
IBML

Exploiting Recent CMS Function:
A User′s Guide to CMS Application Multitasking

Perry Ruiter ** Holger Woller

International Technical Support Organization

http://www.redbooks.ibm.com

This book was printed at 240 dpi (dots per inch). The final production redbook with the RED cover will
be printed at 1200 dpi and will provide superior graphics resolution. Please see “How to Get ITSO
Redbooks” at the back of this book for ordering instructions.

SG24-5164-00

International Technical Support Organization

Exploiting Recent CMS Function:
A User ′s Guide to CMS Application Multitasking

November 1998

SG24-5164-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 105.

First Edition (November 1998)

This edition applies to Virtual Machine/Enterprise Systems Architecture (VM/ESA), Version 2 Release 3.0, Program
Number 5654-030, and subsequent releases. As noted in the text, however, the vast majority of the material is
equally applicable to all releases of VM/ESA supported at the time the book is written.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . v

Tables . vii

Preface . ix
The Team That Wrote This Redbook . ix
Comments Welcome . x

Chapter 1. Introduction . 1
1.1 Redbook Format . 1
1.2 The SG245164 Package of Sample Programs 2
1.3 Function Availability . 2
1.4 Required or Recommended Software Levels 2

Chapter 2. Enhancing Existing Applications with CMS MT Functions 5
2.1 Timer Services . 5
2.2 Queue Services . 6

2.2.1 CMS Requirements for Network Level Queues 6
2.2.2 Network Level Queue Examples . 7

2.3 Event Services . 16
2.3.1 Event Services Example . 16

2.4 Timer Services (revisited) . 19
2.5 Event Services (revisited) . 22

2.5.1 Replacing REXX/WAIT with Event Services 23

Chapter 3. Examples of Multithreaded Use . 29
3.1 Basic Idea Behind Multithreaded Programs 29
3.2 Functions Available to Multihreaded Programs 30

3.2.1 ACCCHECK EXEC . 31
3.2.2 ACCCHECK MTREXX . 32

3.3 Synchronization of Multiple Threads . 41
3.4 Multiple Threads with Pipelines . 42
3.5 Message Support for Events . 43

3.5.1 PIPSIGMS MTREXX . 43
3.5.2 PROCMSG MTREXX . 45

3.6 Communication between Threads . 46
3.6.1 Communication through EventSignal 46
3.6.2 Communication through IPC . 47

3.7 Terminating Multithreaded Programs . 48
3.7.1 Terminating with a Termination Event 48
3.7.2 Terminating with EventMonitorDelete 48

Chapter 4. Sample Application IPGATE . 51
4.1 What is IPGATE? . 51
4.2 Defining IPGATE to Your System . 51
4.3 Configuration Files Used by IPGATE . 52

4.3.1 IPGATE RESOURCE . 52
4.3.2 IPGATE USERMAP . 53

4.4 Files to Install on IPGATE . 53
4.5 Program Description of IPGATE . 54
4.6 The Actual IPGATE Code . 55

 Copyright IBM Corp. 1998 iii

4.6.1 PROFILE EXEC . 55
4.6.2 IPGATE EXEC - the Startup Program . 55
4.6.3 IPGATE1 MTREXX - the Initial Thread and Console Handler 56
4.6.4 IPGATE1L MTREXX - Listens on Incoming TCP Requests 59
4.6.5 IPGATE1Y MTREXX - Handles APPC (CPI-C) Requests from User . . 61
4.6.6 IPGATE1I MTREXX - Works with Incoming TCP Sessions 73
4.6.7 IPGATE1W MTREXX - Monitors APPC Requests for a Resource . . . 86
4.6.8 IPGATE Subroutines . 88

Appendix A. Supplementary Information on System Defined Events 95
A.1 System Event Characteristics . 95
A.2 System Event Signal Data/Key Information 96
A.3 VMCONINPUT versus VMCON1ECB . 96
A.4 VMSOCKET Signal Data . 97

Appendix B. Supplementary Information for REXX Programmers 99
B.1 ThreadDelete Caution . 99
B.2 APILOAD Caution . 99
B.3 Constants on CSL Calls . 99
B.4 RXSOCKET must be at Level 3.02 . 100
B.5 Multithreaded Debugging Strategies . 100

Appendix C. Supplementary Information for Assembler Programmers . . . 103
C.1 CSL Call Choices . 103
C.2 Binding Files . 103

Appendix D. Special Notices . 105

Appendix E. Related Publications . 107
E.1 International Technical Support Organization Publications 107
E.2 Redbooks on CD-ROMs . 107
E.3 Other Publications . 107

How to Get ITSO Redbooks . 109
How IBM Employees Can Get ITSO Redbooks 109
How Customers Can Get ITSO Redbooks . 110
IBM Redbook Order Form . 111

Glossary . 113

List of Abbreviations . 123

Index . 125

ITSO Redbook Evaluation . 127

iv User ′s Guide to CMS Application Multitasking

Figures

 1. Using ThreadDelay to Delay Execution . 5
 2. Network Level Queues, Data Collection Overview 8
 3. Data Collection, Server Code . 8
 4. Data Collection, Client Code . 9
 5. Network Level Queues, Client/Server Overview 11
 6. Client/Server, Server Code . 11
 7. Client/Server, Client Code . 13
 8. Wait for Console Input using Event Services Overview 17
 9. Wait for Console Input using Event Services Code 17
10. Event and Timer Combined Use Overview 19
11. Event and Timer Combined Use Code . 20
12. Replacing REXX/WAIT with Event Services 23
13. REXX Sockets, Console and Timer Event Example 24
14. Multithreaded Server Scheme . 29
15. SFS Test . 30
16. ACCCHECK EXEC . 31
17. ACCCHECK MTREXX . 32
18. Pausing Threads with Semaphores . 41
19. Synchronizing Threads with Semaphores 41
20. Signaling Messages through Pipelines . 42
21. Format of Signaled Messages . 43
22. PIPSIGMS MTREXX . 44
23. PROCMSG MTREXX . 45
24. EventSignal with Different Events . 46
25. EventSignal with Different Event Keys . 46
26. Communication through QueueReceiveImmed 47
27. Communication through QueueReceiveBlock 47
28. Terminating with a Termination Event . 48
29. Terminating with EventMonitorDelete . 49
30. Actual Code to Stop All Threads . 50
31. IPGATE Sample Directory Entry . 51
32. IPGATE RESOURCE File Layout . 52
33. IPGATE USERMAP File Layout . 53
34. IPGATE Program Logic . 54
35. Sample PROFILE EXEC of IPGATE . 55
36. IPGATE EXEC . 55
37. IPGATE1 MTREXX . 56
38. IPGATE1L MTREXX . 59
39. IPGATE1Y MTREXX . 61
40. IPGATE1I MTREXX . 73
41. IPGATE1W MTREXX . 86
42. IPGATE Subroutine MT_Init . 88
43. IPGATE Subroutine EventCreate . 88
44. IPGATE Subroutine EventDelete . 89
45. IPGATE Subroutine EventRetrieve . 89
46. IPGATE Subroutine EventWait . 89
47. IPGATE Subroutine EventMonitorCreate 90
48. IPGATE Subroutine EventMonitorDelete 91
49. IPGATE Subroutine EventMonitorReset . 91
50. IPGATE Subroutine IdentifyResourceManager 91
51. IPGATE Subroutine TerminateResourceManager 91

 Copyright IBM Corp. 1998 v

52. IPGATE Subroutine ThreadDelay . 92
53. IPGATE Subroutine ThreadDelete . 92
54. IPGATE Subroutine ThreadGetID . 92
55. IPGATE Subroutine ThreadSetPriority . 92
56. IPGATE Subroutine ThreadYield . 93
57. IPGATE Subroutine TimerStartInt_Single 93

vi User ′s Guide to CMS Application Multitasking

Tables

 1. System Event Characteristics . 95
 2. System Event Key Information . 96

 Copyright IBM Corp. 1998 vii

viii User ′s Guide to CMS Application Multitasking

Preface

CMS Application Multitasking has been an integral part of CMS since CMS level
9 (VM/ESA Version 1 Release 2.0); however, many CMS programmers,
particularly REXX programmers, have not yet learned how to take advantage of
the highly significant and useful functions, such as event, queue and timer
services, that this suite of APIs provides. The reasons that these functions are
often overlooked, even by experienced CMS developers, are varied but include:

• user group presentations about the capabilities have generally focused on
writing servers

• the belief that these functions are useful only for multitasking applications
• perceived difficulty using CSLs, especially from REXX

The intent of this redbook is to provide an approachable, introductory user′s
guide that addresses these concerns by offering both tutorial information on the
capabilities and useful sample programs that installations can readily adapt to
meet local needs. To insure that the information presented is accessable to the
widest possible audience, the examples provided are written in REXX. We
believe, however, that the information presented will also be useful to
developers writing in other languages. When you have finished reading this
material, you will be able to recognize where these APIs can be usefully applied,
both for enhancing existing applications or developing new ones, whether
multithreaded or not.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Poughkeepsie
Center.

Perry Ruiter works as a Senior Technical Analyst in the VM group at the
Government of the Province of British Columbia, Canada. He has worked
exclusively with VM for the last 13 years helping users exploit its capabilities.

Holger Woller is responsible for usage concepts in the WorldWide VM Team of
IBM. He has 10 years of experience in the VM area, including VM automation
and networking of all kinds. He can be reached at: Holger@vnet.ibm.com

The residency that produced this redbook was coordinated by:

Stephen Record
International Technical Support Organization, Böblingen Center

Thanks to the following people for their invaluable contributions to this project:

Jack Crast
IBM Endicott

Arty Ecock
City University of New York

Joe Melligan
IBM Endicott

 Copyright IBM Corp. 1998 ix

Steve Shultz
IBM Endicott

Brian Wade
IBM Endicott

Gudrun Wiedemann
International Technical Support Organization, Böblingen Center

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 127 to
the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com/
For IBM Intranet users http://w3.itso.ibm.com/

• Send us a note at the following address:

redbook@us.ibm.com

x User ′s Guide to CMS Application Multitasking

Chapter 1. Introduction

CMS application multitasking has been an integral part of CMS since CMS level
9 (VM/ESA Version 1 Release 2.0); however, many CMS programmers,
particularly REXX programmers, have not yet learned how to take advantage of
the highly significant and useful functions, such as event, queue and timer
services, that this suite of APIs provides. The reasons that these functions are
often overlooked, even by experienced CMS developers, are varied but include:

• user group presentations about the capabilities have generally focused on
writing servers

• the belief that these functions are useful only for multitasking applications

• perceived difficulty using CSLs, especially from REXX

The intent of this redbook is to provide an approachable, introductory user′s
guide that addresses these concerns by offering both tutorial information on the
capabilities and useful sample programs that installations can readily adapt to
meet local needs. To insure that the information presented is accessable to the
widest possible audience, the examples provided are written in REXX. We
believe, however, that the information presented will also be useful to
developers writing in other languages. When you have finished reading this
material, you will be able to recognize where these APIs can be usefully applied,
both for enhancing existing applications or developing new ones, whether
multithreaded or not.

1.1 Redbook Format
The tutorial information is presented in two parts. The first section introduces
some basic concepts relating to timers, queues, and events. As they are
introduced, these concepts are then reinforced with examples such as:

• using timers to wait for short periods of time

• using queues to communicate between user IDs

• using event services to wait for multiple events

• using event services to replace existing unsupported event handling (for
example, REXX/WAIT)

The second section focuses on using CMS′s support for multiple threads. Two
areas of use are explored: first, the use of multiple threads to solve problems
that might be difficult to solve in a single threaded environment; and second, the
use of threads to construct servers.

Many services provided by CMS are MT aware and thread safe. Thread safe
means those portions of CMS utilize a unique work area for each thread of
execution. MT aware means when such services must wait, they use a
mechanism that blocks only the executing thread and not the entire virtual
machine.

We then describe a sample multithreaded server written in REXX that exploits
two pieces of CMS that are thread safe and MT aware, REXX sockets and CPI-C
support. It illustrates how quickly and easily multithreaded servers, supporting
multiple concurrent users, can be constructed in REXX on CMS.

 Copyright IBM Corp. 1998 1

1.2 The SG245164 Package of Sample Programs
All of the programs developed during the residency and described in this
redbook are available in the VM/ESA Download Library, located on the World
Wide Web at URL http://www.vm.ibm.com/download/, in the SG245164 package.
Included, as you will discover as you continue your reading of this redbook, are
both a collection of relatively small, illustrative examples of CMS Application
Multitasking programming techniques and a large, complete, multithreaded
server application, IPGATE. All are written entirely in REXX. The multithreaded
examples, including IPGATE, require the MTREXX MODULE, which you will also
find in the VM/ESA Download Library in the MTREXX package.

Complete instructions for downloading packages may be found on the initial
Download Library web page. A complete description of IPGATE, including the
information necessary to install and configure the IPGATE server, appears in
Chapter 4, “Sample Application IPGATE” on page 51.

1.3 Function Availability
All the functions documented in CMS Application Multitasking, SC24-5766 were
added to CMS in level 9 and included in the VMMTLIB CSL library. In XA or XC
mode virtual machines these CSLs were automatically loaded as part of CMS
initialization. In 370 mode machines the CSLs had to be manually loaded with a
RTNLOAD command. Normally this was done in the SYSPROF EXEC.

On CMS level 12 and later, although these functions continue to appear as
RTNLOADed CSLs, they have been integrated as part of the CMS nucleus and
are automatically available for use after CMS has been IPLed.

1.4 Required or Recommended Software Levels
All examples provided were developed on CMS level 14 and, except where
noted, we expect them to function properly on earlier releases of CMS too. One
obvious exception is that the RXSOCKET examples will only work with
RXSOCKET version 3 (this is the version of RXSOCKET shipped with CMS level
13 and later) at level 3.02. Earlier levels of RXSOCKET were not MT aware nor
thread safe. Neither RXSOCKET version 1 nor 2 will support multithreaded
execution.

Additionally we recommend the following CMS/RXSOCKET APARs be applied:

• VM61344

• VM61477

• VM61619

• VM61645

• VM61811

Without these APARs, several of the multithreaded examples will not function
correctly or at all.

2 User ′s Guide to CMS Application Multitasking

If you intend to run with compiled REXX threads the following PTFs to the REXX
runtime compiler are required:

• PQ12933

• PQ14488

To use CMS Pipelines in a multithreaded application, CMS level 14 (or later) is
required.

Chapter 1. Introduction 3

4 User ′s Guide to CMS Application Multitasking

Chapter 2. Enhancing Existing Applications with CMS MT Functions

The one thought we want you to come away from this chapter with is you don′ t
need to be a multitasking application to use CMS MT functions! There is a
tremendous amount of capability that is equally as applicable for use by
traditional CMS applications as it is by multithreaded ones. In fact each example
in this chapter has a filetype of EXEC. They′re nothing more than standard CMS
execs and each can be invoked directly from the command line!

In this chapter we′ ll look at three subsets of the functions that are especially
useful for traditional (single threaded) CMS applications. They are:

• timer services

• queue services (interprocess communications)

• event services

2.1 Timer Services
Let′s begin with a simple, yet practical, example. Often one wants an exec to
wait for a short period of time. If this time period is greater than a second the CP
SLEEP command may be used. For periods less than a second the following
works nicely:

/*
 * Delay for half a second
 */

/*
 * Load binding files
 */
/* call apiload ′ VMREXMTR′ */
/* call apiload ′ VMREXPRO′ */
vm_pro_success = 0
ThreadDelay = ′ VMTHRDL′

/*
 * Delay for half a second
 */
call csl ′ ThreadDelay retcode reascode ″500″′
if retcode \= vm_pro_success then do
say ″Unexpected error from ThreadDelay″
say ″ return code″ retcode ″reason code″ reascode

end
exit retcode

Figure 1. Using ThreadDelay to Delay Execution

Here we′ve made indirect use of timer services to suspend our execution for the
requested amount of time. Once we′ve introduced event services we′ l l more fully
explore timer services.

The question you probably have is Why does this work when the exec is clearly
not a thread? The surprise here is that the exec, while not a thread itself, is
running on a thread. In some regard, after release 9, CMS became a

 Copyright IBM Corp. 1998 5

multithreaded operating system. The traditional CMS command interpreter is
one of several threads CMS always has running. For compatibility reasons the
CMS command interpreter remained single threaded and does not run execs or
modules on their own thread. However, because the CMS command interpreter
is running on a thread, thread oriented primitives work.

2.2 Queue Services
Queue services, also known as interprocess communication, provide a conduit
for data between two end points. These end points may reside within the same
user ID, but they may also reside in separate user IDs or even on separate
systems!

Queues whose existence is made known outside of the creating virtual machine
are called network level queues. Network level queues allow two virtual
machines to exchange messages. For simplicity, our examples here will assume
the two virtual machines reside on the same system, but, given the proper
network connectivity between systems, that does not have to be the case. We′ l l
look more closely at using queues to communicate between threads within a
single virtual machine when we discuss multithreaded applications.

2.2.1 CMS Requirements for Network Level Queues
Unfortunately, before we can provide a working example of a network level
queue, we need to cover some minor CMS networking details. As stated above a
queue has two ends. One end is established when the queue owner creates it
with a QueueCreate call. The other end is established when a user ID opens the
queue with a QueueOpen call.
Before a network level queue can be created two things must be done to the
user ID that will create the queue:

• the user ID′s directory entry must have CP IUCV authorization. This is most
easily done with the addition of an IUCV ALLOW statement.

• the $SERVER$ NAMES file must have an entry for VMIPC. A sample
$SERVER$ NAMES file suitable for most needs is:

:nick.VMIPC
:list.*

Before a network level queue can be opened, an entry in the SCOMDIR or
UCOMDIR NAMES file of the user IDs wishing to open the queue may be
required. The reason we say may is that it depends on the level of CMS in use
and on the name the queue creator chose for the queue. If your CMS level is
older than release 12 then you will require a COMDIR entry in all cases. A
sample UCOMDIR NAMES entry looks like:

:nick.network_level_queue_name
:luname.*USERID userid_of_queue_creator
:security.SAME
:tpn.VMIPC

If you are running CMS release 12 or newer you may or may not require a
COMDIR entry, depending on the name the queue ′s creator chose for the queue.
On CMS release 12 and newer if, when a queue is being opened, a matching
COMDIR entry is not found then, for network level queues, CMS will attempt to
use the first eight characters of the queue′s name to determine the user ID that
owns the queue. If the first eight characters of the queue′s name match the user
ID of the queue creator, the queue is successfully opened. If they do not match a

6 User ′s Guide to CMS Application Multitasking

valid user ID, or they do but that user ID has not created the named network
level queue, then a COMDIR entry is required before CMS will be able to
successfully locate and open the queue. There is no requirement however, that
user IDs must be eight characters in length to create a queue that contains its
name in the first eight characters. The characters that may be used in a queue
name are unrestricted. This means a queue′s name can even include embedded
blanks. So, even short user IDs can name their queues in this manner. For
example a queue name of:

queue_name = ′ FRED RequestQueue′

refers to a queue owned by user ID FRED.

Lastly, before a network level queue can be created or opened CMS will search
for a matching entry in $QUEUES$ NAMES. This does not mean you require a
$QUEUES$ NAMES file however, CMS Application Multitasking says this:
 When CMS searches $QUEUES$ NAMES for an entry but does not find one, it
proceeds with processing as if it had found the entry with all defaults applied.
Thus, for many cases, it is not necessary to create $QUEUES$ NAMES at all.
Thankfully very reasonable defaults apply so it is unlikely you′ ll ever need a
$QUEUES$ NAMES file. None of the queue examples in this book require a
$QUEUES$ NAMES file.

Taken all together then, you can see that on recent CMS releases using queues
to communicate between two local user IDs can be very simple. The queue
creator requires CP IUCV authorization and an entry in $SERVER$ NAMES for
VMIPC. Assuming the queue is named with the creating user ID as the first eight
characters, nothing else is required before the queue can be seen and opened
by any other user ID.

2.2.2 Network Level Queue Examples
Now, let′s start with a simple example. A service machine that only collects data
from users and does not respond to any messages. This type of data collection
might be used in certain applications to track usage patterns through the
application. It might also be used to track resource consumption for applications
from different departments. Typically this might have been implemented by
running WAKEUP in the data collection machine and using SMSG to transfer the
data. This scenario may also be implemented using queues.

As we worked through the CMS networking details you saw that a queue must
be created and opened in order to be used. Creating and opening a queue
provide a program with a queue handle. The queue handle is used by other
queue functions to identify the queue on which they are to operate. To send and
receive data on a queue we′ ll now introduce the QueueSend and
QueueReceiveBlock functions. Data is placed onto a queue with QueueSend.
QueueReceiveBlock causes the program to block (wait) for some data to arrive
on a queue. We now know enough to construct a simple data collection server.

Chapter 2. Enhancing Existing Applications with CMS MT Functions 7

Server VM User VM

QueueCreate a network QueueOpen server′ s queue
level queue QueueSend data

do forever QueueClose server′ s queue
QueueReceiveBlock to exit

wait for data
Record the data

end
QueueDelete network

level queue
exit

Figure 2. Network Level Queues, Data Collection Overview

/*
 * Network level queue example, data collection, server side
 */

parse source . . my_name .
 true = (1=1)
false = \true

/*
 * Load the binding files
 */
call apiload ′ VMREXIPC′
call apiload ′ VMREXMTR′
call apiload ′ VMREXPRO′

Figure 3 (Part 1 of 4). Data Collection, Server Code

/*
 * Create the network level queue for data collection
 */
queue_name = left(userid(),8)||′ CollectQ′
queue_name_length = length(queue_name)
export_level = vm_ipc_nlevel
call csl ′ QueueCreate retcode reascode queue_name′ ,

′ queue_name_length export_level queue_handle′
if retcode \= vm_ipc_success then do
say my_name ″Unexpected error from QueueCreate″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

match_key = ′ *′
match_key_length = length(match_key)
maximum_length = 4096
timeout = 0

Figure 3 (Part 2 of 4). Data Collection, Server Code

8 User ′s Guide to CMS Application Multitasking

do forever
/*
* Block on the queue waiting for incoming messages
*/
call csl ′ QueueReceiveBlock retcode reascode queue_handle′ ,

′ match_key match_key_length timeout′ ,
′ message maximum_length returned_length′ ,
′ key_offset key_length sender_UID sender_PID′ ,
′ reply_token′

if retcode \= vm_ipc_success then do
say my_name ″Unexpected error from QueueReceiveBlock″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end
/* call csl ′ ThreadYield retcode reascode ″0″′ /* see VM61477 */ */

message = left(message,returned_length)
′ EXECIO 1 DISKW′ userid() ′ COLLECT A (FINIS VAR MESSAGE′

end

Figure 3 (Part 3 of 4). Data Collection, Server Code

/*
 * Delete the queue (this code never executed)
 */
call csl ′ QueueDelete retcode reascode queue_name′ ,

′ queue_name_length export_level′
if retcode \= vm_ipc_success then
select
when reascode = vm_ipc_msgs_discarded then
nop

otherwise
say my_name ″Unexpected error from QueueDelete″
say my_name ″ return code″ retcode ″reason code″ reascode
message = ″ERROR Unable to shutdown gracefully,″ ,

″please FORCE me″
end

exit

Figure 3 (Part 4 of 4). Data Collection, Server Code

/*
 * Network level queue example, data collection, client side
 * You *must* change the user ID of the queue owner
 */

address command
signal on novalue

/*
 * Load the binding files
 */
call apiload ′ VMREXIPC′
call apiload ′ VMREXMTR′

Figure 4 (Part 1 of 4). Data Collection, Client Code

Chapter 2. Enhancing Existing Applications with CMS MT Functions 9

/*
 * Open the data queue
 */
queue_owner = left(′ SRRES6′ , 8) /* user ID of queue owner */
queue_name = queue_owner||′ CollectQ′
queue_name_length = length(queue_name)
search_sequence.1 = vm_ipc_nlevel
search_sequence.2 = -1 /* placate CSL */
search_sequence.3 = -1 /* placate CSL */
search_sequence_length = 1
call csl ′ QueueOpen retcode reascode queue_name′ ,

′ queue_name_length search_sequence′ ,
′ search_sequence_length queue_handle′ ,
′ export_level′

if retcode \= vm_ipc_success then do
say ″Unexpected error from QueueOpen″
say ″ return code″ retcode ″reason code″ reascode
return retcode

end

Figure 4 (Part 2 of 4). Data Collection, Client Code

/*
 * Send the data
 */
message = storage(0,4096)
message_length = length(message)
key_length = 0
key_offset = 0
call csl ′ QueueSend retcode reascode queue_handle′ ,

′ message message_length key_offset key_length′
if retcode \= vm_ipc_success then do
say ″Unexpected error from QueueSend″
say ″ return code″ retcode ″reason code″ reascode
return retcode

end

Figure 4 (Part 3 of 4). Data Collection, Client Code

/*
 * Close the data queue
 */
call csl ′ QueueClose retcode reascode queue_handle′
if retcode \= vm_ipc_success then do
say ″Unexpected error from QueueClose″
say ″ return code″ retcode ″reason code″ reascode

end

exit

Figure 4 (Part 4 of 4). Data Collection, Client Code

Unless the amount of data to be collected on each transfer is large (say, more
than a 100 bytes), the use of queues in the above example is not demonstrably
better than other methods.

