
z/VM

TCP/IP Level 3A0
Programmer’s Reference
Version 3 Release 1.0

SC24-5983-00

IBM

z/VM

TCP/IP Level 3A0
Programmer’s Reference
Version 3 Release 1.0

SC24-5983-00

IBM

Note!
Before using this information and the product it supports, read the information under “Notices” on page 425.

First Edition (February 2001)

This edition applies to the IBM® Transmission Control Protocol/Internet Protocol Feature for z/VM (TCP/IP Level
3A0), program number 5654-A17 and to all subsequent releases and modifications until otherwise indicated in new
editions.

This edition replaces SC24-5849-01.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|
|

|

Contents

Preface ix
Who Should Read This Book. ix
What You Should Know before Reading This Book ix
What This Book Contains ix
How to Use This Book xi

How the Term “internet” Is Used in This Book. . xi
Where to Find More Information xi
Service Information xi
Understanding Syntax Diagrams xi
How Numbers Are Used in This Book xiv
How to Send Your Comments to IBM xiv

Summary of Changes xv
First Edition for z/VM (February 2001) xv

IP Multicast xv
Other Changes xv

Second Edition for VM/ESA® (July 1999) xv
First Edition for VM/ESA xv

Chapter 1. General Programming
Information 1
Porting Considerations 1

Accessing System Return Messages 1
Printing System Return Messages 1

Compiling and Linking C Applications 1
Textlib (TXTLIB) Files 2

TCPLOAD EXEC 2
Using TCPLOAD 3

SET LDRTBLS Command 4

Chapter 2. C Sockets Application
Program Interface 5
Programming with C Sockets 5

Socket Programming Concepts 5
Guidelines for Using Socket Types 6
Addressing within Sockets. 6
Main Socket Calls. 8

C Socket Library. 16
Porting 17
Environment Variables Used by the Sockets Library 17
C Socket Reference 19
C Socket Calls 21

accept() 22
bind() 23
close() 27
connect() 27
endhostent() 30
endnetent() 31
endprotoent() 31
endservent() 31
fcntl() 31
getclientid() 32
getdtablesize() 33
gethostbyaddr() 33

gethostbyname() 34
gethostent() 35
gethostid() 36
gethostname() 36
getibmsockopt() 36
getnetbyaddr() 38
getnetbyname() 39
getnetent() 40
getpeername() 40
getprotobyname() 41
getprotobynumber() 41
getprotoent() 42
getservbyname() 43
getservbyport() 43
getservent() 44
getsockname() 44
getsockopt() 45
givesocket() 49
htonl() 51
htons() 51
ibmsflush() 51
inet_addr() 52
inet_lnaof() 52
inet_makeaddr() 53
inet_netof() 53
inet_network() 53
inet_ntoa() 54
ioctl() 54
listen() 56
maxdesc() 57
ntohl() 58
ntohs() 59
read() 59
readv() 60
recv() 61
recvfrom() 62
recvmsg() 63
select() 64
selectex() 67
send() 68
sendmsg() 69
sendto() 70
sethostent() 72
setibmsockopt() 72
setnetent() 75
setprotoent() 75
setservent() 75
setsockopt() 76
sockdb_sock_debug() 79
sock_debug_bulk_perf0 (). 80
sock_do_bulkmode() 80
sock_do_teststor() 81
shutdown() 81
socket() 82
takesocket() 85
tcperror() 86

© Copyright IBM Corp. 1987, 2001 iii

||
||
||

write() 87
writev(). 88

Sample C Socket Programs 89
C Socket TCP Client 89
C Socket TCP Server 90
C Socket UDP Server 92
C Socket UDP Client 93

Chapter 3. TCP/UDP/IP API (Pascal
Language) 95
Software Requirements 95
Data Structures 96

Connection State. 96
Connection Information Record. 97
Socket Record 98
Notification Record 98
File Specification Record. 105

Using Procedure Calls 105
Notifications. 105
TCP/UDP Initialization Procedures 106
TCP/UDP Termination Procedure 106
Handling External Interrupts 107
TCP Communication Procedures 107
Ping Interface 107
Monitor Procedures 108
UDP Communication Procedures 108
Raw IP Interface 108
Timer Routines 109
Host Lookup Routines 109
AddUserNote 110
Other Routines 110

Procedure Calls. 110
BeginTcpIp 110
ClearTimer 111
CreateTimer 111
DestroyTimer 111
EndTcpIp 111
GetHostNumber 112
GetHostResol 112
GetHostString 113
GetIdentity 113
GetNextNote 113
GetSmsg 114
Handle 114
LocalAddress 115
IsLocalHost 115
MonCommand 116
MonQuery 117
NotifyIo 118
PingRequest 119
RawIpClose 119
RawIpOpen 120
RawIpReceive 120
RawIpSend 121
ReadXlateTable 122
RTcpExtRupt 123
RTcpVmcfRupt 123
SayCalRe 124
SayConSt 124
SayIntAd 124
SayIntNum 125

SayNotEn 125
SayPorTy 125
SayProTy 125
SetTimer 126
StartTcpNotice 126
TcpAbort 127
TcpClose 127
TcpExtRupt 128
TcpFReceive, TcpReceive, and TcpWaitReceive 128
TcpFSend, TcpSend, and TcpWaitSend 131
TcpNameChange 133
TcpOpen and TcpWaitOpen. 134
TcpOption 136
TcpStatus 137
TcpVmcfRupt 138
UdpClose 138
UdpNReceive 139
UdpOpen 139
UdpReceive 140
UdpSend 141
Unhandle. 142
UnNotifyIo 142

Sample Pascal Program 143

Chapter 4. Virtual Machine
Communication Facility Interface . . . 147
General Information 147

Data Structures 147
VMCF Functions 149
VMCF TCPIP Communication CALLCODE
Requests 150
VMCF TCPIP Communication CALLCODE
Notifications. 151

TCP/UDP/IP Initialization and Termination
Procedures 152

BEGINtcpIPservice 152
HANDLEnotice 153
ENDtcpIPservice 153

TCP CALLCODE Requests 154
OPENtcp 154
SENDtcp and FSENDtcp 155
FRECEIVEtcp 156
RECEIVEtcp. 157
CLOSEtcp 157
ABORTtcp 158
STATUStcp 158
OPTIONtcp 158

UDP CALLCODE Requests. 158
OPENudp 159
SENDudp 159
NRECEIVEudp 159
CLOSEudp 160

IP CALLCODE Requests 160
OPENrawip 160
SENDrawip 160
RECEIVErawip 161
CLOSErawip 161

CALLCODE System Queries 161
IShostLOCAL 161
MONITORcommand 162
MONITORquery 162

iv z/VM: TCP/IP Programmer’s Reference

PINGreq 163
CALLCODE Notifications 163

BUFFERspaceAVAILABLE 164
CONNECTIONstateCHANGED 164
DATAdelivered. 164
URGENTpending 165
UDPdatagramDELIVERED 165
UDPdatagramSPACEavailable 166
RAWIPpacketsDELIVERED. 166
RAWIPspaceAVAILABLE 167
RESOURCESavailable 167
UDPresourcesAVAILABLE 167
PINGresponse 167
DUMMYprobe 168
ACTIVEprobe 168

Chapter 5. Inter-User Communication
Vehicle Sockets 169
Prerequisite Knowledge 169
Available Functions 169
Socket Programming with IUCV 170
Preparing to use the IUCV Socket API 171

Establishing an IUCV connection to TCP/IP . . 171
Initializing the IUCV Connection 171

Severing the IUCV Connection 173
Sever by the Application 173
Sever by TCP/IP 173

Issuing Socket Calls 174
Overlapping Socket Requests 174
TCP/IP Response to an IUCV Request 175
Cancelling a Socket Request 175

IUCV Socket Call Syntax 176
IUCV Socket Calls 177

ACCEPT 177
BIND 178
CANCEL 178
CLOSE 179
CONNECT 180
FCNTL 180
GETCLIENTID 181
GETHOSTID 182
GETHOSTNAME 182
GETPEERNAME 183
GETSOCKNAME 183
GETSOCKOPT 184
GIVESOCKET 185
IOCTL. 186
LISTEN 188
MAXDESC 189
READ, READV. 189
RECV, RECVFROM, RECVMSG 190
SELECT, SELECTEX 191
SEND 193
SENDMSG 194
SENDTO 194
SETSOCKOPT 195
SHUTDOWN 196
SOCKET 197
TAKESOCKET 198
WRITE, WRITEV 199
LASTERRNO 200

Chapter 6. Remote Procedure Calls 201
The RPC Interface 201
Portmapper 203

Contacting Portmapper 204
Target Assistance 204

RPCGEN Command 204
enum clnt_stat Structure. 205
Remote Procedure Call Library 206
Porting 206

Remapping C Identifiers with RPC.H 206
Accessing System Return Messages 206
Printing System Return Messages 207
Enumerations 207

RPC Global Variables. 207
rpc_createerr 207
svc_fds 207

Remote Procedure and eXternal Data
Representation Calls 207

auth_destroy() 207
authnone_create() 208
authunix_create() 208
authunix_create_default() 208
callrpc() 209
clnt_broadcast() 209
clnt_call() 211
clnt_control() 211
clnt_create() 212
clnt_destroy() 213
clnt_freeres() 213
clnt_geterr() 213
clnt_pcreateerror() 214
clnt_perrno() 214
clnt_perror() 214
clnt_spcreateerror() 215
clnt_sperrno() 215
clnt_sperror() 216
clntraw_create() 216
clnttcp_create() 217
clntudp_create() 217
get_myaddress() 218
getrpcport() 219
pmap_getmaps() 219
pmap_getport() 219
pmap_rmtcall() 220
pmap_set() 221
pmap_unset() 221
registerrpc() 222
svc_destroy() 222
svc_freeargs() 223
svc_getargs() 223
svc_getcaller() 224
svc_getreq() 224
svc_register() 224
svc_run() 225
svc_sendreply(). 225
svc_unregister() 226
svcerr_auth() 226
svcerr_decode(). 226
svcerr_noproc() 226
svcerr_noprog(). 227
svcerr_progvers() 227

Contents v

svcerr_systemerr() 227
svcerr_weakauth() 228
svcraw_create() 228
svctcp_create() 228
svcudp_create(). 229
xdr_accepted_reply() 229
xdr_array() 230
xdr_authunix_parms() 230
xdr_bool() 231
xdr_bytes() 231
xdr_callhdr() 232
xdr_callmsg() 232
xdr_double() 232
xdr_enum() 233
xdr_float() 234
xdr_inline() 234
xdr_int() 235
xdr_long() 235
xdr_opaque() 235
xdr_opaque_auth() 236
xdr_pmap() 236
xdr_pmaplist() 237
xdr_pointer() 237
xdr_reference() 237
xdr_rejected_reply() 238
xdr_replymsg() 238
xdr_short() 239
xdr_string() 239
xdr_u_int() 239
xdr_u_long() 240
xdr_u_short() 240
xdr_union() 241
xdr_vector() 241
xdr_void() 242
xdr_wrapstring() 242
xdrmem_create() 243
xdrrec_create() 243
xdrrec_endofrecord() 244
xdrrec_eof() 244
xdrrec_skiprecord() 244
xdrstdio_create() 244
xprt_register() 245
xprt_unregister() 245

Sample RPC Programs 246
RPC Client 246
RPC Server 246
RPC Raw Data Stream 248

Chapter 7. X Window System Interface 251
What Is Provided 251
Software Requirements 251
Using the X Window System Interface in the VM
Environment 251
Application Resource File 253
Identifying the Target Display 254
Creating an Application 254
Generating X-Window System Applications . . . 254
X Window System Subroutines 256

Opening and Closing a Display 256
Creating and Destroying Windows 256
Manipulating Windows 257

Changing Window Attributes 257
Obtaining Window Information 258
Obtaining Properties and Atoms 258
Manipulating Window Properties. 258
Setting Window Selections 258
Manipulating Colormaps 259
Manipulating Color Cells 259
Creating and Freeing Pixmaps. 259
Manipulating Graphics Contexts 260
Clearing and Copying Areas 261
Drawing Lines 261
Filling Areas. 261
Loading and Freeing Fonts 262
Querying Character String Sizes 262
Drawing Text 263
Transferring Images 263
Manipulating Cursors 263
Handling Window Manager Functions 264
Manipulating Keyboard Settings 264
Controlling the Screen Saver 265
Manipulating Hosts and Access Control . . . 265
Handling Events 266
Enabling and Disabling Synchronization . . . 266
Using Default Error Handling 267
Communicating with Window Managers . . . 267
Manipulating Keyboard Event Functions . . . 268
Manipulating Regions 269
Using Cut and Paste Buffers 270
Querying Visual Types 270
Manipulating Images 271
Manipulating Bitmaps 271
Using the Resource Manager 271
Manipulating Display Functions 272

Extension Routines 275
MIT Extensions to X 275
Associate Table Functions 276
Miscellaneous Utility Routines. 277
X Authorization Routines 280
X Intrinsics Routines 280
Athena Widget Support 290
Extension Routines 292
MIT Extensions to X 293
Associate Table Functions 293
Miscellaneous Utility Routines. 293
X Authorization Routines 293
X Window System Toolkit 293
Application Resources 295
Athena Widget Set 296
OSF/Motif-Based Widget Support 297
Sample X Window System Applications 299
Xlib Sample Program 299
Athena Widget Sample Program 300
OSF/Motif-Based Widget Sample Program . . . 302

Chapter 8. Kerberos Authentication
System 303
Authentication Server 303

Name Structures 303
Tickets and Authenticators 304
Communicating with the Authentication Server 304

Ticket-Granting Server 305

vi z/VM: TCP/IP Programmer’s Reference

Accessing a Service 305
Kerberos Database. 306
Administration Server 306
Kerberos C Language Applications Library . . . 307
Kerberos Routines Reference 308

Client Commands 308
Applications. 309
Kerberos Routines 309

krb_get_cred() 309
krb_kntoln() 309
krb_mk_err() 310
krb_mk_priv() 310
krb_mk_req() 311
krb_mk_safe() 311
krb_rd_err() 312
krb_rd_priv() 313
krb_rd_req() 314
krb_rd_safe() 315
krb_recvauth() 315
krb_sendauth() 316

Sample Kerberos Programs 318
Kerberos Client. 318
Kerberos Server 320

Chapter 9. SNMP Agent Distributed
Program Interface 325
SNMP Agents and Subagents 325
Processing DPI Requests. 326

Processing a GET Request 327
Processing a SET Request 327
Processing a GET_NEXT Request 327
Processing a REGISTER Request 328
Processing a TRAP Request. 328

Compiling and Linking 328
SNMP DPI Reference 329
DPI Library Routines 329

DPIdebug() 329
fDPIparse() 330
mkDPIlist() 330
mkDPIregister() 331
mkDPIresponse() 331
mkDPIset() 332
mkDPItrap() 333
mkDPItrape() 334
Example of an Extended Trap 334
pDPIpacket() 335
query_DPI_port() 336

Sample SNMP DPI Client Program 337
The DPISAMPLE Program (Sample DPI Subagent) 337

DPISAMPLE TABLE 339
Client Sample Program 339

Compiling and Linking the DPISAMPLE.C
Source Code. 358

Chapter 10. SMTP Virtual Machine
Interfaces 359
SMTP Transactions 359
SMTP Commands 360

HELO 360
EHLO 361

MAIL FROM 361
RCPT TO 362
DATA 363
RSET 364
QUIT 364
NOOP. 364
HELP 364
QUEU 365
VRFY 367
EXPN 368
VERB 368
TICK 369

SMTP Command Example 369
SMTP Command Responses 369
Path Address Modifications 370
Batch SMTP Command Files 371
Batch SMTP Examples 371

Sending Mail to a TCP Network Recipient. . . 371
Querying SMTP Delivery Queues 372

SMTP Exit Routines 373
Client Verification Exit 373

Built-in Client Verification Function 373
Client Verification Exit Parameter Lists 374

Using the Mail Forwarding Exit 378
Mail Forwarding Exit Parameter Lists 379

Using the SMTP Command Exit 384
SMTP Command Exit Parameter Lists 385

Chapter 11. Telnet Exits 391
Telnet Session Connection Exit 391

Telnet Exit Parameter List 392
Sample Exit 392

Telnet Printer Management Exit 393
Telnet Printer Management Exit Parameter List 393
Sample Exit 393

Chapter 12. FTP Server Exit 395
The FTP Server Exit 395

Sample Exit 395
Audit Processing 395

Audit Processing Parameter List 396
Audit Processing Parameter Descriptions . . . 396
Return Codes from Audit Processing 398

General Command Processing 398
General Command Processing Parameter List 398
General Command Processing Parameter
Descriptions 399
Return Codes from General Command
Processing 400

Change Directory Processing 401
Change Directory Processing Parameter List . . 401

Appendix A. Pascal Return Codes . . 405
Explanatory Notes. 407

Appendix B. C API System Return
Codes 409

Contents vii

Appendix C. Well-Known Port
Assignments 413
TCP Well-Known Port Assignments 413
UDP Well-Known Port Assignments 414

Appendix D. Related Protocol
Specifications 417

Appendix E. Abbreviations and
Acronyms 421

Notices 425
Trademarks 427

Glossary 429

Bibliography 447
z/VM Base Publications 447

Evaluation 447

Installation and Service 447
Planning and Administration 447
Customization 447
Operation 447
Application Programming 447
End Use 448
Diagnosis. 448

Publications for Additional Facilities. 448
DFSMS/VM® 448
OSA/SF 448
Language Environment® 448

Publications for Optional Features 448
CMS Utilities Feature. 448
TCP/IP Feature for z/VM 448
OpenEdition® DCE Feature for VM/ESA®. . . 448
LANRES/VM 449

CD-ROM 449
Other TCP/IP Related Publications 449

Index 451

viii z/VM: TCP/IP Programmer’s Reference

Preface

TCP/IP for VM: Programmer’s Reference describes the routines for application
programming in IBM* Transmission Control Protocol/Internet Protocol Version 3
Release 1.0 for VM (TCP/IP Level 3A0 for VM).

This book contains reference information about the following application
programming interfaces (API):
v C sockets
v Pascal
v Virtual Machine Communication Facility (VMCF)
v Remote Procedure Calls (RPCs)
v X Window System
v Kerberos Authentication System
v Simple Network Management Protocol (SNMP) agent distributed program

interface
v Conversational Monitor System (CMS) command interface to the name server
v Simple Mail Transfer Protocol (SMTP)

The descriptive information in the chapters is supplemented with appendixes that
contain sample programs and quick references.

For comments and suggestions about this book, use the Reader’s Comment Form
located at the back of this book. This form gives instructions on submitting your
comments by mail, by FAX, or by electronic mail.

Who Should Read This Book
This book is intended for users and programmers who are familiar with VM/ESA
and the Control Program (CP) and the Conversational Monitor System (CMS)
components. You should also be familiar with the C or Pascal programming
language and the specific Application Programming Interface (API) that you are
using.

What You Should Know before Reading This Book
Before using this book, you should be familiar with z/VM, CP, and CMS. In
addition, TCP/IP Level 3A0 for VM should already be installed and customized
for your network.

What This Book Contains
You should read this book when you want to use the application programming
interfaces that are available in TCP/IP Level 3A0 for VM.

“Chapter 1. General Programming Information” on page 1, provides information
for programmers who use the application program interfaces described in this
book.

© Copyright IBM Corp. 1987, 2001 ix

|
|

“Chapter 2. C Sockets Application Program Interface” on page 5, describes the C
Socket application program interface provided with TCP/IP Level 3A0 for VM.

“Chapter 3. TCP/UDP/IP API (Pascal Language)” on page 95, describes how to use
the Pascal language application program interface to write application programs
for the TCP, UDP, and IP layers of the TCP/IP protocol suite.

“Chapter 4. Virtual Machine Communication Facility Interface” on page 147,
describes how to communicate directly with the TCPIP virtual machine using
Virtual Machine Communication Facility calls.

“Chapter 5. Inter-User Communication Vehicle Sockets” on page 169, describes how
to use the (IUCV) socket. While not every C socket library function is provided, all
of the basic operations necessary to communicate with other socket programs are
present.

“Chapter 6. Remote Procedure Calls” on page 201, describes the Remote Procedure
Call protocol, which permits remote execution of subroutines across a TCP/IP
network.

“Chapter 7. X Window System Interface” on page 251, describes the X Window
System and subroutines for TCP/IP Level 3A0 for VM.

“Chapter 8. Kerberos Authentication System” on page 303, describes the Kerberos
Authentication System and the routines for writing authentication programs.

“Chapter 9. SNMP Agent Distributed Program Interface” on page 325, describes the
Simple Network Management Protocol (SNMP) agent distributed program
interface (DPI).

“Chapter 10. SMTP Virtual Machine Interfaces” on page 359, describes the
communication interfaces to the SMTP virtual machine.

“Chapter 11. Telnet Exits” on page 391, describes the Telnet server exits that
provide CP command simulation, TN3270E printer management, and system
access control when Telnet connections are established with your host.

“Chapter 12. FTP Server Exit” on page 395, describes the FTP Server Exit

“Appendix A. Pascal Return Codes” on page 405, lists the system return codes as
they apply to Pascal calls and provides their numeric value and description.

“Appendix B. C API System Return Codes” on page 409, lists the system return
codes and provides their numeric value and a description.

“Appendix C. Well-Known Port Assignments” on page 413, This appendix lists the
well-known port assignments for transport protocols TCP and UDP, and includes
port number, keyword, and a description of the reserved port assignment. You can
also find a list of these well-known port numbers in the ETC SERVICES file.

“Appendix D. Related Protocol Specifications” on page 417, lists the related
protocol specifications concerning TCP/IP Level 3A0 for VM.

“Appendix E. Abbreviations and Acronyms” on page 421, lists and defined the
abbreviations and acronyms used in this book.

x z/VM: TCP/IP Programmer’s Reference

This book also includes a glossary, a bibliography, and an index.

How to Use This Book
Read this book to learn about the application programming interfaces.

How the Term “internet” Is Used in This Book
In this book, an internet is a logical collection of networks supported by routers,
gateways, bridges, hosts, and various layers of protocols, which permit the
network to function as a large, virtual network.

Note: The term “internet” is used as a generic term for a TCP/IP network, and
should not be confused with the Internet, which consists of large national
backbone networks (such as MILNET, NSFNet, and CREN) and a myriad of
regional and local campus networks worldwide.

Where to Find More Information
“Appendix E. Abbreviations and Acronyms” on page 421, lists the abbreviations
and acronyms that are used throughout this book.

The “Glossary” on page 429, defines terms used throughout this book that are
associated with TCP/IP communication in an internet environment.

For more information about related publications, see “Bibliography” on page 447.

Service Information
The IBM Software Support Center provides you with telephone assistance in
problem diagnosis and resolution. You can call the IBM Software Support Center at
anytime; you will receive a return call within eight business hours
(Monday—Friday, 8:00 a.m.—5:00 p.m., local customer time). The number to call is
: 1-800-237-5511.

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

Understanding Syntax Diagrams
This section describes how to read the syntax diagrams in this book.

Getting Started: To read a syntax diagram, follow the path of the line. Read from
left to right and top to bottom.
v The ÊÊ─── symbol indicates the beginning of a syntax diagram.
v The ───Ê symbol, at the end of a line, indicates that the syntax diagram

continues on the next line.
v The Ê─── symbol, at the beginning of a line, indicates that a syntax diagram

continues from the previous line.
v The ───ÊÍ symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:
v Directly on the line (required)
v Above the line (default)
v Below the line (optional).

Preface xi

Syntax Diagram Description Example

Abbreviations:

Uppercase letters denote the shortest acceptable abbreviation.
If an item appears entirely in uppercase letters, it cannot be
abbreviated.

You can type the item in uppercase letters, lowercase letters,
or any combination.

In this example, you can enter KEYWO, KEYWOR, or
KEYWORD in any combination of uppercase and lowercase
letters.

ÊÊ KEYWOrd ÊÍ

Symbols:

You must code these symbols exactly as they appear in the
syntax diagram.

* Asterisk
: Colon
, Comma
= Equal Sign
- Hyphen
() Parentheses
. Period

Variables:

Highlighted lowercase items (like this) denote variables.

In this example, var_name represents a variable you must
specify when you code the KEYWORD command.

ÊÊ KEYWOrd Ê

Ê var_name ÊÍ

Repetition:

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means you must separate
repeated items with that character.

A footnote (1) by the arrow references a limit that tells how
many times the item can be repeated.

ÊÊ » repeat ÊÍ

ÊÊ »

,

repeat ÊÍ

ÊÊ »
(1)

repeat ÊÍ

Notes:

1 Specify repeat up to 5
times.

xii z/VM: TCP/IP Programmer’s Reference

Syntax Diagram Description Example

Required Choices:

When two or more items are in a stack and one of them is on
the line, you must specify one item.

In this example, you must choose A, B, or C.

ÊÊ A
B
C

ÊÍ

Optional Choice:

When an item is below the line, the item is optional. In this
example, you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C, or
nothing at all.

ÊÊ
A

ÊÍ

ÊÊ
A
B
C

ÊÍ

Defaults:

Defaults are above the line. The system uses the default
unless you override it. You can override the default by coding
an option from the stack below the line.

In this example, A is the default. You can override A by
choosing B or C.

ÊÊ
A

B
C

ÊÍ

Repeatable Choices:

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

ÊÊ » A
B
C

ÊÍ

Syntax Fragments:

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named “A Fragment.”

ÊÊ A Fragment ÊÍ

A Fragment:

A

B
C

Preface xiii

How Numbers Are Used in This Book
In this book, numbers over four digits are represented in metric style. A space is
used rather than a comma to separate groups of three digits. For example, the
number sixteen thousand, one hundred forty-seven is written 16 147.

How to Send Your Comments to IBM
Your feedback is important in helping us to provide the most accurate and
high-quality information. If you have comments about this book or any other VM
documentation, send your comments to us using one of the following methods. Be
sure to include the name of the book, the form number (including the suffix), and
the page, section title, or topic you are commenting on.
v Visit the z/VM web site at:

http://www.ibm.com/servers/eserver/zseries/zvm

There you will find the feedback page where you can enter and submit your
comments.

v Send your comments by electronic mail to one of the following addresses:

Internet: pubrcf@vnet.ibm.com

IBMLink™: GDLVME(PUBRCF)
v Fill out the Readers’ Comments form at the back of this book and return it using

one of the following methods:
– Mail it to the address printed on the form (no postage required in the USA).
– Fax it to 1-607-752-2327.
– Give it to an IBM representative.

xiv z/VM: TCP/IP Programmer’s Reference

|

Summary of Changes

This section describes the technical changes made in this edition of the book and in
previous editions. For your convenience, the changes made in this edition are
identified in the text by a vertical bar (|) in the left margin. This edition may also
include minor corrections and editorial changes that are not identified.

First Edition for z/VM (February 2001)
This edition contains updates for the General Availability of TCP/IP Level 3A0
Programmer’s Reference.

IP Multicast
Support for IP Multicast has been added for the C sockets application program
interfaces getsockopt and setsockopt.

Other Changes
v Miscellaneous service updates were added since the previous release.
v XCLIENT sample programs were removed.
v The chapter on NCS was removed. The product is now unsupported.

Second Edition for VM/ESA ® (July 1999)
This edition contains updates for the General Availability of TCP/IP Function
Level 320 Programmer’s Reference.
v The chapter ’SMTP Virtual Machine Interfaces’, which discusses the interfaces to

the SMTP server, has been updated to include new support for Extended
Services and the server exits.

v A new chapter with details of the telnet server session connection and printer
management exits was added.

v A new chapter for the FTP Server Exit was added.

First Edition for VM/ESA
This edition contains updates for the General Availability of TCP/IP Function
Level 310 Programmer’s Reference.
v The DUMMYprobe and ACTIVEprobe VMCF interrupt headers were added to

Chapter 4.

© Copyright IBM Corp. 1987, 2001 xv

|

|
|

|

|
|

|

|

|

|

|

xvi z/VM: TCP/IP Programmer’s Reference

Chapter 1. General Programming Information

This chapter contains fundamental, technical information that programmers need
to know before they attempt to work with the application program interfaces (API)
provided with TCP/IP.

Porting Considerations

Important Note
In order to develop or port applications in the C programming language that
interface directly to TCP, UDP, and IP, or which modify TCP/IP for VM C
components, the following are required:
v IBM C for VM/ESA Compiler, Version 3 Release 1 (5654-033)
v Language Environment, which is included in the base release.

Accessing System Return Messages
To access system return values while running your C program, use only the
errno.h include statement supplied with the compiler. To access TCP/IP network
return values, add the following include statement to your C program:

Printing System Return Messages
To print only system errors, use perror(), a procedure available in the C compiler
run-time library. To print both system and network errors, use tcperror(), a
procedure provided by IBM and included with TCP/IP Level 320 for VM.

Compiling and Linking C Applications
This section describes how to compile and link-edit C applications that use the
TCP/IP C sockets

1. Access the TCP/IP client minidisk (TCPMAINT 592) ahead of the S-disk to
avoid conflicts with OpenEdition® for VM/ESA.
Establish the C development environment:
– Access the C compiler
– SET LDRTBLS 25 (the number you need depends on your program)
– GLOBAL LOADLIB SCEERUN

Note: CMSLIB is required only when the program will run in a 370-mode
virtual machine.

2. Compile your programs, ensuring that the preprocessor symbol VM is
defined. For example:
CC myprog (DEF(VM)

With OpenEdition for VM/ESA you can also use the c89 command and the
make shell utility.

#include <tcperrno.h>

© Copyright IBM Corp. 1987, 2001 1

3. Select the link libraries your applications need and put them on a GLOBAL
TXTLIB command. SCEELKED and COMMTXT are the minimum required:
GLOBAL TXTLIB SCEELKED COMMTXT

Additional libraries, listed in Table 1 may be required depending on the TCP/IP
functions your application uses. For example, programs that use RPC must
issue:
GLOBAL TXTLIB SCEELKED COMMTXT RPCLIB

Textlib (TXTLIB) Files
Table 1. TXTLIB Files and Applications

TXTLIB File Application

COMMTXT C Sockets and Pascal API

RPCLIB Remote Procedure Calls

BPLDBM Kerberos

KDB Kerberos

KRB Kerberos

DES Kerberos

X11LIB Xlib, Xmu, Xext and Xau Routines

OLDXLIB X Release 10 compatibility routines

XTLIB X Intrinsics

XAWLIB Athena Widget Set

XMLIB OSF/Motif-based widget set

DPILIB SNMP DPI

4. Link-edit your programs into an executable module. The sample applications
in this book are built using the TCPLOAD utility. Your own applications should
be built using the CMOD command. For example:
TCPLOAD sample@c c

or
CMOD myprog1 myprog2 (AUTO

Complete information on compiling and link-editing C programs can be found
in the C VM/ESA User’s Guide, SC09-2151.

TCPLOAD EXEC
The TCPLOAD EXEC is provided to generate an executable module from your
compiled program. When running TCPLOAD, all disks containing object files must
be accessed as extensions of the A-disk. The TCPLOAD EXEC generates a module
when given a list of text file names and a control file.

ÊÊ TCPLOAD load_list control_file type Ê

General Programming Information

2 z/VM: TCP/IP Programmer’s Reference

|

Ê

»

(
XA

TXTLIBfilename filename

ÊÍ

Parameter Description

load_list Specifies the file name of a file with the file type LOADLIST that
contains file names to be included in the load module. The first
line in the load_list specifies the name of the main object module.
Subsequent lines specify additional object modules to be included
in the load module.

control_file Specifies the control_file, which determines the file types of text files
according to the standard update identifier procedure.

type Specifies the type parameter as one of the following:

C Includes SCEELKED, CMSLIB, RPCLIB, TCPASCAL,
TCPLANG, COMMTXT, and CLIB txtlibs.

C-ONLY
Includes SCEELKED, RPCLIB, COMMTXT, CMSLIB, and
CLIB txtlib.

PASCAL
Includes TCPASCAL, TCPLANG, and COMMTXT txtlibs.
PASCAL is the default for the type parameter.

XA Specify this option if the application requires storage above the
16Mb line. The application will be generated RMODE ANY and
AMODE 31. Pascal applications will require the GLOBAL
LOADLIB TCPRTLIB command be issued before being run.

TXTLIB Specifies the TXTLIB option, which allows you to specify up to 50
filenames that will be added to the GLOBAL TXTLIB command.

See Table 1 on page 2 for a list of the files necessary for each
application.

If TCPLOAD is not used, you must global the appropriate TXTLIB files.

Using TCPLOAD
The following example describes how to use TCPLOAD to generate an executable
module from object files.
1. Create a file with file type LOADLIST, which contains all the object (TEXT) files

to be linked. For example, llistfn loadlist.
2. Create a control file with file type CNTRL, which contains the list of TEXT file

types. For example, ctrlfn cntrl.
3. Invoke the TCPLOAD command, as shown in the following example.

TCPLOAD llistfn ctrlfn C (TXTLIB mylib1 mylib2

Where:
v llistfn is the LOADLIST file name
v ctrlfn is the control file name
v C is the language of the main program
v TXTLIB is the keyword that specifies the libraries to link

General Programming Information

Chapter 1. General Programming Information 3

v mylib1 and mylib2 are the libraries to link.

The following is an example of how to create an executable module from a list of
object files. In the example, OBJ1, OBJ2, OBJ3, OBJ4, and OBJ5 are TEXT files created
by compiling C programs, and MYLIB1 and MYLIB2 are libraries.
1. Create the file SAMPLE LOADLIST that lists the object files:

OBJ1
OBJ2
OBJ3
OBJ4
OBJ5

2. Create the file TEST CNTRL with the following:
TEXT

3. Invoke TCPLOAD with the following command:
TCPLOAD SAMPLE TEST C (TXTLIB MYLIB1 MYLIB2

This creates the executable file SAMPLE MODULE.

SET LDRTBLS Command
The SET LDRTBLS command defines the number of pages of storage to be used
for loader tables (LDRTBLS). By default, a virtual machine having up to 384 Kb of
addressable storage has three pages of loader tables; a larger virtual machine has
four pages. Each loader table page has a capacity of 169 external names. During
LOAD and INCLUDE command processing, each unique, external name
encountered in a TEXT deck is entered in the loader table.

ÊÊ SET LDRTBLS nn ÊÍ

Parameter Description
nn Specifies the number of pages to be used for loader tables.

For more information about the SET LDRTBLS command, see the CMS Command
Reference.

General Programming Information

4 z/VM: TCP/IP Programmer’s Reference

Chapter 2. C Sockets Application Program Interface

This chapter describes the C socket application program interface (API) provided
with TCP/IP. Use the socket routines in your C program to interface with the TCP,
UDP, and IP protocols. This allows you to communicate across networks with
other programs. You can, for example, make use of socket routines when you write
a client program that must communicate with a server program running on
another computer.

To use the C socket API, you should know C language programming.

For more information about C sockets, see the IBM AIX® Operating System Technical
Reference: System Calls and Subroutines.

Programming with C Sockets
The VM C socket API provides a standard interface to the transport and
internetwork layer interfaces of TCP/IP. It supports three socket types: stream,
datagram, and raw. Stream and datagram sockets interface to the transport layer
protocols, and raw sockets interface to the network layer protocols. The
programmer chooses the most appropriate interface for an application.

Socket Programming Concepts
Before programming with the C socket API, you should consider the following
important concepts.

What is a Socket?
A socket is an endpoint for communication that can be named and addressed in a
network. From an application program perspective, it is a resource allocated by the
virtual machine. It is represented by an integer called a socket descriptor.

The socket interface was designed to provide applications with a network interface
that hides the details of the physical network. The interface is differentiated by the
different services that are provided. Stream, datagram, and raw sockets each define
a different service available to applications.

The stream socket interface defines a reliable connection-oriented service. Data is
sent without errors or duplication and is received in the same order as it is sent.
Flow control is built in to avoid data overruns. No boundaries are imposed on the
data; it is considered to be a stream of bytes. An example of an application that
uses stream sockets is Telnet.

The datagram socket interface defines a connectionless service. Datagrams are sent
as independent packets. The service provides no guarantees; data can be lost or
duplicated, and datagrams can arrive out of order. The size of a datagram is
limited to the size that can be sent in a single transaction (currently the default is
8192 and the maximum is 32,767). No disassembly and reassembly of packets is
performed. An example of an application that uses datagram sockets is the
Network File System (NFS).

© Copyright IBM Corp. 1987, 2001 5

The raw socket interface allows direct access to lower layer protocols such as IP
and Internet Control Message Protocol (ICMP). The interface is often used for
testing new protocol implementations.

The socket interface can be extended; therefore, you can define new socket types to
provide additional services. Because socket interfaces isolate you from the
communication functions of the different protocol layers, the interfaces are largely
independent of the underlying network. In the VM implementation of sockets,
stream sockets interface to TCP, datagram sockets interface to UDP, and raw
sockets interface to ICMP and IP. In the future, the underlying protocols can
change; however, the socket interface remains the same. For example, stream
sockets can eventually interface to the International Standards Organization (ISO)
Open System Interconnection (OSI) transport class 4 protocol. This means that
applications do not have to be rewritten as underlying protocols change. For more
information about open System Interconnection, see Open System Interconnection:
Reference Summary.

Guidelines for Using Socket Types
The following considerations help you choose the appropriate socket type for an
application.

If you are communicating to an existing application, use the same protocols as the
existing application. For example, if you interface to an application that uses TCP,
use stream sockets. For other applications you should consider the following
factors:
v Reliability. Stream sockets provide the most reliable connection. Datagram, or

raw sockets, are unreliable, because packets can be discarded, corrupted, or
duplicated during transmission. This can be acceptable if the application does
not require reliability, or if the application implements the reliability on top of
the sockets interface. The trade-off is the increased performance available over
stream sockets.

v Performance. The overhead associated with reliability, flow control, packet
reassembly, and connection maintenance degrade the performance of stream
sockets so that they do not perform as well as datagram sockets.

v The amount of data to be transferred. Datagram sockets impose a limit on the
amount of data transferred in a single transaction. If you send less than 2048
bytes at a time, use datagram sockets. As the amount of data in a single
transaction increases, it makes more sense to use stream sockets.

If you are writing a new protocol on top of IP, or wish to use the ICMP protocol,
then you must choose raw sockets.

Addressing within Sockets
The following sections describe the different ways to address within the C socket
API.

Address Families
Address families define different styles of addressing. All hosts in the same
addressing family understand and use the same scheme for addressing socket
endpoints. TCP/IP supports two addressing families: AF_INET and AF_IUCV. The
AF_INET domain defines addressing in the internet (INET) domain. The AF_IUCV
domain defines addressing in the Inter-User Communication Vehicle (IUCV)
domain. In the IUCV domain, virtual machines can use the socket interface to
communicate with other virtual machines on the same host.

C Sockets Application Program Interface

6 z/VM: TCP/IP Programmer’s Reference

Socket Address
A socket address is defined by the sockaddr structure in the SOCKETS.H header
file. It has two fields as shown in the following example:
struct sockaddr
{

unsigned short sa_family; /* address family */
char sa_data[14]; /* up to 14 bytes of direct address */

};

The sa_family field contains the addressing family. It is AF_INET for the internet
domain and AF_IUCV for the IUCV domain. The sa_data field is different for each
address family. Each address family defines its own structure, which can be
overlaid on the sockaddr structure. For more information about the internet domain,
see “Addressing within an Internet Domain” and for more information about the
IUCV domain, see “Addressing within the IUCV Domain” on page 8.

Internet Addresses
Internet addresses are 32-bit quantities that represent a network interface. Every
internet address within an administered AF_INET domain must be unique. A
common misunderstanding is that every host must have a unique internet address.
In fact, a host has as many internet addresses as it has network interfaces.

Ports
A port is used to differentiate between different applications using the same
network interface: it is an additional qualifier used by the system software to get
data to the correct application. Physically, a port is a 16-bit integer. Some ports are
reserved for particular applications and are called well-known ports. For a listing
of well-known ports, see “Appendix C. Well-Known Port Assignments” on
page 413.

Network Byte Order
Ports and addresses are usually specified to calls using the network byte ordering
convention. Network byte order is also known as big endian byte ordering, where
the high-order byte defines significance, (as compared with little endian byte
ordering, where the low-order byte defines significance). Using network byte
ordering for data exchanged between hosts allows hosts using different
architectures to exchange address information. For examples of using the htons()
call to put ports into network byte order, see Figure 2 on page 9, Figure 5 on
page 10, and Figure 8 on page 12. For more information about network byte order,
see “accept()” on page 22, “bind()” on page 23, “htonl()” on page 51, “htons()” on
page 51, “ntohl()” on page 58, and “ntohs()” on page 59.

Note: The socket interface does not handle application data byte ordering
differences. Application writers must handle byte order differences
themselves or use higher-level interfaces, such as Remote Procedure Calls
(RPC).

Addressing within an Internet Domain
A socket address in an internet addressing family comprises four fields: the
address family (AF_INET), an internet address, a port, and a character array. The
structure of an internet socket address is defined by the following sockaddr_in
structure, which is found in the IN.H header file:
struct in_addr
{

unsigned long s_addr;
};
struct sockaddr_in
{

C Sockets Application Program Interface

Chapter 2. C Sockets Application Program Interface 7

short sin_family; /* addressing family */
unsigned short sin_port; /* port number */
struct in_addr sin_addr; /* internet address */
char sin_zero[8]; /* zeros */

};

The sin_family field is set to AF_INET. The sin_port field is the port used by the
application, in network byte order. The sin_addr field is the internet address of the
network interface used by the application. It is also in network byte order. The
sin_zero field should be set to all zeroes.

Addressing within the IUCV Domain
A socket address in the IUCV addressing family is comprised of six fields: the
address family (AF_INET), three reserved fields, a VM user ID, and an application
name. The structure of an IUCV socket address is defined by the following
sockaddr_iucv structure, which is found in the SAIUCV.H header file.
struct sockaddr_iucv
{

short siucv_family; /* addressing family */
unsigned short siucv_port; /* port number */
unsigned long siucv_addr; /* address */
unsigned char siucv_nodeid[8]; /* nodeid to connect to */
unsigned char siucv_user_id[8]; /* user_id to connect to */
unsigned char siucv_name[8]; /* iucvname for connect */

};

The siucv_family field is set to AF_IUCV. The siucv_port, siucv_addr, and siucv_nodeid
fields are reserved for future use. The siucv_userid field is the VM user ID and the
siucv_name field is the application name by which the socket is to be known for the
bind() or connect() calls.

Either IUCV ANY or IUCV ALLOW must be specified in the system directory for
the virtual machine. This specification shows the approval of the client or server to
do socket communication with another virtual machine.

Main Socket Calls
You can write a very powerful network application with less than a dozen socket
calls.

1. First, an application must get a socket descriptor using the socket() call, as in
the example shown in Figure 1. For a complete description, see “socket()” on
page 82.

The code fragment in Figure 1 allocates a socket descriptor s in the internet
addressing family (AF_INET). The domain parameter is a constant that
specifies the domain where the communication is taking place. A domain is
the collection of applications using the same naming convention. VM supports
two addressing families: AF_INET and AF_IUCV. The type parameter is a
constant that specifies the type of socket, which can be SOCK_STREAM for
stream sockets, SOCK_DGRAM for datagram sockets, or SOCK_RAW for raw

int socket(int domain, int type, int protocol);...
int s;...
s = socket(AF_INET, SOCK_STREAM, 0);

Figure 1. An Application Uses the socket() Call

C Sockets Application Program Interface

8 z/VM: TCP/IP Programmer’s Reference

sockets. In the AF_IUCV domain, the type must be SOCK_STREAM. The
protocol parameter is a constant that specifies the protocol to use, and is
ignored unless type is set to SOCK_RAW. Passing 0 chooses the default
protocol. If successful, socket() returns a positive integer socket descriptor.

2. Once an application has a socket descriptor, it can explicitly bind() a unique
name to the socket, as in the example shown in Figure 2. For a complete
description, see “bind()” on page 23.

This example binds myname to socket s. The name specifies that the application
is in the internet domain (AF_INET) at internet address 129.5.24.1, and is
bound to port 1024. Servers must bind a name to become accessible from the
network. The example in Figure 2 shows two useful utility routines:
v inet_addr() takes an internet address in dotted-decimal form and returns it

in network byte order. For a complete description, see “inet_addr()” on
page 52.

v htons() takes a port number in host byte order and returns the port in
network byte order. For a complete description, see “htons()” on page 51.

For another example of the bind() call, see Figure 3. It uses the utility routine
gethostbyname() to find the internet address of the host, rather than using
inet_addr() with a specific address.

int bind(int s, struct sockaddr *name, int namelen);...
int rc;
int s;
struct sockaddr_in myname;

/* clear the structure to be sure that the sin_zero field is clear */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET; /* internet addressing family */
myname.sin_addr.s_addr = inet_addr(“129.5.24.1”); /* specific interface */
myname.sin_port = htons(1024); /* port number */...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

Figure 2. An Application Uses the bind() Call

int bind(int s, struct sockaddr_in name, int namelen);...
int rc;
int s;
char *hostname = “myhost”;
struct sockaddr_in myname;
struct hostent *hp;
hp = gethostbyname(hostname);

/*clear the structure to be sure that the sin_zero field is clear*/
memset(&myname,0,sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = *((unsignedlong *)hp->h_addr);
myname.sin_port = htons(1024);...

rc = bind(s,(struct sockaddr *) &myname, sizeof(myname));

Figure 3. A bind() Call Uses the gethostbyname() Call

C Sockets Application Program Interface

Chapter 2. C Sockets Application Program Interface 9

3. After binding a name to a socket, a server using stream sockets must indicate
its readiness to accept connections from clients. The server does this with the
listen() call as illustrated in the example in Figure 4.

The listen() call tells the TCPIP virtual machine that the server is ready to
begin accepting connections and that a maximum of five connection requests
can be queued for the server. Additional requests are ignored. For a complete
description, see “listen()” on page 56.

4. Clients using stream sockets initiate a connection request by calling connect(),
as shown in the example in Figure 5.

The connect() call attempts to connect socket s to the server with name
servername. This could be the server that was used in the previous bind()
example. The caller optionally blocks until the connection is accepted by the
server. On successful return, the socket is associated with the connection to
the server. For a complete description, see “connect()” on page 27.

5. Servers using stream sockets accept a connection request with the accept() call,
as shown in the example shown in Figure 6.

If connection requests are not pending on socket s, the accept() call optionally
blocks the server. When a connection request is accepted on socket s, the name

int s;
int backlog;
int rc;
int listen(int s, int backlog);...
rc = listen(s, 5);

Figure 4. An Application Uses the listen() Call

int connect(int s, struct sockaddr *name, int namelen);...
int s;
struct sockaddr_in servername;
int rc;...
memset(&servername, 0,sizeof(servername));
servername.sin_family = AF_INET;
servername.sin_addr.s_addr = inet_addr(“129.5.24.1”);
servername.sin_port = htons(1024);...
rc = connect(s, (struct sockaddr *) &servername, sizeof(servername));

Figure 5. An Application Uses the connect() Call

int accept(int s, struct sockaddr *addr, int *addrlen);...
int clientsocket;
int s;
struct sockaddr clientaddress;
int addrlen;...
addrlen = sizeof(clientaddress);...
clientsocket = accept(s, &clientaddress, &addrlen);

Figure 6. An Application Uses the accept() Call

C Sockets Application Program Interface

10 z/VM: TCP/IP Programmer’s Reference

of the client and length of the client name are returned, along with a new
socket descriptor. The new socket descriptor is associated with the client that
initiated the connection and s is again available to accept new connections.
For a complete description, see “accept()” on page 22.

6. Clients and servers have many calls from which to choose for data transfer.
The read() and write(), readv() and writev(), and send() and recv() calls can be
used only on sockets that are in the connected state. The sendto() and
recvfrom() and sendmsg() and recvmsg() calls can be used at any time. The
example shown in Figure 7 illustrates the use of send() and recv().

The example in Figure 7 shows an application sending data on a connected
socket and receiving data in response. The flags field can be used to specify
additional options to send() or recv(), such as sending out-of-band data. For
more information about these routines, see “read()” on page 59, “readv()” on
page 60, “recv()” on page 61, “send()” on page 68, “write()” on page 87, and
“writev()” on page 88.

7. If the socket is not in a connected state, additional address information must
be passed to sendto() and can be optionally returned from recvfrom(). An
example of the use of the sendto() and recvfrom() calls is shown in Figure 8 on
page 12.

int send(int socket, char *buf, int buflen, int flags);
int recv(int socket, char *buf, int buflen, int flags);...
int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
int s;...
bytes_sent = send(s, data_sent, sizeof(data_sent), 0);...
bytes_received = recv(s, data_received, sizeof(data_received), 0);

Figure 7. An Application Uses the send() and recv() Calls

C Sockets Application Program Interface

Chapter 2. C Sockets Application Program Interface 11

The sendto() and recvfrom() calls take additional parameters that allow the
caller to specify the recipient of the data or to be notified of the sender of the
data. For more information about these additional parameters, see
“recvfrom()” on page 62, “recvmsg()” on page 63, “sendmsg()” on page 69, and
“sendto()” on page 70. Usually, sendto() and recvfrom() are used for datagram
sockets, and send() and recv() are used for stream sockets.

8. The writev(), readv(), sendmsg(), calls provide the additional features of
scatter and gather data. Scattered data can be located in multiple data buffers.
The writev() and sendmsg() calls gather the scattered data and send it. The
readv() and recvmsg() calls receive data and scatter it into multiple buffers.

9. Applications can handle multiple sockets. In such situations, use the select()
call to determine the sockets that have data to be read, those that are ready for
data to be written, and the sockets that have pending exceptional conditions.
An example of how the select() call is used is shown in Figure 9 on page 13.

int sendto(int socket, char *buf, int buflen, int flags,
struct sockaddr *addr, int addrlen);

int recvfrom(int socket, char *buf, int buflen, int flags,
struct sockaddr *addr, int addrlen);...

int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
struct sockaddr_in to;
struct sockaddr from;
int addrlen;
int s;...
to.sin_family = AF_INET;
to.sin_addr.s_addr = inet_addr(“129.5.24.1”);
to.sin_port = htons(1024);...
bytes_sent = sendto(s, data_sent, sizeof(data_sent), 0, (struct sockaddr *) &to, sizeof(to));...
addrlen = sizeof(from); /* must be initialized */
bytes_received = recvfrom(s, data_received,

sizeof(data_received), 0, &from, &addrlen);

Figure 8. An Application Uses the sendto() and recvfrom() Calls

C Sockets Application Program Interface

12 z/VM: TCP/IP Programmer’s Reference

In this example, the application sets bit masks to indicate the sockets being
tested for certain conditions and also indicates a time-out. If the time-out
parameter is NULL, the call does not wait for any socket to become ready on
these conditions. If the time-out parameter is nonzero, select() waits up to this
amount of time for at least one socket to become ready on the indicated
conditions. This is useful for applications servicing multiple connections that
cannot afford to block, waiting for data on one connection. For a complete
description, see “select()” on page 64.

