.equals(bcom.getLabel())) createOrder();
 else if (bsel.equals(brst.getLabel())) selPanel.resetOrder();
}
return true;

}

This event handler is based on the JDK 1.02 model. This is a real
programming choice because a new method of handling events
came with JDK 1.1 that programmers are intended to use. But
the JDK 1.1 method dos not run on JVM 1.02 and there are still a
lot of browsers running the 1.02 JVM level. We chose to use the
old event handler method because it runs on all JVM levels and
our application is too small to warrant dealing with old model
issues.

However, you can see in the event handler some tests on buttons
not defined in the current object (badd,bdel,bdetail): they are
PpSelect buttons. In 1.02 the event model, imbedded component
events have to be trapped in the imbedding AWT container.
Another consequence is ″deprecated API″ warning messages
when you compile this code with the latest JDK compilers.

Ppack This object represents a product. Its constructor receives a line from
the product list and parses it:

Ppack(String s) { // s is a line from the CMS file
 desc=s.substring(0,12); // product description
 prodNumber=s.substring(13,21); // product number
 cm=s.substring(22,65); // comments
 id=s.substring(67,75); // unique identifier
 cyl=s.substring(77,81).trim(); // 3380 cylinders
}

It also defines a function to access each individual object variable.

PpList Contains the complete collection of Ppack objects. At initializatio,
PpList reads the product list from a disk or URL, and then creates a
new Ppack object for each line and includes it in a vector list and a
hash table:

String url = fileProtocol+fileServer+filePath;
URL theURL = null ;
 // create product file URL object
try { theURL = new URL(url); }
catch (MalformedURLException e) {System.out.println(″Bad URL: ″ + url);}
URLConnection conn = null;
DataInputStream r;
 // open URL and read thru the end
try {
 conn = theURL.openConnection();

conn.connect();
 r = new DataInputStream(new BufferedInputStream(conn.getInputStream()));
 try {
String line;
while((line = r.readLine()) |= null) {
// create Ppack object
Ppack pp = new Ppack(line);

220 Web-Enabling VM Resources

// add it in hash table
hashPp.put(pp.getDesc(),pp);

// add it on vector
vectorPp.addElement(pp);

}
 }
 catch (IOException e) {

System.out.println(″Network error reading product list:″+e);}
}
catch (IOException e) {

System.out.println(url+″ not found or unreachable: ″+e);}

We created two product object tables (only for convenience):

• Vector tables are collections of objects that are easy to scan so
we used one for sequential or index position access.

• Hash tables are more suited for indexed access. The insertion of
a new object in a hash table also needs an index key (the hash
code). Our hash table contains a short description of the product
hash code as the index for the product object (Ppack).

PpSelect Manages the more interactive part of the applet. This is the middle
frame appearing on the screen. It contains:

• The selection list of products
• Buttons to control selection
• The list of products currently selected

This object also processes its own button events, even if they are also
trapped in the PpWindow object. For example, here is the routine
that adds objects to the order list:

public void addPp(PpList pList) {
// product decription

String sel = (String)inputList.getSelectedItem();
// already in order list ?

if (sel|=null & isNotInOrderList(sel)) {
// add in order list

outputList.addItem(sel);
totCylinders+=

Integer.valueOf(pList.getPpack(sel).getCyl()).intValue();
// update cylinder label

labCyl.setText(″3380 cylinders used:″+totCylinders+″ ″) ;
}

}

PpDetail This pop-up frame displays the details about a product.

PpOrder Calls the CGI and displays the data sent back by the CGI:

URL url = new URL(goURL);
URLConnection con = url.openConnection();

// simulate a POST form request
con.setDoOutput(true);
con.setDoInput(true);
con.setUseCaches(false);

// set HTTP descriptions
con.setRequestProperty(″Content-type″ ,

″ application/x-www-form-urlencoded″) ;
con.setRequestProperty(″Content-length″ ,

″ ″+data.length()+″″) ;

Appendix A. Java 221

// ouput stream
PrintStream out = new PrintStream(con.getOutputStream());

// pass FORM data
out.print(″JAVAS=″+data);
out.flush();
out.close();

// listen for HTTP server response
DataInputStream in = new DataInputStream(con.getInputStream());
String s;
String vmresp = ″No response from the host.″ ;
while ((s = in.readLine()) |= null) vmresp=s;
in.close();

// returns
return vmresp;

This applet demonstrates how Java can be used to deal with user actions. CGIs
are still used, but not to generate rendering tags; they are used where they are
best at: accessing host resources. So the CGI is not polluted by HTML tag
considerations, it just sends the needed data to the applet. In this way, the VM
Web server is not called to navigate application pages. Java applets keep the
CGI a single piece of code to maintain and delivered from a single point.

To run this applet we used the following URL:

http://wtscvmt.itso.ibm.com/∼ vmwebcd/java/Pp.html

You should see a screen like Figure 89.

Figure 89. Pp Screen

222 Web-Enabling VM Resources

A.4 Java Servers
In the applet example, we showed how an applet can use Web server resources
using the HTTP protocol. But the applet is not restricted to communicate with
the Web server virtual machine: the applet implementation allows the applet to
communicate with any TCP port on the same host from which it was
downloaded. This permits applets to use other server machines, giving them
independence from the Web server machine. The Web server is just the
distribution mechanism for the Java application.

TCP/IP networking can be done in several ways, depending on whether the host
server runs Java code or another language. Even if the VM/ESA server may use
any language, Java servers make it possible to use new Java interfaces and
connectors that appear every month on the Web to access remote applications.

The Java server sample we present here uses socket programming to dialog
with the applet code. We could also have written it with REXX socket functions.

The applet code is very simple (but powerful):

public class SockApplet extends Applet {
public static final int DAYTIME_PORT = 5050;
public String hostvalue;
public String daytime;
public void init() {
hostvalue = getCodeBase().getHost();
Socket s;
try {
s = new Socket(hostvalue, DAYTIME_PORT);
BufferedReader i = new BufferedReader(

new InputStreamReader(s.getInputStream()));
daytime = (i.readLine());
i.close();
s.close();

}
catch (Exception e) {
System.err.println(″Error: ″ + e.getMessage());

}
}

public void paint(Graphics g) {
g.drawString(daytime, 50, 25);

}
}

The applet opens a socket connection to TCP port 5050, reads the incoming
response from the socket server and extract the results (daytime variable). The
server URL is retrieved from applet environment variables.

As the applet just displays data sent by the socket server, we need a server to
send data to a socket client. We wrote a Java server to send the current date to
any incoming client connections. The server runs three threads to insure good
availability.

The server code is divided into three sections.

The main procedure just defines an object of its own class and sends a “go”
message to the newly created “w” object.

Appendix A. Java 223

public class SockServer implements Runnable {
private ServerSocket ss; // Define a server socket

// accessible by all threads

public static void main(String args°§) throws Exception {
SockServer w = new SockServer();
w.go(); // Define instance of this class

}

The “go” function creates the three parallel processes, each thread running the
″w″ object (this).

public void go() throws Exception {
ss = new ServerSocket(5050, 5);
Thread t1 = new Thread(this, ″1″); / / Thread named 1
Thread t2 = new Thread(this, ″2″); / / Thread named 2
Thread t3 = new Thread(this, ″3″); / / Thread named 3
t1.start(); // Start each of the threads
t2.start();
t3.start();

}

Then, the start procedure of each object is called:

public void run() {
Socket s = null;
BufferedWriter out = null;
String myname = Thread.currentThread().getName();
String enc = ″8859_1″;

for(;;) {
try {
System.out.println(″Thread ″ + myname + ″ about to accept..″) ;
s = ss.accept();
System.out.println(″Thread ″ + myname + ″ accepted a connection″)
out = new BufferedWriter(

new OutputStreamWriter(s.getOutputStream(), enc)); ;
Date dt = new Date();
DateFormat df = DateFormat.getDateTimeInstance(DateFormat.FULL,

DateFormat.DEFAULT);
out.write(″Thread ″ + myname + ″: ″ + df.format(dt));
Thread.sleep(10000); // we put a sleep here to force the

// threads to run somewhat in sequence
// and cycle through the set

out.write(″çn″) ;
out.close();

}
catch (Exception e) {
e.printStackTrace();

}
}

}

Each process sends a message to the Java console indicating it is ready to
receive socket connections. The threads then wait for a connection when a
request arrives, the thread sends back the system date on the incoming client
connection.

224 Web-Enabling VM Resources

The sleep interval is just used to confirm on the VM Java console that different
threads are used. If it is omitted, the first thread would be used for every
connection (being the first one available) unless a very high call rate exists. If
you intend to run this code in production, you should delete this line.