10 User ′s Guide to CMS Application Multitasking

An example more typical of the way CMS applications are structured would
involve two way communications between a client and a server. A client would
send a request to a server. Once the server had processed the request it would
reply back to the client. Queues support this with the concept of replies. In place
of the QueueSend function used in the last example we ′ ll use QueueSendReply and
QueueReply functions. QueueSendReply does a QueueSend and indicates that a
reply is expected. When QueueSendReply is used a reply token is provided
along with the data to QueueReceiveBlock. QueueReply performs a QueueSend
like function however, rather than using a queue handle, the reply token is used
to identify the queue onto which the reply should be placed. There are two
benefits of QueueSendReply over QueueSend. First the reply queue does not
need to be a network level queue. Second the reply queue does not need to be
opened. With this we now know enough to construct a simple request/reply
client/sever application.

Server VM User VM

QueueCreate a network QueueCreate reply queue
level queue QueueOpen server′ s queue

do forever QueueSendReply request
QueueReceiveBlock to QueueReceiveBlock to wait

wait for request for reply
process request QueueClose server′ s queue
QueueReply response QueueDelete reply queue

end exit
QueueDelete network

level queue
exit

Figure 5. Network Level Queues, Client/Server Overview

/*
 * Network level queue example, client/server example, server side
 */

parse source . . my_name .
 true = (1=1)
false = \true

/*
 * Load the binding files
 */
call apiload ′ VMREXIPC′
call apiload ′ VMREXMTR′
call apiload ′ VMREXPRO′

Figure 6 (Part 1 of 4). Client/Server, Server Code

Chapter 2. Enhancing Existing Applications with CMS MT Functions 11

/*
 * Create the network level request queue
 */
queue_name = left(userid(),8)||′ RequestQ′
queue_name_length = length(queue_name)
export_level = vm_ipc_nlevel
call csl ′ QueueCreate retcode reascode queue_name′ ,

′ queue_name_length export_level queue_handle′
if retcode \= vm_ipc_success then do
say my_name ″Unexpected error from QueueCreate″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

Figure 6 (Part 2 of 4). Client/Server, Server Code

do forever
/*
* Block on the queue waiting for work to arrive
*/
match_key = ′ *′
match_key_length = length(match_key)
maximum_length = 4096
timeout = 0
call csl ′ QueueReceiveBlock retcode reascode queue_handle′ ,

′ match_key match_key_length timeout′ ,
′ message maximum_length returned_length′ ,
′ key_offset key_length sender_UID sender_PID′ ,
′ reply_token′

if retcode \= vm_ipc_success then do
say my_name ″Unexpected error from QueueReceiveBlock″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end
/* call csl ′ ThreadYield retcode reascode ″0″′ /* see VM61477 */ */

if reply_token <> 0 then do /* reply requested? */
message = userid()″ ′ s date is″ date() time()
message_length = length(message)
key_offset = 0
key_length = 0
call csl ′ QueueReply retcode reascode reply_token′ ,

′ message message_length′ ,
′ key_offset key_length′

if retcode \= vm_ipc_success then do
say my_name ″Unexpected error from QueueReply″
say my_name ″ return code″ retcode ″reason code″ reascode

end
end

end

Figure 6 (Part 3 of 4). Client/Server, Server Code

12 User ′s Guide to CMS Application Multitasking

/*
 * Delete the queue (this code never executed)
 */
call csl ′ QueueDelete retcode reascode queue_name′ ,

′ queue_name_length export_level′
if retcode \= vm_ipc_success then
select
when reascode = vm_ipc_msgs_discarded then
nop

otherwise
say my_name ″Unexpected error from QueueDelete″
say my_name ″ return code″ retcode ″reason code″ reascode
message = ″ERROR Unable to shutdown gracefully,″ ,

″please FORCE me″
end

exit

Figure 6 (Part 4 of 4). Client/Server, Server Code

/*
 * Network level queue example, client/server example, client side
 * You *must* change the user ID of the queue owner
 */

address command
signal on novalue

/*
 * Load the binding files
 */
call apiload ′ VMREXIPC′
call apiload ′ VMREXMTR′

Figure 7 (Part 1 of 7). Client/Server, Client Code

/*
 * Create the reply queue
 * Note: it is *not* at network level, and hence it′ s
 * name need not start with our user ID
 */
reply_queue_name = ′ ReplyQueue′
reply_queue_name_length = length(reply_queue_name)
export_level = vm_ipc_plevel
call csl ′ QueueCreate retcode reascode reply_queue_name′ ,

′ reply_queue_name_length export_level reply_queue_handle′
if retcode \= vm_ipc_success then do
say ″Unexpected error from QueueCreate″
say ″ return code″ retcode ″reason code″ reascode
return retcode

end

Figure 7 (Part 2 of 7). Client/Server, Client Code

Chapter 2. Enhancing Existing Applications with CMS MT Functions 13

/*
 * Open the request queue
 */
request_queue_owner = left(′ SRRES6′ , 8) /* user ID of queue owner */
request_queue_name = request_queue_owner||′ RequestQ′
request_queue_name_length = length(request_queue_name)
search_sequence.1 = vm_ipc_nlevel
search_sequence.2 = -1 /* placate CSL */
search_sequence.3 = -1 /* placate CSL */
search_sequence_length = 1
call csl ′ QueueOpen retcode reascode request_queue_name′ ,

′ request_queue_name_length search_sequence′ ,
′ search_sequence_length request_queue_handle′ ,
′ export_level′

if retcode \= vm_ipc_success then do
say ″Unexpected error from QueueOpen″
say ″ return code″ retcode ″reason code″ reascode
return retcode

end

Figure 7 (Part 3 of 7). Client/Server, Client Code

/*
 * Send the request indicating we want a reply
 */
key_length = 0
key_offset = 0
message = ′ *′
message_length = length(message)
call csl ′ QueueSendReply retcode reascode request_queue_handle′ ,

′ message message_length key_offset key_length′ ,
′ reply_queue_handle′

if retcode \= vm_ipc_success then do
say ″Unexpected error from QueueSendReply″
say ″ return code″ retcode ″reason code″ reascode
return retcode

end

Figure 7 (Part 4 of 7). Client/Server, Client Code

14 User ′s Guide to CMS Application Multitasking

/*
 * Wait for the reply
 */
match_key = ″*″
match_key_length = length(match_key)
maximum_length = 1024
timeout = 9
call csl ′ QueueReceiveBlock retcode reascode reply_queue_handle′ ,

′ match_key match_key_length timeout message′ ,
′ maximum_length returned_length key_offset key_length′ ,
′ sender_UID sender_PID reply_token′

if retcode \= vm_ipc_success then do
select
when reascode = vm_ipc_buf_too_small then
nop /* for now */

when reascode = vm_ipc_timeout then
say ″Request timed out″

otherwise
say ″Unexpected error from QueueReceiveBlock″
say ″ return code″ retcode ″reason code″ reascode

end
exit

end

message = left(message,returned_length)
say userid() message

Figure 7 (Part 5 of 7). Client/Server, Client Code

/*
 * Close the request queue
 */
call csl ′ QueueClose retcode reascode request_queue_handle′
if retcode \= vm_ipc_success then do
say ″Unexpected error from QueueClose″
say ″ return code″ retcode ″reason code″ reascode

end

Figure 7 (Part 6 of 7). Client/Server, Client Code

/*
 * Delete the reply queue
 */
call csl ′ QueueDelete retcode reascode reply_queue_name′ ,

′ reply_queue_name_length vm_ipc_plevel′
if retcode \= vm_ipc_success then do
say ″Unexpected error from QueueDelete″
say ″ return code″ retcode ″reason code″ reascode

end

exit

Figure 7 (Part 7 of 7). Client/Server, Client Code

We′ve really just covered the basics needed to get network level queues
working. A couple of areas you′ ll want to investigate further are:

Chapter 2. Enhancing Existing Applications with CMS MT Functions 15

• each message placed onto a queue may have a key associated with it. The
receiver may also specify a key and only receive messages whose keys
match.

• the list tag in $SERVER$ NAMES may be used to define a subset of user IDs
that are permitted to open the network level queues created. In the sample
$SERVER$ NAMES file provided earlier, the list tag was :list.*. An asterisk
means any user ID is allowed to QueueOpen the network level queues
created. If the list tag provided a list of user IDs only those user IDs are
permitted to open the network level queues created. Attempts to open the
queue by user IDs not in the list are rejected.

 Note:

VM61722 may be required on CMS releases prior to CMS 14 before this
functions properly in all cases.

 Note:

You should also be aware that without APAR VM61477 some queue
operations may appear to hang waiting for the partner virtual machine.
Ideally the PTF should be applied, but if that is not possible, then the addition
of ThreadYield calls (as shown in the examples) will bypass the problem.

As you can see queues are a very useful and powerful facility. Wouldn′ t it be
nice if every product on VM supported a queue based command interface? Think
how easy, for example, RSCS or DIRMAINT would be to work with if a queue
based interface was supported as well as an SMSG/MSG based one.

2.3 Event Services
Events represent activities that occur within or to a virtual machine that may be
of interest to currently executing programs. Event services are just what the
name implies, services that allow a program to express an interest in one or
more of these events, and be notified when they occur.

CMS provides a comprehensive set of built in events, allowing notification when
a timer expires, the timezone changes, a program ABENDs or when a line is
available to be read from the console, to list only a few. They are documented in
CMS Application Multitasking; SC24-5766 and summarized in Appendix A,
“Supplementary Information on System Defined Events” on page 95. In addition
to the system events defined by CMS, an application may also define its own
events. CMS provides identical management for system and user defined events.

2.3.1 Event Services Example
To make use of the system defined events one only needs to be familiar with a
few routines. An application expresses an interest in an event, or a collection of
events, with an EventMonitorCreate call. Just as opening a queue returned a
handle that was used to identify the queue on subsequent calls,
EventMonitorCreate returns a monitor token that we will supply on calls to other
routines to identify the monitor of interest.

An application can wait for the occurrence of the event(s) defined by a monitor
with an EventWait call.

16 User ′s Guide to CMS Application Multitasking

When the application has completed its handling of the event(s) CMS may be
notified by an EventMonitorReset. Often EventMonitorReset is not required since
CMS will automatically ready the monitor for the next event occurrence when it
can determine that the application has completed processing the current event
(for example the application again enters EventWait).

Finally an EventMonitorDelete tells CMS we′re no longer interested in monitoring
the requested event(s). Since, in the following examples, the monitor is only
used once before deletion, we could have specified vm_evn_auto_delete on the
EventMonitorCreate call and had the monitor automatically deleted as part of the
EventMonitorReset call. For clarity however, the monitor is explicitly deleted.

Knowing only these routines we can already make effective use of events. A
simple example to illustrate their use is to wait for some console input.

EventMonitorCreate to express interest
in console events

EventWait for the event to occur
EventMonitorReset to finish event handling
EventMonitorDelete to clean up event monitor

Figure 8. Wait for Console Input using Event Services Overview

/*
 * Use event services to wait for console input
 */

parse source . . my_name .
 true = (1=1)
false = \true

/*
 * Load the binding files
 */
call apiload ′ VMREXEVN′
call apiload ′ VMREXMTR′

Figure 9 (Part 1 of 4). Wait for Console Input using Event Services Code

Chapter 2. Enhancing Existing Applications with CMS MT Functions 17

/*
 * Create a monitor for unsolicited console input
 */
monitor_flag.1 = vm_evn_no_auto_delete /* placate CSL */
monitor_flag.2 = vm_evn_async_monitor /* placate CSL */
monitor_flag.3 = vm_evn_bind_loose_signals /* placate CSL */
monitor_flag_size = 3
number_of_events = 1
event_name_address.1 = ′ VMCONINPUT′
event_name_length.1 = length(event_name_address.1)
event_key_address.1 = ′ *′
event_key_length.1 = length(event_key_address.1)
bound_signal_limit.1 = -1
event_count = 1
call csl ′ EventMonitorCreate retcode reascode monitor_token′ ,

′ monitor_flag monitor_flag_size number_of_events′ ,
′ event_name_address event_name_length′ ,
′ event_key_address event_key_length bound_signal_limit′ ,
′ event_count′

if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventMonitorCreate″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

Figure 9 (Part 2 of 4). Wait for Console Input using Event Services Code

/*
 * Block on the console, waiting for something to be entered
 */
say ″Please enter something″
number_of_events = 1
call csl ′ EventWait retcode reascode monitor_token′ ,

′ number_of_events event_flag′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventWait″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

parse external console_command
say ″You entered:″ console_command

Figure 9 (Part 3 of 4). Wait for Console Input using Event Services Code

18 User ′s Guide to CMS Application Multitasking

/*
 * Lastly reset and delete the EventMonitor
 */
call csl ′ EventMonitorReset retcode reascode monitor_token′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventMonitorReset″
say my_name ″ return code″ retcode ″reason code″ reascode

end
call csl ′ EventMonitorDelete retcode reascode monitor_token′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventMonitorDelete″
say my_name ″ return code″ retcode ″reason code″ reascode

end
exit

Figure 9 (Part 4 of 4). Wait for Console Input using Event Services Code

2.4 Timer Services (revisited)
CMS provides a selection of routines that support timer related operations. It is
possible to set a timer to expire at a specific time, or after some period of time.
These periodic timers may, optionally, also be defined to be cyclical timers, that
is a timer that continues to expire after each specified period. Additionally, timer
support makes use of event services by signaling the VMTIMER event whenever
a timer expires.

Now that you are familiar with the basics of event services you can see that it is
a simple manner to combine them with CMS MT ′s timer support. Indeed,
combining timers and events allows us to easily add timeout capability to a
number of scenarios where formerly our application would have been stuck
waiting forever.

Two such uses immediately spring to mind. First, continue execution, perhaps
with a default value, if a prompt has not been responded to in a fixed period of
time. Second, continue execution, and perhaps take corrective action, if a
response to an APPC/CPIC request is not received in a timely fashion. Since the
first can be easily presented as a self contained example, we present it here.
However, the concept is identical for either, only the event name changes. For a
CPIC example, that makes use of a variant of this technique, see the sample
multitasking program, ACCCHECK, presented in Figure 17 on page 32.

TimerStartInt to start timeout clock
EventMonitorCreate to express interest
both timer and console events

EventWait for one of the two events to
occur

determine which event occurred
TimerStopInt to clean up potential residual timer
EventMonitorReset to finish event handling
EventMonitorDelete to clean up event monitor

Figure 10. Event and Timer Combined Use Overview

Chapter 2. Enhancing Existing Applications with CMS MT Functions 19

/*
 * Allow the user 15 seconds to input something
 */

parse source . . my_name .
 true = (1=1)
false = \true

/*
 * Load the binding files
 */
call apiload ′ VMREXEVN′
call apiload ′ VMREXMTR′
call apiload ′ VMREXTMR′

Figure 11 (Part 1 of 7). Event and Timer Combined Use Code

/*
 * Start the timer
 */
allowedseconds = 15
timer_type = vm_tmr_timertype_real
timer_cycle = vm_tmr_cycle_single
timer_interval_units = vm_tmr_intunit_milli
timer_interval = 1000*allowedseconds
userword = ′0000000000000000′x /* no user word */
call csl ′ TimerStartInt retcode reascode timer_token′ ,

′ timer_type timer_cycle timer_interval_units′ ,
′ timer_interval userword′

if retcode \= vm_tmr_success then do
say my_name ″Unexpected error from TimerStartInt″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

Figure 11 (Part 2 of 7). Event and Timer Combined Use Code

20 User ′s Guide to CMS Application Multitasking

/*
 * Create a monitor for unsolicited console input and timer
 */
monitor_flag.1 = vm_evn_no_auto_delete /* placate CSL */
monitor_flag.2 = vm_evn_async_monitor /* placate CSL */
monitor_flag.3 = vm_evn_bind_loose_signals /* placate CSL */
monitor_flag_size = 3
number_of_events = 2
event_name_address.1 = ′ VMCONINPUT′
event_name_length.1 = length(event_name_address.1)
event_key_address.1 = ′ *′
event_key_length.1 = length(event_key_address.1)
bound_signal_limit.1 = -1
event_name_address.2 = ′ VMTIMER′
event_name_length.2 = length(event_name_address.2)
event_key_address.2 = d2c(timer_token,4)′ E′
event_key_length.2 = length(event_key_address.2)
bound_signal_limit.2 = -1
event_count = 1
call csl ′ EventMonitorCreate retcode reascode monitor_token′ ,

′ monitor_flag monitor_flag_size number_of_events′ ,
′ event_name_address event_name_length′ ,
′ event_key_address event_key_length bound_signal_limit′ ,
′ event_count′

if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventMonitorCreate″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

Figure 11 (Part 3 of 7). Event and Timer Combined Use Code

/*
 * Block on the console/timer, waiting for something to be entered
 */
say ″You have″ allowedseconds ″seconds to input something″
number_of_events = 2
call csl ′ EventWait retcode reascode monitor_token′ ,

′ number_of_events event_flag′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventWait″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

Figure 11 (Part 4 of 7). Event and Timer Combined Use Code

Chapter 2. Enhancing Existing Applications with CMS MT Functions 21

/*
 * Find out what event woke us up
 */
if event_flag.1 >= 0 then do /* keyboard input */
parse external console_command
say ″You entered:″ console_command

end
if event_flag.2 >= 0 then do /* timed out */
say ″Nothing was input″

end

Figure 11 (Part 5 of 7). Event and Timer Combined Use Code

/*
 * Clean up the timer
 */
call csl ′ TimerStop retcode reascode timer_token intervalunits′ ,

′ interval userword′
if retcode \= vm_tmr_success then
if reascode \= vm_tmr_unrecognized_token then do
say my_name ″Unexpected error from TimerStop″
say my_name ″ return code″ retcode ″reason code″ reascode

end

Figure 11 (Part 6 of 7). Event and Timer Combined Use Code

/*
 * Lastly reset and delete the EventMonitor
 */
call csl ′ EventMonitorReset retcode reascode monitor_token′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventMonitorReset″
say my_name ″ return code″ retcode ″reason code″ reascode

end
call csl ′ EventMonitorDelete retcode reascode monitor_token′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventMonitorDelete″
say my_name ″ return code″ retcode ″reason code″ reascode

end
exit

Figure 11 (Part 7 of 7). Event and Timer Combined Use Code

2.5 Event Services (revisited)
Recall we mentioned there can be both system and application defined events.
In general, system events are created when CMS is IPLed. An event and its
characteristics are defined with an EventCreate call. The occurrence of an event
is made known with an EventSignal call. As well as merely indicating the
occurrence of an event EventSignal can also be used to pass data associated
with the event. This data may be referenced by the application via an
EventRetrieve call. For system defined events information about associated
signal data and related key information has been summarized in Appendix A,
“Supplementary Information on System Defined Events” on page 95.

22 User ′s Guide to CMS Application Multitasking

2.5.1 Replacing REXX/WAIT with Event Services
REXX/WAIT was an external REXX function that provides multiple event handling
capabilities for REXX. It was an IBM internal use only package that was made
available with the previous version of REXX Sockets and it has no official
support. To provide compatibility, REXX Sockets continues to provide support for
REXX/WAIT, however, further use of REXX/WAIT is discouraged and, as REXX
Sockets now supports native CMS Event Services, any existing use should be
replaced with CMS Event Services.

CMS Event Services provides support for many of the events supported by
REXX/WAIT, the one glaring exception is support for notification of the arrival of
reader files (REXX/WAIT called this the MAIL event). The need for a VMRDR
event is well understood by CMS development and it is the authors′ hope that
one will be provided in the near future.

It is a simple matter to extend our previous example to also include a
demonstration of using REXX Socket′s event support and, in so doing, have it
also serve as an example of how one might convert away from REXX/WAIT.
Although not required, we will create our own event for REXX Sockets to signal.
We do this for two reasons. First, to provide an example of how an event is
created and second, to illustrate that events used with REXX Sockets must be of
session scope. This scope is required since, when REXX Sockets signals this
event, there can be no guarantee about which process will be running when the
interrupt happens, and interrupt handling always happens in the context of the
interrupted process and thread. Another approach would have been to simply
use the system defined VMSOCKET event.

REXX/WAIT Event Services

initialize REXX Sockets initialize REXX Sockets
initialize REXX/WAIT EventCreate socket event (optional)
(eg: SetValue calls TimerStartInt to start timeout clock

if needed) EventMonitorCreate to express interest
timer, console and socket events

Wait(Timer,Cons,Socket) EventWait for one of the events to occur
determine which event occurred determine which event occurred

TimerStopInt to clean up potential residual timer
EventMonitorReset to finish event handling
EventMonitorDelete to clean up event monitor
EventDelete socket event

Figure 12. Replacing REXX/WAIT with Event Services

Chapter 2. Enhancing Existing Applications with CMS MT Functions 23

/*
 * Illustrate using Event Services to replace REXX/WAIT
 */

parse source . . my_name .
 true = (1=1)
false = \true

/*
 * Load the binding files
 */
call apiload ′ VMREXEVN′
call apiload ′ VMREXMTR′
call apiload ′ VMREXTMR′

Figure 13 (Part 1 of 10). REXX Sockets, Console and Timer Event Example

/*
 * Ready REXX Sockets for use
 */
parse value socket(′ Initialize′ , my_name,40) with rc .
if rc \= 0 then do
say ″Unable to initialize REXX/Socket′ s environment″
exit 8

end
parse value socket(′ Socket′ , ′ AF_INET′ , ′ STREAM′ , ′ TCP′) with rc s .
if rc \= 0 then do
say my_name ″unable to allocate a socket. RC″ rc
exit 8

end
parse value socket(′ SetSockOpt′ , s,′ Sol_Socket′ , ′ So_ASCII′ , ′ On′) ,

with rc .
if rc \= 0 then do
say my_name ″unable set socket′ s translation. RC″ rc
exit 8

end
parse value socket(′ Bind′ , s,′ AF_INET 12345′) with rc .
if rc \= 0 then do
say my_name ″unable to bind socket. RC″ rc
exit 8

end
parse value socket(′ Listen′ , s,10) with rc .
if rc \= 0 then do
say my_name ″unable to set socket to listen. RC″ rc
exit 8

end

Figure 13 (Part 2 of 10). REXX Sockets, Console and Timer Event Example

24 User ′s Guide to CMS Application Multitasking

/*
 * Create an event that REXX Sockets will signal
 * Note - we must create the event with session scope. This is
 * important because REXX Sockets will be signaling
 * this event from an interrupt handler, and hence,
 * running in a different process.
 */
event_name = my_name
event_name_length = length(event_name)
event_flag.1 = vm_evn_session_scope
event_flag.2 = vm_evn_broadcast_signals /* placate CSL */
event_flag.3 = vm_evn_async_signals /* placate CSL */
event_flag_size = 3
loose_signal_limit = 0
signal_timeout_period = 0
call csl ′ EventCreate retcode reascode event_name′ ,

′ event_name_length event_flag event_flag_size′ ,
′ loose_signal_limit signal_timeout_period′

if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventCreate″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

Figure 13 (Part 3 of 10). REXX Sockets, Console and Timer Event Example

/*
 * Start the timer
 */
allowedseconds = 120
timer_type = vm_tmr_timertype_real
timer_cycle = vm_tmr_cycle_single
timer_interval_units = vm_tmr_intunit_milli
timer_interval = 1000*allowedseconds
userword = ′0000000000000000′x /* no user word */
call csl ′ TimerStartInt retcode reascode timer_token′ ,

′ timer_type timer_cycle timer_interval_units′ ,
′ timer_interval userword′

if retcode \= vm_tmr_success then do
say my_name ″Unexpected error from TimerStartInt″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

Figure 13 (Part 4 of 10). REXX Sockets, Console and Timer Event Example

Chapter 2. Enhancing Existing Applications with CMS MT Functions 25

/*
 * Create a monitor for console, timer or socket events
 */
monitor_flag.1 = vm_evn_no_auto_delete /* placate CSL */
monitor_flag.2 = vm_evn_async_monitor /* placate CSL */
monitor_flag.3 = vm_evn_bind_loose_signals /* placate CSL */
monitor_flag_size = 3
number_of_events = 3
event_name_address.1 = ′ VMCONINPUT′
event_name_length.1 = length(event_name_address.1)
event_key_address.1 = ′ *′
event_key_length.1 = length(event_key_address.1)
bound_signal_limit.1 = -1
event_name_address.2 = ′ VMTIMER′
event_name_length.2 = length(event_name_address.2)
event_key_address.2 = d2c(timer_token,4)′ E′
event_key_length.2 = length(event_key_address.2)
bound_signal_limit.2 = -1
event_name_address.3 = event_name /* or VMSOCKET */
event_name_length.3 = length(event_name_address.3)
event_key_address.3 = ′ *′
event_key_length.3 = length(event_key_address.3)
bound_signal_limit.3 = -1
event_count = 1
call csl ′ EventMonitorCreate retcode reascode monitor_token′ ,

′ monitor_flag monitor_flag_size number_of_events′ ,
′ event_name_address event_name_length′ ,
′ event_key_address event_key_length bound_signal_limit′ ,
′ event_count′

if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventMonitorCreate″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

Figure 13 (Part 5 of 10). REXX Sockets, Console and Timer Event Example

/*
 * Block on console, timer or socket
 */
parse value socket(′ Select′ , ′ Read′ s,′ Signal′ event_name) with rc .
if rc \= 0 then do
say myname ″unable to activate socket select. RC″ rc
exit 8

end

number_of_events = 3
call csl ′ EventWait retcode reascode monitor_token′ ,

′ number_of_events event_flag′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventWait″
say my_name ″ return code″ retcode ″reason code″ reascode
exit retcode

end

Figure 13 (Part 6 of 10). REXX Sockets, Console and Timer Event Example

26 User ′s Guide to CMS Application Multitasking

/*
 * Find what event completed
 */
select
when event_flag.1 >= 0 then do /* keyboard input */
parse external console_command
say ″You entered:″ console_command

end
when event_flag.2 >= 0 then do /* timed out */
say ″Nothing was input″

end
when event_flag.3 >= 0 then do /* socket */
call csl ′ EventRetrieve retcode reascode monitor_token ″3″ ′ ,

′ data_buffer event_flag.3 event_data_length′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventRetrieve″
say my_name ″ return code″ retcode ″reason code″ reascode

end
parse value (data_buffer) with count ′ READ′ readlist,

′ WRITE′ writelist ′ EXCEPTION′ exceptlist
/* do some useful socket work */

end
end

Figure 13 (Part 7 of 10). REXX Sockets, Console and Timer Event Example

/*
 * Clean up the timer
 */
call csl ′ TimerStop retcode reascode timer_token intervalunits′ ,

′ interval userword′
if retcode \= vm_tmr_success then
if reascode \= vm_tmr_unrecognized_token then do
say my_name ″Unexpected error from TimerStop″
say my_name ″ return code″ retcode ″reason code″ reascode

end

Figure 13 (Part 8 of 10). REXX Sockets, Console and Timer Event Example

Chapter 2. Enhancing Existing Applications with CMS MT Functions 27

/*
 * Reset and delete the EventMonitor and event
 */
call csl ′ EventMonitorReset retcode reascode monitor_token′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventMonitorReset″
say my_name ″ return code″ retcode ″reason code″ reascode

end
call csl ′ EventMonitorDelete retcode reascode monitor_token′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventMonitorDelete″
say my_name ″ return code″ retcode ″reason code″ reascode

end
call csl ′ EventDelete retcode reascode event_name event_name_length′
if retcode \= vm_evn_success then do
say my_name ″Unexpected error from EventDelete″
say my_name ″ return code″ retcode ″reason code″ reascode

end

Figure 13 (Part 9 of 10). REXX Sockets, Console and Timer Event Example

/*
 * Lastly terminate REXX Sockets
 */
parse value socket(′ Terminate′) with rc .
if rc \= 0 then do
say my_name ″error terminating REXX sockets″
exit 8

end
exit

Figure 13 (Part 10 of 10). REXX Sockets, Console and Timer Event Example

Another event group supported by REXX/WAIT but not, and unlikely to be,
supported by CMS Event Services are the message events. For multithreaded
applications, PIPEs may be used to provide event support for messages. See 3.5,
“Message Support for Events” on page 43 for an example of how this can be
done. Additionally, the above referenced example also illustrates how an
EventSignal is coded.