10. In addition to select(), applications can use the ioctl() or fcntl() calls to help
perform asynchronous (nonblocking) socket operations. An example of the use
of the ioctl() call is shown in Figure 10.

This example causes the socket s to be placed into nonblocking mode. When
this socket is passed as a parameter to calls that would block, such as recv()
when data is not present, it causes the call to return with an error code, and
the global errno value is set to EWOULDBLOCK. Setting the mode of the
socket to be nonblocking allows an application to continue processing without
becoming blocked. For a complete description see: “fcntl()” on page 31 and
“ioctl()” on page 54.

fd_set readsocks;
fd_set writesocks;
fd_set exceptsocks;
struct timeval timeout;
int number_of_sockets;
int number_found;...
/* set bits in read write except bit masks. To set mask for a descriptor s use
* fd_set(s,&readsocks);
*
* set number of sockets to be checked
* number_of_sockets = getdtablesize();
*/...
number_found = select(number_of_sockets,

&readsocks, &writesocks, &exceptsocks, &timeout);

Figure 9. An Application Uses the select() Call

int ioctl(int s, unsigned long command, char *command_data);...
int s;
int dontblock;
char buf[256];
int rc;
dontblock = 1;...
rc = ioctl(s, FIONBIO, (char *) &dontblock);...
if (recv(s, buf, sizeof(buf), 0) == −1 && errno == EWOULDBLOCK)

/* no data available */
else

/* either got data or some other error occurred */

Figure 10. An Application Uses the ioctl() and fcntl() Calls

C Sockets Application Program Interface

Chapter 2. C Sockets Application Program Interface 13

11. A socket descriptor, s, is deallocated with the close() call. For a complete
description see: “close()” on page 27. An example of the close() call is shown
in Figure 11.

A Typical TCP Socket Session
You can use TCP sockets for both passive (server) and active (client) processes.
While some commands are necessary for both types, some are role-specific. For
sample C socket communication client and server programs, see “Sample C Socket
Programs” on page 89.

Once you make a connection, it exists until you close the socket. During the
connection, data is either delivered or an error code is returned by TCP/IP.

For the general sequence of calls to be followed for most socket routines using TCP
sockets, see Figure 12 on page 15.

int close(int s);...
int rc;
int s;
rc = close(s);

Figure 11. An Application Uses the close() Call

C Sockets Application Program Interface

14 z/VM: TCP/IP Programmer’s Reference

CLIENT SERVER

┌───┐ ┌───┐
│ │ │ │
│ Create a stream socket s with the socket() │ │ Create a stream socket s with the socket() │
│ call. │ │ call. │
│ │ │ │
└────────────────────────┬────────────────────────┘ └────────────────────────┬────────────────────────┘

│ │
┌────────────────────────┴────────────────────────┐

(Optional) │ │
Bind socket s to a local address with the │ Bind socket s to a local address with the │
bind() call. │ bind() call. │

│ │
└────────────────────────┬────────────────────────┘

│ │
│ ┌────────────────────────┴────────────────────────┐
│ │ │
│ │ With the listen() call, alert the TCP/IP │
│ │ machine of your willingness to accept │
│ │ connections. │
│ └────────────────────────┬────────────────────────┘
│ │

┌────────────────────────┴────────────────────────┐ │
│ │ │
│ Connect socket s to a foreign host with the │ │
│ connect() call. │ │
│ │ │
└────────────────────────┬────────────────────────┘ │

│ │
│ ┌────────────────────────┴────────────────────────┐
│ │ Accept the connection and receive a second │
│ │ socket, for example ns, with the accept() │
│ │ call. │
│ │ │
│ └────────────────────────┬────────────────────────┘
│ │
│ For the server, socket s remains available │
│ to accept new connections. Socket ns │
│ is dedicated to the client. │
│ │
│ │

┌────────────────────────┴────────────────────────┐ ┌────────────────────────┴────────────────────────┐
│ Read and write data on socket s, using the │ │ Read and write data on socket ns, using the │
│ send() and recv() calls, until all data has │ ─────Ê│ send() and recv() calls, until all data has │
│ been exchanged. │Í───── │ been exchanged. │
│ │ │ │
└────────────────────────┬────────────────────────┘ └────────────────────────┬────────────────────────┘

│ │
┌────────────────────────┴────────────────────────┐ ┌────────────────────────┴────────────────────────┐
│ │ │ │
│ Close socket s and end the TCP/IP session │ │ Close socket ns with the close() call. │
│ with the close() call. │ │ │
│ │ │ │
└───┘ └────────────────────────┬────────────────────────┘

│
┌────────────────────────┴────────────────────────┐
│ Accept another connection from a client, or │
│ close the original socket s with the close() │
│ call. │
│ │
└───┘

Figure 12. A Typical TCP Socket Session

C Sockets Application Program Interface

Chapter 2. C Sockets Application Program Interface 15

A Typical UDP Socket Session
UDP socket processes, unlike TCP socket processes, are not clearly distinguished
by server and client roles. Instead, the distinction is between connected and
unconnected sockets. An unconnected socket can be used to communicate with any
host; however, a connected socket, because it has a dedicated destination, can send
data to, and receive data from, only one host.

Both connected and unconnected sockets send their data over the network without
verification. Consequently, once a packet has been accepted by the UDP interface,
the arrival of the packet and the integrity of the packet cannot be guaranteed.

For the general sequence of calls to be followed for most socket routines using
UDP sockets, see Figure 13.

C Socket Library
To use the socket routines described in this chapter, you must have the following
header files available on your system:
v bsdtypes.h
v fcntl.h
v if.h
v in.h

CLIENT SERVER

┌───┐ ┌──┐
│ │ │ │
│ Create a datagram socket s with the socket() │ │ Create a datagram socket s with the socket() │
│ call. │ │ call. │
│ │ │ │
└───────────────────────┬─────────────────────────┘ └──────────────────────┬─────────────────────────┘

│ │
┌───────────────────────┴─────────────────────────┐
│ │ (Optional)
│ Bind socket s to a local address with the │ Bind socket s to a local address with the
│ bind() call. │ bind() call.
│ │
└───────────────────────┬─────────────────────────┘

│ │

(Optional) (Optional)
Connect socket s using the connect() call to Connect socket s using the connect() call to
associate s with the client address. associate s with the server address.

│ │
┌───────────────────────┴─────────────────────────┐ ┌──────────────────────┴─────────────────────────┐
│ Send and receive data on socket s, using the │ │ Send and receive data on socket s, using the │
│ sendto() and recvfrom() calls, until all data │ ───────Ê │ sendto() and recvfrom() calls, until all data │
│ has been exchanged. Use the send() and recv() │ Í─────── │ has been exchanged. Use the send() and recv()│
│ calls if connect() was called. │ │ calls if connect() was called. │
└───────────────────────┬─────────────────────────┘ └──────────────────────┬─────────────────────────┘

│ │
┌───────────────────────┴─────────────────────────┐ ┌──────────────────────┴─────────────────────────┐
│ │ │ │
│ Close socket s and end the session with the │ │ Close socket s and end the session with the │
│ close() call. │ │ close() call. │
│ │ │ │
└───┘ └──┘

Figure 13. A Typical UDP Socket Session

C Sockets Application Program Interface

16 z/VM: TCP/IP Programmer’s Reference

v inet.h
v ioctl.h
v manifest.h
v netdb.h
v saiucv.h
v socket.h

The MANIFEST.H header file contains the prototypes for all the functions. To
reference the prototypes, you should include the following statement at the
beginning of each program:

The socket library routines are contained in the COMMTXT TXTLIB file.

Porting
The IBM socket implementation differs from the University of California at
Berkeley socket implementation. The following list summarizes the differences
between the IBM socket implementation and the Berkeley implementation.
v In the IBM implementation, you must make reference to the additional header

file, TCPERRNO.H, if you want to reference the networking errors other than
those described in the compiler-supplied ERRNO.H file.

v In the IBM implementation, you must use the tcperror() routine to print the
networking errno messages. tcperror() should be used only after socket calls.
perror() should be used only after C library calls.

v In the IBM implementation, you must include the MANIFEST.H header file to
include the prototypes of the socket function calls.

v The IBM ioctl() implementation can be different from the current Berkeley ioctl()
implementation. See “ioctl()” on page 54 for a description of the functions
supported by the IBM implementation.

v The IBM getsockopt() and setsockopt() calls support only a subset of the options
available. See “getsockopt()” on page 45 and “setsockopt()” on page 76 for details
about the supported options.

v The IBM fcntl() call supports only a subset of the options available. See “fcntl()”
on page 31 for details on the supported options.

v The IBM implementation supports an additional addressing family called
AF_IUCV, which allows VM virtual machines on the same host to communicate
using IUCV.

v The IBM implementation now allows the program to increase the maximum
number of simultaneous sockets through the use of the maxdesc() call.
Previously, the total number of sockets was limited to 253 (numbered 3 through
255) and the first 47 (numbered 3 through 49) could be AF_INET sockets. The
default maximum number of sockets is 47, any or all of which can be AF_INET
sockets.

Environment Variables Used by the Sockets Library
Environment variables can be used to affect certain aspects of the execution of a
sockets program. If the sockets program is executed from a shell, the shell controls
the contents of the program’s environment. For example, the following shell
command could be used to set the X-SITE environment variable:
export X-SITE=//MY.SITEINFO

#include <manifest.h>

C Sockets Application Program Interface

Chapter 2. C Sockets Application Program Interface 17

If the sockets program is being run from the CMS command line (or equivalent),
then the global variables existing in the CENV group managed by the GLOBALV
command are used as the environment variables for the process. In this case, a
CMS command like the following could be used to temporarily set the X-SITE
environment variable:1

GLOBALV SELECT CENV SET X-SITE MY.SITEINFO

Some of the environment variables described below are set to values which
represent file names. For these environment variables, the given file names are
interpreted as POSIX-style file names, which means that case is significant, and
that the file name is interpreted as residing in the Byte File System unless you
precede the file name with two slashes. To specify the name of a file which resides
on a minidisk or accessed SFS directory instead of in the BFS, precede the name of
the file with two slashes, and separate the CMS file name and type (and mode, if
specified) with a period.

The following environment variables can be used to affect the execution of the
sockets library:

Variable Description

X-SITE This environment variable tells the socket library resolver code to
use the named file in place of the HOSTS SITEINFO file, which
contains information about AF_INET hosts known to this host. For
example, setting the variable to the string /etc/hosts tells the
resolver to use the /etc/hosts file in place of the default file, which
is //HOSTS.SITEINFO. This environment variable is used by the
gethostbyname() function call, the gethostent() function call, and
several others.

X-ADDR This environment variable tells the socket library resolver code to
use the named file in place of the HOSTS ADDRINFO file, which
contains information about AF_INET networks known to this host.
For example, setting the variable to the string /etc/addrs tells the
resolver to use the /etc/addrs file in place of the default file,
which is //HOSTS.ADDRINFO. This environment variable is used by
the gethostbyaddr() function call, the getnetent() function call, and
several others.

X-XLATE This environment variable tells the socket library resolver code to
use the named file in place of the STANDARD TCPXLBIN file, which
contains ASCII to EBCDIC and EBCDIC to ASCII translation tables
for use by the resolver when sending or receiving information from
an AF_INET network. For example, setting the variable to the
string /etc/xlate tells the resolver to use the /etc/xlate file in
place of the default file, which is //STANDARD.TCPXLBIN. This
environment variable is used by the gethostbyname() and
gethostbyaddr() function calls.

HOSTALIASES
This environment variable tells the socket library resolver code to
use the named file when searching for aliases for AF_INET host
names. For example, setting the variable to the string /etc/aliases

1. Be aware, however, that some of the environment variables described accept values which are case sensitive, and which will often
be set to lowercase values. It can be difficult, using the GLOBALV command, to set lowercase values, because commands typed in
from the CMS command line are automatically uppercased by CMS before processing. One way to set the variable to a
mixed-case value is to issue the GLOBALV command from a REXX exec with “Address Command” in effect.

C Sockets Application Program Interface

18 z/VM: TCP/IP Programmer’s Reference

tells the resolver to use the /etc/aliases file when needed. By
default, no aliases files is used by the resolver.

SOCK_DEBUG
This environment variable is used to activate internal socket library
debugging messages. If this environment variable is set to the
value ON (case is not important), then the debugging messages are
activated.

C Socket Reference
This section provides a C socket reference table.

Table 2. C Socket Reference

Socket() Call Description Page

accept() Accepts a connection request from a
foreign host.

22

bind() Assigns a local address to the socket. 23

close() Closes the socket associated with the
socket descriptor s.

27

connect() Requests a connection to a foreign
host.

27

endhostent() Closes the HOSTS SITEINFO and
HOSTS ADDRINFO files.

30

endnetent() Closes the HOSTS SITEINFO file. 31

endprotoent() Closes the ETC PROTO file. 31

endservent() Closes the ETC SERVICES file. 31

fcntl() Controls socket operating
characteristics.

31

getclientid() Returns the identifier by which the
calling application is known to the
TCPIP virtual machine.

32

gethostbyaddr() Returns information about a host
specified by an address.

33

gethostbyname() Returns information about a host
specified by a name.

34

gethostent() Returns the next entry in the HOSTS
SITEINFO file.

35

gethostid() Returns the unique identifier of the
current host.

36

gethostname() Returns the standard name of the
current host.

36

getnetbyaddr() Returns the network entry specified
by address.

38

getnetbyname() Returns the network entry specified
by name.

39

getnetent() Returns the next entry in the HOSTS
SITEINFO file.

40

getpeername() Returns the name of the peer
connected to socket s.

40

C Sockets Application Program Interface

Chapter 2. C Sockets Application Program Interface 19

Table 2. C Socket Reference (continued)

Socket() Call Description Page

getprotobyname() Returns a protocol entry specified by
name.

41

getprotobynumber() Searches the ETC PROTO file for a
specified protocol number.

41

getprotoent() Returns the next entry in the ETC
PROTO file.

42

getservbyname() Returns a service entry specified by
name.

43

getservbyport() Returns a service entry specified by
port number.

43

getservent() Returns the next entry in the
SERVICES file.

44

getsockname() Obtains local socket name. 44

getsockopt() Gets options associated with sockets
in the AF_INET domain.

45

htonl() Translates host byte order to network
byte order for a long integer.

51

givesocket() Tells TCPIP to make the specified
socket available to a takesocket() call
issued by another application.

49

htons() Translates host byte order to network
byte order for a short integer.

51

inet_addr() Constructs an internet address from
character strings set in standard
dotted-decimal notation.

52

inet_lnaof() Returns the local network portion of
an internet address.

52

inet_makeaddr() Constructs an internet address from a
network number and a local address.

53

inet_netof() Returns the network portion of the
internet address in network byte
order.

53

inet_network() Constructs a network number from
character strings set in standard
dotted-decimal notation.

53

inet_ntoa() Returns a pointer to a string in
dotted-decimal notation.

54

ioctl() Performs special operations on s
socket descriptor.

54

listen() Indicates that a stream socket is ready
for a connection request from a
foreign host.

56

maxdesc() Allows socket numbers to extend
beyond default range of 0 - 49.

57

ntohl() Translates network byte order to host
byte order for a long integer.

58

ntohs() Translates network byte order to host
byte order for a short integer.

59

C Socket Reference

20 z/VM: TCP/IP Programmer’s Reference

Table 2. C Socket Reference (continued)

Socket() Call Description Page

read() Reads a set number of bytes into a
buffer.

59

readv() Obtains data from a socket and reads
this data into specified buffers.

60

recv() Receives messages from a connected
socket.

61

recvfrom() Receives messages from a datagram
socket, regardless of its connection
status.

62

recvmsg() Receives messages on a socket with
the descriptor s.

63

select() Detects whether read is possible on a
group of sockets.

64

selectex() Monitors activity on a set of different
sockets.

67

send() Transmits messages to a connected
socket.

68

sendmsg() Sends messages on a socket with
descriptor s in an array of headers.

69

sendto() Transmits messages to a datagram
socket, regardless of its connection
status.

70

sethostent() Opens the HOSTS SITEINFO file at
the beginning.

72

setnetent() Opens the HOSTS SITEINFO file at
the beginning.

75

setprotoent() Opens the ETC PROTO file at the
beginning.

75

setservent() Opens the ETC SERVICES file at the
beginning.

75

setsockopt() Sets options associated with a socket
in the AF_INET domain.

76

shutdown() Shuts down all or part of a
full-duplex connection.

81

socket() Requests that a socket be created. 82

takesocket() Acquires a socket from another
application.

85

write() Writes a set number of bytes from a
buffer to a socket.

87

writev() Writes data in the buffers specified by
an array of iovec structures.

88

C Socket Calls
This section provides the syntax, parameters, and other appropriate information for
each C socket call supported by TCP/IP.

C Socket Reference

Chapter 2. C Sockets Application Program Interface 21

accept()

Parameter Description

s Specifies the socket descriptor.

name Specifies the socket address of the connecting client that is filled by
accept() before it returns. The format of name is determined by the
domain in which the client resides. This parameter can be NULL if
the caller is not interested in the client address.

namelen Initially points to an integer that contains the size in bytes of the
storage pointed to by name. On return, that integer contains the
size of the data returned in the storage pointed to by name. If name
is NULL, then namelen is ignored and can be NULL.

Description: The accept() call is used by a server to accept a connection request
from a client. The call accepts the first connection on its queue of pending
connections. The accept() call creates a new socket descriptor with the same
properties as s and returns it to the caller. If the queue has no pending connection
requests, accept() blocks the caller unless s is in nonblocking mode. If no
connection requests are queued and s is in nonblocking mode, accept() returns −1
and sets errno to EWOULDBLOCK. The new socket descriptor cannot be used to
accept new connections. The original socket, s, remains available to accept more
connection requests.

The s parameter is a stream socket descriptor created with the socket() call. It is
usually bound to an address with the bind() call, and is made capable of accepting
connections with the listen() call. The listen() call marks the socket as one that
accepts connections and allocates a queue to hold pending connection requests.
The listen() call allows the caller to place an upper boundary on the size of the
queue.

The name parameter is a pointer to a buffer into which the connection requester’s
address is placed. The name parameter is optional and can be set to be the NULL
pointer. If set to NULL, the requester’s address is not copied into the buffer. The
exact format of name depends on the addressing domain from which the
communication request originated. For example, if the connection request
originated in the AF_INET domain, name points to a sockaddr_in structure as
defined in the header file IN.H. The namelen parameter is used only if name is not
NULL. Before calling accept(), you must set the integer pointed to by namelen to
the size of the buffer, in bytes, pointed to by name. On successful return, the
integer pointed to by namelen contains the actual number of bytes copied into the
buffer. If the buffer is not large enough to hold the address, up to namelen bytes of
the requester’s address are copied.

This call is used only with SOCK_STREAM sockets. You cannot screen requesters
without calling accept(). The application cannot tell the system from which

#include <bsdtypes.h>
#include <socket.h>

int accept(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

accept()

22 z/VM: TCP/IP Programmer’s Reference

requesters it accepts connections from. The caller can, however, choose to close a
connection immediately after discovering the identity of the requester.

A socket can be checked for incoming connection requests using the select() call.

Return Values: A non-negative socket descriptor indicates success; the value −1
indicates an error. The value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that the s parameter is not a valid socket
descriptor.

EINVAL Indicates that the listen() was not called for socket
s.

EMFILE Indicates that the socket descriptor table is already
full.

ENOBUFS Indicates that there is insufficient buffer space
available to create the new socket.

EOPNOTSUPP Indicates that the s parameter is not of type
SOCK_STREAM.

EFAULT Indicates that the use of name and namelen would
result in an attempt to copy the address into a
portion of the caller’s virtual storage into which
information cannot be written.

EWOULDBLOCK Indicates that the s parameter is in nonblocking
mode and no connections are on the queue.

EIBMIUCVERR Indicates that an IUCV error occurred.

Examples: The following are two examples of the accept() call. In the first, the
caller wishes to have the requester’s address returned. In the second, the caller
does not wish to have the requester’s address returned.
int clientsocket;
int s;
struct sockaddr clientaddress;
int addrlen;
int accept(int s, struct sockaddr *addr, int *addrlen);
/* socket(), bind(), and listen() have been called */
/* EXAMPLE 1: I want the address now */

addrlen = sizeof(clientaddress);
clientsocket = accept(s, &clientaddress, &addrlen);
/* EXAMPLE 2: I can get the address later using getpeername() */
addrlen = 0;
clientsocket = accept(s, (struct sockaddr *) 0, (int *) 0);

See Also: bind(), connect(), getpeername(), listen(), socket().

bind()

accept()

Chapter 2. C Sockets Application Program Interface 23

||
|

Parameter Description

s Specifies the socket descriptor returned by a previous socket() call.

name Points to a sockaddr structure containing the name that is to be
bound to s.

namelen Specifies the size of name in bytes.

Description: The bind() call binds a unique local name to the socket with
descriptor s. After calling socket(), a descriptor does not have a name associated
with it. However, it does belong to a particular addressing family as specified
when socket() is called. The exact format of a name depends on the addressing
family. The bind() procedure also allows servers to specify from which network
interfaces they wish to receive UDP packets and TCP connection requests.

The s parameter is a socket descriptor of any type created by calling socket().

The name parameter is a pointer to a buffer containing the name to be bound to s.
The namelen parameter is the size, in bytes, of the buffer pointed to by name.

Socket Descriptor Created in the AF_INET Domain: If the socket descriptor s
was created in the AF_INET domain, then the format of the name buffer is
expected to be sockaddr_in as defined in the header file IN.H:
struct in_addr
{

unsigned long s_addr;
};
struct sockaddr_in
{

short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

The sin_family field must be set to AF_INET.

The sin_port field is set to the port to which the application must bind. It must be
specified in network byte order. If sin_port is set to 0, the caller leaves it to the
system to assign an available port. When the bind() call returns, this field is set to
the port chosen by the system. Alternatively, the application can call getsockname()
to discover the port number assigned.

The sin_addr.s_addr field is set to the internet address and must be specified in
network byte order. On hosts with more than one network interface (called
multi-homed hosts), a caller can select the interface with which it is to bind.
Subsequently, only UDP packets and TCP connection requests from this interface
(which match the bound name) are routed to the application. If this field is set to
the constant INADDR_ANY, as defined in the header file IN.H, the caller is leaving
the address unspecified and requesting that the socket be bound to all network
interfaces on the host. Subsequently, UDP packets and TCP connections from all

#include <bsdtypes.h>
#include <socket.h>

int bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

bind()

24 z/VM: TCP/IP Programmer’s Reference

interfaces (which match the bound name) are routed to the application. This
becomes important when a server offers a service to multiple networks. By leaving
the address unspecified, the server can accept all UDP packets and TCP connection
requests made for its port, regardless of the network interface on which the
requests arrived.

The sin_zero field is not used and must be set to all zeroes.

Socket Descriptor Created in the AF_IUCV Domain: If the socket descriptor s is
created in the AF_IUCV domain, the format of the name buffer is expected to be
sockaddr_iucv, as defined in the header file SAIUCV.H.
struct sockaddr_iucv
{

short siucv_family; /* addressing family */
unsigned short siucv_port; /* port number */
unsigned long siucv_addr; /* address */
unsigned char siucv_nodeid[8]; /* nodeid to connect to */
unsigned char siucv_userid[8]; /* userid to connect to */
unsigned char siucv_name[8]; /* iucvname for connect */

};

The siucv_family field must be set to AF_IUCV.

The siucv_port, siucv_addr, and siucv_nodeid fields are reserved for future use. The
siucv_port and siucv_addr fields must be zeroed.

The siucv_nodeid field must be set to exactly eight blank characters.

The siucv_userid field is set to the VM user ID of the application making the bind
call. This field must be eight characters long, padded with blanks to the right. It
cannot contain the NULL character.

The siucv_name field is set to the application name by which the socket is to be
known. It must be unique, because only one socket can be bound to a given name.
The recommended form of the name contains eight characters, padded with blanks
to the right. The eight characters for a connect() call executed by a client must
exactly match the eight characters passed in the bind() call executed by the server.

Note: Internally, dynamic names are built using hexadecimal character strings
representing the internal memory address of the socket. An example of this
is when an application calls connect and specifies an unbound socket. You
should choose names that contain at least one non-hexadecimal character to
prevent potential conflicts. Hexadecimal characters include 0—9, and a—f.
Uppercase A—F are considered nondecimal and can be used by the user in
building dynamic names.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that the s parameter is not a valid socket
descriptor.

EADDRNOTAVAIL Indicates that the address specified is not valid on
this host. For example, if the internet address does
not specify a valid network interface.

EFAULT Using name and namelen would result in an attempt

bind()

Chapter 2. C Sockets Application Program Interface 25

to copy the address into a non-writable portion of
the caller’s virtual storage.

EAFNOSUPPORT Indicates that the address family is not supported
(it is not AF_IUCV or AF_INET).

EADDRINUSE Indicates that the address is already in use. See the
SO_REUSEADDR option described under
“getsockopt()” on page 45 and the
SO_REUSEADDR described under the
“setsockopt()” on page 76.

EINVAL Indicates that the socket is already bound to an
address. For example, trying to bind a name to a
socket that is in the connected state. If you are
using sockets in the AF_IUCV domain, this error
also occurs if NULL characters appear in the
siucv_nodeid or siucv_user_id fields. This value is
also returned if namelen is not the expected length.

Examples: The following are examples of the bind() call. The internet address and
port must be in network byte order. To put the port into network byte order, a
utility routine, htons(), is called to convert a short integer from host byte order to
network byte order. The address field is set using another utility routine,
inet_addr(), which takes a character string representing the dotted-decimal address
of an interface and returns the binary internet address representation in network
byte order. Finally, you should zero the structure before using it to ensure that the
name requested does not set any reserved fields. For examples of how a client
might connect to servers, see “connect()” on page 27.

AF_INET Domain Example: The following example illustrates the bind() call
binding to interfaces in the AF_INET domain.
int rc;
int s;
struct sockaddr_in myname;
struct sockaddr_iucv myvmname;
int bind(int s, struct sockaddr *name, int namelen);

/* Bind to a specific interface in the internet domain */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = inet_addr(“129.5.24.1”); /* specific interface */
myname.sin_port = htons(1024);...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));
/* Bind to all network interfaces in the internet domain */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = INADDR_ANY; /* specific interface */
myname.sin_port = htons(1024);...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));
/* Bind to a specific interface in the internet domain.

Let the system choose a port */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = inet_addr(“129.5.24.1”); /* specific interface */
myname.sin_port = 0;.

bind()

26 z/VM: TCP/IP Programmer’s Reference

..
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

AF_IUCV Domain Example: The following example illustrates the bind() call
binding to interfaces in the AF_IUCV domain.
/* Bind to a name in the IUCV domain */
/* make sure the siucv_addr, siucv_port fields are zeroed and the

siucv_nodeid fields is set to blanks */
memset(&myvmname, 0, sizeof(myvmname));
strncpy(myvmname.siucv_nodeid, “ ”, 8);
strncpy(myvmname.siucv_userid, “
”, 8);
strncpy(myvmname.siucv_name, “
”, 8);
myvmname.siucv_family = AF_IUCV;
strncpy(myvmname.siucv_userid, “VMUSER1”, 7);
strncpy(myvmname.siucv_name, “APPL”, 4);...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

The binding of a stream socket is not complete until a successful call to bind(),
listen(), or connect() is made. Applications using stream sockets should check the
return values of bind(), listen(), and connect() before using any function that
requires a bound stream socket.

See Also: connect(), gethostbyname(), getsockname(), htons(), inet_addr(), listen(),
socket().

close()

Parameter Description
s Specifies the descriptor of the socket to be closed.

Description: The close() call shuts down the socket associated with the socket
descriptor s, and frees resources allocated to the socket. If s refers to an open TCP
connection, the connection is closed. If a stream socket is closed when there is
input data queued, the TCP connection is reset rather than being cleanly closed.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description
EBADF Indicates that the s parameter is not a valid socket descriptor.

See Also: accept(), getsockopt(), setsockopt(), socket().

connect()

int close(s)
int s;

bind()

Chapter 2. C Sockets Application Program Interface 27

Parameter Description

s Specifies the socket descriptor.

name Points to a socket address structure containing the address of the
socket to which a connection is attempted.

namelen Specifies the size of the socket address pointed to by name in bytes.

Description: For stream sockets, the connect() call attempts to establish a
connection between two sockets. For UDP sockets, the connect() call specifies the
peer for a socket. The s parameter is the socket used to originate the connection
request. The connect() call performs two tasks when called for a stream socket.
First, it completes the binding necessary for a stream socket (in case it has not been
previously bound using the bind() call). Second, it attempts to make a connection
to another socket.

The connect() call on a stream socket is used by the client application to establish a
connection to a server. The server must have a passive open pending. If the server
is using sockets, this means the server must successfully call bind() and listen()
before a connection can be accepted by the server with accept(). Otherwise,
connect() returns −1 and errno is set to ECONNREFUSED.

If s is in blocking mode, the connect() call blocks the caller until the connection is
set up, or until an error is received. If the socket is in nonblocking mode then
connect() returns −1 with errno set to EINPROGRESS if the connection can be
initiated (no other errors occurred). The caller can test the completion of the
connection setup by calling select() and testing for the ability to write to the socket.

When called for a datagram or raw socket, connect() specifies the peer with which
this socket is associated. This gives the application the ability to use data transfer
calls reserved for sockets that are in the connected state. In this case, read(), write(),
readv(), writev(), send(), recv() are then available in addition to sendto(),
recvfrom(), sendmsg(), recvmsg(). Stream sockets can call connect() only once,
however, datagram sockets can call connect() multiple times to change their
association. Datagram sockets can dissolve their association by connecting to an
invalid address such as the NULL address (all fields zeroed).

The name parameter is a pointer to a buffer containing the name of the peer to
which the application needs to connect. The namelen parameter is the size, in bytes,
of the buffer pointed to by name.

Servers in the AF_INET Domain: If the server is in the AF_INET domain, the
format of the name buffer is expected to be sockaddr_in, as defined in the header
file IN.H.
struct in_addr
{

unsigned long s_addr;
};
struct sockaddr_in
{

#include <bsdtypes.h>
#include <socket.h>

int connect(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

connect()

28 z/VM: TCP/IP Programmer’s Reference

short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

The sin_family field must be set to AF_INET. The sin_port field is set to the port to
which the server is bound. It must be specified in network byte order. The sin_zero
field is not used and must be set to all zeroes.

Servers in the AF_IUCV Domain: If the server is in the AF_IUCV domain, the
format of the name buffer is expected to be sockaddr_iucv, as defined in the header
file SAIUCV.H.
struct sockaddr_iucv
{

short siucv_family; /* addressing family */
unsigned short siucv_port; /* port number */
unsigned long siucv_addr; /* address */
unsigned char siucv_nodeid[8]; /* nodeid to connect to */
unsigned char siucv_userid[8]; /* userid to connect to */
unsigned char siucv_name[8]; /* iucvname for connect */

};

The siucv_family field must be set to AF_IUCV. The siucv_port, siucv_addr, and
siucv_nodeid fields are reserved for future use. The siucv_port and siucv_addr fields
must be zeroed. The siucv_nodeid field must be set to exactly 8 blank characters.
The siucv_userid field is set to the VM user ID of the application to which the
application is requesting a connection. This field must be 8 characters long, padded
with blanks to the right. It cannot contain the NULL character. The siucv_name field
is set to the application name by which the server socket is known. The name must
exactly match the 8 characters passed in the bind() call executed by the server.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EADDRNOTAVAIL Indicates that the calling host cannot reach the
specified destination.

EAFNOSUPPORT Indicates that the address family is not supported.

EALREADY Indicates that the socket s is marked nonblocking,
and a previous connection attempt has not
completed.

EBADF Indicates that the s parameter is not a valid socket
descriptor.

ECONNREFUSED Indicates that the connection request was rejected
by the destination host.

EFAULT Indicates that the use of name and namelen would
result in an attempt to copy the address into a
portion of the caller’s virtual storage to which data
cannot be written.

EINPROGRESS Indicates that the socket s is marked nonblocking,
and the connection cannot be completed
immediately. The EINPROGRESS value does not
indicate an error condition.

connect()

Chapter 2. C Sockets Application Program Interface 29

EINVAL Indicates that the namelen parameter is not a valid
length.

EISCONN Indicates that the socket s is already connected.

ENETUNREACH Indicates that the network cannot be reached from
this host.

ETIMEDOUT Indicates that the connection establishment timed
out before a connection was made.

Examples: The following are examples of the connect() call. The internet address
and port must be in network byte order. To put the port into network byte order a
utility routine, htons(), is called to convert a short integer from host byte order to
network byte order. The address field is set using another utility routine,
inet_addr(), which takes a character string representing the dotted-decimal address
of an interface and returns the binary internet address representation in network
byte order. Finally, note that it is a good idea to zero the structure before using it
to ensure that the name requested does not set any reserved fields. These examples
could be used to connect to the servers shown in the examples listed with the call,
“bind()” on page 23.
int s;
struct sockaddr_in servername;
struct sockaddr_iucv vmservername;
int rc;
int connect(int s, struct sockaddr *name, int namelen);

/* Connect to server bound to a specific interface in the internet domain */
/* make sure the sin_zero field is cleared */
memset(&servername, 0, sizeof(servername));
servername.sin_family = AF_INET;
servername.sin_addr.s_addr = inet_addr(“129.5.24.1”); /* specific interface */
servername.sin_port = htons(1024);...
rc = connect(s, (struct sockaddr *) &servername, sizeof(servername));

/* Connect to a server bound to a name in the IUCV domain */
/* make sure the siucv_addr, siucv_port, siucv_nodeid fields are cleared
*/
memset(&vmservername, 0, sizeof(vmservername));
vmservername.siucv_family = AF_IUCV;
strncpy(vmservername.siucv_nodeid, “ ”,8);
/* The field is eight positions padded to the right with blanks */
strncpy(vmservername.siucv_userid, “VMUSER1 ”, 8);
strncpy(vmservername.siucv_name, “APPL ”, 8);...
rc = connect(s, (struct sockaddr *) &vmservername, sizeof(vmservername));

See Also: accept(), bind(), htons(), inet_addr(), listen(), select(), selectex(), socket().

endhostent()

The endhostent() call has no parameters.

Description: The endhostent() call closes the HOSTS SITEINFO and HOSTS
ADDRINFO files. The HOSTS SITEINFO and HOSTS ADDRINFO files contain
information about known hosts.

void endhostent()

connect()

30 z/VM: TCP/IP Programmer’s Reference

The endhostent() call is available only if RESOLVE_VIA_LOOKUP is defined
before the MANIFEST.H header file is included.

See Also: gethostbyaddr(), gethostbyname(), gethostent(), sethostent().

endnetent()

The endnetent() call has no parameters.

Description: The endnetent() call closes the HOSTS SITEINFO file. The HOSTS
SITEINFO file contains information about known networks.

See Also: getnetbyaddr(), getnetbyname(), getnetent(), setnetent().

endprotoent()

The endprotoent() call has no parameters.

Description: The endprotoent() call closes the ETC PROTO file.

See Also: getprotobyname(), getprotoent(), setprotoent().

endservent()

The endservent() call has no parameters.

Description: The endservent() call closes the ETC SERVICES file.

See Also: getservbyname(), getservbyport(), getservent(), setservent().

fcntl()

Parameter Description
s Specifies the socket descriptor.
cmd Specifies the command to perform.
data Specifies the data associated with the cmd parameter.

void endnetent()

void endprotoent()

void endservent()

#include <bsdtypes.h>
#include <fcntl.h>

int fcntl(s, cmd, data)
int s;
int cmd;
int data;

endhostent()

Chapter 2. C Sockets Application Program Interface 31

Description: The operating characteristics of sockets can be controlled with fcntl()
requests. The operations to be controlled are determined by the cmd parameter. The
data parameter is a variable with a meaning that depends on the value of the cmd
parameter.

The following are valid fcntl() commands:

Command Description

F_SETFL Sets the status flags of socket s. One flag, FNDELAY, can be set.
v Setting the FNDELAY flag marks s as being in nonblocking

mode. If data is not present on calls that can block, such as
read(), readv(), recv(), the call returns −1 and errno is set to
EWOULDBLOCK.

F_GETFL Gets the status flags of socket s. One flag, FNDELAY, can be
queried.
v The FNDELAY flag marks s as being in nonblocking mode. If

data is not present on calls that can block, such as read(),
readv(), recv(), the call returns with −1 and errno is set to
EWOULDBLOCK.

Return Values: For the F_GETFL command, the return value is the flags, set as a
bit mask. For the F_SETFL command, the value 0 indicates success; the value −1
indicates an error. The value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that the s parameter is not a valid socket descriptor.

EINVAL Indicates that the data parameter is not a valid flag.

Examples: The following are examples of the fcntl() call.
int s;
int rc;
int flags;...
/* Place the socket into nonblocking mode */
rc = fcntl(s, F_SETFL, FNDELAY);

/* See if asynchronous notification is set */
flags = fcntl(s, F_GETFL, 0);
if (flags & FNDELAY)

/* it is set */
else

/* it is not */

See Also: fcntl(), ioctl(), getsockopt(), setsockopt(), socket().

getclientid()

Parameter Description
domain Specifies the address family domain and must be AF_INET.

#include <bsdtypes.h>
#include <socket.h>

int getclientid(domain, clientid)
int domain,
struct clientid *clientid;

fcntl()

32 z/VM: TCP/IP Programmer’s Reference

clientid Points to a clientid structure to be filled.

Description: The getclientid() call returns the identifier by which the calling
program is known to the TCPIP virtual machine. The clientid is used in the
givesocket() and takesocket() calls.

Return Values: The value 0 indicates success. The value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EFAULT Indicates that using the clientid parameter as specified would result
in an attempt to access storage outside the caller’s virtual storage,
or storage not modifiable by the caller.

EPFNOSUPPORT
Indicates that the domain is not AF_INET.

See Also: givesocket(), takesocket().

getdtablesize()

The getdtablesize() call has no parameters.

Description: The TCPIP virtual machine reserves a fixed-size table for each
machine using sockets. The size of this table is the number of sockets a machine
can allocate simultaneously. The getdtablesize() function returns the size of this
table.

To increase the table size, use maxdesc(). After calling maxdesc(), always use
getdtablesize() to verify that the table was changed.

See Also: maxdesc().

gethostbyaddr()

Parameter Description

addr Points to a structure containing the address of the socket. For
AF_INET, addr is a pointer to an in_addr structure.

addrlen Specifies the size of addr in bytes.

domain Specifies the address domain supported (AF_INET).

Description: The gethostbyaddr() call tries to resolve the host name through a
name server, if one is present. If a name server is not present, gethostbyaddr()

int getdtablesize()

#include <netdb.h>

struct hostent *gethostbyaddr(addr, addrlen, domain)
char *addr;
int addrlen;
int domain;

getclientid()

Chapter 2. C Sockets Application Program Interface 33

searches the HOSTS ADDRINFO file until a matching host address is found or an
EOF marker is reached. These files are described in TCP/IP Planning and
Customization.

The gethostbyaddr() call returns a pointer to a hostent structure for the host
address specified on the call.

If RESOLVE_VIA_LOOKUP is defined before including the MANIFEST.H header
file, gethostbyaddr() uses only the HOSTS ADDRINFO file for resolution.
Otherwise, the name server is required.

Note: The HOSTS ADDRINFO file is created when MAKESITE is run against the
HOSTS LOCAL file. These files are described in the TCP/IP for VM: Planning
and Customization.

The NETDB.H header file defines the hostent structure, and contains the following
elements:

Element Description

h_name Indicates the official name of the host.

h_aliases Indicates a zero-terminated array of alternative names for the host.

h_addrtype Indicates the type of address returned; currently, always set to
AF_INET.

h_length Indicates the length of the address in bytes.

h_addr Indicates a pointer to a pointer to a string of bytes of length h
length, which is the network address number of the host.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a hostent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: gethostbyname(), gethostent(), sethostent().

gethostbyname()

Parameter Description
name Specifies the name of the host being queried.

Description: The gethostbyname() call tries to resolve the host name through a
name server, if one is present. If a name server is not present, gethostbyname()
searches the HOSTS SITEINFO file until a matching host name is found or an EOF
marker is reached.

The gethostbyname() call returns a pointer to a hostent structure for the host name
specified on the call.

If RESOLVE_VIA_LOOKUP is defined before including the MANIFEST.H header
file, gethostbyname() uses only the HOSTS ADDRINFO file for resolution.

#include <netdb.h>

struct hostent *gethostbyname(name)
char *name;

gethostbyaddr()

34 z/VM: TCP/IP Programmer’s Reference

Note: The HOSTS ADDRINFO file is created when MAKESITE is run against the
HOSTS LOCAL file. These files are described in TCP/IP Planning and
Customization.

The NETDB.H header file defines the hostent structure and contains the following
elements:

Element Description

h_name Indicates the official name of the host.

h_aliases Indicates a zero-terminated array of alternative names for the host.

h_addrtype Indicates the type of address returned; currently, it is always set to
AF_INET.

h_length Indicates the length of the address in bytes.

h_addr Indicates a pointer to a pointer to a string of bytes of length h
length, which is the network address number of the host.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a hostent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: gethostbyaddr(), gethostent(), sethostent().

gethostent()

The gethostent() call has no parameters.

Description: The gethostent() call reads the next line of the HOSTS SITEINFO file.

The gethostent() call returns a pointer to the next entry in the HOSTS SITEINFO
file. gethostent() uses HOSTS ADDRINFO to get aliases.

gethostent() is available only if RESOLVE_VIA_LOOKUP is defined before the
MANIFEST.H header file is included. The NETDB.H header file defines the hostent
structure, and contains the following elements:

Element Description

h_name Indicates the official name of the host.

h_aliases Indicates a zero-terminated array of alternative names for host.

h_addrtype Indicates the type of address returned; currently, always set to
AF_INET.

h_length Indicates the length of the address in bytes.

h_addr Indicates a pointer to a pointer to a string of bytes of length h
length, which is the network address number of the host.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a hostent structure indicates success. A NULL pointer
indicates an error or end-of-file.

#include <netdb.h>

struct hostent *gethostent()

gethostbyname()

Chapter 2. C Sockets Application Program Interface 35

See Also: gethostbyaddr(), gethostbyname(), sethostent().

gethostid()

The gethostid() call has no parameters.

Description: The gethostid() call gets the unique 32-bit identifier for the current
host. This value is the default home internet address.

Return Values: The gethostid() call returns the 32-bit identifier of the current host,
which should be unique across all hosts.

gethostname()

Parameter Description
name Specifies the character array to be filled with the host name.
namelen Specifies the length of name.

Description: The gethostname() call returns the name of the host processor on
which the program is running. Up to namelen characters are copied into the name
array. The returned name is NULL terminated unless there is insufficient room in
the name array.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

See Also: gethostbyname().

getibmsockopt()
Like getsockopt(), the getibmsockopt() gets the options associated with a socket in
the AF_INET domain. This call is for options specific to the IBM implementation of
sockets. Currently, only the SOL_SOCKET level and the socket options
SO_BULKMODE and SO_IGNOREINCOMINGPUSH are supported.

Use getibmsockopt() with the socket option SO_BULKMODE to test whether the
UDP socket s is in bulk mode. The bulkmode socket option enables an application
to queue multiple datagrams, sending all of the datagrams in one send. This
reduces the CPU consumption for each datagram.

This call can be used only in the AF_INET domain.

#include <bsdtypes.h>

unsigned long gethostid()

int gethostname(name, namelen)
char *name;
int namelen;

gethostid()

36 z/VM: TCP/IP Programmer’s Reference

Parameter Description
s The socket descriptor.
level The level for which the option is set.
optname The name of a specified socket option.
optval The pointer to option data.
optlen The pointer to the length of the option data.

For SO_BULKMODE, optval should point to an ibm_bulkmode_struct, which is
defined in SOCKET.H. The ibm_bulkmode_struct contains the following fields:

Element Description

b_onoff 1 means bulk mode is on; 0 means bulk mode is
off.

b_max_receive_queue_size The maximum receiving queue size in bytes.

b_max_send_queue_size The maximum sending queue size in bytes.

b_teststor If this element is nonzero, the address of the
message buffer and the message buffer itself is
checked for addressability during each socket call.
errno is set to EFAULT if there is an addressing
exception. If this element is zero, no checking is
performed.

b_max_send_queue_size_avail
The maximum send queue size in bytes that can be
set with setibmsockopt().

b_num_IUCVs_sent The number of actual IUCVs issued in sending
datagrams to TCPIP.

b_num_IUCVs_received The number of actual IUCVs issued in receiving
datagrams from TCPIP.

The fields b_num_IUCVs_sent and b_num_IUCVs_received represent cumulative
totals for this socket since the time the application was started.

For SO_IGNOREINCOMINGPUSH, optval should point to an integer.
getibmsockopt() returns 0 in optval if the option is not set, and returns 1 in optval
if the option is set.

Example: The following is an example of the getibmsockopt() call.

#include <manifest.h>
#include <socket.h>

int getibmsockopt(int s, int level, int optname, char *optval, int *optlen)

getibmsockopt()

Chapter 2. C Sockets Application Program Interface 37

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EBADF The s parameter is not a valid socket descriptor.

EFAULT Using optval and optlen parameters would result
in an attempt to access storage outside the caller’s
address space.

EIBMIUCVERR An IUCV error occurred.

ENOPROTOOPT The optname parameter is unrecognized, or the
level parameter is not SOL_SOCKET.

Related Calls: ibmsflush(), setibmsockopt(), getsockopt().

getnetbyaddr()

Parameter Description
net Specifies the network address.
type Specifies the address domain supported (AF_INET).

Description: The getnetbyaddr() call searches the HOSTS ADDRINFO file for the
specified network address.

Note: HOSTS LOCAL, HOSTS ADDRINFO, and HOSTS SITEINFO are described
in TCP/IP Planning and Customization.

The netent structure is defined in the NETDB.H header file and contains the
following elements:

Element Description

n_name Indicates the official name of the network.

n_aliases Indicates an array, terminated with a NULL pointer, of alternative
names for the network.

#include <manifest.h>
#include <socket.h>
#include <tcperror.h>

{ struct ibm_bulkmode_struct bulkstr;
int optlen, rc;

optlen = sizeof(bulkstr);
rc = getibmsockopt(s, SOL_SOCKET, SO_BULKMODE, (char *), &bulkstr, &optlen);
if (rc < 0)
{ tcperror("on getibmsockopt()");
exit(1);

}
fprintf(stream,"%d byte buffer available for outbound queue.\n",

bulkstr.b_max_send_queue_size_avail);
}

#include <netdb.h>

struct netent *getnetbyaddr(net, type)
unsigned long net;
int type;

getibmsockopt()

38 z/VM: TCP/IP Programmer’s Reference

n_addrtype Indicates the type of network address returned. The call always
sets this value to AF_INET.

n_net Indicates the network number, returned in host byte order.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a netent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endnetent(), getnetbyname(), getnetent(), setnetent().

getnetbyname()

Parameter Description
name Points to a network name.

Description: The getnetbyname() call searches the HOSTS ADDRINFO file for the
specified network name.

Note: HOSTS LOCAL, HOSTS ADDRINFO, and HOSTS SITEINFO are described
in TCP/IP Planning and Customization.

The getnetbyname() call returns a pointer to a netent structure for the network
name specified on the call.

The netent structure is defined in the NETDB.H header file and contains the
following elements:

Element Description

n_name Indicates the official name of the network.

n_aliases Indicates an array, terminated with a NULL pointer, of alternative
names for the network.

n_addrtype Indicates the type of network address returned. The call always
sets this value to AF_INET.

n_net Indicates the network number, returned in host byte order.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a netent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endnetent(), getnetbyaddr(), getnetent(), setnetent().

#include <netdb.h>

struct netent *getnetbyname(name)
char *name;

getnetbyaddr()

Chapter 2. C Sockets Application Program Interface 39

getnetent()

The getnetent() call has no parameters.

Description: The getnetent() call reads the next entry of the HOSTS SITEINFO file.

Note: HOSTS LOCAL, HOSTS ADDRINFO, and HOSTS SITEINFO are described
in TCP/IP Planning and Customization.

The netent structure is defined in the NETDB.H header file and contains the
following elements:

Element Description

n_name Indicates the official name of the network.

n_aliases Indicates an array, terminated with a NULL pointer, of alternative
names for the network.

n_addrtype Indicates the type of network address being returned. The call
always sets this value to AF_INET.

n_net Indicates the network number, returned in host byte order.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a netent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endnetent(), getnetbyaddr(), getnetbyname(), setnetent().

getpeername()

Parameter Description

s Specifies the socket descriptor.

name Specifies the internet address of the connected socket that is filled
by getpeername() before it returns. The exact format of the name
parameter is determined by the domain in which communication
occurs.

namelen Specifies the size of the address structure pointed to by the name
parameter in bytes.

Description: The getpeername() call returns the name of the peer connected to
socket s. The namelen pointer must be initialized to indicate the size of the space
pointed to by name and is set to the number of bytes copied into the space before

#include <netdb.h>

struct netent *getnetent()

#include <bsdtypes.h>
#include <socket.h>

int getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

getnetent()

40 z/VM: TCP/IP Programmer’s Reference

the call returns. The size of the peer name is returned in bytes. If the buffer of the
local host is too small, the peer name is truncated.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that the s parameter is not a valid socket
descriptor.

EFAULT Indicates that using the name and namelen
parameters as specified would result in an attempt
to access storage outside of the caller’s virtual
storage.

ENOTCONN Indicates that the socket is not in the connected
state.

See Also: accept(), connect(), getsockname(), socket().

getprotobyname()

Parameter Description
name Points to the specified protocol.

Description: The getprotobyname() call searches the ETC PROTO file for the
specified protocol name.

The getprotobyname() call returns a pointer to a protoent structure for the network
protocol specified on the call.