This sample shows why it is easy to run multi-thread applications with Java and
access TCP/IP sockets. It is as easy as REXX socket programming.

Before running the applet, insure your browser supports JDK1.1.1 and that the
CMS Java level is VM61822 minimum.

To run this applet:

• Access Java sample directory:
• Copy the server code into BFS root directory.

− Log on a user ID with root Posix authority.
− Access VMWEBSRV.WEBSHARE.JAVA and type (case sensitive

commands):

OPENVM MOUNT /../VMBFS:yourfilepoolID:ROOT/ /
OPENVM SET MASK r-x r-x r-x
OPENVM PUTBFS SOCKSERV CLASS * SockServer.class (REPLACE NOTRANSLATE
BFSLINE NONE

• Start the Java server by:

GLOBAL LOADLIB SCEERUN
OPENVM SHELL
java SockServer

The following messages should appear:

Thread 1 about to accept..
Thread 2 about to accept..
Thread 3 about to accept..

• Run the applet calling the URL:

http://wtscvmt.itso.ibm.com/∼ vmwebcd/java/SockAppl.html

The applet will show you the VM date and time.

To stop the Java server, type:

• ¢c
• rm SockServer.class
• exit

A.5 A Rising New World
The samples presented in this section are just an introduction to what Java can
do for you. However, they do show how easy Java programming is because the
hard work is done by the JDK. You can see how compact this code is,
minimizing maintenance cost.

Moreover, many IDEs are available to assist Java designers. An application like
the applet sample may take an experienced Java programmer one day to create
using an IDE.

Any Java code is intended to run on any Java virtual machine. For example, we
ran a Java ″chat″ application (without any modification) under VM/ESA, although
it was designed and tested under Windows95. This means the large Java library

Appendix A. Java 225

known as the Internet is waiting to spice up your browser pages and broaden
your VM/ESA Web server′s abilities.

226 Web-Enabling VM Resources

Appendix B. Contents of the Associated CDs

There are two CDs included with this redbook:

CD1 Sample code written during the project

CD2 Webshare 1.2.4 from Beyond Software Inc., a shareware
Web server for VM/ESA.

B.1 Files on CD1
The following files are on this CD:

VMWEBCD VMA VMARC file of the whole SFS (includes all the files)

VMWEBCD ZIP PC file format of the sample files

5347AX2 HTM This appendix in HTML format

VMARC MODULE Module to unpack the VMWEBCD file and the Webshare
file (CMSHTTPD)

VMARC HEL VMARC CMS help file

VIG13TUT PDF VM:Webgateway Tutorial in Acrobat Reader format see
also B.1.9, “VM:Webgateway Tutorial” on page 234

INDEX HTM The INDEX HTM file offers you the possibility to look at the
samples with your Web browser. Simply open the INDEX
HTM file on CD1 with your favorite browser and follow the
instructions on the screen.

LOVEVMBG JPG Images used in INDEX HTM

VMBSUNMV GIF Images used in INDEX HTM

VMS390 GIF Images used in INDEX HTM

The VMWEBCD VMARC file on CD1 contains a copy of the SFS directory tree
described in this appendix. You can restore this SFS directory tree to VM by
taking the following steps:

 1. Log onto a user ID that can issue CREATE DIR commands for the target SFS
directory where you wish to load the data. The full directory structure
contained in the VMWEBCD VMARC file will be created as needed off the
base directory name given later.

 2. If you do not already have a copy of VMARC MODULE, obtain one from the
CD or from

http://www.ibm.com/s390/vm/

 3. Upload the VMARC file in binary.

 4. Run the file through the pipeline

PIPE < VMARC MODULBIN A | deblock cms | > VMARC MODULE A.

 5. Upload file VMWEBCD VMARC to VM in binary.

 6. Run the file through the pipeline

PIPE < VMWEBCD VMABIN A | fblock 80 00 | > VMWEBCD VMARC A F 80.

 7. Issue VMARC UNPACK VMWEBCD VMARC * VMARCSFS EXEC A.

 Copyright IBM Corp. 1999 227

 8. Issue VMARCSFS LOAD VMWEBCD TO target_sfs_directory.

VMARCSFS expects the VMWEBCD VMARC file on the A-Disk

The target SFS directory should be given as a fully qualified SFS directory ID.
If the directory is accessed by the user ID, then it should be R/W.

The contents of the VMWEBCD ZIP file is also on CD1 for you to look through the
samples.

When you have loaded the VMWEBCD file into a SFS, it has the following
directories.

If not otherwise stated, the samples run on all three Web servers.

B.1.1 URL Root for the VM Web CD
• VM directory: VMWEBCD.WEBSHARE.
• VM Web CD directory: \

INDEX HTML The page displayed when the root is fetched

LOVEVMBG JPG Images used in INDEX HTML

VMBSUNMV GIF Images used in INDEX HTML

VMS390 GIF Images used in INDEX HTML

B.1.2 VM:Webgateway CGI Extension Sample
• VM directory: VMWEBCD.WEBSHARE.CGIGATEWAY
• Server URL: http://Your_Server_Domain_Name/∼ vmwebcd/CGIGATEWAY/lmcmd.vmgw
• VM Web CD directory: \Gateway

LMCMD VMGW Sample gateway CGI discussed on page 69

LMCMDH VHTML HTML skeleton used by LMCMD VMGW

VMWEBSRV DIRMAP DIRMAP authentication for LMCMD

B.1.3 Database

B.1.3.1 DB2 World Wide Web Connection Version 1 Demonstration
• VM directory: VMWEBCD.WEBSHARE.DB2WWW
• Server URL: http://Your_Server_Domain_Name/∼ vmwebcd/db2indx.html
• VM Web CD directory: \Db2\Db2www

NOTICES HTML DB2 WWW Connection notices

INSTALL HTML README file for installation of DB2 World Wide Web
Connection Version 1 and its demonstration programs

DB2WWW VMARC DB2 World Wide Web Connection Version 1 code and
demonstration in VMARC format

DB2WDOC HTML DB2 World Wide Web Connection Version 1 Application
Developer ′s Guide

D2WHEAD1 GIF Image referenced out of DB2WDOC HTML

228 Web-Enabling VM Resources

B.1.3.2 DB2 World Wide Web Connection Version 1 Samples
DB2INDX HTML Index to execute DB2 WWW macros

EMPQRY1 D2W DB2 WWW macro, discussed on page 88

EMPQRYC1 D2W DB2 WWW macro, discussed on page 91

EMPCHG1 D2W DB2 WWW macro, discussed on page 91

EMPQRY2 D2W DB2 WWW macro, discussed on page 98

EMPQRYC2 D2W DB2 WWW macro, discussed on page 99

EMPCHG2 D2W DB2 WWW, same as EMPCHG1 D2W

EMPQRY3 D2W DB2 WWW macro, discussed on page 99

EMPQRYC3 D2W DB2 WWW macro, same as EMPQRYC2 D2W

EMPCHG3 D2W DB2 WWW macro, discussed on page 99

EMPQRY4 D2W DB2 WWW macro, same as EMPQRY3 D2W

EMPQRYC4 D2W DB2 WWW macro, discussed on page 100

EMPCHG4 D2W DB2 WWW macro, same as EMPCHG3 D2W

LOGMODIF EXEC REXX procedure, discussed on page 99

B.1.3.3 REXX SQL Samples
• VM directory: VMWEBCD.WEBSHARE.RXSQL
• Server URL: http://Your_Server_Domain_Name/∼ vmwebcd/rxsql/cgi/rxsquery
• VM Web CD directory: \Db2\Rxsql

RXSQUERY CGI Sample CGI executing REXX SQL commands described on
page 104

CGI DIRMAP Web server control files for URL resolution and security

CGI FILELIST Web server control files for URL resolution and security

VMWEBSRV DIRMAP Web server control files for URL resolution and security

B.1.4 MQSeries
• VM directory: VMWEBCD.WEBSHARE.MQSERIES
• Server URL: http://Your_Server_Domain_Name/∼ vmwebcd/mqseries/mqmain.html
• VM Web CD directory: \Mqseries\MQINDEX.HTM

MQWEB EXEC Sample REXX commands to insert in virtual machine
PROFILE EXEC that will run MQSeries CGI (server,
workers, and so on)

MQMAIN HTML MQSeries base HTML file (it defines the frames)

MQINDEX HTML Top frame of the MQSeries page

MQSMBOT HTML Original bottom frame page

MQSMPUT HTML Put sample form

MQSMPUT CGI Sample CGI to put a message in an MQSeries queue,
discussed on page 115