As with Queue Services, we′ve only touched upon the highlights of Event
Services. There are additional routines that we have not illustrated with which
you should be sure to acquaint yourself. As well be sure to fully explore all the
system defined events. In addition to what we have illustrated they offer a lot of
interesting capability. One practical example is using the VMERROR event to
monitor applications for abends and take action, either corrective or generation
of an alert notification, if one occurs. This could be done by calling EventTrap
and specifying a module to be run if an application abends.

The initial sentence of this chapter told you that much of the CMS MT function
was very useful for non-MT applications. We hope, through this chapter, that we
have illustrated that point and, by so doing, have encouraged you to recognize
where CMS MT function would be useful in enhancing your existing applications
and in solving new problems. You are encouraged to read on and see how
multitasking can easily be used to provide not only well performing servers, but
also help in solving problems for individual users.

28 User ′s Guide to CMS Application Multitasking

Chapter 3. Examples of Multithreaded Use

3.1 Basic Idea Behind Multithreaded Programs
If you are setting up an application which should work with multiple similar client
requests concurrently, for example a web server or data server, the use of a
single threaded server would lead to an enormous amount of logic to keep track
of the data flowing from the server to the client and vice versa. Therefore you
should use a multithreaded server to minimize the amount of logic to the
necessary minimum.

With a multithreaded server you can easily set up an application that works with
the following scheme:

program A

start loop
wait for request

if error then leave
else start program B program B
go to start loop process client request

exit exit
program B

process client request
exit

program B
process client request
exit

program B
process client request
exit

Figure 14. Multithreaded Server Scheme

In this example a new instance of program B is started for each client request in
a new thread. Each thread runs independent of the other threads (at least if it is
not blocking the session or the process).

In CMS there is no (documented) function to create a thread from REXX nor
could a REXX exec be the main entry point for a thread. Therefore, you need an
external command to create threads from REXX.

A simple way to create threads from REXX is provided by MTREXX, a program
written by Perry Ruiter. It allows you to create threads by calling a REXX
external function. It creates assembler threads each of which runs the REXX
interpreter.

MTREXX is available from the VM Download Library on the Web at URL
http://www.vm.ibm.com/download/.

 Copyright IBM Corp. 1998 29

3.2 Functions Available to Multihreaded Programs
Each thread may use thread blocking or non-blocking calls to multitasking aware
functions, such as TCP/IP socket calls through RXSOCKET or calls to the CPI
Communications routines.

 Note:

You should be aware that calling a program, such as XEDIT, which is process
blocking also blocks all other threads in your process.

It is also possible to call pipelines within a thread without blocking the other
threads.

Your threads are allowed to call other programs which then, if they call MT
functions, allow the other threads to become dispatched.

With multiple threads it is possible to terminate a thread that is running a
multitasking aware command that is blocking that thread. For example, testing
whether a shared file pool server is responding (also a remote SFS server over
AVS), would usually block your user ID if the server is not reachable or hung.
This would require you to recycle your user ID (reIPL CMS or logoff). With
multiple threads you are able to do this test without getting hung.

Such a test works as follows:

Program A
initialize CPI conversation
start timer
start program B Program B
wait for CPI response or timer allocate CPI conversation
if timer -> timeout send data
else validate CPI response exit
delete created thread (program B)

Figure 15. SFS Test

The actual code is shown in the figures in the following subsections.

30 User ′s Guide to CMS Application Multitasking

3.2.1 ACCCHECK EXEC

/***/
address ′ COMMAND′

parse source . func fn .

parse arg sym_dest timeout .

if sym_dest = ′ ′ | sym_dest = ′ ? ′ then do
say ′ Correct syntax is:′ fn ′ resource <timeout>′
say ′ the default timeout is 10 seconds′
rc = 100

end
else ′ MTREXX′ fn sym_dest timeout

select
when rc = 0 then

error_text = ′ Check successful′
when rc = 10 then

error_text = ′ Timeout (No SFS Server/Target System not reachable)′
when rc = 20 then

error_text = ′ Allocation error (Unknown Resource/set receive type)′
when rc = 30 then

error_text = ′ Allocation error (protocol)′
when rc = 40 then

error_text = ′ Allocation error (No AVS Mapping/resource unknown/dealloc)′
when rc = 50 then

error_text = ′ Allocation error (receive)′
when rc = 60 then

error_text = ′ Receive data error (Not a valid SFS response)′
when rc = 70 then

error_text = ′ CMINIT failed (resource not valid)′
when rc = 100 then

error_text = ′ Help given′
when rc = 8880 then

error_text = ′ Command entered at console′
when rc = 9990 then

error_text = ′ STOP entered at console′
otherwise

error_text = ′ ??? ′
end

if func <> ′ COMMAND′ then return rc error_text

if rc <> 0 then say error_text
exit rc

Figure 16. ACCCHECK EXEC

Chapter 3. Examples of Multithreaded Use 31

3.2.2 ACCCHECK MTREXX

/***/
/* args: destination_filepool timeout_in_seconds */
/* */
/* returncodes: */
/* */
/* 10 Timeout no CPI response */
/* 20 Allocation error (set receive type) Set Receive Type failed */
/* 30 Allocation error (protocol) invalid CPI data */
/* 40 Allocation error (mapping/dealloc) no mapping in remote AVS */
/* /partner deallocated conv*/
/* 50 Allocation error (receive) Receive failed */
/* 60 Receive data error invalid SFS data received*/
/* 100 help given */
/* 8880 command entered at console */
/* 9990 STOP entered at console */
/***/
address ′ COMMAND′

parse source . . fn .

/* definitions from CMREXX COPY **************************************/
CM_OK = 0 /* return_code */
CM_BASIC_CONVERSATION = 0 /* conversation_type */
CM_SEND_AND_FLUSH = 1
CM_SEND_AND_CONFIRM = 2
CM_SEND_AND_PREP_TO_RECEIVE = 3
CM_SEND_AND_DEALLOCATE = 4
CM_IMMEDIATE = 1
CM_RECEIVE_AND_WAIT = 0 /* receive_type */
CM_RECEIVE_IMMEDIATE = 1
CM_DEALLOCATE_FLUSH = 1
CM_DEALLOCATE_CONFIRM = 2
CM_DEALLOCATE_ABEND = 3
/* definitions from VMREXPRO COPY ************************************/
/*--*/
/* Definition for ThreadYield */
/*--*/
THREADYIELD = VMTHRYI
/*--*/
/* Definition for ThreadDelete */
/*--*/
THREADDELETE = VMTHRDE

Figure 17 (Part 1 of 11). ACCCHECK MTREXX

32 User ′s Guide to CMS Application Multitasking

/* definitions from VMREXTMR COPY ************************************/
/*--*/
/* TimerStartInt function definition */
/*--*/
TIMERSTARTINT = VMTMSIN
/*--*/
/* TimerStop function definition */
/*--*/
TIMERSTOP = VMTMSTP
/*--*/
/* Timer types */
/*--*/
VM_TMR_TIMERTYPE_REAL = 0
VM_TMR_TIMERTYPE_CPU = 1
/*--*/
/* Timer cycles */
/*--*/
VM_TMR_CYCLE_SINGLE = 0
VM_TMR_CYCLE_CYCLICAL = 1
/*--*/
/* Interval units */
/*--*/
VM_TMR_INTUNIT_MICRO = 0
VM_TMR_INTUNIT_MILLI = 1

Figure 17 (Part 2 of 11). ACCCHECK MTREXX

Chapter 3. Examples of Multithreaded Use 33

/* definitions from VMREXEVN COPY ************************************/
/*--*/
/* Monitor duration */
/*--*/
VM_EVN_NO_AUTO_DELETE = 0
VM_EVN_AUTO_DELETE = 1
/*--*/
/* Monitor synchronization */
/*--*/
VM_EVN_ASYNC_MONITOR = 10
VM_EVN_SYNC_PROCESS_MONITOR = 11
/*--*/
/* Monitor loose signal handling */
/*--*/
VM_EVN_BIND_LOOSE_SIGNALS = 20
VM_EVN_IGNORE_LOOSE_SIGNALS = 21
/*--*/
/* EventMonitorCreate function definition */
/*--*/
EVENTMONITORCREATE = VMEVMCR
/*--*/
/* EventWait function definition */
/*--*/
EVENTWAIT = VMEVWT
/*--*/
/* EventRetrieve function definition */
/*--*/
EVENTRETRIEVE = VMEVRT
/*--*/
/* EventMonitorDelete function definition */
/*--*/
EVENTMONITORDELETE = VMEVMDL
/*--*/
/* EventMonitorReset function definition */
/*--*/
EVENTMONITORRESET = VMEVMRE
/***/
error = 0 /* initial value */

Figure 17 (Part 3 of 11). ACCCHECK MTREXX

34 User ′s Guide to CMS Application Multitasking

arg sym_dest timeout .

if sym_dest = ′ *SUB*′ then do
/* i have called myself as a subroutine ******************************/

target_conv = timeout

conv_type = CM_BASIC_CONVERSATION
address ′ CPICOMM′ ′ CMSCT target_conv conv_type rc′

send_type = CM_SEND_AND_PREP_TO_RECEIVE
address ′ CPICOMM′ ′ CMSST target_conv send_type rc′

ret_ctl = CM_IMMEDIATE
address ′ CPICOMM′ ′ CMSRT target_conv ret_ctl rc′

address ′ CPICOMM′ ′ CMALLC target_conv rc′

s_buffer = x2c(′020012FFC4D4E2F3D7C94040FFC080′)
s_buffer = s_buffer || x2c(′010000000500000200000000008000′)
s_buffer = s_buffer || x2c(′0000000000E0000000000000000000′)
s_buffer = s_buffer || x2c(′00000000000120FF06599396720000′)
s_buffer = s_buffer || x2c(′ AF712A79E7DFB80040404040404040′)
s_buffer = s_buffer || x2c(′4040404040404040404BC4C1C1E5E2′)
s_buffer = s_buffer || x2c(′ C7F1F0F2D7F1F4C1F9F5F1F2D4F4F6′)
s_buffer = s_buffer || x2c(′ D3F2F7404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′40404040404010C4C5C9C2D4C6C44B′)
s_buffer = s_buffer || x2c(′ C6C4C1C1E5E2C7F1AF712A79EE4700′)
s_buffer = s_buffer || x2c(′014000000000000000000000000000′)
s_buffer = s_buffer || x2c(′000000000000000000000000000000′)
s_buffer = s_buffer || x2c(′0000000000000000000000000000E2′)
s_buffer = s_buffer || x2c(′ C4E2C9D54040401800000000000000′)
s_buffer = s_buffer || x2c(′00000100D9E3D6C340404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040000068000002000000′)
s_buffer = s_buffer || x2c(′000001000000000000000000000001′)
s_buffer = s_buffer || x2c(′000040000603000000000000000300′)
s_buffer = s_buffer || x2c(′00000022E5C3E4C6F1F1F1F0F140E5′)
s_buffer = s_buffer || x2c(′181817364040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′404040404040404040404040404040′)
s_buffer = s_buffer || x2c(′4040′)

Figure 17 (Part 4 of 11). ACCCHECK MTREXX

Chapter 3. Examples of Multithreaded Use 35

send_length = c2d(left(s_buffer,2))
address ′ CPICOMM′ ′ CMSEND target_conv s_buffer send_length ′ ,

′ req_to_send rc′
exit rc

end

Figure 17 (Part 5 of 11). ACCCHECK MTREXX

/***/

if sym_dest = ′ ′ | sym_dest = ′ ? ′ then do
say ′ Correct syntax is: MTREXX′ fn ′ resource <timeout>′
say ′ the default timeout is 10 seconds′
exit 100 /* no cleanup needed */

end

if length(sym_dest) > 8 then exit 70 /* no cleanup needed */

address ′ CPICOMM′ ′ CMINIT target_conv sym_dest rc′

if rc <> cm_ok then exit 70 /* no cleanup needed */

if timeout = ′ ′ | datatype(timeout,′ W′) = 0 then timeout = 10
if timeout < 1 then timeout = 10 /* use default */

timertype = vm_tmr_timertype_real /* */
cycle = vm_tmr_cycle_single /* oneshot */
intervalunits = vm_tmr_intunit_milli /* use milliseconds */
interval = timeout * 1000 /* number of seconds */
userword = left(′ TIMEOUT′ , 8) /* */

call csl ′ TimerStartInt retcode reascode timer_token′ ,
′ timertype cycle intervalunits interval userword′

Figure 17 (Part 6 of 11). ACCCHECK MTREXX

36 User ′s Guide to CMS Application Multitasking

/***/
monitor_flag_size = 3 /* */

/* */
monitor_flag.1 = vm_evn_no_auto_delete /* */
monitor_flag.2 = vm_evn_async_monitor /* */
monitor_flag.3 = vm_evn_bind_loose_signals /* */

/* */
number_of_events = 3 /* */

/* */
event_name_address.1 = ′ VMCON1ECB′ /* */
event_name_address.2 = ′ VMTIMER′ /* */
event_name_address.3 = ′ VMCPIC′ /* */

event_key_address.1 = ′ *′
event_key_address.2 = d2c(timer_token,4)||′ % ′ | |userword||′ *′
event_key_address.3 = ′ *′

do i = 1 to number_of_events
event_name_length.i = length(event_name_address.i)
event_key_length.i = length(event_key_address.i)
bound_signal_limit.i = -1

end

event_count = 1
call csl ′ EventMonitorCreate retcode reascode monitor_token′ ,

′ monitor_flag monitor_flag_size number_of_events′ ,
′ event_name_address event_name_length event_key_address′ ,
′ event_key_length bound_signal_limit event_count′

/* Start myself as a new thread **************************************/
parse value ThreadCreate(fn ′ *SUB*′ target_conv) with rc threadid .

Figure 17 (Part 7 of 11). ACCCHECK MTREXX

/***/
call csl ′ EventWait retcode reascode monitor_token number_of_events′ ,

′ event_flag′ /* */
/* VMCON1ECB popup - console input available *************************/

if event_flag.1 >= 0 then do /* VMCON1ECB */
do until queued() = 0 /* */

parse pull cmd /* */
select /* */

when translate(cmd) = ′ STOP′ then error = 999
otherwise do /* */

address ′ CMS′ cmd /* */
if rc = 0 then say ′ Ready;;′ / * */
else say ′ Ready(′ rc′) ; ; ′ /* */
error = 888 /* */

end /* */
end /* */

end /* */
end /* */

Figure 17 (Part 8 of 11). ACCCHECK MTREXX

Chapter 3. Examples of Multithreaded Use 37

/* VMTIMER expired ***/
if event_flag.2 >= 0 then do /* VMTIMER */

call csl ′ EventRetrieve′ , /* routine name */
′ retcode′ , / * return code */
′ reascode′ , /* reason code */
′ monitor_token′ , /* monitor token */
′ 2 ′ , /* event index */
′ retdata′ , / * returned data */
′32767′, /* max to return */
′ retlen′ /* length returned */

error = 1

end

Figure 17 (Part 9 of 11). ACCCHECK MTREXX

38 User ′s Guide to CMS Application Multitasking

/* VMCPIC arrived **/
if event_flag.3 >= 0 then do /* VMCPIC */

/***/
/* Information Input */
/* */
/* +-------------+-----------------+-------------------+ */
/* | X′00000002′ | conversation_id | event_info_length | */
/* +-------------+-----------------+-------------------+ */
/* 4 bytes 8 bytes 4 bytes */
/***/

call csl ′ EventRetrieve′ , /* routine name */
′ retcode′ , / * return code */
′ reascode′ , /* reason code */
′ monitor_token′ , /* monitor token */
′ 3 ′ , /* event index */
′ retdata′ , / * returned data */
′32767′, /* max to return */
′ retlen′ /* length returned */

/* */
if left(retdata,4) = ′00000002′x then do /* */

/***/
parse var retdata 5 conversation_ID +8 length +4 .

/* */
receive_type = CM_RECEIVE_AND_WAIT

address ′ CPICOMM′ ′ CMSRT target_conv receive_type return_code′
if return_code <> cm_ok then do /* */

error = 2 /* */
end /* */
else if c2d(length) > 0 then do /* */

r_buffer = ′ ′ /* */
requested_length = c2d(length) /* */

/* */
address ′ CPICOMM′ ′ CMRCV target_conv r_buffer requested_length′ ,

′ data_received received_length status_received′ ,
′ request_to_send_received return_code′

/* */
if return_code <> cm_ok then do /* */

error = 5 /* */
end
else do

r_buffer = left(r_buffer,received_length)

if substr(r_buffer,5,6) <> ′ DMS3PZ′ , / *valid sfs response*/
| substr(r_buffer,225,5) <> ′ SDSCA′ then do
error = 6

end
end

end
else do

error = 4
end

end

Figure 17 (Part 10 of 11). ACCCHECK MTREXX

Chapter 3. Examples of Multithreaded Use 39

/***/
else do /* */

error = 3 /* */
end /* */

end /* */
/* now do the cleanup **/
dealloc_type = CM_DEALLOCATE_FLUSH
address ′ CPICOMM′ ′ CMSDT target_conv dealloc_type rc′

address ′ CPICOMM′ ′ CMDEAL target_conv rc′

call csl ′ TimerStop retcode reascode timer_token′ ,
′ intervalunits interval userword′

call csl ′ ThreadDelete retcode reascode threadid′

call csl ′ EventMonitorReset retcode reascode monitor_token′

call csl ′ EventMonitorDelete retcode reascode monitor_token′

call csl ′ ThreadYield retcode reascode 0′ /* needed to allow CMS */
/* to cleanup CPIC ... */

call csl ′ ThreadYield retcode reascode 0′ /* see VM61645 */

exit error * 10

Figure 17 (Part 11 of 11). ACCCHECK MTREXX

40 User ′s Guide to CMS Application Multitasking

3.3 Synchronization of Multiple Threads
One of the more complicated tasks is the synchronization of threads. If for
example preprocessing is required before some threads are allowed to run, a
way to hold these threads is needed. One possible way to do this is using
semaphores as the following example shows:

program A

create semaphore 1 with initial_value_of_semaphore = 0
start program B in new thread
start program B in new thread
start program B in new thread
preprocessing
reinitialize semaphore 1 -> this allows all waiting

threads to continue

program B

initialization
wait on semaphore 1
main processing

Figure 18. Pausing Threads with Semaphores

The following example shows how to let a maximum number of similar threads
run, as it might be used to prevent an overload of your server. The following
example allows the program B to run in five threads at a time. This does not
prevent the creation of more than five threads, but the other threads will stay
idle until less than five threads are working.

Program A
create semaphore 2 with initial_value_of_semaphore = 5
listen to requests

start Program B in new thread

Program B
wait on semaphore 2 (this decreases the value of the semaphore)
do processing
...
signal semaphore 2 (this increases the value of the semaphore)
exit

Figure 19. Synchronizing Threads with Semaphores

On each wait on semaphore call, the value of the semaphore is decreased by
one. If the value of the semaphore is thereafter 0 or higher, no wait is required
and the thread simply continues processing. Otherwise the thread will wait until
another thread signals the semaphore, raising its value back to 0.

Chapter 3. Examples of Multithreaded Use 41

3.4 Multiple Threads with Pipelines
You can run multiple pipelines in different threads at the same time.

You can, for example, use one pipeline to connect to the message system
service with starmsg and run another pipeline which works with timer driven
events. Both pipelines would run totally independently and can communicate
with other threads, which may use functions such as CPI-C or direct RXSOCKET
calls.

This way you can use the much easier communication through events. What
makes it easier is that there is no need to connect each pipeline stage or filter to
all the connectors with which you want to communicate. Instead you simply
signal the event, to which you want to send data, by name.

Program A Program B

EventCreate ′ CPMSG′ PIPE starmsg *MSG | ...
EventMonitorCreate ′ CPMSG′ ... EventSignal ′ CPMSG′
EventWait
...

Program C

EventMonitorCreate ′ CPMSG′
EventWait
...

Figure 20. Signaling Messages through Pipelines

42 User ′s Guide to CMS Application Multitasking

3.5 Message Support for Events
With the following small program it is possible to process messages with event
signal. The messages are reformatted by a pipeline to allow an easy definition of
the event keys.

The pipeline was originally part of PIPESERV (written by Finn Skovgaard).

The signaled data is in the following format:

....+....1....+....2....+....3....+....4....+..
 msgcl userid nodeid message-text...........

where msgcl is the Message class (in hexadecimal format)
for example:

00000001 for local messages
RU000001 for remote messages
RR000001 for RSCS messages (RSCS command responses)
00000002 for warnings
00000003 for CPCONIO (cp command output)
00000004 for local special messages (SMSG)
00000005 for VMCONIO (vm command output, like say)
00000006 for error messages (EMSG)
00000007 for informational messages (IMSG)
00000008 for SCIF output (secondary user)

user ID is the originator of the message
node ID is the node ID of the originator of the message
message-text is the text of the message

Figure 21. Format of Signaled Messages

3.5.1 PIPSIGMS MTREXX
The main body of the program appears in the figure below. The code for the
subroutines may be found in 4.6.8, “IPGATE Subroutines” on page 88.

Chapter 3. Examples of Multithreaded Use 43

/***/
/* */

parse source . . fn ft . . env . /* */
if env = ′ CMS′ then do /* */

/* */
address ′ COMMAND′ /* */

/* */
′ CP SET MSG IUCV′ /* */
′ CP SET SMSG IUCV′ /* */

/* */
′ PIPE command IDENTIFY | var id′ /* */
parse var id thisuser +8 . 13 thisnode +8 . 26 rscsid +8 .

/* */
′ PIPE (end ?) starmsg *MSG′ , /* */
′ | spec 1-16 1 /′ thisnode′/ 17 17-* 25′ , /* Add nodeid field */
′ | rscsmsgo: nlocate anycase 8.22 /1′ rscsid||thisnode||′ FROM /′ ,
′ | rscsmsgi:faninany′ , /*Merge remote messages*/
′ | rexx (′ fn ft′) ′ , /* */
′? rscsmsgo:′ , /* Remote messages here*/
′ | rmt1: locate substr w1 of 30-* /(/′ , /* What type of RSCS msg?*/
′ | xlate substr w1 of 30-* (40) 40′ , /*Blank out parentheses*/
′ | spec /RU000001/ 1′ , /* Remote User prefix */

′ substr w2 of 30-* 9′ , /* Origin userid */
′ substr w1 of 30-* 17′ , /* Origin nodeid */
′ substr w4-* of 30-* 25′ , /* Text */

′ | rscsmsgi:′ , /* Merge with iucv records */
′? rmt1:′ , /* This is from remote RSCS server */
′ | spec /RR000001/ 1′ , /* Remote Rscs prefix */

′ fs : substr f1 of 30-* 17′ , /* Origin nodeid */
′ substr w2-* of 30-* 25′ , /* Text */

′ | rscsmsgi:′ /* */
/* */

′ CP SET MSG ON′ /* */
′ CP SET SMSG OFF′ /* */

/* */
end /* */

/* I′ m running the pipeline stage now ********************************/
else do /* */

/* */
call MT_Init /* */

/* */
do forever /* */

′ peekto data′ /* */
if rc <> 0 then leave /* */

/* */
call EventSignal ′ CPMSG′ c2x(data) /* */

/* */
′ readto′ /* */
if rc <> 0 then leave /* */

end /* */
/* */

exit rc * (rc <> 12) /* */
end /* */
exit /* */

Figure 22. PIPSIGMS MTREXX

44 User ′s Guide to CMS Application Multitasking

3.5.2 PROCMSG MTREXX
The program in the following figure shows how to set up the event keys to
process messages and arriving reader files. The code for the subroutines may
be found in 4.6.8, “IPGATE Subroutines” on page 88.