The protoent structure is defined in the NETDB.H header file and contains the
following elements:

Element Description

p_name Indicates the official name of the protocol.

p_aliases Indicates an array, terminated with a NULL pointer, of alternative
names for the protocol.

p_proto Indicates the protocol number.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a protoent structure indicates success. A NULL
pointer indicates an error or end-of-file.

See Also: endprotoent(), getprotobynumber(), getprotoent(), setprotoent().

getprotobynumber()

#include <netdb.h>

struct protoent *getprotobyname(name)
char *name;

getpeername()

Chapter 2. C Sockets Application Program Interface 41

Parameter Description
proto Specifies the protocol number.

Description: The getprotobynumber() call searches the ETC PROTO file for the
specified protocol number.

The getprotobynumber() call returns a pointer to a protoent structure for the
network protocol specified on the call.

The protoent structure is defined in the NETDB.H header file and contains the
following elements:

Element Description

p_name Indicates the official name of the protocol.

p_aliases Indicates an array, terminated with a NULL pointer, of alternative
names for the protocol.

p_proto Indicates the protocol number.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a protoent structure indicates success. A NULL
pointer indicates an error or end-of-file.

See Also: endprotoent(), getprotobyname(), getprotoent(), setprotoent().

getprotoent()

The getprotoent() call has no parameters.

Description: The getprotoent() call reads the ETC PROTO file.

The getprotoent() call returns a pointer to the next entry in the ETC PROTO file.

The protoent structure is defined in the NETDB.H header file and contains the
following elements:

Element Description

p_name Indicates the official name of the protocol.

p_aliases Indicates an array, terminated with a NULL pointer, of alternative
names for the protocol.

p_proto Indicates the protocol number.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a protoent structure indicates success. A NULL
pointer indicates an error or end-of-file.

#include <netdb.h>

struct protoent * getprotobynumber(proto)
int proto;

#include <netdb.h>

struct protoent *getprotoent()

getprotobynumber()

42 z/VM: TCP/IP Programmer’s Reference

See Also: endprotoent(), getprotobyname(), getprotobynumber(), setprotoent().

getservbyname()

Parameter Description
name Points to the specified service name.
proto Points to the specified protocol.

Description: The getservbyname() call searches the ETC SERVICES file for the
specified service name. Searches for a service name must match the protocol, if a
protocol is stated.

The getservbyname() call returns a pointer to a servent structure for the network
service specified on the call.

The servent structure is defined in the NETDB.H header file and contains the
following elements:

Element Description

s_name Indicates the official name of the service.

s_aliases Indicates an array, terminated with a NULL pointer, of alternative
names for the service.

s_port Indicates the port number of the service.

s_proto Indicates the required protocol to contact the service.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a servent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endservent(), getservbyport(), getservent(), setservent().

getservbyport()

Parameter Description
port Specifies the port.
proto Points to the specified protocol.

Description: The getservbyport() call searches the ETC SERVICES file for the
specified port number. Searches for a port number must match the protocol if a
protocol is stated.

#include <netdb.h>

struct servent *getservbyname(name, proto)
char *name;
char *proto;

#include <netdb.h>

struct servent *getservbyport(port, proto)
int port;
char *proto;

getservbyname()

Chapter 2. C Sockets Application Program Interface 43

The getservbyport() call returns a pointer to a servent structure for the port number
specified on the call.

The servent structure is defined in the NETDB.H header file and contains the
following elements:

Element Description

s_name Specifies the official name of the service.

s_aliases Indicates an array, terminated with a NULL pointer, of alternative
names for the service.

s_port Specifies the port number of the service.

s_proto Specifies the protocol required to contact the service.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a servent structure indicates success. A NULL
pointer indicates an error or end-of-file.

See Also: endservent(), getservbyname(), getservent(), setservent().

getservent()

The getservent() call has no parameters.

Description: The getservent() call reads the next line of the ETC SERVICES file.

The getservent() call returns a pointer to the next entry in the ETC SERVICES file.

The servent structure is defined in the NETDB.H header file and contains the
following elements:

Element Description

s_name Specifies the official name of the service.

s_aliases Indicates an array, terminated with a NULL pointer, of alternative
names for the service.

s_port Specifies the port number of the service.

s_proto Specifies the required protocol to contact the service.

Return Values: The return value points to static data that is overwritten by
subsequent calls. A pointer to a servent structure indicates success. A NULL pointer
indicates an error or end-of-file.

See Also: endservent(), getservbyname(), getservbyport(), setservent().

getsockname()

#include <netdb.h>

struct servent *getservent()

getservbyport()

44 z/VM: TCP/IP Programmer’s Reference

Parameter Description

s Specifies the socket descriptor.

name Specifies the address of the buffer into which getsockname() copies
the name of s.

namelen Initially points to an integer that contains the size in bytes of the
storage pointed to by name. Upon return, this integer contains the
size of the data returned in the storage pointed to by name.

Description: The getsockname() call stores the current name for the socket
specified by the s parameter into the structure pointed to by the name parameter. It
returns the address to the socket that has been bound. If the socket is not bound to
an address, the call returns with the family set and the rest of the structure set to
zero. For example, an inbound socket in the internet domain would cause the
name to point to a sockaddr_in structure with the sin_family field set to AF_INET
and all other fields zeroed.

Stream sockets are not assigned a name, until after a successful call to either
bind(), connect(), or accept().

The getsockname() call is often used to discover the port assigned to a socket after
the socket has been implicitly bound to a port. For example, an application can call
connect() without previously calling bind(). In this case, the connect() call
completes the binding necessary by assigning a port to the socket. This assignment
can be discovered with a call to getsockname().

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that the s parameter is not a valid socket descriptor.

EFAULT Using the name and namelen parameters as specified would result
in an attempt to access storage outside of the caller’s virtual
storage.

See Also: accept(), bind(), connect(), getpeername(), socket().

getsockopt()

#include <bsdtypes.h>
#include <socket.h>

int getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

getsockname()

Chapter 2. C Sockets Application Program Interface 45

Parameter Description

s Specifies the socket descriptor.

level Specifies the level for which the option is set. Only SOL_SOCKET
and IPPROTO_IP are supported.

optname Specifies the name of a specified socket option.

optval Points to option data.

optlen Points to the length of the option data.

Description: The getsockopt() call gets options associated with a socket. It can be
called only for sockets in the AF_INET domain. This call is not supported in the
AF_IUCV domain. Options can exist at multiple protocol levels; they are always
present at the highest socket level.

When manipulating socket options, you must specify the level at which the option
resides and the name of the option. To manipulate options at the socket level or IP
level, the level parameter must be set to SOL_SOCKET or IPPROTO_IP, as defined
in SOCKET.H. To manipulate options at any other level, such as the TCP or IP
level, supply the appropriate protocol number for the protocol controlling the
option. Currently, only the SOL_SOCKET and IPPROTO_IP levels are supported.
The getprotobyname() call can be used to return the protocol number for a named
protocol.

The optval and optlen parameters are used to return data used by the particular get
command. The optval parameter points to a buffer that is to receive the data
requested by the get command. The optlen parameter points to the size of the
buffer pointed to by the optval parameter. It must be initially set to the size of the
buffer before calling getsockopt(). On return it is set to the actual size of the data
returned.

All of the socket level options except SO_LINGER expect optval to point to an
integer and optlen to be set to the size of an integer. When the integer is nonzero,
the option is enabled. When it is zero, the option is disabled. The SO_LINGER
option expects optval to point to a linger structure as defined in SOCKET.H. This
structure is defined in the following example:
struct linger
{

int l_onoff; /* option on/off */
int l_linger; /* linger time */

};

The l_onoff field is set to zero if the SO_LINGER option is being disabled. A
nonzero value enables the option. The l_linger field specifies the amount of time
to linger on close.

The following options are recognized at the IP level (IPPROTO_IP):

#include <bsdtypes.h>
#include <socket.h>

int getsockopt(s, level, optname, optval, optlen)
int s;
int level;
int optname;
char *optval;
int *optlen;

getsockopt()

46 z/VM: TCP/IP Programmer’s Reference

|

|

|

|

|
|
|
|
|
|
|
|
|
|

Option Description

IP_MULTICAST_TTL Returns the IP time-to-live of outgoing multicast
datagrams. The TTL value is passed back as
u_char. This option is only supported for sockets
with an address family of AF_INET and type of
SOCK_DGRAM or SOCK_RAW.

IP_MULTICAST_LOOP Determines whether loopback of outgoing
multicast datagrams is enabled or disabled. When
loopback is enabled, datagrams sent by this system
should also be delivered to this system as long as it
is a member of the multicast group. The loopback
indicator is passed back as u_char. A value of 0
means loopback is disabled; a value of 1 means it
is enabled. This option is only supported for
sockets with an address family of AF_INET and
type of SOCK_DGRAM or SOCK_RAW.

IP_MULTICAST_IF Returns the interface IP address used for sending
outbound multicast datagrams from socket
applications. The IP Address is passed back using
structure in_addr. This option is only supported for
sockets with an address family of AF_INET and
type of SOCK_DGRAM or SOCK_RAW.

The following options are recognized at the socket level:

Option Description

SO_BROADCAST Indicates the ability to broadcast messages. If this
option is enabled, it allows the application to send
broadcast messages over s, if the interface specified
in the destination supports broadcasting of packets.
This option has no meaning for stream sockets.

SO_ERROR Returns any pending error on the socket and clears
the error status. It can be used to check for
asynchronous errors on connected datagram
sockets or for other asynchronous errors (errors
that are not returned explicitly by one of the socket
calls).

SO_KEEPALIVE Toggles the TCP keep-alive mechanism for a stream
socket. When activated, the keep-alive mechanism
periodically sends a packet on an otherwise idle
connection. If the remote TCP does not respond to
the packet or to retransmissions of the packet, the
connection is terminated with the error
ETIMEDOUT.

SO_LINGER Lingers on close if data is present. When this
option is enabled and there is unsent data present
when close() is called, the calling application is
blocked during the close() call until the data is
transmitted or the connection has timed out. If this
option is disabled, the TCPIP virtual machine waits
to try to send the data. Although the data transfer
is usually successful, it cannot be guaranteed,
because the TCPIP virtual machine waits only a

getsockopt()

Chapter 2. C Sockets Application Program Interface 47

||

||
|
|
|
|

||
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|

|

finite amount of time trying to send the data. The
close() call returns without blocking the caller. This
option has meaning only for stream sockets.

SO_OOBINLINE Indicates reception of out-of-band data. When this
option is enabled, it causes out-of-band data to be
placed in the normal data input queue as it is
received, making it available to recv(), recvfrom(),
and recvmsg() without having to specify the
MSG_OOB flag in those calls. When this option is
disabled, it causes out-of-band data to be placed in
the priority data input queue as it is received,
making it available to recv(), recvfrom(), and
recvmsg() only by specifying the MSG_OOB flag in
those calls. This option has meaning only for
stream sockets.

SO_REUSEADDR Toggles local address reuse. When enabled, this
option allows local addresses that are already in
use to be bound. This alters the normal algorithm
used in the bind() call. The system checks at
connect time to be sure that no local address and
port have the same foreign address and port. The
error EADDRINUSE is returned if the association
already exists.

SO_SNDBUF Returns the size of the TCP/IP send buffer in
optval.

SO_TYPE Returns the type of the socket. On return, the
integer pointed to by optval is set to one of
SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that the s parameter is not a valid socket
descriptor.

EFAULT Using optval and optlen parameters would result in
an attempt to access memory outside the caller’s
virtual storage.

EIBMIUCVERR Indicates that an IUCV error occurred.

ENOPROTOOPT Indicates that the optname parameter is
unrecognized, or the level parameter is not
SOL_SOCKET.

EOPNOTSUPP Indicates the s parameter is not a socket descriptor
that supports the optname parameter.

Examples: The following are examples of the getsockopt() call. See “setsockopt()”
on page 76 for examples of how the setsockopt() call options are set.
int rc;
int s;
int optval;
int optlen;
struct linger l;
int getsockopt(int s, int level, int optname, char *optval, int *optlen);

getsockopt()

48 z/VM: TCP/IP Programmer’s Reference

||
|

...
/* Is out of band data in the normal input queue? */
optlen = sizeof(int);
rc = getsockopt(

s, SOL_SOCKET, SO_OOBINLINE, (char *) &optval, &optlen);
if (rc == 0)
{

if (optlen == sizeof(int))
{

if (optval)
/* yes it is in the normal queue */

else
/* no it is not */

}
}

...
/* Do I linger on close? */
optlen = sizeof(l);
rc = getsockopt(

s, SOL_SOCKET, SO_LINGER, (char *) &l, &optlen);
if (rc == 0)
{

if (optlen == sizeof(l))
{

if (l.l_onoff)
/* yes I linger */

else
/* no I do not */

}
}

See Also: getprotobyname(), setsockopt(), socket().

givesocket()

Parameter Description

s Specifies the descriptor of a socket to be given to another
application.

clientid Points to a struct clientid structure specifying the target program to
whom the socket is to be given. Your program sets the fields of the
structure as follows:

domain Specifies AF_INET

name Specifies the virtual storage name or virtual
machine name of the target program, left-justified
and padded with blanks. The target program can
run in the same virtual storage or virtual machine

#include <bsdtypes.h>
#include <socket.h>

int givesocket(s, clientid)
int s,
struct clientid *clientid;

getsockopt()

Chapter 2. C Sockets Application Program Interface 49

as your program, in which case your program sets
this field to its own virtual storage name or virtual
machine name.

subtaskname Contains blanks.

reserved Contains binary zeros.

Any program running in the specified virtual storage or virtual
machine can use takesocket() to take control of the socket if it
knows the client ID and the socket descriptor of your program.

For backward compatibility, clientid may point to the struct clientid
structure when the target program calls getclientid(). In this case,
only the target program can take the socket.

Description: The givesocket() call tells TCPIP to make the specified socket
available to a takesocket() call issued by another application running on the same
host. Any connected stream socket can be given. Typically, givesocket() is used by
a master program that obtains sockets by means of accept() and gives them to
agent programs that handle one socket at a time.

After calling givesocket(), your program passes its client ID (obtained by using the
getclientid() call) and the socket descriptor to the target program by passing it in
the target program’s startup parameter list. Your program then uses the select() call
to check for a pending exception condition on the given socket, indicating that the
target program has successfully called takesocket(). When the select() call indicates
a pending exception condition, your program calls close() to close the given socket.

If your program closes the socket before a pending exception condition is
indicated, the TCP connection is immediately reset, and the target program’s call to
takesocket() is unsuccessful. Calls other than close() issued on a given socket return
a value of −1, with errno set to EBADF.

Return Values: The value 0 indicates success. The value −1 indicates an error. The
value of errno indicates a specific error.

Errno Value Description

EBADF Indicates that the d parameter is not a valid socket
descriptor. The socket has already been given. The
socket domain is not AF_INET.

EBUSY Indicates that listen() has been called for the socket.

EFAULT Using the clientid parameter as specified would
result in an attempt to access storage outside the
caller’s virtual storage.

EINVAL Indicates that the clientid parameter does not
specify a valid client identifier.

ENOTCONN Indicates that the socket is not connected.

EOPNOTSUPP Indicates that the socket type is not
SOCK_STREAM.

See Also: getclientid(), takesocket().

givesocket()

50 z/VM: TCP/IP Programmer’s Reference

htonl()

Parameter Description
a Specifies the unsigned long integer to be put into network byte

order.

Description: The htonl() call translates a long integer from host byte order to
network byte order.

Return Values: Returns the translated long integer.

See Also: htons(), ntohs(), ntohl().

htons()

Parameter Description
a Specifies the unsigned short integer to be put into network byte

order.

Description: The htons() call translates a short integer from host byte order to
network byte order.

Return Values: Returns the translated short integer.

See Also: ntohs(), htonl(), ntohl().

ibmsflush()
For outbound sockets, the application-side datagram queue is flushed (transferred
to the TCPIP address space) if any one of the following occur:
v An ibmsflush() is issued on the socket.
v The queue is full and another send-type socket call is issued.
v The socket is closed.
v Another setibmsockopt() is issued.

Parameter Description
s The socket descriptor.

Related Calls: getibmsockopt(), setibmsockopt().

#include <bsdtypes.h>

unsigned long htonl(a)
unsigned long a;

#include <bsdtypes.h>

unsigned short htons(a)
unsigned short a;

#include <manifest.h>
#include <socket.h>

int ibmsflush(int s)

htonl()

Chapter 2. C Sockets Application Program Interface 51

inet_addr()

Parameter Description
cp Specifies a character string in standard dotted-decimal (.) notation.

Description: The inet_addr() call interprets character strings representing numbers
expressed in standard dotted-decimal notation and returns numbers suitable for
use as an internet address.

Values specified in standard dotted-decimal notation take one of the following
forms:
a.b.c.d
a.b.c
a.b
a

When a four-part address is specified, each part is interpreted as a byte of data
and assigned, from left to right, to one of the four bytes of an internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the two rightmost bytes of the network address. This makes
the three-part address format convenient for specifying Class B network addresses
as 128.net.host.

When a two-part address is specified, the last part is interpreted as a 24-bit
quantity and placed in the three rightmost bytes of the network address. This
makes the two-part address format convenient for specifying Class A network
addresses as net.host.

When a one-part address is specified, the value is stored directly in the network
virtual storage without any rearrangement of its bytes.

Numbers supplied as address parts in standard dotted-decimal notation can be
decimal, hexadecimal, or octal. Numbers are interpreted in C language syntax. A
leading 0x implies hexadecimal; a leading 0 implies octal. A number without a
leading 0 implies decimal.

Return Values: The internet address is returned in network byte order.

See Also: inet_lnaof(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoa().

inet_lnaof()

#include <bsdtypes.h>

unsigned long inet_addr(cp)
char *cp;

#include <bsdtypes.h>
#include <socket.h>
#include <in.h>

unsigned long inet_lnaof(in)
struct in_addr in;

inet_addr()

52 z/VM: TCP/IP Programmer’s Reference

Parameter Description
in Specifies the host internet address.

Description: The inet_lnaof() call breaks apart the internet host address and
returns the local network address portion.

Return Values: The local network address is returned in host byte order.

See Also: inet_addr(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoa().

inet_makeaddr()

Parameter Description
net Specifies the network number.
lna Specifies the local network address.

Description: The inet_makeaddr() call takes a network number and a local
network address and constructs an internet address.

Return Values: The internet address is returned in network byte order.

See Also: inet_addr(), inet_lnaof(), inet_netof(), inet_network(), inet_ntoa().

inet_netof()

Parameter Description
in Specifies the internet address in network byte order.

Description: The inet_netof() call breaks apart the internet host address and
returns the network number portion.

Return Values: The network number is returned in host byte order.

See Also: inet_addr(), inet_lnaof(), inet_makeaddr(), inet_ntoa().

inet_network()

#include <bsdtypes.h>
#include <in.h>

struct in_addr
inet_makeaddr(net, lna)
unsigned long net;
unsigned long lna;

#include <bsdtypes.h>
#include <in.h>

unsigned long inet_netof(in)
struct in_addr in;

inet_lnaof()

Chapter 2. C Sockets Application Program Interface 53

Parameter Description
cp Specifies a character string in standard dotted-decimal (.) notation.

Description: The inet_network() call interprets character strings representing
numbers expressed in standard dotted-decimal notation and returns numbers
suitable for use as a network number.

Numbers supplied as address parts in standard dotted-decimal notation can be
decimal, hexadecimal, or octal. Numbers are interpreted in C language syntax. A
leading 0x implies hexadecimal; a leading 0 implies octal. A number without a
leading 0 implies decimal.

Return Values: The network number is returned in host byte order.

See Also: inet_addr(), inet_lnaof(), inet_makeaddr(), inet_ntoa().

inet_ntoa()

Parameter Description
in Specifies the host internet address.

Description: The inet_ntoa() call returns a pointer to a string expressed in the
dotted-decimal notation. inet_ntoa() accepts an internet address expressed as a
32-bit quantity in network byte order and returns a string expressed in
dotted-decimal notation.

Return Values: Returns a pointer to the internet address expressed in
dotted-decimal notation.

See Also: inet_addr(), inet_lnaof(), inet_makeaddr(), inet_network(), inet_ntoa().

ioctl()

Parameter Description
s Specifies the socket descriptor.

#include <bsdtypes.h>

unsigned long inet_network(cp)
char *cp;

#include <bsdtypes.h>
#include <in.h>

char *inet_ntoa(in)
struct in_addr in;

#include <bsdtypes.h>
#include <ioctl.h>
#include <rtrouteh.h>
#include <if.h>

int ioctl(s, cmd, data)
int s;
unsigned long cmd;
char *data;

inet_network()

54 z/VM: TCP/IP Programmer’s Reference

cmd Specifies the command to perform.
data Points to the data associated with cmd.

Description: The operating characteristics of sockets can be controlled with ioctl()
requests. The operations to be controlled are determined by cmd. The data
parameter is a pointer to data associated with the particular command, and its
format depends on the command that is requested. The following are valid ioctl()
commands:

Option Description

FIONBIO Sets or clears nonblocking input-output for a socket. data is a
pointer to an integer. If the integer is 0, nonblocking input-output
on the socket is cleared. Otherwise, the socket is set for
nonblocking input-output.

FIONREAD Gets the number of immediately readable bytes for the socket. data
is a pointer to an integer. Sets the value of the integer to the
number of immediately readable characters for the socket.

SIOCADDRT Adds a routing table entry. The data parameter is a pointer to a
rtentry structure, as defined in the RTROUTEH.H header file. The
routing table entry, passed as an argument, is added to the routing
tables.

SIOCATMARK
Queries whether the current location in the data input is pointing
to out-of-band data. The data parameter is a pointer to an integer.
Sets the argument to 1 if the socket points to a mark in the data
stream for out-of-band data. Otherwise, sets the argument to 0.

SIOCDELRT Deletes a routing table entry. The data parameter is a pointer to a
rtentry structure, as defined in the RTROUTEH.H header file. If it
exists, the routing table entry passed as an argument is deleted
from the routing tables.

SIOCGIFADDR
Gets the network interface address. The data parameter is a pointer
to an ifreq structure, as defined in the IF.H header file. The interface
address is returned in the argument.

SIOCGIFBRDADDR
Gets the network interface broadcast address. The data parameter is
a pointer to an ifreq structure, as defined in the IF.H header file.
The interface broadcast address is returned in the argument.

SIOCGIFCONF
Gets the network interface configuration. The data parameter is a
pointer to an ifconf structure, as defined in the IF.H header file. The
interface configuration is returned in the argument.

SIOCGIFDSTADDR
Gets the network interface destination address. The data parameter
is a pointer to an ifreq structure, as defined in the IF.H header file.
The interface destination (point-to-point) address is returned in the
argument.

SIOCGIFFLAGS
Gets the network interface flags. The data parameter is a pointer to
an ifreq structure, as defined in the IF.H header file. The interface
flags are returned in the argument.

ioctl()

Chapter 2. C Sockets Application Program Interface 55

SIOCGIFMETRIC
Gets the network interface routing metric. The data parameter is a
pointer to an ifreq structure, as defined in the IF.H header file. The
interface routing metric is returned in the argument.

SIOCGIFNETMASK
Gets the network interface network mask. The data parameter is a
pointer to an ifreq structure, as defined in the IF.H header file. The
interface network mask is returned in the argument.

SIOCSIFMETRIC
Sets the network interface routing metric. The data parameter is a
pointer to an ifreq structure, as defined in the IF.H header file. Set
the interface routing metric to the value passed in the argument.

SIOCSARP Sets an address translation entry. The variable arg is a pointer to an
arpreq structure, as defined in IF ARP.H.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that the s parameter is not a valid socket descriptor.

EINVAL Indicates that the request is invalid or not supported.

Example: The following is an example of the ioctl() call.
int s;
int dontblock;
int rc;...
/* Place the socket into nonblocking mode */
dontblock = 1;
rc = ioctl(s, FIONBIO, (char *) &dontblock);...

listen()

Parameter Description

s Specifies the socket descriptor.

backlog Defines the maximum length for the queue of pending connections.

Description: The listen() call applies only to stream sockets. It performs two tasks:
it completes the binding necessary for a socket s, if bind() has not been called for s,
and it creates a connection request queue of length backlog to queue incoming
connection requests. Once full, additional connection requests are ignored.

The listen() call indicates a readiness to accept client connection requests. It
transforms an active socket into a passive socket. Once called, s can never be used

#include <bsdtypes.h>
#include <socket.h>

int listen(s, backlog)
int s;
int backlog;

ioctl()

56 z/VM: TCP/IP Programmer’s Reference

as an active socket to initiate connection requests. Calling listen() is the third of
four steps that a server performs to accept a connection. It is called after allocating
a stream socket with socket(), and after binding a name to s with bind(). It must be
called before calling accept().

If the backlog is less than 0, backlog is set to 0. If the backlog is greater than
SOMAXCONN, as defined in the SOCKET.H header file, backlog is set to
SOMAXCONN.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that the s parameter is not a valid socket
descriptor.

EOPNOTSUPP Indicates that the s parameter is not a socket
descriptor that supports the listen() call.

See Also: accept(), bind(), connect(), socket().

maxdesc()

Parameter Description

totdesc Points to an integer containing a value one greater than the largest
desired socket number.

inetdesc Points to an integer containing a value one greater than the largest
desired socket number usable for AF_INET sockets.

Description: The maxdesc() call reserves additional space in the TCPIP virtual
machine to allow socket numbers to extend beyond the default range of 0 through
49. Socket numbers 0 through 2 are never assigned, so the default maximum
number of sockets is 47.

Set the integer pointed to by totdesc, to one more than the desired maximum socket
number. If your program does not use AF_INET sockets, set the integer pointed to
by inetdesc to 0. If your program uses AF_INET sockets, set the integer pointed to
by inetdesc, to the same value as totdesc. maxdesc() must be called before your
program creates its first socket or after all sockets have been closed. Your program
should use getdtablesize() to verify that the number of sockets was changed.

Return Values: The value 0 indicates success. Your application should check the
integer pointed to by inetdesc. It can contain less than the original value, if there
was insufficient storage available in the TCPIP virtual machine. In this case the
desired number of AF_INET sockets are not available. The value −1 indicates an
error. The value of errno indicates the specific error.

Errno Value Description

#include <bsdtypes.h>
#include <socket.h>

int maxdesc(totdesc, inetdesc)
int *totdesc;
int *inetdesc;

listen()

Chapter 2. C Sockets Application Program Interface 57

EFAULT Using the totdesc or inetdesc parameters as specified
would result in an attempt to access storage
outside of the caller’s virtual storage, or storage
not modifiable by the caller.

EALREADY Indicates that your program called maxdesc() to
allocate a new socket descriptor set but was using
one or more sockets in the current set.

EINVAL Indicates that *totdesc is less than *inetdesc; *totdesc
is less than or equal to 0; or *inetdesc is less than 0.

ENOMEM Indicates that your virtual machine has insufficient
memory.

EIBMIUCVERR Indicates that an IUCV error occurred.

Examples: The following are examples of the maxdesc() call.
int totdesc, inetdesc;
totdesc = 100;
inetdesc = 0;
rc = maxdesc(&totdesc, &inetdesc)

If successful, your application can create 97 sockets, all of type AF_IUCV. The
socket numbers run from 3 through 99.
int totdesc, inetdesc;
totdesc = 100;
inetdesc = 100;
rc = maxdesc(&totdesc, &inetdesc)

If successful, your application can create 97 sockets, each of which can be of type
AF_INET or AF_IUCV. The socket numbers run from 3 through 99.

If your application calls maxdesc() to define a socket descriptor set with more than
255 sockets, then the socket descriptor bit set (fd_set) it uses on subsequent calls to
select() should be the defined with the same totdesc size used on the call to
maxdesc(). The default size of an fd_set (the FD_SETSIZE) can accommodate up to
255 sockets. You can define an fd_set larger than FD_SETSIZE at either compile
time or runtime.

To define an fd_set at compile time, set the FD_SETSIZE macro in your source
code to the desired value before including the BSDTYPES.H header file. Recompile
your source code to generate fd_sets that can handle up to the specified number of
sockets. Use the macros FD_ZERO, FD_SET, FD_CLR, and FD_ISSET in your code
to manipulate your fd_sets.

To define an fd_set dynamically at runtime, include the TYPES.H header file in
place of BSDTYPES.H. Use the _GET_FDSET, _FREE_FDSET, _GET_FDSETSIZE,
_FDSET_ZERO, and FD_ISSET macros defined in TYPES.H to manipulate your
fd_sets.

See Also: select(), socket(), getdtablesize().

ntohl()

maxdesc()

58 z/VM: TCP/IP Programmer’s Reference

Parameter Description
a Specifies the unsigned long integer to be put into host byte order.

Description: The ntohl() call translates a long integer from network byte order to
host byte order.

Return Values: Returns the translated long integer.

See Also: htonl(), htons(), ntohs().

ntohs()

Parameter Description
a Specifies the unsigned short integer to be put into host byte order.

Description: The ntohs() call translates a short integer from network byte order to
host byte order.

Return Values: Returns the translated short integer.

See Also: ntohl(), htons(), htonl().

read()

Parameter Description

s Specifies the socket descriptor.

buf Points to the buffer that receives the data.

len Indicates the length in bytes of the buffer pointed to by the buf
parameter.

Description: The read() call reads data on a socket with descriptor s and stores it
in a buffer. The read() call applies only to connected sockets.

This call returns up to len bytes of data. If less than the number of bytes requested
is available, the call returns the number currently available. If data is not available
at the socket with descriptor s, the read() call waits for data to arrive and blocks
the caller, unless the socket is in nonblocking mode. See “ioctl()” on page 54 or
“fcntl()” on page 31 for a description of how to set nonblocking mode.

#include <bsdtypes.h>

unsigned long ntohl(a)
unsigned long a;

#include <bsdtypes.h>

unsigned short ntohs(a)
unsigned short a;

int read(s, buf, len)
int s;
char *buf;
int len;

ntohl()

Chapter 2. C Sockets Application Program Interface 59

Return Values: If successful, the number of bytes copied into the buffer is
returned. The value 0 indicates that the connection was closed to the remote host.
The value −1 indicates an error. The value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

EFAULT Using the buf and len parameters would result in
an attempt to access memory outside the caller’s
virtual storage.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

See Also: connect(), fcntl(), getsockopt(), ioctl(), readv(), recv(), recvmsg(),
recvfrom(), select(), selectex(), send(), sendmsg(), sendto(), setsockopt(), socket(),
write(), writev().

readv()

Parameter Description
s Specifies the socket descriptor.
iov Points to an iovec structure.
iovcnt Specifies the number of buffers pointed to by the iov parameter.

Description: The readv() call reads data on a socket with descriptor s and stores it
in a set of buffers. The data is scattered into the buffers specified by
iov[0]...iov[iovcnt−1]. The iovec structure is defined in the UIO.H header file and
contains the following fields:

Element Description
iov_base Points to the buffer.
iov_len Defines the length of the buffer.

The readv() call applies only to connected sockets.

This call returns up to len bytes of data. If less than the number of bytes requested
is available, the call returns the number currently available. If data is not available
at the socket with descriptor s, the readv() call waits for data to arrive and blocks
the caller, unless the socket is in nonblocking mode. See “fcntl()” on page 31 or
“ioctl()” on page 54 for a description of how to set nonblocking mode.

Return Values: If successful, the number of bytes read into the buffer(s) is
returned. The value 0 indicates that the connection was closed to the remote host.
The value −1 indicates an error. The value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

#include <bsdtypes.h>
#include <uio.h>

int readv(s, iov, iovcnt)
int s;
struc iovec *iov;
int iovcnt;

read()

60 z/VM: TCP/IP Programmer’s Reference

EFAULT Using iov and iovcnt would result in an attempt to
access memory outside the caller’s virtual storage.

EINVAL Indicates that iovcnt was not valid, or one of the
fields in the iov array was not valid.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

See Also: connect(), fcntl(), getsockopt(), ioctl(), read(), recv(), recvmsg(),
recvfrom(), select(), selectex(), send(), sendmsg(), sendto(), setsockopt(), socket(),
write(), writev().

recv()

Parameter Description

s Specifies the socket descriptor.

buf Points to the buffer that receives the data.

len Indicates the length in bytes of the buffer pointed to by the buf
parameter.

flags Set by specifying one or more of the following flags. If more than
one flag is specified, the logical OR operator (|) must be used to
separate them. Setting this parameter is supported only for sockets
in the AF_INET domain. Setting these flags is not supported in the
AF_IUCV domain.

MSG_OOB Reads any out-of-band data on the socket.

MSG_PEEK Peeks at the data present on the socket; the data is
returned but not consumed, so that a subsequent
receive operation sees the same data.

Description: The recv() call receives data on a socket with descriptor s and stores it
in a buffer. The recv() call applies only to connected sockets.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
data is not available at the socket with descriptor s, the recv() call waits for a
message to arrive and blocks the caller, unless the socket is in nonblocking mode.
See “fcntl()” on page 31 or “ioctl()” on page 54 for a description of how to set
nonblocking mode.

Return Values: If successful, the length of the message or datagram in bytes is
returned. The value 0 indicates that the connection was closed to the remote host.
The value −1 indicates an error. The value of errno indicates the specific error.

Errno Value Description

#include <bsdtypes.h>
#include <socket.h>

int recv(s, buf, len, flags)
int s;
char *buf;
int len;
int flags;

readv()

Chapter 2. C Sockets Application Program Interface 61

EBADF Indicates that s is not a valid socket descriptor.

EFAULT Using the buf and len parameters would result in
an attempt to access memory outside the caller’s
virtual storage.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

See Also: connect(), fcntl(), getsockopt(), ioctl(), read(), readv(), recvfrom(),
recvmsg(), select(), selectex(), send(), sendmsg(), sendto(), setsockopt(), socket(),
write(), writev().

recvfrom()

Parameter Description

s Specifies the socket descriptor.

buf Points to the buffer that receives the data.

len Indicates the length in bytes of the buffer pointed to by the buf
parameter.

flags Set to 0 or MSG_PEEK. Setting this parameter is supported only
for sockets in the AF_INET domain. Setting these flags is not
supported in the AF_IUCV domain.

MSG_OOB Reads any out-of-band data on the socket.

MSG_PEEK Peeks at the data present on the socket; the data is
returned but not consumed, so that a subsequent
receive operation sees the same data.

name Points to a socket address structure from which data is received. If
name is a nonzero value, the source address is returned.

namelen Indicates the size of name in bytes.

Description: The recvfrom() call receives data on a socket with descriptor s and
stores it in a buffer. The recvfrom() call applies to any datagram socket, whether
connected or unconnected.

If the name parameter is nonzero, the source address of the message is filled. The
namelen parameter must first be initialized to the size of the buffer associated with
the name parameter, and is then modified on return to indicate the actual size of
the address stored there.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
datagram packets are not available at the socket with descriptor s, the recvfrom()

#include <bsdtypes.h>
#include <socket.h>

int recvfrom(s, buf, len, flags, name, namelen)
int s;
char *buf;
int len;
int flags;
struct sockaddr *name;
int *namelen;

recv()

62 z/VM: TCP/IP Programmer’s Reference

call waits for a message to arrive and blocks the caller, unless the socket is in
nonblocking mode. See “fcntl()” on page 31 or “ioctl()” on page 54 for a description
of how to set nonblocking mode.

Return Values: If successful, the length of the message or datagram in bytes is
returned. The value 0 indicates that the connection was closed to the remote host.
The value −1 indicates an error. The value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

EFAULT Using the buf and len parameters would result in
an attempt to access memory outside the caller’s
virtual storage.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

See Also: fcntl(), getsockopt(), ioctl(), read(), readv(), recv(), recvmsg(), select(),
selectex(), send(), sendmsg(), sendto(), setsockopt(), socket(), write(), writev().

recvmsg()

Parameter Description

s Specifies the socket descriptor.

msg Specifies an array of message headers into which messages are
received.

flags Set by specifying one or more of the following flags. If more than
one flag is specified, the logical OR operator (|) must be used to
separate them. Setting this parameter is supported only for sockets
in the AF_INET domain. Setting these flags is not supported in the
AF_IUCV domain.

MSG_OOB Reads any out-of-band data on the socket.

MSG_PEEK Peeks at the data present on the socket; the data is
returned but not consumed, so that a subsequent
receive operation will see the same data.

Description: The recvmsg() call receives messages on a socket with descriptor s
and stores them in an array of message headers. A message header is defined by a
msghdr. The definition of this structure can be found in the SOCKET.H header file
and contains the following elements:

Element Description

msg_name Specifies an optional pointer to a buffer where the sender’s address
is stored.

msg_namelen Indicates the size of the address buffer.

#include <bsdtypes.h>
#include <socket.h>

int recvmsg(s, msg, flags)
int s;
struct msghdr msg[];
int flags;

recvfrom()

Chapter 2. C Sockets Application Program Interface 63

msg_iov Specifies an array of iovec buffers into which the message is placed.

msg_iovlen Specifies the number of elements in the msg_iov array.

msg_accrights Indicates the access rights received. This field is ignored.

msg_accrightslen
Indicates the length of access rights received. This field is ignored.

The recvmsg() call applies to sockets, regardless of whether they are in the
connected state.

This call returns the length of the data received. If data is not available at the
socket with descriptor s, the recvmsg() call waits for a message to arrive and
blocks the caller, unless the socket is in nonblocking mode. See “fcntl()” on page 31
or “ioctl()” on page 54 for a description of how to set nonblocking mode.

Return Values: If successful, the length of the message in bytes is returned. The
value 0 indicates that the connection was closed to the remote host. The value −1
indicates an error. The value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

EFAULT Using msg would result in an attempt to access
memory outside the caller’s virtual storage.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

See Also: connect(), fcntl(), getsockopt(), ioctl(), read(), readv(), recv(), recvfrom(),
select(), selectex(), send(), sendmsg(), sendto(), setsockopt(), socket(), write(),
writev().

select()

Parameter Description

nfds Specifies the greatest socket descriptor to check plus 1.

readfds Points to a bit set of descriptors to check for reading.

writefds Points to a bit set of descriptors to check for writing.

exceptfds Points to a bit set of descriptors to be checked for exceptional
pending conditions.

timeout Points to the time to wait for the select() call to complete.

#include <bsdtypes.h>
#include <bsdtime.h>

int select(nfds, readfds, writefds, exceptfds, timeout)
int nfds;
fd_set *readfds;
fd_set *writefds;
fd_set *exceptfds;
struct timeval *timeout;

recvmsg()

64 z/VM: TCP/IP Programmer’s Reference

Description: The select() call monitors activity on a set of sockets to see if any of
the sockets are ready for reading, writing, or have an exceptional condition
pending.

If timeout is not a NULL pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a NULL pointer, the select call blocks until a
socket becomes ready. To poll the sockets and return immediately, timeout should
be a non-NULL pointer to a zero-valued timeval structure.

To completely understand the implementation of the select call, you must
recognize the difference between a socket and a port. TCP/IP defines ports to
represent a certain process on a certain machine. A port represents the location of
one process; it does not represent a connection between processes. In the VM
programming interface for TCP/IP, a socket describes an endpoint of
communication. Therefore, a socket describes both a port and a machine. Like file
descriptors, a socket is a small integer representing an index into a table of
communication endpoints in a TCPIP virtual machine.

If your program specified apitype=2, only one SELECT may be outstanding on the
IUCV path, and will be cancelled with a return value of zero when any subsequent
function is performed on the same path, without regard to the specific socket
descriptors involved.

To allow you to test more than one socket at a time, the sockets to test are placed
into a bit set of type FD_SET. A bit set is a string of bits such that if X is an
element of the set, the bit representing X is set to 1. If X is not an element of the
set, the bit representing X is set to 0. For example, if socket 33 is an element of a
bit set, then bit 33 is set to 1. If socket 33 is not an element of a bit set, then bit 33
is set to 0.

Because the bit sets contain a bit for every socket that a process can allocate, the bit
sets are of constant size. The function getdtablesize() returns the number of sockets
that your program can allocate. If your program needs to allocate a large number
of sockets, use getdtablesize() and maxdesc() to increase the number of sockets that
can be allocated. Increasing the size of the bit sets must be done at compile time.
To increase the size of the bit sets before including the BSDTYPES.H header file,
define FD_SETSIZE to be the largest value of any socket. The default size of
FD_SETSIZE is 255 sockets.

The following macros are provided to manipulate bit sets.

Macro Description

FD_ZERO(&fdset) Sets all bits in the bit set fdset to zero. After this
operation, the bit set has no sockets as elements.
This macro should be called to initialize the bit set
before calling FD_SET() to set a socket as a
member.

FD_SET(sock, &fdset) Sets the bit for the socket sock to a 1, making sock a
member of the bit set fdset.

FD_CLR(sock, &fdset) Clears the bit for the socket sock in bit set fdset.
This operation sets the appropriate bit to a zero.

FD_ISSET(sock, &fdset) Returns > 0 if sock is a member of the bit set fdset.
Returns zero if sock is not a member of fdset. (This
operation returns the bit representing sock.)

select()

Chapter 2. C Sockets Application Program Interface 65

A socket is ready for reading when incoming data is buffered for it or when a
connection request is pending. A call to accept(), read(), recv(), or recvfrom() does
not block. To test whether any sockets are ready for reading, use FD_ZERO() to
intialize the readfds bit set, and invoke FD_SET() for each socket to test.

A socket is ready for writing if there is buffer space for outgoing data. A
nonblocking stream socket in the process of connecting (connect() returned
EINPROGRESS) is selected for write when the connect() completes. A call to
write(), send(), or sendto() does not block providing that the amount of data is less
than the amount of buffer space. If a socket is selected for write, the amount of
available buffer space is guaranteed to be at least as large as the size returned from
using SO_SNDBUF with getsockopt(). To test whether any sockets are ready for
writing, initialize writefds with FD_ZERO(), and use FD_SET() for each socket to
test.

The select() call checks for a pending exception condition on the given socket,
indicating that the target program has successfully called takesocket(). When
select() indicates a pending exception condition, your program calls close() to close
the given socket. A socket has exceptional conditions pending if it has received
out-of-band data. A stream socket that was given using givesocket() is selected for
exception when another application successfully takes the socket using
takesocket().

The programmer can pass NULL for any bit sets that do not have any sockets to
test. For example, if a program need only check a socket for reading, it can pass
NULL for both writefds and exceptfds.

Because the sets of sockets passed to select() are bit sets, the select() call must test
each bit in each bit set before polling the socket for its status. For efficiency, the
nfsd parameter specifies the largest socket that is passed in any of the bit sets. The
select call then tests only sockets in the range 0 to nfsd−1. nfsd can be the result of
getdtablesize(); but if the application only has two sockets and nfsd is the result of
getdtablesize(), select() is going to test every bit in each bit set.

Return Values: The total number of ready sockets in all bit sets is returned. The
value −1 indicates errno should be checked for an error. The value zero indicates
an expired time limit. If the return value is greater than zero, the sockets that are
ready in each bit set are set 1. Sockets in each bit set that are not ready are set to
zero. Use the macro FD_ISSET() with each socket to test its status.

Errno Value Description

EBADF Indicates that one of the bit sets specified an invalid socket.
FD_ZERO() was probably not called to clear the bit set before the
sockets were set.

EFAULT Indicates that one of the bit sets pointed to a value outside the
caller’s virtual storage.

EINVAL Indicates that one of the fields in the timeval structure is invalid.

Examples: In the following example, select() is used to poll three sockets: one for
reading, one for writing, and one for exceptional conditions.
/* sock_stats(r, w, e) - Print the status of sockets r, w, and e. */
int sock_stats(r, w, e)
int r, w, e;
{

fd_set reading, writing, except;
struct timeval timeout;

select()

66 z/VM: TCP/IP Programmer’s Reference

int rc, max_sock;

/* initialize the bit sets */
FD_ZERO(&reading);
FD_ZERO(&writing);
FD_ZERO(&except);

/* add r, w, and e to the appropriate bit set */
FD_SET(r, &reading);
FD_SET(w, &writing);
FD_SET(e, &except);

/* for efficiency, what’s the maximum socket number? */
max_sock = MAX(r, w);
max_sock = MAX(max_sock, e);

/* make select poll by sending a 0 timeval */
memset(&timeout, 0, sizeof(timeout));

/* poll */
rc = select(max_sock, &reading, &writing, &except, &timeout);

if (rc < 0) {
/* an error occurred during the select() */
tcperror("select");

}
else if (rc == 0) {

/* none of the sockets were ready in our little poll */
printf("nobody is home.\n");

} else {
/* at least one of the sockets is ready */
printf("r is %s\n", FD_ISSET(r,&reading) ? "READY" : "NOT READY");
printf("w is %s\n", FD_ISSET(w,&writing) ? "READY" : "NOT READY");
printf("e is %s\n", FD_ISSET(e,&except) ? "READY" : "NOT READY");

}
}

See Also: getdtablesize(), maxdesc(), selectex().

selectex()

Parameter Description

nfds Specifies the greatest socket descriptor to check plus 1.

readfds Points to a bit set of descriptors to check for reading.

writefds Points to a bit set of descriptors to check for writing.

exceptfds Points to a bit set of descriptors to be checked for exceptional
pending conditions.

timeout Points to the time to wait for the selectex() call to complete.

#include <bsdtypes.h>
#include <bsdtime.h>

int selectex(nfds, readfds, writefds, exceptfds, timeout, ecbptr)
int nfds;
fd_set *readfds;
fd_set *writefds;
fd_set *exceptfds;
struct timeval *timeout;
int *ecbptr;

select()

Chapter 2. C Sockets Application Program Interface 67

ecbptr Points to the event control block (ECB).

Description: The selectex() call monitors activity on a set of different sockets until
a time-out expires, to see if any sockets are ready for reading or writing, or if any
exceptional conditions are pending. Bit mask is made up of an array of integers.
Macros are provided to manipulate the bit masks. Refer to the select() call for a
complete description of the macros.

Return Values: The total number of ready sockets (in all bit masks) is returned.
The value −1 indicates an error. The value 0 indicates an expired time limit. If the
return value is greater than 0, the socket descriptors in each bit mask that are
ready are set to 1. All others are set to 0.

Errno Value Description

EBADF Indicates that one of the descriptor sets specified an invalid
descriptor.

EFAULT Indicates that one of the parameters pointed to a value outside the
caller’s virtual storage.

EINVAL Indicates that one of the fields in the timeval structure is invalid.

See Also: accept(), connect(), getdtablesize(), recv(), send(), select().

send()

Parameter Description

s Specifies the socket descriptor.

msg Points to the buffer containing the message to transmit.

len Specifies the length of the message pointed to by the buf parameter.

flags Set by specifying one or more of the following flags. If more than
one flag is specified, the logical OR operator (|) must be used to
separate them. Setting this parameter is supported only for sockets
in the AF_INET domain. Setting these flags is not supported in the
AF_IUCV domain.

MSG_OOB Sends out-of-band data on sockets
that support this notion. Only
SOCK_STREAM sockets created in
the AF_INET address family
support out-of-band data.

MSG_DONTROUTE Indicates that the
SO_DONTROUTE option is turned
on for the duration of the
operation. This is usually used only
by diagnostic or routing programs.

#include <bsdtypes.h>
#include <socket.h>
int send(s, msg, len, flags)
int s;
char *msg;
int len;
int flags;

selectex()

68 z/VM: TCP/IP Programmer’s Reference

Description: The send() call sends packets on the socket with descriptor s. The
send() call applies to all connected sockets.

If buffer space is not available at the socket to hold the message to be transmitted,
the send() call normally blocks, unless the socket is placed in nonblocking
Input/Output (I/O) mode. See “ioctl()” on page 54 or “fcntl()” on page 31 for a
description of how to set nonblocking mode. The select() call can be used to
determine when it is possible to send more data.

Return Values: No indication of failure to deliver is implicit in a send() routine.
The value −1 indicates locally detected errors. The value of errno indicates the
specific error.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

EFAULT Using the buf and len parameters would result in
an attempt to access memory outside the caller’s
virtual storage.

ENOBUFS Indicates that no buffer space is available to send
the message.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

See Also: connect(), fcntl(), getsockopt(), ioctl(), read(), readv(), recv(), recvfrom(),
recvmsg(), select(), selectex(), sendmsg(), sendto(), socket(), write(), writev().

sendmsg()

Parameter Description

s Specifies the socket descriptor.

msg Specifies an array of message headers from which messages are
sent.

flags Set by specifying one or more of the following flags. If more than
one flag is specified, the logical OR operator (|) must be used to
separate them. Setting this parameter is supported only for sockets
in the AF_INET domain. Setting these flags is not supported in the
AF_IUCV domain.

MSG_OOB Sends out-of-band data on the
socket.

MSG_DONTROUTE Indicates that the
SO_DONTROUTE option is turned
on for the duration of the
operation. This is usually used only
by diagnostic or routing programs.

#include <bsdtypes.h>
#include <socket.h>

int sendmsg(s, msg, flags)
int s;
struct msghdr msg[];
int flags;

send()

Chapter 2. C Sockets Application Program Interface 69

Description: The sendmsg() call sends messages on a socket with descriptor s
passed in an array of message headers. A message header is defined by a msghdr.
The definition of this structure can be found in the SOCKET.H header file and
contains the following elements:

Element Description

msg_name Specifies the optional pointer to the buffer containing the
recipient’s address.

msg_namelen Indicates the size of the address buffer.

msg_iov Specifies an array of iovec buffers containing the message.

msg_iovlen Specifies the number of elements in the msg_iov array.

msg_accrights Indicates the access rights sent. This field is ignored.

msg_accrightslen
Indicates the length of the access rights sent. This field is ignored.

The sendmsg() call applies to sockets regardless of whether they are in the
connected state.

This call returns the length of the data sent. If the socket with descriptor s is not
ready for sending data, the sendmsg() call waits for the ability to send data and
blocks the caller. s is in nonblocking mode unless the socket is in nonblocking
mode. See “fcntl()” on page 31 or “ioctl()” on page 54 for a description of how to
set nonblocking mode.

Return Values: If successful, the length of the message in bytes is returned. The
value −1 indicates an error. The value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

EFAULT Using msg would result in an attempt to access
memory outside the caller’s virtual storage.

EINVAL Indicates that tolen is not the size of a valid address
for the specified address family.

EMSGSIZE Indicates that the message was too big to be sent as
a single datagram. The default is 8192, and the
maximum is 32 767.