MQSMGET CGI Sample CGI to get a message from an MQSeries queue,
discussed on page 118

MQSMBRW HTML Queue to browse a selection page

Appendix B. Contents of the Associated CDs 229

MQSMBRW CGI Sample CGI to browse MQSeries queue content, discussed
on page 119

MQSMCICS HTML Input form to enter a CICS command

MQSMCICS CGI Sample CGI to pass commands through the
MQSeries/CICS bridge, discussed on page 123

MQSMPIMS HTML Input form to enter a CICS command

MQSMPIMS CGI Sample CGI to pass commands through the MQSeries/IMS
bridge discussed in 4.9.1.11, “MQSeries/IMS Bridge” on
page 126

Tools (See 4.9.1.12, “MQSeries Bridge Tools” on page 127 for a
full list of MQSeries bridge tools)

CGI DIRMAP Web server control files for URL resolution and security

CGI FILELIST Web server control files for URL resolution and security

VMWEBSRV DIRMAP Web server control files for URL resolution and security

B.1.5 Java
• VM directory: VMWEBCD.UTILITIES.JAVA

PP HTML Sample HTML file to load sample applet

PPWINDOW CLASS Java class discussed on page 218

PPWINDOW JAVA Java code discussed on page 218

PPSELECT CLASS Java class discussed on page 221

PPSELECT JAVA Java code discussed on page 221

PPORDER CLASS Java class discussed on page 221

PPORDER JAVA Java code discussed on page 221

PPORD CGI CGI to process applet requests

PPLIST CLASS Java class discussed on page 220

PPLIST JAVA Java code discussed on page 220

PPDETAIL CLASS Java class discussed on page 221

PPDETAIL JAVA Java code discussed on page 221

PPACK CLASS Java class discussed on page 220

PPACK JAVA Java code discussed on page 220

PRODUCTS TXT Product list used by Pp applet

SOCKAPPL HTML Sample HTML file to load sample applet

SOCKAPPL CLASS Java class discussed on page 223

SOCKAPPL JAVA Java code discussed on page 223

SOCKSERV CLASS Java class discussed on page 223

SOCKSERV JAVA Java code discussed on page 223

CGI DIRMAP Web server control files for URL resolution and security

CGI FILELIST Web server control files for URL resolution and security

VMWEBSRV DIRMAP Web server control files for URL resolution and security

230 Web-Enabling VM Resources

B.1.6 Introductory Example

B.1.6.1 Program Materials
• VM directory: VMWEBCD.WEBSHARE.LEARN
• VM Web CD directory: \Learn

PHONET CGI Sample PHONE application for Webshare and
EnterpriseWeb/VM discussed on page 46

PHONET SVMEXEC Sample PHONE application for VM:Webgateway discussed
on page 46

PHONE1 CGI Sample PHONE application for Webshare and
EnterpriseWeb/VM discussed in section 3.1.2, “Sample CGI
Program” on page 22

PHONE1 SVMEXEC Sample PHONE application for VM:Webgateway discussed
in 3.1.3, “Sample CGI Program for VM:Webgateway” on
page 24

PHONE2 CGI Sample PHONE application for Webshare discussed in
3.3.2, “Enhancing Our Sample Program” on page 31

PHONE2 SVMEXEC Sample PHONE application for VM:Webgateway discussed
in 3.3.2, “Enhancing Our Sample Program” on page 31

PHONE2 EWEBCGI Sample PHONE application for EnterpriseWeb/VM supplied
by Beyond Software Inc. (similar to PHONE2 CGI except
that it does not support using an ISINDEX query to search)

PHONEBFS SVMEXEC Sample PHONE application for VM:Webgateway with the
program and the data stored in BFS discussed in 4.3,
“Byte File System” on page 81

HTTPISO EXEC Tools for conversion between HTTP and ISO format dates
discussed in section 3.4.3.2, “Converting Time Stamps in
REXX” on page 45

ISOHTTP EXEC Tools for conversion between HTTP and ISO format dates
discussed in section 3.4.3.2, “Converting Time Stamps in
REXX” on page 45

FOOTER HTMLPART Prototype HTML templates for CGIs in this section

PROLOG1 HTMLPART Prototype HTML templates for CGIs in this section

PROLOG2 HTMLPART Prototype HTML templates for CGIs in this section

UPDATEFM HTMLPART Prototype HTML templates for CGIs in this section

HOME HTML Sample “Home Page” HTML document

SELECT HTML HTML file referred to in 3.3.2, “Enhancing Our Sample
Program” on page 31

SRVPUSH SVMEXEC Sample of server push for VM:Webgateway discussed in
3.4.8, “Server Push” on page 53

SRVPUSH WRKEXEC Sample of server push for VM:Webgateway discussed in
3.4.8, “Server Push” on page 53

TEST CGI Copy of material from B.1.8, “Files from Web Server
Solutions for VM/ESA” on page 234

Appendix B. Contents of the Associated CDs 231

TEST SVMEXEC Copy of material from B.1.8, “Files from Web Server
Solutions for VM/ESA” on page 234

TIMEQRY WRKEXEC Sample of server push for VM:Webgateway, making use of
IUCV to display an RSCS response

UPDATE CGI The CGI called by the UPDATE HTML form discussed on
page 38 for Webshare

UPDATE HTML An update form for the PHONE sample application

UPDATE SVMEXEC The CGI called by the UPDATE HTML form discussed on
page 38 for VM:Webgateway

UPDATE EWEBCGI The CGI called by UPDATE HTML for EnterpriseWeb/VM
supplied by Beyond Software Inc. (similar to UPDATE CGI)

The CGI called by the UPDATE HTML form

UPDATECO CGI The sample CGI from “Writing Cookies” on page 49 for
Webshare

UPDATECO SVMEXEC The sample CGI from “Writing Cookies” on page 49 for
VM:Webgateway

UPDATECO EWEBCGI Sample program for EnterpriseWeb/VM supplied by
Beyond Software Inc. (similar to UPDATECO CGI)

UPDATEFM CGI The sample CGI from “Reading Cookies” on page 48 for
Webshare

UPDATEFM SVMEXEC The sample CGI from “Reading Cookies” on page 48 for
VM:Webgateway

UPDATEFM EWEBCGI Sample program for EnterpriseWeb/VM supplied by
Beyond Software Inc. (similar to UPDATEFM CGI)

UPDATEMD CGI A sample CGI for updating minidisk files

UPDATEMD HTML A sample CGI for updating minidisk files

CGI DIRMAP Web server control files for URL resolution and security

CGI FILELIST Web server control files for URL resolution and security

VMWEBSRV DIRMAP Web server control files for URL resolution and security

B.1.6.2 PHONE Data Files
• VM directory: VMWEBCD.WEBSHARE.DATA

PHONE DATA Data file read and updated by the sample programs

PHONE ORIGINAL Original version of the PHONE DATA file

B.1.7 Utilities

B.1.7.1 BookMaster to HTML Conversion Tools
• VM directory: VMWEBCD.UTILITIES.B2H

B2HFILTR REXX A VM:Webgateway filter demonstrating the use of B2H

B2H package A conversion utility for turning BookMaster documents into
HTML. It supports both real-time conversion (by use of a
CGI or filter such as B2HFILTR REXX) and batch
conversions (when invoked as an EXEC). It includes the
following files:

232 Web-Enabling VM Resources

• B2H ANNOUNCE
• B2H EXEC
• B2H HELPCMS
• B2H HTML
• B2H MVSCEXEC
• B2H NEWS
• B2H PACKAGE
• B2H PROFILE
• B2H SCRIPT
• B2H SEXEC
• B2H SYMBOLS
• B2H ZIPBIN
• B2HAPP SCRIPT
• B2HEXA SCRIPT
• B2HIBM FOOTER
• B2HINF SCRIPT
• B2HLINK GIFBIN
• B2HMSG SCRIPT
• B2HR2 HTML
• B2HSETUP SCRIPT
• B2HSYS SCRIPT
• B2HUSE SCRIPT
• B2HUSER EXEC
• B2HUSER SYMBOLS

B.1.7.2 BFSLIST
• VM directory: VMWEBCD.UTILITIES

BFSLIST package A FILELIST-like utility for BFS. It includes the following
files:

• $BFSEXEC XEDIT
• $BFSLIST XEDIT
• BFSLIST EXEC
• BFSLIST HELPCMS
• BFSLIST PACKAGE
• BFSTREE EXEC
• BFSTREE HELPCMS

B.1.7.3 Other Utilities
• VM directory: VMWEBCD.UTILITIES

TEST REXX Copy of material from B.1.8, “Files from Web Server
Solutions for VM/ESA” on page 234

HTTPISO EXEC Tools for conversion between HTTP and ISO format dates
discussed in section 3.4.3.2, “Converting Time Stamps in
REXX” on page 45

ISOHTTP EXEC Tools for conversion between HTTP and ISO format dates
discussed in section 3.4.3.2, “Converting Time Stamps in
REXX” on page 45

PHONE1 REXX A VM:Webgateway FILTER version of the PHONE
application provided in B.1.6, “Introductory Example” on
page 231

Appendix B. Contents of the Associated CDs 233

SYSDATA CGI Sample tool to create a page of information about the VM
system it is run on

SYSDATA REXX Sample tool to create a page of information about the VM
system it is run on

SYSDATA SVMEXEC Sample tool to create a page of information about the VM
system it is run on

TCPSNIFF EXEC Original TCP application debugging tool described in 3.6,
“Debugging Your CGI Programs” on page 57

TCPSNIFF REXX Original TCP application debugging tool described in 3.6,
“Debugging Your CGI Programs” on page 57

VMARCSFS EXEC Drives VMARC commands against an SFS directory tree
Type VMARCSFS ? for more information.