/***/
address ′ COMMAND′ /* */

/* */
call MT_Init /* */

/* */
call EventCreate ′ CPMSG′ /* */

/* */
mon_tok = EventMonitorCreate(′ CPMSG(%%000001*)′ ,

′ CPMSG(00000007%%%%%%%%%%%%%%%%RDR_FILE_%%%%_SENT_FROM_*)′)
/* */

finis = 0 /* */
/* */

do until finis /* */
call EventWait mon_tok /* */

/* */
if retcode <> 0 then do /* */

say ′ EventWait failed with return code′ retcode ′ reason code′ reascode
finis = 1 /* */

end /* */
else do /* */

if event_flag.1 >= 0 then do /* Message arrived */
/* */

call EventRetrieve mon_tok 1 32767
/* */

say ′ Msg:′ retdata
end /* */
if event_flag.2 >= 0 then do /* Reader file arrived */

/* */
call EventRetrieve mon_tok 2 32767

/* */
say ′ Rdr:′ retdata

end /* */
end /* */

end /* */
/* */

call EventMonitorReset mon_tok /* */
call EventMonitorDelete mon_tok /* */

/* */
call EventDelete ′ CPMSG′ /* */

/* */
exit /* */

Figure 23. PROCMSG MTREXX

Chapter 3. Examples of Multithreaded Use 45

3.6 Communication between Threads
If you want to communicate between threads there are basically two different
methods available:

• Communication through EventSignal

• Communication through queue-based interprocess communication (IPC)

3.6.1 Communication through EventSignal
The communication through EventSignal requires the knowledge of a single
event name to be known (if a single thread should be addressed), or another
identification scheme must be implemented if all threads are monitoring a single
event (for example inserting the thread id into the data to be signaled).

Thread A
EventCreate Event_A
EventMonitorCreate Event_A Thread C
EventWait SignalEvent Event_A some_data

SignalEvent Event_B other_data

Thread B
EventCreate Event_B
EventMonitorCreate Event_B
EventWait

Figure 24. EventSignal with Different Events

Thread A
EventCreate Event_X
EventMonitorCreate Event_X key A
EventWait

Thread C
SignalEvent Event_X A_some_data
SignalEvent Event_X B_other_data

Thread B
EventMonitorCreate Event_X key B
EventWait

Figure 25. EventSignal with Different Event Keys

46 User ′s Guide to CMS Application Multitasking

3.6.2 Communication through IPC
Messages that are delivered by queues can only be read once. Therefore, if you
are using event signaling, you have to check if you can receive the message
from the queue when you have been signaled. The message might already have
been read by another thread, and a QueueReceiveBlock function would block
your thread.

Thread A
QueueCreate Q vm_ipc_slevel
QueueSignalEvents Q vm_ipc_signal_on
EventMonitorCreate VMIPC and VMTIMER ...
EventWait
QueueReceiveImmed

Thread C
QueueOpen Q vm_ipc_slevel
QueueSend Q message

Thread B
QueueOpen Q vm_ipc_slevel
EventMonitorCreate VMIPC and VMTIMER ...
EventWait
QueueReceiveImmed

Figure 26. Communication through QueueReceiveImmed

If your thread is waiting only for messages arriving through IPC then it is much
easier and cheaper to use the QueueReceiveBlock function.

Thread A
QueueCreate Q vm_ipc_slevel
QueueReceiveBlock

Thread C
QueueOpen Q vm_ipc_slevel
QueueSend Q message

Thread B
QueueOpen Q vm_ipc_slevel
QueueReceiveBlock

Figure 27. Communication through QueueReceiveBlock

With this method only one thread is unblocked per message and there is no
need for an additional check for message availability.

For synchronous communication between threads you can also use the
QueueSendReply function to allow the sending thread to specify into which
queue the answer should be placed.

Chapter 3. Examples of Multithreaded Use 47

3.7 Terminating Multithreaded Programs
There are multiple ways to terminate a multithreaded application. One
possibility, which is not recommended, is the following:

Not recommended

call csl ′ ThreadDelete retcode reascode ″-1″ ′

We cannot recommend this because it will not clean up any resources acquired
by this thread, nor will it free the exec′s storage.

To clean up all the resources allocated by a thread, you should use one of the
following methods.

3.7.1 Terminating with a Termination Event
You could define an additional event to your process (for example with the name
SHUTDOWN) and add this event to all your EventMonitors. Your programs should
react on the signaling of this event with a cleanup of the resources owned by the
thread and use EXIT to return to the calling program. Whenever you want to stop
your application, you would just signal this event.

Program X
EventCreate SHUTDOWN
ThreadCreate Program Y
ThreadCreate Program Y
... Program Y
EventWait on EventMonitor ...
if SHUTDOWN do EventWait on EventMonitor

cleanup events if SHUTDOWN do
cleanup timers cleanup events
... cleanup timers
exit ...

end exit
... end
if time_to_stop then ...

EventSignal SHUTDOWN if time_to_stop then
EventSignal SHUTDOWN

Figure 28. Terminating with a Termination Event

3.7.2 Terminating with EventMonitorDelete
With the previous method each thread has to monitor a specific event. A much
easier method (which we prefer) is to check the retcode of an EventWait or
ThreadDelay in each thread (which should be done anyway) and exit if a retcode
not equal to zero is returned. This retcode not equal to zero can be achieved for
EventWait by deleting its event monitor or for ThreadDelay by issuing
TimerStopAll.

48 User ′s Guide to CMS Application Multitasking

Program X
EventWait on EventMonitor
if retcode <> 0 do Program Y

(cleanup events) EventWait on EventMonitor
(cleanup timers) if retcode <> 0 do
... (cleanup events)
exit (cleanup timers)

end ...
... exit

end
...

Program Z
EventQueryAll
EventDelete ...
EventMonitorDelete ...
TimerStopAll
ThreadDelay ...
ThreadDelete -1
exit

Figure 29. Terminating with EventMonitorDelete

In the above example Program Z terminates all threads in its process. This is
done by deleting all EventMonitors (which are returned by EventQueryAll). The
cleanup of all events can easily be done by using the output of the same call to
EventQueryAll. To cleanup all timers and ThreadDelays simply call TimerStopAll.
A final call to ThreadDelete may be added to dispose of any unresponsive
threads.

An example of how Program Z might be coded in REXX appears in the following
figure.

Chapter 3. Examples of Multithreaded Use 49

call socket ′ Terminate′ /* if RXSOCKET is used */
/* */

number_of_events = 200
do i = 1 to number_of_events

event_name_address.i = 200
event_name_length.i = 200

end
monitor_token_size = 200

/* */
call csl ′ EventQueryAll retcode reascode′ ,

′ number_of_events′ ,
′ event_name_address′ ,
′ event_name_length′ ,
′ actual_name_length′ ,
′ event_name_count′ ,
′ monitor_token′ ,
′ monitor_token_size′ ,
′ monitor_token_count′

/* */
/* */

do i = 1 to event_name_count
event_name_address = left(event_name_address.i,actual_name_length.i)
if left(event_name_address.i,2) <> ′ VM′ then do /* do not delete system events */

say ′ Event to delete:′ event_name_address
call EventDelete event_name_address

end
end

/* */
do i = 1 to monitor_token_count + 1

say ′ Monitor to delete:′ monitor_token.i
call EventMonitorReset monitor_token.i
call EventMonitorDelete monitor_token.i

end
/* */

call ThreadDelay 2000 /* allow termination */
/* */

call ThreadDelete ′ -1′ /* kill the leftover threads */

exit

Figure 30. Actual Code to Stop Al l Threads

50 User ′s Guide to CMS Application Multitasking

Chapter 4. Sample Application IPGATE

4.1 What is IPGATE?
IPGATE is an application that allows you to share APPC resources across VM
systems without the need of SNA.

The whole application is written in REXX and uses MTREXX to create the
threads. The code might be compiled with the lastest PTFs applied to the REXX
compiler and the REXX runtime library.

IPGATE communicates through TCP/IP and sets up a separate session for each
conversation. One conversation is needed per user and APPC resource pair.

We tested extensively with Shared File Pools (SFS) and FCON/ESA.

Remote sessions (SNA sessions through AVS) are also supported to and from
IPGATE.

4.2 Defining IPGATE to Your System
To define the IPGATE user ID to your system, the user entry in the directory
should look like this:

USER IPGATE IPGATE 32M 64M BG
 INCLUDE CMSUSFS
 IPL CMS PARM FILEPOOL VMSYSU AUTOCR
 IUCV *IDENT RESANY GLOBAL REVOKE
 IUCV ALLOW PRIORITY MSGLIMIT 2000
 IUCV ANY PRIORITY MSGLIMIT 2000
 OPTION QUICKDSP APPLMON MAXCONN 1000

Figure 31. IPGATE Sample Directory Entry

Notes:

 1. The CP privilege class B is needed for the alternate user support (Diagnose
X′ D4′). If you have used the MODIFY DIAGNOSE facility or UCR to assign
another privilege class to Diagnose X′ D4′ , specify that class instead.

 2. If you are using RACF, you should define a generic profile in VMBATCH and
PERMIT IPGATE with CONTROL. If you are using VM:Secure, you should
GRANT SURROGAT TO IPGATE.

 3. A 191 minidisk may be used instead of an SFS filepool, if desired.

 4. The IUCV statements are needed to allow IPGATE to define the APPC
resources to the local system.

 Copyright IBM Corp. 1998 51

4.3 Configuration Files Used by IPGATE
Configuration is done with two files:

• IPGATE RESOURCE

• IPGATE USERMAP

4.3.1 IPGATE RESOURCE
The IPGATE RESOURCE file is used to identify the APPC resources that are
located in the remote system and which should be made accessible to users in
the local system.
The layout of this file follows:

*resource target scope target port and address
*2345678 12345678 12345678 1234 123......
VM4ALL01 VM4ALL01 SYSTEM 4567 9.165.145.192
VM4ALL02 VM4ALL02 GLOBAL 4567 9.165.145.192
VM4ALLXX VM4ALLXX LOCAL 4567 9.165.145.192
FCXRES00 FCXRES00 SYSTEM 4567 9.165.145.192
TESTSYS VMSYS SYSTEM 4567 9.165.145.192
*
TESTSYSU VMSYSU SYSTEM 4567 9.164.155.115

Figure 32. IPGATE RESOURCE File Layout

An asterisk (*) in column 1 is used to identify comment lines.

resource the resource which is defined on the local system

target the resource to which the user will be connected
on the remote system

scope the resource_manager_type as defined in the
IDENTIFY_RESOURCE_MANAGER (XCIDRM) CPI-C
routine

LOCAL The resource is identified only to
the system in which it resides and
cannot be accessed from outside
this system.

SYSTEM The resource is identified only to
the VM/ESA system in which it
resides, but is remotely accessible
from other systems.

GLOBAL The resource is identified only to
an entire TSAF or CS collection. It
may be accessed by other users
in the collection or in an SNA
network.

target port and address the remote TCP/IP port and address on which the
target IPGATE is listening

52 User ′s Guide to CMS Application Multitasking

4.3.2 IPGATE USERMAP
The IPGATE USERMAP file has two functions. First it is used to verify that a
remote system is authorized to connect to this IPGATE. To authorize a system,
its IP address has to be specified in the origin_system columns.

The second function is the mapping of a remote user to a local user ID. This is
done by looking up a matching origin system , origuser and resource entry.

A semicolon (;) in column one is used to identify comments. A record with an
asterisk (*) in column one is a generic system entry for the user ID mapping, but
is treated as a comment for purposes of verifying authorization.

The layout of this file follows:

;origin_system origuser resource locuser
;23456789012345 12345678 12345678 12345678
;00.000.000.000 MAINT VMSFS01 GUEST
9.165.145.192 HOLGER VM4ALL01 =
9.165.145.192 HOLGER VM4ALL02 DEMNT25
9.165.145.192 HOLGER * WIDMAYER
9.165.145.192 * * =
* * * not_auth
9.164.155.115 * * =

Figure 33. IPGATE USERMAP File Layout

origin_system the IP address of the remote systems for which
resources should be made available, entered
without leading zeros

origuser the remote user ID of the accessing user

resource the local resource name

locuser a valid user ID defined on the local system to
which the remote user ID should be mapped

4.4 Files to Install on IPGATE
The following files are necessary to run IPGATE. All are included in the sample
program set for this redbook (see 1.2, “The SG245164 Package of Sample
Programs” on page 2). The files can be installed on any disk or directory
IPGATE accesses in its PROFILE EXEC.

IPGATE EXEC the startup program

IPGATE1 MTREXX the initial thread and console handler

IPGATE1L MTREXX listens on incoming TCP requests

IPGATE1Y MTREXX handles APPC (CPI-C) requests from user

IPGATE1I MTREXX works with incoming TCP sessions

IPGATE1W MTREXX monitors APPC requests for a resource

IPGATE RESOURCE must be tailored as described above (see 4.3.1,
“IPGATE RESOURCE” on page 52)

Chapter 4. Sample Application IPGATE 53

IPGATE USERMAP must be tailored as described above (see 4.3.2,
“IPGATE USERMAP”)

In addition, IPGATE must have access to the following file, separately available
from the VM/ESA Download Library in the MTREXX package.

MTREXX MODULE provides ThreadCreate function for REXX

4.5 Program Description of IPGATE
The following figure shows the main logic of IPGATE:

IPGATE EXEC
create process MTREXX with thread IPGATE1 MTREXX

IPGATE1 MTREXX
create thread IPGATE1W MTREXX for each resource
initialize RXSOCKET
create thread IPGATE1L MTREXX to listen on a port
wait for console input

if stop then terminate all threads
else execute command

IPGATE1L MTREXX
wait for session request over TCP/IP

accept the session and start IPGATE1I MTREXX in a new thread

IPGATE1W MTREXX
identify resource
wait for APPC request for resource

start IPGATE1Y MTREXX in a new thread

IPGATE1I MTREXX
validate the authority of the requester
find the mapping for the user ID
connect to requested resource
exchange data between TCP/IP session and APPC session

IPGATE1Y MTREXX
request a TCP/IP connection to the target IPGATE
exchange data between TCP/IP session and APPC session

Figure 34. IPGATE Program Logic

54 User ′s Guide to CMS Application Multitasking

4.6 The Actual IPGATE Code
In the following sections all of the code that makes up the IPGATE application is
displayed for your reference. Inline subroutines have been extracted and are
grouped together following the mainline routines.

4.6.1 PROFILE EXEC

/* */
address ′ COMMAND′
if linesize() = 0 then queue ′ EXEC IPGATE′
exit

Figure 35. Sample PROFILE EXEC of IPGATE

4.6.2 IPGATE EXEC - the Startup Program

/***/
address ′ COMMAND′ /* */

/* */
′ CP SET EMSG ON′ /* */

/* */
listen_port = 4567 /* */

/* */
′ MTREXX IPGATE1′ listen_port /* */

/* */
exit rc /* */

Figure 36. IPGATE EXEC

Chapter 4. Sample Application IPGATE 55

4.6.3 IPGATE1 MTREXX - the Initial Thread and Console Handler

/***/
address ′ COMMAND′ /* */

/* */
parse value ′1D60401DE8′ x with lo hi . /* */

/* */
trace ′ o′ /* */

/* */
parse arg listen_port . /* */

/* */
call MT_Init /* */

/* */
′ PIPE < IPGATE RESOURCE *′ , /* */
′ | nfind *′ | | , /* */
′ | stem resource.′ /* */

/* */
′ PIPE literal TCPIP DATA *′ , /* */
′ | state′ , /* */
′ | getfiles′ , /* */
′ | find TCPIPUSERID ′ | | , /* */
′ | specs w2 1′ , /* */
′ | append literal TCPIP′ | | , /* */
′ | take 1′ , /* */
′ | var tcp_userid′ /* */

Figure 37 (Part 1 of 5). IPGATE1 MTREXX

/***/
/* Identify the APPC resources */
/***/
do i = 1 to resource.0 /* */

/* */
parse value ThreadCreate(′ IPGATE1W′ resource.i) with rc new_thread

/* */
if rc = 0 then do /* */

thread.i = new_thread /* */
end /* */
else do /* */

say ′ ThreadCreate failed with rc =′ rc /* */
end /* */

end /* */

Figure 37 (Part 2 of 5). IPGATE1 MTREXX

56 User ′s Guide to CMS Application Multitasking

/***/
/* Initialize TCP/IP communication */
/***/
call ThreadGetId /* */

/* */
my_name = ′ IPGATE′ right(thread_ID,10,0)

/* */
parse value socket(′ Terminate′ , userid()) with rc subtaskid .

/* */
parse value socket(′ Initialize′ , userid(),1999,tcp_userid) with rc subtaskid ,

maxdesc service .
/* */

say ′ Init rc =′ rc /* */
/* */

parse value socket(′ Socket′ , ′ AF_INET′ , ′ SOCK_STREAM′ , ′ IPPROTO_TCP′) with rc socketid .
/* */

say ′ Socket rc =′ rc /* */
/* */

parse value socket(′ GetHostId′) with rc tcp_host_id .
/* */

parse value Socket(′ SetSockOpt′ , socketid,′ SOL_Socket′ , ′ SO_REUSEADDR′ , ′ On′) with rc .
/* */

parse value socket(′ Bind′ , socketid,′ AF_INET′ listen_port tcp_host_id) with rc .
/* */

parse value socket(′ Listen′ , socketid,20) with rc .
/* */

parse value Socket(′ SetSockOpt′ , socketid,′ SOL_Socket′ , ′ SO_Broadcast′ , ′ On′) with rc .
/* */

parse value Socket(′ Ioctl′ , socketid,′ FIONBIO′ , ′ On′) with rc .
/* */

con_monitor_token = EventMonitorCreate(′ VMCON1ECB′)
/* */

finis = 0 /* */
/* */

call ThreadCreate ′ IPGATE1L′ socketid listen_port
/* */

Figure 37 (Part 3 of 5). IPGATE1 MTREXX

Chapter 4. Sample Application IPGATE 57

do until finis /* */
/* */

call EventWait con_monitor_token
/* */

if retcode <> 0 then finis = 1 /* */
/* */

if event_flag.1 >= 0 then do /* VMCON1ECB */
/* */

parse pull cmd /* */
if translate(cmd) = ′ STOP′ then do

finis = 1
/* */

say ′ Terminating ...′ /* */
/* */

call socket ′ Terminate′ /* */
/* */

number_of_events = 200
do i = 1 to number_of_events

event_name_address.i = 200
event_name_length.i = 200

end
monitor_token_size = 200

/* */
call csl ′ EventQueryAll retcode reascode′ ,

′ number_of_events′ ,
′ event_name_address′ ,
′ event_name_length′ ,
′ actual_name_length′ ,
′ event_name_count′ ,
′ monitor_token′ ,
′ monitor_token_size′ ,
′ monitor_token_count′

/* */
do i = 1 to event_name_count

event_name_address = left(event_name_address.i,actual_name_length.i)
if left(event_name_address.i,2) <> ′ VM′ then do

say ′ Event to delete:′ event_name_address
call EventDelete event_name_address

end
end

/* */
do i = 1 to monitor_token_count + 1

say ′ Monitor to delete:′ monitor_token.i
call EventMonitorReset monitor_token.i
call EventMonitorDelete monitor_token.i

end
/* */

call ThreadDelay 2000 /* */
/* */

call ThreadDelete ′ -1′ /* */
end /* */

Figure 37 (Part 4 of 5). IPGATE1 MTREXX

58 User ′s Guide to CMS Application Multitasking

else do /* */
address ′ CMS′ cmd /* */
if rc = 0 then say ′ Ready;;′ /* */
else say ′ Ready(′ rc′) ; ; ′ /* */

end /* */
end /* */

end /* */
/***/
exit /* */

Figure 37 (Part 5 of 5). IPGATE1 MTREXX

4.6.4 IPGATE1L MTREXX - Listens on Incoming TCP Requests

/***/
address ′ COMMAND′ /* */

/* */
parse value ′1D60401DE8′ x with lo hi . /* */

/* */
trace ′ o′ /* */

/* */
arg socketid listen_port . /* */

/* */
call MT_Init /* */

/* */
call ThreadGetId /* */

/* */
my_name = ′ IPGATEL′ right(thread_ID,10,0) /* */

/* */
say my_name ′ started (′ socketid listen_port′) ′ / * */

/* */
call EventCreate my_name /* */

/* */
tcp_monitor_token = EventMonitorCreate(my_name)

/* */
parse value socket(′ Select′ , ′ Read′ socketid ′ Write′ ,

′ Exception′ , ′ SIGNAL′ my_name) with rc .
/* */

finis = 0 /* */
/* */

Figure 38 (Part 1 of 3). IPGATE1L MTREXX

Chapter 4. Sample Application IPGATE 59

do until finis /* */
/* */

call EventWait tcp_monitor_token /* */
/* */

if retcode <> 0 then finis = 1 /* */
/* */

if event_flag.1 >= 0 then do /* tcp-event */
/* */

call EventRetrieve tcp_monitor_token 1 /* */
/* */

parse var retdata tcp_events ′ READ ′ tcp_read ,
′ WRITE ′ tcp_write ′ EXCEPTION ′ tcp_except

/* */
if tcp_read <> ′ ′ then do

/* */
parse value socket(′ Accept′ , tcp_read) with rc new_socket
parse var new_socket new_socket_id new_family .

if rc = 0 then do

parse value ThreadCreate(′ IPGATE1I′ thread_ID ,
new_socket) with rc new_threadid .

end
else do

say my_name||hi′ Accept: rc =′ rc new_socket lo
end

end /* */
if tcp_write <> ′ ′ then do

/* */
parse value socket(′ Write′ , tcp_write,′ FFFFFFFF′ x) with rc

/* */
end /* */
if finis = 0 then /* */
parse value socket(′ Select′ , ′ Read′ socketid ,
′ Write Exception′ , ′ SIGNAL′ my_name) with rc .

end /* */
end /* */

Figure 38 (Part 2 of 3). IPGATE1L MTREXX

/***/
call EventMonitorReset tcp_monitor_token /* */
call EventMonitorDelete tcp_monitor_token /* */

/* */
call EventDelete my_name /* */

/* */
exit /* */

Figure 38 (Part 3 of 3). IPGATE1L MTREXX

60 User ′s Guide to CMS Application Multitasking

4.6.5 IPGATE1Y MTREXX - Handles APPC (CPI-C) Requests from User

/***/
/* */
/* Allocation Request */
/* */
/* +-------------+-----------------+ */
/* | X′00000001′ | resource_id | */
/* +-------------+-----------------+ */
/* 4 bytes 8 bytes */
/* */
/* */
/* Information Input */
/* */
/* +-------------+-----------------+-------------------+ */
/* | X′00000002′ | conversation_id | event_info_length | */
/* +-------------+-----------------+-------------------+ */
/* 4 bytes 8 bytes 4 bytes */
/* */
/* */
/* Resource revoked notification */
/* */
/* +-------------+-----------------+ */
/* | X′00000003′ | resource_id | */
/* +-------------+-----------------+ */
/* 4 bytes 8 bytes */
/* */
/* */
/* */
/* */
/***/
address ′ COMMAND′ /* */

/* */
parse value ′1D60401DE8′ x with lo hi . /* */

/* */
trace ′ o′ /* */

/* */
call MT_Init /* */

/* */
parse arg loc_resource . /* */

/* */
call ThreadGetId /* */

/* */
my_name = ′ IPGATEY′ | | right(thread_ID,10,0) /* */

/* */
′ PIPE (end ?) < IPGATE RESOURCE *′ , /* */
′ | nfind *′ | | , /* */
′ | find′ left(loc_resource,9,′ _ ′) | | ,
′ | targ: fanout′ ,
′ | specs w2 1′ , /* */
′ | var target_resource′ , /* */
′? targ:′ , /* */
′ | specs w4-5 1′ , /* */
′ | var target_ip′ /* */

Figure 39 (Part 1 of 18). IPGATE1Y MTREXX

Chapter 4. Sample Application IPGATE 61

/* */
if verify(word(target_ip,2),′0123456789.′) > 0 then,

do i = 1 to 5 until rc = 0
parse value socket(′ Resolve′ , word(target_ip,2)) with rc ip_addr .

end /* */
else ip_addr = word(target_ip,2) /* */

/* */
if rc = 0 then do /* */

target_ip = word(target_ip,1) ip_addr /* */
end /* */
else do /* */

say my_name||hi′ Nameserver lookup failed - rc =′ rc lo
address ′ CPICOMM′ ′ CMACCP cm_convid cm_rc′
dealloc_type = CM_DEALLOCATE_ABEND
address ′ CPICOMM′ ′ CMSDT cm_convid dealloc_type cm_rc′
address ′ CPICOMM′ ′ CMDEAL cm_convid cm_rc′
exit rc /* */

end /* */
/* */

say my_name ′ started.′ /* */

Figure 39 (Part 2 of 18). IPGATE1Y MTREXX

/***/
/* Initialize TCP/IP communication */
/***/
parse value socket(′ Socket′ , ′ AF_INET′ , ′ SOCK_STREAM′ , ′ IPPROTO_TCP′) with rc socketid .