ENOBUFS Indicates that no buffer space is available to send
the message.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

See Also: connect(), fcntl(), getsockopt(), ioctl(), read(), readv(), recv(), recvfrom(),
recvmsg(), select(), selectex(), send(), sendto(), setsockopt(), socket(), write(),
writev().

sendto()

sendmsg()

70 z/VM: TCP/IP Programmer’s Reference

Parameter Description

s Specifies the socket descriptor.

msg Points to the buffer containing the message to transmit.

len Specifies the length of the message in the buffer pointed to by the
msg parameter.

flags Set to 0 or MSG_DONTROUTE. Setting this parameter is
supported only for sockets in the AF_INET domain. Setting these
flags is not supported in the AF_IUCV domain.

MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the
duration of the operation. This is usually used only
by diagnostic or routing programs.

to Specifies the address of the target.

tolen Indicates the size of the address pointed to by the to pointer.

Description: The sendto() call sends packets on the socket with descriptor s. The
sendto() call applies to any datagram socket, whether connected or unconnected.

Return Values: If successful, the number of characters sent is returned. The value
−1 indicates an error. The value of errno indicates the specific error.

No indication of failure to deliver is implied in the return value of this call when
used with datagram sockets.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

EFAULT Using the buf and len parameters would result in
an attempt to access memory outside the caller’s
virtual storage.

EINVAL Indicates that tolen is not the size of a valid address
for the specified address family.

EMSGSIZE Indicates that the message was too big to be sent as
a single datagram. The default is 8192, and the
maximum is 32,767.

ENOBUFS Indicates that no buffer space is available to send
the message.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

See Also: read(), readv(), recv(), recvfrom(), recvmsg(), send(), select(), selectex(),
sendmsg(), socket() write(), writev().

#include <bsdtypes.h>
#include <socket.h>
int sendto(s, msg, len, flags, to, tolen)
int s;
char *msg;
int len;
int flags;
struct sockaddr *to;
int tolen;

sendto()

Chapter 2. C Sockets Application Program Interface 71

sethostent()

The sethostent() call has no parameters.

Description: The sethostent() call opens and rewinds the HOSTS SITEINFO file.
The HOSTS file contains information about known hosts. If the stayopen flag is
nonzero, the HOSTS file remains open after each call.

The sethostent() call is available only if RESOLVE_VIA_LOOKUP is defined before
the MANIFEST.H header file is included.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

See Also: endhostent(), gethostbyaddr(), gethostbyname(), gethostent().

setibmsockopt()
Setibmsockopt() controls socket options specific to the IBM TCP/IP
implementation.

Parameter Description

s The socket descriptor.

level The level for which the option is being set. Only SOL_SOCKET is
supported.

optname The name of a specified socket option:
v SO_BULKMODE
v SO_NONBLOCKLOCAL
v SO_IGNOREINCOMINGPUSH

optval The pointer to option data.

optlen The length of the option data.

SO_BULKMODE
Use setibmsockopt() with the optname SO_BULKMODE to place the UDP socket s
in bulk mode. The bulk mode socket option enables an application to queue
multiple datagrams, sending all of the datagrams in one large buffer. This reduces
the CPU consumption for each datagram.

For inbound datagrams, a queue of pending datagrams is maintained on the
application side of the interface. As the application performs receive calls, it draws
from that queue. When the queue is empty, recv() call requests that TCPIP pass
over whatever datagrams are pending in one transaction. The oldest datagram is
returned to the caller, and the application-side queue is replenished.

int sethostent(stayopen)
int stayopen;

#include <manifest.h>
#include <socket.h>

int setibmsockopt(int s, int level, int optname, char *optval, int optlen)

sethostent()

72 z/VM: TCP/IP Programmer’s Reference

For outbound datagrams, a separate queue is kept on the application side of the
interface. When the application performs send calls, the datagram is queued. When
there are no more datagrams to send out, ibmsflush() is called to send the queued
datagrams to the TCPIP address space in one transaction.

Note: Bulk mode is valid for all send calls--send(), sendmsg(), sendto(), and
write()--except for the writev() call. Bulk mode is valid for all read
calls--read(), recv(), recvmsg(), and recvfrom()--except for the readv() call.
However, for the sendmsg() and recvmsg() calls, only one datagram is
processed per call.

Use of bulk mode can improve program performance. Performance improvement
depends on the system load and the arrival pattern of the datagram messages at
the socket. As system load increases, the reduction in CPU use because of bulk
mode should also increase. When datagrams for the socket are processed, there
should be an even greater reduction in CPU usage.

When optname is SO_BULKMODE, optval must point to an ibm_bulkmode_struct
with values set as follows:

Element Description

b_onoff 1 means bulk mode is on; 0 means bulk mode is off.

b_max_receive_queue_size
The maximum receiving queue size in bytes. Specifying a value of
0 prevents queuing for inbound datagrams.

b_max_send_queue_size
The maximum sending queue size in bytes. Specifying a value of 0
prevents queuing for outbound datagrams.

b_teststor If this element is nonzero, the message buffer address and the
message buffer are checked for addressability during each socket
call. errno is set to EFAULT if there is an addressing exception. If
this element is zero, checking is not performed.

b_move_data Must be set to 1.

The socket calls that receive datagrams in your program (recvfrom(), recv(), read(),
or recvmsg()) do not need to be changed. If you are using a queue for sending
datagrams (by specifying a nonzero value for b_max_send_queue_size above), you
should code ibmsflush() to flush the socket at appropriate points, such as after you
send a burst of datagrams that is normally followed by a pause.

SO_NONBLOCKLOCAL
The option is meaningful only for sockets that have been enabled for bulk mode
using the setibmsockopt() call with SO_BULKMODE. In nonblocking mode, when
the application-side queue is empty, the socket library returns −1 on a receive and
sets errno to EWOULDBLOCK. optval should point to an integer. If optval points to
1, the socket is placed in nonblocking mode. If optval points to 0, the socket is
placed in blocking mode.

Before the application calls SO_NONBLOCKLOCAL, the socket is in blocking
mode.

setibmsockopt()

Chapter 2. C Sockets Application Program Interface 73

SO_IGNOREINCOMINGPUSH
This option is meaningful only for stream sockets connections established through
an offload box. optval must point to an integer. If optval points to 1, the option is
set. If optval points to 0, the option is off.

The SO_IGNOREINCOMINGPUSH option causes a receive call to return when:
v The requested length is reached.
v The internal TCPIP length is reached.
v The peer application closes the connection.

The amount of data returned for each call is maximized and the amount of CPU
time consumed by your program and TCPIP can be reduced.

This option is not appropriate for your operation if your program 9 For example,
this option is appropriate for an FTP data connection, but not for a Telnet
connection.

Example: The following is an example of the setibmsockopt() call.
#include <manifest.h>
#include <socket.h>
#include <tcperror.h>

{ struct ibm_bulkmode_struct bulkstr;
int optlen, rc;

optlen = sizeof(bulkstr);
rc = getibmsockopt(s, SOL_SOCKET, SO_BULKMODE, (char *), &bulkstr, &optlen);
if (rc < 0) {

tcperror("on getibmsockopt()");
exit(1);

}
fprintf(stream,"%d byte buffer available for outbound queue.\n",

bulkstr.b_max_send_queue_size_avail);

bulkstr.b_max_send_queue_size=bulkstr.b_max_send_queue_size_avail;
bulkstr.b_onoff = 1;
bulkstr.b_teststor = 0;
bulkstr.b_move_data = 1;
bulkstr.b_max_receive_queue_size = 65536;
rc = setibmsockopt(s, SOL_SOCKET, SO_BULKMODE, (char *), &bulkstr, optlen);
if (rc < 0) {

tcperror("on setibmsockopt()");
exit(1);

}
}

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EBADF The s parameter is not a valid socket descriptor.

EFAULT Using optval and optlen parameters would result
in an attempt to access storage outside the caller’s
address space.

EIBMIUCVERR An IUCV error occurred.

ENOPROTOOPT The optname parameter is unrecognized, or the
level parameter is not SOL_SOCKET.

setibmsockopt()

74 z/VM: TCP/IP Programmer’s Reference

Related Calls: getibmsockopt(), getsockopt(), ibmsflush(), setsockopt().

setnetent()

The setnetent() call has no parameters.

Description: The setnetent() call opens and rewinds the HOSTS SITEINFO file. The
HOSTS SITEINFO file contains information about known networks. If the stayopen
flag is nonzero, the HOSTS SITEINFO file remains open after each call to
setnetent().

Note: HOSTS LOCAL, HOSTS ADDRINFO, and HOSTS SITEINFO are shown in
TCP/IP Planning and Customization.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

See Also: endnetent(), getnetbyaddr(), getnetbyname(), getnetent().

setprotoent()

The setprotoent() call has no parameters.

Description: The setprotoent() call opens and rewinds the ETC PROTO file. If the
stayopen flag is nonzero, the ETC PROTO file remains open after each call.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

See Also: endprotoent(), getprotobyname(), getprotobynumber(), getprotoent().

setservent()

The setservent() call has no parameters.

Description: The setservent() call opens and rewinds the ETC SERVICES file. For
more information about the ETC SERVICES file, see “Appendix C. Well-Known
Port Assignments” on page 413. If the stayopen flag is nonzero, the ETC SERVICES
file remains open after each call.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

See Also: endservent(), getservbyname(), getservent().

int setnetent(stayopen)
int stayopen;

int setprotoent(stayopen)
int stayopen;

int setservent(stayopen)
int stayopen;

setnetent()

Chapter 2. C Sockets Application Program Interface 75

setsockopt()

Parameter Description

s Specifies the socket descriptor.

level Specifies the level for which the option is set. Only SOL_SOCKET
and IPPROTO_IP are supported.

optname Specifies the name of a specified socket option.

optval Points to option data.

optlen Indicates the length of the option data.

Description: The setsockopt() call sets options associated with a socket. It can be
called only for sockets in the AF_INET domain. This call is not supported in the
AF_IUCV domain. Options can exist at multiple protocol levels; they are always
present at the highest socket level.

When manipulating socket options, you must specify the level at which the option
resides and the name of the option. To manipulate options at the socket level, the
level parameter must be set to SOL_SOCKET or IPPROTO_IP, as defined in
SOCKET.H. To manipulate options at any other level, such as the TCP or IP level,
supply the appropriate protocol number for the protocol controlling the option.
Currently, only the SOL_SOCKET and IPPROTO_IP levels are supported. The
getprotobyname() call can be used to return the protocol number for a named
protocol.

The optval and optlen parameters are used to pass data used by the particular set
command. The optval parameter points to a buffer containing the data needed by
the set command. The optval is optional and can be set to the NULL pointer, if data
is not needed by the command. The optlen parameter must be set to the size of the
data pointed to by optval.

All of the socket level options except SO_LINGER expect optval to point to an
integer and optlen to be set to the size of an integer. When the integer is nonzero,
the option is enabled. When it is zero, the option is disabled. The SO_LINGER
option expects optval to point to a linger structure, as defined in SOCKET.H. This
structure is defined in the following example:
struct linger
{

int l_onoff; /* option on/off */
int l_linger; /* linger time */

};

The l_onoff field is set to zero if the SO_LINGER option is being disabled. A
nonzero value enables the option. The l_linger field specifies the amount of time
to linger on close. The units of l_linger are seconds.

#include <bsdtypes.h>
#include <socket.h>

int setsockopt(s, level, optname, optval, optlen)
int s;
int level;
int optname;
char *optval;
int optlen;

setsockopt()

76 z/VM: TCP/IP Programmer’s Reference

|

|

The following options are recognized at the IP level (IPPROTO_IP):

Option Description

IP_MULTICAST_TTL
Sets the IP time-to-live of outgoing multicast datagrams. The
default value is 1 (multicast only to directly attached network). The
TTL value is passed in as a u_char. This option is only supported
for sockets with an address family of AF_INET and type of
SOCK_DGRAM or SOCK_RAW.

IP_MULTICAST_LOOP
Enables/disables loopback of outgoing multicast datagrams. The
default is enable. When loopback is enabled, multicast applications
that have joined the outgoing multicast group can receive a copy of
the multicast datagram destined for that address/port pair. The
loopback indicator is passed as u_char. Specify a value of 0 to
disable loopback; specify a value of 1 to enable loopback. This
option is only supported for sockets with an address family of
AF_INET and type of SOCK_DGRAM or SOCK_RAW.

IP_MULTICAST_IF
Sets the interface for sending outbound multicast datagrams from
this socket application. Multicast datagrams will be transmitted on
only the specified interface. The default is INADDR_ANY which
means all interfaces. The IP Address of the interface is passed
using structure in_addr. An address of INADDR_ANY removes the
previous selection. This option is only supported for sockets with
an address family of AF_INET and type of SOCK_DGRAM or
SOCK_RAW.

IP_ADD_MEMBERSHIP
Joins a multicast group on a specific interface (an interface has to
be specified with this option). Only applications that want to
receive multicast datagrams need to join multicast groups.
Applications that only transmit multicast datagrams do not need to
join multicast groups. A single socket can join up to 20 groups. The
multicast IP address and the interface IP address will be passed in
ip_mreq structure defined in IN.H.

struct ip_mreq
{

struct in_addr imr_multiaddr; /* IP multicast addr of group */
struct in_addr imr_interface; /* local IP addr of interface */

);

This option is only supported for sockets with an address family of
AF_INET and type of SOCK_DGRAM or SOCK_RAW.

IP_DROP_MEMBERSHIP
Leaves a multicast group on a specific interface. The multicast IP
address and the interface IP address will be passed in the ip_mreq
structure defined in IN.H.

struct ip_mreq
{

struct in_addr imr_multiaddr; /* IP multicast addr of group */
struct in_addr imr_interface; /* local IP addr of interface */

);

This option is only supported for sockets with an address family of
AF_INET and type of SOCK_DGRAM or SOCK_RAW.

setsockopt()

Chapter 2. C Sockets Application Program Interface 77

|

||

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

The following options are recognized at the socket level:

Option Description

SO_KEEPALIVE Toggles the TCP keep-alive mechanism for a stream
socket. When activated, the keep-alive mechanism
periodically sends a packet on an otherwise idle
connection. If the remote TCP does not respond to
the packet or to retransmissions of the packet, the
connection is terminated with the error
ETIMEDOUT.

SO_BROADCAST Toggles the ability to broadcast messages. If this
option is enabled, it allows the application to send
broadcast messages over s, if the interface specified
in the destination supports broadcasting of packets.
This option has no meaning for stream sockets.

SO_LINGER Lingers on close if data is present. When this
option is enabled and there is unsent data present
when close() is called, the calling application is
blocked during the close() call until the data is
transmitted or the connection has timed out. If this
option is disabled, the TCPIP virtual machine waits
to try to send the data. Although the data transfer
is usually successful, it cannot be guaranteed,
because the TCPIP virtual machine waits only a
finite amount of time trying to send the data. The
close() call returns without blocking the caller. This
option has meaning only for stream sockets.

SO_OOBINLINE Toggles the reception of out-of-band data. When
this option is enabled, it causes out-of-band data to
be placed in the normal data input queue as it is
received, making it available to recv(), recvfrom(),
and recvmsg() without having to specify the
MSG_OOB flag in those calls. When this option is
disabled, it causes out-of-band data to be placed in
the priority data input queue as it is received,
making it available to recv(), recvfrom(), and
recvmsg() only by specifying the MSG_OOB flag in
those calls. This option has meaning only for
stream sockets.

SO_REUSEADDR Toggles local address reuse. When enabled, this
option allows local addresses that are already in
use to be bound. This alters the normal algorithm
used in the bind() call. The system checks at
connect time to be sure that no local address and
port have the same foreign address and port. The
error EADDRINUSE is returned if the association
already exists.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

setsockopt()

78 z/VM: TCP/IP Programmer’s Reference

|

EADDRINUSE
Indicates that the socket has already joined the multicast group on
the selected interface.

EADDRNOTAVAIL
Indicates that the interface IP address cannot be found or does not
support multicasting.

EBADF Indicates that the s parameter is not a valid socket descriptor.

EFAULT Indicates that using optval and optlen parameters would result in an
attempt to access memory outside the caller’s virtual storage.

EIBMIUCVERR
Indicates that an IUCV error occurred.

EINVAL Indicates that the multicast IP address specified is not a valid Class
D IP address (designated by the high order four bits being set to
B’1110’.

EOPNOTSUPP
Indicates that the s parameter is not a socket desciptor that
supports the optname parameter.

ETOOMANYREFS
Indicates that the socket has already joined the maximum number
of multicast groups (IP_MAX_MEMBERSHIPS=20).

Examples: The following are examples of the setsockopt() call. See “getsockopt()”
on page 45 for examples of how the getsockopt() options set are queried.
int rc;
int s;
int optval;
struct linger l;
int setsockopt(int s, int level, int optname, char *optval, int optlen);...
/* I want out of band data in the normal input queue */
optval = 1;
rc = setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (char *) &optval
, sizeof(int));

...
/* I want to linger on close */
l.l_onoff = 1;
l.l_linger = 100;
rc = setsockopt(s, SOL_SOCKET, SO_LINGER, (char *) &l, sizeof(l));

See Also: fcntl(), getprotobyname(), getsockopt(), ioctl(), socket().

sockdb_sock_debug()
The sock_debug() call controls the socket library tracing facility. If enabled, all
socket calls and interrupts are traced, with output directed to the virtual console.

If you include the SOCKDEBUG statement in the TCPIP DATA file, tracing is
active by default. A call to sock_debug() is not required.

#include <manifest.h>
#include <socket.h>

void sock_debug(int onoff)

setsockopt()

Chapter 2. C Sockets Application Program Interface 79

|
|
|

|
|
|

||
|
|

|
|
|

|
|
|

Parameter Description
onoff

TRUE tracing is enabled.
FALSE

tracing is disabled

sock_debug_bulk_perf0 ()
The sock_debug_bulk_perf0() call controls the generation of a performance report
when any socket configured for bulk mode is closed. The report is directed to the
virtual console.

If you include the SOCKDEBUGBULKPERF0 statement in the TCPIP DATA file,
performance reports are enabled by default. A call to sock_debug_bulk_perf0() is
not required.

Parameter Description
onoff

TRUE A performance report is generated.

FALSE
A performance report is not generated.

If this parameter is omitted a performance report is not produced.

Example: The following is an example of the sock_debug_bulk_perf0() socket()
call report.
Bulkmode performance for socket 3:
Doing TESTSTOR (ie. testing addressability of buffers, etc.)
Received 14601460 bytes,

10001 datagrams, 846 IUCV’s 11.8
datagrams⁄IUCV.

In this example, 3 is the socket descriptor for the socket running in bulk mode.
Doing TESTSTOR indicates that the library was checking for addressing errors on
socket calls, and 14,601,460 bytes of data were received in 10,001 datagrams. 846
calls were done to read the datagrams on the socket for an average of 11.8
datagrams for each IUCV.

sock_do_bulkmode()
The sock_do_bulkmode() controls the initial BULKMODE setting for datagram
sockets.

If you include the SOCKBULKMODE statement in the TCPIP DATA file, bulk
mode is enabled by default. A call to sock_do_bulkmode() is not required.

For a complete description of bulk mode, see setibmsockopt().

#include <manifest.h>
#include <socket.h>

void sock_debug_bulk_perf0(int onoff)

sockdb_sock_debug()

80 z/VM: TCP/IP Programmer’s Reference

Parameter Description
onoff

TRUE All sockets with type SOCK_DGRAM are created with bulk
mode enabled.

FALSE
All sockets with type SOCK_DGRAM are created with bulk
mode disabled. A call to setibmsockopt() is required to
enable bulk mode for a specific socket.

sock_do_teststor()
The sock_do_teststor() call is used to check for calls that attempt to access storage
outside the caller’s address space.

If you include the statement SOCKTESTSTOR in the TCPIP DATA file, address
checking is active by default. A call to sock_do_teststor() is not necessary.

Parameter Description
onoff

TRUE The address of the message buffer and the message buffer
are checked for addressability for each socket call. The
error condition, EFAULT is set if there is an addressing
problem.

FALSE
Address checking is not done. If an error occurs when onoff
is 0, normal runtime error handling reports the exception
condition.

shutdown()

Parameter Description

s Specifies the socket descriptor.

how Specifies the condition of the shutdown. The values 0, 1, or 2 set
the condition.

Description: The shutdown() call shuts down all or part of a duplex connection.
The how parameter sets the condition for shutting down the connection to socket s.

how can have a value of 0, 1, or 2, where:

#include <manifest.h>
#include <socket.h>

void sock_do_bulkmode(int onoff)

#include <manifest.h>
#include <socket.h>

void sock_do_teststor(int onoff)

int shutdown(s, how)
int s;
int how;

sock_do_bulkmode()

Chapter 2. C Sockets Application Program Interface 81

v 0 ends communication from socket s.
v 1 ends communication to socket s.
v 2 ends communication both to and from socket s.

Return Values: The value 0 indicates success; the value −1 indicates an error. The
value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

EINVAL Indicates that the how parameter was not set to one of the valid
values. Valid values are 0, 1, and 2.

See Also: accept(), close(), connect(), socket().

socket()

Parameter Description

domain Specifies the address domain requested. It is either AF_INET or
AF_IUCV.

type Specifies the type of socket created, either SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW.

protocol Specifies the protocol requested. Some possible values are 0,
IPPROTO_UDP, or IPPROTO_TCP.

Description: The socket() call creates an endpoint for communication and returns a
socket descriptor representing the endpoint. Different types of sockets provide
different communication services.

The domain parameter specifies a communications domain within which
communication is to take place. This parameter selects the address family (format
of addresses within a domain) which is used. The families supported are AF_INET,
which is the internet domain and AF_IUCV, which is the IUCV domain. These
constants are defined in the SOCKET.H header file.

The type parameter specifies the type of socket created. The type is analogous with
the semantics of the communication requested. These socket type constants are
defined in the SOCKET.H header file. The types supported are:

Socket Type Description

SOCK_STREAM Provides sequenced, two-way byte streams that are
reliable and connection-oriented. They support a
mechanism for out-of-band data. This type is
supported in both the AF_INET and AF_IUCV
domains.

SOCK_DGRAM Provides datagrams, which are connectionless

#include <bsdtypes.h>
#include <socket.h>

int socket(domain, type, protocol)
int domain;
int type;
int protocol;

shutdown()

82 z/VM: TCP/IP Programmer’s Reference

messages of a fixed maximum length whose
reliability is not guaranteed. Datagrams can be
corrupted, received out of order, lost, or delivered
multiple times. This type is supported in only the
AF_INET domain.

SOCK_RAW Provides the interface to internal protocols (such as
IP and ICMP). This type is supported in only the
AF_INET domain.

The protocol parameter specifies a particular protocol to be used with the socket. In
most cases, a single protocol exists to support a particular type of socket in a
particular addressing family (not true with raw sockets). If the protocol field is set
to 0, the system selects the default protocol number for the domain and socket
type requested. Protocol numbers are found in the ETC PROTO file. Alternatively,
the getprotobyname call can be used to get the protocol number for a protocol with a
known name. The protocol field must be set to 0, if the domain parameter is set to
AF_IUCV. Currently, protocol defaults are TCP for stream sockets and UDP for
datagram sockets. There is no default for raw sockets.

SOCK_STREAM
Stream sockets model duplex byte streams. They provide reliable, flow-controlled
connections between peer applications. Stream sockets are either active or passive.
Active sockets are used by clients who initiate connection requests with connect().
By default, socket() creates active sockets. Passive sockets are used by servers to
accept connection requests with the connect() call. An active socket is transformed
into a passive socket by binding a name to the socket with the bind() call and by
indicating a willingness to accept connections with the listen() call. Once a socket is
passive, it cannot be used to initiate connection requests.

In the AF_INET domain, the bind() call applied to a stream socket lets the
application specify the networks from which it is willing to accept connection
requests. The application can fully specify the network interface by setting the
internet address field in the address structure to the internet address of a network
interface. Alternatively, the application can use a wildcard to specify that it wants to
receive connection requests from any network. This is done by setting the internet
address field in the address structure to the constant INADDR_ANY as defined in
the SOCKET.H header file.

Once a connection has been established between stream sockets, any of the data
transfer calls can be used (read(), write(), send(), recv(), readv(), writev(), sendto(),
recvfrom(), sendmsg(), recvmsg()). Usually, the read-write or send-recv pairs are
used for sending data on stream sockets. If out-of-band data is to be exchanged,
the send-recv pair is normally used.

SOCK_DGRAM
Datagram sockets model datagrams. They provide connectionless message
exchange with no guarantees on reliability. Messages sent have a maximum size.
Datagram sockets are not supported in the AF_IUCV domain.

There is no active or passive analogy to stream sockets with datagram sockets.
Servers must still call bind() to name a socket and to specify from which network
interfaces it wishes to receive packets. Wildcard addressing, as described for stream
sockets, applies for datagram sockets also. Because datagram sockets are
connectionless, the listen() call has no meaning for them and must not be used
with them.

socket()

Chapter 2. C Sockets Application Program Interface 83

Once an application has received a datagram socket it can exchange datagrams
using the sendto() and recvfrom() or sendmsg() and recvmsg() calls. If the
application goes one step further by calling connect() and fully specifying the
name of the peer with which all messages will be exchanged, then the other data
transfer calls read(), write(), readv(), writev(), send(), recv() can also be used. For
more information on placing a socket into the connected state see “connect()” on
page 27 .

Datagram sockets allow messages to be broadcast to multiple recipients. Setting the
destination address to be a broadcast address is network interface dependent
(depends on class of address and whether sub-nets are being used). The constant
INADDR_BROADCAST, defined in socket.h, can be used to broadcast to the
primary network if the primary network configured supports broadcast. Datagram
sockets allow messages to be multicast by setting the destination address to a
multicast address.

SOCK_RAW
Raw sockets give the application an interface to lower layer protocols, such as IP
and ICMP. This interface is often used to bypass the transport layer when direct
access to lower layer protocols is needed. Raw sockets are also used to test new
protocols. Raw sockets are not supported in the AF_IUCV domain.

Raw sockets are connectionless and data transfer semantics are the same as those
described previously for datagram sockets. The connect call can be used similarly to
specify the peer.

Outgoing packets have an IP header prefixed to them. IP options can be set and
inspected using the setsockopt() and getsockopt() calls respectively. Incoming
packets are received with the IP header and options intact.

Sockets are deallocated with the close() call.

Raw sockets allow messages to be multicast by setting the destination address to a
multicast address.

Note: When you use only AF_IUCV sockets and no AF_INET sockets, you need to
run SET TIMER REAL on pre-VM/XA SP™ systems.

The following limitations apply:
v Only SOCK_STREAM sockets are supported in the AF_IUCV domain.
v The setsockopt() and getsockopt() calls are not supported for sockets in the

AF_IUCV domain.
v The flags field in the send(), recv(), sendto(), recvfrom(), sendmsg(), recvmsg()

calls is not supported in the AF_IUCV domain.

Return Values: A nonnegative socket descriptor indicates success. The value −1
indicates an error. The value of errno indicates the specific error.

Errno Value Description

EIBMIUCVERR Indicates that an IUCV error occurred.

EMFILE Indicates that the socket descriptor table is already
full.

socket()

84 z/VM: TCP/IP Programmer’s Reference

|
|
|

|
|

||
|

EPROTONOSUPPORT Indicates that the protocol is not supported in this
domain or this protocol is not supported for this
socket type.

Examples: The following are examples of the socket() call.
int s;
struct protoent *p;
struct protoent *getprotobyname(char *name);
int socket(int domain, int type, int protocol);...
/* Get stream socket in internet domain with default protocol */
s = socket(AF_INET, SOCK_STREAM, 0);...
/* Get stream socket in iucv domain with default protocol */
s = socket(AF_IUCV, SOCK_STREAM, 0);...
/* Get raw socket in internet domain for ICMP protocol */
p = getprotobyname(“iucv”);
s = socket(AF_INET, SOCK_RAW, p->p_proto);

See Also: accept(), bind(), close() connect(), fcntl(), getprotobyname(),
getsockname(), getsockopt(), ioctl(), maxdesc(), read(), readv(), recv(), recvfrom(),
recvmsg(), select(), selectex(), send(), sendmsg(), sendto(), shutdown(), write(),
writev().

takesocket()

Parameter Description

clientid Points to the clientid of the application from whom you are taking
a socket.

hisdesc Specifies the descriptor of the socket to be taken.

Description: The takesocket() call acquires a socket from another program. Your
program obtains the other program’s client ID and socket descriptor through your
program’s startup parameter list. After successfully calling takesocket(), your
application uses an agreed-upon mechanism to signal the other application so that
it can close the socket.

Typically, takesocket() is used by an agent program that handles one socket at a
time, taking its sockets from a master program that obtains them by means of the
accept() call.

Return Values: A nonnegative socket descriptor indicates success. The value −1
indicates an error. The value of errno indicates a specific error.

Errno Value Description

EACCES Indicates that the other application did not give the socket to your
application.

#include <bsdtypes.h>
#include <socket.h>

int takesocket(clientid, hisdesc)
struct clientid *clientid;
int hisdesc;

socket()

Chapter 2. C Sockets Application Program Interface 85

EBADF Indicates that the hisdesc parameter does not specify a valid socket
descriptor owned by the other application. The socket has already
been taken.

EFAULT Indicates that using the clientid parameter as specified would result
in an attempt to access storage outside the caller’s virtual storage.

EINVAL Indicates that the clientid parameter does not specify a valid client
identifier.

EMFILE Indicates that the socket descriptor table is already full.

ENOBUFS Indicates that the operation cannot be performed because of the
shortage of SCB or SKCB control blocks in the TCPIP virtual
machine.

EPFNOSUPPORT
Indicates that the domain field of the clientid parameter is not
AF_INET.

See Also: getclientid(), givesocket().

tcperror()

Parameter Description
s Specifies a NULL or NULL-terminated character string.

Description: When a socket call produces an error, the call returns a negative value
and the variable errno is set to an error value found in the TCPERRNO.H header
file. The tcperror() call prints a short error message describing the last error that
occurred. If s is non-NULL, tcperror() prints the string s followed by a colon,
followed by a space, followed by the error message, and terminated with a
new-line character. If s is NULL or points to a NULL string, just the error message
and the new-line character are output.

The error messages printed by tcperror() are stored in an array of strings called
tcp_errlist. The entry tcp_errlist [errno] is the message that tcperror() prints.

The tcperror() function is equivalent to the perror() function in UNIX®.

Return Values: None.

Examples: The following are examples of the tcperror() call.

Example 1
if ((s=socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

tcperror(“socket()”);
exit(2);

}

If the socket() call produces the error ENOMEM, socket() returns a negative value
and errno is set to ENOMEM. When tcperror() is called, it prints the string:

socket(): not enough memory (ENOMEM)

#include <tcperrno.h>

void tcperror(s)
char *s;

takesocket()

86 z/VM: TCP/IP Programmer’s Reference

Example 2
if ((s=socket(AF_INET, SOCK_DGRAM, 0)) < 0)

tcperror(NULL);

If the socket() call produces the error enomem, socket() returns a negative value
and errno is set to ENOMEM. When tcperror() is called, it prints the string:

Not enough memory (ENOMEM)

Example 3
if ((s=socket(AF_INET, SOCK_DGRAM, 0)) < 0){

printf(“error creating socket s: %s\n”, tcp_errlist [errno]);
exit(1);

}

If the socket() call produces the error ENOMEM, socket() returns a negative value
and errno is set to enomem. The program then prints:

error creating socket s: not enough memory (ENOMEM)

write()

Parameter Description

s Specifies the socket descriptor.

buf Points to the buffer holding the data to be written.

len Specifies the length in bytes of the buffer pointed to by the buf
parameter.

Description: The write() call writes data on a socket with descriptor s. The write()
call applies only to connected sockets.

This call writes up to len bytes of data. If writing the number of bytes requested is
not possible, the call waits for writing to be possible. This blocks the caller, unless
the socket is in nonblocking mode. See “ioctl()” on page 54 or “fcntl()” on page 31
for a description of how to set nonblocking mode.

Return Values: If successful, the number of bytes written is returned. The value −1
indicates an error. The value of errno indicates the specific error.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

EFAULT Indicates that using the buf and len parameters
would result in an attempt to access memory
outside the caller’s virtual storage.

ENOBUFS Indicates that no buffer space is available to send
the message.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

int write(s, buf, len)
int s;
char *buf;
int len;

tcperror()

Chapter 2. C Sockets Application Program Interface 87

See Also: connect(), fcntl(), getsockopt(), ioctl(), read(), readv() recv(), recvfrom(),
recvmsg(), select(), selectex(), send(), sendmsg(), sendto(), setsockopt(), socket(),
writev().

writev()

Parameter Description
s Specifies the socket descriptor.
iov Points to an array of iovec buffers.
iovcnt Specifies the number of buffers pointed to by the iov parameter.

Description: The writev() call writes data on a socket with descriptor s. The data is
gathered from the buffers specified by iov[0]...iov[iovcnt−1]. The iovec structure is
defined in uio.h and contains the following fields:

Element Description
iov_base Points to the buffer.
iov_len Specifies the length of the buffer.

The writev() call applies only to connected sockets.

This call writes len bytes of data. If it is not possible to write the number of bytes
requested, the writev() call waits for the ability to write. This blocks the caller,
unless the socket is in nonblocking mode. See “fcntl()” on page 31 or “ioctl()” on
page 54 for a description of how to set nonblocking mode.

Return Values: If successful, the number of bytes written from the buffer(s) is
returned. The value −1 indicates an error. The value of errno indicates the specific
error.

Errno Value Description

EBADF Indicates that s is not a valid socket descriptor.

EFAULT Indicates that using the iov and iovcnt parameters
would result in an attempt to access memory
outside the caller’s virtual storage.

ENOBUFS Indicates that no buffer space is available to send
the message.

EWOULDBLOCK Indicates that s is in nonblocking mode, and no
data is available to read.

See Also: connect(), fcntl(), getsockopt(), ioctl(), write(), read(), readv(), recv(),
recvmsg(), recvfrom(), select(), selectex(), send(), sendmsg(), sendto(), setsockopt(),
socket(), write().

#include <bsdtypes.h>
#include <uio.h>

int writev(s, iov, iovcnt)
int s;
struc iovec *iov;
int iovcnt;

write()

88 z/VM: TCP/IP Programmer’s Reference

Sample C Socket Programs
This section provides examples of the following programs:
v C socket TCP client (see topic 89)
v C socket TCP server (see topic 90)
v C socket UDP server (see topic 92)
v C socket UDP client (see topic 93)

C Socket TCP Client
The following is an example of a C socket TCP client program.
/*
* Include Files.
*/

#define VM
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

/*
* Client Main.
*/

main(argc, argv)
int argc;
char **argv;
{

unsigned short port; /* port client will connect to */
char buf[12]; /*data buffer for sending and receiving */
struct hostent *hostnm; /*server host name information */
struct sockaddr_in server; /*server address */
int s; /* client socket */

/*
* Check Arguments Passed. Should be hostname and port.
*/

if (argc != 3)
{

fprintf(stderr, “Usage: %shostname port\n”, argv[0]);
exit(-1);

}

/*
* The host name is the first argument. Get the server address.
*/

hostnm = gethostbyname(argv[1]);
if (hostnm == (struct hostent *) 0)
{

fprintf(stderr, “Gethostbynamefailed\n”);
exit(-1);

}

/*
* The port is the second argument.
*/

port = (unsigned short) atoi(argv[2]);

/*
* Put a message into the buffer.
*/

strcpy(buf, “the message”);

Sample C Socket Programs

Chapter 2. C Sockets Application Program Interface 89

/*
* Put the server information into the server structure.
* The port must be put into network byte order.
*/

server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

/*
* Get a stream socket.
*/

if ((s = socket(AF_INET,SOCK_STREAM, 0)) < 0)
{

tcperror(“Socket()”);
exit(-1);

}

/*
* Connect to the server.
*/

if (connect(s, &server, sizeof(server)) < 0)
{

tcperror(“Connect()”);
exit(-1);

}

if (send(s, buf, sizeof(buf), 0) < 0)
{

tcperror(“Send()”);
exit(-1);

}

/*
* The server sends back the same message. Receive it into the buffer.
*/

if (recv(s, buf, sizeof(buf), 0) < 0)
{

tcperror(“Recv()”);
exit(-1);

}

/*
* Close the socket.
*/

close(s);

printf(“Client Ended Successfully\n”);
exit(0);

}

C Socket TCP Server
The following is an example of a C socket TCP server program.
/*
* Include Files.
*/

#define VM
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <stdio.h>

/*

C Socket TCP Client

90 z/VM: TCP/IP Programmer’s Reference

* Server Main.
*/

main(argc, argv)
int argc;
char **argv;
{

unsigned short port; /*port server binds to */
char buf[12]; /*buffer for sending and receiving data */
struct sockaddr_in client; /*client address information */
struct sockaddr_in server; /*server address information */
int s; /*socket for accepting connections */
int ns; /*socket connected to client */
int namelen; /*length of client name */

/*
* Check arguments. Should be onlyone: the port number to bind to.
*/

if (argc != 2)
{

fprintf(stderr, “Usage:%s port\n”, argv[0]);
exit(-1);

}
/*
* First argument should be the port.
*/

port = (unsigned short)atoi(argv[1]);

/*
* Get a socket for accepting connections.
*/

if ((s = socket(AF_INET,SOCK_STREAM, 0)) < 0)
{

tcperror(“Socket()”);
exit(-1);

}

/*
* Bind the socket to the server address.
*/

server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = INADDR_ANY;

if (bind(s, &server, sizeof(server)) < 0)
{

tcperror(“Bind()”);
exit(-1);

}

/*
* Listen for connections. Specify the backlog as 1.
*/

if (listen(s, 1) != 0)
{

tcperror(“Listen()”);
exit(-1);

}

/*
* Accept a connection.
*/

namelen = sizeof(client);
if ((ns = accept(s, &client,&namelen)) == -1)
{

tcperror(“Accept()”);
exit(-1);

C Socket TCP Server

Chapter 2. C Sockets Application Program Interface 91

}

/*
* Receive the message on the newly connected socket.
*/

if (recv(ns, buf, sizeof(buf),0) == -1)
{

tcperror(“Recv()”);
exit(-1);

}

/*
* Send the message back to the client.
*/

if (send(ns, buf, sizeof(buf),0) < 0)
{

tcperror(“Send()”);
exit(-1);

}

close(ns);
close(s);

printf(“Server ended successfully\n”);
exit(0);

}

C Socket UDP Server
The following is an example of a C socket UDP server program.
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

main()
{

int s, namelen, client_address_size;
struct sockaddr_in client, server;
char buff[32];

/*
* Create a datagram socket in the internet domain and use the
* default protocol (UDP).
*/

if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{

perror("socket()");
exit(1);

}

/*
* Bind my name to this socket so that clients on the network can
* send me messages. (This allows the operating system to demultiplex
* messages and get them to the correct server)
*
* Set up the server name. The internet address is specified as the
* wildcard INADDR_ANY so that the server can get messages from any
* of the physical internet connections on this host. (Otherwise we
* would limit the server to messages from only one network
* interface.)
*/

server.sin_family = AF_INET; /* Server is in Internet Domain */
server.sin_port = 0; /* Use any available port */

C Socket TCP Server

92 z/VM: TCP/IP Programmer’s Reference

server.sin_addr.s_addr = INADDR_ANY;/* Server’s Internet Address */

if (bind(s, &server, sizeof(server)) < 0)
{

perror("bind()");
exit(2);

}

/* Find out what port was really assigned and print it */
namelen = sizeof(server);
if (getsockname(s, (struct sockaddr *) &server, &namelen) < 0)
{

perror("getsockname()");
exit(3);

}

printf("Port assigned is %d\n", ntohs(server.sin_port));

/*
* Receive a message on socket s in buf of maximum size 32
* from a client. Because the last two paramters
* are not null, the name of the client will be placed into the
* client data structure and the size of the client address will
* be placed into client_address_size.
*/

client_address_size = sizeof(client);

if(recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr *) &client,
&client_address_size) <0)

{
perror("recvfrom()");
exit(4);

}
/*
* Print the message and the name of the client.
* The domain should be the internet domain (AF_INET).
* The port is received in network byte order, so we translate it to
* host byte order before printing it.
* The internet address is received as 32 bits in network byte order
* so we use a utility that converts it to a string printed in
* dotted decimal format for readability.
*/

printf("Received message %s from domain %s port %d internet\
address %s\n",

buf,
(client.sin_family == AF_INET?"AF_INET":"UNKNOWN"),
ntohs(client.sin_port),
inet_ntoa(client.sin_addr));

/*
* Deallocate the socket.
*/

close(s);
}

C Socket UDP Client
The following is an example of a C socket UDP client program.
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

main(argc, argv)

C Socket UDP Server

Chapter 2. C Sockets Application Program Interface 93

int argc;
char **argv;
{

int s;
unsigned short port;
struct sockaddr_in server;
char buff[32];

/* argv[1] is internet address of server argv[2] is port of server.
* Convert the port from ascii to integer and then from host byte
* order to network byte order.
*/

if(argc != 3)
{

printf("Usage: %s <host address> <port> \n",argv[0]);
exit(1);

}
port = htons(atoi(argv[2]));

/* Create a datagram socket in the internet domain and use the
* default protocol (UDP).
*/

if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{

perror("socket()");
exit(1);

}
9

/* Set up the server name */
server.sin_family = AF_INET; /* Internet Domain */
server.sin_port = port; /* Server Port */
server.sin_addr.s_addr = inet_addr(argv[1]); /* Server’s Address */

strcpy(buf, "Hello");

/* Send the message in buf to the server */
if (sendto(s, buf, (strlen(buf)+1), 0, &server, sizeof(server)) < 0)
{

perror("sendto()");
exit(2);

}

/* Deallocate the socket */
close(s);

}

C Socket UDP Client

94 z/VM: TCP/IP Programmer’s Reference

Chapter 3. TCP/UDP/IP API (Pascal Language)

This chapter describes the Pascal language application program interface (API)
provided with TCP/IP Level 320 for VM. This interface allows programmers to
write application programs that use the TCP, UDP, and IP layers of the TCP/IP
protocol suite.

You should have experience in Pascal language programming and be familiar with
the principles of internetwork communication to use the Pascal language API.

Your program uses procedure calls to initiate communication with the TCPIP
virtual machine. Most of these procedure calls return with a code that indicates
success, or the type of failure incurred by the call. The TCPIP virtual machine
starts asynchronous communication by sending you notifications.

The general sequence of operations is:
1. Start TCP/UDP/IP service (BeginTcpIp, StartTcpNotice).
2. Specify the set of notifications that TCP/UDP/IP may send you (Handle).
3. Establish a connection (TcpOpen, UdpOpen, RawIpOpen, TcpWaitOpen).

If using TcpOpen, you must wait for the appropriate notification that a
connection has been established.

4. Transfer data buffer to or from the TCPIP virtual machine (TcpSend, TcpFSend,
TcpWaitSend, TcpReceive, TcpFReceive, TcpWaitReceive, UdpSend,
UdpNReceive, RawIpSend, RawIpReceive).

Note: TcpWaitReceive and TcpWaitSend are synchronous calls.
5. Check the status returned from the TCPIP virtual machine in the form of

notifications (GetNextNote).
6. Repeat the data transfer operations (steps 4 and 5) until the data is exhausted.
7. Terminate the connection (TcpClose, UdpClose, RawIpClose).

If using TcpClose, you must wait for the connection to terminate.
8. Terminate the communication service (EndTcpIp).

Control is returned to you, in most instances, after the initiation of your request.
When appropriate, some procedures have alternative wait versions that return only
after completion of the request. The bodies of the Pascal procedures are in the
TCPIP ATCPPSRC file.

A sample program is supplied with the TCP/IP program, see “Sample Pascal
Program” on page 143.

Software Requirements
To develop programs in Pascal that interface directly to the TCP, UDP, and IP
protocol boundaries, you require the IBM VS Pascal Compiler & Library (5668-767).

© Copyright IBM Corp. 1987, 2001 95

Data Structures
Programs containing Pascal language API calls must include the appropriate data
structures. The data structures are declared in the CMCOMM COPY and
CMCLIEN COPY. The CMCOMM and CMCLIEN are included in the ALLMACRO
MACLIB shipped with TCP/IP. To include these files in your program source,
enter:

Additional include statements are required in programs that use certain calls. The
following list shows the members of the ALLMACRO MACLIB that need to be
included for the various calls.
v CMRESGLB for GetHostResol
v CMINTER for GetHostNumber, GetHostString, IsLocalAddress, and IsLocalHost.

The load modules are in the TCPIP COMMTXT file. Include this file in your
GLOBAL TXTLIB command when you are creating a load module to link an
application program.

Connection State
ConnectionState is the current state of the connection. For the Pascal declaration of
the ConnectionStateType data type, see Figure 14. ConnectionStateType is used in
StatusInfoType and NotificationInfoType. It defines the client program’s view of
the state of a TCP connection, in a form more readily usable than the formal TCP
connection state defined by RFC 793. For the mapping between TCP states and
ConnectionStateType, see Table 3 on page 97.

CONNECTIONclosing
Indicates that no more data can be transmitted on this connection, because
it is going through the TCP connection closing sequence.

LISTENING
Indicates that you are waiting for a foreign site to open a connection.

NONEXISTENT
Indicates that a connection no longer exists.

OPEN
Indicates that data can go either way on the connection.

RECEIVINGonly
Indicates that data can be received, but cannot be sent on this connection,
because the client has done a TcpClose.

%include CMCOMM
%include CMCLIEN

ConnectionStateType =
(

CONNECTIONclosing,
LISTENING,
NONEXISTENT,
OPEN,
RECEIVINGonly,
SENDINGonly,
TRYINGtoOPEN

);

Figure 14. Pascal Declaration of Connection State Type

Pascal Language

96 z/VM: TCP/IP Programmer’s Reference

SENDINGonly
Indicates that data can be sent out, but cannot be received on this
connection, because the foreign application has done a TcpClose or
equivalent.

TRYINGtoOPEN
Indicates that you are trying to contact a foreign site to establish a
connection.

Table 3. TCP Connection States

TCP State ConnectionStateType

CLOSED NONEXISTENT

LAST-ACK, CLOSING, TIME-WAIT If there is incoming data that the client program has
not received, then RECEIVINGonly, else
CONNECTIONclosing.

CLOSE-WAIT If there is incoming data that the client program has
not received, then OPEN, else SENDINGonly.

ESTABLISHED OPEN

FIN-WAIT-1, FIN-WAIT-2 RECEIVINGonly

LISTEN LISTENING

SYN-SENT, SYN-RECEIVED TRYINGtoOPEN

Connection Information Record
The connection information record is used as a parameter in several of the
procedure calls. It enables you and the TCP/IP program to exchange information
about the connection. The Pascal declaration is shown in Figure 15. For more
information about the use of each field, see “TcpOpen and TcpWaitOpen” on
page 134 and “TcpStatus” on page 137

Connection
Specifies a number identifying the connection that is described. This
connection number is different from the connection number displayed by
the NETSTAT command. For more information about the NETSTAT
command, see TCP/IP User’s Guide.

OpenAttemptTimeout
Specifies the number of seconds that TCP continues to attempt to open a

StatusInfoType =
record
Connection: ConnectionType;
OpenAttemptTimeout: integer;
Security: SecurityType;
Compartment: CompartmentType;
Precedence: PrecedenceType;
BytesToRead: integer;
UnackedBytes: integer;
ConnectionState: ConnectionStateType;
LocalSocket: SocketType;
ForeignSocket: SocketType;
end;

Figure 15. Pascal Declaration of Connection Information Record

Pascal Language

Chapter 3. TCP/UDP/IP API (Pascal Language) 97

connection. You specify this number. If the limit is exceeded, TCP stops
trying to open the connection and shuts down any partially open
connection.

Security, Compartment, Precedence
Specifies entries used only when working within a multilevel secure
environment.

BytesToRead
Specifies the number of data bytes received from the foreign host by TCP,
but not yet delivered to the client. TCP maintains this value.

UnackedBytes
Specifies the number of bytes sent by your program, but not yet sent to the
foreign TCP, or the number of bytes sent to the foreign TCP, but not yet
acknowledged.

LocalSocket
Specifies the local internet address and local port. Together, these form one
end of a connection. The foreign socket forms the other end. For the Pascal
declaration of the SocketType record, see Figure 16.

ForeignSocket
Specifies the foreign, or remote, internet address and its associated port.
These form one end of a connection. The local socket forms the other end.

Socket Record

Field Description
Address Specifies the internet address.
Port Specifies the port.

Notification Record
The notification record is used to provide event information. You receive this
information by using the GetNextNote call. For more information, see
“GetNextNote” on page 113. It is a variant record; the number of fields is
dependent on the type of notification. For the Pascal declaration of this record. see
Figure 17 on page 99.

InternetAddressType = UnsignedIntegerType;
PortType = UnsignedHalfWordType;
SocketType =

record
Address: InternetAddressType;
Port: PortType;
end;

Figure 16. Pascal Declaration of Socket Type

Pascal Language

98 z/VM: TCP/IP Programmer’s Reference

NotificationInfoType =
record
Connection: ConnectionType;
Protocol: ProtocolType;
case NotificationTag: NotificationEnumType of

BUFFERspaceAVAILABLE:
(
AmountOfSpaceInBytes: integer
);

CONNECTIONstateCHANGED:
(
NewState: ConnectionStateType;
Reason: CallReturnCodeType
);

DATAdelivered:
(
BytesDelivered: integer;
LastUrgentByte: integer;
PushFlag: Boolean
);

EXTERNALinterrupt:
(
RuptCode: integer
);

FRECEIVEerror:
(
ReceiveTurnCode: CallReturnCodeType;
ReceiveRequestErr: Boolean;
);

FSENDresponse:
(
SendTurnCode: CallReturnCodeType;
SendRequestErr: Boolean;
);

IOinterrupt:
(
DeviceAddress: integer;
UnitStatus: UnsignedByteType;
ChannelStatus: UnsignedByteType
);

IUCVinterrupt:
(
IUCVResponseBuf: IUCVBufferType
);

PINGresponse:
(
PingTurnCode: CallReturnCodeType;
ElapsedTime: TimeStampType
);

Figure 17. Notification Record (Part 1 of 2)

Pascal Language

Chapter 3. TCP/UDP/IP API (Pascal Language) 99

Connection
Indicates the client’s connection number to which the notification applies.
In the case of USERdefinedNOTIFICATION, this field is as supplied by the
user in the AddUserNote call.