VMARC HELPCMS A data compaction and file archiving utility for VM/CMS

VMARC MODULE A data compaction and file archiving utility for VM/CMS

WEBSNIFF EXEC Enhanced TCP application debugging tool described in 3.6,
“Debugging Your CGI Programs” on page 57

WEBSNIFF REXX Enhanced TCP application debugging tool described in 3.6,
“Debugging Your CGI Programs” on page 57

B.1.8 Files from Web Server Solutions for VM/ESA
• VM directory: VMWEBCD.UTILITIES

TEST CGI A sample CGI that will operate on all three Web servers
documented in Web Server Solutions for VM/ESA,
SG24-4874. The sample program included can be used
much like the POSTTEST CGI program provided with
Webshare. When it is run, it displays:

• Any input values passed from the Web server
• All standard CGI environment variables
• Any additional environment variables provided by the

Web server
• Any other variables set by the program

TEST SVMEXEC A copy of TEST CGI with a changed file type

B.1.9 VM:Webgateway Tutorial
The VM:Webgateway Tutorial (VIG13TUT.PDF) is on CD1 in Acrobat Reader PDF
format. If you do not have Acrobat Reader installed on your PC, you can obtain
a free copy at

http://www.adobe.com/prodindex/acrobat/readstep.html

B.2 Files on CD2
This second CD contains Webshare 1.2.4, a shareware Web server for VM/ESA.

234 Web-Enabling VM Resources

B.2.1 Webshare
The following files are on CD2 (labeled Webshare 1.2.4):

CMSHTTPD VMARC Webshare freeware Web server in VMARC format.

README LIC Important Webshare license information see also
Appendix C, “Beyond Software Inc. Webshare - IBM
Disclaimer” on page 237.

BEYOND VMA CGI samples provided by Beyond Software Inc. for
EnterpriseWeb/VM in VMARC format.

This CD contains a copy of the actual Webshare code (CMSHTTPD.VMA in binary
format) and a README file (README.LIC in text format) with the license
conditions for installing and using this shareware program. See Appendix C,
“Beyond Software Inc. Webshare - IBM Disclaimer” on page 237 for more
license information. If you have not yet installed the VMARC MODULE on your
system, go to B.1, “Files on CD1” on page 227 for details on how to install
VMARC from CD1. To use the Webshare Web server:

 1. Upload the CMSHTTPD file in binary from CD2 to your VM system.

 2. Run the file through this pipeline to unblock the file:

PIPE < CMSHTTPD VMABBIN A | fblock 80 00 | > CMSHTTPD VMARCA F 80

 3. Unpack the resulting file using VMARC:

VMARC UNPK CMSHTTPD VMARC A

To use the Beyond Software Inc. provided CGI samples:

 1. Upload the BEYOND VMA file in binary from CD2 to your VM system.

 2. Run the file through this pipeline to unblock the file:

PIPE < BEYOND VMABIN A | fblock 80 00 | > BEYOND VMARC A F 80

 3. Unpack the resulting file using VMARC:

VMARC UNPK BEYOND VMARC A

B.3 Files Available on the World Wide Web
You will also find the VMWEBCD VMARC and ZIP files on the Web site

http://www.ibm.com/s390/vm/download/packages/

In addition, you will find several of these packages on the World Wide Web. In
particular, you can obtain the B2H and BFSLIST packages (and many other great
tools) from

http://www.ibm.com/s390/vm/

You can obtain Webshare from

http://www.beyond-software.com/

Appendix B. Contents of the Associated CDs 235

236 Web-Enabling VM Resources

Appendix C. Beyond Software Inc. Webshare - IBM Disclaimer

The Webshare program is owned by Beyond Software, Inc. and is distributed to
you by IBM ″AS IS″ and as a convenience to you only, WITHOUT WARRANTIES
OF ANY KIND.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE EXCLUDED,
IBM MAKES NO WARRANTIES OR CONDITIONS EITHER EXPRESSED OR
IMPLIED, INCLUDED WITHOUT LIMITATION, THE WARRANTY OF
NON-INFRINGEMENT AND THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING WEBSHARE. IBM
MAKES NO WARRANTY REGARDING THE CAPABILITY OF WEBSHARE TO
CORRECTLY PROCESS, PROVIDE AND/OR RECEIVE DATE DATA WITHIN AND
BETWEEN THE 20TH AND 21ST CENTURIES.

IBM WILL NOT BE LIABLE FOR ANY DIRECT OR INDIRECT DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST SAVINGS, OR ANY
INCIDENTAL, SPECIAL OR OTHER ECONOMIC CONSEQUENTIAL DAMAGES, IN
CONNECTION WITH YOUR USE OF WEBSHARE, EVEN IF IBM IS INFORMED OF
THEIR POSSIBILITIES

 NOTICE

You accept this Software with the understanding that Beyond Software
Incorporated makes no representations or warranties as to the suitability of
the Software for your particular purpose, and that to the extent you use or
implement this Software in your own setting, you do so at your own risk. In
no event will Beyond Software Incorporated be liable for any direct loss and
damages, or any damages whether consequential, incidental, or special,
arising out of the use of or inability to use the material provided. Please
read the LICENSE which follows to determine if you want to use this
Software. * Copyright Beyond Software Incorporated, 1997, All rights
reserved.

IF YOU DOWNLOAD OR USE THIS SOFTWARE YOU AGREE TO THESE TERMS

Beyond Software Incorporated grants you a license to use the Software only in
the country where you acquired it. The Software is copyrighted and licensed
(not sold). We do not transfer title to the Software to you. You obtain no rights
other than those granted you under this license.

Under this license, you may:

• Use the Software on one or more machines at a time.

• Make copies of the Software for use or backup purposes within your
enterprise.

• Modify the Software and merge it into another program.

You must reproduce the copyright notice and any other legend of ownership on
each copy or partial copy of the Software.

You may NOT:

 Copyright IBM Corp. 1999 237

• Reverse assemble, reverse compile, or otherwise translate any program
contained within the Software.

• Post modified versions of this material for public access.

• Sublicense, assign or transfer the license to the Software or accompanying
documentation. Any attempt otherwise to sublicense, assign or transfer any
of the rights, duties or obligations hereunder is void.

We do not warrant that the Software is free from claims by a third party of
copyright, patent, trademark, trade secret, or any other intellectual property
infringement.

Under no circumstances are we liable for any of the following:

 1. Third-party claims against you for losses or damages

 2. Loss of, or damage to, your records or data.

 3. Economic consequential damages (including lost profits or savings) or
incidental damages, even if we are informed of their possibility.

Some jurisdictions do not allow these limitations or exclusions, so they may not
apply to you.

We do not warrant uninterrupted or error free operation of the Software. We
have no obligation to provide service, defect correction, or any maintenance for
the Software. We have no obligation to supply any Software updates or
enhancements to you even if such are or later become available.

IF YOU DOWNLOAD OR USE THIS SOFTWARE YOU AGREE TO THESE
TERMS.THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE

Some jurisdictions do not allow the exclusion of implied warranties, so the above
exclusion may not apply to you.

If you make comments and suggestions (collectively called ″Feedback″) relating
to your use of the Software, you grant Beyond Software Incorporated a
non-exclusive, royalty-free, irrevocable, unrestricted and world-wide license to
use, have used and make copies in case of documents, such Feedback in any
manner as Beyond Software Incorporated determines, including use of
Feedback in the development, manufacture, marketing and maintenance of
products and services incorporating such feedback by Beyond Software
Incorporated.