parse value socket(′ Connect′ , socketid,′ AF_INET′ target_ip) with rc .

call EventCreate my_name /* */

Figure 39 (Part 3 of 18). IPGATE1Y MTREXX

62 User ′s Guide to CMS Application Multitasking

/***/
/* Initialize APPC communication */
/***/
fill = CM_FILL_LL /* */
fill_buffer = CM_FILL_BUFFER /* */
/***/
montok1 = EventMonitorCreate(′ VMCPIC′ | | ′ (′ | | ′00000002′x || ′ *)′)

/* */
address ′ CPICOMM′ ′ CMACCP cm_convid cm_rc′ /* */

/* */
montok = EventMonitorCreate(′ VMCPIC′ | | ′ (′ | | ′00000002′x || left(cm_convid,8,′ _ ′) | | ′ *)′ ,

my_name)
/* */

/* set fill **/
address ′ CPICOMM′ ′ CMSF cm_convid fill cm_rc′ /* */
if cm_return_code.cm_rc <> ′ CM_OK′ then ,

address ′ CPICOMM′ ′ CMSF cm_convid fill_buffer cm_rc′
/* */

address ′ CPICOMM′ ′ CMEPLN cm_convid partner_LU_name ′ ,
′ partner_LU_name_length return_code′

work_user = word(partner_LU_name,2) /* */
/* */

if word(partner_LU_name,1) <> ′ *USERID′ then do
/* remote access -----------------------------************************/

address ′ CPICOMM′ ′ XCECSU cm_convid security_user_ID ′ ,
′ security_user_ID_length rc′

if cm_return_code.rc = ′ CM_OK′ then , /* */
work_user = left(security_user_ID,security_user_ID_length)

/* */
address ′ CPICOMM′ ′ XCELFQ cm_convid local_FQ_LU_name′ ,

′ local_FQ_LU_name_length return_code′
/* */

address ′ CPICOMM′ ′ XCERFQ cm_convid remote_FQ_LU_name′ ,
′ remote_FQ_LU_name_length return_code′

/* */
address ′ CPICOMM′ ′ XCETPN cm_convid TP_name′ ,

′ TP_name_length return_code′
end /* */

/* */

Figure 39 (Part 4 of 18). IPGATE1Y MTREXX

Chapter 4. Sample Application IPGATE 63

say my_name ′ Request from′ hi||work_user||lo′ for′ hi||target_resource||,
lo′ at′ hi||target_ip||lo /* */

/* */
text = ′ *IPGATE*INIT*′ target_resource′ *′ work_user′ *′

/* */
do until text = ′ ′ | rc <> 0 /* */

/* */
parse value socket(′ Write′ , socketid,text) with rc bytes_sent

/* */
if rc <> 0 then do /* */

/* */
say my_name||hi′ Init Write failed with rc =′ rc ′ (′ bytes_sent′) ′ lo

/* */
call socket ′ Close′ , socketid /* */

/* */
call EventDelete my_name /* */

/* */
call EventMonitorReset montok /* */
call EventMonitorDelete montok /* */

/* */
call EventMonitorReset montok1 /* */
call EventMonitorDelete montok1 /* */

/* */
dealloc_type = CM_DEALLOCATE_CONFIRM
address ′ CPICOMM′ ′ CMSDT cm_convid dealloc_type cm_rc′
address ′ CPICOMM′ ′ CMDEAL cm_convid cm_rc′

/* */
dealloc_type = CM_DEALLOCATE_ABEND
address ′ CPICOMM′ ′ CMSDT cm_convid dealloc_type cm_rc′
address ′ CPICOMM′ ′ CMDEAL cm_convid cm_rc′

/* */
exit rc /* */

end /* */
else do

if bytes_sent = length(text) then do
text = ′ ′ /* */

end /* */
else do /* */

text = substr(text,bytes_sent+1)
end /* */

end /* */
end /* */

/* */

Figure 39 (Part 5 of 18). IPGATE1Y MTREXX

64 User ′s Guide to CMS Application Multitasking

parse value Socket(′ Read′ , socketid) with rc length data
if rc <> 0 | data <> ′00 ′x then do /* */

say my_name||hi′ Init Read failed with rc =′ rc ′ (′ length data′) ′ lo
/* */

call socket ′ Close′ , socketid /* */
/* */

call EventDelete my_name /* */
/* */

call EventMonitorReset montok /* */
call EventMonitorDelete montok /* */

/* */
call EventMonitorReset montok1 /* */
call EventMonitorDelete montok1 /* */

/* */
dealloc_type = CM_DEALLOCATE_ABEND
address ′ CPICOMM′ ′ CMSDT cm_convid dealloc_type cm_rc′
address ′ CPICOMM′ ′ CMDEAL cm_convid cm_rc′

/* */
exit rc /* */

end /* */

Figure 39 (Part 6 of 18). IPGATE1Y MTREXX

/* now set the socket to non-blocking mode ***************************/
parse value Socket(′ SetSockOpt′ , socketid,′ SOL_Socket′ , ′ SO_Broadcast′ , ′ On′) with rc .

parse value Socket(′ Ioctl′ , socketid,′ FIONBIO′ , ′ On′) with rc .

sel_write = ′ ′ /* */
/* */

parse value socket(′ Select′ , ′ Read′ socketid ′ Write′ sel_write ,
′ Exception′ socketid,′ SIGNAL′ my_name,) with rc

Figure 39 (Part 7 of 18). IPGATE1Y MTREXX

/***/
REM_INFO = left(work_user,8) ip_addr target_resource
LOC_INFO = left(work_user,8) socketid date() time()
IP_DATA_OUT = 0 /* */
IP_DATA_IN = 0 /* */
$LAST_ACTIV$ = date() time() /* */

/* */
finis = 0 /* */

/* */
first = 1 /* */
ev_wait_tok = montok1 /* */
text = ′ ′ /* */
tcp_text = ′ ′ /* */

/* */

Figure 39 (Part 8 of 18). IPGATE1Y MTREXX

Chapter 4. Sample Application IPGATE 65

do until finis /* */
/* */

call EventWait ev_wait_tok /* wait for event */
/* */

if retcode <> 0 then finis = 1 /* */
/* */

$LAST_ACTIV$ = date() time() /* */

Figure 39 (Part 9 of 18). IPGATE1Y MTREXX

/*--************************/
if event_flag.1 >= 0 then do /* VMCPIC */

/* */
call EventRetrieve ev_wait_tok 1 32767 /* */

/* */
if left(retdata,4) = ′00000002′x then do /* Information input */

parse var retdata . 5 conv_id 13 length +4 .
if conv_id <> cm_convid then iterate /* */
if first then do /* */

ev_wait_tok = montok /* */
call EventMonitorReset montok1 /* */
call EventMonitorDelete montok1 /* */
first = 0 /* */

end /* */
total_sent = c2d(length) /* */
total_received = 0 /* */

/*--************************/
address ′ CPICOMM′ ′ CMECS cm_convid conversation_state return_code′

/* */
if cm_conversation_state.conversation_state <> ′ CM_RECEIVE_STATE′ & ,

cm_conversation_state.conversation_state <> ′ CM_SEND_PENDING_STATE′ then,
say my_name ′ Rcv_state′ cm_conversation_state.conversation_state

/* */
if total_sent = 0 then finis = 1 /* */

Figure 39 (Part 10 of 18). IPGATE1Y MTREXX

66 User ′s Guide to CMS Application Multitasking

/*--************************/
else if cm_conversation_state.conversation_state = ′ CM_RECEIVE_STATE′ ,
then do until total_received >= total_sent

receive_type = CM_RECEIVE_AND_WAIT/* */
address ′ CPICOMM′ ′ CMSRT cm_convid receive_type return_code′

/* */
if return_code <> 0 then say my_name ′ CMSRT′ cm_return_code.return_code

/* */
requested_length = c2d(length)
if requested_length > 32767 then requested_length = 32767

/* */
r_buffer = ′ ′ /* */

/* */
address ′ CPICOMM′ ′ CMRCV cm_convid r_buffer requested_length′ ,

′ data_received received_length status_received′ ,
′ request_to_send_received return_code′

/* */
if return_code <> 0 then say my_name ′ CMRCV′ cm_return_code.return_code

/* */
if substr(r_buffer,3,8) = ′12FFC4D4E2F3D7C9′ x then do

r_buffer = overlay(copies(′00 ′x,24),r_buffer,85)
r_buffer = overlay(copies(′00 ′x,26),r_buffer,157)

end /* */
/* */

if cm_return_code.return_code = ′ CM_RESOURCE_FAILURE_NO_RETRY′ ,
| cm_return_code.return_code = ′ CM_PROGRAM_PARAMETER_CHECK′ then do
finis = 1 /* */
leave /* */

end /* */
total_received = total_received + received_length

/* */
send_type = CM_BUFFER_DATA /* */

/* */
if total_received >= total_sent & ,

cm_status_received.status_received <> ′ CM_NO_STATUS_RECEIVED′ then ,
send_type = CM_SEND_AND_PREP_TO_RECEIVE

/* */
text = text′ *IPGATE*CMSST*′ send_type′ *′

/* */
s_buffer = left(r_buffer,received_length)
send_length = c2d(left(r_buffer,2))

/* */
text = text || ′ *IPGATE*CMSEND*′ | | length(s_buffer)||′ *′ | | ,

s_buffer||′ *′
/* */

Figure 39 (Part 11 of 18). IPGATE1Y MTREXX

Chapter 4. Sample Application IPGATE 67

if sel_write = ′ ′ then do /* */
wr_text = left(text,min(50000,length(text)))
parse value socket(′ Write′ , socketid,wr_text) with rc bytes_sent .
if rc <> 0 & rc <> 35 then do /* */

finis = 1 /* */
say my_name||hi′ write failed with rc =′ rc ′ (′ bytes_sent′) ′ lo

end /* */
if rc = 35 then do

if sel_write = ′ ′ then do /* */
sel_write = socketid /* EWOULDBLOCK */
parse value socket(′ Select′ , ′ Read′ ,
′ Write′ sel_write ,
′ Exception′ , ′ SIGNAL′ my_name) with rc .

end /* */
end /* */
if rc = 0 then do

IP_DATA_OUT = IP_DATA_OUT + bytes_sent
if bytes_sent = length(text) then do

text = ′ ′ /* */
sel_write = ′ ′ /* */

end /* */
else do /* */

text = substr(text,bytes_sent+1)
if sel_write = ′ ′ then do /* */

sel_write = socketid /* EWOULDBLOCK */
parse value socket(′ Select′ , ′ Read′ ,
′ Write′ sel_write ,
′ Exception′ , ′ SIGNAL′ my_name) with rc .

end /* */
end /* */

end /* */
end /* */

end /* */
/*--************************/

end /* */
else do /* */

say my_name||hi′ Unexpected APPC input (′ retdata ′ -′ c2x(retdata)′) ′ ,
′ or termination request′ lo

finis = 1 /* */
end /* */

end /* */

Figure 39 (Part 12 of 18). IPGATE1Y MTREXX

68 User ′s Guide to CMS Application Multitasking

/*--************************/
if event_flag.2 >= 0 then do /* TCP/IP */

/* */
ip_read_done = 0 /* */

/* */
read_rc = 0 /* */

/* */
call EventRetrieve ev_wait_tok 2 32767 /* */

parse var retdata tcp_events ′ READ ′ tcp_read ′ WRITE ′ tcp_write ,
′ EXCEPTION ′ tcp_except

/* */
if (tcp_read <> socketid) & tcp_read <> ′ ′ then ,

say my_name||hi′ Read for′ tcp_read ′ signaled - should be′ socketid||lo
if (tcp_write <> socketid) & tcp_write <> ′ ′ then ,

say my_name||hi′ Write for′ tcp_write ′ signaled - should be′ socketid||lo
if (tcp_except <> socketid) & tcp_except <> ′ ′ then ,

say my_name||hi′ Exception for′ tcp_except ′ signaled - should be′ socketid||lo

Figure 39 (Part 13 of 18). IPGATE1Y MTREXX

/*- receiving tcp answer ---------------------************************/
if tcp_read <> ′ ′ then do

parse value socket(′ Read′ , socketid,100000) with rc bytes data
read_rc = rc /* */
if rc = 0 then , /* */
IP_DATA_IN = IP_DATA_IN + bytes
if rc <> 35 & (rc <> 0 | bytes = 0) then do

say my_name||hi′ Thread terminating ... Read rc =′ rc ′ (′ bytes data′) ′ lo
finis = 1

end

Figure 39 (Part 14 of 18). IPGATE1Y MTREXX

Chapter 4. Sample Application IPGATE 69

else if rc <> 35 then do until ip_read_done
tcp_text = tcp_text || data /* */
data = ′ ′ /* */
select /* */

/*- set send type received *IPGATE*CMSST*n* --************************/
when left(tcp_text,14) = ′ *IPGATE*CMSST*′ ,

& length(tcp_text) >= 16 then do
/* */

parse var tcp_text ′ *IPGATE*CMSST*′ send_type′ *′ tcp_text
address ′ CPICOMM′ ′ CMSST cm_convid send_type rc′

end /* */
/*- send data received *IPGATE*CMSEND*length*data* *******************/

when left(tcp_text,15) = ′ *IPGATE*CMSEND*′ ,
& length(tcp_text) >= 19 then do

/* */
parse var tcp_text ′ *IPGATE*CMSEND*′ tcp_temp
if index(tcp_text,′ *′) > 0 then do

/* */
parse var tcp_text ′ *IPGATE*CMSEND*′ length′ *′ tcp_temp
if length(tcp_temp) >= length + 1 then do /* data complete ? */

/* */
cm_data = left(tcp_temp,length)
if length(tcp_temp) = length + 1 then,

tcp_text = ′ ′ /* */
else tcp_text = substr(tcp_temp,length+2)

/* */
address ′ CPICOMM′ ′ CMECS cm_convid′ ,

′ conversation_state return_code′
/* */

if cm_conversation_state.conversation_state <> ′ CM_SEND_STATE′ & ,
cm_conversation_state.conversation_state <> ′ CM_SEND_PENDING_STATE′ then,
say my_name ′ Send_state′ cm_conversation_state.conversation_state

/* */
address ′ CPICOMM′ ′ CMSEND cm_convid cm_data′ ,

′ length req_to_send rc′
/* */

if rc <> 0 then say my_name ′ CMSEND′ cm_return_code.rc
/* */

end /* */
else ip_read_done = 1 /* */

end /* */
else ip_read_done = 1 /* */

end /* */
/*- else wait for complete data --------------************************/

otherwise ip_read_done = 1 /* */
end /* */

end
end

Figure 39 (Part 15 of 18). IPGATE1Y MTREXX

70 User ′s Guide to CMS Application Multitasking

/*--************************/
/* if write is signaled, the remaining data to send must be in */
/* variable text */
/*--************************/

if tcp_write <> ′ ′ then do /* */
if text = ′ ′ then do /* nothing to write ? */

sel_write = ′ ′ /* */
end /* */
else do /* */

wr_text = left(text,min(50000,length(text)))
parse value socket(′ Write′ , socketid,wr_text) with rc bytes_sent .

/*--************************/
if rc <> 0 & rc <> 35 then do /* */

finis = 1 /* */
say my_name||hi′ write failed with rc =′ rc ′ (′ bytes_sent′) ′ lo

end /* */
if rc = 35 then do

if sel_write = ′ ′ then do /* */
sel_write = socketid /* EWOULDBLOCK */

end /* */
end /* */
if rc = 0 then do

IP_DATA_OUT = IP_DATA_OUT + bytes_sent
if bytes_sent = length(text) then do

text = ′ ′ /* */
sel_write = ′ ′ /* */

end /* */
else do /* */

text = substr(text,bytes_sent+1)
if sel_write = ′ ′ then do /* */

sel_write = socketid /* EWOULDBLOCK */
end /* */

end /* */
end /* */

/*--************************/
end /* */

end

Figure 39 (Part 16 of 18). IPGATE1Y MTREXX

/*--************************/
if tcp_except <> ′ ′ then do

parse value socket(′ Recv′ , socketid,,′ OUT_OF_BAND′) with rc bytes data
say my_name ′ exception read′ bytes ′ bytes.′
say my_name ′ exception data:′ c2x(data)

end
if finis = 0 then , /* */
parse value socket(′ Select′ , ′ Read′ socketid ′ Write′ sel_write ,

′ Exception′ socketid,′ SIGNAL′ my_name,) with rc
end /* */

end /* */

Figure 39 (Part 17 of 18). IPGATE1Y MTREXX

Chapter 4. Sample Application IPGATE 71

/*--************************/
dealloc_type = CM_DEALLOCATE_ABEND /* */
address ′ CPICOMM′ ′ CMSDT cm_convid dealloc_type rc′
address ′ CPICOMM′ ′ CMDEAL cm_convid rc′

/* */
call EventMonitorReset ev_wait_tok /* */
call EventMonitorDelete ev_wait_tok /* */

/* */
call socket ′ Close′ , socketid /* */

/* */
call EventDelete my_name /* */

/* */
say my_name ′ ended.′ /* */

/* */
exit /* */

Figure 39 (Part 18 of 18). IPGATE1Y MTREXX

72 User ′s Guide to CMS Application Multitasking

4.6.6 IPGATE1I MTREXX - Works with Incoming TCP Sessions

/***/
/* */
/* Allocation Request */
/* */
/* +-------------+-----------------+ */
/* | X′00000001′ | resource_id | */
/* +-------------+-----------------+ */
/* 4 bytes 8 bytes */
/* */
/* */
/* Information Input */
/* */
/* +-------------+-----------------+-------------------+ */
/* | X′00000002′ | conversation_id | event_info_length | */
/* +-------------+-----------------+-------------------+ */
/* 4 bytes 8 bytes 4 bytes */
/* */
/* */
/* Resource revoked notification */
/* */
/* +-------------+-----------------+ */
/* | X′00000003′ | resource_id | */
/* +-------------+-----------------+ */
/* 4 bytes 8 bytes */
/* */
/* */
/* */
/* */
/***/
address ′ COMMAND′ /* */

/* */
parse value ′1D60401DE8′ x with lo hi . /* */

/* */
trace ′ o′ /* */

/* */
call MT_Init /* */

/* */
parse arg calling_thread socketid family rem_port rem_ip

/* */
call ThreadGetId /* */

/* */
my_name = ′ IPGATEI′ | | right(thread_ID,10,0) /* */

/* */
say my_name ′ started. (′ calling_thread socketid family rem_port rem_ip′) ′

/* */

Figure 40 (Part 1 of 16). IPGATE1I MTREXX

Chapter 4. Sample Application IPGATE 73

′ PIPE < IPGATE USERMAP′ , /* */
′ | nfind ;′ | | , /* */
′ | nfind *′ | | , /* */
′ | pad 15′ , /* */
′ | find′ left(rem_ip,15,′ _ ′) | | , /* */
′ | take 1′ , /* */
′ | count lines′ , /* */
′ | var auth′ /* */

/* */
if auth = 0 then do /* */

say my_name||hi′ Unauthorized Connection Request from′ rem_ip rem_port lo
call socket ′ Close′ , socketid /* */
exit 999 /* */

end /* */

Figure 40 (Part 2 of 16). IPGATE1I MTREXX

/***/
/* Initialize TCP/IP communication */
/***/
init = 0

/* */
init_data = ′ ′ /* */
/* now run in blocking mode first ------------************************/

/* */
do until init /* */

parse value Socket(′ Read′ , socketid) with rc length data
init_data = init_data || data /* */
if length(init_data) > 13 & left(init_data,13) <> ′ *IPGATE*INIT*′ ,

then do
/* */

say my_name||hi′ Invalid Init call from′ rem_ip rem_port lo
call socket ′ Close′ , socketid /* */
exit 999 /* */

end /* */
if words(translate(init_data,′ ′ , ′ *′)) >= 4 then init = 1

end /* */
/* */

parse value socket(′ Write′ , socketid,′00 ′x) with rc bytes_sent .
if rc <> 0 then do /* */

say my_name||hi′ Init response write failed - rc =′ rc ′ (′ bytes_sent′) ′ lo
call socket ′ Close′ , socketid /* */
exit rc /* */

end /* */
/* */

parse var init_data ′ *IPGATE*INIT*′ resource′ *′ user′ *′ ip_data
/* */

Figure 40 (Part 3 of 16). IPGATE1I MTREXX

74 User ′s Guide to CMS Application Multitasking

/* now switch to non-blocking mode -----------************************/
parse value Socket(′ SetSockOpt′ , socketid,′ SOL_Socket′ , ′ SO_Broadcast′ , ′ On′) with rc .

parse value Socket(′ Ioctl′ , socketid,′ FIONBIO′ , ′ On′) with rc .

sel_write = ′ ′ /* */
/* */

call EventCreate my_name /* */

Figure 40 (Part 4 of 16). IPGATE1I MTREXX

/***/
/* Initialize APPC communication */
/***/
fill = CM_FILL_LL /* */
fill_buffer = CM_FILL_BUFFER /* */

/* */
address ′ CPICOMM′ ′ CMINIT cm_convid resource cm_rc′
/***/

/* */
montok = EventMonitorCreate(′ VMCPIC′ | | ′ (′ | | ′00000002′x || left(cm_convid,8,′ _ ′) | | ′ *)′ ,

my_name)

Figure 40 (Part 5 of 16). IPGATE1I MTREXX

Chapter 4. Sample Application IPGATE 75

/***/
rem_user = user /* */

/* */
′ PIPE (end ?) < IPGATE USERMAP′ , /* */
′ | nfind ;′ | | , /* */
′ | gI: find′ left(rem_ip,15,′ _ ′) | | ,
′ | giU: find′ left(rem_ip,15,′ _ ′) left(user,8,′ _ ′) | | ,
′ | giuR: find′ left(rem_ip,15,′ _ ′) left(user,8,′ _ ′) left(resource,8,′ _ ′) | | ,
′ | auth: fanin 0 7 1 2 4 6 5 3′ , /* */
′ ′ , / * iur iuR Iur IUr iUr IuR iUR IUR uppercase = generic */
′ ′ , / * 0 7 1 2 4 6 5 3 */
′ | append literal x x x not_auth′ , /* */
′ | take 1′ , /* */
′ | specs w4 1′ , /* */
′ | var loc_user′ , /* */
′? gI:′ , /* generic ip address ?*/
′ | find′ left(′ *′ , 1 5 , ′ _ ′) | | , /* */
′ | gIU: find′ left(′ *′ , 15 , ′ _ ′) left(user,8,′ _ ′) | | ,
′ | gIuR: find′ left(′ *′ , 15 , ′ _ ′) left(user,8,′ _ ′) left(resource,8,′ _ ′) | | ,
′ | elastic′ , /* */
′ | auth:′ , /* */
′? gIU:′ , /* generic ip + user ? */
′ | gIUR: find′ left(′ *′ , 15 , ′ _ ′) left(′ *′ , 8 , ′ _ ′) left(resource,8,′ _ ′) | | ,
′ | elastic′ , /* */
′ | auth:′ , /* */
′? gIUR:′ , /* gen ip user reso ? */
′ | find′ left(′ *′ , 15 , ′ _ ′) left(′ *′ , 8 , ′ _ ′) left(′ *′ , 8 , ′ _ ′) | | ,
′ | elastic′ , /* */
′ | auth:′ , /* */
′? giU:′ , /* generic user ? */
′ | find′ left(rem_ip,15,′ _ ′) left(′ *′ , 8 , ′ _ ′) | | ,
′ | giUR: find′ left(rem_ip,15,′ _ ′) left(′ *′ , 8 , ′ _ ′) left(resource,8,′ _ ′) | | ,
′ | elastic′ , /* */
′ | auth:′ , /* */
′? giUR:′ , /* gen ip + reso ? */
′ | find′ left(rem_ip,15,′ _ ′) left(′ *′ , 8 , ′ _ ′) left(′ *′ , 8 , ′ _ ′) | | ,
′ | elastic′ , /* */
′ | auth:′ , /* */
′? gIuR:′ , /* gen reso ? */
′ | find′ left(′ *′ , 15 , ′ _ ′) left(user,8,′ _ ′) left(′ *′ , 8 , ′ _ ′) | | ,
′ | elastic′ , /* */
′ | auth:′ , /* */
′? giuR:′ , /* gen reso ? */
′ | find′ left(rem_ip,15,′ _ ′) left(user,8,′ _ ′) left(′ *′ , 8 , ′ _ ′) | | ,
′ | elastic′ , /* */
′ | auth:′ /* */

/* */

Figure 40 (Part 6 of 16). IPGATE1I MTREXX

76 User ′s Guide to CMS Application Multitasking

if loc_user = ′ not_auth′ then do /* */
/* */

say my_name||hi′ User′ rem_user ′ from′ rem_ip,
′ is NOT mapped for′ resource lo

/* */
dealloc_type = CM_DEALLOCATE_ABEND /* */
address ′ CPICOMM′ ′ CMSDT cm_convid dealloc_type rc′
address ′ CPICOMM′ ′ CMDEAL cm_convid rc′

/* */
call EventMonitorReset montok /* */
call EventMonitorDelete montok /* */

/* */
call EventDelete my_name /* */

/* */
call socket ′ Close′ , socketid /* */

/* */
say my_name||hi′ terminating.′ lo /* */
exit 777 /* */

/* */
end /* */

/* */
if loc_user = ′= ′ then loc_user = rem_user /* */

/* */
if loc_user <> rem_user then do /* */

user = loc_user /* */
say my_name||hi′ User′ rem_user ′ from′ rem_ip,
′ is mapped as′ loc_user ′ for′ resource||lo

end /* */
else do /* */

say my_name||hi′ User′ rem_user ′ from′ rem_ip,
′ has been accepted for′ resource||lo

end /* */

Figure 40 (Part 7 of 16). IPGATE1I MTREXX

Chapter 4. Sample Application IPGATE 77

/***/
address ′ CPICOMM′ ′ XCSCUI cm_convid user return_code′ / *set cl sec usr*/
if return_code <> 0 then do /* */