Protocol
In the case of USERdefinedNOTIFICATION, this field is as supplied by the
user in the AddUserNote call. For all other notifications, this field is
reserved.

NotificationTag
Is the type of notification being sent, and a set of fields dependent on the
value of the tag. Possible tag values relevant to the TCP/UDP/IP interface
and the corresponding fields are:

BUFFERspaceAVAILABLE
Notification given when space becomes available on a connection
for which TcpSend previously returned NObufferSPACE. For more
information about these procedures, see “TcpFSend, TcpSend, and
TcpWaitSend” on page 131.

AmountOfSpaceInBytes
Indicates the minimum number of bytes that the TCP/IP
service has available for buffer space for this connection.
The actual amount of buffer space might be more than this
number.

RAWIPpacketsDELIVERED:
(
RawIpDataLength: integer;
RawIpFullLength: integer;
);

RAWIPspaceAVAILABLE:
(
RawIpSpaceInBytes: integer;
);

RESOURCESavailable: ();
SMSGreceived: ();
TIMERexpired:

(
Datum: integer;
AssociatedTimer: TimerPointerType
);

UDPdatagramDELIVERED:
(
DataLength: integer;
ForeignSocket: SocketType;
FullLength: integer
);

UDPdatagramSPACEavailable: ();
UDPresourcesAVAILABLE: ();
URGENTpending:

(
BytesToRead: integer;
UrgentSpan: integer
);

USERdefinedNOTIFICATION:
(
UserData: UserNotificationDataType
);

end;

Figure 17. Notification Record (Part 2 of 2)

Pascal Language

100 z/VM: TCP/IP Programmer’s Reference

CONNECTIONstateCHANGED
Indicates that a TCP connection has changed state.

NewState
Indicates the new state for this connection.

Reason
Indicates the reason for the state change. This field is
meaningful only if the NewState field has a value of
NONEXISTENT.

Notes:

1. The following is the sequence of state notifications for a
connection.

For active open:
– OPEN
– RECEIVINGonly or SENDINGonly
– CONNECTIONclosing
– NONEXISTENT.
For passive open:
– TRYINGtoOPEN
– OPEN
– RECEIVINGonly or SENDINGonly
– CONNECTIONclosing
– NONEXISTENT.

Your program should be prepared for any intermediate step or
steps to be skipped.

2. The normal TCP connection closing sequence can lead to a
connection staying in CONNECTIONclosing state for up to two
minutes, corresponding to the TCP state TIME-WAIT.

3. Possible Reason codes giving the reason for a connection
changing to NONEXISTENT are:
v OK (means normal closing)
v UNREACHABLEnetwork
v TIMEOUTopen
v OPENrejected
v REMOTEreset
v WRONGsecORprc
v UNEXPECTEDsyn
v FATALerror
v KILLEDbyCLIENT
v TIMEOUTconnection
v TCPipSHUTDOWN
v DROPPEDbyOPERATOR.

DATAdelivered
Notification given when your buffer (named in an earlier
TcpReceive or TcpFReceive request) contains data.

Note: The data delivered should be treated as part of a
byte-stream, not as a message. There is no guarantee that the
data sent in one TcpSend (or equivalent) call on the foreign
host is delivered in a single DATAdelivered notification,
even if the PushFlag is set.

Pascal Language

Chapter 3. TCP/UDP/IP API (Pascal Language) 101

BytesDelivered
Indicates the number of bytes of data delivered to
you.

LastUrgentByte
Indicates the number of bytes of urgent data
remaining, including data just delivered.

PushFlag
TRUE if the last byte of data was received with the
push bit set.

EXTERNALinterrupt
Notification given when a simulated external interrupt occurs in
your virtual machine. The Connection and Protocol fields are not
applicable.

RuptCode
The interrupt type.

FRECEIVEerror
Notification given in place of DATAdelivered when a TcpFReceive
that initially returned OK has terminated without delivering data.

ReceiveTurnCode
Specifies the reason the TcpFReceive has failed or was
canceled. If ReceiveRequestErr is set to FALSE,
ReceiveTurnCode contains the same reason as the Reason
field in the CONNECTIONstateCHANGED with NewState
set to NONEXISTENT notification for this connection (see
2 on page 101). ReceiveTurnCode could be OK, if the
connection closed normally.

ReceiveRequestErr
If TRUE, the TcpFReceive was rejected during initial
processing. If FALSE, the TcpFReceive was initially
accepted, but was terminated because of connection
closing.

Note: Normally, you do not need to take any action upon receipt
of this notification with ReceiveRequestErr set to FALSE,
because your program receives a
CONNECTIONstateCHANGED notification informing it that
the connection has been terminated.

FSENDresponse
Notification given when a TcpFSend request is completed,
successfully or unsuccessfully.

SendTurnCode
Indicates the status of the send operation.

SendRequestErr
If TRUE, the TcpFSend was rejected during initial processing
or during retry after buffer space became available. If
FALSE, the TcpFSend was canceled because of connection
closing.

Pascal Language

102 z/VM: TCP/IP Programmer’s Reference

IOinterrupt
Notification given when a simulated I/O interrupt occurs in your
virtual machine. The Connection and Protocol fields are not
applicable.

DeviceAddress
This address corresponds to the DEVICE statement.

UnitStatus
Specifies the status returned by the device.

ChannelStatus
Specifies the status returned by the channel.

IUCVinterrupt
Notification given when a simulated IUCV interrupt occurs in your
virtual machine. The Connection and Protocol fields are not
applicable.

IUCVResponseBuf
Contains the information returned from the application.

PINGresponse
Notification given when a PINGresponse is received.

PingTurnCode
Specifies the status of the ping operation.

ElapsedTime
Indicates the time elapsed between the sending of a
request and the reception of a response. This time does not
include the time spent in the simulated Virtual Machine
Communication Facility (VMCF) communication between
your program and the TCPIP virtual machine. This field is
valid only if PingTurnCode has a value of OK.

RAWIPpacketsDELIVERED
Notification given when your buffer (indicated in an earlier
RawIpReceive request) contains a datagram. Only one datagram is
delivered on each notification. Your buffer contains the entire IP
header, plus as much of the datagram as fits in your buffer.

RawIpDataLength
Specifies the actual data length delivered to your buffer. If
this is less than RawIpFullLength, the datagram was
truncated.

RawIpFullLength
Specifies the length of the packet, from the TotalLength
field of the IP header.

RAWIPspaceAVAILABLE
When space becomes available after a client does a RawIpSend and
receives a NObufferSPACE return code, the client receives this
notification to indicate that space is now available.

RawIpSpaceInBytes
Specifies the amount of space available always equals the
maximum size IP datagram.

RESOURCESavailable
Notice given when resources needed for a TcpOpen or

Pascal Language

Chapter 3. TCP/UDP/IP API (Pascal Language) 103

TcpWaitOpen are available. This notification is sent only if a
previous TcpOpen or TcpWaitOpen returned ZEROresources.

SMSGreceived
Notification given when one or more Special Messages (Smsgs)
arrive. The GetSmsg call is used to retrieve queued Smsgs. For
information on the SMSG command, see TCP/IP User’s Guide.

TIMERexpired
Notification given when a timer set through SetTimer expires.

Datum
Indicates the data specified when SetTimer was called.

AssociatedTimer
Specifies the address of the timer that expired.

UDPdatagramDELIVERED
Notification given when your buffer, indicated in an earlier
UdpNReceive or UdpReceive request, contains a datagram. Your
buffer contains the datagram excluding the UDP header.

Note: If UdpReceive was used, your buffer contains the entire
datagram excluding the header, with the length indicated by
DataLength. If UdpNReceive was used, and DataLength is
less than FullLength, your buffer contains a truncated
datagram. The reason is that the length of your buffer was
too small to contain the entire datagram.

DataLength
Specifies the length of the data delivered to your
buffer.

ForeignSocket
Specifies the source of the datagram.

FullLength
Specifies the length of the entire datagram,
excluding the UDP header. This field is set only if
UdpNReceive was used.

UDPdatagramSPACEavailable
Notification given when buffer space becomes available for a
datagram for which UdpSend previously returned NObufferSPACE
because of insufficient resources.

UDPresourcesAVAILABLE
Notice given when resources needed for a UdpOpen are available.
This notification is sent only if a previous UdpOpen returned
UDPzeroRESOURCES.

URGENTpending
Notification given when there is urgent data pending on a TCP
connection.

BytesToRead
Indicates the number of incoming bytes not yet delivered
to the client.

Pascal Language

104 z/VM: TCP/IP Programmer’s Reference

UrgentSpan
Indicates the number of undelivered bytes to the last
known urgent pointer. No urgent data is pending if this is
negative.

USERdefinedNOTIFICATION
Notice generated from data passed to AddUserNote by your
program.

UserData
A 40-byte field supplied by your program through
AddUserNote. The Connection and Protocol fields are also
set from the values supplied to AddUserNote.

File Specification Record
The file specification record is used to fully specify a file. The Pascal declaration is
shown in Figure 18.

Using Procedure Calls
Your program uses procedure calls to initiate communication with the TCPIP
virtual machine. Most of these procedure calls return with a code, which indicates
success or the type of failure incurred by the call. For an explanation of the return
codes, see Table 86 on page 405.

Before invoking any of the other interface procedures, use BeginTcpIp or
StartTcpNotice to start up the TCP/UDP/IP service. Once the TCP/UDP/IP
service has begun, use the Handle procedure to specify a set of notifications that
the TCP/UDP/IP service can send you. To terminate the TCP/UDP/IP service, use
the EndTcpIp procedure.

Notifications
The TCPIP virtual machine sends you notifications to inform you of asynchronous
events. Also, some notifications are generated in your virtual machine by the TCP
interface. Notifications can be received only after BeginTcp or StartTcpNotice.

SpecOfFileType =
record
Owner: DirectoryNameType;
Case SpecOfSystemType of
VM:
(
VirtualAddress:VirtualAddressType;
NewVirtualAddress:VirtualAddressType;
DiskPassword: DirectoryNameType;
Filename: DirectoryNameType;
Filetype: DirectoryNameType;
Filemode: FilemodeType

);
MVS:
(
(* The MVS declaration is listed here. *)
);
end;

Figure 18. Pascal Declaration of File Specification Record

Pascal Language

Chapter 3. TCP/UDP/IP API (Pascal Language) 105

The notifications are received by the TCP interface and kept in a queue. Use
GetNextNote to get the next notification. The notifications are in Pascal variant
record form. For more information, see Figure 17 on page 99.

The following table provides a short description of the Notification procedure calls
and gives the page number where each call’s detailed description is located.

Table 4. Pascal Language Interface Summary—Notifications

Procedure Call Description Page

GetNextNote Retrieves the next notification. 113

Handle Specifies the types of notifications that your program
can process.

114

NotifyIo Requests that an IOinterrupt notification be sent to you
when an I/O interrupt occurs on a given virtual
address.

118

Unhandle Specifies notification types that your program can no
longer process.

142

UnNotifyIo Indicates that you no longer wish to be sent a
notification when an I/O interrupt occurs on a given
virtual address.

142

TCP/UDP Initialization Procedures
The UDP initialization procedures affect all present and future connections. Use
these procedures to initialize the TCP/IP environment for your program.

The following table provides a short description of the TCP/UDP Initialization
procedure calls and gives the page number where each call’s detailed description is
located.

Table 5. Pascal Language Interface Summary—TCP/UDP Initialization

Procedure Call Description Page

TcpNameChange Identifies the name of the virtual machine running the
TCP/IP program when the virtual machine has a name
other than TCPIP.

133

BeginTcpIp Establishes communication with the TCP/IP services. 110

StartTcpNotice Establishes communication with the TCP/IP services. 126

TCP/UDP Termination Procedure
The Pascal API has one termination procedure call. You should use the EndTcpIp
call when you have finished with the TCP/IP services.

The following table provides a short description of the TCP/UDP Termination
procedure call and gives the page number where the call’s detailed description is
located.

Table 6. Pascal Language Interface Summary—TCP/UDP Termination

Procedure Call Description Page

EndTcpIp Terminates communication with the TCP/IP services. 111

Pascal Language

106 z/VM: TCP/IP Programmer’s Reference

Handling External Interrupts
The handling external interrupts procedures allow you to pass simulated external
interrupts to the TCP interface. You must call the StartTcpNotice initialization
routine before you can begin using the external interrupt calls.

The following table provides a short description of the Handling External
Interrupts and gives the page number where each call’s detailed description is
located.

Table 7. Pascal Language Interface Summary—Handling External Interrupts

Procedure Call Description Page

TcpExtRupt Notifies the TCP interface of the arrival of a simulated
external interrupt.

128

RTcpExtRupt A version of TcpExtRupt. 123

TcpVmcfRupt Notifies the TCP interface of the arrival of a simulated
external VMCF interrupt.

138

RTcpVmcfRupt A version of TcpVmcfRupt. 123

TCP Communication Procedures
The TCP communication procedures apply to a particular client connection. Use
these procedures to establish a connection and to communicate. You must call
either the BeginTcpIp or the StartTcpNotice initialization routine before you can
begin using TCP communication procedures.

The following table provides a short description of the TCP communication
procedures and gives the page number where each call’s detailed description is
located.

Table 8. Pascal Language Interface Summary—TCP Communication Procedures

Procedure Call Description Page

TcpOpen Initiates a TCP connection. 134

TcpWaitOpen Initiates a TCP connection and waits for the
establishment of the connection.

134

TcpFSend Sends TCP data. 131

TcpSend Sends TCP data. 131

TcpWaitSend Sends TCP data and waits until TCPIP accepts it. 131

TcpFReceive Establishes a buffer to receive TCP data. 128

TcpReceive Establishes a buffer to receive TCP data. 128

TcpWaitReceive Establishes a buffer to receive TCP data and waits for
the reception of the data.

128

TcpClose Begins the TCP one-way closing sequence. 127

TcpAbort Shuts down a TCP connection immediately. 127

TcpStatus Obtains the current status of a TCP connection. 137

Ping Interface
The Ping interface lets a client send an ICMP echo request to a foreign host. You
must call either the BeginTcpIp or the StartTcpNotice initialization routine before
you can begin using the Ping Interface.

Pascal Language

Chapter 3. TCP/UDP/IP API (Pascal Language) 107

The following table provides a short description of the Ping interface procedures
and gives the page number where each call’s detailed description is located.

Table 9. Pascal Language Interface Summary—Ping Interface

Procedure Call Description Page

PingRequest Sends an Internet Control Message Protocol (ICMP) echo
request.

119

Monitor Procedures
Two monitor procedures, MonCommand and MonQuery, provide a mechanism for
querying and controlling the TCPIP virtual machine.

The following table provides a short description of the Monitor procedures and
gives the page number where each call’s detailed description is located.

Table 10. Pascal Language Interface Summary—Monitor Procedures

Procedure Call Description Page

MonCommand Instructs TCP to read a specific file and execute the
commands that it contains.

116

MonQuery Performs control functions and retrieves internal TCPIP
control blocks.

117

UDP Communication Procedures
The UDP communication procedures describe the programming interface for the
User Datagram Protocol (UDP) provided in the TCP/IP product.

The following table provides a short description of the UDP communication
procedures and gives the page number where each call’s detailed description is
located.

Table 11. Pascal Language Interface Summary—UDP Communication Procedures

Procedure Call Description Page

UdpOpen Requests communication with UDP on a specified
socket.

139

UdpSend Sends a UDP datagram to a specified foreign socket. 141

UdpNReceive Notifies the TCPIP virtual machine that you are willing
to receive UDP datagram data.

139

UdpReceive Notifies the TCPIP virtual machine that you are willing
to receive UDP datagram data.

140

UdpClose Terminates use of a UDP socket. 138

Raw IP Interface
The Raw IP interface lets a client program send and receive arbitrary IP packets on
any IP protocol except TCP and UDP. Only one client can use any given protocol
at one time. Only clients in the obey list can use the Raw IP interface. For further
information about the obey list, see TCP/IP Planning and Customization.

The following table provides a short description of the Raw IP interface procedures
and gives the page number where each call’s detailed description is located.

Pascal Language

108 z/VM: TCP/IP Programmer’s Reference

Table 12. Pascal Language Interface Summary—Raw IP Interface

Procedure Call Description Page

RawIpOpen Informs the TCPIP virtual machine that the client wants
to send and receive IP packets of a specified protocol.

120

RawIpReceive Specifies a buffer to receive raw IP packets of a specified
protocol.

120

RawIpSend Sends raw IP packets of a specified protocol. 121

RawIpClose Informs the TCPIP virtual machine that the client no
longer handles the protocol.

119

Timer Routines
The timer routines are used with the TCP/UDP/IP interface. You must call either
the BeginTcpIp or the StartTcpNotice initialization routine before you can begin
using the timer routines.

The following table provides a short description of the Timer routines and gives
the page number where each call’s detailed description is located.

Table 13. Pascal Language Interface Summary—Timer Routines

Procedure Call Description Page

CreateTimer Allocates a timer. 111

ClearTimer Resets a timer. 111

SetTimer Sets a timer to expire after a specified interval. 126

DestroyTimer Deallocates a timer. 111

Host Lookup Routines
The host lookup routines (with the exception of GetHostResol) are declared in the
CMINTER member of the ALLMACRO MACLIB. The host lookup routine
GetHostResol is declared in the CMRESGLB member of the ALLMACRO MACLIB.
Any program using these procedures must include CMINTER or CMRESGLB after
the include statements for CMCOMM and CMCLIEN.

The following table provides a short description of the host lookup routines and
gives the page number where each call’s detailed description is located.

Table 14. Pascal Language Interface Summary—Host Lookup Routines

Procedure Call Description Page

GetHostNumber Converts a host name to an internet address using static
tables.

112

GetHostResol Converts a host name to an internet address using a
domain name resolver.

112

GetHostString Converts an internet address to a host name using static
tables.

113

GetIdentity Returns environment information. 113

IsLocalAddress Determines if an internet address is local. 115

IsLocalHost Determines if a host name is local, remote, loopback, or
unknown.

115

Pascal Language

Chapter 3. TCP/UDP/IP API (Pascal Language) 109

AddUserNote
The AddUserNote procedure can be called to add a USERdefinedNOTIFICATION
notification to the note queue and wake up GetNextNote if it is waiting for a
notification. For more information, see “RTcpExtRupt” on page 123 and
“RTcpVmcfRupt” on page 123.

Other Routines
The following table provides a short description of these procedure calls and gives
the page number where the detailed description is located.

Table 15. Pascal Language Interface Summary—Other Routines

Procedure Call Description Page

GetSmsg Retrieves one queued special message (Smsg). 114

ReadXlateTable Reads a binary translation table file. 122

SayCalRe Converts a return code into a descriptive message. 124

SayConSt Converts a connection state into a descriptive message. 124

SayIntAd Converts an internet address into a name or
dotted-decimal form.

124

SayIntNum Converts an internet address into its dotted-decimal
form.

125

SayNotEn Converts a notification enumeration type into a
descriptive message.

125

SayPorTy Converts a port number into a descriptive message or
into EBCDIC.

125

SayProTy Converts the protocol type into a descriptive message or
into EBCDIC.

125

AddUserNote Adds a USERdefinedNOTIFICATION notification to the
note queue.

110

Procedure Calls
This section provides the syntax, parameters, and other appropriate information for
each Pascal procedure call supported by TCP/IP for VM.

BeginTcpIp
The BeginTcpIp procedures inform the TCPIP virtual machine that you want to
start using its services. If your program handles simulated external interrupts itself,
use StartTcpNotice rather than BeginTcpIp. For information about simulated
external interrupt support, see “Chapter 4. Virtual Machine Communication Facility
Interface” on page 147.

Parameter Description

ReturnCode Indicates success or failure of call. Possible return values are:
v OK
v ABNORMALcondition

procedure BeginTcpIp
(

var ReturnCode: integer
);
external;

Pascal Language

110 z/VM: TCP/IP Programmer’s Reference

v fatalerror
v NOtcpIPservice
v TCPipshutdown
v VIRTUALmemoryTOOsmall

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

ClearTimer
The ClearTimer procedure resets the timer to prevent it from timing out.

Parameter Description

T Specifies a timer pointer, as returned by a previous CreateTimer
call.

CreateTimer
The CreateTimer procedure allocates a timer. The timer is not set in any way. For
the procedure to activate the timer, see “SetTimer” on page 126.

Parameter Description

T Sets to a timer pointer that can be used in subsequent SetTimer,
ClearTimer, and DestroyTimer calls.

DestroyTimer
The DestroyTimer procedure deallocates or frees a timer that you created.

Parameter Description

T Specifies a timer pointer, as returned by a previous CreateTimer
call.

EndTcpIp
The EndTcpIp procedure releases ports and protocols in use that are not
permanently reserved. It causes TCP to clean up any data structures it has
associated with you. Use EndTcpIp when you have finished with the TCP/IP
services.

procedure ClearTimer
(

T: TimerPointerType
);
external;

procedure CreateTimer
(

var T: TimerPointerType
);
external;

procedure DestroyTimer
(

var T: TimerPointerType
);
external;

BeginTcpIp

Chapter 3. TCP/UDP/IP API (Pascal Language) 111

The EndTcpIp procedure has no parameters.

GetHostNumber
The GetHostNumber procedure resolves a host name into an internet address.

GetHostNumber uses a table lookup to convert the name of a host to an internet
address, and returns this address to the HostNumber field. When the name is a
dotted-decimal number, GetHostNumber returns the integer represented by that
dotted-decimal. The dotted-decimal representation of a 32-bit number has one
decimal integer for each of the 4 bytes, separated by dots. For example, 14.0.0.7
for X'0E000007'. For information about how to create host lookup tables, see TCP/IP
Planning and Customization.

The HostNumber field is set to NOhost if the host is not found.

Parameter Description

Name Specifies the name or dotted-decimal number to be converted.

HostNumber Set to the converted address, or NOhost if conversion fails.

GetHostResol
The GetHostResol procedure resolves a host name into an internet address by
using a name server.

GetHostResol passes the query to the remote name server through the resolver.
The name server converts the name of a host to an internet address, and returns
this address in the HostNumber field. If the name server does not respond or does
not find the name, the host name is converted to a host number by table lookup.
When the name is a dotted-decimal number, the integer represented by that
dotted-decimal is returned. The dotted-decimal representation of a 32-bit number
has one decimal integer for each of the 4 bytes, separated by dots. For example,
14.0.0.7 for X'0E000007'.

The HostNumber field is set to NOhost if the host is not found.

Parameter Description

Name Specifies the name or dotted-decimal number to be converted.

HostNumber Set to the converted address, or NOhost if conversion fails.

procedure EndTcpIp;
external;

procedure GetHostNumber
(

const Name: string;
var HostNumber: InternetAddressType

);
external;

procedure GetHostResol
(

const Name: string;
var HostNumber: InternetAddressType

);
external;

GetHostNumber

112 z/VM: TCP/IP Programmer’s Reference

GetHostString
The GetHostString procedure uses a table lookup to convert an internet address to
a host name, and returns this string in the Name field. The first host name found
in the lookup is returned. If no host name is found, a gateway or network name is
returned. If no gateway or network name is found, a null string is returned.

Parameter Description

Address Specifies the address to be converted.

Name Set to the corresponding host, gateway, or network name, or to
null string if no match found.

GetIdentity
The GetIdentity procedure returns the following information:
v The user ID of the VM user
v The host machine name
v The network domain name
v The user ID of the TCPIP virtual machine.

The host machine name and domain name are extracted from the HOSTNAME
and DOMAINORIGIN statements, respectively, in the user_id DATA file. If the
user_id DATA file does not exist, the TCPIP DATA file is used. If a HOSTNAME
statement is not specified, then the default host machine name is the name
specified by the TCP/IP installer during installation. See TCP/IP Planning and
Customization. The TCPIP virtual machine user ID is extracted from the
TCPIPUSERID statement in the user_id DATA file; if the statement is not specified,
the default is TCPIP.

Parameter Description

UserId Specifies the user ID of the VM user or the job
name of a batch job that has invoked GetIdentity.

HostName Specifies the host machine name.

DomainName Specifies the network domain name.

TcpIpServiceName Specifies the user ID of the TCPIP virtual machine.

GetNextNote
The GetNextNote procedure retrieves notifications from the queue. This procedure
returns the next notification queued for you.

procedure GetHostString
(

Address: InternetAddressType;
var Name: SiteNameType

);
external;

procedure GetIdentity
(

var UserId: DirectoryNameType;
var HostName, DomainName: String;
var TcpIpServiceName: DirectoryNameType;
var Result: integer

);
external;

GetHostString

Chapter 3. TCP/UDP/IP API (Pascal Language) 113

Parameter Description

Note Indicates that the next notification is stored here when ReturnCode
is OK.

ShouldWait Sets ShouldWait to TRUE if you want GetNextNote to wait until a
notification becomes available. Set ShouldWait to FALSE if you want
GetNextNote to return immediately. When ShouldWait is set to
FALSE, ReturnCode is set to NOoutstandingNOTIFICATIONS if no
notification is currently queued.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v NOoutstandingNOTIFICATIONS
v NOTyetBEGUN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

GetSmsg
The GetSmsg procedure is called by your program after receiving an
SMSGreceived notification. Each call to GetSmsg retrieves one queued Smsg. Your
program should exhaust all queued Smsgs, by calling GetSmsg repeatedly until the
Success field returns with a value of FALSE. After a value of FALSE is returned, do
not call GetSmsg again until you receive another SMSGreceived notification.

For information about the SMSG command, see TCP/IP User’s Guide

Parameter Description
Smsg Set to the returned Smsg if Success is set to TRUE.
Success TRUE if Smsg returned, otherwise FALSE.

Handle
The Handle procedure specifies that you want to receive notifications in the given
set. You must always use it after calling the BeginTcpIp procedure and before
accessing the TCP/IP services. This Pascal set can contain any of the
NotificationEnumType values shown in Figure 17 on page 99.

procedure GetNextNote
(

var Note: NotificationInfoType;
ShouldWait: Boolean;

var ReturnCode: integer
);
external;

procedure GetSMsg
(

var Smsg: SmsgType;
var Success: Boolean;

);
external;

GetNextNote

114 z/VM: TCP/IP Programmer’s Reference

Parameter Description

Notifications Specifies the set of notification types to be handled.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v NOTyetBEGUN
v TCPipSHUTDOWN
v ABNORMALcondition
v FATALerror

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

LocalAddress
The IsLocalAddress procedure queries the TCPIP virtual machine to determine
whether the HostAddress is one of the addresses recognized for this host. If the
address is local, it returns OK. If the address is not local, it returns
NONlocalADDRESS.

Parameter Description

HostAddress Specifies the host address to be tested.

ReturnCode Indicates whether the host address is local, or may indicate an
error. Possible return values are:
v OK
v NONlocalADDRESS
v TCPipSHUTDOWN
v ABNORMALcondition
v FATALerror

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

IsLocalHost
The IsLocalHost procedure returns the correct host class for Name, which may be a
host name or a dotted-decimal address.

The host classes are:

Host Class Description

HOSTlocal Specifies an internet address for the local host.

procedure Handle
(

Notifications: NotificationSetType;
var ReturnCode: integer

);
external;

procedure IsLocalAddress
(

HostAddress: InternetAddressType;
var ReturnCode: integer

);
external;

Handle

Chapter 3. TCP/UDP/IP API (Pascal Language) 115

HOSTloopback
Specifies one of the dummy internet addresses used to designate
various levels of loopback testing.

HOSTremote Specifies a known host name for some remote host.

HOSTunknown
Specifies an unknown host name (or other error).

Parameter Description
Name Specifies the host name.
Class Specifies the host class.

MonCommand
The MonCommand procedure instructs the TCPIP virtual machine to read a
specific file and execute the commands found there. This procedure updates TCPIP
internal tables and parameters while the TCPIP virtual machine is running. For
example, the type and destination of run-time tracing can be modified dynamically
using MonCommand. This procedure is used by the OBEYFILE command. For
more information about the OBEYFILE command, see TCP/IP Planning and
Customization. You must be in the TCPIP obey list to use the MonCommand
procedure.

Parameter Description

FileSpec Specifies a file in a manner that allows access to that file. The
TCPIP virtual machine must be authorized to access the file.

The SpecOfFileType record is listed in Figure 18 on page 105.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v ERRORinPROFILE
v HASnoPASSWORD
v INCORRECTpassword
v INVALIDuserID
v INVALIDvirtualADDRESS
v MINIDISKinUSE
v MINIDISKnotAVAILABLE
v NOTyetBEGUN
v PROFILEnotFOUND
v SOFTWAREerror
v TCPipSHUTDOWN

procedure IsLocalHost
(

const Name: string;
var Class: HostClassType

);
external;

procedure MonCommand
(

const FileSpec: SpecOfFileType;
var ReturnCode: integer

);
external;

IsLocalHost

116 z/VM: TCP/IP Programmer’s Reference

v UNAUTHORIZEDuser
v UNIMPLEMENTEDrequest

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

MonQuery
The MonQuery procedure obtains status information, or requests TCPIP to perform
certain actions. This procedure is used by the NETSTAT command. For more
information about the NETSTAT command, see TCP/IP User’s Guide.

Parameter Description

Buffer Specifies the address of the buffer to receive data.

BufSize Specifies the size of the buffer.

ReturnCode Indicates the success or failure of the call.

Length Specifies the length of the data returned in the buffer.

QueryRecord Sets up a QueryRecord to specify the type of status information to
be retrieved. The MonQueryRecordType is shown in Figure 19.

The only QueryType values available for your use are:

QUERYhomeONLY
Used to obtain a list of the home internet addresses recognized by your
TCPIP virtual machine. Your program sets the Buffer to the address of a
variable of type HomeOnlyListType, and the BufSize to its length. When

procedure MonQuery
(

QueryRecord: MonQueryRecordType;
Buffer: integer;
BufSize: integer;

var ReturnCode: integer;
var Length: integer

);
external;

MonQueryRecordType =
record
case QueryType: MonQueryType of
QUERYhome, QUERYgateways, QUERYcontrolBLOCKS,
QUERYstartTIME, QUERYtelnetSTATUS,
QUERYdevicesANDlinks,
QUERYhomeONLY: ();
QUERYudpPORTowner:
(
QueryPort: PortType

);
COMMANDcpCMD:
(
CpCmd: WordType

);
COMMANDdropCONNECTION:
(
Connection: ConnectionType

);
end; { MonQueryRecordType }

Figure 19. Monitor Query Record

MonCommand

Chapter 3. TCP/UDP/IP API (Pascal Language) 117

MonQuery returns, Length is set to the length of the Buffer that was used,
if ReturnCode is OK. Divide the Length by size of (InternetAddressType)
to get the number of the home addresses that are returned.

COMMANDdropCONNECTION
Used to instruct the TCPIP virtual machine to drop a TCP connection. The
connection is reset, and the client process owning the connection is sent a
NONEXISTENT notification with the Reason field set to
DROPPEDbyOPERATOR. Your program sets the Connection field to the
number of the connection to be dropped. The connection number is the
number displayed by the NETSTAT CONN or the NETSTAT TELNET
command, and is not the same number used to refer to the connection by
the client program that owns the connection. For information about the
NETSTAT command, see TCP/IP User’s Guide. The virtual machine running
your program that uses COMMANDdropCONNECTION must be in the
TCPIP virtual machine.

ReturnCode
Indicates the success or failure of the call. Possible return values are:
v OK
v ABNORMALcondition
v FATALerror
v NOTyetBEGUN
v TCPipSHUTDOWN
v UNAUTHORIZEDuser
v UNIMPLEMENTEDrequest

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

NotifyIo
The NotifyIo procedure is used to request that an IOinterrupt notification be sent
to you when an I/O interrupt occurs on a given virtual address. You can specify
that you wish notifications on up to 10 different virtual device addresses (by
means of individual NotifyIo calls). This notification is intended for unsolicited
interrupts, not for interrupts showing the completion of a channel program.

Parameter Description

DeviceAddress
Specifies the address of the device for which IOinterrupt
notifications are to be generated.

ReturnCode Indicates success or failure of the call. Possible return values are:
v OK
v TOOmanyOPENS
v SOFTWAREerror

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

procedure NotifyIo
(

DeviceAddress: integer;
var ReturnCode: integer;

);
external;

MonQuery

118 z/VM: TCP/IP Programmer’s Reference

PingRequest
The PingRequest procedure sends an ICMP echo request to a foreign host. When a
response is received or the time-out limit is reached, you receive a PingResponse
notification.

The PingRequest procedure is used by the PING user command. For more
information about the PING command, see TCP/IP Planning and Customization

Parameter Description

ForeignAddress
Specifies the address of the foreign host to be pinged.

Length Specifies the length of the ping packet, excluding the IP header.
The range of values for this field are 8 to 512 bytes.

Timeout Specifies how long to wait for a response, in seconds.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v BADlengthARGUMENT
v CONNECTIONalreadyEXISTS
v NObufferSPACE
v NOTyetBEGUN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

Note: CONNECTIONalreadyEXISTS, in this context, means a ping request is
already outstanding.

RawIpClose
The RawIpClose procedure tells the TCPIP virtual machine that the client does not
handle the protocol any longer. Any queued incoming packets are discarded.

When the client is not handling the protocol, a return code of
NOsuchCONNECTION is received.

Parameter Description

ProtocolNo Specifies the number of the IP protocol.

procedure PingRequest
(

ForeignAddress: InternetAddressType;
Length: integer;
Timeout: integer;

var ReturnCode: integer
);
external;

procedure RawIpClose
(

ProtocolNo: integer;
var ReturnCode: integer

);
external;

PingRequest

Chapter 3. TCP/UDP/IP API (Pascal Language) 119

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v NOsuchCONNECTION
v NOTyetBEGUN
v SOFTWAREerror
v TCPipSHUTDOWN
v UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

RawIpOpen
The RawIpOpen procedure tells the TCPIP virtual machine that the client wants to
send and receive packets of the specified protocol.

You cannot use protocols 6 and 17. They specify the TCP (6) and UDP (17)
protocols. When you specify 6, 17, or a protocol that has been opened by another
virtual machine, you receive the LOCALportNOTavailable return code.

Parameter Description

ProtocolNo Specifies the number of the IP protocol.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v LOCALportNOTavailable
v NOTyetBEGUN
v SOFTWAREerror
v TCPipSHUTDOWN
v UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

Note: You can open the ICMP protocol, but your program receives only those
ICMP packets that are not interpreted by the TCPIP virtual machine.

RawIpReceive
The RawIpReceive procedure specifies a buffer to receive Raw IP packets of the
specified protocol. You get the notification RAWIPpacketsDELIVERED when a
packet is put in the buffer.

procedure RawIpOpen
(

ProtocolNo: integer;
var ReturnCode: integer

);
external;

RawIpClose

120 z/VM: TCP/IP Programmer’s Reference

Parameter Description

ProtocolNo Specifies the number of the IP protocol.

Buffer Specifies the address of your buffer.

BufferLength Specifies the length of your buffer. If you specify a length greater
than 8492 bytes, only the first 8492 bytes are used.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v NOsuchCONNECTION
v NOTyetBEGUN
v SOFTWAREerror
v TCPipSHUTDOWN
v UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

RawIpSend
The RawIpSend procedure sends IP packets of the given protocol number. The
entire packet, including the IP header, must be in the buffer. The TCPIP virtual
machine uses the total length field of the IP header to determine where each
packet ends. Subsequent packets begin at the next doubleword (8-byte) boundary
within the buffer.

The packets in your buffer are transmitted as is with the following exceptions.
v They can be fragmented. The fragment offset and flag fields in the header are

filled.
v The version field in the header is filled.
v The checksum field in the header is filled.
v The source address field in the header is filled.

You get the return code NOsuchCONNECTION if the client is not handling the
protocol, or if a packet in the buffer has another protocol. The return code
BADlengthARGUMENT is received when:
v The DataLength is less than 40 bytes or more than 8K bytes.
v NumPackets is 0.
v A packet is greater than 2048 bytes.
v All packets do not fit into DataLength.

A ReturnCode value of NObufferSPACE indicates that the data is rejected because
TCPIP is out of buffers. When buffer space is available, the notification
RAWIPspaceAVAILABLE is sent to the client.

procedure RawIpReceive
(

ProtocolNo: integer;
Buffer: Address31Type;
BufferLength: integer;

var ReturnCode: integer
);
external;

RawIpReceive

Chapter 3. TCP/UDP/IP API (Pascal Language) 121

Parameter Description

ProtocolNo Specifies the number of the IP protocol.

Buffer Specifies the address of your buffer containing packets to send.

DataLength Specifies the total length of data in your buffer.

NumPackets Specifies the number of packets in your buffer.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v BADlengthARGUMENT
v NObufferSPACE
v NOsuchCONNECTION
v NOTyetBEGUN
v SOFTWAREerror
v TCPipSHUTDOWN
v UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

Note: If your buffer contains multiple packets to send, some of the packets may
have been sent even if ReturnCode is not OK.

ReadXlateTable
The ReadXlateTable procedure reads the binary translation table file specified by
TableName, and fills in the AtoETable and EtoATable translation tables.

Parameter Description

TableName Specifies the name of the translate table.
ReadXlateTable tries to read TableName
TCPXLBIN. If that file exists but it has a bad
format, ReadXlateTable returns with a ReturnCode
FILEformatINVALID. If user_id TCPXLBIN does
not exist, ReadXlateTable tries to read TCPIP
TCPXLBIN. ReturnCode reflects the status of
reading that file.

procedure RawIpSend
(

ProtocolNo: integer;
Buffer: Address31Type;
DataLength: integer;
NumPackets: integers;

var ReturnCode: integer
);
external;

procedure ReadXlateTable
(

var TableName: DirectoryNameType;
var AtoETable: AtoEType;
var EtoATable: EtoAType;
var TranslateTableSpec: SpecOfFileType;
var ReturnCode: integer

);
external;

RawIpSend

122 z/VM: TCP/IP Programmer’s Reference

AtoETable Contains an ASCII-to-EBCDIC table if the return
code is OK.

EtoATable Contains an EBCDIC-to-ASCII table if the return
code is OK.

TranslateTableSpec If ReturnCode is OK, TranslateTableSpec contains
the complete specification of the file that
ReadXlateTable used. If the ReturnCode is not OK,
TranslateTableSpec contains the complete
specification of the last file that ReadXlateTable
tried to use.

ReturnCode Indicates the success or failure of the call. Possible
return values are:
v OK
v ERRORopeningORreadingFILE
v FILEformatINVALID

RTcpExtRupt

The RTcpExtRupt procedure is a version of the TcpExtRupt Pascal procedure and
can be called directly from an assembler interrupt handler.

Note: The content of this section is Internal Product Information and must not be
used as programming interface information.

The following is a sample of the assembler calling sequence.

The RTcpExtRupt procedure has no parameters.

RTcpVmcfRupt

The RTcpVmcfRupt procedure is a version of the TcpVmcfRupt Pascal procedure
and can be called directly from an assembler interrupt handler.

Note: The content of this section is Internal Product Information and must not be
used as programming interface information.

The following is a sample assembler calling sequence.

LA R13,PASCSAVE
LA R1,EXTPARM
L R15,=V(RTCPEXTR)
BALR R14,R15

.

.
RUPTCODE DS H Store interrupt code here before calling XTCPEXTR
PASCSAVE DS 18F Register save area
ENV DC F’0’ Zero initially. It will be filled with

an environment address. Pass it unchanged
in subsequent calls to RTCPEXTR.

EXTPARM DC A(ENV)
DC A(RUPTCODE)

ReadXlateTable

Chapter 3. TCP/UDP/IP API (Pascal Language) 123

The RTcpVmcfRupt procedure has no parameters.

SayCalRe
The SayCalRe function returns a printable string describing the return code passed
in CallReturn.

Parameter Description
CallReturn Specifies the return code to be described.

SayConSt
The SayConSt function returns a printable string describing the connection state
passed in State. For example, if SayConSt is invoked with the type identifier
RECEIVINGonly, it returns the message Receiving only.

Parameter Description
State Specifies the connection state to be described.

SayIntAd
The SayIntAd function converts the internet address specified by InternetAddress
to a printable string. The address is looked up in HOSTS ADDRINFO file, and the
name is returned if found. If it is not found, the dotted-decimal format of the
address is returned.

Parameter Description
InternetAddress

Specifies the internet address to be converted.

LA R13,PASCSAVE
LA R1,VMCFPARM
L R15,=V(RTCPVMCF)
BALR R14,R15

.

.
PASCSAVE DS 18F Register save area
ENV DC F’0’ Zero initially. It will be filled with

an environment address. Pass it unchanged
in subsequent calls to RTCPVMCF.

VMCFPARM DC A(ENV)
DC A(VMCFBUF) Address of your VMCF interrupt buffer.

function SayCalRe
)

CallReturn: integer
):
WordType;
external;

function SayConSt
(

State: ConnectionStateType
):
Wordtype;
external;

function SayIntAd
(

InternetAddress: InternetAddressType
):
WordType;
external;

SayCalRe

124 z/VM: TCP/IP Programmer’s Reference

SayIntNum
The SayIntNum function converts the internet address specified by
InternetAddress to a printable string, in dotted-decimal form.

Parameter Description
InternetAddress

Specifies the internet address to be converted.

SayNotEn
The SayNotEn function returns a printable string describing the notification
enumeration type passed in Notification. For example, if SayNotEn is invoked with
the type identifier EXTERNALinterrupt, it returns the message, Other external
Interrupt received.

Parameter Description
Notification Specifies the notification enumeration type to be described.

SayPorTy
The SayPorTy function returns a printable string describing the port number
passed in Port, if it is a well-known port number such as the Telnet port.
Otherwise, the EBCDIC representation of the number is returned.

Parameter Description
Port Specifies the port number to be described.

SayProTy
The SayProTy function converts the protocol type specified by Protocol to a
printable string, if it is a well-known protocol number such as 6 (TCP). Otherwise,
the EBCDIC representation of the number is returned.

function SayIntNum
(

InternetAddress: InternetAddressType
):
Wordtype;
external;

function SayNotEn
(

Notification: NotificationEnumType
);
Wordtype;
external;

function SayPorTy
(

Port: PortType
):
WordType;
external;

function SayProTy
(

Protocol: ProtocolType
):
WordType;
external;

SayIntNum

Chapter 3. TCP/UDP/IP API (Pascal Language) 125

Parameter Description
Protocol Specifies the number of the protocol to be described.

SetTimer
The SetTimer procedure sets a timer to expire after a specified time interval.
Specify the amount of time in seconds. When it times out, you receive the
TIMERexpired notification, which contains the data and the timer pointer.

Note: This procedure resets any previous time interval set on this timer.

Parameter Description

T Specifies a timer pointer, as returned by a
previous CreateTimer call.

AmountOfTime Specifies the time interval in seconds.

Data Specifies an integer value to be returned
with the TIMERexpired notification.

StartTcpNotice
The StartTcpNotice procedure establishes your own external interrupt handler. Use
this procedure rather than BeginTcpIp when you want to handle simulated external
interrupts yourself.

If your program does not use simulated VMCF, set the ClientDoesVmcf parameter
to FALSE. For more information about the simulated Virtual Machine
Communication Facility interface, see “Chapter 4. Virtual Machine Communication
Facility Interface” on page 147. Later, when your program receives a simulated
external interrupt that it does not handle, including a VMCF interrupt, inform the
TCP interface by calling TcpExtRupt. The TCP interface then processes the
interrupt.

If your program uses simulated VMCF itself, set the ClientDoesVmcf parameter to
TRUE. Your program must use the VMCF AUTHORIZE function to establish a
VMCF interrupt buffer. Later, when your program receives a VMCF interrupt that
it does not handle, inform the TCP interface by calling TcpVmcfRupt with the
address of your VMCF interrupt buffer. When your program receives a non-VMCF
simulated external interrupt that it does not handle, call TcpExtRupt, as explained
previously.

Parameter Description

procedure SetTimer
(

T: TimerPointerType;
AmountOfTime: integer;
Data: integer

);
external;

procedure StartTcpNotice
(

ClientDoesVmcf: Boolean;
var ReturnCode: integer

);
external;

SayProTy

126 z/VM: TCP/IP Programmer’s Reference

ClientDoesVmcf Set to FALSE if your program does not use
simulated VMCF. Otherwise, set to TRUE.

ReturnCode Indicates the success or failure of the call. Possible
return values are:
v OK
v ABNORMALcondition
v ALREADYclosing
v NOtcpIPservice
v VIRTUALmemoryTOOsmall
v FATALerror

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

TcpAbort
The TcpAbort procedure shuts down a specific connection immediately. Data sent
by your application on the aborted connection can be lost. TCP sends a reset
packet to notify the foreign host that you have aborted the connection, but there is
no guarantee that the reset will be received by the foreign host.

Parameter Description

Connection Specifies the connection number, as returned by TcpOpen or
TcpWaitOpen in the Connection field of the StatusInfoType record.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v FATALerror
v NOsuchCONNECTION
v NOTyetBEGUN
v TCPipSHUTDOWN

The connection is fully terminated when you receive the
notification CONNECTIONstateCHANGED with the NewState
field set to NONEXISTENT.

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

TcpClose
The TcpClose procedure begins the TCP one-way closing sequence. During this
closing sequence, you, the local client, cannot send any more data. Data can be
delivered to you until the foreign application also closes. TcpClose also causes all
data sent on that connection by your application, and buffered by TCPIP, to be sent
to the foreign application immediately.

procedure TcpAbort
(

Connection: ConnectionType;
var ReturnCode: integer

);
external;

StartTcpNotice

Chapter 3. TCP/UDP/IP API (Pascal Language) 127

Parameter Description

Connection Specifies the connection number, as returned by TcpOpen or
TcpWaitOpen in the Connection field of the StatusInfoType record.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v ALREADYclosing
v NOsuchCONNECTION
v NOTyetBEGUN
v TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

Notes:

1. If you receive the notification CONNECTIONstateCHANGED with a NewState
of SENDINGonly, the remote application has done TcpClose (or equivalent
function) and is receiving only. Respond with TcpClose when you have finished
sending data on the connection.

2. The connection is fully closed when you receive the notification
CONNECTIONstateCHANGED, with a NewState field set to NONEXISTENT.

TcpExtRupt
Use the TcpExtRupt procedure when:
1. You initiated the TCP/IP service by calling StartTcpNotice with

ClientDoesVmcf set to TRUE, and your external interrupt handler receives a
non-VMCF interrupt not handled by your program. For the handling of VMCF
interrupts, see “TcpVmcfRupt” on page 138.

2. You initiated the TCP/IP service by calling StartTcpNotice with
ClientDoesVmcf set to FALSE, and your external interrupt handler receives any
interrupt not handled by your program.

RTcpExtRupt is a version of TcpExtRupt. For more information, see “RTcpExtRupt”
on page 123 and “RTcpVmcfRupt” on page 123.

Parameter Description
RuptCode Specifies the external interrupt code you received.

TcpFReceive, TcpReceive, and TcpWaitReceive
TcpFReceive and TcpReceive are the asynchronous ways of specifying a buffer to
receive data for a given connection. Both procedures return to your program

procedure TcpClose
(

Connection: ConnectionType;
var ReturnCode: integer

);
external;

procedure TcpExtRupt
(

const RuptCode: integer
);
external;

TcpClose

128 z/VM: TCP/IP Programmer’s Reference

immediately. A return code of OK means that the request has been accepted. When
received data has been placed in your buffer, your program receives a
DATAdelivered notification. If your program uses TcpFReceive, it can receive an
FRECEIVEerror notification rather than DATAdelivered, indicating that the receive
request was rejected, or that it was initially accepted but was later canceled
because of connection closing.

TcpWaitReceive is the synchronous interface for receiving data from a TCP
connection. TcpWaitReceive does not return to your program until data has been
received into your buffer, or until an error occurs. Therefore, it is not necessary
that TcpWaitReceive receive a notification when data is delivered. The BytesRead
parameter is set to the number of bytes received by the data delivery, but if the
number is less than zero, the parameter indicates an error.

TcpReceive uses a complete VMCF transaction (SEND by your virtual machine
followed by REJECT by the TCPIP virtual machine) to tell the TCPIP virtual
machine that your program is ready to receive, and another complete VMCF
transaction (SEND by TCPIP virtual machine followed by RECEIVE by your
virtual machine) to deliver the received data. In contrast, the entire TcpFReceive
cycle is completed in one VMCF transaction. The TCP interface does a VMCF
SEND/RECEIVE to inform TCPIP that your program is ready to receive. This
transaction remains uncompleted until data is ready to be placed in your buffer. At
that time the TCPIP virtual machine does a VMCF REPLY, completing the
transaction.

TcpFReceive requires fewer VMCF transactions to receive data, thus increasing
efficiency. The disadvantage is that each outstanding TcpFReceive means an
outstanding VMCF transaction. You are limited to 50 outstanding VMCF
transactions (for each virtual machine), thus 50 outstanding TcpFReceives.

With TcpReceive, you are not subject to the limit of 50 outstanding receives (for
each virtual machine). The disadvantage is that there are twice as many VMCF
transactions involved in receiving data, thus more overhead.

The only programming difference between TcpFReceive and TcpReceive is the
generation of FRECEIVEerror notifications for TcpFReceive.

procedure TcpFReceive
(

Connection: ConnectionType;
Buffer: Address31Type;
BytesToRead: integer;

var ReturnCode: integer
);
external;

procedure TcpReceive
(

Connection: ConnectionType;
Buffer: Address31Type;
BytesToRead: integer;

var ReturnCode: integer
);
external;

TcpFReceive, TcpReceive, and TcpWaitReceive

Chapter 3. TCP/UDP/IP API (Pascal Language) 129

Parameter Description

Connection Specifies the connection number, as returned by TcpOpen or
TcpWaitOpen in the Connection field of the StatusInfoType record.

Buffer Specifies the address of the buffer to contain the received data.

BytesToRead Specifies the size of the buffer. TCPIP usually buffers the incoming
data until this many bytes are received. Data is delivered sooner if
the sender specified the PushFlag, or if the sender does a TcpClose
or equivalent. The largest usable buffer is 8192 bytes. Specifying
BytesToRead of more than 8192 bytes may not cause an error
return, but only 8192 bytes of the buffer are used.

Note: The order of TcpFReceive or TcpReceive calls on multiple
connections, and the order of DATAdelivered notifications
among the connections, are not necessarily related.

BytesRead Indicates a value when TcpWaitReceive returns. If it is greater than
ZERO, it indicates the number of bytes received into your buffer. If
it is less than or equal to ZERO, it indicates an error.