You may terminate this license at any time. We may terminate this license if you
fail to comply with any of its terms. In either event, you must destroy all your
copies of the Software.

You are responsible for the payment of any taxes resulting from this license.

If any provision of this Agreement is held to be unenforceable, such provision
shall be reformed only to the extent necessary to make it enforceable. This
Agreement shall be governed by California law (except for conflict of law
provisions). The application the United Nations Convention of Contracts for the
International Sale of Goods is expressly excluded.

238 Web-Enabling VM Resources

Should you have any questions concerning this Agreement, you may contact
Beyond at:

Beyond Software Incorporated
1040 East Brokaw Road
San Jose, California 95131-2309
U.S.A.
Phone: 408-436-5900

Fax: 408-436-5915
E-mail: info@beyond-software.com

Appendix C. Beyond Software Inc. Webshare - IBM Disclaimer 239

240 Web-Enabling VM Resources

Appendix D. Special Notices

This publication is intended to help system programmers and application
programmers to Web-enable existing data and applications and also design new
applications for the Web. The information in this publication is not intended as
the specification of any programming interfaces that are provided by VM/ESA or
any of the Web servers.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

 Copyright IBM Corp. 1999 241

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

ACF/VTAM BookMaster
C/VM CICS
CICS/ESA CICS/MVS
CICS/VSE Client Access
DB2 DB2 Universal Database
Distributed Relational Database
Architecture

DRDA

eNetwork Enterprise Systems Architecture/390
IBM IMS
IMS/ESA Language Environment
MQ MQSeries
MQSeries Three Tier MQWare
MVS/ESA NetRexx
OfficeVision OfficeVision/VM
OpenEdition OS/2
OS/390 Presentation Manager
PROFS QMF
RACF S/390
SQL/DS SupportPac
System/390 VisualAge
VisualGen VM/ESA
VSE/ESA VTAM
C+ + /VM

242 Web-Enabling VM Resources

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 247.

• Web Server Solutions for VM/ESA, SG24-4874-01

• Exploiting Recent CMS Function: A User′s Guide to CMS Application
Multitasking, SG24-5164

• VM/ESA Network Computing with Java and NetRexx, SG24-5148

• OpenEdition for VM/ESA Implementation and Administration Guide,
SG24-4747

E.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

E.3 Other IBM Publications
This publication is also relevant as a source of further information:

• VM/ESA CMS Application Development Guide, SC24-5761

• MQSeries: Technical Reference, SC33-0850

• MQSeries: Application Programming Reference, SC33-1673

• MQSeries: Application Programming Guide, SC33-0807

• MQSeries Clients, GC33-1632

• MQSeries for MVS/ESA System Management Guide, SC33-0806

• DB2 for VM V5R1 Interactive SQL Guide and Reference, SC09-2409

• IMS/ESA V6 OTMA Guide and Reference, SC26-8743

• VM/ESA Planning and Administration V2R3.0, SC24-5750.

 Copyright IBM Corp. 1999 243

E.4 External Publications
• HTML Sourcebook, Third Edition, ISBN: 0-471-17575-7

• HTML: The Definitive Guide, ISBN: 1-56592-492-4

• HTML, JAVA, CGI, VRML, SGML Web Publishing , ISBN: 1-56592-492-4

• VM:Webgateway Tutorial, which comes with VM:Webgateway and is also
available on our associated CD (see B.1.9, “VM:Webgateway Tutorial” on
page 234 for more information)

E.5 Web Sites
• VM/ESA Operating System Home Page

http://www.ibm.com/s390/vm/

• The Internet Engineering Task Force (IETF) Home Page

http://www.ietf.org/

There you will find links to all of the Internet standards, experimental and
informational RFCs and draft documents of proposed Internet standards.
Documents of interest include:

− RFC 1945 - Hypertext Transfer Protocol -- HTTP/1.0
− RFC 2068 - Hypertext Transfer Protocol -- HTTP/1.1
− RFC 1866 - Hypertext Markup Language - 2.0
− RFC 1867 - Form-based File Upload in HTML
− RFC 1942 - HTML Tables
− RFC 1980 - A Proposed Extension to HTML: Client-Side Image Maps
− RFC 1738 - Uniform Resource Locators (URL)
− RFC 1630 - Universal Resource Identifiers (URI)
− RFC 1808 - Relative Uniform Resource Locators

• An Introduction to Writing Webshare CGI Scripts

http://www.beyond-software.com/Products/Presentations/Webshare/WebshareCGIs.html

• The WWW Common Gateway Interface Version 1.1

http://www.ics.uci.edu/pub/ietf/http/related/draft-robinson-www-interface-01.txt

• Drop in for a visit at Melinda Varian′s home page at the following location.
There you will find many links and information concerning REXX and
Pipelines

http://pucc.princeton.edu/˜Melinda/

• Internet Software for VM page. It is provided by the Beyond Software
Corporation at URL:

http://www.beyond-software.com/Software/Software.html

• Further information about Beyond Software Inc. and EnterpriseWeb/VM is
found on the Web at the following address:

http://www.beyond-software.com

• VM and the Internet page. Contains articles, transcripts, helpful links, and
product information

http://www.vm.sterling.com/general/documents/webindex.html

• For further information about Sterling Software, Inc., the VM Software
Division, and VM:Webgateway, go to:

244 Web-Enabling VM Resources

http://www.sterling.com/
http://www.vm.sterling.com/

Be sure to also refer to 5.10, “References” on page 154 and 6.6, “References”
on page 183 for additional reference sources.

Appendix E. Related Publications 245

246 Web-Enabling VM Resources

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROMs redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks
site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters
will be published this way. The intent is to get the information out much quicker than the formal publishing
process allows.

• E-mail Orders

Send orders via e-mail including information from the redbook fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
for customers may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/.

IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may also view redbook, residency and
workshop announcements at http://inews.ibm.com/.

In United States: e-mail address: usib6fpl@ibmmail.com
Outside North America: Contact information is in the ″How to Order″ section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU
Outside North America Country coordinator phone number is in the ″How to Order″ section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America Fax phone number is in the ″How to Order″ section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

 Copyright IBM Corp. 1999 247

IBM Redbook Fax Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

248 Web-Enabling VM Resources

List of Abbreviations

ACL access control list

ANSI American National Standards
Institute

APA all points addressable

ASCII American National Standard
Code for Information
Interchange

AWT Abstract Windowing Toolkit

CERN Conseil Europeen pour la
Recherche Nucleaire
(European organization for
nuclear research)

CGI Common Gateway Interface
(programs that provide
services on the WWW)

CICS customer information control
system (software, IBM)

CMS conversational monitor
system (VM-based software,
IBM)

CP control program

CPU central processing unit

CRLF carriage return/l ine feed

DASD direct access storage device

DNS domain name service

DPL distributed program link

EBCDIC extended binary coded
decimal interchange code

ESM external security manager
(VM/CMS SFS authorization
exits)

FTP f i le transfer protocol

GIF graphic interchange format

GML generalized markup language
(text format language)

GMT Greenwich mean time, also
known as UTC

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

IBM International Business
Machines Corporation

ID identif ication/identif ier

IDE Integrated Development
Environment

IETF Internet Engineering Task
Force

I/O input/output

IP Internet Protocol (ISO)

IPL init ial program load

ISO International Standards
Organization

ITSO International Technical
Support Organization

IUCV inter-user communication
vehicle

JPEG Joint Photographic Experts
Group (CCITT/ISO, multimedia
standards)

JDK Java Developer Kit

JIT Just In Time compiler

JVM Java Virtual Machine

MIME Multipurpose Internet Mail
Extensions (RFC 1341)

MPEG Moving Pictures Experts
Group (CCITT/ISO, multimedia
standards)

MQMD MQSeries message descriptor

NCSA The National Center for
Supercomputing Applications
at the University of Ill inois at
Urbana-Champaign

NFS network file system (USA,
Sun Microsystems Inc.)