/* */
say my_name||hi′ Unable to set Client Security User for′ rem_user,

′ from′ rem_ip ′ - terminating.′ lo
/* */

dealloc_type = CM_DEALLOCATE_ABEND /* */
address ′ CPICOMM′ ′ CMSDT cm_convid dealloc_type rc′
address ′ CPICOMM′ ′ CMDEAL cm_convid rc′

/* */
call EventMonitorReset montok /* */
call EventMonitorDelete montok /* */

/* */
call EventDelete my_name /* */

/* */
call socket ′ Close′ , socketid /* */

/* */
exit 666 /* */

/* */
end /* */

/* */
conv_type = CM_BASIC_CONVERSATION /* */
address ′ CPICOMM′ ′ CMSCT cm_convid conv_type rc′

/* */
address ′ CPICOMM′ ′ CMALLC cm_convid rc′ /* */

/* */
send_type = CM_SEND_AND_PREP_TO_RECEIVE /* */
address ′ CPICOMM′ ′ CMSST cm_convid send_type rc′
/***/
ip_read_done = 0 /* */

Figure 40 (Part 8 of 16). IPGATE1I MTREXX

78 User ′s Guide to CMS Application Multitasking

/***/
parse value socket(′ Select′ , ′ Read′ socketid ′ Write′ sel_write ,

′ Exception′ socketid,′ SIGNAL′ my_name,) with rc
/* */

finis = 0 /* */
/* */

text = ′ ′ /* */
tcp_text = ′ ′ /* */

/* */
REM_INFO = left(rem_user,8) rem_ip rem_port resource
LOC_INFO = left(loc_user,8) socketid date() time()
IP_DATA_OUT = 0 /* */
IP_DATA_IN = 0 /* */
$LAST_ACTIV$ = date() time() /* */

/* */
do until finis /* */

call EventWait montok /* wait for event */
/* */

if retcode <> 0 then finis = 1 /* */
/* */

$LAST_ACTIV$ = date() time() /* */
/* */

Figure 40 (Part 9 of 16). IPGATE1I MTREXX

Chapter 4. Sample Application IPGATE 79

/*--************************/
if event_flag.1 >= 0 then do /* VMCPIC */

/* */
call EventRetrieve montok 1 32767 /* */

/* */
if left(retdata,4) = ′00000002′x then do /* Information input */

parse var retdata . 5 conv_id 13 length +4 .
total_sent = c2d(length) /* */
total_received = 0 /* */

/*--************************/
/* */

if length = 0 then finis = 1 /* */
/*--************************/

else do until total_received >= total_sent
receive_type = CM_RECEIVE_AND_WAIT/* */

/* */
address ′ CPICOMM′ ′ CMECS cm_convid conversation_state return_code′

/* */
if cm_conversation_state.conversation_state <> ′ CM_RECEIVE_STATE′ then,

say my_name ′ Rcv_state′ cm_conversation_state.conversation_state
/* */

address ′ CPICOMM′ ′ CMSRT cm_convid receive_type return_code′
requested_length = c2d(length)
if requested_length > 32767 then requested_length = 32767

/* */
if return_code <> 0 then say my_name ′ CMSRT′ return_code

/* */
r_buffer = ′ ′ /* */

/* */
address ′ CPICOMM′ ′ CMRCV cm_convid r_buffer requested_length′ ,

′ data_received received_length status_received′ ,
′ request_to_send_received return_code′

if return_code <> 0 then say my_name ′ CMRCV′ cm_return_code.return_code
if cm_return_code.return_code = ′ CM_RESOURCE_FAILURE_NO_RETRY′ ,
| cm_return_code.return_code = ′ CM_DEALLOCATED_ABEND′ then do
dealloc_type = CM_DEALLOCATE_ABEND
address ′ CPICOMM′ ′ CMSDT cm_convid dealloc_type rc′
address ′ CPICOMM′ ′ CMDEAL cm_convid rc′

/* */
finis = 1 /* */
leave /* */

end /* */
total_received = total_received + received_length

/* */
send_type = CM_BUFFER_DATA /* */

/* */
if total_received >= total_sent & ,

cm_status_received.status_received <> ′ CM_NO_STATUS_RECEIVED′ then ,
send_type = CM_SEND_AND_PREP_TO_RECEIVE

/* */
text = text′ *IPGATE*CMSST*′ send_type′ *′

/* */

Figure 40 (Part 10 of 16). IPGATE1I MTREXX

80 User ′s Guide to CMS Application Multitasking

s_buffer = left(r_buffer,received_length)
send_length = c2d(left(r_buffer,2))

/* */
text = text || ′ *IPGATE*CMSEND*′ | | length(s_buffer)||′ *′ | | ,

s_buffer||′ *′
/* */

if sel_write = ′ ′ then do /* */
wr_text = left(text,min(50000,length(text)))
parse value socket(′ Write′ , socketid,wr_text) with rc bytes_sent .

/* */
if rc <> 0 & rc <> 35 then do /* */

finis = 1 /* */
say my_name||hi′ write failed with rc =′ rc ′ (′ bytes_sent′) ′ lo

end /* */
if rc = 35 then do

if sel_write = ′ ′ then do /* */
sel_write = socketid /* EWOULDBLOCK */
parse value socket(′ Select′ , ′ Read′ ,
′ Write′ sel_write ,
′ Exception′ , ′ SIGNAL′ my_name) with sel_rc .

end /* */
end /* */
if rc = 0 then do

if bytes_sent = ′ ′ then do /* */
say my_name||hi′ Socket Write failed′ lo
call ThreadDelete ′ -1′ /* */
exit 1111 /* */

end /* */
IP_DATA_OUT = IP_DATA_OUT + bytes_sent
if bytes_sent = length(text) then do

text = ′ ′ /* */
sel_write = ′ ′ /* */

end /* */
else do /* */

text = substr(text,bytes_sent+1)
if sel_write = ′ ′ then do /* */

sel_write = socketid /* EWOULDBLOCK */
parse value socket(′ Select′ , ′ Read′ ,
′ Write′ sel_write ,
′ Exception′ , ′ SIGNAL′ my_name) with rc .

end /* */
end /* */

end /* */
end /* */

end /* */
/*--************************/

end /* */
else do /* */

say my_name||hi′ Unexpected APPC input (′ retdata ′ -′ c2x(retdata)′) ′ ,
′ or termination request′ lo

finis = 1 /* */
end /* */

end /* */

Figure 40 (Part 11 of 16). IPGATE1I MTREXX

Chapter 4. Sample Application IPGATE 81

/*--************************/
if event_flag.2 >= 0 then do /* TCP/IP */

/* */
ip_read_done = 0 /* */

/* */
read_rc = 0 /* */

/* */
call EventRetrieve montok 2 32767 /* */

parse var retdata tcp_events ′ READ ′ tcp_read ′ WRITE ′ tcp_write ,
′ EXCEPTION ′ tcp_except

/* */
if (tcp_read <> socketid) & tcp_read <> ′ ′ then ,

say my_name||hi′ Read for′ tcp_read ′ signaled - should be′ socketid||lo
if (tcp_write <> socketid) & tcp_write <> ′ ′ then ,

say my_name||hi′ Write for′ tcp_write ′ signaled - should be′ socketid||lo
if (tcp_except <> socketid) & tcp_except <> ′ ′ then ,

say my_name||hi′ Exception for′ tcp_except ′ signaled - should be′ socketid||lo

Figure 40 (Part 12 of 16). IPGATE1I MTREXX

/*- receiving tcp answer ---------------------************************/
if tcp_read <> ′ ′ then do

parse value socket(′ Read′ , socketid,100000) with rc bytes data
read_rc = rc /* */
if rc <> 35 & (rc <> 0 | bytes = 0) then do

say my_name||hi′ Thread terminating ... Read rc =′ rc ′ (′ bytes data′) ′ lo
finis = 1

end

Figure 40 (Part 13 of 16). IPGATE1I MTREXX

82 User ′s Guide to CMS Application Multitasking

else if rc <> 35 then do until ip_read_done
IP_DATA_IN = IP_DATA_IN + bytes
tcp_text = tcp_text || data /* */
data = ′ ′ /* */
select /* */

/*- set send type received *IPGATE*CMSST*n* --************************/
when left(tcp_text,14) = ′ *IPGATE*CMSST*′ ,

& length(tcp_text) >= 16 then do
/* */

parse var tcp_text ′ *IPGATE*CMSST*′ send_type′ *′ tcp_text
address ′ CPICOMM′ ′ CMSST cm_convid send_type rc′

end /* */
/*- send data received *IPGATE*CMSEND*length*data* *******************/

when left(tcp_text,15) = ′ *IPGATE*CMSEND*′ ,
& length(tcp_text) >= 19 then do

/* */
parse var tcp_text ′ *IPGATE*CMSEND*′ tcp_temp
if index(tcp_temp,′ *′) > 0 then do

/* */
parse var tcp_text ′ *IPGATE*CMSEND*′ length′ *′ tcp_temp

if length = 0 then say my_name||hi′ ip-cmsend length = 0′ lo
if length(tcp_temp) >= length + 1 then do /* data complete ? */

/* */
cm_data = left(tcp_temp,length)
if length(tcp_temp) = length + 1 then,

tcp_text = ′ ′ /* */
else tcp_text = substr(tcp_temp,length+2)

/* */
address ′ CPICOMM′ ′ CMECS cm_convid′ ,

′ conversation_state return_code′
/* */

if cm_conversation_state.conversation_state <> ′ CM_SEND_STATE′ &,
cm_conversation_state.conversation_state <> ′ CM_INITIALIZE_STATE′ &,
cm_conversation_state.conversation_state <> ′ CM_SEND_PENDING_STATE′ then,
say my_name ′ Send_state′ cm_conversation_state.conversation_state

/* */
if cm_conversation_state.conversation_state = ′ CM_INITIALIZE_STATE′ then,

finis = 1 /* */
/* */

address ′ CPICOMM′ ′ CMSEND cm_convid cm_data′ ,
′ length req_to_send rc′

/* */
if rc <> 0 then say my_name ′ CMSEND′ cm_return_dode.rc

end /* */
else ip_read_done = 1 /* */

end /* */
else ip_read_done = 1 /* */

end /* */
/*- else wait for complete data --------------************************/

otherwise ip_read_done = 1 /* */
end /* */

end
end

Figure 40 (Part 14 of 16). IPGATE1I MTREXX

Chapter 4. Sample Application IPGATE 83

/*--************************/
/* if write is signaled, the remaining data to send must be in */
/* variable text */
/*--************************/

if tcp_write <> ′ ′ then do /* */
if text = ′ ′ then do /* nothing to write ? */

sel_write = ′ ′ /* */
end /* */
else do /* */

wr_text = left(text,min(50000,length(text)))
parse value socket(′ Write′ , socketid,wr_text) with rc bytes_sent .

/*--************************/
if rc <> 0 & rc <> 35 then do /* */

finis = 1 /* */
say my_name ′ write failed with rc =′ rc ′ (′ bytes_sent′) ′ lo

end /* */
if rc = 35 then do

if sel_write = ′ ′ then do /* */
sel_write = socketid /* EWOULDBLOCK */

end /* */
end /* */
if rc = 0 then do

IP_DATA_OUT = IP_DATA_OUT + bytes_sent
if bytes_sent = length(text) then do

text = ′ ′ /* */
sel_write = ′ ′ /* */

end /* */
else do /* */

text = substr(text,bytes_sent+1)
if sel_write = ′ ′ then do /* */

sel_write = socketid /* EWOULDBLOCK */
end /* */

end /* */
end /* */

/*--************************/
end /* */

end

Figure 40 (Part 15 of 16). IPGATE1I MTREXX

84 User ′s Guide to CMS Application Multitasking

/*--************************/
if tcp_except <> ′ ′ then do

parse value socket(′ Recv′ , socketid,,′ OUT_OF_BAND′) with rc bytes data
say my_name ′ exception read′ bytes ′ bytes.′
say my_name ′ exception data:′ c2x(data)

end
if finis = 0 then , /* */
parse value socket(′ Select′ , ′ Read′ socketid ′ Write′ sel_write ,

′ Exception′ socketid,′ SIGNAL′ my_name,) with rc
end /* */

end /* */
/*--************************/
dealloc_type = CM_DEALLOCATE_ABEND /* */
address ′ CPICOMM′ ′ CMSDT cm_convid dealloc_type rc′
address ′ CPICOMM′ ′ CMDEAL cm_convid rc′

/* */
call EventMonitorReset montok /* */
call EventMonitorDelete montok /* */

/* */
call socket ′ Close′ , socketid /* */

/* */
call EventDelete my_name /* */

/* */
say my_name ′ ended.′ /* */

/* */
exit /* */

Figure 40 (Part 16 of 16). IPGATE1I MTREXX

Chapter 4. Sample Application IPGATE 85

4.6.7 IPGATE1W MTREXX - Monitors APPC Requests for a Resource

/***/
/* */
/* Allocation Request */
/* */
/* +-------------+-----------------+ */
/* | X′00000001′ | resource_id | */
/* +-------------+-----------------+ */
/* 4 bytes 8 bytes */
/* */
/* */
/* Information Input */
/* */
/* +-------------+-----------------+-------------------+ */
/* | X′00000002′ | conversation_id | event_info_length | */
/* +-------------+-----------------+-------------------+ */
/* 4 bytes 8 bytes 4 bytes */
/* */
/* */
/* Resource revoked notification */
/* */
/* +-------------+-----------------+ */
/* | X′00000003′ | resource_id | */
/* +-------------+-----------------+ */
/* 4 bytes 8 bytes */
/* */
/* */
/* */
/* */
/***/
address ′ COMMAND′ /* */

/* */
parse value ′1D60401DE8′ x with lo hi . /* */

/* */
call MT_Init /* */

/* */
parse arg args /* */
parse var args my_resource target_resource scope .

/* */
call ThreadGetId /* */

/* */
my_name = ′ IPGATEW′ | | right(thread_ID,10,0)

/* */
say my_name ′ started (′ args′) ′

/* */

Figure 41 (Part 1 of 4). IPGATE1W MTREXX

86 User ′s Guide to CMS Application Multitasking

call IdentifyResourceManager my_resource value(′ XC_′ | | scope)
/* */

if return_code <> 0 then do /* */
say ′ IdentifyResourceManager for resource′ my_resource,

′ failed with rc =′ return_code /* */
exit return_code /* */

end /* */
/* */

say my_name ′ IdentifyResourceManager for′ my_resource ′ successful′
/* */

montok = EventMonitorCreate(′ VMCPIC′ || ′(%%%%′ || left(my_resource,8,′ _ ′) | | ′ *)′)
/* */

finis = 0 /* */
/* */

do until finis /* */
call EventWait montok /* wait for event */

/* */
if retcode <> 0 then finis = 1 /* */

/* */

Figure 41 (Part 2 of 4). IPGATE1W MTREXX

if event_flag.1 >= 0 then do /* VMCPIC */
/* */

call EventRetrieve montok 1 32767 /* */
/* */

select /* */
/*--************************/

when left(retdata,4) = ′00000001′x then do /* Allocation request */
/* */

parse var retdata . 5 resource_name +8 .
parse value ThreadCreate(′ IPGATE1Y′ resource_name) with rc .

end /* */
/*--************************/

when left(retdata,4) = ′00000002′x then do /* Information input */
/* */

say my_name||hi′ Information input ??????????′ lo
end /* */

/*--************************/
when left(retdata,4) = ′00000003′x then do /* Resource revoked notification */

say my_name||hi′ Resource′ substr(retdata,5) ′ revoked.′ lo
finis = 1 /* */

end /* */
/*--************************/

otherwise do /* */
say my_name||hi′ Unexpected event or terminate request′ | | lo
finis = 1 /* */

end /* */
end /* */

end /* */

Figure 41 (Part 3 of 4). IPGATE1W MTREXX

Chapter 4. Sample Application IPGATE 87

if event_flag.2 >= 0 then do /* VMCPIC */
say my_name||hi′ Information Available received′ lo

end /* */
end /* */

/* */
call EventDelete my_name /* */

/* */
call EventMonitorReset montok /* */
call EventMonitorDelete montok /* */

/* */
call TerminateResourceManager my_resource /* */
say my_name ′ ended.′ /* */

/* */
exit /* */

Figure 41 (Part 4 of 4). IPGATE1W MTREXX

4.6.8 IPGATE Subroutines

/***/
MT_Init: /* */

/* */
call apiload ′ CMREXX′ /* */
call apiload ′ VMREXMT′ /* */
call apiload ′ VMREXRET′ /* */

/* */
return /* */

Figure 42. IPGATE Subroutine MT_Init

/***/
EventCreate: /* */

/* */
arg event_name /* */

/* */
event_name_length = length(event_name) /* */

/* */
event_flag.0 = 3 /* */
event_flag.1 = vm_evn_session_scope /* */
event_flag.2 = vm_evn_broadcast_signals /* */
event_flag.3 = vm_evn_async_signals /* */
event_flag_size = 3 /* */

/* */
loose_signal_limit = 0 /* */

/* */
signal_timeout_period = 0 /* */

/* */
call csl ′ EventCreate retcode reascode event_name event_name_length′ ,

′ event_flag event_flag_size loose_signal_limit′ ,
′ signal_timeout_period′

/* */
return /* */

Figure 43. IPGATE Subroutine EventCreate

88 User ′s Guide to CMS Application Multitasking

/***/
EventDelete: /* */

/* */
arg event_name /* */

/* */
event_name_length = length(event_name) /* */

/* */
call csl ′ EventDelete retcode reascode event_name event_name_length′

/* */
return /* */

Figure 44. IPGATE Subroutine EventDelete

/***/
EventRetrieve: /* */

/* */
parse arg monitor_token index retlen /* */

/* */
if retlen = ′ ′ then retlen = 200 /* */

/* */
call csl, /* */
′ EventRetrieve ′ , /* routine name */ /* */
′ retcode′ , /* return code */ /* */
′ reascode′ , /* reason code */ /* */
′ monitor_token′ , /* monitor token */ /* */
′ index′ , /* event index */ /* */
′ retdata ′ , /* returned data */ /* */
′ event_flag.′ index, /* max to return */ /* */
′ retlen ′ /* length returned */ /* */

/* */
return /* */

Figure 45. IPGATE Subroutine EventRetrieve

/***/
EventWait: /* */

/* */
parse arg monitor_token /* */

/* */
call csl ′ EventWait retcode reascode monitor_token number_of_events′ ,

′ event_flag′ /* */
/* */

return number_of_events /* */

Figure 46. IPGATE Subroutine EventWait

Chapter 4. Sample Application IPGATE 89

/***/
/* EventMonitorCreate(′ VMCON1ECB′ ′ VMTIMER(%%%%E′ | | userword) */
/***/
EventMonitorCreate: /* */

/* */
parse arg events /* */

/* */
monitor_flag.1 = vm_evn_no_auto_delete /* */
monitor_flag.2 = vm_evn_async_monitor /* */
monitor_flag.3 = vm_evn_bind_loose_signals /* */

/* */
monitor_flag_size = 3 /* */

/* */
number_of_events = words(events) /* */

/* */
do i = 1 to words(events) /* */

/* */
event_name_address = ′ ′ /* */
event_key_address = ′ *′ /* */

/* */
parse value word(events,i) with event_name_address ′ (′ event_key_address ′) ′

/* */
/* */
/* */

event_name_address.i = event_name_address /* */
/* */

event_name_length.i = length(event_name_address.i)
/* */

event_key_address.i = event_key_address /* */
/* */

event_key_length.i = length(event_key_address.i)
/* */

bound_signal_limit.i = -1 /* */
/* */

end /* */
/* */

event_count = 1 /* */
/* */

call csl ′ EventMonitorCreate retcode reascode monitor_token′ ,
′ monitor_flag monitor_flag_size number_of_events′ ,
′ event_name_address event_name_length event_key_address′ ,
′ event_key_length bound_signal_limit event_count′

/* */
return monitor_token /* */

Figure 47. IPGATE Subroutine EventMonitorCreate

90 User ′s Guide to CMS Application Multitasking

/***/
EventMonitorDelete: /* */

/* */
arg mon_token /* */

/* */
call csl ′ EventMonitorDelete retcode reascode mon_token′

/* */
return /* */

Figure 48. IPGATE Subroutine EventMonitorDelete

/***/
EventMonitorReset: /* */

/* */
arg mon_token /* */

/* */
call csl ′ EventMonitorReset retcode reascode mon_token′

/* */
return /* */

Figure 49. IPGATE Subroutine EventMonitorReset

/***/
IdentifyResourceManager: /* */

/* */
arg resource_ID resource_manager_type service_mode security_level_flag
if resource_ID = ′ ′ then return
if resource_manager_type = ′ ′ then resource_manager_type = XC_SYSTEM
if service_mode = ′ ′ then service_mode = XC_MULTIPLE
if security_level_flag = ′ ′ then security_level_flag = XC_REJECT_SECURITY_NONE

/* */
address ′ CPICOMM′ ′ XCIDRM resource_ID resource_manager_type′ ,

′ service_mode security_level_flag return_code′
/* */

return /* */

Figure 50. IPGATE Subroutine IdentifyResourceManager

/***/
TerminateResourceManager: /* */

/* */
arg resource_ID /* */

/* */
address ′ CPICOMM′ ′ XCTRRM resource_ID return_code′

/* */
return /* */

Figure 51. IPGATE Subroutine TerminateResourceManager

Chapter 4. Sample Application IPGATE 91

/***/
/* ThreadDelay(1000) */
/***/
ThreadDelay: /* */

/* */
parse arg msecs . /* */

/* */
call csl ′ ThreadDelay retcode reascode′ msecs /* */

/* */
return /* */

Figure 52. IPGATE Subroutine ThreadDelay

/***/
ThreadDelete: /* */

/* */
arg thread . /* */

/* */
call csl ′ ThreadDelete retcode reascode thread′

/* */
return /* */

Figure 53. IPGATE Subroutine ThreadDelete

/***/
ThreadGetId: /* */

/* */
call csl ′ ThreadGetId retcode reascode thread_ID process_ID′

/* */
return /* */

Figure 54. IPGATE Subroutine ThreadGetID

/***/
ThreadSetPriority: /* */

/* */
arg thread priority . /* */

/* */
if priority = ′ ′ then priority = 32767 /* */

/* */
flags = vm_pro_absolute_priority /* */

/* */
call csl ′ ThreadSetPriority retcode reascode thread priority flags′

/* */
return /* */

Figure 55. IPGATE Subroutine ThreadSetPriority

92 User ′s Guide to CMS Application Multitasking

/***/
ThreadYield: /* */

/* */
arg thread2yield . /* */
if thread2yield = ′ ′ then thread2yield = 0 /* */

/* */
call csl ′ ThreadYield retcode reascode thread2yield′

/* */
return /* */

Figure 56. IPGATE Subroutine ThreadYield

/***/
/* TimerStartInt_Single(5 TIMER) */
/***/
TimerStartInt_Single: /* */

/* */
arg seconds userword /* */

/* */
timertype = vm_tmr_timertype_real /* */
cycle = vm_tmr_cycle_single /* */
intervalunits = vm_tmr_intunit_milli /* */
interval = seconds * 1000 /* number of seconds */

/* */
if symbol(′ userword′) <> ′VAR′ | userword = ′ ′ then ,

userword = copies(′00 ′x,8) /* */
else userword = left(userword,8) /* */

/* */
call csl ′ TimerStartInt retcode reascode timer_token′ ,

′ timertype cycle intervalunits interval userword′
/* */

return /* */

Figure 57. IPGATE Subroutine TimerStartInt_Single

Chapter 4. Sample Application IPGATE 93

94 User ′s Guide to CMS Application Multitasking

Appendix A. Supplementary Information on System Defined Events

The names of system defined events are well documented in CMS Application
Multitasking. However, it is sometimes difficult to find documentation defining
the characteristics used when these events were defined and what, if any, keys
will be used when the events are signaled. We have consolidated that
information here for all system events that were documented in CMS release 14.

A.1 System Event Characteristics

Table 1. System Event Characteristics

Name Scope Signal delivery Signaler
treat-
ment

Loose
signal
limit

Signal
timeout
period

Notes

VMACCOUNT Session Broadcast Async -1 0 Must enable with
AccountControl

VMCONINPUT Session Broadcast Async 0 0

VMCON1ECB Session Broadcast Async 0 0

VMCPIC Session Broadcast Async 0 0

VMERROR Process LIFO Sync
Process

0 0

VMERRORCHILD Process LIFO Sync
Process

0 0

VMIPC Process Broadcast Async 0 0 Must enable with
QueueSignalEvents

VMPOSGNL Process Broadcast Async 0 0 Only created for
POSIX processes

VMPROCESSEND Session Broadcast Sync
Thread

0 0

VMSFSASYNC Session Broadcast Sync
Thread

0 0

VMSOCKET Session Broadcast Async 1 0 Only defined while
RXSOCKET is
active

VMTIMECHANGE Session Broadcast Async 0 0

VMTIMER Session Broadcast Async -1 0

VMTRACE Session Broadcast Async 50 0 See also the CMS
command
TRACECTL

 Copyright IBM Corp. 1998 95

A.2 System Event Signal Data/Key Information
When an event is signaled, the signaler may also include data as part of the
signal. Additionally that data may also contain a key to help with selectively
handling signals. Information relating to system event ′s signal data and their
keys (if any) has been consolidated here. Unless otherwise specified
documentation references are to CMS Application Multitasking, SC24-5766.