Possible BytesRead values are:
v OK⁺
v ABNORMALcondition
v FATALerror
v TIMEOUTopen⁺
v UNREACHABLEnetwork⁺
v BADlengthARGUMENT
v NOsuchCONNECTION
v NOTyetBEGUN
v NOTyetOPEN
v OPENrejected⁺
v RECEIVEstillPENDING
v REMOTEreset⁺
v UNEXPECTEDsyn⁺
v WRONGsecORprc⁺
v DROPPEDbyOPERATOR⁺
v FATALerror⁺
v KILLEDbyCLIENT⁺
v TCPipSHUTDOWN⁺
v TIMEOUTconnection⁺
v REMOTEclose

ReturnCode: Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v BEGUNlengthARGUMENT
v fatalerror
v NOsuchCONNECTION

procedure TcpWaitReceive
(

Connection: ConnectionType;
Buffer: Address31Type;
BytesToRead: integer;

var BytesRead: integer
);
external;

TcpFReceive, TcpReceive, and TcpWaitReceive

130 z/VM: TCP/IP Programmer’s Reference

v NOTyetBEGUN
v NOTyetOPEN
v RECEIVEstillPENDING
v REMOTEclose
v TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

Notes:

1. For BytesRead OK, the function was initiated, but the connection is no longer
receiving for an unspecified reason. Your program does not have to issue
TcpClose, but the connection is not completely terminated until a
NONEXISTENT notification is received for the connection.

2. For BytesRead REMOTEclose, the foreign host has closed the connection. Your
program should respond with TcpClose.

3. If you receive any of the codes marked with ⁺, the function was initiated but
the connection has now been terminated (see 2 on page 101). Your program
should not issue TcpClose, but the connection is not completely terminated
until NONEXISTENT notification is received for the connection.

4. TcpWaitReceive is intended to be used by programs that manage a single TCP
connection. It is not suitable for use by multiconnection servers.

5. A return code of TCPipSHUTDOWN can be returned either because the
connection initiation has failed, or because the connection has been terminated,
because of shutdown. In either case, your program should not issue any more
TCP/IP calls.

TcpFSend, TcpSend, and TcpWaitSend
TcpFSend and TcpSend are the asynchronous ways of sending data on a TCP
connection. Both procedures return to your program immediately (do not wait
under any circumstance).

TcpWaitSend is a simple synchronous method of sending data on a TCP
connection. It does not return immediately if the TCPIP virtual machine has
insufficient space to accept the data being sent.

TcpFSend and TcpSend differ in the way that they handle VMCF when the TCPIP
virtual machine has insufficient buffer space to accept the data being sent. Both
start by issuing a VMCF SEND function to transfer your data. Normally, the TCPIP
virtual machine issues a VMCF RECEIVE, thus completing the VMCF transaction.

In the case of insufficient buffer space, TCPIP responds to TcpSend with a VMCF
REJECT, completing the VMCF transaction (unsuccessfully). When space becomes
available, another complete VMCF transaction is performed to send a
BUFFERspaceAVAILABLE notification.

In the case of a TcpFSend with insufficient buffer space, TCPIP does not respond to
the VMCF SEND until buffer space becomes available, at which time the
transaction is completed with a VMCF RECEIVE.

TcpSend returns to your program after the VMCF response from TCPIP is received.
In contrast, because the VMCF response from TcpFSend may be delayed, TcpFSend
returns before the VMCF response is received. An OK return code from TcpFSend
indicates only the successful initiation of the VMCF transaction.

TcpFReceive, TcpReceive, and TcpWaitReceive

Chapter 3. TCP/UDP/IP API (Pascal Language) 131

The advantage of TcpFSend is that the VMCF transactions necessary to send data
are reduced in the case where a program can send data faster than the TCP
connection can carry it. Its disadvantages are that it is limited to 50 outstanding
VMCF sends and therefore 50 TcpFSends, and is slightly more complicated to use,
because you have to wait for an FSENDresponse notification (generated internally
by the TCP interface) between successive TcpFSends.

The advantage of TcpSend is that it does not involve an outstanding VMCF
transaction. Thus, there is no imposed VMCF-related limit. Also, TcpSend is
simpler to use because you can issue successive TcpSends without waiting for a
notification. The disadvantage of TcpSend is that it is less efficient than TcpFSend if
your program can send data faster than the TCP connection can carry it.

Your program can issue successive TcpWaitSend calls. Buffer shortage conditions
are handled transparently. Any errors that occur are likely to be nonrecoverable
errors, or are caused by a connection that has terminated.

If you receive any of the codes listed for Reason in the
CONNECTIONstateCHANGED notification, except for OK, the connection was
terminated for the indicated reason. Your program should not issue a TcpClose, but
the connection is not completely terminated until your program receives a
NONEXISTENT notification for the connection.

Parameter Description

Connection Specifies the connection number, as returned by TcpOpen or
TcpWaitOpen in the Connection field of the StatusInfoType record.

Buffer Specifies the address of the buffer containing the data to send.

procedure TcpFSend
(

Connection: ConnectionType;
Buffer: Address31Type;
BufferLength: integer;
PushFlag: Boolean;
UrgentFlag: Boolean;

var ReturnCode: integer
);
external;

procedure TcpSend
(

Connection: ConnectionType;
Buffer: Address31Type;
BufferLength: integer;
PushFlag: Boolean;
UrgentFlag: Boolean;

var ReturnCode: integer
);
external;

procedure TcpWaitSend
(

Connection: ConnectionType;
Buffer: Address31Type;
BufferLength: integer;
PushFlag: Boolean;
UrgentFlag: Boolean;

var ReturnCode: integer
);
external;

TcpFSend, TcpSend, and TcpWaitSend

132 z/VM: TCP/IP Programmer’s Reference

BufferLength Specifies the length of data in the buffer. Maximum is 8192.

PushFlag Forces the data, and previously queued data, to be sent
immediately to the foreign application.

UrgentFlag Marks the data as urgent. The semantics of urgent data is
dependent on your application.

Note: Use urgent data with caution. If the foreign application
follows the Telnet-style use of urgent data, it may flush all
urgent data until a special character sequence is
encountered.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v BADlengthARGUMENT
v CANNOTsendDATA
v FATALerror
v FSENDstillpending
v NObufferSPACE (TcpSend only)
v NOsuchCONNECTION
v NOTyetBEGUN
v NOTyetOPEN
v TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

Notes:

1. A successful TcpFSend, TcpSend, and TcpWaitSend means that TCP has
received the data to be sent and stored it in its internal buffers. TCP then puts
the data in packets and transmits it when the conditions permit.

2. Data sent in a TcpFSend, TcpSend, or TcpWaitSend request may be split up into
numerous packets by TCP, or the data may wait in TCP’s buffer space and
share a packet with other TcpFSend, TcpSend, or TcpWaitSend, requests.

3. The PushFlag gives the user the ability to affect when TCP sends the data.
Setting the PushFlag to FALSE allows TCP to buffer the data and wait until it
has enough data to transmit so as to utilize the transmission line more
efficiently. There can be some delay before the foreign host receives the data.
Setting the PushFlag to TRUE instructs TCP to packetize and transmit any
buffered data from previous Send requests along with the data in the current
TcpFSend, TcpSend, or TcpWaitSend request without delay or consideration of
transmission line efficiency. A successful send does not imply that the foreign
application has actually received the data, only that the data will be sent as
soon as possible.

4. TcpWaitSend is intended for programs that manage a single TCP connection. It
is not suitable for use by multiconnection servers.

TcpNameChange
The TcpNameChange procedure is used if the virtual machine running the TCP/IP
program is not using the default name, TCPIP, and is not the same as specified in
the TCPIPUSERID statement of the TCPIP DATA file. For more information, see
TCP/IP Planning and Customization.

TcpFSend, TcpSend, and TcpWaitSend

Chapter 3. TCP/UDP/IP API (Pascal Language) 133

If required, this procedure must be called before the BeginTcpIp or the
StartTcpNotice procedure.

Parameter Description
NewNameOfTcp Specifies the name of the virtual machine running

TCP/IP.

TcpOpen and TcpWaitOpen
The TcpOpen or TcpWaitOpen procedures initiate a TCP connection. TcpOpen
returns immediately, and connection establishment proceeds asynchronously with
your program’s other operations. The connection is fully established when your
program receives a CONNECTIONstateCHANGED notification with NewState set
to OPEN. TcpWaitOpen does not return until the connection is established, or until
an error occurs.

There are two types of TcpOpen calls: passive open and active open. A passive
open call sets the connection state to LISTENING. An active open call sets the
connection state to TRYINGtoOPEN.

If a TcpOpen or TcpWaitOpen call returns ZEROresources, and your application
handles RESOURCESavailable notifications, you receive a RESOURCESavailable
notification when sufficient resources are available to process an open call. The first
open your program issues after a RESOURCESavailable notification is guaranteed
not to get the ZEROresources return code.

Parameter Description

ConnectionInfo
Specifies a connection information record.

Connection
Set this field to UNSPECIFIEDconnection. When the call
returns, the field contains the number of the new
connection if ReturnCode is OK.

ConnectionState
For active open, set this field to TRYINGtoOPEN. For
passive open, set this field to LISTENING.

procedure TcpNameChange
(

NewNameOfTcp: DirectoryNameType
);
external;

procedure TcpOpen
(

var ConnectionInfo: StatusInfoType;
var ReturnCode: integer

);
external;

procedure TcpWaitOpen
(

var ConnectionInfo: StatusInfoType;
var ReturnCode: integer

);
external;

TcpNameChange

134 z/VM: TCP/IP Programmer’s Reference

OpenAttemptTimeout
Set this field to specify how long, in seconds, TCP is to
continue attempting to open the connection. If the
connection is not fully established during that time, TCP
reports the error to you. If you used TcpOpen, you receive
a notification. The type of notification that you receive is
CONNECTIONstateCHANGED. It has a new state of
NONEXISTENT and a reason of TIMEOUTopen. If you
used TcpWaitOpen, it returns with ReturnCode set to
TIMEOUTopen.

Security
This field is reserved. Set it to DEFAULTsecurity.

Compartment
This field is reserved. Set it to DEFAULTcompartment.

Precedence
This field is reserved. Set it to DEFAULTprecedence.

LocalSocket
Active Open: You can use an address of
UNSPECIFIEDaddress (the TCPIP virtual machine uses the
home address corresponding to the network interface used
to route to the foreign address) and a port of
UNSPECIFIEDport (the TCPIP virtual machine assigns a
port number, in the range of 1000 to 65 534). You can
specify the address, the port, or both if particular values
are required by your application. The address must be a
valid home address for your node, and the port must be
available (not reserved, and not in use by another
application).

Passive Open: You usually specify a predetermined port
number, which is known by another program, which can
do an active open to connect to your program.
Alternatively, you can use UNSPECIFIEDport to let the
TCPIP virtual machine assign a port number, obtain the
port number through TcpStatus, and transmit it to the
other program through an existing TCP connection or
manually. You generally specify an address of
UNSPECIFIEDaddress, so that the active open to your port
succeeds, regardless of the home addresses to which it was
sent.

ForeignSocket
Active Open: The address and port must both be specified,
because the TCPIP virtual machine cannot actively initiate
a connection without knowing the destination address and
port.

Passive Open: If your program is offering a service to
anyone who wants it, specify an address of
UNSPECIFIEDaddress and a port of UNSPECIFIEDport.
You can specify a particular address and port if you want
to accept an active open only from a certain foreign
application.

ReturnCode Indicates the success or failure of the call. Possible return values
are:

TcpOpen and TcpWaitOpen

Chapter 3. TCP/UDP/IP API (Pascal Language) 135

v OK
v ABNORMALcondition
v FATALerror
v CONNECTIONalreadyEXISTS
v DROPPEDbyOPERATOR (TcpWaitOpen only)
v LOCALportNOTavailable
v NOsuchCONNECTION
v NOTyetBEGUN
v OPENrejected (TcpWaitOpen only)
v PARAMlocalADDRESS
v PARAMstate
v PARAMtimeout
v PARAMunspecADDRESS
v PARAMunspecPORT
v REMOTEreset (TcpWaitOpen only)
v SOFTWAREerror
v TCPipSHUTDOWN
v TIMEOUTconnection (TcpWaitOpen only)
v TIMEOUTopen (TcpWaitOpen only)
v TOOmanyOPENS
v UNEXPECTEDsyn (TcpWaitOpen only)
v UNREACHABLEnetwork (TcpWaitOpen only)
v WRONGsecORprc (TcpWaitOpen only)
v ZEROresources

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

TcpOption
The TcpOption procedure sets an option for a TCP connection.

Parameter Description

Connection Specifies the connection number, as returned by TcpOpen or
TcpWaitOpen in the Connection field of the StatusInfoType record.

OptionName Specifies the code for the option.

OPTIONtcpKEEPALIVE
If OptionValue is zero, the keep-alive mechanism is
deactivated for the connection. If OptionValue is nonzero,
the keep-alive mechanism is activated for the connection.
This mechanism sends a packet on an otherwise idle
connection. If the remote TCP does not respond to the
packet, the connection state will be changed to
NONEXISTENT with TIMEOUTconnection as the reason.

OptionValue Specifies the value for the option.

procedure TcpOption
(

Connection: ConnectionType
OptionName: integer;
OptionValue: integer;

var ReturnCode: integer
);
external;

TcpOpen and TcpWaitOpen

136 z/VM: TCP/IP Programmer’s Reference

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v NOsuchCONNECTION
v NOTyetBEGUN
v TCPipSHUTDOWN
v INVALIDrequest

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

TcpStatus
The TcpStatus procedure obtains the current status of a TCP connection. Your
program sets the Connection field of the ConnectionInfo record to the number of
the connection whose status you want.

Parameter Description

ConnectionInfo
If ReturnCode is OK, the following fields are returned.

Field Description

OpenAttemptTimeout
If the connection is in the process of being opened
(including a passive open), this field is set to the
number of seconds remaining before the open is
terminated if it has not completed. Otherwise, it is
set to WAITforever.

BytesToRead Specifies the number of bytes of incoming data
queued for your program (waiting for TcpReceive,
TcpFReceive, or TcpWaitReceive).

UnackedBytes Specifies the number of bytes sent by your
program but not yet sent to the foreign TCP, or the
number of bytes sent to the foreign TCP, but not
yet acknowledged.

ConnectionState
Specifies the current connection state.

LocalSocket Specifies the local socket, consisting of a local
address and a local port.

ForeignSocket Specifies the foreign socket, consisting of a foreign
address and a foreign port.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v NOsuchCONNECTION
v NOTyetBEGUN

procedure TcpStatus
(

var ConnectionInfo: StatusInfoType;
var ReturnCode: integer

);
external;

TcpOption

Chapter 3. TCP/UDP/IP API (Pascal Language) 137

v TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

Note: Your program cannot monitor connection state changes exclusively through
polling with TcpStatus. It must receive CONNECTIONstateCHANGED
notifications through GetNextNote, for the TCP interface to work properly.

TcpVmcfRupt
The TcpVmcfRupt procedure is used when you initiate the TCP/IP service by
calling StartTcpNotice with ClientDoesVmcf set to TRUE, and your external
interrupt handler receives a VMCF interrupt not handled by your program.

RTcpVmcfRupt is a version of TcpVmcfRupt that can be called directly from an
assembler interrupt handler. For more information, see “RTcpExtRupt” on page 123
and “RTcpVmcfRupt” on page 123.

Parameter Description

VmcfHeaderAddress Indicates the address of your VMCF interrupt
buffer as specified in the VMCF AUTHORIZE
function that your program issued at initialization.

UdpClose
The UdpClose procedure closes the UDP socket specified in the ConnIndex field.
All incoming datagrams on this connection are discarded.

Parameter Description

ConnIndex Specifies the ConnIndex value returned from UdpOpen.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v FATALerror
v NOsuchCONNECTION
v NOTyetBEGUN
v SOFTWAREerror
v TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

procedure TcpVmcfRupt
(

VmcfHeaderAddress: integer
);
external;

procedure UdpClose
(

ConnIndex: ConnectionIndexType;
var ReturnCode: CallReturnCodeType

);
external;

TcpStatus

138 z/VM: TCP/IP Programmer’s Reference

UdpNReceive
The UdpNReceive procedure notifies the TCPIP virtual machine that you can
receive UDP datagram data. This call returns immediately. The data buffer is not
valid until you receive a UDPdatagramDELIVERED notification.

Parameter Description

ConnIndex Specifies the ConnIndex value returned from UdpOpen.

BufferAddress
Specifies the address of your buffer that will be filled with a UDP
datagram.

BufferLength Specifies the length of your buffer. If you specify a length larger
than 8192 bytes, only the first 8192 bytes are used.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v FATALerror
v NOsuchCONNECTION
v NOTyetBEGUN
v RECEIVEstillPENDING
v TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

UdpOpen
The UdpOpen procedure requests acceptance of UDP datagrams on the specified
socket and allows datagrams to be sent from the specified socket. When the socket
port is unspecified, UDP selects a port and returns it to the socket port field. When
the socket address is unspecified, UDP uses the default local address. If specified,
the address must be a valid home address for your node.

Note: When the local address is specified, only the UDP datagrams addressed to it
are delivered.

If the ReturnCode indicates the open was successful, use the returned ConnIndex
value on any further actions pertaining to this UDP socket.

procedure UdpNReceive
(

ConnIndex: ConnectionIndexType;
BufferAddress: integer;
BufferLength: integer;

var ReturnCode: CallReturnCodeType
);
external;

procedure UdpOpen
(

var LocalSocket: SocketType;
var ConnIndex: ConnectionIndexType;
var ReturnCode: CallReturnCodeType

);
external;

UdpNReceive

Chapter 3. TCP/UDP/IP API (Pascal Language) 139

Parameter Description

LocalSocket Specifies the local socket (address and port pair).

ConnIndex Specifies the ConnIndex value returned from UdpOpen.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v FATALerror
v LOCALportNOTavailable
v NOTyetBEGUN
v SOFTWAREerror
v TCPipSHUTDOWN
v UDPlocalADDRESS
v UDPzeroRESOURCES

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

Note: If a UdpOpen call returns UDPzeroRESOURCES, and your application
handles UDPresourcesAVAILABLE notifications, you receive a
UDPresourcesAVAILABLE notification when sufficient resources are
available to process a UdpOpen call. The first UdpOpen your program
issues after a UDPresourcesAVAILABLE notification is guaranteed not to get
the UDPzeroRESOURCES return code.

UdpReceive
The UdpReceive procedure notifies the TCPIP virtual machine that you are willing
to receive UDP datagram data.

UdpReceive is for compatibility with old programs only. New programs should
use the UdpNReceive procedure, which allows you to specify the size of your
buffer.

If you use UdpReceive, TCPIP can put a datagram of up to 2012 bytes in your
buffer. If a larger datagram is sent to your port when UdpReceive is pending, the
datagram is discarded without notification.

Note: No data is transferred from the TCPIP virtual machine in this call. It only
tells TCPIP that you are waiting for a datagram. Data has been transferred
when a UDPdatagramDELIVERED notification is received.

Parameter Description

ConnIndex Specifies the ConnIndex value returned from UdpOpen.

DatagramAddress
Specifies the address of your buffer that will be filled with a
UDP datagram.

procedure UdpReceive
(

ConnIndex: ConnectionIndexType;
DatagramAddress: integer;

var ReturnCode: CallReturnCodeType
);
external;

UdpOpen

140 z/VM: TCP/IP Programmer’s Reference

ReturnCode Indicates the success or failure of the call. Possible return
values are:
v OK
v ABNORMALcondition
v FATALerror
v NOsuchCONNECTION
v NOTyetBEGUN
v SOFTWAREerror
v TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return
Codes” on page 405.

UdpSend
The UdpSend procedure sends a UDP datagram to the specified foreign socket.
The source socket is the local socket selected in the UdpOpen that returned the
ConnIndex value that was used. The buffer does not include the UDP header. This
header is supplied by the TCPIP virtual machine.

When there is no buffer space to process the data, an error is returned. In this case,
wait for a subsequent UDPdatagramSPACEavailable notification.

Parameter Description

ConnIndex Specifies the ConnIndex value returned from UdpOpen.

ForeignSocket Specifies the foreign socket (address and port) to whom the
datagram is to be sent.

BufferAddress
Specifies the address of your buffer containing the UDP datagram
to be sent, excluding UDP header.

Length Specifies the length of the datagram to be sent, excluding UDP
header. Maximum is 8192 bytes.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v BADlengthARGUMENT
v NObufferSPACE
v NOsuchCONNECTION
v NOTyetBEGUN
v SOFTWAREerror
v TCPipSHUTDOWN
v UDPunspecADDRESS
v UDPunspecPORT

procedure UdpSend
(

ConnIndex: ConnectionIndexType;
ForeignSocket: SocketType;
BufferAddress: integer;
Length: integer;

var ReturnCode: CallReturnCodeType
);
external;

UdpReceive

Chapter 3. TCP/UDP/IP API (Pascal Language) 141

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

Unhandle
The Unhandle procedure specifies that you no longer want to receive notifications
in the given set.

If you request to unhandle the DATAdelivered notification, the Unhandle
procedure returns with a code of INVALIDrequest.

Parameter Description

Notifications Specifies the set of notifications that you no longer want to receive.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v ABNORMALcondition
v FATALerror
v INVALIDrequest
v NOTyetBEGUN
v TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

UnNotifyIo
The UnNotifyIo routine is used to indicate that you no longer wish to be sent a
notification when an I/O interrupt occurs on the specified virtual address.

Parameter Description

DeviceAddress
Specifies the address of the device for which IOinterrupt
notifications are no longer to be generated.

ReturnCode Indicates the success or failure of the call. Possible return values
are:
v OK
v NOsuchCONNECTION
v SOFTWAREerror

For a description of Pascal ReturnCodes, see “Appendix A. Pascal Return Codes”
on page 405.

procedure Unhandle
(

Notifications: NotificationSetType;
var ReturnCode: integer

);
external;

procedure UnNotifyIo
(

DeviceAddress: integer;
var ReturnCode: integer

);
external;

UdpSend

142 z/VM: TCP/IP Programmer’s Reference

Sample Pascal Program
{**}
{* *}
{* Memory-to-memory Data Transfer Rate Measurement *}
{* *}
{* Pseudocode: Establish access to TCP/IP Services *}
{* Prompt user for operation parameters *}
{* Open a connection (Sender:passive, Receiver:active) *}
{* If Sender: *}
{* Send 5M of data using TcpFSend *}
{* Use GetNextNote to know when Send is complete *}
{* Print transfer rate after every 1M of data *}
{* else Receiver: *}
{* Receive 5M of data using TcpFReceive *}
{* Use GetNextNote to know when data is delivered *}
{* Print transfer rate after every 1M of data *}
{* Close connection *}
{* Use GetNextNote to wait until connection is closed *}
{* *}
{**}
program SAMPLE;

%include CMALLCL
%include CMINTER
%include CMRESGLB

const
BUFFERlength = 8192;
PORTnumber = 999;
CLOCKunitsPERthousandth = ’3E8000’x;

var
Buffer : packed array (.1..BUFFERlength.) of char;
BufferAddress : Address31Type;
ConnectionInfo : StatusInfoType;
Count : integer;
DataRate : real;
Difference : TimeStampType;
Error : boolean;
HostAddress : InternetAddressType;
IbmSeconds : integer;
Ignored : integer;
Line : string(80);
Note : NotificationInfoType;
NumBytes : integer;
RealRate : real;
ReturnCode : integer;
SendFlag : boolean;
StartingTime : TimeStampType;
Thousandths : integer;
TotalBytes : integer;

{**}
{* Print message, release resources and reset environment *}
{**}
procedure Restore (const Message: string;

const ReturnCode: integer);
begin

Write (Message);
if ReturnCode <> OK then

Write (SayCalRe(ReturnCode));
WriteLn (’’);

EndTcpIp;

Sample Pascal Program

Chapter 3. TCP/UDP/IP API (Pascal Language) 143

DropEmulation;
Close (Input);
Close (Output);

end;

begin
TermOut (Output);
TermIn (Input);

{ Enable program to run with ECMODE OFF. It has no effect if }
{ ECMODE ON. There is, however, additional overhead and }
{ possible performance impact when running with ECMODE OFF. }
InitEmulation (Error);
if Error then begin

WriteLn (’InitEmulation failed’);
return;

end;

{ Establish access to TCP/IP services }
BeginTcpIp (ReturnCode);
if ReturnCode <> OK then begin

WriteLn (’BeginTcpip: ’, SayCalRe(ReturnCode));
return;

end;

{ Inform TCPIP which notifications will be handled by the program }
Handle ((.DATAdelivered, BUFFERspaceAVAILABLE,

CONNECTIONstateCHANGED.), ReturnCode);
if ReturnCode <> OK then begin

Restore (’Handle: ’, ReturnCode);
return;

end;

{ Prompt user for operation parameters }
WriteLn (’Transfer mode: (Send or Receive)’);
ReadLn (Line);
if (Substr(Line,1,1) = ’s’) or (Substr(Line,1,1) = ’S’) then

SendFlag := TRUE
else

SendFlag := FALSE;

WriteLn (’Host Name or Internet Address :’);
ReadLn (Line);
GetHostResol (Line, HostAddress);
if HostAddress = NOhost then begin

Restore (’GetHostResol failed’, OK);
return;

end;

{ Open a TCP connection: active for Send and passive for Receive }
with ConnectionInfo do begin

Connection := UNSPECIFIEDconnection;
OpenAttemptTimeout := WAITforever;
Security := DEFAULTsecurity;
Compartment := DEFAULTcompartment;
Precedence := DEFAULTprecedence;
if SendFlag then begin

ConnectionState := TRYINGtoOPEN;
LocalSocket.Address := UNSPECIFIEDaddress;
LocalSocket.Port := UNSPECIFIEDport;
ForeignSocket.Address := HostAddress;
ForeignSocket.Port := PORTnumber;

end
else begin

ConnectionState := LISTENING;
LocalSocket.Address := HostAddress;

Sample Pascal Program

144 z/VM: TCP/IP Programmer’s Reference

LocalSocket.Port := PORTnumber;
ForeignSocket.Address := UNSPECIFIEDaddress;
ForeignSocket.Port := UNSPECIFIEDport;

end;
end;
TcpWaitOpen (ConnectionInfo, ReturnCode);
if ReturnCode <> OK then begin

Restore (’TcpWaitOpen: ’, ReturnCode);
return;

end;

{ Initialization }
BufferAddress := AddressOfChar(Buffer(.1.));
NumBytes := BUFFERlength;
StartingTime := ClockTime;
TotalBytes := 0;
Count := 0;

{ Repeat until 5M bytes of data have been transferred }
while (Count < 5) do begin

{ Transfer data and wait until operation is completed }
if SendFlag then

TcpWaitSend (ConnectionInfo.Connection, BufferAddress,
BUFFERlength, FALSE, FALSE, ReturnCode)

else begin
TcpWaitReceive (ConnectionInfo.Connection, BufferAddress,

BUFFERlength, NumBytes);
if NumBytes < 0 then

ReturnCode := NumBytes;
end;

if ReturnCode <> OK then begin
WriteLn (’TcpSend/Receive: ’, SayCalRe(ReturnCode));
leave;

end;

TotalBytes := TotalBytes + NumBytes;
if TotalBytes < 1048576 then

continue;

{ Print transfer rate after every 1M bytes of data transferred }
DoubleSubtract (ClockTime, StartingTime, Difference);
DoubleDivide (Difference, CLOCKunitsPERthousandth, Thousandths,

Ignored);
RealRate := (TotalBytes/Thousandths) * 1000.0;
WriteLn (’Transfer rate ’, RealRate:1:0, ’ Bytes/sec.’);

StartingTime := ClockTime;
TotalBytes := 0;
Count := Count + 1;

end;

{ Close TCP connection and wait till partner also drops connection }
TcpClose (ConnectionInfo.Connection, ReturnCode);
if ReturnCode <> OK then begin

Restore (’TcpClose: ’, ReturnCode);
return;

end;

repeat
GetNextNote (Note, True, ReturnCode);
if ReturnCode <> OK then begin

Restore (’GetNextNote: ’, ReturnCode);
return;

end;
until (Note.NotificationTag = CONNECTIONstateCHANGED) &

Sample Pascal Program

Chapter 3. TCP/UDP/IP API (Pascal Language) 145

(Note.NewState = NONEXISTENT);

Restore (’Program terminated successfully’, OK);
end.

Sample Pascal Program

146 z/VM: TCP/IP Programmer’s Reference

Chapter 4. Virtual Machine Communication Facility Interface

The Virtual Machine Communication Facility (VMCF) is part of the Control
Program (CP) of VM. VMCF enables virtual machines to send data to and receive
data from any other virtual machine.

You can communicate directly with the TCPIP virtual machine using VMCF calls,
rather than Pascal API or C socket calls. You can use VMCF calls when:
v You want to write your program in assembler.
v You add TCP/IP communication to an existing complex program, and it can be

difficult or impossible for your program to monitor TCP/IP events through the
Pascal GetNextNote interface.

If your program drives the VMCF interface directly, do not link any of the TCP
interface library modules with your program. Consequently, you cannot use any of
the auxiliary routines, such as the Say functions and timer routines. (You must use
VM timer support, or support provided by your existing program). VMCF consists
of data transfer functions, control functions, a special external interrupt for
pending messages, and an external interrupt message header to pass control
information and data to another virtual machine.

For more information about the VMCF interface, see the VM/ESA: CP Programming
Services book.

General Information
The following section describes the data structure of the VMCF interrupt header
used by TCP/IP for VM. The section also lists the VMCF functions available with
TCP/IP for VM. Tables summarizing the CALLCODE for making VMCF requests
and receiving notifications from TCPIP virtual machine are provided. The
remainder of the chapter describes these CALLCODE calls in details.

Data Structures
VMCF is implemented with functions invoked using DIAGNOSE X'68' and a
special 40-byte parameter list. A VMCF function is requested by a particular
function subcode in the FUNC field in the parameter list.

Your program uses the standard 40-byte VMCF parameter list to submit VMCF
requests to the TCPIP virtual machine. The TCPIP virtual machine returns VMCF
interrupts results in the similar 40-byte VMCF parameter list. The parameter list is
the interrupt header being stored in your virtual machine. In this chapter, fields in
the parameter list and interrupt header are referred to using the data structure
header names in Figure 20 on page 148.

© Copyright IBM Corp. 1987, 2001 147

VMCF Parameter List Fields
The following describes the VMCF parameter list fields.

V1 Used for security and data integrity. You can enable your virtual machine
for VMCF communication to the TCPIP virtual machine by executing the
AUTHORIZE control function. The AUTHORIZE control function is set by
issuing a DIAGNOSE Code X'68' Subcode X'0000' assembler call. If you do
not set the AUTHORIZE function in V1, check the JOBNAME field when
processing each interrupt to ensure that interrupts from other virtual
machines are not misinterpreted as coming from TCPIP. V1 must be zero
for all VMCF functions other than AUTHORIZE. To terminate VMCF
activities for a virtual machine, issue the UNAUTHORIZE control function.
The UNAUTHORIZE control function is set by issuing a DIAGNOSE Code
X'68' Subcode X'0001' assembler call.

FUNC The IUCV operation.

V2 Reserved for IBM use, and should be X’00’ initially.

MSGID
Contains a unique message identifier associated with a transaction. You
must use a unique, even number for each outstanding transaction. A
simple method is to use consecutive, even numbers for each transaction.

JOBNAME
Specifies the user ID of the virtual machine making VMCF requests. You
must set this field to the user ID of the TCPIP virtual machine.

VADA Contains the address of the source or destination address depending on
the VMCF function requested.

LENA Contains the length of the data sent by a user, the length of a RECEIVE
buffer, or the length of an external interrupt buffer, whichever is specified
in the VADA field.

VADB Contains the address of a source virtual machine’s REPLY buffer for VMCF
request.

LENB Specifies the length of the source virtual machine’s REPLY buffer.

The use of each field is described individually for each TCP/IP function.

VMCF Interrupt Header Fields
The following describes the VMCF parameter list fields for the interrupt header.

V1 Sets the VMCMRESP flag, which is the interrupt in response to a

V1 DS X
V2 DS X
FUNC DS H
MSGID DS F
JOBNAME DS CL8
VADA DS A
LENA DS F
VADB DS A
LENB DS F
* User-doubleword field is divided into the following fields:
ANINTEGR DS F
CONN DS H
CALLCODE DS X
RETCODE DS X

Figure 20. Assembler Format of the VMCF Parameter List Fields

VMCF Interface

148 z/VM: TCP/IP Programmer’s Reference

transaction initiated by your virtual machine. If the TCPIP virtual machine
responds using the REJECT function, the VMCMRJCT flag is also set. This
flag by itself does not usually indicate that the transaction was
unsuccessful. Your program should check the completion status code in the
RETCODE field, as described for each function.

ANINTEGR
Checks the status of VMCF transactions. It is a field, of fullword length
(four bytes), used to check the status of VMCF transactions. The field is
described for each function.

CONN
Establishes a TCP connection. If a connection between your virtual
machine and TCPIP virtual machine was established successfully and the
RETCODE field indicates OK, the connection number of the new
connection is stored in this field.

CALLCODE
Calls instructions to be passed by your program when initiating a VMCF
function to interface with TCPIP virtual machine. If the interrupt is in
response to a transaction initiated by your virtual machine (VMCMRESP
flag set in V1), the CALLCODE value is the same as the value set by your
program when it initiated the transaction.

RETCODE
Contains the completion status codes of a transaction. Return codes
reported in this field are taken from the same set used by Pascal programs
(see “Appendix A. Pascal Return Codes” on page 405). Further information
is given in the description of each function.

VMCF Functions
Table 16 lists the available VMCF functions, with descriptions, to communicate
with the TCPIP virtual machine.

Table 16. Available VMCF Functions

Function Code Description

AUTHORIZE Control Initializes VMCF for a given virtual machine. Once
AUTHORIZE is executed, the virtual machine can execute
other VMCF functions and receive messages or requests
from other users.

UNAUTHORIZE Control Terminates VMCF activity.

SEND Data Directs a message or block of data to another virtual
machine.

SEND/RECV Data Directs a message or block of data to another virtual
machine, and requests a reply.

RECEIVE Data Allows you to accept selective messages or data sent using
the SEND or SEND/RECV functions.

REPLY Data Allows you to direct data back to the originator of a
SEND/RECV function, simulating duplex communication.

REJECT Data Allows you to reject specific SEND or SEND/RECV
requests pending for your virtual machine.

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 149

Table 16. Available VMCF Functions (continued)

Function Code Description

Note:
Data Indicates a data transfer
Control

Indicates a VMCF control function

VMCF TCPIP Communication CALLCODE Requests
Table 17 lists the equate values and available calls for initiating a VMCF TCPIP
request; it also includes a description of each CALLCODE request.

Table 17. VMCF TCPIP CALLCODE Requests

Call Code Equates Description

CONNECTIONclosing 00 Data may no longer be transmitted on this
connection since the TCP/IP service is in the process
of closing down the process.

LISTENING 01 Waiting for a foreign site to open a connection.

NONEXISTENT 02 The connection no longer exists.

OPEN 03 Data can go either way on the connection.

RECEIVINGonly 04 Data can be received but not sent on this connection,
because the client has done a one-way close.

SENDINGonly 05 Data can be sent out but not received on this
connection. This means that the foreign site has
done a one way close.

TRYINGtoOPEN 06 Trying to contact a foreign site to establish a
connection.

ABORTtcp 100 Terminates a TCP connection.

BEGINtcpIPservice 101 Initializes a TCP/IP connection between your
program and the TCPIP virtual machine.

CLOSEtcp 102 Initiates the closing of a TCP connection.

CLOSEudp 103 Initiates the closing of a UDP connection.

ENDtcpIPservice 104 Terminates the use of TCPIP services. All existing
TCP connections are reset, all open UDP ports are
canceled, and all IP protocols are released.

HANDLEnotice 105 Specifies the types of notifications to be received
from TCPIP.

IShostLOCAL 106 Determines whether a given internet address is one
of your host’s local addresses.

MONITORcommand 107 Instructs TCPIP to obey a file of commands.

MONITORquery 108 Obtains status information from the TCPIP virtual
machine or requests that it performs certain
functions.

OPENtcp 110 Initiates a TCP connection.

OPENudp 111 Initiates a UDP connection.

OPTIONtcp 112 Sets an option for a TCP connection.

RECEIVEtcp 113 Tells TCPIP that you are ready to receive data on a
specified TCP connection.

VMCF Interface

150 z/VM: TCP/IP Programmer’s Reference

Table 17. VMCF TCPIP CALLCODE Requests (continued)

Call Code Equates Description

NRECEIVEudp 115 Tells TCPIP that your program is ready to receive a
UDP datagram on a particular port.

SENDtcp 118 Sends data on a TCP connection. The SENDtcp
transaction is unsuccessful if the receiving TCPIP
virtual machine has insufficient buffer space to
receive the data.

SENDudp 119 Sends a UDP datagram.

STATUStcp 120 Obtains a Connection Information Record giving the
current status of a TCP connection.

FRECEIVEtcp 121 Tells TCPIP virtual machine that you are ready to
receive data on a specified TCP connection. TCPIP
does not respond or send a notification until the
data has been placed in the receiving buffer or the
connection has been closed.

FSENDtcp 122 Sends data to a TCP connection. FSENDtcp waits for
available receiving buffer space in the TCPIP virtual
machine before completing the VMCF transaction.

CLOSErawIP 123 Tells TCPIP that your program does not handle the
protocol any longer. Any queued incoming packets
are discarded.

OPENrawIP 124 Initiates a connection and tells TCPIP virtual
machine that your program is ready to send and
receive packets of a specified IP protocol.

RECEIVErawIP 125 Tells TCPIP that your program is ready to receive
raw IP packets of a given protocol. Your program
receives a RAWIPpacketsDELIVERED notification when
a packet arrives.

SENDrawIP 126 Tells TCPIP virtual machine to send raw IP packets
of a given protocol number.

PINGreq 127 Sends an ICMP echo request to a specified host and
wait a specified time for a response.

VMCF TCPIP Communication CALLCODE Notifications
Table 18 lists the equate values for the CALLCODE field when VMCF TCPIP sends
a notification to your program. The table includes a description of each
CALLCODE response.

Table 18. VMCF TCPIP CALLCODE Notifications

Notification Code Equates Description

BUFFERspaceAVAILABLE 10 Notification that there is space available to
send data on this connection. The space is
currently set to 8192 bytes of buffer space.

CONNECTIONstateCHANGED 11 Notification that the state of the connection
between the TCPIP virtual machine and
your program has changed.

DATAdelivered 12 Notification that the TCPIP virtual machine
data was delivered to your program, after
issuing a RECEIVEtcp or FRECEIVEtcp call.

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 151

Table 18. VMCF TCPIP CALLCODE Notifications (continued)

Notification Code Equates Description

URGENTpending 15 Notification that there is queued data on a
TCP connection not yet received by your
program.

UDPdatagramDELIVERED 16 Notification that UDP datagram has been
delivered to your program after issuing a
NRECEIVEudp call to the TCPIP virtual
machine.

UDPdatagramSPACEavailable 17 Notification that buffer space is available to
process the data, after an error occurred
performing a SENDudp call.

RAWIPpacketsDELIVERED 24 Notification that your buffer has received
the raw IP packets.

RAWIPspaceAVAILABLE 25 Notification that buffer space is available to
process the data. This notification is sent
after the SENDrawip call was rejected by
TCPIP virtual machine.

RESOURCESavailable 28 Notification that the resources needed to
initiate a TCP connection are now available.
This notification is sent only if a previous
OPENtcp call received a ZEROresources return
code.

UDPresourcesAVAILABLE 29 Notification that the resources needed to
initiate a UDP connection are now available.
This notification is sent only if a previous
OPENudp call received a UDPzeroRESOURCES
return code.

PINGresponse 30 Notification that your ping request from the
PINGreq call has been received or that the
time-out limit or your request has been
reached.

DUMMYprobe 31 Notification that the TCPIP virtual machine
is monitoring your machine

ACTIVEprobe 32 Notification that the TCPIP virtual machine
is monitoring your machine for
responsiveness

TCP/UDP/IP Initialization and Termination Procedures
This section contains information about procedures for initializing and terminating
TCP/UDP/IP connections.

BEGINtcpIPservice
Your program performs the BEGINtcpIPservice call after doing a VMCF
AUTHORIZE function, but before performing any other TCP/IP functions. The
BEGINtcpIPservice call informs TCPIP that your virtual machine uses TCPIP
services. An ENDtcpIPservice call is logically performed first, in the case where
your virtual machine already has TCPIP resources allocated.

VMCF Interface

152 z/VM: TCP/IP Programmer’s Reference

The TCPIP virtual machine responds using the VMCF REJECT function. The
VMCF interrupt header, stored in your virtual machine by the response interrupt,
contains a return code in the RETCODE field. The return code can be any of those
listed for the BeginTcpIp Pascal procedure (page 110).

HANDLEnotice
Your program performs the HANDLEnotice call to specify the types of notifications
to be received from TCPIP. The VADB field in the VMCF parameter list contains a
notification mask, with 1 bit set for each notification you want to handle. The bit to
be set for each notification type is shown in Figure 21.

Figure 21 shows the equates used for notification mask in the HANDLEnotice call.

Each HANDLEnotice call must specify all the notification types to be handled.
Notification types specified in previous HANDLEnotice calls are not stored.

The TCPIP virtual machine responds using the VMCF REJECT function. The
VMCF interrupt header contains a return code in the RETCODE field. The return
code can be any of those listed for the Handle Pascal procedure (see “Handle” on
page 114).

ENDtcpIPservice
Your program performs the ENDtcpIPservice call when it has finished using TCPIP
services. All existing TCP connections are reset (aborted), all open UDP port opens
are canceled, and all IP protocols are released.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0 or, if your application supports probe messages (see the

descriptions of the DUMMYprobe and ACTIVEprobe CALLCODE
notifications), X’80000000’

LENB: 0
CALLCODE: BEGINtcpIPservice

MaskBUFFERspaceAVAILABLE EQU X’00000001’
MaskCONNECTIONstateCHANGED EQU X’00000002’
MaskDATAdelivered EQU X’00000004’
MaskURGENTpending EQU X’00000020’
MaskUDPdatagramDELIVERED EQU X’00000040’
MaskUDPdatagramSPACEavailable EQU X’00000080’
MaskRAWIPpacketsDELIVERED EQU X’00004000’
MaskRAWIPspaceAVAILABLE EQU X’00008000’
MaskRESOURCESavailable EQU X’00040000’
MaskUDPresourcesAVAILABLE EQU X’00080000’
MaskPINGresponse EQU X’00100000’

Figure 21. Equates for Notification Mask in the HANDLEnotice Call

FUNC: SEND
VADA: 0
LENA: 1
VADB: Note mask
LENB: 0
CALLCODE: HANDLEnotice

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 153

The TCPIP virtual machine responds using the VMCF REJECT function. The
VMCF interrupt header indicates a return code of OK in the RETCODE field.

TCP CALLCODE Requests
The following sections describe the VMCF interrupt headers that are stored in your
virtual machine for CALLCODE calls used to make TCP requests.

OPENtcp
The OPENtcp call initiates a TCP connection. Your program sends a Connection
Information Record to TCPIP. Figure 22 gives the assembler format of the record.
Figure 23 gives the equates for the assorted constants used to set up the record. For
more information about the usage of the fields of the Connection Information
Record, see “TcpOpen and TcpWaitOpen” on page 134.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CALLCODE: ENDtcpIPservice

Connection DS H
OpenAttemptTimeout DS F
Security DS H
Compartment DS H
Precedence DS X
BytesToRead DS F
UnackedBytes DS F
ConnectionState DS X
LocalSocket.Address DS F
LocalSocket.Port DS H
ForeignSocket.Address DS F
ForeignSocket.Port DS H

Figure 22. Assembler Format of the Connection Information Record for VM

UNSPECIFIEDconnection EQU -48
DEFAULTsecurity EQU 0
DEFAULTcompartment EQU 0
DEFAULTprecedence EQU 0
UNSPECIFIEDaddress EQU 0
UNSPECIFIEDport EQU X’FFFF’
ANintegerFLAGrequestERR EQU X’80000000’

Figure 23. Miscellaneous Assembler Constants

FUNC: SEND/RECV
VADA: Address of Connection Information Record initialized by

your program
LENA: Length of Connection Information Record
VADB: Address of Connection Information Record to be filled in

with TCPIP reply
LENB: Length of Connection Information Record
CONN: UNSPECIFIEDconnection
CALLCODE: OPENtcp

VMCF Interface

154 z/VM: TCP/IP Programmer’s Reference

If the open attempt cannot be initiated, the TCPIP virtual machine responds using
the VMCF REJECT function. The VMCF interrupt header, contains a return code in
the RETCODE field. The return code can be any of those listed for the TcpOpen
Pascal procedure.

If the OPENtcp call was rejected because not enough TCPIP resources were
available, a ZEROresources code is returned. When the TCPIP resources are
available, a notice of RESOURCESavailable is sent to your program.

If the open attempt is not immediately rejected, the TCPIP virtual machine uses the
VMCF RECEIVE function to receive the Connection Information Record describing
the connection to be opened. If the connection then cannot be initiated, TCPIP
responds using the VMCF REJECT function. The RETCODE field in the VMCF
interrupt header is set as described in the previous paragraph.

If the open was successfully initiated, the TCPIP virtual machine responds using
the VMCF REPLY function to send back the updated Connection Information
Record. The Connection field of the Connection Information Record contains the
connection number of the new connection. The RETCODE field in the VMCF
interrupt header indicates OK, and the CONN field also contains the connection
number of the new connection. The connection is not yet open; your program
receives notification(s) during the opening sequence. For more information about
NotificationInfoType, see the section on the Pascal under “Notification Record” on
page 98 and see also “CALLCODE Notifications” on page 163.

SENDtcp and FSENDtcp
The SENDtcp or FSENDtcp calls send data on a TCP connection. For the advantages
and disadvantages of using each function, and for information about sending TCP
data, see “TcpFSend, TcpSend, and TcpWaitSend” on page 131.

If TCPIP can successfully queue the data for sending, it responds with the VMCF
RECEIVE function. The VMCF interrupt header indicates a RETCODE of OK.

If TCPIP cannot queue the data for sending, it responds with the VMCF REJECT
function. The RETCODE field indicates the type of error. The return code can be
any of those listed for the TcpSend Pascal procedure. For a list of the return codes,
see “TcpFSend, TcpSend, and TcpWaitSend” on page 131.

If the SENDtcp transaction is unsuccessful, because of insufficient space in the buffer
of the receiving TCPIP virtual machine, a return code of NObufferSPACE is placed
in the RETCODE field. A notification of BUFFERspaceAVAILABLE is sent, on this
connection, when the space is available to process data.

TcpFSend is the same as FSENDtcp. If TCPIP cannot accept the data, because of a
buffer shortage, it does not respond immediately. Instead, it waits until space is
available, and then uses VMCF RECEIVE to receive the data. While it is waiting, if
the connection is reset, it responds with VMCF REJECT, with a return code as
described previously. In summary, TCPIP may not respond immediately to
FSENDtcp, and the response, after waiting, may indicate either success or failure. If

FUNC: SEND
VADA: Address of data
LENA: Length of data
VADB: 1 if push desired, else 0
LENB: 1 if urgent data, else 0
CONN: Connection number from open
CALLCODE: SENDtcp or FSENDtcp

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 155

TCPIP responds with REJECT, your program can check the
ANintegerFLAGrequestERR bit in the ANINTEGR field to determine if the request
was rejected during initial or retry processing (bit on) or because of connection
closing (bit off).

Your program does not need to wait for a response from SENDtcp or FSENDtcp
VMCF transaction. It can issue functions involving other connections, before
receiving a response from making a SENDtcp or FSENDtcp VMCF transaction.

There is a limit of 50 outstanding VMCF transactions for each virtual machine;
therefore, your program can have FSENDtcp functions outstanding on only 50
connections at a time. If your application needs more outstanding sends, use the
SENDtcp function.

FRECEIVEtcp
The FRECEIVEtcp call tells TCPIP that you are ready to receive data on a specified
TCP connection. TCPIP does not respond or send a notification notice until data is
received or the connection is closed. Consequently, each outstanding FRECEIVEtcp
function results in an outstanding VMCF transaction. There is a limit of 50
outstanding VMCF transactions for each virtual machine; you can therefore have
FRECEIVEtcp functions outstanding on only 50 connections at one time. If your
application needs more outstanding receives, use the RECEIVEtcp function.

Your program does not need to wait for a response from FRECEIVEtcp. It can issue
functions involving other connections, before receiving a response from
FRECEIVEtcp.

For general information about receiving TCP data, see the TcpFReceive Pascal
procedure under “TcpFReceive, TcpReceive, and TcpWaitReceive” on page 128.

If TCPIP accepts the request, your program receives no response until TCPIP is
ready to deliver data to your buffer, or until the request is canceled, because the
connection has closed without delivering data.

When TCPIP is ready to deliver data for this connection, it issues a VMCF REPLY
function. Significant fields in the VMCF interrupt header are:

LENB Indicates the residual count. Subtract this from the size of your buffer
(LENB value in parameter list) to determine the number of bytes actually
delivered.

ANINTEGR
Contains a value where the high-order byte is nonzero if data was pushed;
otherwise, it is zero. The low-order three bytes are interpreted as a 24-bit
integer, indicating the offset of the byte following the last byte of urgent
data, measured from the first byte of data delivered to your buffer. If it is
zero or a negative number, then there is no urgent data pending.

CONN
Specifies the connection number.

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: Address of buffer to receive data
LENB: Length of buffer to receive data
CONN: Connection number from open
CALLCODE: FRECEIVEtcp

VMCF Interface

156 z/VM: TCP/IP Programmer’s Reference

RETCODE
OK

If TCPIP responds with the VMCF REJECT function (VMCFRJCT flag set in the
VMCF interrupt header), then one of the following occurred:
v TCPIP did not accept the request, in which case the ANintegerFLAGrequestERR

bit in ANINTEGR is on.
v TCPIP accepted the request initially, but the connection closed before data was

delivered. ANintegerFLAGrequestERR bit in ANINTEGR is off. In this case, the
RETCODE field indicates one of the reason codes listed for
CONNECTIONstateCHANGED with the NewState field set to NONEXISTENT.
For more information, see 2 on page 101.