OV OfficeVision product

PROFS Professional Office System

RACF resource access control
facil ity

REXX restructured extended
executor language

RFC Request for Comment

RSA Rivest-Shamir-Adleman
algorithm (cryptograph,
named after Ronald Rivest,
Adi Shamir and Leonard
Adleman)

RSCS remote spooling
communications subsystem
(VM ′s counterpart to MVS
JES NJE)

SCIF single console image facility

SFS shared file system
(hierarchical sharable
VM/CMS file system)

 Copyright IBM Corp. 1999 249

SGML standard generalized mark-up
language (ISO 8879)

SHARE an association of IBM
engineering/scientif ic
customers with large
computing systems

SSI server side include

SSL Secure Sockets Layer

SVM Service Virtual Machine (a
server)

TCP Transmission Control Protocol
(USA, DoD)

TCP/IP Transmission Control
Protocol/Internet Protocol
(USA, DoD, ARPANET;
TCP=layer 4, IP=layer 3,
UNIX-ish/Ethernet-based
system-interconnect protocol)

TCPIP Transmission Control Protocol
Internet Protocol

URL Uniform Resource Locator

UTC coordinated universal t ime,
also know as GMT

VM virtual machine (IBM System
370 & 390)

VM/CMS vir tual
machine/conversational
monitor system (IBM)

VM/ESA virtual machine/enterprise
systems architecture (IBM)

VMNFS virtual machine network fi le
system (see NFS)

VMTOOLS VM programs and tools
library (internal to IBM)

WAIS wide area information servers

WWW World Wide Web

W3C World Wide Web (WWW)
Consortium

250 Web-Enabling VM Resources

Index

Numerics
3270

applications 64
CICS transaction 125
design 64
full screen 65
MQSeries/CICS bridge 121
MQSeries/CICS bridge transaction flow 125

A
abbreviations 249
absolute path 193
Accept header field 11
Accept-Charset header field 11
Accept-Language header field 11
accountabil i ty

See also security
definit ion 133

acronyms 249
AMQOM 111
AMQTEXT 111
AMQTEXTA 111
AMQTEXTC 111
AMQTEXTL 111
Answer, the 131, 138, 157
Applet

definit ion 209
use 213

APPLET tag 215
application

command lines 64
concepts 61
distributed function 61
distributed presentation 61
full screen 65
interface 62
logic 63
moving to Web 64
remote presentation 61
scripting 67
styles 61
Web design 62
Web enabling 61

AUTH_TYPE variable 14
authentication

See also security
client 139, 140
definit ion 133
server 139

authorization 141
See also security
definit ion 133

Authorization header 150
Authorization header field 11

B
BFS

commands 195
creating directory 194
creating link 194
definit ion 81, 186
directory entries 188
enroll ing user 194, 195
erasing directory 194
index.htm 197
LOADBFS 192
overview 187
permissions 197
PTFs 188
root tree structure 194

BFSLIST 199
bibliography 243
browser

cache size 158
cache validation timing 158
caching 158
Caching Proxy Server 159
document caching 158
rendering t ime 160

Byte File System 81

C
CEDF 125
CERN/NCSA Common Log format 172, 180
CGI 5, 6

definit ion 9
GETVAR 28, 167
global variables 26
header 51
READ 39
standard 13
URLDECODE 31, 35, 39
WRITE DOCUMENT 25, 26

CGI environment variables 14, 26
AUTH_TYPE 14
CONTENT_LENGTH 14
CONTENT_TYPE 14, 16
GATEWAY_INTERFACE 14
H T T P _ < n a m e > 14, 57, 73, 170
HTTP_Accept_Charset 51
HTTP_Accept_Language 52
PATH_INFO 14, 16, 165
PATH_TRANSLATED 15, 16, 165
performance 167
QUERY_STRING 15, 16, 29, 31, 34, 142, 165

 Copyright IBM Corp. 1999 251

CGI environment variables (continued)
REMOTE_ADDR 15
REMOTE_HOST 15
REMOTE_IDENT 15
REMOTE_USER 15
REQUEST_METHOD 15, 30
SCRIPT_NAME 15
SERVER_NAME 15
SERVER_PORT 15
SERVER_PROTOCOL 15
SERVER_SOFTWARE 15
X _ < e x t e n s i o n > 27, 48, 71, 82
X_AUTH_VERIFIED 73
X_SCRIPT_NAME_TRANSLATED 29, 72

CGIUSERS 150
channel 111
character set 50
CICS

3270 transactions 125
bridge monitor 121
bridge task 122
CIH header 124
COMMAREA 121, 122
CorrelId 122, 124
documentation 120
DPL programs 121
EXEC 121
LINK 121
MQCIH 122
MQMD 122
MQSeries bridge 120
MQSeries bridge description 120
MQSMCICS CGI 123
MSGID 124
program 120
program name 122
ReplyToQ 124
scripting 75
Supportpac 120
tracing 125
transaction 120
vectors 125

class 209
client certif icate 159

See also security
CMS Pipelines 1
CMS Pipelines runtime library 30
code page 50
code page, table of 51
command environment 22
COMMAREA 122
Common Gateway Interface 6

See also CGI
confidentiality

See also security
definit ion 133

CONFIG CGIUSER 150

Content-Language Header 13
Content-Length Header 13, 162
Content-Type

header field 11
server direct ive 17

CONTENT_LENGTH variable 14
CONTENT_TYPE variable 14, 16
Cookie header field 11
Cookies 16, 18

D
D2W macro

empchg1 94
empchg3 99
empqry1 89
empqry2 98
empqry3 99
empqryc1 91
empqryc4 100

Date header 13
Date header field 11
DB2 World Wide Web Connection Version 1

%EXEC 99
content 88
demonstrat ion 97
description 86
flow 86
SHOWSQL 99
URL 88
Web 103

decoding 29
default user Web page directory 196
denial of service 143
desktop Web publishing

Microsoft FrontPage Express 206
needs 186
NetObjects Fusion 3.0 200
publish Web pages 185

directory entries
FTPSERVE 192
POSIXGROUP 192
User Entry 192
VMNFS 191
VMSERVR 189
VMSERVS 190, 191
VMSERVU 189

DIRMAP 143, 152
DNS

performance 181
security 138, 139

DRDA 110

E
e-business 2, 3
encoding 16, 29
EnterpriseWeb Vision 110

252 Web-Enabling VM Resources

EnterpriseWeb/VM global variables 27
EnterpriseWeb/VM, feature summary 131
environment 6
eweb.thread 27, 28
EWGET 31
Expires header 13, 46

F
feature summary 131
file pools

SFSTEST 190
VMSYS 188
VMSYSR 188
VMSYSU 188

Filepool Enroll user 195
Find_MQ_RC 120
FORM HIDDEN 18
FTP publishing Binary 185
full screen

3270 64
alternatives 65
application modification 65
screen scraping 65
scripting 73
tools 75
using Web terminals 65
VIG commands 73
VM:Webgateway CGI Extension mode 67

G
GATEWAY_INTERFACE variable 14
global variables 26
GLOBALV 116

H
headers

Accept 11
Accept-Charset 11, 51
Accept-Language 11, 52
Authorization 11, 150
Content-Language 13, 52
Content-Length 11, 13, 162
Content-Type 11, 13, 51
Cookie 11
Date 11, 13
Expires 13
Host 11
HTTP request 10, 11, 14, 73
HTTP response 13
If-Modified-Since 11, 57, 170
Last-Modified 13, 57, 170
Location 13
referer 144, 173
Response 12
Server 13
Set-Cookie 13

headers (continued)
User-Agent 11, 173

hidden fields 18
hidden input field 37, 41
Host header field 11
HTACCESS 143, 152
HTM 185

change type EnterpriseWeb/VM 196
change type VM:Webgateway Web Server Release

2.2 196
file type 186

HTML 4, 185
file type 186
FORM 29, 31, 35, 36, 37
FORM keyword CHECKED 37
FORM Method=GET 31, 142
FORM Method=POST 35, 36, 37, 142
FORM TYPE HIDDEN 37
FORM TYPE RADIO 37
FORM TYPE RESET 37
FORM TYPE SUBMIT 37
FORM TYPE TEXT 37
IMG 168
IMG tag 162
IMG, HEIGHT attribute 162
IMG, WIDTH attribute 162
ISINDEX 16
ISMAP 168
POST 35, 36
RFC 6
tables, performance 161
USEMAP 168

HTMLA
DOS setup 200
file type 186
show DOS extension 200

HTMLBIN
DOS setup 200
file type 186
setting VM:Webgateway Web Server Release

2.2 196
show DOS extension 200

HTTP
_ < n a m e > v a r i a b l e 14, 57, 73, 170
description 9
FORM Method=GET 31, 142
FORM Method=POST 35, 36, 37, 142
GET method 10
POST 35, 36
POST method 11, 16
POST request 16
protocol 17
redirection 12
Request header 10
Request header fields 10, 11
Response header 12, 13
Response status codes 12
RFC 6