Table 2. System Event Key Information

Name Signal data? Key with
signal?

Signal data format/key
documented in:

VMACCOUNT Yes Yes Accounting services chapter

VMCONINPUT No No

VMCON1ECB No No

VMCPIC Yes Yes SAA CPI-C Reference,
SC26-4399-08;
VM/ESA CPI-C User′s Guide,
SC24-5595-01

VMERROR Yes Yes Abend services chapter

VMERRORCHILD Yes Yes Abend services chapter

VMIPC Yes Yes Usage notes to
QueueSignalEvents

VMPOSGNL Yes Yes OpenEdition services appendix

VMPROCESSEND Yes Yes Process management chapter

VMSFSASYNC Yes Yes CMS Application Development
Guide, SC24-5761

VMSOCKET Yes No See below

VMTIMECHANGE Yes Yes Timer services chapter

VMTIMER Yes Yes Timer services chapter

VMTRACE Yes Yes Trace services chapter

A.3 VMCONINPUT versus VMCON1ECB
Two of the system events pertain to console activity:

VMCONINPUT unsolicited attention received at the console

VMCON1ECB input available at the console

One question you no doubt have is: What is the difference between VMCONINPUT
and VMCON1ECB?

For many applications VMCONINPUT and VMCON1ECB may be used
interchangeably. Every time an unsolicited attention interrupt is received on the
console, VMCONINPUT is signaled. However, the data represented by the signal
may be consumed by CMS before the application has a chance to read it (for
example, an immediate command was entered).

VMCON1ECB is signaled less frequently than VMCONINPUT. VMCON1ECB is
only signaled when data is available for the application to read (it is not signaled
for immediate commands, for example). When VMCON1ECB is signaled the

96 User ′s Guide to CMS Application Multitasking

application is guaranteed that if it issues a read the virtual machine will not end
up in VM READ.

A.4 VMSOCKET Signal Data
VMSOCKET is signaled by REXX Sockets when a select request completes.
What normally would have been returned from a Select subfunction, namely a
count of completed events followed by a list of the events, is provided as the
signal data. The original documentation in the CMS 13 Application Development
Reference describing this function and its syntax was incorrect. Correct
documentation can be found in the CMS 14 level of the REXX/VM Reference,
SC24-5770-02.

Most system events provide signal data. VMSOCKET is unique among system
defined events in that it provides signal data but no key. Broadly speaking, with
the system events, the key is used to provide a degree of uniqueness between
events. Rather than a key REXX Sockets allows a unique event name to be
provided for each outstanding Select request. Chapter 4, “Sample Application
IPGATE” on page 51 makes use of this capability and serves as an example.

One final note, if when the socket Terminate function is called, there remain
outstanding Selects, they are signaled with a completed event count of zero.

Appendix A. Supplementary Information on System Defined Events 97

98 User ′s Guide to CMS Application Multitasking

Appendix B. Supplementary Information for REXX Programmers

B.1 ThreadDelete Caution
The use of ThreadDelete to terminate REXX threads is strongly discouraged.
When a REXX thread is deleted, the REXX interpreter (or compiler runtime) is not
notified that the thread has been deleted. Thus there is no opportunity for
cleanup to occur, and any storage used in support of that thread will not be
released (storage is obtained not only for variables but may also be required to
contain the REXX program itself). Repeated use of ThreadDelete will lead to
storage exhaustion. The storage will be full of obsolete REXX programs and
variables (a storage cancer).

B.2 APILOAD Caution
The function routine names and associated constant names and values are
defined in binding files. Use of the associated names, as defined in the binding
files, is encouraged. In most languages, binding files are included by the
compiler at compile time. With REXX, access to the binding files occurs at
execution time by invoking the APILOAD function. On CMS level 11 and earlier
the use of APILOAD can prove to be very costly. For some applications the
resource consumption of APILOAD may exceed that of the application itself! In
some cases it may be necessary to avoid using APILOAD to obtain the required
values. If this must be done simply imbed the contents of the needed binding
files within your application. This is easy to do since they are syntactically valid
REXX.

For CMS level 12 APILOAD was redeveloped and, on CMS 12 and subsequent
releases, the resource consumption is very much improved. On these current
CMS releases APILOAD′s performance should be adequate for most
applications. There may still be situations in which it is appropriate to perform
the minimum required setup manually, such as Figure 1 on page 5 or Figure 17
on page 32, but they arise much less frequently on CMS 12 than before. For all
but the most performance critical applications, and especially for longer running
or more complex threads, it makes more sense to APILOAD the binding files.
APILOADing only the required binding files will still help to keep resource
consumption to a minimum.

B.3 Constants on CSL Calls
Simple constants that are defined only for input to a function, rather than defined
as being for input and output or output only, may be placed as quoted literals in
the CSL call. You do not need to place them into a REXX variable. The REXX CSL
interface routine recognizes this special case. For example:

call csl ′ ThreadDelay retcode reascode ″500″′

 Copyright IBM Corp. 1998 99

B.4 RXSOCKET must be at Level 3.02
In order to have full CMS MT support RXSOCKET must be at level 3.02. APAR
VM61811 addresses a number of CMS MT related problems. It also changes
RXSOCKET′s code level to 3.02 so it is possible for an MT application to verify it
is using an RXSOCKET that contains suitable support. Here is an example of
using the Version subfunction to verify the software level:

...
parse value socket(′ Version′) with . . level .
if level \= ′3.02′ then
...

B.5 Multithreaded Debugging Strategies
Debugging a multithreaded REXX application can be more challenging than
debugging a typical single threaded application. The usefulness of REXX′s
excellent interactive debug begins to break down or can be confusing in a
multithreaded environment. Here are a few debugging techniques we found
helpful:

• Debug with as few threads as possible.
If you know there is a problem, try and reproduce it with as few threads as
possible. Running multiple threads, each with tracing or debug output merely
adds confusion.

• Add thread identification to debug output
Adding says to REXX code is a tried and true debugging technique that
breaks down in a multithreaded environment. Additional information should
be added to debug says to assist you in determining which thread has
issued the say. At the very least the thread′s name should be included on all
debug output. This can easily be obtained with a parse source statement. If
the application runs multiple copies of the same thread it may be useful to
include the thread ID in addition to the thread name. This can easily be
obtained with a ThreadGetID function. The IPGATE application in Chapter 4,
“Sample Application IPGATE” on page 51 includes the thread name and ID
on all messages it produces. It also uses the combination of thread name
and ID to provide event names that are unique within the process.

• Thread switches can occur on function calls.
Remember that on some CMS MT CSL calls (or RXSOCKET calls or CPIC
calls) a thread switch can occur. This can be particularly surprising when
single stepping through a program. The thread you were stepping through
when the program initiated a function call may not be the same one you are
stepping through on the next debug read from REXX. You might be tipped off
that a thread switch has occurred if the line numbers on the REXX debug
output are not in sequence, or the number of results returned by the function
is not as expected. However, it can become very confusing if you are
debugging multiple copies of the same thread.

• RXSOCKET DEBUG NOTRACE
RXSOCKET V3 has always had an undocumented DEBUG option. It provides
extensive debug information on RXSOCKET internal processing that is only
of interest when debugging RXSOCKET itself. In addition to the internal
RXSOCKET tracing, DEBUG also displays the REXX source string, the current
REXX clause for each RXSOCKET function call and whether the function call
caused the thread to block.

100 User ′s Guide to CMS Application Multitasking

This REXX related debug information is useful for the REXX programmer but
it was overwhelmed by the internal RXSOCKET tracing. RXSOCKET, at the
3.02 level, enhances DEBUG with the NOTRACE option. DEBUG NOTRACE
provides only the REXX relevant information without the RXSOCKET internal
trace. DEBUG NOTRACE is not passed to RXSOCKET via a function call, but
rather, via CMS command line parameters. You activate by entering:

RXSOCKET DEBUG NOTRACE

from the CMS command line before invoking your application.

Appendix B. Supplementary Information for REXX Programmers 101

102 User ′s Guide to CMS Application Multitasking

Appendix C. Supplementary Information for Assembler Programmers

C.1 CSL Call Choices
All CMS MT functions are invoked via CSL calls. Assembler programmers have
three distinct methods of calling CSL routines available to them:

• Call via DMSCSL

• Fastpath call with CSLFPI

• Direct call

Of these three only direct call should be used to invoke CMS MT routines. It is
the only interface of the three that is thread safe (that is to say, can tolerate a
thread switch while a call is active). Although the other calling techniques might
appear to work correctly, they will result, especially under load, in ABENDs or
unusual and difficult to diagnosis failures such as storage overlays or threads
running with the wrong context. Additionally of the three, direct call is the best
performer so there is really no reason to consider either of the other two.

C.2 Binding Files
Be aware that including any binding file will cause an EXTRN to be generated for
each routine it defines. Including VMASMMT then, will EXTRN all CMS MT routines.
This causes the loader to include them at linkage edit time regardless of
whether they are actually used or not. This can increase the size of the module
unnecessarily. One option is to specify WEAK=YES when including the binding file.
This option will cause WXTRNs rather than EXTRNs to be generated. Weak externals
do not resolve automatically at linkage edit time, so each required routine must
be manually included.

There is no automatic way to include only the routines required. For example,
WXTRNs can not be automatically ″upgraded″ to EXTRNs by referencing them with a
V-type address constant (not that one wants to use a V-type address constant
anyway since the symbol specified is not subject to expansion via EQUs meaning
descriptive function names could not be used).

The only method available to force automatic routine inclusion is to forgo using
the binding files and manually define the required routines. WEAK=NONE would
have been a nice option (allowing the binding file to be included but requiring
the programmer to manually EXTRN only those routines required).

 Copyright IBM Corp. 1998 103

104 User ′s Guide to CMS Application Multitasking

Appendix D. Special Notices

This publication is intended to help VM/ESA technical professionals and
programmers to write and deploy CMS applications using the facilities of CMS
Application Multitasking. The information in this publication is not intended as
the specification of any programming interfaces that are provided by VM/ESA
Version 2 Release 3. See the PUBLICATIONS section of the IBM Programming
Announcement for VM/ESA Version 2 Release 3 for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

 Copyright IBM Corp. 1998 105

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Intel is a trademark of Intel Corporation.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by
IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

POSIX is a trademark of Institute of Electrical and Electronic
Engineers.

Sun Microsystems is a trademark of Sun Microsystems, Incorporated.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

IBM OpenEdition
RACF SAA
Virtual Machine/Enterprise Systems
Architecture

VM/ESA

VTAM

106 User ′s Guide to CMS Application Multitasking

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications
For information on ordering ITSO publications see “How to Get ITSO Redbooks”
on page 109.

E.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

E.3 Other Publications
These publications are also relevant as further information sources:

• CMS Application Multitasking, SC24-5766

• CMS Application Development Guide, SC24-5761

• VM/ESA CPI-C User′s Guide, SC24-5595-01

• SAA CPI-C Reference, SC26-4399-08

 Copyright IBM Corp. 1998 107

108 User ′s Guide to CMS Application Multitasking

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

• PUBORDER — to order hardcopies in the United States

• Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLCAT REDPRINT
TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

• REDBOOKS Category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1998 109

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone Orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

• On the World Wide Web

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

I B M M A I L Internet
In United States: usib6fpl at ibmmail us ib6fp l@ibmmai l .com

In Canada: caibmbkz at ibmmai l lmannix@vnet . ibm.com

Outside North America: dk ibmbsh at ibmmai l bookshop@dk. ibm.com

United States (toll free) 1-800-879-2755

Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)

(+45) 4810-1320 - Danish

(+45) 4810-1420 - Dutch

(+45) 4810-1540 - English

(+45) 4810-1670 - Finnish

(+45) 4810-1220 - French

(+45) 4810-1020 - German

(+45) 4810-1620 - Ital ian

(+45) 4810-1270 - Norwegian

(+45) 4810-1120 - Spanish

(+45) 4810-1170 - Swedish

I B M Publ icat ions

Publications Customer Support

P.O. Box 29570

Raleigh, NC 27626-0570

USA

I B M Publ icat ions

144-4th Avenue, S.W.

Calgary, Alberta T2P 3N5

Canada

IBM Direct Services

Sortemosevej 21

DK-3450 Allerød

Denmark

United States (toll free) 1-800-445-9269

Canada 1-403-267-4455

Outside North America (+45) 48 14 2207 (long distance charge)

Index # 4421 Abstracts of new redbooks

Index # 4422 IBM redbooks

Index # 4420 Redbooks for last six months

Redbooks Web Site ht tp : / /www.redbooks. ibm.com/

IBM Direct Publ icat ions Catalog ht tp : / /www.e l ink . ibml ink . ibm.com/pbl /pb l

110 User ′s Guide to CMS Application Multitasking

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 111

112 User ′s Guide to CMS Application Multitasking

Glossary

A
abend . Abnormal end of task.

accept . In a VTAM application program, to establish
a session with a logical unit (LU) in response to a
CINIT request from a system services control point
(SSCP). The session-initiation request may begin
when a terminal user logs on, a VTAM application
program issues a macroinstruction, or a VTAM
operator issues a command. See also acquire.

access . (1) The manner in which files or data sets
are referred to by the computer. (2) To obtain data
from or to put data in storage. (3) In computer
security, a specific type of interaction between a
subject and an object that results in the flow of
information from one to the other.

action . In a conceptual schema language, one or
more elementary actions that, as a unit, change a
collection of sentences into another one or make
known a collection of sentences present in the
information base or conceptual schema.

activate . (1) To put a device into an operational
state. (2) To pass control to a program, procedure, or
routine. (3) To make a resource ready to perform its
function. Contrast with deactivate.

activity . The percentage of records in a file that are
processed in a run.

address constant . A value, or an expression
representing a value, used in calculating storage
addresses.

alert . A message sent to a management services
focal point in a network to identify a problem or an
impending problem.

allocate . (1) To assign a resource, such as a disk or
a diskette file, to perform a task. Contrast with
deallocate. (2) A logical unit (LU) 6.2 application
program interface (API) verb used to assign a session
to a conversation for the conversation ′s use. Contrast
with deallocate.

append . A function or mode that enables a user to
add a new document or character string to the end of
previously entered text.

application . (1) The use to which an information
processing system is put; for example, a payroll
application, an airline reservation application, a
network application. (2) A collection of software
components used to perform specific types of
user-oriented work on a computer.

assembler . A computer program that converts
assembly language instructions into object code.

attention (ATTN) . An occurrence external to an
operation that could cause an interruption of the
operation.

authority . The right to access objects, resources, or
functions.

authorization . (1) In computer security, the right
granted to a user to communicate with or make use of
a computer system. (2) The process of granting a user
either complete or restricted access to an object,
resource, or function.

B
binding . (1) In programming, an association between
a variable and a value for that variable that holds
within a defined scope. The scope may be that of a
rule, a function call or a procedure invocation. (2) In
the AIX operating system, a temporary association
between a client and both an object and a server that
exports an interface to the object. A binding is
meaningful only to the program that sets it and is
represented by a bound handle.

blocking . (1) The process of combining two or more
records in one block. (2) The process of combining
incoming messages in a single message.

bypass . To eliminate a station or an access unit from
a ring network by allowing the data to flow in a path
around it.

C
calling program . A program that requests execution
of another program (a called program).

check . (1) An error condition. (2) To look for a
condition.

clause . (1) In COBOL, an ordered set of consecutive
COBOL character-strings whose purpose is to specify
an attribute of an entry. See data clause, environment
clause, file clause, report clause. (2) In SQL, a distinct
part of a statement in the language structure, such as
a SELECT clause or a WHERE clause.

cleanup . In SNA products, a network services
request, sent by a system services control point
(SSCP) to a logical unit (LU), that causes a particular
LU-LU session with that LU to be ended immediately
without requiring the participation of either the other
LU or its SSCP.

 Copyright IBM Corp. 1998 113

client . (1) A user. (2) A functional unit that receives
shared services from a server. (3) In an AIX
distributed file system environment, a system that is
dependent on a server to provide it with programs or
access to programs.

close . The function that ends the connection between
a file and a program, and ends the processing.
Contrast with open.

CMS nucleus . The portion of CMS that usually
resides in the user′s virtual storage when CMS is
executing. Each CMS user receives a copy of the CMS
nucleus at initial program load (IPL) of CMS.

code level . The number of bits used to represent a
character.

command interpreter . In the AIX operating system, a
program that sends instructions to the kernel.

command line . On a display screen, a display line
usually at the bottom of the screen, in which only
commands can be entered.

compact . Synonym for compress.

compatibility . The capability of a hardware or
software component to conform with the interface
requirements of a given data processing system
without adversely affecting its functions.

compile . To translate all or part of a program
expressed in a high-level language into a computer
program expressed in an intermediate language, an
assembly language, or a machine language.

configure . To describe to a system the devices,
optional features, and programs installed on the
system.

connectivity . (1) The capability of a system or device
to be attached to other systems or devices without
modification. (2) The capability to attach a variety of
functional units without modifying them.

console . A part of a computer used for
communication between the operator or maintenance
engineer and the computer.

conversation . A dialog between a user and an
interactive data processing system.

convert . To change the representation of data from
one form to another, without changing the information
they convey; for example, radix conversion, code
conversion, analog to digital conversion, media
conversion.

D
data collection . The process of bringing data
together from one or more sources.

data queue . An object that is used to communicate
and store data used by several programs in a job or
between jobs.

debugging . Acting to detect and correct errors in
software or system configuration.

default value . A value assumed when no value has
been specified. Synonymous with assumed value.

deletion . (1) The removal of data from storage. (2) In
a conceptual schema language, the removal of a
previously inserted sentence from the information
base or conceptual schema.

directory . An index that is used by a control program
to locate one or more blocks of data that are stored in
separate areas of a data set in direct access storage.

E
edit . (1) To add, change, delete, or rearrange data
and to perform operations such as code conversion
and zero suppression. (2) To enter, modify, or delete
data. (3) To modify a numeric field for output by
suppressing zeros and inserting commas, periods,
currency symbols, the sign status, or other constant
information. (4) To alter or refine information,
especially text and illustrations, for publication or
display.

enable . (1) To make functional. (2) In interactive
communications, to load and start a subsystem.
Contrast with disable.

enter . (1) To place on the line a message to be
transmitted from a terminal to the computer. Contrast
with accept. See also receive, send. (2) To type in
information on a keyboard and press the Enter key to
send the information to the computer.

entry point (EP) . (1) The address or label of the first
instruction executed on entering a computer program,
routine, or subroutine. A computer program, routine,
or subroutine may have a number of different entry
points, each perhaps corresponding to a different
function or purpose. Synonymous with entrance,
entry. (2) In a routine, any place to which control can
be passed.

error . A discrepancy between a computed, observed,
or measured value or condition and the true,
specified, or theoretically correct value or condition.

event queue . In computer graphics, a queue that
records changes in input devices such as buttons,

114 User ′s Guide to CMS Application Multitasking

valuators, and the keyboard. The event queue
provides a time-ordered list of input events.

exception . (1) In programming languages, an
abnormal situation that may arise during execution,
that may cause a deviation from the normal execution
sequence, and for which facilities exist in a
programming language to define, raise, recognize,
ignore, and handle it; for example, (ON-) condition in
PL/I. (2) An abnormal condition such as an I/O error
encountered in processing a data set or a file.

execution time . (1) Any instant at which the
execution of a particular computer program takes
place. (2) The amount of time needed for the
execution of a particular computer program.

exit program . Synonym for exit routine.

external function . A function supplied by the
compiler when the function is referred to by name in
a program. Contrast with intrinsic function.

F
facility . (1) An operational capability, or the means
for providing such a capability. (2) In Open Systems
Interconnection architecture, a part of a service
provided by specific layer. (3) A service provided by
an operating system for a particular purpose; for
example, the checkpoint/restart facility.

file . (1) A named set of records stored or processed
as a unit. (2) A collection of information treated as a
unit. (3) A collection of related data that is stored and
retrieved by an assigned name.

fill . (1) In a token-ring network, a specified bit pattern
that a transmitting data station sends before or after
transmission frames, tokens, or abort sequences to
avoid what would otherwise be interpreted as an
inactive or indeterminate transmitter state. (2) In
computer graphics, a designated area of the screen
that is flooded with a particular color.

filter . (1) A device or program that separates data,
signals, or material in accordance with specified
criteria. (2) In IBM personal computers, a program
that reads output data from the keyboard (the
standard input device), modifies the data, and writes
output data to the display screen (the standard output
device). (3) In the AIX operating system, a command
that reads standard input data, modifies the data, and
sends it to the display screen.

find . Synonym for search.

fixed . (1) In System/370 virtual storage systems, not
capable of being paged-out. (2) Synonym for resident.
(3) Synonym for read-only.

function call . An expression that moves the path of
execution from the current function to a specified

function and evaluates to the return value provided
by the called function. A function call contains the
name of the function to which control moves and a
parenthesized list of values.

G
generation . A means of referencing items with
respect to time and ancestry so that an item without
antecedents is designated as the first or n-th
generation, and subsequent derivations are
designated as n+1, n+2, and so on.

generic profile . In RACF, a resource profile that can
provide protection for one or more resources. The
resources protected by a generic profile have similar
names and identical security requirements. For
example, a generic data set profile can protect one or
more data sets.

get . To obtain a record from an input file.

group . (1) A set of related records that have the
same value for a particular field in all records. (2) A
series of records logically joined together. (3) A series
of lines repeated consecutively as a set on a
full-screen form or full-screen panel. (4) A list of
names that are known together by a single name. (5)
In RACF, a collection of users who can share access
authorities for protected resources.

H
handler . A routine that controls a program′s reaction
to specific external events; for example, an interrupt
handler.

hexadecimal . Pertaining to a system of numbers to
the base 16; hexadecimal digits range from 0 through
9 and A through F, where A represents 10 and F
represents 15.

I
immediate command . In VM, a CMS command that,
when issued after an attention interruption, causes
any program execution currently in progress to be
suspended until the immediate command is
processed. The immediate commands are HB (halt the
execution of the CMS batch virtual machine at the
end of current job), HO (halt SVC tracing), HT (halt
typing or displaying), HX (halt execution), RO (resume
tracing), RT (resume typing or displaying), and SO
(suspend tracing temporarily).

index . (1) A list of the contents of a file or of a
document, together with keys or references for
locating the contents. (2) In programming, an integer
that identifies the position of a data item in a
sequence of data items. (3) A symbol or a numeral

Glossary 115

used to identify a particular quantity in an array of
similar quantit ies.

initialization . (1) The operations required for setting a
device to a starting state, before the use of a data
medium, or before implementation of a process. (2)
Preparation of a system, device, or program for
operation.

input . (1) Pertaining to a device, process, or channel
involved in an input process, or to the associated
data or states. The word ″input″ may be used in place
of ″input data,″ ″input signal″, ″input process″, when
such a usage is clear in a given context. (2) Pertaining
to a functional unit or channel involved in an input
process or to the data involved in such a process.

insert . (1) A function or mode that enables the
introduction of additional characters within previously
entered text. (2) To introduce data between previously
stored items of data. (3) The source entry utility
operation during which source statements are keyed
in and added as new records in a source member.

install . To add a program, program option, or
software to a system in such a manner that it is
runnable and interacts properly with all affected
programs in the system.

integrated . Pertaining to a feature that is part of a
device. Synonymous with built-in.

interface . (1) A shared boundary between two
functional units, defined by functional characteristics,
signal characteristics, or other characteristics, as
appropriate. The concept includes the specification of
the connection of two devices having different
functions. (2) Hardware, software, or both, that links
systems, programs, or devices.

interpreter . (1) A computer program that can
interpret. (2) A program that translates and executes
each instruction of a high-level programming
language before it translates and executes the next
instruction.

interprocess communication . (1) In the OS/2
operating system, the exchange of information
between processes or threads through semaphores,
queues, and shared memory. (2) In the AIX operating
system, the process by which programs communicate
data to each other and to synchronize their activities.
Semaphores, signals, and internal message queues
are common methods of inter-process communication.

K
key . (1) An identifier within a set of data elements.
(2) One or more characters used to identify the record
and establish the order of the record within an
indexed file. (3) In VSAM, one or more consecutive
characters taken from a data record, used to identify
the record and establish its order with respect to
other records. See also alternate key, key field. (4) In
VTAM, a character string that matches a definition in
the key table. This key identifies the destination of a
message or special processing to be done on that
message. See also key table. (5) To enter information
from a keyboard.

keyboard . A group of numeric keys, alphabetic keys,
or function keys used for entering information into a
terminal and into the system.

L
library . (1) A collection of functions, calls,
subroutines, or other data. (2) A data file that
contains files and control information that allows them
to be accessed individually. (3) A named area on disk
that can contain programs and related information
(not files). A library consists of different sections,
called l ibrary members.

line . (1) In text, a horizontal, linear arrangement of
graphic characters. (2) The portion of a data circuit
external to data circuit-terminating equipment (DCE),
that connects the DCE to a data switching exchange
(DSE), that connects a DCE to one or more other
DCEs, or that connects a DSE to another DSE.

linkage . In computer security, the combination of
data or information from one information system with
data or information from another system in the hope
of deriving additional information; for example, the
combination of computer fi les from two or more
sources.

literal . (1) A symbol or a quantity in a source
program that is itself data, rather than a reference to
data. (2) A character string whose value is given by
the characters themselves; for example, the numeric
literal 7 has the value 7, and the character literal
″CHARACTERS″ has the value CHARACTERS.

loader . (1) A routine, commonly a computer program,
that reads data into main storage. (2) In the AIX
operating system, a program that reads run files into
main storage so that the files can be run.

local . (1) In programming languages, pertaining to
the relationship between a language object and a
block such that the language object has a scope
contained in that block. (2) Pertaining to that which is
defined and used only in one subdivision of a
computer program. (3) Pertaining to a device

116 User ′s Guide to CMS Application Multitasking

accessed directly without use of a telecommunication
line. (4) Synonym for channel-attached.

logic . The systematized interconnection of digital
switching functions, circuits, or devices.

loop . (1) A sequence of instructions that is to be
executed iteratively. (2) A closed unidirectional signal
path connecting input/output devices to a system. (3)
Synonym for ring network.