Note: Your program does not have to take any special action in this case,
because it receives one or more CONNECTIONstateCHANGED
notifications indicating that the connection is closing.

RECEIVEtcp
The RECEIVEtcp call tells TCPIP that you are ready to receive data on a specified
TCP connection. Unlike FRECEIVEtcp, TCPIP responds immediately to RECEIVEtcp.
You can have more than 50 receive requests pending using RECEIVEtcp without
exceeding the limit of 50 outstanding VMCF transactions.

For more information about receiving TCP data, see the TcpReceive Pascal
procedure under “TcpFReceive, TcpReceive, and TcpWaitReceive” on page 128.

TCPIP responds with the VMCF REJECT function. The RETCODE field of the
VMCF interrupt buffer indicates whether the request was successful. If the request
was successful, with a RETCODE of OK, the data is delivered to your buffer and a
notification of DATAdelivered is sent to your program. If the request was not
successful, then the return code is one of those listed for the TcpReceive Pascal
procedure.

CLOSEtcp
The CLOSEtcp call initiates the closing of a TCP connection. For more information
about the close connection call, see the Pascal procedure, “TcpClose” on page 127.

TCPIP responds with the VMCF REJECT function. The RETCODE field of the
VMCF interrupt buffer contains the return code. The return code is one of those
listed for the TcpClose Pascal procedure on page 127.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: Length of buffer to receive data
CONN: Connection number from open
CALLCODE: RECEIVEtcp

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CONN: Connection number from open
CALLCODE: CLOSEtcp

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 157

ABORTtcp
The ABORTtcp call terminates a TCP connection. For more information about the
abort connection call, see the Pascal procedure, “TcpAbort” on page 127.

TCPIP responds with the VMCF REJECT function. The RETCODE field of the
VMCF interrupt buffer contains the return code. It is one of those listed for the
TcpAbort Pascal procedure.

STATUStcp
The STATUStcp call obtains a Connection Information Record giving the current
status of a TCP connection. For the assembler format of the Connection
Information Record, see Figure 22 on page 154. For more information about the
connection status call, see the Pascal procedure, “TcpStatus” on page 137.

TCPIP responds with the VMCF REPLY function, filling in the record whose
address you supplied in LENB. The record is valid only if the return code, in the
RETCODE field of the VMCF interrupt header, returns OK. Otherwise, the return
code is one of those listed for the TcpStatus Pascal procedure.

OPTIONtcp
The OPTIONtcp call sets an option for a TCP connection. For more information
about the connection options, see the Pascal procedure “TcpOption” on page 136.

TCPIP responds with the VMCF REJECT function. The RETCODE field of the
VMCF interrupt buffer contains the return code. The return code is one of those
listed for the Pascal TcpOption procedure.

UDP CALLCODE Requests
The following sections describe the VMCF interrupt headers, which are stored in
your virtual machine, for CALLCODE calls used to make UDP requests.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CONN: Connection number from open
CALLCODE: ABORTtcp

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: Address of Connection Information Record to fill in
LENB: Length of Connection Information Record to fill in
CONN: Connection number from open
CALLCODE: STATUStcp

FUNC: SEND
VADA: 0
LENA: 1
VADB: Option name
LENB: Option value
CONN: Connection number from open
CALLCODE: OPTIONtcp

VMCF Interface

158 z/VM: TCP/IP Programmer’s Reference

OPENudp
The OPENudp call opens a UDP port. For more information about the UDP open
function, see the Pascal procedure, “UdpOpen” on page 139.

TCPIP responds with the VMCF REJECT function. The RETCODE field in the
VMCF interrupt header can be any of the return codes listed for the UdpOpen
Pascal procedure. If the OPENudp call was rejected, because not enough TCPIP
resources were available, a UDPzeroRESOURCES code is returned. When the
TCPIP resources are available, a notice of UDPresourcesAVAILABLE is sent to your
program.

SENDudp
The SENDudp call sends a UDP datagram. For more information about the UDP
send function, see the Pascal procedure, “UdpSend” on page 141.

If TCPIP can send the datagram, it responds with the VMCF RECEIVE function.
The RETCODE field in the VMCF interrupt header contains a return code of OK. If
TCPIP cannot send the datagram, it responds with the VMCF REJECT function.
The RETCODE field contains one of the return codes listed for the UdpSend Pascal
procedure. When the buffer space is not available to process the data, an error is
returned. The notification message of UDPdatagramSPACEavailable is sent to your
program when the buffer space is available to process data.

NRECEIVEudp
The NRECEIVEudp call tells TCPIP that your program is ready to receive a UDP
datagram on a particular port. TCPIP responds immediately to inform you whether
it accepted the request. If TCPIP has accepted your request, your program receives
a UDPdatagramDELIVERED notification when a datagram arrives. For more
information about receiving UDP datagrams, see the Pascal procedure,
“UdpNReceive” on page 139.

FUNC: SEND
VADA: 0
LENA: 1
VADB: Local port number or UNSPECIFIEDport
LENB: Local address
CONN: Connection number: An arbitrary number, which your program

uses in subsequent actions involving this port.
CALLCODE: OPENudp

FUNC: SEND
VADA: Address of datagram data
LENA: Length of datagram data (up to 8492 bytes)
VADB: Destination port number
LENB: Destination address
CONN: Connection number
CALLCODE: SENDudp

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: Size of your buffer to receive datagram
CONN: Connection number
CALLCODE: NRECEIVEudp

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 159

TCPIP responds with the VMCF REJECT function. The RETCODE field of the
VMCF interrupt header contains one of the return codes listed for the
UdpNReceive Pascal procedure.

CLOSEudp
The CLOSEudp call closes a UDP port. For more information about the CLOSEudp call,
see the Pascal procedure, “UdpClose” on page 138.

TCPIP responds with the VMCF REJECT function. The RETCODE field in the
VMCF interrupt header can be any of the return codes listed for the UdpClose
Pascal procedure. If the return code is OK, and your program specified
UNSPECIFIEDport as the port number, the actual port number assigned is encoded
in the CONN field of the interrupt header. Add the value of 32 768 to the value in
the CONN field, using unsigned arithmetic, to compute the port number.

IP CALLCODE Requests
The following sections describe the VMCF interrupt headers, which are stored in
your virtual machine, for CALLCODE calls used to make IP requests.

OPENrawip
The OPENrawip call tells TCPIP that your program is ready to send and receive
packets of a specified IP protocol. For more information, see the Pascal procedure,
“RawIpOpen” on page 120.

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE
field of the VMCF interrupt header contains one of the return codes listed for the
RawIpOpen Pascal procedure.

SENDrawip
The SENDrawip call sends raw IP packets of a given protocol number. For more
information, see the Pascal procedure, “RawIpSend” on page 121.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CONN: Connection number
CALLCODE: CLOSEudp

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CONN: Protocol number
CALLCODE: OPENrawip

FUNC: SEND/RECV
VADA: Address of buffer containing packets to send
LENA: Length of buffer
VADB: 0
LENB: 0
CONN: (Number of packets shifted left 8 bits) + protocol number
CALLCODE: SENDrawip

VMCF Interface

160 z/VM: TCP/IP Programmer’s Reference

If TCPIP immediately determines that the request cannot be fulfilled, It responds
with the VMCF REJECT function. Otherwise, it uses the VMCF RECEIVE function
to receive your data, followed by VMCF REJECT. The RETCODE field of the
VMCF interrupt header contains one of the return codes listed for the RawIpSend
Pascal procedure. If TCPIP virtual machine is out of buffers, the data is rejected
and a return code of NObufferSPACE is returned. When buffer space is available,
the notification of RAWIPspaceAVAILABLE is sent to your program.

RECEIVErawip
The RECEIVErawip call tells TCPIP that your program is ready to receive raw IP
packets of a given protocol. Your program receives a RAWIPpacketsDELIVERED
notification when a packet arrives. For information about the
RAWIPpacketsDELIVERED notification record, see the Pascal procedure,
“RawIpReceive” on page 120, and the section on the Pascal NotificationInfoType
under “Notification Record” on page 98.

TCPIP responds with the VMCF REJECT function. The RETCODE field of the
VMCF interrupt header contains one of the return codes listed for the
RawIpReceive Pascal procedure.

CLOSErawip
The CLOSErawip call tells TCPIP that your program is ready to cease sending and
receiving packets of a specified IP protocol. For more information, see the Pascal
procedure, “RawIpClose” on page 119.

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE
field of the VMCF interrupt header contains one of the return codes listed for the
RawIpClose Pascal procedure.

CALLCODE System Queries
The following sections describe the VMCF interrupt headers, which are stored in
your virtual machine, for CALLCODE calls used to make system queries.

IShostLOCAL
The IShostLOCAL call determines whether a given internet address is one of your
host’s local addresses. For more information about this procedure, see the Pascal
procedure “LocalAddress” on page 115.

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: 0
LENB: Length of your buffer
CONN: Protocol number
CALLCODE: RECEIVErawip

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CONN: Protocol number
CALLCODE: CLOSErawip

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 161

TCPIP responds with the VMCF REJECT function. The RETCODE field of the
VMCF interrupt header contains the return code, as described in the
IsLocalAddress Pascal procedure section.

MONITORcommand
The MONITORcommand call instructs TCPIP to obey a file of commands. For more
information, see the Pascal procedure, “MonCommand” on page 116, and for more
information about the OBEYFILE command, which uses the MonCommand
procedure, see TCP/IP Planning and Customization.

If TCPIP cannot process the request, it responds immediately with the VMCF
REJECT function. Otherwise, it uses the VMCF RECEIVE function to receive the
SpecOfFile record provided by your program. It then attempts to process the file,
and uses the VMCF REJECT function to report the return code. In either case, the
return code is one of those specified for the MonCommand Pascal procedure.

MONITORquery
The MONITORquery call obtains status information from the TCPIP virtual machine
or to request that it performs certain functions. For more information, see the
Pascal procedure, “MonQuery” on page 117. Assembler formats of constants and
records used with MONITORquery are:

FUNC: SEND
VADA: 0
LENA: 1
VADB: Internet address to be tested
LENB: 0
CONN: UNSPECIFIEDconnection
CALLCODE: IShostLOCAL

Owner DS CL8
DatasetPassword DS CL8
FullDatasetName DS CL44
MemberName DS CL8
DDName DS CL8

Figure 24. Assembler Format of the SpecOfFileType Record for VM

FUNC: SEND/RECV
VADA: Address of SpecOfFile record
LENA: Length of SpecOfFile record
VADB: 0
LENB: 0
CONN: UNSPECIFIEDconnection
CALLCODE: MONITORcommand

COMMANDcpCMD EQU 6
COMMANDdropCONNECTION EQU 8
QUERYhomeONLY EQU 9

Figure 25. Equates for MonQueryRecordType used in the MONITORquery Call

VMCF Interface

162 z/VM: TCP/IP Programmer’s Reference

The Pascal type HomeOnlyListType is an array of 64 InternetAddressType
elements found in the COMMMAC MACLIB file. The size of InternetAddressType
is a fullword.

If TCPIP cannot process the request, it responds immediately with the VMCF
REJECT function. Otherwise, it uses the VMCF RECEIVE function to receive the
MonQueryRecord describing your request, followed by either a VMCF REPLY to
send the response to your return buffer (not applicable to
COMMANDdropCONNECTION), or a VMCF REJECT to send a return code but
no return data. For information about the return codes and the data returned (if
any), see the Pascal procedure, “MonQuery” on page 117.

PINGreq
The PINGreq call sends an ICMP echo request (PING request) to a specified host
and wait a specified time for a response. For more information, see the Pascal
procedure “PingRequest” on page 119.

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE
field of the VMCF interrupt header contains one of the return codes listed for the
PingRequest Pascal procedure. If the return code is OK, your program receives a
PINGresponse notification later.

CALLCODE Notifications
The following sections describe the VMCF interrupt headers that are stored in your
virtual machine for the various types of notifications. The action that your program
should take is also indicated.

For more information about the various notification types, see the Pascal
NotificationInfoType record under “Notification Record” on page 98.

QueryType DS X
* For QueryType = QUERYhomeONLY: No other fields
* For QueryType = COMMANDcpCMD:
CpCmd DS H Length of command

DS 100C Command
* For QueryType = COMMANDdropCONNECTION:

ORG CpCmd
Connection DS H

Figure 26. Assembler Format of the MonQueryRecordTypefor VM

FUNC: SEND/RECV
VADA: Address of MonQueryRecord describing request
LENA: Length of MonQueryRecord
VADB: Address of return buffer
LENB: Length of return buffer
CONN: UNSPECIFIEDconnection
CALLCODE: MONITORquery

FUNC: SEND
VADA: 0
LENA: 1
VADB: Internet address of foreign host
LENB: Length of ping packet
ANINTEGR: Timeout
CALLCODE: PINGreq

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 163

The VMCF transaction for a notification must be completed before TCPIP sends
your program another notification. You must ensure that your program takes the
VMCF actions in the following sections, or TCPIP cannot communicate further
with your program.

BUFFERspaceAVAILABLE
This interrupt header notifies you that there is space available to send data on this
connection. The space is currently set to 8192 bytes of buffer space. The notification
is sent after making a SENDtcp call and receiving an unsuccessful return code of
NObufferSPACE in the RETCODE field.

CONNECTIONstateCHANGED
This interrupt header notifies you that the state of the connection between the
TCPIP virtual machine and your program has changed.

DATAdelivered
This interrupt header notifies you that the TCPIP virtual machine data was
delivered to your program, after issuing a RECEIVEtcp or FRECEIVEtcp call.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: Space available to send on this connection, in bytes.

Currently always 8192
CONN: Connection number
CALLCODE: BUFFERspaceAVAILABLE
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: New connection state
LENB: Reason for state change, if new state is NONEXISTENT
CONN: Connection number
CALLCODE: CONNECTIONstateCHANGED
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

VMCF Interface

164 z/VM: TCP/IP Programmer’s Reference

URGENTpending
This interrupt header notifies you that there is queued incoming data on a TCP
connection not yet received by your program.

UDPdatagramDELIVERED
This interrupt header notifies you that the UDP datagram has been delivered to
your program after issuing a NRECEIVEudp call to the TCPIP virtual machine.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
LENA: Length of data being delivered
VADB: Non-zero if data was pushed, else zero.
LENB: The offset of the byte following the last byte of urgent

data, measured from the first byte of data delivered to your
buffer. If zero or negative then there is no urgent data
pending.

CONN: Connection number
CALLCODE: DATAdelivered
RETCODE: OK

Your program should issue the VMCF RECEIVE function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be

at least as long as indicated by LENA. LENA is no
larger than the buffer length you specified using the
RECEIVEtcp function.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: Number of bytes of queued incoming data not yet received

by your program.
LENB: Subtract 1 from LENB to get the offset of the byte following

the last byte of urgent data, measured from the first byte not
yet received by your program. If this quantity is zero or
negative then there is no urgent data pending.

CONN: Connection number
CALLCODE: URGENTpending
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 165

UDPdatagramSPACEavailable
This interrupt header notifies you that buffer space is available to process the data,
after an error occurred performing a SENDudp call.

RAWIPpacketsDELIVERED
This interrupt header notifies you that your buffer has received the raw IP packets.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
LENA: Length of data being delivered.
VADB: Source port
LENB: Source address
ANINTEGR: Length of entire datagram excluding UDP header. If larger

than LENA then the
datagram was too large to fit into the buffer size specified
in NRECEIVEudp call, and has been truncated.

CONN: Connection number
CALLCODE: UDPdatagramDELIVERED
RETCODE: OK

Your program should issue the VMCF RECEIVE function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be

at least as long as indicated by LENA.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CONN: Connection number
CALLCODE: UDPdatagramSPACEavailable
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
ANINTEGR: Total length of datagram being delivered (including IP header)
LENA: Length of data (including IP header) that TCPIP

delivers to you.
CONN: Low-order byte is protocol number, 3 high order bytes

is number of packets, currently always 1.
CALLCODE: RAWIPpacketsDELIVERED
RETCODE: OK

Your program should issue the VMCF RECEIVE function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be

at least as long as indicated by LENA.

VMCF Interface

166 z/VM: TCP/IP Programmer’s Reference

RAWIPspaceAVAILABLE
This interrupt header notifies you that buffer space is available to process the data.
This notification is sent after the SENDrawip call was rejected by TCPIP virtual
machine because of insufficient buffer space.

RESOURCESavailable
This interrupt header notifies you that the resources needed to initiate a TCP
connection are now available. This notification is sent only if a previous OPENtcp
call received a ZEROresources return code.

UDPresourcesAVAILABLE
This interrupt header notifies you that the resources needed to initiate a UDP
connection are now available. This notification is sent only if a previous OPENudp
call received a UDPzeroRESOURCES return code.

PINGresponse
This interrupt header notifies you that your ping request from the PINGreq call has
been received or that the time-out limit or your request has been reached.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
LENB: Space available. Always equals maximum IP datagram size.
CONN: Protocol number
CALLCODE: RAWIPspaceAVAILABLE
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CALLCODE: RESOURCESavailable
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CALLCODE: UDPresourcesAVAILABLE
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields
changed:

V1: 0
V2: 0
FUNC: REJECT

VMCF Interface

Chapter 4. Virtual Machine Communication Facility Interface 167

DUMMYprobe
This interrupt header notifies you that the TCPIP virtual machine is monitoring
your machine so it can determine if it logs off or resets unexpectedly.

ACTIVEprobe
This interrupt header notifies you that the TCPIP virtual machine is monitoring
your machine so it can determine if it is still responsive.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: High order word of elapsed time, in TOD clock format

Valid only if ANINTEGR is zero
LENB: Low order word of elapsed time, in TOD clock format

Valid only if ANINTEGR is zero
ANINTEGR: Return code from ping operation
CALLCODE: PINGresponse
RETCODE: OK
Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CALLCODE: DUMMYprobe
RETCODE: OK

Your program should leave this message pending.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CALLCODE: ACTIVEprobe
RETCODE: OK

Your program should issue the VMCF REJECT function, with the VMCF
parameter list copied from the interrupt header and with the
following fields changed:

V1: 0
V2: 0
FUNC: REJECT

The response to this message must be made within one minute after the
associated interrupt is received.

VMCF Interface

168 z/VM: TCP/IP Programmer’s Reference

Chapter 5. Inter-User Communication Vehicle Sockets

The Inter-User Communication Vehicle (IUCV) socket API is an assembler
language application programming interface that can be used with TCP/IP. While
not every C socket library function is provided, all of the basic operations
necessary to communicate with other socket programs are present.

Prerequisite Knowledge
This chapter assumes you have a working knowledge of IUCV, as documented in
VM/ESA CP Programming Services.

You must also know how and when to use the CMS CMSIUCV macro or the GCS
IUCVCOM macro, depending on the execution environment, as documented in
VM/ESA CMS Application Development Reference for Assembler or VM/ESA Group
Control System, respectively.

You should also have a working knowledge of TCP/IP sockets.

Available Functions
Only these functions are available when you use the IUCV socket interface:

Table 19. Socket functions available using IUCV
ACCEPT READ
BIND READV
CLOSE RECV
CONNECT RECVFROM
FCNTL RECVMSG
GETCLIENTID SELECT
GETHOSTID SELECTEX
GETHOSTNAME SEND
GETPEERNAME SENDMSG
GETSOCKNAME SENDTO
GETSOCKOPT SETSOCKOPT
GIVESOCKET SHUTDOWN
IOCTL SOCKET (AF_INET sockets only)
LISTEN TAKESOCKET
MAXDESC WRITE

WRITEV

© Copyright IBM Corp. 1987, 2001 169

Socket Programming with IUCV
TCP/IP sockets are manipulated by using the following assembler macros:

Macro Library Description

IUCV HCPGPI Provides the mechanisms for setting values in the
IUCV input parameter list and for executing the
IUCV instruction

IPARML HCPGPI Mapping macro for the IUCV parameter list and the
external interrupt buffer.

HNDIUCV DMSGPI Informs CMS that your program wishes to handle
IUCV or APPC/VM interrupts. Only those interrupts
occurring on IUCV paths that your application
created will be routed to your program.

CMSIUCV DMSGPI Used to perform IUCV CONNECT and SEVER
functions. It enables multiple IUCV or APPC/VM
applications to run at the same without interference.

IUCVINI GCTGPI Similar to HNDIUCV, but for the GCS execution
environment.

IUCVCOM GCTGPI Similar to CMSIUCV, but for the GCS execution
environment. In addition to providing multiple
application support, it provides a way for GCS
programs running in problem state to use IUCV
services.

A typical socket application uses only four IUCV operations: CONNECT, SEND
(with reply), PURGE, and SEVER. CONNECT establishes the IUCV connection
with the TCP/IP virtual machine, SEND performs initialization and socket
operations, PURGE cancels an outstanding socket operation, and SEVER deletes
the IUCV connection.

If an IUCV operation completes with condition code 0, the requested operation
was successfully started. An IUCV interrupt will be received when the operation
completes. When your interrupt routine receives control, it receives a pointer to the
external interrupt buffer which contains information about the IUCV function that
completed. The IPTYPE field of the external interrupt buffer (mapped by IPARML)
identifies the interrupt:

IPTYPE Interrupt Name Description

X'02' Connection Complete Acknowledgement that TCP/IP has accepted
your request to establish an IUCV connection
(IUCV CONNECT)

X'03' Connection Severed Your IUCV connection has been deleted by
TCP/IP

X'07' Message complete The requested socket function has completed

Note: IPTYPE is byte 3 of the external interrupt buffer.

While there are other types of IUCV interrupts, they are not normally seen on
TCP/IP IUCV socket paths. VM/ESA CP Programming Services has a complete
description of each interrupt type.

IUCV Sockets

170 z/VM: TCP/IP Programmer’s Reference

If an IUCV operation completes with condition code 1, the requested function
could not be performed. The exact cause of the error is stored in byte 3 of the
IUCV parameter list (IPRCODE). See the description of each IUCV function in
VM/ESA CP Programming Services for the possible return codes.

Note: CMSIUCV and IUCVCOM use return codes in general register 15 to indicate
the success or failure of the operation. Refer to VM/ESA CMS Application
Development Reference for Assembler or VM/ESA Group Control System for
details on these system services.

If an IUCV PURGE operation completes with condition code 2, it means that
TCP/IP has already finished processing the socket request.

Preparing to use the IUCV Socket API
Before the socket functions can be used, an IUCV socket API environment must be
established. This is done in two steps:
1. Establish an IUCV connection to the TCP/IP service virtual machine.
2. Send an initialization message to TCP/IP, identifying your application and

defining how the IUCV connection will be used.

Establishing an IUCV connection to TCP/IP
To create an IUCV connection to the TCP/IP service virtual machine, issue IUCV
CONNECT with the following parameters:

Keyword Value

USERID The user ID of the TCP/IP virtual machine.

PRTY NO

PRMDATA YES

QUIESCE NO

MSGLIM If this IUCV connection may have more than one outstanding
socket function on it at the same time, set MSGLIM to the
maximum number of socket calls that may be outstanding
simultaneously on this path. Otherwise, set it to zero.

USERDTA Binary zeros

CONTROL NO

If IUCV CONNECT returns condition code 0, you subsequently receive either a
Connection Complete external interrupt or a Connection Severed external interrupt.
If you receive a Connection Severed interrupt now or later, see “Severing the IUCV
Connection” on page 173 for more information.

To ensure that your program does not interfere with other IUCV or APPC/VM
applications, your program should use the HNDIUCV and CMSIUCV macros in
CMS, or the IUCVINI and IUCVCOM macros in GCS.

Initializing the IUCV Connection
If you receive a Connection Complete interrupt in response to IUCV CONNECT,
then TCP/IP has accepted the connection request.

IUCV Sockets

Chapter 5. Inter-User Communication Vehicle Sockets 171

Your program responds by sending an initialization message using IUCV SEND to
TCP/IP, identifying your application and the way that it will use the IUCV socket
interface.

When the IUCV SEND completes, then, if the IPAUDIT field shows no error, the
reply buffer has been filled. The maxsock field indicates that maximum number of
sockets you can open on this IUCV path at the same time.

Your program can now issue any supported socket call. See “Issuing Socket Calls”
on page 174.

The initialization message is sent using an IUCV SEND with the following
parameters:

Keyword Value

TRGCLS 0

DATA BUFFER

BUFLEN 20

TYPE 2WAY

ANSLEN 8

PRTY NO

BUFFER Points to a buffer in the following format:

Offset Name Length Comments

0 8 Constant ’IUCVAPI ’. The trailing blank is required.

8 2 Halfword integer. Maximum number of sockets that
can be established on this IUCV connection.
minimum: 50, Default: 50.

10 apitype 2 X'0002'-. Provided for compatibility with prior
implementations of TCP/IP. Use X'0003' instead.

X'0003'- Any number of socket requests may be
outstanding. on this IUCV connection at the same
time

For more information, see “Overlapping Socket
Requests” on page 174.

12 subtaskname 8 Eight printable characters. The combination of your
user ID and subtaskname uniquely identifies the
TCP/IP client using this path. This value is displayed
by the NETSTAT CLIENT command.

ANSBUF Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 4 Reserved

4 maxsock 4 The maximum socket number that your application
can use on this path. The minimum socket number is
always 0. Your application chooses a socket number
for the accept, socket, and takesocket calls.

IUCV Sockets

172 z/VM: TCP/IP Programmer’s Reference

Note: A single virtual machine can establish more than one IUCV path to TCP/IP,
but a different subtaskname must be specified on each IUCV path. If the same
subtaskname is specified for more than one IUCV path, TCP/IP severs the
existing path with that subtaskname.

Severing the IUCV Connection
An IUCV connection to TCP/IP can be severed (deleted) by your application or by
TCP/IP at any time.

Sever by the Application
Your application can sever a socket API IUCV path at any time by calling IUCV
SEVER with USERDTA specified as 16 bytes of binary zeros. TCP/IP cleans up all
sockets associated with the IUCV path.

Clean-Up of Stream Sockets
The TCP connection corresponding to each stream socket associated with the IUCV
path is reset. In the case of a listening socket, all connections in the process of
opening, or already open and in the accept queue, are reset.

If your program closed a stream socket earlier, the corresponding TCP connection
might still be in the process of closing. Such connections, which are no longer
associated with any socket, are not reset when your program severs the IUCV
path.

Sever by TCP/IP
TCP/IP severs a socket API IUCV path only in case of shutdown or an unexpected
error. The 16-byte IPUSER field in the SEVER external interrupt indicates the
reason for the sever. The reason is coded in EBCDIC. The following are possible
reason codes and explanations:

Reason Code Explanation

IUCVCHECKRC IUCV error detected. This code is used only before
or during processing of the initialization message.

SHUTTINGDOWN TCP/IP service is being shut down. This code is
used only in response to the Pending Connection
interrupt.

BAD PATH ID An attempt was made to exceed the maximum
number of IUCV connections support by the target
TCPIP virtual machine.

NULL SAVED NAME A software error occurred in TCP/IP. This code is
used only before or during processing of the
initialization message.

BAD INIT MSG LEN Your program sent an initialization message that
was not of the expected length.

REQUIREDCONSTANT The first 8 bytes of your initialization message
were not "IUCVAPI ".

BAD API TYPE The apitype field in your initialization message
contained an incorrect value.

RESTRICTED Your virtual machine is not permitted to use
TCP/IP.

IUCV Sockets

Chapter 5. Inter-User Communication Vehicle Sockets 173

NO MORE CCBS Your IUCV path cannot be accepted because there
are no more client control blocks available in the
TCPIP virtual machine.

NO CCB!!!! A software error occurred in TCP/IP. Contact your
system support personnel or the IBM Support
Center.

Issuing Socket Calls
The following section describes how to issue an IUCV socket call.

All socket calls are invoked by issuing an IUCV SEND with the following
parameters:

Keyword Value

TRGCLS The high-order halfword specifies the socket call. For most calls,
the low-order halfword specifies the socket descriptor.

DATA BUFFER or PRMMSG, depending on call

BUFLIST If DATA=BUFFER, then either YES or NO as desired. If
DATA=PRMMSG, not applicable.

BUFFER If DATA=BUFFER, points to the buffer (or buffer list) in the format
required by the call. If DATA=PRMMSG, not applicable.

BUFLEN If DATA=BUFFER, length of buffer. If DATA=PRMMSG, not
applicable.

PRMMSG If DATA=PRMMSG, data as required by the call. DATA=PRMMSG
is not allowed when ANSLIST=YES. If DATA=BUFFER, not
applicable.

TYPE 2WAY

ANSLIST Either YES or NO as desired. DATA=PRMMSG is not allowed
when ANSLIST=YES.

ANSBUF Points to a buffer to contain the reply from TCP/IP.

ANSLEN Length of the reply buffer

PRTY NO

SYNC YES or NO as desired. Applications that need to serve multiple
clients at the same time should specify SYNC=NO. SYNC=YES will
block the entire virtual machine from execution until the function
is complete.

Overlapping Socket Requests
Your program may have more than one socket call outstanding on the same IUCV
path. There are some restrictions on the types of calls that are queued
simultaneously for the same socket descriptor.

The following list describes the restrictions for each type of socket call:
v Multiple read-type calls (READ, READV, RECV, RECVFROM, RECVMSG) and

multiple write-type calls (WRITE, WRITEV, SEND, SENDTO, SENDMSG), for
the same socket, can be queued simultaneously. The read-type calls are satisfied
in order, independently of the write-type calls. Similarly, the write-type calls are
satisfied in order, independently of the read-type calls.

IUCV Sockets

174 z/VM: TCP/IP Programmer’s Reference

v Multiple ACCEPT calls, for the same listening stream socket, can be queued
simultaneously. They are satisfied in order.

v Multiple SELECT calls, referring to any combination of sockets, can be queued
simultaneously on an IUCV path. TCP/IP checks all queued SELECT calls when
an event occurs and responds to any that are satisfied.

Note: This applies only to programs that specified apitype=3 in the initialization
message.

v Calls other than the read-type, write-type, ACCEPT, and SELECT calls, cannot be
queued simultaneously for the same socket. For example, your program must
wait for TCP/IP’s response to a write-type call before issuing a CLOSE call for
the same socket.

TCP/IP Response to an IUCV Request
TCP/IP’s response to your socket call is signaled by the Message Complete
external interrupt. When the Message Complete external interrupt is received, if
the IPAUDIT field shows no error, your program’s reply buffer has been filled. The
IPBFLN2F field indicates how many bytes of the reply buffer were not used.

If the IPADRJCT bit of the IPAUDIT field is set, then TCP/IP was unable to use
IUCV REPLY to respond, and instead used IUCV REJECT. Your program issues the
special LASTERRNO function (see “LASTERRNO” on page 200) to retrieve the
return code and errno for the rejected call. TCP/IP’s use of IUCV REJECT does not
necessarily mean the socket call failed.

The following errno values (shown in decimal) are seen only by a program using
the IUCV socket interface.

Errno Value Description

1000 An unrecognized socket call constant was found in the high-order
halfword of the Target Message Class.

1001 A request or reply length field is incorrect

1002 The socket number assigned by your program for ACCEPT,
SOCKET, or TAKESOCKET is out of range.

1003 The socket number assigned by your program for ACCEPT,
SOCKET, or TAKESOCKET is already in use.

1008 This request conflicts with a request already queued on the same
socket (see “Overlapping Socket Requests” on page 174).

1009 The request was canceled by the CANCEL call (see “CANCEL” on
page 178).

1010 Returned by the Offload function when a beginthread failure
occurs.

Cancelling a Socket Request
Your socket program can use the CANCEL call to cancel a previously issued socket
call. Read-type calls, write-type calls, ACCEPT calls, and SELECT calls can be
canceled using this function. See “CANCEL” on page 178 for more information
about using the CANCEL call.

IUCV PURGE can also be used to cancel a call, but it does not stop TCP/IP
processing the same way as the CANCEL call.

IUCV Sockets

Chapter 5. Inter-User Communication Vehicle Sockets 175

Each IUCV SEND operation that completes with condition code zero is assigned a
unique message identification number. This number is placed in the IUCV
parameter list. To use the CANCEL or IUCV PURGE functions, your program must
keep track of the message ID numbers assigned to each socket request.

IUCV Socket Call Syntax
Each of the IUCV Socket calls described includes the C language syntax for the
call. IUCV SEND parameters and buffer contents are described using variable
names from the C syntax. Call types are in capital letters. For example, the accept
call is ACCEPT.

The parameter lists for some C language socket calls include a pointer to a data
structure defined by a C structure. When using the IUCV socket interface, the
contents of the data structure are passed in the send buffer, the reply buffer, or
both. Table 20 shows the C structures used, and the corresponding assembler
language syntax.

Table 20. C Structures in Assembler Language Format

C Structure Assembler Language Equivalent

struct sockaddr_in {
short sin_family;
ushort sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

FAMILY DS H
PORT DS H
ADDR DS F
ZERO DC XL8’00’

struct timeval {
long tv_sec;
long tv_usec;

};

TVSEC DS F
TVUSEC DS F

struct linger {
int l_onoff;
int l_linger;

};

ONOFF DS F
LINGER DS F

struct ifreq {
#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ];
union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
caddr_t ifru_data;
} ifr_ifru;

};

NAME DS CL16
ADDR.FAMILY DS H
ADDR.PORT DS H
ADDR.ADDR DS F
ADDR.ZERO DC XL8’00’

ORG ADDR.FAMILY
DST.FAMILY DS H
DST.PORT DS H
DST.ADDR DS F
DST.ZERO DC XL8’00’

ORG ADDR.FAMILY
BRD.FAMILY DS H
BRD.PORT DS H
BRD.ADDR DS F
BRD.ZERO DC XL8’00’

ORG ADDR.FAMILY
FLAGS DS H

ORG ADDR.FAMILY
METRIC DS F

IUCV Sockets

176 z/VM: TCP/IP Programmer’s Reference

Table 20. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

struct ifconf {
int ifc_len;
union {
caddr_t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;

};

IFCLEN DS F
IGNORED DS F

struct clientid {
int domain;
char name[8];
char subtaskname[8];
char reserved[20];

};

DOMAIN DS F
NAME DS CL8
SUBTASK DS CL8
RESERVED DC XL20’00’

IUCV Socket Calls
This section provides the C language syntax, parameters, and other appropriate
information for each IUCV socket call supported by TCP/IP. For information about
C socket calls, see “Chapter 2. C Sockets Application Program Interface” on page 5.

ACCEPT
The ACCEPT call is issued when the server receives a connection request from a
client. ACCEPT points to a socket that was created with a socket call and marked
by a LISTEN call. ACCEPT can also be used as a blocking call. Concurrent server
programs use the ACCEPT call to pass connection requests to child servers.

When issued, the ACCEPT call:
1. Accepts the first connection on a queue of pending connections
2. Creates a new socket with the same properties as the socket used in the call

and returns the address of the client for use by subsequent server calls. The
new socket cannot be used to accept new connections, but can be used by the
calling program for its own connection. The original socket remains available to
the calling program for more connection requests.

3. Returns the new socket descriptor to the calling program.

Keyword Value

TRGCLS High-order halfword = 1

Low-order halfword = s

DATA PRMMSG

PRMMSG High-order fullword = 0

Low-order fullword = socket number for the new socket, chosen by
your program, in the range 0 through maxsock. See “Initializing the
IUCV Connection” on page 171.

ANSLEN 24

ns = accept(s, addr, addrlen)
int ns, s;
struct sockaddr_in *addr;
int *addrlen;

IUCV Sockets

Chapter 5. Inter-User Communication Vehicle Sockets 177

ANSBUF Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 ns 4 The new socket number assigned to this connection.
A value of −1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When ns is −1, this field contains a reason code.
Note: The rest of the reply buffer is filled only if the
call was successful.

8 *addr 16 The remote address and port of the new socket. See
Table 20 on page 176 for format.

BIND
In a typical server program, the BIND call follows a SOCKET call and completes
the new socket creation process.

The BIND call can either specify the port or let the system choose the port. A
listener program should always bind to the same well-known port so that clients
know what socket address to use when issuing a CONNECT call.

Keyword Value

TRGCLS High-order halfword = 2

Low-order halfword = s

DATA BUFFER

BUFLEN 16

BUFFER Points to a buffer in the following format:

Offset Name Length Comments

0 *name 16 The local address and port to which the socket is to
be bound. See Table 20 on page 176 for format.

ANSLEN 8

ANSBUF Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the BIND call. A return code of
0 indicates that the call was successful. A return code
of −1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When the return code is −1, this field contains a
reason code.

CANCEL
The CANCEL call is used to cancel a previously issued socket call. TCP/IP
responds to the canceled call with a return code of −1 and an errno value of 1009.

rc = bind(s, name, namelen)
int rc, s;
struct sockaddr_in *name;
int namelen;

ACCEPT

178 z/VM: TCP/IP Programmer’s Reference

Keyword Value

TRGCLS High-order halfword = 42

Low-order halfword = Low-order halfword of TRGCLS from call to
be canceled.

DATA PRMMSG

PRMMSG High-order fullword = High-order halfword of TRGCLS from call
to be canceled.

Low-order fullword = IUCV message ID of call to be canceled.

ANSLEN 8

ANSBUF Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the CANCEL call. A return code
of 0 indicates that the call was successful. A return
code of −1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When the return code is −1, this field contains a
reason code. Possible errno values are:

3 Specifies that the call cannot be
found. TCP/IP might have already
responded to it.

22 Specifies that the call is not a type
that may be canceled.

CLOSE
The CLOSE call shuts down the socket and frees the resources that are allocated to
the socket.

Keyword Value

TRGCLS High-order halfword = 3

Low-order halfword = s

DATA PRMMSG

PRMMSG Binary zeros

ANSLEN 8

ANSBUF Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the CLOSE call. A return code
of 0 indicates that the call was successful. A return
code of −1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When the return code is −1, this field contains a
reason code.

rc = close(s)
int rc, s;

CANCEL

Chapter 5. Inter-User Communication Vehicle Sockets 179

CONNECT
The CONNECT call is used by a client to establish a connection between a local
socket and a remote socket.

For stream sockets, the CONNECT call:
v Completes the binding process for a stream socket if a BIND call has not been

previously issued.
v Attempts a connection to a remote socket. This connection must be completed

before data can be transferred.

For datagram sockets, a CONNECT call is not essential, but you can use it to send
messages without including the destination.

Keyword Value

TRGCLS High-order halfword = 4

Low-order halfword = s

DATA BUFFER

BUFLEN 16

BUFFER Points to a buffer in the following format:

Offset Name Length Comments

0 *name 16 The remote address and port to which the socket is to
be connected. See Table 20 on page 176 for format.

ANSLEN 8

ANSBUF The pointer to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 rc 4 The return code from the CONNECT call. A return
code of 0 indicates that the call was successful. A
return code of −1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a
reason code.

FCNTL
The blocking mode for a socket can be queried or set using the FNDELAY flag
described in the FCNTL call.

See “IOCTL” on page 186 for another way to control blocking for a socket.

rc = connect(s, name, namelen)
int rc, s;
struct sockaddr_in *name;
int namelen;

retval = fcntl(s, cmd, arg)
int retval;
int s, cmd, arg;

CONNECT

180 z/VM: TCP/IP Programmer’s Reference

Keyword Value

TRGCLS High-order halfword = 5

Low-order halfword = s

DATA PRMMSG

PRMMSG High-order fullword:

F_GETFL (X ’00000003’)
F_SETFL (X ’00000004’)

The low-order fullword is used only for the F_SETFL command:

Zero (X ’00000000’) Socket will block
FNDELAY (X ’00000004’) Socket is non-blocking

ANSLEN 8

ANSBUF Points to a buffer that is filled with a reply in the format described
as follows:

Offset Name Length Comments

0 retval 4 For F_SETFL, the return code. A value of zero
indicates FNDELAY flag was set. For F_GETFL, the
value of the FNDELAY flag. Zero means the socket
will block. A value of FNDELAY (4) means the socket
is non-blocking. A return code of −1 indicates that the
function could not be completed and that errno
contains a reason code.

4 errno 4 When the return code is -1, this field contains a
reason code.

GETCLIENTID
The GETCLIENTID call returns the identifier by which the calling application is
known to the TCPIP address space. The client ID structure that is returned is used
in the GIVESOCKET and TAKESOCKET calls.

Keyword Value

TRGCLS High-order halfword = 30

Low-order halfword = 0

DATA PRMMSG

PRMMSG Binary zeros

ANSLEN 48

ANSBUF Points to the buffer that is filled with a reply in the following
format:

rc = getclientid(domain, clientid)
int rc, domain;
struct clientid *clientid;

FCNTL

Chapter 5. Inter-User Communication Vehicle Sockets 181

Offset Name Length Comments

0 rc 4 The return code from the GETCLIENTID call. A
return code of 0 indicates that the call was successful.
A return code of −1 indicates that the function could
not be completed and that errno contains a reason
code.

4 errno 4 When the return code is -1, this field contains a
reason code.
Note: The rest of the reply buffer is filled only if the
call was successful.

8 *clientid 40 See Table 20 on page 176 for format.

Note: domain is not passed to TCP/IP. It is implicitly AF_INET.

GETHOSTID
The GETHOSTID call gets the unique 32-bit identifier for the current host. This
value is the default home internet address.

Keyword Value

TRGCLS High-order halfword = 7

Low-order halfword = 0

DATA PRMMSG

PRMMSG Binary zeros

ANSLEN 8

ANSBUF Points to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 hostid 4 The default home internet address.

4 4 Your program should ignore this field.

GETHOSTNAME
The GETHOSTNAME call returns the name of the host processor on which the
program is running. Up to namelen characters are copied into the name field.

Keyword Value

TRGCLS High-order halfword = 8

Low-order halfword = 0

DATA PRMMSG

PRMMSG Binary zeros

hostid = gethostid
unsigned long hostid;

rc = gethostname(name, namelen)
int rc;
char *name;
int namelen;

GETCLIENTID

182 z/VM: TCP/IP Programmer’s Reference

ANSLEN namelen + 8

ANSBUF Points to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 rc 4 The return code from the GETHOSTNAME call. A
return code of 0 indicates that the call was successful.
A return code of −1 indicates that the function could
not be completed and that errno contains a reason
code.

4 errno 4 When the return code is -1, this field contains a
reason code.
Note: The rest of the reply buffer is filled only if the
call was successful.

8 *name namelen The host name, not null-terminated.

GETPEERNAME
The GETPEERNAME call returns the name of the remote socket to which the local
socket is connected.

Keyword Value

TRGCLS High-order halfword = 9

Low-order halfword = s

DATA PRMMSG

PRMMSG Binary zeros

ANSLEN 24

ANSBUF Points to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 rc 4 The return code from the GETPEERNAME call. A
return code of 0 indicates that the call was successful.
A return code of −1 indicates that the function could
not be completed and that errno contains a reason
code.

4 errno 4 When the return code is -1, this field contains a
reason code.
Note: The rest of the reply buffer is filled only if the
call was successful.

8 *name 16 The remote address and port to which the socket is
connected. See Table 20 on page 176 for format.

GETSOCKNAME
The GETSOCKNAME call stores the name of the socket into the structure pointed
to by the name parameter and returns the address to the socket that has been

rc = getpeername(s, name, namelen)
int rc, s;
struct sockaddr_in *name;
int *namelen;

GETHOSTNAME

Chapter 5. Inter-User Communication Vehicle Sockets 183

bound. If the socket is not bound to an address, the call returns with the family
field completed and the rest of the structure set to zeros.

Keyword Value

TRGCLS High-order halfword = 10

Low-order halfword = s

DATA PRMMSG

PRMMSG Binary zeros

ANSLEN 24

ANSBUF Points to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 rc 4 The return code from the GETSOCKNAME call. A
return code of 0 indicates that the call was successful.
A return code of −1 indicates that the function could
not be completed and that errno contains a reason
code.

4 errno 4 When the return code is -1, this field contains a
reason code.
Note: The rest of the reply buffer is filled only if the
call was successful.

8 *name 16 The local address and port to which the socket is
bound. See Table 20 on page 176 for format.

GETSOCKOPT
The GETSOCKOPT call returns the current setting of an option for a specific
socket. Some of these options are under program control and can be changed using
the SETSOCKOPT call.

Keyword Value

TRGCLS High-order halfword = 11

Low-order halfword = s

DATA PRMMSG

PRMMSG High-order fullword = level. Possible values are:

Value C Symbol Comments

X'FFFF' SOL_SOCKET Socket option

X'0006' IPPROTO_TCP TCP protocol option

rc = getsockname(s, name, namelen)
int rc, s;
struct sockaddr_in *name;
int *namelen;

rc = getsockopt(s, level, optname, optval, &optlen)
int rc, s, level, optname, optlen;
char *optval;

GETSOCKNAME

184 z/VM: TCP/IP Programmer’s Reference

Low-order fullword = optname. Possible values are:

Value Option Name Returned Value

X'0001' SO_DEBUG Returns current setting.

X'0004' SO_REUSEADDR Returns current setting.

X'0008' SO_KEEPALIVE Returns current setting.

X'0010' SO_DONTROUTE Returns current setting.

X'0020' SO_BROADCAST Returns current setting.

X'0080' SO_LINGER Returns current setting in a C language struct
linger. See Table 20 on page 176 for the assembler
language equivalent.

X'0100' SO_OOBINLINE Returns current setting.

X'1001' SO_SNDBUF Returns the size of the TCP/IP send buffer.

X'1007' SO_ERROR Returns any pending error code and clears any
error status conditions.

X'1008' SO_TYPE Socket type is returned:

Value Type
1 Stream
2 Datagram
3 Raw

X'0001' TCP_NODELAY Returns current setting.
Note: This option applies only to
level=IPPROTO_TCP

ANSLEN 16 for option SO_LINGER, 12 for all other options

ANSBUF Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the GETSOCKOPT call. A
return code of 0 indicates that the call was successful.
A return code of −1 indicates that the function could
not be completed and that errno contains a reason
code.

4 errno 4 When the return code is −1, this field contains a
reason code.
Note: The rest of the reply buffer is filled only if the
call was successful.

8 *optval 4 or 8 The value of the requested option. If the option
SO_LINGER was requested, 8 bytes are returned. For
all other options, 4 bytes are returned.

GIVESOCKET
The GIVESOCKET call makes the socket available for a TAKESOCKET call issued
by another program. The GIVESOCKET call can specify any connected stream
socket. Typically, the GIVESOCKET call is issued by a concurrent server program
that creates sockets to be passed to a child server.

The GIVESOCKET sequence is:

GETSOCKOPT

Chapter 5. Inter-User Communication Vehicle Sockets 185

v To pass a socket, the concurrent server first calls GIVESOCKET. If the optional
parameters, name of the child server’s virtual machine and subtask ID are
specified in the GIVESOCKET call, only a child with a matching virtual machine
and subtask ID can take the socket.

v The concurrent server then starts the child server and passes it the socket
descriptor and concurrent server’s ID that were obtained from earlier SOCKET
and GETCLIENTID calls.

v The child server calls TAKESOCKET, with the concurrent server’s ID and socket
descriptor.

v The concurrent server issues the select call to test the socket for the exception
condition, TAKESOCKET completion.

v When the TAKESOCKET has successfully completed, the concurrent server
issues the CLOSE call to free the socket.

Keyword Value

TRGCLS High-order halfword = 31

Low-order halfword = s

DATA BUFFER

BUFLEN 40

BUFFER Points to the message in the following format:

Offset Name Length Comments

0 *clientid 40 See Table 20 on page 176 for format.

ANSLEN 8

ANSBUF The pointer to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 rc 4 The return code from the GIVESOCKET call. A return
code of 0 indicates that the call was successful. A
return code of −1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a
reason code.

IOCTL
The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL call, you must load a value representing the
characteristic that you want to control into the cmd field.

rc = givesocket(s, clientid)
int rc, s;
struct clientid *clientid;

rc = ioctl(s, cmd, arg)
int rc, s;
unsigned long cmd;
char *arg;

GIVESOCKET

186 z/VM: TCP/IP Programmer’s Reference

Keyword Value

TRGCLS High-order halfword = 12

Low-order halfword = s

DATA BUFFER

BUFLEN Request arg length + 4

BUFFER The pointer to the message in the format described in the
following format:

Offset Name Length Comments

0 cmd 4 The type of request. See Table 21 for values.

4 *arg See Table 21. The request data, if any.

ANSLEN Reply arg length + 8

ANSBUF The pointer to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 rc 4 A return code of 0 indicates that the call was
successful. A return code of −1 indicates that the
function could not be completed and that errno
contains a reason code.

4 errno 4 When the return code is -1, this field contains a
reason code.
Note: The rest of the reply buffer is filled only if the
call was successful.

8 *arg See Table 21. The response data, if any.

Table 21. Values for cmd Argument in ioctl Call

C Symbol Value

Request
arg

Length

Reply
arg

Length Comments

FIONBIO X'8004A77E' 4 0 Request arg data is a fullword
integer.

FIONREAD X'4004A77F' 0 4 Reply arg data is a fullword
integer.

SIOCADDRT X'8030A70A' 48 0 For IBM use only.

SIOCATMARK X'4004A707' 0 4 Reply arg data is a fullword
integer.

SIOCDELRT X'8030A70B' 48 0 For IBM use only.

SIOCGIFADDR X'C020A70D' 32 32 arg data is the C language struct
ifreq. See Table 20 on page 176 for
the assembler language
equivalent.

SIOCGIFBRDADDR X'C020A712' 32 32 arg data is the C language struct
ifreq. See Table 20 on page 176 for
the assembler language
equivalent.

IOCTL

Chapter 5. Inter-User Communication Vehicle Sockets 187

Table 21. Values for cmd Argument in ioctl Call (continued)

C Symbol Value

Request
arg

Length

Reply
arg

Length Comments

SIOCGIFCONF X'C008A714' 8 * Request arg data is the C-
language struct ifconf. See Table 20
on page 176 for the assembler
language equivalent. Your
program sets ifc_len to the reply
length. The other field is ignored.
Response arg data is an array of C
language struct ifreq structures,
one for each defined interface.
Note: * = the maximum number
of interfaces multiplied by 32.

SIOCGIFDSTADDR X'C020A70F' 32 32 arg data is the C language struct
ifreq. See Table 20 on page 176 for
the assembler language
equivalent.

SIOCGIFFLAGS X'C020A711' 32 32 arg data is the C language struct
ifreq. See Table 20 on page 176 for
the assembler language
equivalent.

SIOCGIFMETRIC X'C020A717' 32 32 For IBM use only.