Index 253

HTTP (continued)
transaction logs 172, 180
Web browser 4

HTTP header
See headers

I
If-Modified-Since header 57, 170
IIH header 126
IMS

exerciser package 128
IIH header 126
MQSeries bridge description 126
OTMA 126

integri ty
See also security
definit ion 133

IP 5
ISINDEX 16, 29, 31, 33, 34, 35
ISMAP 29

J
Java

applet 209, 213
APPLET parameters 218
APPLET sample 217
APPLET sample objects 218
APPLET tag 215
archive fi le 209
browsers 211
class files 209
class loader 210
compilat ion environment 211
Developer Kit 209
development environment 211
distribution 214
EnterpriseWeb/VM 212
file name preservation 213
IBM JDK download page 213
implementat ion 211
introducing 209
IP socket applet 223
IP socket server 223
JDK 209, 211
JDK levels 212
JIT compilers 209
JVM 209
NetRexx 210
presentation 209
runtime environment 211
server 222
serving 212
threads 223
Virtual Machine 209
VisualAge 211
VM Web page 210
VM:Webgateway 213

Java (continued)
Webshare 212

JavaScript
avoiding 108
checking buttons 99
checking entry fields 100
considerations 97
converting to uppercase 100
resources 97
support 63
writing with OUTPUT 106
Yahoo page 97

JVM 209

L
Last-Modified header 13, 57, 170
line mode

commands 64
discussion 64
scripting 67
simple commands 64
VM:Webgateway CGI Extension 67
VM:Webgateway CGI Extension USER

commands 67
VM:Webgateway CGI Extension VIG commands 67

Location header 13
Location server directive 17

M
message 111
Microsoft FrontPage Express 206
Microsoft FrontPage Express, FTP publish 207
Microsoft FrontPage Express, NFS publish 206
MQRC_ENVIRONMENT_ERROR 120
MQRC_OBJECT_IN_USE 120
MQRC_TRUNCATED_MSG_ACCEPTED 120
MQRC_UNKNOWN_OBJECT_NAME 120
MQSeries

APAR 111
assembler TXTLIB 111
C header 111
C language TXTLIB 111
channel 111
CICS 120
CLOSE function 113
CMQCBC H 128
COBOL TXTLIB 111
common errors 119
CONNECT function 113
DISCONNECT function 113
error 2012 119
error 2042 120
error 2079 120
error 2085 120
GET function 113
IMS bridge 126
INIT function 113

254 Web-Enabling VM Resources

MQSeries (continued)
MACLIB 111
message 111
message text 120
MGET 127
MQ_PASSWORD variable 112, 113
MQ_User_ID variable 112, 113
MQCCSID variable 112
MQCHLTAB variable 112
MQCI_NEW_SESSION 124
MQGMO_NO_WAIT 119
MQSERVER variable 112, 113
MQSMCICS CGI 123
MQTRACE variable 112
MSGID 124
OPEN function 113
preparing demonstrat ion 128
presentation 110
product samples 111
PROGTSVM 127
PUT function 113
queue 111
queue manager 111
READIMSG 128
required information 113
REXX interface 111
sample 114
sample get 117
servers 111
settings 111
TERMINATE function 113
terms 111
tools 127
TXTLIB 111
use 113
VM documentation 111
VM implementat ion 111
waiting for messages 124

MQSMBRW 119
MQSMCICS CGI 123
MQSMGET 118
MQSMPIMS 126
MQSMPUT 115

N
National Language Support 50
NetObjects Fusion

FTP setup 201
FTP to BFS publish 203
NFS publish 202
NFS setup 201
trial product 200
trial version l imitations 201

NetRexx 210
Netscape Composer

FTP publishing 205
FTP setup 204
linking pages 203

Netscape Composer (continued)
NFS publishing 203
version 4.07 203

Network computing 4
Network File System (NFS)

client 198
client configuration 198
client install 198
client mount 199
directory entry 186
publish 202, 203, 206
publishing Binary 185
server 185
setup 201
VMNFS server 191

NLS 50

O
Office Vision/VM 110
OpenEdition 192
OpenEdition POSIX Terminology 193
OPENVM 195
OV/VM 110

P
path relative 193
PATH_INFO variable 14, 16, 165
PATH_TRANSLATED variable 15, 16, 165
path, absolute 193
path, defined 193
path, relative 193
path, special characters 194
pathname 193
PCNFSD 191
performance

accounting 182
active images 168
browser

cache size 158
cache validation timing 158
caching 158
caching proxy server 159
configuration 157
document caching 158
progress messages 162
rendering t ime 160

buffering 167
CGI 159, 167, 169

environment variables 167
GETVAR 167

CPU 162, 165, 167
data analysis 172

accounting cards 173
console logs 172
HTML, HREF 161
HTTP logs 172, 180
IMG 161, 162, 168
ISMAP 168

Index 255

performance (continued)
data analysis (continued)

RTM VM/ESA 174
USEMAP 168
VM monitor data 174

denial of service 53, 143, 150, 171
DIRMAP 164
DNS 181
FILELIST 164
GIF 166
HTML

tables 161
HTTP logs 172, 180
I/O 169, 176
imagemap 168
images 168
JPEG 166
MPEG 166
perceptions 161, 167
REXX Compiler 163
serialization 170
SSI 165, 170
SSL 159, 160

client certif icate 159, 160
session reconnection 159, 160

static documents 165
storage size 177, 178
storage uti l ization 171
TCP/IP 175
tuning 176, 177, 178

accounting 182
EnterpriseWeb/VM 178, 180
I/O 176
storage size 177, 178
SVM configuration 180
SVM count 178
VM 175
VM:Webgateway 181
worker count 178

URL resolution 164
user ID synchronous operations 171
VM TCP/IP server 175
VM tuning 175
VM:Webgateway 167, 178
what to optimize 157

performance issues 157
PIPE 1
POST method 11
POSTTEST CGI 37
product levels 6
programming skil l 1
PTFs and fixes 6

Q
query string 16, 18, 29
QUERY_STRING variable 15, 16, 29, 31, 34, 142, 165
queue 111

browsing 119

queue (continued)
closing 113
definit ion 111
getting message from 113
manager 111
opening 113
putting message 113

queue manager 111

R
REALM 69
Referer header 144, 173
relative path 36, 193
REMOTE_ADDR variable 15
REMOTE_HOST variable 15
REMOTE_IDENT variable 15
REMOTE_USER variable 15
Request header 10
Request header fields 10, 11
REQUEST_METHOD variable 15, 30
Response header 12
response status line 12
REXX 1
REXX compiler

IBM REXX/370 163
VM:ProRexx 163
VRXUTIL 163

REXX SQL
description 103
preparing demonstration 109
presentation 103
sample 103

RFC 6
RXMQV 111, 112

S
S/390 availability 2
S/390 scalability 2
SCRIPT_NAME variable 15
security 131

accountabil i ty 133, 134
ACI group 144
active attacks 132
answers 154
authentication 133, 134, 139
authorization 133, 134, 141
browser user view 136
CGI 141, 142
CGIUSER 150
client certif icate 144, 146
concepts 131
confidentiality 133, 134
data access 148, 150
data validity 142
denial of service 132, 143, 150, 154
DNS 140, 144

name 138, 139

256 Web-Enabling VM Resources

security (continued)
exits 144
file ID 144
files 148
firewall systems 153
five basic components 133
form data validity 142
HTTP method 144
integri ty 133, 134
IP 140, 144

address 138, 139
issue cross-reference 134
issues 131
JavaScript 137
objective 131
passive attacks 132
password files 150
profi les 143, 152
questions 154
Referer 144
resource reuse 144
social engineering attacks 132
SSL 140, 146
SYSADMIN 144
SYSOPER 144
trust 142
types of attacks 132
user ID 144
user-written exit 144
VM privilege class 147
Webshare 152
what data to secure 135

server directives 17
Server header 13
server push 53
SERVER_NAME variable 15
SERVER_PORT variable 15
SERVER_PROTOCOL variable 15
SERVER_SOFTWARE variable 15
Set-Cookie header 13
SFS

creating alias 194
creating directory 194
desktop publishing 186
enroll ing user 194
erasing directory 194

SSI, performance 165
SSL 146, 159

See also security
client certif icate 140, 144, 146, 159, 160
performance 159, 160
session 159, 160

standards 6
stateless protocol 17
status line 12
status server directive 17

T
TEST CGI 37
thread 18, 27
TRANSLATE option 39
translation 39

U
URL encoding 16
URLDEBLOCK 30, 34
User-Agent header 173
utility POSTTEST CGI 37