M
mapping . (1) A list, usually in a profile, that
establishes a correspondence between items in two
groups; for example, a keyboard mapping can
establish what character is displayed when a certain
key is pressed. See also keyboard mapping. (2) In a
database, the establishing of correspondences
between a given logical structure and a given
physical structure.

matching . The technique of comparing the keys of
two or more records to select items for a particular
stage of processing or to reject invalid records.

message . (1) A communication sent from a person or
program to another person or program. (2) A unit of
data sent over a telecommunication line.

minidisk . Synonym for virtual disk

minimize . To remove from the screen all windows
associated with an application and replace them with
an icon that represents the application.

module . (1) A program unit that is discrete and
identifiable with respect to compiling, combining with
other units, and loading; for example, the input to or
output from an assembler, compiler, l inkage editor, or
executive routine. (2) A part of a program that usually
performs a particular function or related functions.

monitor . (1) A device that observes and records
selected activities within a data processing system for
analysis. Possible uses are to indicate significant
departure from the norm, or to determine levels of
utilization of particular functional units. (2) Software
or hardware that observes, supervises, controls, or
verifies operations of a system.

multitasking . A mode of operation that provides for
concurrent performance, or interleaved execution of
two or more tasks.

N
native . Deprecated term for IBM-supplied, basic,
required, or stand-alone.

network . (1) An arrangement of nodes and
connecting branches. (2) A configuration of data
processing devices and software connected for
information interchange. (3) A group of nodes and the
links interconnecting them.

networking . In a multiple-domain network,
communication between domains. Synonymous with
cross-domain communication.

node . (1) In a network, a point at which one or more
functional units connect channels or data circuits. (2)
In network topology, the point at an end of a branch.
(3) In a tree structure, a point at which subordinate
items of data originate. (4) An endpoint of a link or a
junction common to two or more links in a network.
Nodes can be processors, communication controllers,
cluster controllers, or terminals. Nodes can vary in
routing and other functional capabilities. (5) In VTAM,
a point in a network defined by a symbolic name. See
major node, minor node.

nucleus . That part of a control program resident in
main storage. Synonymous with resident control
program.

O
open . (1) The function that connects a file to a
program for processing. (2) To prepare a file for
processing. (3) Contrast with close. (4) In the IBM
Token-Ring Network, to make an adapter ready for
use.

operating system (OS) . Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible.

option . A specification in a statement that may be
used to influence the execution of the statement.

origin system . Synonym for input system.

originator . (1) The user who creates, addresses, and
usually sends a message. (2) Contrast with recipient.

output . (1) Pertaining to a device, process, or
channel involved in an output process, or to the
associated data or states. The word ″output″ may be
used in place of ″output data,″ ″output signal″, ″output
process″, when such a usage is clear in a given
context. (2) Data that has been processed. (3) Data
transferred from storage to an output device.

Glossary 117

P
parse . (1) In systems with time sharing, to analyze
the operands entered with a command and create a
parameter l ist for the command processor from the
information. (2) In REXX, to split a string into parts,
using function calls or by using a parsing template on
the ARG, PARSE, or PULL instructions.

partner . In data communications, the remote
application program or the remote computer.

pass . One cycle of processing a body of data.

performance . One of the two major factors, together
with facility, on which the total productivity of a
system depends. Performance is largely determined
by a combination of throughput, response time, and
availabil i ty.

pipeline . (1) A serial arrangement of processors or a
serial arrangement of registers within a processor.
Each processor or register performs part of a task
and passes results to the next processor; several
parts of different tasks can be performed at the same
time. (2) To start execution of an instruction sequence
before the previous instruction sequence is completed
to increase processing speed.

pool . A division of main or auxiliary storage.

port . (1) An access point for data entry or exit. (2) A
specific communications end point within a host. A
port is identified by a port number. (3) The
representation of a physical connection to the link
hardware. A port is sometimes referred to as an
adapter; however, there can be more than one port
on an adapter. There may be one or more ports
controlled by a single DLC process. (4) To make the
programming changes necessary to allow a program
that runs on one type of computer to run on another
type of computer.

prefix . (1) A code dialed by a caller before being
connected. Contrast with suffix. (2) A code at the
beginning of a message or record.

preprocessing . Processing for a display that occurs
before the display is shown.

priority . (1) A rank assigned to a task that
determines its precedence in receiving system
resources. (2) The relative significance of one job to
other jobs in competing for allocation of resources.

privilege class . In VM, one or more classes assigned
to virtual machine user in the user ′s VM directory
entry; each privilege class specified allows access to
a logical subset of all the CP commands.

processing . The performance of logical operations
and calculations on data, including temporary

retention of data in processor storage while the data
is being operated on.

profile . (1) Data that describes the significant
characteristics of a user, a group of users, or one or
more computer resources. (2) In computer security, a
description of the characteristics of an entity to which
access is controlled. (3) A description of the control
available to a particular network operator.

programming . The design, writing, modifying, and
testing of programs.

prompt . A visual or audible message sent by a
program to request the user ′s response.

Q
queue . (1) A list constructed and maintained so that
the next data element to be retrieved is the one
stored first. (2) A line or list of items waiting to be
processed; for example, work to be performed or
messages to be displayed.

R
reason code . A code that identifies the reason for a
detected error.

receiver . A person or thing that receives something.
Contrast with sender.

receiving . In VTAM, the process by which the host
processor obtains a message entered at a station.
Contrast with sending.

remote access . Pertaining to communication with a
data processing facility through a data link.

remote system . Any other system in a network with
which a system can communicate.

request . (1) A directive, by means of a basic
transmission unit, from an access method that causes
the network control program to perform a
data-transfer operation or auxiliary operation. (2) In
SNA, a message unit that signals initiation of an
action or protocol; for example, INITIATE SELF is a
request for activation of an LU-LU session.

resource . (1) Any of the data processing system
elements needed to perform required operations,
including storage, input/output units, one or more
processing units, data, files, and programs.
Synonymous with computer resource. (2) Any facility
of a computing system or operating system required
by a job or task, and including main storage,
input/output devices, processing unit, data sets, and
control or processing programs.

return code . (1) A code used to influence the
execution of succeeding instructions. (2) A value

118 User ′s Guide to CMS Application Multitasking

returned to a program to indicate the results of an
operation requested by that program.

S
scope . (1) The portion of an expression to which the
operator is applied. (2) The portion of a computer
program within which the definition of the variable
remains unchanged.

search . (1) A function or mode that enables the user
to locate occurrences of such things as particular
character strings, embedded commands, or boldface
letters in a document. Synonymous with find. (2) The
process of looking for a particular item. See also
browse, scan. (3) To scan one or more data elements
of a set in order to find elements that have a certain
property.

semaphore . (1) A variable that is used to enforce
mutual exclusion. (2) An indicator used to control
access to a file; for example, in a multiuser
application, a flag that prevents simultaneous access
to a file. (3) An entity used to control access to
system resources. Processes can be locked to a
resource with semaphores if the processes follow
certain programming conventions.

sending . In VTAM, the process by which the host
processor places a message on a line for
transmission to a station. Contrast with receiving.

server . (1) A functional unit that provides shared
services to workstations over a network; for example,
a file server, a print server, a mail server. (2) In a
network, a data station that provides facilities to other
stations; for example, a file server, a print server, a
mail server. (3) In the AIX operating system, an
application program that usually runs in the
background and is controlled by the system program
controller. (4) In TCP/IP, a system in a network that
handles the requests of a system at another site,
called a client-server.

service . (1) In Open Systems Interconnection
architecture, a capability of a given layer and the
layers below it that is provided to the next higher
layer. The service of a given layer is provided at the
boundary between this layer and the next higher
layer. (2) A customer-related or product-related
business function such as design/manufacturing error
correction, installation planning, maintenance,
customer education, or programming assistance.

session . (1) In network architecture, for the purpose
of data communication between functional units, all
the activities which take place during the
establishment, maintenance, and release of the
connection. (2) A logical connection between two
network accessible units (NAUs) that can be
activated, tailored to provide various protocols, and

deactivated, as requested. Each session is uniquely
identified in a transmission header (TH)
accompanying any transmissions exchanged during
the session. (3) The period of time during which a
user of a terminal can communicate with an
interactive system, usually, elapsed time between
logon and logoff.

setup . (1) In a computer that consists of an assembly
of individual computing units, the arrangement of
connections between the units, and the adjustments
needed for the computer to operate on a problem. (2)
The preparation of a computing system to perform a
job or job step. Setup is usually performed by an
operator and often involves performing routine
functions, such as mounting tape reels and loading
card decks.

shared file . A file that can be used by two computers
or two systems at the same time. A shared file can
link two systems.

shutdown . The process of ending operation of a
system or a subsystem, following a defined
procedure.

SNA network . The part of a user-application network
that conforms to the formats and protocols of
Systems Network Architecture. It enables reliable
transfer of data among end users and provides
protocols for controlling the resources of various
network configurations. The SNA network consists of
network accessible units (NAUs), boundary function,
gateway function, and intermediate session routing
function components; and the transport network.

socket . (1) In the AIX operating system: (a) A unique
host identifier created by the concatenation of a port
identif ier with a transmission control protocol/Internet
protocol (TCP/IP) address. (b) A port identifier. (c) A
16-bit port number. (d) A port on a specific host; a
communications end point that is accessible through a
protocol family ′s addressing mechanism. A socket is
identified by a socket address. (2) The abstraction
provided by the University of California′s Berkeley
Software Distribution (commonly called Berkeley UNIX
or BSD UNIX) that serves as an endpoint for
communication between processes or applications.

software . (1) All or part of the programs, procedures,
rules, and associated documentation of a data
processing system. Software is an intellectual
creation that is independent of the medium on which
it is recorded. (2) Contrast with hardware.

subroutine . (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points
in a computer program. (3) A group of instructions
that can be part of another routine or can be called
by another program or routine.

Glossary 119

subset . (1) A set each element of which is an
element of a specified other set. (2) A variant form of
a programming language with fewer features or more
restrictions than the original language. (3) A set
contained within a set.

symbol . (1) A graphic representation of a concept
that has meaning in a specific context. (2) A
representation of something by reason of relationship,
association, or convention.

synchronization . The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

syntax . (1) The relationship among characters or
groups of characters, independent of their meanings
or the manner of their interpretation and use. (2) The
rules governing the structure of a language.

system . In data processing, a collection of people,
machines, and methods organized to accomplish a set
of specific functions.

T
tag . One or more characters attached to a set of
data that contain information about the set, including
its identification.

target . (1) Pertaining to a storage device to which
information is written. (2) The program or system to
which a request is sent. (3) The location to which the
information is destined. (4) A system, program, or
device that interprets, rejects or satisfies, and replies
to requests received from a source.

terminate . (1) In SNA products, a request unit that is
sent by a logical unit (LU) to its system services
control point (SSCP) to cause the SSCP to start a
procedure for ending one or more designated LU-LU
sessions. (2) To stop the operation of a system or
device. (3) To stop execution of a program.

testing . The running of a system or a program
against a predetermined series of data to arrive at a
predictable result for the purpose of establishing the
acceptability of the system or program.

thread . (1) In the OS/2 operating system, the
smallest unit of operation to be performed within a
process. (2) A link between an IMS/VS subsystem and
a Database 2 (DB2) subsystem; resources in the
external DB2 subsystem are allocated to that link or
thread.

timeout . (1) An event that occurs at the end of a
predetermined period of time that began at the
occurrence of another specified event. (2) A time
interval allotted for certain operations to occur; for
example, response to polling or addressing before

system operation is interrupted and must be
restarted.

token . (1) In a local area network, the symbol of
authority passed successively from one data station
to another to indicate the station temporarily in
control of the transmission medium. Each data station
has an opportunity to acquire and use the token to
control the medium. A token is a particular message
or bit pattern that signifies permission to transmit. (2)
A sequence of bits passed from one device to another
along the token ring. When the token has data
appended to it, it becomes a frame. (3) In a
programming language, a character string, in a
particular format, that has some defined significance.

trace . (1) A record of the execution of a computer
program. It exhibits the sequences in which the
instructions were executed. (2) The process of
recording the sequence in which the statements in a
program are executed and, optionally, the values of
the program variables used in the statements.

transfer . (1) To send data from one place and
receive the data at another place. Synonymous with
move. (2) To read data from auxiliary storage or from
an input device into processor storage or from
processor storage to auxiliary storage or to an output
device.

tutorial . Information presented in a teaching format.

U
uppercase . Pertaining to the capital letters, as
distinguished from the small letters; for example, A,
B, G, rather than a, b, g.

user . (1) A person who requires the services of a
computing system. (2) Any person or any thing that
may issue or receive commands and messages to or
from the information processing system.

user ID . User identification.

V
variable . In programming languages, a language
object that may take different values, one at a time.
The values of a variable are usually restricted to a
certain data type.

verify . To determine whether a transcription of data
or other operation has been accomplished accurately.

virtual machine (VM) . A virtual data processing
system that appears to be at the exclusive disposal of
a particular user, but whose functions are
accomplished by sharing the resources of a real data
processing system.

120 User ′s Guide to CMS Application Multitasking

W
work area . An area reserved for temporary storage
of data that are to be operated on.

writing . The action of making a permanent or
transient recording of data in a storage device or on a
data medium.

Z
zero . In data processing, the number that, when
added to or subtracted from any other number, does
not alter the value of the other number. Zero may
have different representations in computers, such as
positively or negatively signed zero (which may result
from subtracting a signed number from itself) and
floating-point zero (in which the fixed point part is
zero while the exponent in the floating-point
representation may vary).

Glossary 121

122 User ′s Guide to CMS Application Multitasking

List of Abbreviations

APAR Authorized Program Analysis
Report

APPC Advanced
Program-to-Program
Communication

AVS APPC/VM VTAM Support

BG BackGround

CMS Conversational Monitor
System

CP Control Program

CPI Callable Programming
Interface

CPI-C Common Programming
Interface for Communications

CSL Callable Services Library

IBM International Business
Machines Corporation

ID IDentif ication/IDentif ier

IP Internet Protocol

IPC Inter-Processor
Communication

IPL Initial Program Load

ITSO International Technical
Support Organization

IUCV Inter-User Communications
Vehicle

LIFO Last In/First OutLast In/First
Out

MT MultiTasking

PC Personal Computer

POSIX Portable Operating System
Interface for Computer
Environments

PTF Program Temporary Fix

RACF Resource Access Control
Facility

REXX REstructured eXtended
eXecutor Language

RSCS Remote Spooling
Communications Subsystem

RXSOCKET REXX socket function

SCIF Single Console Image Facility

SFS Shared File System

SNA Systems Network
Architecture

TCP Transmission Control Protocol

TCP/IP Transmission Control
Protocol/Internet Protocol

TSAF Transparent Services Access
Facility

UCR Unsatisfactory Condition
Report

URL Uniform Resource Locator

VM Virtual Machine

VM/ESA Virtual Machine/Enterprise
Systems Architecture

XA Extended Architecture

XC Extended Configuration

 Copyright IBM Corp. 1998 123

124 User ′s Guide to CMS Application Multitasking

Index

Special Characters
$QUEUES$ NAMES file 7
$SERVER$ NAMES file 6, 16

A
abbreviations 123
acronyms 123
APAR for operation problem 16
APARs for RXSOCKET 2
APILOAD 99

B
bibliography 107
binding files 99

C
cleanup 49
CMS event services 23
communication between threads 46
CP authorization 6
CSL calls 2, 99

D
data collection server 7
debugging 100
delete threads 48

E
event services 16, 22
EventCreate call 22
EventMonitorCreate call 16
EventMonitorDelete call 17, 48
EventMonitorReset call 16
EventRetrieve call 22
EventSignal call 22, 46
EventWait call 16

G
glossary 113

I
identifying threads 100
IPC 47
IUCV ALLOW statement 6

K
key information 96

M
MAIL event 23
message events 28
message key 16
message support 43
monitor token 16
MT aware 1
mult iple pipelines 42
mult i threaded programs 29

N
network level queues 6

O
operation problem 16
overview 1

P
pipelines 30, 42
PIPEs 28
PTFs for REXX 2

Q
queue handle 7
queue services 6
QueueCreate call 6
QueueOpen call 6, 16
QueueReceiveBlock function 10, 47
QueueReply function 10
QueueSendReply function 10

R
reply token 11
required software 2
RESOURCE file 52
REXX Sockets 23, 97
REXX/WAIT 23
RXSOCKET 2, 100
RXSOCKET DEBUG NOTRACE 100

S
sample application 51
sample program 2
sample program logic 54

 Copyright IBM Corp. 1998 125

SCOMDIR file 6
session scope 23
signal data 97
signaled messages 43
software required 2
switching threads 100
synchronization of threads 41
synchronous communication 47
system event characteristics 95
system event key information 96

T
terminating threads 48, 99
termination event 48
thread

communication 46
identif ication 100
safe 1
switches 100
synchronization 41
termination 48, 99

ThreadDelay 48
ThreadDelete call 49, 99
timer services 5, 19
two way communication 10

U
UCOMDIR file 6
USERMAP file 53

V
VMCON1ECB 96
VMCONINPUT 96
VMERROR event 28
VMIPC 6
VMSOCKET event 23, 97
VMTIMER event 19

126 User ′s Guide to CMS Application Multitasking

ITSO Redbook Evaluation

Exploiting Recent CMS Function: A User′s Guide to CMS Application Multitasking
SG24-5164-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
__Customer __Business Partner __Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1998 127

S
G

24
-5

16
4-

00
P

rin
te

d
in

 t
he

 U
.S

.A
.

Exploiting Recent CMS Function: A User′s Guide to CMS Application Multitasking SG24-5164-00

IB
M

L

/XRL/1

Artwork Definitions

id File Page References

WOLOGO 5164SU
i

WOLOGOS 5164SU
i

TILOGO 5164SU
i

TILOGOS 5164SU
i

Table Definitions

id File Page References

R2 REDB$EVA
127 127

R1 REDB$EVA
127 127, 127

Figures

id File Page References

HALFSEC 5164CH02
5 1

99
ACCHECK 5164CH03

32 17
19, 99

Headings

id File Page References

REDBCOM REDB$COM
x Comments Welcome

SAMPGMS 5164CH01
2 1.2, The SG245164 Package of Sample Programs

53
CH3ME 5164CH03

43 3.5, Message Support for Events
28

AX4 5164CH04
51 Chapter 4, Sample Application IPGATE

2, 97, 100
IPGRES 5164CH04

52 4.3.1, IPGATE RESOURCE
53

IPGMAP 5164CH04
53 4.3.2, IPGATE USERMAP

54
SUBRTNS 5164CH04

88 4.6.8, IPGATE Subroutines
43, 45

AX1 5164AX01
95 Appendix A, Supplementary Information on System Defined

Events
16, 22

AX2 5164AX02
99 Appendix B, Supplementary Information for REXX

Programmers
AX3 5164AX03

103 Appendix C, Supplementary Information for Assembler
Programmers

NOTICES SG245164 SCRIPT
105 Appendix D, Special Notices

ii
BIBL 5164BIBL

107 Appendix E, Related Publications
REDBCDR REDB$BIB

107 E.2, Redbooks on CD-ROMs
ORDER REDB$ORD

109 How to Get ITSO Redbooks

/XRL/2

107
REDBIBM REDB$ORD

109 How IBM Employees Can Get ITSO Redbooks
REDBCUS REDB$ORD

110 How Customers Can Get ITSO Redbooks
REDBFOR REDB$ORD

111 IBM Redbook Order Form
REDBEVA REDB$EVA

127 ITSO Redbook Evaluation
x

Index Entries

id File Page References

TREDIND 5164VARS
i (1) thread

1, 41, 46, 48, 99, 100, 100

Processing Options

Runtime values:
Document fileid ... SG245164 SCRIPT
Document type .. USERDOC
Document style ... REDBOOK
Profile ... EDFPRF40
Service Level .. 0022
SCRIPT/VS Release ... 4.0.0
Date .. 98.11.20
Time .. 05:14:56
Device .. 3820A
Number of Passes .. 4
Index ... YES
SYSVAR D .. YES
SYSVAR G ... INLINE
SYSVAR X .. YES

Formatting values used:
Annotation .. NO
Cross reference listing .. YES
Cross reference head prefix only .. NO
Dialog ... LABEL
Duplex .. YES
DVCF conditions file ... (none)
DVCF value 1 .. (none)
DVCF value 2 .. (none)
DVCF value 3 .. (none)
DVCF value 4 .. (none)
DVCF value 5 .. (none)
DVCF value 6 .. (none)
DVCF value 7 .. (none)
DVCF value 8 .. (none)
DVCF value 9 .. (none)
Explode .. NO
Figure list on new page ... YES
Figure/table number separation ... YES
Folio-by-chapter .. NO
Head 0 body text .. Part
Head 1 body text .. Chapter
Head 1 appendix text ... Appendix
Hyphenation .. NO
Justification ... NO
Language ... ENGL
Keyboard ... 395
Layout .. OFF
Leader dots ... YES
Master index ... (none)
Partial TOC (maximum level) .. 4
Partial TOC (new page after) .. INLINE
Print example id′s .. NO
Print cross reference page numbers ... YES
Process value ... (none)
Punctuation move characters,
Read cross-reference fi le .. (none)
Running heading/footing rule .. NONE
Show index entries ... NO
Table of Contents (maximum level) ... 3
Table list on new page .. YES

/XRL/3

Title page (draft) alignment ... RIGHT
Write cross-reference fi le .. (none)

Imbed Trace

Page 0 5164SU
Page 0 5164VARS
Page 0 REDB$POK
Page i REDB$ED1
Page i 5164EDNO
Page i REDB$ED2
Page ix 5164ABST
Page ix 5164ACKS
Page x REDB$COM
Page x 5164IMBD
Page x 5164CH01
Page 3 5164CH02
Page 28 5164CH03
Page 50 5164CH04
Page 94 5164AX01
Page 97 5164AX02
Page 101 5164AX03
Page 105 5164SPEC
Page 105 REDB$SPE
Page 105 5164TMKS
Page 106 5164BIBL
Page 107 REDB$BIB
Page 108 REDB$ORD
Page 111 5164GLOS
Page 121 5164ABRV
Page 126 REDB$EVA

	Exploiting Recent CMS Function:
	A User¢s Guide to CMS Application Multitasking
	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	Redbook Format
	The SG245164 Package of Sample Programs
	Function Availability
	Required or Recommended Software Levels

	Chapter 2. Enhancing Existing Applications with CMS MT Functions
	Timer Services
	Queue Services
	CMS Requirements for Network Level Queues
	Network Level Queue Examples
	Event Services
	Event Services Example
	Timer Services (revisited)
	Event Services (revisited)
	Replacing REXX/ WAIT with Event Services

	Chapter 3. Examples of Multithreaded Use
	Basic Idea Behind Multithreaded Programs
	Functions Available to Multihreaded Programs
	ACCCHECK EXEC
	ACCCHECK MTREXX
	Synchronization of Multiple Threads
	Multiple Threads with Pipelines
	Message Support for Events
	PIPSIGMS MTREXX
	PROCMSG MTREXX
	Communication between Threads
	Communication through EventSignal
	Communication through IPC
	Terminating Multithreaded Programs
	Terminating with a Termination Event
	Terminating with EventMonitorDelete

	Chapter 4. Sample Application IPGATE
	What is IPGATE?
	Defining IPGATE to Your System
	Configuration Files Used by IPGATE
	IPGATE RESOURCE
	IPGATE USERMAP
	Files to Install on IPGATE
	Program Description of IPGATE
	The Actual IPGATE Code
	PROFILE EXEC
	IPGATE EXEC - the Startup Program
	IPGATE1 MTREXX - the Initial Thread and Console Handler
	IPGATE1L MTREXX - Listens on Incoming TCP Requests
	IPGATE1Y MTREXX - Handles APPC (CPI- C) Requests from User
	IPGATE1I MTREXX - Works with Incoming TCP Sessions
	IPGATE1W MTREXX - Monitors APPC Requests for a Resource
	IPGATE Subroutines

	Appendix A. Supplementary Information on System Defined Events
	A.1 System Event Characteristics
	A.2 System Event Signal Data/ Key Information
	A.3 VMCONINPUT versus VMCON1ECB
	A.4 VMSOCKET Signal Data

	Appendix B. Supplementary Information for REXX Programmers
	B. 1 ThreadDelete Caution
	B. 2 APILOAD Caution
	B. 3 Constants on CSL Calls
	B. 4 RXSOCKET must be at Level 3.02
	B. 5 Multithreaded Debugging Strategies

	Appendix C. Supplementary Information for Assembler Programmers
	C. 1 CSL Call Choices
	C. 2 Binding Files

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD- ROMs
	E.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	A
	B
	C
	D
	E
	G
	F
	H
	I
	K
	L
	N
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W Z
	List of Abbreviations
	Index
	Special Characters K
	M A
	B
	N
	C O
	P
	D
	Q
	E
	R
	G
	I
	S
	T
	U
	V
	ITSO Redbook Evaluation