V
VIG commands

full screen 73
line mode 67
tools 75

VIG session
commands 74
CREATE 74, 75
DESTROY 74, 75
ENTER 75
FIELD 74, 75
PRESS 74
WAIT 74

VIG tools
64DECODE 76
64ENCODE 75
description 75
DIALVTAM 76
HTMLSAFE 76
SUBSTITUTE 76
trace 80
USERPASS 76
VMLOGON 76
WEBENABL 77

VIG user
ABEND 67
commands 67
CONNECT 67, 71
ENTER 67, 71
RELEASE 68
RESERVE 68
VIG_USER_OUTPUT 68, 71
VIG_USER_RETCODE 71
WAITINIT 68

VIG_USER_OUTPUT 71
VIG_USER_RETCODE 71
VIGUSER module 68
VisualAge 211
VM resource 1
VM strengths 1
VM:Webgateway CGI environment 24
VM:Webgateway CGI Extension

description 66
full screen scripting 73

Index 257

VM:Webgateway CGI Extension (continued)
l ine mode example 68
line mode scripting 67
preparing demonstration 80
presentation 66
tools 75
VIG commands

See VIG commands
VIG session

See VIG session
VIG tools

See VIG tools
VIG user

See VIG user
WEBENABL 77

VM:Webgateway default user Web page
directory 197

VM:Webgateway global variables 28
VM:Webgateway OfficeVision Interface 110
VM:Webgateway worker 18, 141, 143, 145, 147, 148,

149, 151, 152, 167, 170, 177, 178
VM:Webgateway, default user Web page

directory 196
VM:Webgateway, feature summary 131
VM61665 111

W
Web

application 54
browser 4
transaction 18
transaction processing 17

Webshare
feature summary 131
 global variables 26
security 152

X
X_SCRIPT_NAME_TRANSLATED 29

258 Web-Enabling VM Resources

ITSO Redbook Evaluation

Web-Enabling VM Resources
SG24-5347-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and Fax it to: USA International Access Code + 1 914 432 8264 or:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
__Customer __Business Partner __Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1999 259

SG24-5347-00
Printed in the U.S.A.

W
eb-E

nabling V
M

 R
esources

SG
24-5347-00IBM

	Web-Enabling VM Resources
	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	How Difficult Is Web Programming?
	Web Programming on VM
	VM for e- business
	Levels
	The Network Computing Environment
	How the World Wide Web Works
	Assumptions
	Environment
	Standards
	Summary

	Chapter 2. Introduction to Common Gateway Interface Programming
	The Common Gateway Interface
	HTTP
	Request Header
	Response Header
	CGI Standard
	CGI Environment Variables
	Sending Data to a CGI Program
	Encoding
	Sending Data from a CGI Program to the Client
	Characteristics of Web Transaction Processing
	Creating a Web Transaction
	Summary

	Chapter 3. CGI Programs on VM/ESA
	A CGI Program Example
	Sample HTML and Data Files
	Sample CGI Program
	Sample CGI Program for VM: Webgateway
	Fetching CGI Global Variables
	Webshare Global Variables
	EnterpriseWeb/ VM Global Variables
	VM: Webgateway Global Variables
	Receiving User Input
	Using the Query String
	Enhancing Our Sample Program
	Using a FORM with POST
	Server Directives and Headers
	Sending Header Fields
	Reading Header Fields
	Making Efficient Use of the Browser s Cache
	Examples of Reading and Writing Headers
	Using Cookies
	National Language Considerations
	Serving HTML Directives as Data
	Server Push
	Filter Programming
	A Filter Example
	Processing SCRIPT Files
	Debugging Your CGI Programs

	Chapter 4. Web Access to Applications and Business Data
	Useful Concepts
	Designing Applications for the Web
	Moving an Existing Application to the Web
	Applications and Command Lines with Line Mode Output
	3270 Full Screen
	Screen Scripting with VM: Webgateway CGI Extension
	VM: Webgateway CGI Extension Description
	VM: Webgateway CGI Extension Line Mode Support
	VM: Webgateway CGI Extension Full Screen Support
	Programmer Productivity Tools
	Using the WEBENABL Tool
	Byte File System
	Shared File System
	CMS Minidisks
	DB2 Databases
	DB2 World Wide Web Connection Version 1
	REXX SQL
	DRDA - VSE Guest Sharing
	Office Vision/ VM
	VM: Webgateway OfficeVision Interface
	EnterpriseWeb Vision
	BookMaster
	MQSeries

	Chapter 5. Security Issues
	Security Concepts
	Types of Attacks
	Five Basic Components of Security
	What Data to Secure
	Security Issues on the Browser
	JavaScript
	Can You Trust the Displayed Information in a Frame
	Can You Trust an IP Address or DNS Name
	Client and Server Authentication
	Security for Application Writers
	Authorization
	Do Not Trust Incoming Data Validity
	Forms: Get or Post
	Denial of Service
	Setting Security Profiles for URL Trees
	Reentrant and Serially Reusable Resources and CGIs
	Security Issues for Web Server Administrators
	Secure Sockets Layer (SSL)
	Are Your CGIs Safe
	Restricting the Ability to Run CGIs
	VM: Webgateway s SVMWEBSHARE CGI Environment
	Webshare and Security
	Initial Access Control Conditions
	Additional Server Configuration Suggestions
	Security for Network Programmers
	Firewall Systems
	Ensure Server on TCP Port Is the Web Server
	Security Summary
	References

	Chapter 6. Performance Issues
	What to Optimize
	Performance Issues of Browser Configuration
	Browser Document Caching
	Browser Use of a Caching Proxy Server
	Performance Issues for Application Writers
	Performance Implications of SSL
	Reducing Browser Rendering Time
	Reducing Web Server CPU
	Reduce CGI s I/ O
	Reduce Amount of Data Sent to the Browser
	Serializable Server Resource Access
	Reduce CGI s Storage Needs
	Performance Issues for Web Server Administrators
	Install Most Recent Software Levels
	Performance Data Analysis
	VM Tuning Knobs for Service Virtual Machines
	Tune Your I/ O Systems, Especially SFS
	Tuning the Web Server s Virtual Storage Size
	Tuning the Number of Servers and Workers
	Web Server SVM Configuration
	DNS Impacts on Web Server Performance
	Accounting Card Generation Cost
	Performance Summary
	References

	Chapter 7. Desktop Web Publishing to VM Web Servers
	Summary of Steps Needed for Publishing
	Overview of the BFS
	Directory Entries
	Standard File Pools
	Test File Pool
	VMNFS
	Added Directory Statements
	OpenEdition and OpenEdition Shell and Utilities
	POSIX Terminology
	Some Common SFS and BFS Commands
	ENROLL User in a File Pool
	Mount a User File Space over a Directory
	Changing the HTM File Type
	VM: Webgateway BFS Access Setup
	EnterpriseWeb/ VM SFS Access
	NFS Client
	Set Up htmlbin or htmla
	Show DOS Extensions
	NetObjects Fusion 3.0
	Trial Version Publishing Limitations
	NetObjects Fusion NFS Setup
	NetObjects Fusion FTP Setup
	NetObjects Fusion NFS Publishing
	NetObjects Fusion FTP to BFS Publishing
	Netscape Composer 4.07
	Netscape Composer NFS Publishing
	Netscape Composer FTP Setup
	Netscape Composer FTP Publishing
	Microsoft FrontPage Express
	Web Publishing Wizard

	Appendix A. Java
	A. 1 Presentation
	A.2 Implementation Considerations
	A.2.1 JDK Levels
	A. 2.2 Serving Java Code from VM Web Servers
	A.3 Applets
	A.4 Java Servers
	A.5 A Rising New World

	Appendix B. Contents of the Associated CDs
	B. 1 Files on CD1
	B. 1.1 URL Root for the VM Web CD
	B. 1.2 VM: Webgateway CGI Extension Sample
	B. 1.3 Database
	B. 1.4 MQSeries
	B. 1.5 Java
	B. 1.6 Introductory Example
	B. 1.7 Utilities
	B. 1.8 Files from Web Server Solutions for VM/ ESA
	B. 1.9 VM: Webgateway Tutorial
	B. 2 Files on CD2
	B. 2.1 Webshare
	B. 3 Files Available on the World Wide Web

	Appendix C. Beyond Software Inc. Webshare - IBM Disclaimer
	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD- ROMs
	E.3 Other IBM Publications
	E.4 External Publications
	E.5 Web Sites

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	Numerics
	B
	A
	C
	D
	E
	F
	G
	H
	I
	L
	J
	M
	O
	P
	N
	R
	S
	Q
	T
	U
	V
	W
	X
	ITSO Redbook Evaluation