SIOCGIFNETMASK X'C020A715' 32 32 arg data is the C language struct
ifreq. See Table 20 on page 176 for
the assembler language
equivalent.

SIOCSIFDSTADDR X'8020A70E' 32 0 For IBM use only.

SIOCSIFFLAGS X'8020A710' 32 0 For IBM use only.

SIOCSIFMETRIC X'8020A718' 32 0 For IBM use only.

SIOCGIBMOPT C048D900 72 * For IBM use only.

SIOCSIBMOPT 8048D900 * 0 For IBM use only.

LISTEN
The LISTEN call:
v Completes the bind, if BIND has not already been called for the socket.
v Creates a connection-request queue of a specified length for incoming connection

requests.

The LISTEN call is typically used by a concurrent server to receive connection
requests from clients. When a connection request is received, a new socket is
created by a later ACCEPT call. The original socket continues to listen for
additional connection requests. The LISTEN call converts an active socket to a
passive socket and configures it to accept connection requests from client
programs. If a socket is passive it cannot initiate connection requests.

Keyword Value

TRGCLS High-order halfword = 13

rc = listen(s, backlog)
int rc, s, backlog;

IOCTL

188 z/VM: TCP/IP Programmer’s Reference

|||||

|||||

Low-order halfword = s

DATA PRMMSG

PRMMSG High-order fullword = 0

Low-order fullword = backlog

ANSLEN 8

ANSBUF Points to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 rc 4 The return code from the LISTEN call. A return code
of 0 indicates that the call was successful. A return
code of −1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a
reason code.

MAXDESC
Your program specifies the maximum number of AF_INET sockets in the
initialization message. For more information about the initialization message, see
“Initializing the IUCV Connection” on page 171.

READ, READV
From the point of view of TCP/IP, the READ and READV calls are identical. From
the point of view of the application, they differ only in that the buffer for READ is
contiguous in storage, while the buffer for READV might not be contiguous.

Your program, utilizing the direct IUCV socket interface, can use the
ANSLIST=YES parameter on IUCV SEND to specify a noncontiguous READ buffer.
You can choose to use ANSLIST=YES even if your READ buffer is contiguous, so
that the reply area for cc and errno need not adjoin the READ buffer in storage.

This section does not distinguish between READ and READV. IUCV usage is
described in terms of variable names from the C language syntax of READ.

Keyword Value

TRGCLS High-order halfword = 14

Low-order halfword = s

DATA PRMMSG

PRMMSG Binary zeros

ANSLEN len + 24

ANSBUF Points to the buffer that is filled with a reply in the following
format:

cc = read(s, buf, len)
int cc, s;
char *buf;
int len;

LISTEN

Chapter 5. Inter-User Communication Vehicle Sockets 189

Offset Name Length Comments

0 cc 4 The number of bytes read. A value of zero means the
partner has closed the connection. A value of −1
indicates that the function could not be completed
and that errno contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.
Note: The rest of the reply buffer is filled only if the
call was successful.

8 16 Your program should ignore this field.

24 *buf len The received data.

RECV, RECVFROM, RECVMSG
From the point of view of TCP/IP, the RECV, RECVFROM, and RECVMSG calls
are identical.

From the point of view of the application, RECVFROM differs from RECV in that
RECVFROM additionally provides the source address of the message. Your
program, using the direct IUCV socket interface, must provide space to receive the
source address of the message, even if the source address is not required.

From the point of view of the application, RECVMSG differs from RECVFROM in
that RECVMSG additionally allows the buffer to be in noncontiguous storage. Your
program, utilizing the direct IUCV socket interface, can use the ANSLIST=YES
parameter on IUCV SEND to specify a noncontinuous read buffer. You can choose
to use ANSLIST=YES even if your read buffer is contiguous, so that the reply area
for cc and errno, and the space to receive the source address of the message, need
not adjoin the read buffer in storage.

Keyword Value

TRGCLS High-order halfword = 16

Low-order halfword = s

DATA PRMMSG

PRMMSG High-order fullword = 0.

Low-order fullword = flags:

MSG_OOB (X'00000001')
MSG_PEEK (X'00000002')

ANSLEN len + 24

ANSBUF Points to the buffer that is filled with a reply in the following
format:

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char *buf;
int len, flags;
struct sockaddr_in *from;
int *fromlen;

READ, READV

190 z/VM: TCP/IP Programmer’s Reference

Offset Name Length Comments

0 cc 4 The number of bytes read. A value of zero indicates
that communication is closed. A value of −1 indicates
that the function could not be completed and that
errno contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.
Note: The rest of the reply buffer is filled only if the
call was successful.

8 *from 16 The source address and port of the message. See
Table 20 on page 176 for format.

24 *buf len The received data.

SELECT, SELECTEX
From the point of view of the TCP/IP, the SELECT and SELECTEX calls are
identical. From the point of view of the application, they differ in that return from
SELECTEX can be triggered by the posting of an ECB as well as the selection of a
descriptor or a time-out.

Your program cannot initiate other activity on an IUCV path until TCP/IP
responds to the SELECT call. However, your program can cancel a SELECT call
before TCP/IP responds by issuing IUCV PURGE. A successful IUCV PURGE can
be followed immediately by an IUCV SEND initiating another socket call.

Multiple SELECT calls, referring to any combination of sockets, can be queued
simultaneously on an IUCV path.

Note: IUCV PURGE cannot be used by a multiple-request program to cancel a
SELECT call. See “Issuing Socket Calls” on page 174 for more information
about multilple-request socket programs.

Descriptor Sets
A descriptor set is an array of fullwords. The following is the required array size in
integer arithmetic:

number_of_fullwords = (nfds + 31) / 32
number_of_bytes = number_of_fullwords * 4

DESCRIPTOR_SET, FD_CLR, FD_ISSET Calls
The following describes how to perform the function of these C language calls,
which set, clear, and test the bit in the specified descriptor set corresponding to the
specified descriptor number.

You can compute the offset of the fullword containing the bit (integer arithmetic)
as follows:

offset = (descriptor_number / 32) * 4

Compute a mask to locate the bit within the fullword by:

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;
fd_set *readfds, *writefds, *exceptfds;
struct timeval *timeout;

RECV, RECVFROM, RECVMSG

Chapter 5. Inter-User Communication Vehicle Sockets 191

bitmask = X'00000001' << (descriptor_number modulo 32)

(“<<” is the left-shift operator).

Then use the mask, or a complemented copy of the mask, to set, clear, or test the
bit, as appropriate.

The IUCV SEND parameters particular to select are:

Keyword Value

TRGCLS High-order halfword = 19

Low-order halfword = descriptor set size in bytes (fdsize). See
“Descriptor Sets” on page 191.

DATA BUFFER

BUFLEN (3*fdsize)+28

BUFFER The pointer to the message in the following format:

Offset Name Length Number of file descriptors

0 nfds 4 To improve processing efficiency, nfds should be no
greater than one plus the largest descriptor number
actually in use.

4 4 Set this field to zero if you want select to block.
Otherwise set this field to any nonzero value and fill
in *timeval.

8 4 If any descriptor bits are set in readfds, your program
sets this field to a nonzero value. If no descriptor bits
are set in readfds, your program can set this field to
zero, to improve processing efficiency

12 4 If any descriptor bits are set in writefds, your program
sets this field to a nonzero value. If no descriptor bits
are set in writefds, your program can set this field to
zero to improve processing efficiency.

16 4 If any descriptor bits are set in exceptfds, your
program sets this field to a nonzero value. If no
descriptor bits are set in exceptfds your program can
set this field to zero to improve processing efficiency.

20 *timeval 8 See Table 20 on page 176 for format. If field at offset 4
is zero, then set this field to binary zeros.

28 *readfds fdsize If field at offset 8 is zero, then this field is not used.

28 +
fdsize

*writefds fdsize If field at offset 12 is zero, then this field is not used.

28 +
(2*fdsize)

*exceptfds fdsize If field at offset 16 is zero, then this field is not used.

ANSLEN (3*fdsize)+16

ANSBUF The pointer to the buffer that is filled in with a reply in the
following format:

SELECT, SELECTEX

192 z/VM: TCP/IP Programmer’s Reference

Offset Name Length Comments

0 nfound 4 The total number of ready sockets (in all bit masks).
A value of zero indicates an expired time limit. A
value of −1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When nfound is -1, this field contains a reason code.

8 8 Your program ignores this field.
Note: The rest of the reply buffer is filled only if the
call was successful.

16 *readfds fdsize If field at offset 8 in request data was zero, then your
program ignores this field.

16 +
fdsize

*writefds fdsize If field at offset 12 in request data was zero, then your
program ignores this field.

16 +
(2*fdsize)

*exceptfds fdsize If field at offset 16 in request data was zero, then your
program ignores this field.

SEND
The SEND call sends datagrams on a specified connected socket.

The flags field allows you to:
v Send out-of-band data, for example, interrupts, aborts, and data marked urgent.
v Suppress use of local routing tables. This implies that the caller takes control of

routing, writing network software.

For datagram sockets, the entire datagram is sent if the datagram fits into the
buffer. Excess data is discarded.

For stream sockets, data is processed as streams of information with no boundaries
separating data the data. For example, if a program is required to send 1000 bytes,
each call to this function can send any number of bytes, up to the entire 1000
bytes, with the number of bytes sent returned in errno Therefore, programs using
stream sockets should place this call in a loop, reissuing the call until all data has
been sent.

Keyword Value

TRGCLS High-order halfword = 20

Low-order halfword = s

BUFLEN len + 20

DATA BUFFER

BUFFER The pointer to the message in the following format:

Offset Name Length Comments

0 flags 4 MSG_OOB (X'00000001')
MSG_DONTROUTE (X'00000004')

4 16 Your program should set this field to binary zeros.

cc = send(s, msg, len, flags)
int cc, s;
char *msg;
int len, flags;

SELECT, SELECTEX

Chapter 5. Inter-User Communication Vehicle Sockets 193

Offset Name Length Comments

20 *msg len The data to be sent.

ANSLEN 8

ANSBUF The pointer to the buffer that is filled in with a reply in the
following format:

Offset Name Length Comments

0 cc 4 The number of bytes sent. A value of −1 indicates that
the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

SENDMSG
From the point of view of TCP/IP, the SENDMSG call with a null msg->msg_name
parameter is identical to the SEND call. Similarly, the SENDMSG call with a
non-null msg->msg_name parameter is identical to the SENDTO call.

From the point of view of the application, SENDMSG differs from SEND and
SENDTO in that SENDMSG additionally allows the write buffer to be in
noncontiguous storage.

Your program, using the direct IUCV socket interface can use the BUFLIST=YES
parameter on IUCV SEND to specify a noncontiguous write buffer. You can choose
to use BUFLIST=YES even if your write buffer is contiguous, so that the fields
preceding the write data in the request format need not adjoin the write data in
storage.

See “SEND” on page 193 and “SENDTO” for more information.

SENDTO
SENDTO is similar to SEND, except that it includes the destination address
parameter. You can use the destination address on the SENDTO call to send
datagrams on a UDP socket that is connected or not connected.

Use the flags parameter to :
v Send out-of-band data such as, interrupts, aborts, and data marked as urgent.
v Suppress the local routing tables. This implies that the caller takes control of

routing, which requires writing network software.

For datagram sockets, the SENDTO call sends the entire datagram if the datagram
fits into the buffer.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
SENDTO call can send any number of bytes, up to the entire 1000 bytes, with the
number of bytes sent returned in errno. Therefore, programs using stream sockets
should place SENDTO in a loop that repeats the call until all data has been sent.

SEND

194 z/VM: TCP/IP Programmer’s Reference

Keyword Value

TRGCLS High-order halfword = 22

Low-order halfword = s

DATA BUFFER

BUFLEN len + 20.

BUFFER The pointer to the message in the following format:

Offset Name Length Comments

0 flags 4 MSG_OOB (X'00000001')
MSG_DONTROUTE (X'00000004')

4 *to 16 See Table 20 on page 176 for format.

20 *msg len The data to be sent.

ANSLEN 8

ANSBUF The pointer to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 cc 4 The number of bytes sent. A value of −1 indicates that
the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket.

Keyword Value

TRGCLS High-order halfword = 23

Low-order halfword = s

DATA BUFFER

BUFLEN 16 for option SO_LINGER, 12 for all other options

BUFFER Points to a buffer in the following format:

Offset Name Length Comments

0 level 4 X'FFFF' - SOL_SOCKET - Socket option

X'0006' - IPPROTO_TCP - TCP protocol option

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;
char *msg;
int len, flags;
struct sockaddr_in *to;
int tolen;

rc = setsockopt(s, level, optname, optval, optlen)
int rc, s, level, optname;
char *optval;
int optlen;

SENDTO

Chapter 5. Inter-User Communication Vehicle Sockets 195

Offset Name Length Comments

4 optname 4 Option to set. See Table 22 for values.

8 *optval 4 or 8 The value of the specified option. If the option
SO_LINGER is specified, 8 bytes are needed. For all
other options, 4 bytes are needed.

Table 22. Option name values for SETSOCKOPT

Value Option Name Option Value

X'0001' SO_DEBUG On (1) or Off (0). Option may be set, but has no
effect.

X'0004' SO_REUSEADDR Yes (1) or No (0).

X'0008' SO_KEEPALIVE Yes (1) or No (0).

X'0010' SO_DONTROUTE Yes (1) or No (0). Option may be set, but has no
effect. Use MSG_DONTROUTE on write-type
calls instead.

X'0020' SO_BROADCAST Yes (1) or No (0).

X'0080' SO_LINGER Value is a C language struct linger. See Table 20 on
page 176 for the assembler language equivalent.

X'0100' SO_OOBINLINE Yes (1) or No (0).
Note: The following option applies only to
level=IPPROTO_TCP

X'0001' TCP_NODELAY Yes (1) or No (0).

ANSLEN 8

ANSBUF Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the SETSOCKOPT call. A return
code of 0 indicates that the call was successful. A
return code of −1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is −1, this field contains a
reason code.

SHUTDOWN
The normal way to terminate a network connection is to issue the CLOSE call
which attempts to complete all outstanding data transmission requests prior to
breaking the connection. The SHUTDOWN call can be used to close one-way
traffic while completing data transfer in the other direction. The how parameter
determines the direction of the traffic to shutdown.

A client program can us the SHUTDOWN call to reuse a given socket with a
different connection.

Keyword Value

TRGCLS High-order halfword = 24

rc = shutdown(s, how)
int rc, s, how;

SETSOCKOPT

196 z/VM: TCP/IP Programmer’s Reference

Low-order halfword = s

DATA PRMMSG

PRMMSG High-order fullword = 0

Low-order fullword = how:

0 = receive
1 = send
2 = both

ANSLEN 8

ANSBUF Points to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 rc 4 The return code from the SHUTDOWN call. A return
code of 0 indicates that the call was successful. A
return code of −1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a
reason code.

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket
descriptor representing the endpoint. Different types of sockets provide different
communication services.

Keyword Value

TRGCLS High-order halfword = 25

Low-order halfword = 0

DATA BUFFER

BUFLEN 16

BUFFER The pointer to the message in the following format:

Offset Name Length Comments

0 domain 4 The only valid value is AF_INET (X'00000002')

4 type 4 Fullword integer:

SOCK_STREAMX'00000001'

SOCK_DGRAMX'00000002'

SOCK_RAWX'00000003'

8 protocol 4 Fullword integer:

IPPROTO_ICMP X'00000001'

IPPROTO_TCP X'00000006'

IPPROTO_UDP X'00000011'

IPPROTO_RAW X'000000FF'

s = socket(domain, type, protocol)
int s, domain, type, protocol

SHUTDOWN

Chapter 5. Inter-User Communication Vehicle Sockets 197

Offset Name Length Comments

12 s 4 Socket number for the new socket, chosen by your
program, in the range 0 through maxsock. See
“Initializing the IUCV Connection” on page 171.

ANSLEN 8

ANSBUF Points to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 s 4 The socket number assigned to this communications
end point. A value of −1 indicates that the function
could not be completed and that errno contains a
reason code.

4 errno 4 When s is -1, this field contains a reason code.

TAKESOCKET
The TAKESOCKET call acquires a socket from another program and creates a new
socket. Typically, a child server issues this call using client ID and socket descriptor
data which it obtained from the concurrent server. When TAKESOCKET is issued,
a new socket descriptor is returned in errno. You should use this new socket
descriptor in later calls such as GETSOCKOPT, which require the s (socket
descriptor) parameter.

Note: Both concurrent servers and iterative servers are used by this interface. An
iterative server handles one client at a time. A concurrent server receives
connection requests from multiple clients and creates child servers that
process the client requests. When a child server is created, the concurrent
server gets a new socket, passes the new socket to the child server, and
dissociates itself from the connection. The TCP/IP Listener program is an
example of a concurrent server.

Keyword Value

TRGCLS High-order halfword = 32

Low-order halfword = 0

DATA BUFFER

BUFLEN 48

BUFFER The pointer to the message in the following format:

Offset Name Length Comments

0 *clientid 40 See Table 20 on page 176 for format.

40 hisdesc 4

44 s 4 Socket number for the new socket, chosen by your
program, in the range 0 through maxsock. See
“Initializing the IUCV Connection” on page 171.

s = takesocket(clientid, hisdesc)
int s;
struct clientid *clientid;
int hisdesc;

SOCKET

198 z/VM: TCP/IP Programmer’s Reference

ANSLEN 8

ANSBUF The pointer to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 s 4 The socket number assigned to this communications
end point. A value of −1 indicates that the function
could not be completed and that errno contains a
reason code.

4 errno 4 When s is -1, this field contains a reason code.

WRITE, WRITEV
From the point of view of TCP/IP, the WRITE and WRITEV calls are identical.
From the point of view of the application, WRITEV differs from WRITE in that
WRITEV additionally allows the write buffer to be in noncontiguous storage.

Your program, using the direct IUCV socket interface, can use the BUFLIST=YES
parameter on IUCV SEND to specify a noncontiguous write buffer. You can choose
to use BUFLIST=YES even if your write buffer is contiguous, so that the 20-byte
prefix need not adjoin the write buffer in storage.

This section does not distinguish between WRITE and WRITEV. IUCV usage is
described in terms of variable names from the C language syntax of WRITE.

Keyword Value

TRGCLS High-order halfword = 26

Low-order halfword = s

DATA BUFFER

BUFLEN len + 20

BUFFER The pointer to the message in the following format:

Offset Name Length Comments

0 20 Your program sets this parameter to binary zeros.

20 *buf len The data to be sent.

ANSLEN 8

ANSBUF Points to the buffer that is filled with a reply in the following
format:

Offset Name Length Comments

0 cc 4 The number of bytes sent. A value of −1 indicates that
the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

cc = write(s, buf, len)
int cc, s;
char *buf;
int len;

TAKESOCKET

Chapter 5. Inter-User Communication Vehicle Sockets 199

LASTERRNO
As explained in “TCP/IP Response to an IUCV Request” on page 175, if TCP/IP
uses IUCV REJECT to respond to a socket request, your program uses the
LASTERRNO special request to retrieve the return code and errno.

Keyword Value

TRGCLS High-order halfword = 29

Low-order halfword = 0

DATA PRMMSG

PRMMSG Binary zeros

ANSLEN 8

ANSBUF Points to the buffer that is filled in with a reply in the following
format:

Offset Name Length Comments

0 rc 4 The return code from the last rejected call. A return
code of 0 indicates that the call was successful. A
return code of −1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a
reason code.

LASTERRNO

200 z/VM: TCP/IP Programmer’s Reference

Chapter 6. Remote Procedure Calls

This chapter describes the high-level remote procedure calls (RPCs) implemented
in TCP/IP, including the RPC programming interface to the C language, and
communication between processes.

The RPC protocol permits remote execution of subroutines across a TCP/IP
network. RPC, together with the eXternal Data Representation (XDR) protocol,
defines a standard for representing data that is independent of internal protocols
or formatting. RPCs can communicate between processes on the same or different
hosts.

The RPC Interface
To use the RPC interface, you must be familiar with programming in the C
language, and you should have a working knowledge of networking concepts.

The RPC interface enables programmers to write distributed applications using
high-level RPCs rather than lower-level calls based on sockets.

When you use RPCs, the client communicates with a server. The client invokes a
procedure to send a call message to the server. When the message arrives, the
server calls a dispatch routine, and performs the requested service. The server
sends back a reply message, after which the original procedure call returns to the
client program with a value derived from the reply message.

For sample RPC client, server, and raw data stream programs, see “Sample RPC
Programs” on page 246. Figure 27 on page 202 and Figure 28 on page 203 provide
an overview of the high-level RPC client and server processes from initialization
through cleanup.

© Copyright IBM Corp. 1987, 2001 201

(Begin)
│

───────────── ┌──────────────────Ê│
│ ┌───────┴──────────┬────────────┐
│ ø ø ø
│ TCP or UDP get_myaddress UDP only
│ │ pmap_rmtcall │
│ ø pmap_getmap │
│ ┌─tcp─┐ pmap_getport │
│ clnt│ │_create │
│ └─udp─┘ │

Initialize │ │ │
│ ø │
│ ┌─none─┐_create │
│ auth│ unix │_create │
│ └─unix─┘_create_default │
│ │ │
│ ┌───┴───────┐ │
│ ø ø │

───────────── │ success error │
│ │ └───┐ │
│ ø ø ø
│ clnt_call clnt_pcreateerror callrpc
│ clnt_broadcast │ │
│ │ │ │
│ ø │ ø

Process │ XDR routines └────────┐ XDR routines
Call │ │ │ ┌────┴────┐

│ ├────────┐ │ │ │
│ ø ø │ ø ø
│ success error │ success error
│ │ │ │ │ │
│ │ │ │ │ ø
│ │ ø │ │ clnt_perrno
│ │ clnt_perror │ │ │
│ │ clnt_geterr │ │ │
│ │ │ │ │ │
│ │ │ │ │ │

───────────── │ └────────┴───────────────┤ └────┬────┘
│ │ │

Free │ ø │
Resources │ clnt_freeres │

│ │ │
│ │ │

───────────── └────────────────────────────────┤ │
ø │

Final auth_destroy │
Cleanup clnt_destroy │

│ │
└─────┬────┘

ø
(End)

Figure 27. Remote Procedure Call (Client)

RPCs

202 z/VM: TCP/IP Programmer’s Reference

Portmapper
Portmapper** is the software that supplies client programs with the port numbers
of server programs.

You can communicate between different computer operating systems when
messages are directed to port numbers rather than to targeted remote programs.
Clients contact server programs by sending messages to the port numbers where

───────────── TCP or UDP UDP only
│ ┌──────Ê│
ø │ │

┌─tcp─┐ │ ø
svc│ │_create │ registerrpc ─────┐

Initialize └─udp─┘ │ │ │
xprt_register │ │ │
svc_register └───────┤ │
pmap_set │ │

│ │ │
│ │ │

───────────── └──────────┬──────────┘ │
│ │

┌──────────────────Ê│ │
Receive │ │ │
Request │ ┌──────────┴──────────┐ │

│ │ ø ø
│ ø svc_run───────Ê│
│ svc_getreq │ │
│ svc_getcaller │ │
│ │ ø │

───────────── │ │ svc_getargs │
│ │ │ │
│ └──────────┬──────────┘ │
│ │ │
│ ┌──────────┴──────────┐ │
│ ø ø │

Process │ XDR encode decode routines │
│ │ │ │
│ └──────────┬──────────┘ │
│ │ │
│ ┌────────┴────────┐ │
│ ø ø │

───────────── │ error success │
│ │ │ │

Reply │ ø ø │
│ svcerr_xxx svc_sendreply │
│ │ │ │

───────────── │ └────────┬────────┘ │
│ │ │
│ ø │

Transaction │ svc_freeargs │
Cleanup and └───────────────────┤ │
Final ø │
Cleanup pmap_unset │

xprt_unregister │
svc_unregister │
svc_destroy │

│ │
├──────────────────────┘
ø

(End)

Figure 28. Remote Procedure Call (Server)

RPCs

Chapter 6. Remote Procedure Calls 203

receiving processes receive the message. Because you make requests to the port
number of a server rather than directly to a server program, client programs need
a way to find the port number of the server programs they wish to call.
Portmapper standardizes the way clients locate the port number of the server
programs supported on a network.

Portmapper resides on all hosts on well-known port 111.

The port-to-program information maintained by Portmapper is called the portmap.
Clients ask Portmapper about entries for servers on the network. Servers contact
Portmapper to add or update entries to the portmap.

Contacting Portmapper
To find the port of a remote program, the client sends an RPC to well-known port
111 of the server’s host. If Portmapper has a portmap entry for the remote
program, Portmapper provides the port number in a return RPC. The client then
requests the remote program by sending an RPC to the port number provided by
Portmapper.

Clients can save port numbers of recently called remote programs to avoid having
to contact Portmapper for each request to a server.

To see all the servers currently registered with Portmapper, use the RPCINFO
command in the following manner:
RPCINFO -p host_name

For more information about Portmapper, see TCP/IP User’s Guide.

Target Assistance
Portmapper offers a program to assist clients in contacting server programs. If the
client sends Portmapper an RPC with the target program number, version number,
procedure number, and arguments, Portmapper searches the portmap for an entry,
and passes the client’s message to the server. When the target server returns the
information to Portmapper, the information is passed to the client, along with the
port number of the remote program. The client can then contact the server directly.

RPCGEN Command
RPCGEN is a tool that generates C code to implement an RPC protocol. The input
to RPCGEN is a language similar to C, known as RPC language. For RPCGEN to
work correctly you must have access to the CC EXEC that is a part of the C
compiler and have accessed the TCPMAINT.592 disk.

RPCGEN infile is normally used when you want to generate all four of the
following output files. For example, if the infile is named proto.x, RPCGEN
generates:
v A header file called PROTO.H
v XDR routines called PROTOX.C
v Server-side stubs called PROTOS.C
v Client-side stubs called PROTOC.C

Note: A temporary file called PROTO.EXPANDED is created by the RPCGEN
command. During normal operation, this file is also subsequently erased by
the RPCGEN command.

RPCs

204 z/VM: TCP/IP Programmer’s Reference

|
|
|

For additional information about the RPCGEN command, see the Sun
Microsystems publication, Network Programming.

Parameter Description

-c Compiles into XDR routines.

-Dname[=value]
Define a symbol ″name″. Equivalent to the #define directive in the
source. If no ″value″ is given, ″name″ is defined as 1. This option
may be called more than once.

-h Compiles into C data definitions (a header file). The -T option can
be used in conjunction to produce a header file which supports
RPC dispatch tables.

-K seconds If the server was started by inetd, specify the time in seconds after
which the server should exit if there is no further activity. This
option is useful for customization. If seconds is 0, the server exits
after serving that given request. If seconds is -1, the server hangs
around for ever after being started by inetd. This option is valid
only with the -I option.

-l Compiles into client-side stubs.

-m Compiles into server-side stubs without generating a main routine.
This option is useful for call-back routines and for writing a main
routine for initialization.

-s TCP|UDP Compiles into server-side stubs using the given transport. The TCP
option supports the TCP transport protocol. The UDP option
supports the UDP transport protocol.

-o outfile Specifies the name of the output file. If none is specified, standard
output is used for -c, -h, -l, -m, and -s modes.

infile Specifies the name of the input file written in the RPC language.

The options -c, -h, -l, -m, -s and -t are used exclusively to generate a particular
type of file, while the options -D, -I, -L and -T are global and can be used with the
other options.

enum clnt_stat Structure
The enumerated set clnt_stat structure is defined in the CLNT.H header file.

RPCs frequently return the enumerated set clnt_stat information. The following is
the format and a description of the enumerated set clnt_stat structure:

ÊÊ RPCGEN
-c
-h
-K seconds
-l
-m
-o outfile
-s TCP

UDP

-o outfile
infile ÊÍ

RPCs

Chapter 6. Remote Procedure Calls 205

enum clnt_stat {
RPC_SUCCESS=0, /* call succeeded */
/*
* local errors
*/

RPC_CANTENCODEARGS=1, /* can’t encode arguments */
RPC_CANTDECODERES=2, /* can’t decode results */
RPC_CANTSEND=3, /* failure in sending call */
RPC_CANTRECV=4, /* failure in receiving result */
RPC_TIMEDOUT=5, /* call timed out */
/*
* remote errors
*/

RPC_VERSMISMATCH=6, /* RPC versions not compatible */
RPC_AUTHERROR=7, /* authentication error */
RPC_PROGUNAVAIL=8, /* program not available */
RPC_PROGVERSMISMATCH=9, /* program version mismatched */
RPC_PROCUNAVAIL=10, /* procedure unavailable */
RPC_CANTDECODEARGS=11, /* decode arguments error */
RPC_SYSTEMERROR=12, /* generic “other problem” */
/*
* callrpc errors
*/

RPC_UNKNOWNHOST=13, /* unknown host name */
/*
* create errors
*/

RPC_PMAPFAILURE=14, /* the pmapper failed in its call */
RPC_PROGNOTREGISTERED=15, /* remote program is not registered */
/*
* unspecified error
*/

RPC_FAILED=16, /* call failed */
RPC_UNKNOWNPROTO=17 /* unknown protocol */

};

Remote Procedure Call Library
RPC requires the RPCLIB TXTLIB and the COMMTXT TXTLIB for compiling and
linking. These TXTLIBs are normally named in a GLOBAL TXTLIB statement in
the PROFILE EXEC or in the TCPLOAD EXEC.

Porting
This section contains information about porting RPC applications.

Remapping C Identifiers with RPC.H
To conform to the VM requirement that C identifiers are 8 characters or less in
length, a header file called MANIFEST.H remaps the RPC long names to
8-character derived names for internal processing. This file is implicitly included
by the RPC.H file and must be present to compile and link.

Accessing System Return Messages
To access system return values, you need only use the ERRNO.H include statement
supplied with the compiler. To access network return values, you must add the
following include statement:
#include <tcperrno.h>

RPCs

206 z/VM: TCP/IP Programmer’s Reference

Printing System Return Messages
To print only system errors, use perror(), a procedure available in the C compiler
run-time library. To print both system and network errors, use tcperror(), a
procedure included with TCP/IP.

Enumerations
To account for varying length enumerations, use the xdr_enum() and xdr_union()
macros. xdr_enum() cannot be referenced by callrpc(), svc_freeargs(), svc_getargs(),
or svc_sendreply(). An XDR routine for the specific enumeration must be created.
The xdr_union() is not eligible for reference by these calls in any RPC environment.
For more information, see “xdr_enum()” on page 233.

RPC Global Variables
This section describes the two RPC global variables, prc_createerr and svc_fds.

rpc_createerr
Description: A global variable that is set when any RPC client creation routine

fails. Use clnt_pcreateerror() to print the message.

See Also: clntraw_create(), clnttcp_create(), clntudp_create().

svc_fds

Description: A global variable that specifies the read descriptor bit mask on the
service machine. This is of interest only if the service programmer decides to write
an asynchronous event processing routine; otherwise svc_run() should be used.
Writing asynchronous routines in the VM environment is not simple, because there
is no direct relationship between the descriptors used by the socket routines and
the Event Control Blocks commonly used by VM programs for coordinating
concurrent activities.

Attention: Do not modify this variable.

See Also: svc_getreq().

Remote Procedure and eXternal Data Representation Calls
This section provides the syntax, parameters, and other appropriate information for
each remote procedure and external data representation call supported by TCP/IP.

auth_destroy()

Parameter Description

#include <rpc.h>

struct rpc_createerr rpc_createerr;

int svc_fds;

#include <rpc.h>

void auth_destroy(auth)
AUTH *auth;

RPCs

Chapter 6. Remote Procedure Calls 207

auth Points to authentication information.

Description: The auth_destroy() call deletes the authentication information for
auth. Once this procedure is called, auth is undefined.

See Also: authnone_create(), authunix_create(), authunix_create_default().

authnone_create()

The authnone_create() call has no parameters.

Description: The authnone_create() call creates and returns an RPC
authentication handle. The handle passes the NULL authentication on each call.

See Also: auth_destroy(), authunix_create(), authunix_create_default().

authunix_create()

Parameter Description

host Specfies a pointer to the symbolic name of the host where the
desired server is located.

uid Identifies the user’s user ID.

gid Identifies the user’s group ID.

len Specifies the length of the information pointed to by aup_gids.

aup_gids Specifies a pointer to an array of groups to which the user belongs.

Description: The authunix_create() call creates and returns an authentication
handle that contains UNIX-based authentication information.

See Also: auth_destroy(), authnone_create(), authunix_create_default().

authunix_create_default()

The authunix_create_default() call has no parameters.

&numsign.include <rpc.h>.
AUTH *
authnone_create()

#include <rpc.h>

AUTH *
authunix_create(host, uid, gid, len, aup_gids)
char *host;
int uid;
int gid;
int len;
int *aup_gids;

#include <rpc.h>

AUTH *
authunix_create_default()

auth_destroy()

208 z/VM: TCP/IP Programmer’s Reference

Description: The authunix_create_default() call calls authunix_create() with
default parameters.

See Also: auth_destroy(), authnone_create(), authunix_create().

callrpc()

Parameter Description

host Specifies a pointer to the symbolic name of the host where the
desired server is located.

prognum Identifies the program number of the remote procedure.

versnum Identifies the version number of the remote procedure.

procnum Identifies the procedure number of the remote procedure.

inproc Specifies the XDR procedure used to encode the arguments of the
remote procedure.

in Specifies a pointer to the arguments of the remote procedure.

outproc Specifies the XDR procedure used to decode the results of the
remote procedure.

out Specifies a pointer to the results of the remote procedure.
clnt_perrno() can be used to translate the return code into
messages.

Description: The callrpc() call calls the remote procedure described by prognum,
versnum, and procnum running on the host system. callrpc() encodes and decodes
the parameters for transfer.

For more information on callrpc() cannot call the procedure xdr_enum;, see
“xdr_enum()” on page 233. For more information on, callrpc() uses UDP as its
transport layer, see “clntudp_create()” on page 217.

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred.
The results of the remote procedure call are returned to out.

See Also: clnt_broadcast(), clnt_call(), clnt_perrno(), clntudp_create(),
clnt_sperrno(), xdr_enum().

clnt_broadcast()

#include <rpc.h>

enum clnt_stat
callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;

authunix_create_default()

Chapter 6. Remote Procedure Calls 209

Parameter Description

prognum Identifies the program number of the remote procedure.

versnum Identifies the version number of the remote procedure.

procnum Identifies the procedure number of the remote procedure.

inproc Specifies the XDR procedure used to encode the arguments of the
remote procedure.

in Specifies a pointer to the arguments of the remote procedure.

outproc Specifies the XDR procedure used to decode the results of the
remote procedure.

out Specifies a pointer to the results of the remote procedure.

eachresult Specifies the procedure called after each response.

Note: resultproc_t is a type definition:
#include <rpc.h>

typedef bool_t (*resultproc_t) ();

Description: The clnt_broadcast() call broadcasts the remote procedure described
by prognum, versnum, and procnum to all locally connected broadcast networks.
Each time clnt_broadcast() receives a response it calls eachresult(). The format of
eachresult() is:

Parameter Description

out Has the same function as it does for clnt_broadcast(), except that
the output of the remote procedure is decoded.

addr Points to the address of the machine that sent the results.

Return Values: If eachresult() returns 0, clnt_broadcast() waits for more replies;
otherwise, eachresult() returns the appropriate status.

Note: Broadcast sockets are limited in size to the maximum transfer unit of the
data link.

See Also: callrpc(), clnt_call().

#include <rpc.h>

enum clnt_stat
clnt_broadcast(prognum, versnum, procnum, inproc, in, outproc, out, eachresult)
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
resultproc_t eachresult;

#include <rpc.h>

bool_t eachresult(out, addr)
char *out;
struct sockaddr_in *addr;

clnt_broadcast()

210 z/VM: TCP/IP Programmer’s Reference

clnt_call()

Parameter Description

clnt Points to a client handle that was previously obtained using
clntraw_create(), clnttcp_create(), or clntudp_create().

procnum Identifies the remote procedure number.

inproc Identifies the XDR procedure used to encode procnum’s arguments.

in Points to the remote procedure’s arguments.

outproc Specifies the XDR procedure used to decode the remote
procedure’s results.

out Points to the remote procedure’s results.

tout Specifies the time allowed for the server to respond in units of 0.1
seconds.

Description: The clnt_call() call calls the remote procedure (procnum) associated
with the client handle (clnt).

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred.
The results of the remote procedure call are returned to out.

See Also: callrpc(), clnt_broadcast(), clnt_geterr(), clnt_perror(), clnt_sperror(),
clntraw_create(), clnttcp_create(), clntudp_create().

clnt_control()

Parameter Description

clnt Specifies the pointer to a client handle that was previously
obtained using clntraw_create(), clnttcp_create(), or
clntudp_create().

request Determines the operation (either CLSET_TIMEOUT,
CLGET_TIMEOUT, CLGET_SERVER_ADDR,
CLSET_RETRY_TIMEOUT, or CLGET_RETRY_TIMEOUT).

info Points to information used by the request.

#include <rpc.h>

enum clnt_stat
clnt_call(clnt, procnum, inproc, in, outproc, out, tout)
CLIENT *clnt;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;

#include <rpc.h>

bool_t
clnt_control(clnt, request, info)
CLIENT *clnt;
int request;
void *info;

clnt_call()

Chapter 6. Remote Procedure Calls 211

Description: The clnt_control() call performs one of the following control
operations.
v Control operations that apply to both UDP and TCP transports:

CLSET_TIMEOUT
Sets time-out (info points to the timeval structure).

CLGET_TIMEOUT
Gets time-out (info points to the timeval structure).

CLGET_SERVER_ADDR
Gets server’s address (info points to the sockaddr_in structure).

v UDP only control operations:

CLSET_RETRY_TIMEOUT
Sets retry time-out (information points to the timeval structure).

CLGET_RETRY_TIMEOUT
Gets retry time-out (info points to the timeval structure). If you
set the timeout using clnt_control(), the timeout parameter to
clnt_call() will be ignored in all future calls.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: clnt_create(), clnt_destroy(), clntraw_create(), clnttcp_create(),
clntudp_create().

clnt_create()

Parameter Description

host Points to the name of the host at which the remote program
resides.

prognum Specifies the remote program number.

versnum Specifies the version number of the remote program.

protocol Points to the protocol, which can be either tcp or udp.

Description: The clnt_create() call creates a generic RPC client transport handle
for the remote program specified by (prognum, versnum). The client uses the
specified protocol as the transport layer. Default timeouts are set, but can be
modified using clnt_control().

Return Values: NULL indicates failure.

See Also: clnt_create(), clnt_destroy(), clnt_pcreateerror(), clnt_spcreateerror(),
clnt_sperror(), clnttcp_create(), clntudp_create().

#include <rpc.h>

CLIENT *
clnt_create(host, prognum, versnum, protocol)
char *host;
u_long prognum;
u_long versnum;
char *protocol;

clnt_control()

212 z/VM: TCP/IP Programmer’s Reference

clnt_destroy()

Parameter Description

clnt Points to a client handle that was previously created using
clntudp_create(), clnttcp_create(), or clntraw_create().

Description: The clnt_destroy() call deletes a client RPC transport handle. This
procedure involves the deallocation of private data resources, including clnt. Once
this procedure is used, clnt is undefined. If the RPC library opened the associated
socket, it will close it also. Otherwise, the socket remains open.

See Also: clnt_control(), clnt_create(), clntraw_create(), clnttcp_create(),
clntudp_create().

clnt_freeres()

Parameter Description

clnt Points to a client handle that was previously obtained using
clntraw_create(), clnttcp_create(), or clntudp_create().

outproc Specifies the XDR procedure used to decode the remote
procedure’s results.

out Points to the results of the remote procedure.

Description: The clnt_freeres() call deallocates any resources that were assigned
by the system to decode the results of an RPC.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: clntraw_create(), clnttcp_create(), clntudp_create().

clnt_geterr()

Parameter Description

#include <rpc.h>

void
clnt_destroy(clnt)
CLIENT *clnt;

#include <rpc.h>

bool_t
clnt_freeres(clnt, outproc, out)
CLIENT *clnt;
xdrproc_t outproc;
char *out;

#include <rpc.h>

void
clnt_geterr(clnt, errp)
CLIENT *clnt;
struct rpc_err *errp;

clnt_destroy()

Chapter 6. Remote Procedure Calls 213

clnt Points to a client handle that was previously obtained using
clntraw_create(), clnttcp_create(), or clntudp_create().

errp Points to the address into which the error structure is copied.

Description: The clnt_geterr() call copies the error structure from the client
handle to the structure at address errp.

See Also: clnt_call(), clnt_pcreateerror(), clnt_perrno(), clnt_perror(),
clnt_spcreateerror(), clnt_sperrno(), clnt_sperror(), clntraw_create(), clnttcp_create(),
clntudp_create().

clnt_pcreateerror()

Parameter Description
s Specifies a NULL or NULL-terminated character string. If s is

non-NULL, clnt_pcreateerror() prints the string s followed by a
colon, followed by a space, followed by the error message, and
terminated with a newline character. If s is NULL or points to a
NULL string, just the error message and the newline character are
output.

Description: The clnt_pcreateerror() call writes a message to the standard error
device, indicating why a client handle cannot be created. This procedure is used
after the clntraw_create(), clnttcp_create(), or clntudp_create() calls fail.

See Also: clnt_create(), clnt_geterr(), clnt_perrno(), clnt_perror(),
clnt_spcreateerror(), clnt_sperrno(), clnt_sperror(), clntraw_create(), clnttcp_create(),
clntudp_create().

clnt_perrno()

Parameter Description
stat Specifies the client status.

Description: The clnt_perrno() call writes a message to the standard error device
corresponding to the condition indicated by stat. This procedure should be used
after callrpc() if there is an error.

See Also: callrpc(), clnt_geterr(), clnt_pcreateerror(), clnt_perror(),
clnt_spcreateerror(), clnt_sperrno(), clnt_sperror().

clnt_perror()

#include <rpc.h>

void
clnt_pcreateerror(s)
char *s;

#include <rpc.h>

void
clnt_perrno(stat)
enum clnt_stat stat;

clnt_geterr()

214 z/VM: TCP/IP Programmer’s Reference

Parameter Description

clnt Points to a client handle that was previously obtained using
clntudp_create(), clnttcp_create(), or clntraw_create().

s Points to a string that is to be printed in front of the message. The
string is followed by a colon.

Description: The clnt_perror() call writes a message to the standard error device,
indicating why an RPC failed. This procedure should be used after clnt_call() if
there is an error.

See Also: clnt_call(), clnt_geterr(), clnt_pcreateerror(), clnt_perrno(),
clnt_spcreateerror(), clnt_sperrno(), clnt_sperror(), clntraw_create(), clnttcp_create(),
clntudp_create().

clnt_spcreateerror()

Parameter Description
s Specifies a NULL or NULL-terminated character string. If s is

non-NULL, clnt_spcreateerror() prints the string s followed by a
colon, followed by a space, followed by the error message, and
terminated with a new-line character. If s is NULL or points to a
NULL string, just the error message and the new-line character are
printed.

Description: The clnt_spcreateerror() call returns the address of a message
indicating why a client handle cannot be created. This procedure is used after the
clnt_create(), clntraw_create(), clnttcp_create(), or clntudp_create() calls fail.

Return Values: Returns a pointer to a character string in a static data area. This
data area is overwritten with each subsequent call.

See Also: clnt_create(), clnt_geterr(), clnt_perrno(), clnt_perror(), clnt_pcreateerror(),
clnt_sperrno(), clnt_sperror(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_sperrno()

Parameter Description
stat Specifies the client status.

#include <rpc.h>

void
clnt_perror(clnt, s)
CLIENT *clnt;
char *s;

#include <rpc.h>

char *
clnt_spcreateerror(s)
char *s;

#include <rpc.h>

char *
clnt_sperrno(stat)
enum clnt_stat stat;

clnt_perror()

Chapter 6. Remote Procedure Calls 215

Description: The clnt_sperrno() call returns the address of a message
corresponding to the condition indicated by stat. This procedure should be used
after callrpc() if there is an error.

Return Values: Returns a pointer to a character string ending with a newline.

See Also: callrpc(), clnt_geterr(), clnt_pcreateerror(), clnt_spcreateerror(),
clnt_sperror(), clnt_perrno(), clnt_perror().

clnt_sperror()

Parameter Description

clnt Points to a client handle that was previously obtained using
clnt_create(), clntudp_create(), clnttcp_create(), or clntraw_create().

s Specifies a NULL or a NULL-terminated character string. If s is
non-NULL, clnt_sperror() prints the string s followed by a colon,
followed by a space, followed by the error message, and
terminated with a newline character. If s is NULL or points to a
NULL string, just the error message and the newline character are
output.

Description: The clnt_sperror() call returns the address of a message indicating
why an RPC failed. This procedure should be used after clnt_call() if there is an
error.

Return Values: Returns a pointer to a character string in a static data area. This
data area is overwritten with each subsequent call.

See Also: clnt_call(), clnt_create(), clnt_geterr(), clnt_pcreateerror(), clnt_perrno(),
clnt_perror(), clnt_spcreateerror(), clnt_sperrno(), clntraw_create(), clnttcp_create(),
clntudp_create().

clntraw_create()

Parameter Description
prognum Specifies the remote program number.
versnum Specifies the version number of the remote program.

Description: The clntraw_create() call creates a dummy client for the remote
double (prognum, versnum). Because messages are passed using a buffer within the
virtual machine of the local process, the server should also use the same virtual

#include <rpc.h>

char *
clnt_sperror(clnt, s)
CLIENT *clnt;
char *s;

#include <rpc.h>

CLIENT *
clntraw_create(prognum, versnum)
u_long prognum;
u_long versnum;

clnt_sperrno()

216 z/VM: TCP/IP Programmer’s Reference

machine, which simulates RPC programs within one virtual machine. For more
information, see “svcraw_create()” on page 228.

Return Values: NULL indicates failure.

See Also: clnt_call(), clnt_destroy(), clnt_freeres(), clnt_geterr(), clnt_pcreateerror(),
clnt_perror(), clnt_spcreateerror(), clnt_sperror(), clntudp_create(), clnttcp_create(),
svcraw_create().

clnttcp_create()

Parameter Description

addr Points to the internet address of the remote program. If the addr
port number is zero (addr −> sin_port), addr is set to the port on
which the remote program is receiving.

prognum Specifies the remote program number.

versnum Specifies the version number of the remote program.

sockp Points to the socket. If sockp is RPC_ANYSOCK, then this routine
opens a new socket and sets sockp.

sendsz Specifies the size of the send buffer. Specify 0 to choose the default.

recvsz Specifies the size of the receive buffer. Specify 0 to choose the
default.

Description: The clnttcp_create() call creates an RPC client transport handle for
the remote program specified by (prognum, versnum). The client uses TCP as the
transport layer.

Return Values: NULL indicates failure.

See Also: clnt_call(), clnt_control(), clnt_create(), clnt_destroy(), clnt_freeres(),
clnt_geterr(), clnt_pcreateerror(), clnt_perror(), clnt_spcreateerror(), clnt_sperror(),
clntraw_create(), clntudp_create().

clntudp_create()

#include <rpc.h>

CLIENT *
clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
int *sockp;
u_int sendsz;
u_int recvsz;

clntraw_create()

Chapter 6. Remote Procedure Calls 217

Parameter Description

addr Points to the internet address of the remote program. If the addr
port number is zero (addr−> sin_port), addr is set to the port on
which the remote program is receiving. The remote portmap
service is used for this.

prognum Specifies the remote program number.

versnum Specifies the version number of the remote program.

wait Indicates that UDP resends the call request at intervals of wait
time, until either a response is received or the call times out. The
time-out length is set using the clnt_call() procedure.

sockp Points to the socket. If sockp is RPC_ANYSOCK, this routine opens
a new socket and sets sockp.

Description: The clntudp_create() call creates a client transport handle for the
remote program (prognum) with version (versnum). UDP is used as the transport
layer.

Note: This procedure should not be used with procedures that use large
arguments or return large results. While UDP packet size is configurable to
a maximum of 32 kilobytes, the default UDP packet size is only eight
kilobytes.

Return Values: NULL indicates failure.

See Also: call_rpc(), clnt_call(), clnt_control(), clnt_create(), clnt_destroy(),
clnt_freeres(), clnt_geterr(), clnt_pcreateerror(), clnt_perror(), clnt_spcreateerror(),
clnt_sperror(), clntraw_create(), clnttcp_create().

get_myaddress()

Parameter Description
addr Points to the location where the local internet address is placed.

Description: The get_myaddress() call puts the local host’s internet address into
addr. The port number (addr—>sin_port) is set to htons (PMAPPORT), which is 111.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(),
pmap_set(), pmap_unset().

#include <rpc.h>

CLIENT *
clntudp_create(addr, prognum, versnum, wait, sockp)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
struct timeval wait;
int *sockp;

#include <rpc.h>

void
get_myaddress(addr)
struct sockaddr_in *addr;

clntudp_create()

218 z/VM: TCP/IP Programmer’s Reference

getrpcport()

Parameter Description

host Points to the name of the foreign host.

prognum Specifies the program number to be mapped.

versnum Specifies the version number of the program to be mapped.

protocol Specifies the transport protocol used by the program
(IPPROTO_TCP or IPPROTO_UDP).

Description: The getrpcport() call returns the port number associated with the
remote program (prognum), the version (versnum), and the transport protocol
(protocol).

Return Values: The value 0 indicates that the mapping does not exist or that the
remote portmap could not be contacted. If Portmapper cannot be contacted,
rpc_createerr contains the RPC status.

See Also: get_myaddress(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(),
pmap_set(), pmap_unset().

pmap_getmaps()

Parameter Description
addr Points to the internet address of the foreign host.

Description: The pmap_getmaps() call returns a list of current program-to-port
mappings on the foreign host specified by addr.

Return Values: Returns a pointer to a pmaplist structure or NULL.

See Also: getrpcport(), pmap_getport(), pmap_rmtcall(), pmap_set(), pmap_unset().

pmap_getport()

#include <rpc.h>

u_short
getrpcport(host, prognum, versnum, protocol)
char *host;
u_long prognum;
u_long versnum;
int protocol;

#include <rpc.h>

struct pmaplist *
pmap_getmaps(addr)
struct sockaddr_in *addr;

getrpcport()

Chapter 6. Remote Procedure Calls 219

Parameter Description

addr Points to the internet address of the foreign host.

prognum Identifies the program number to be mapped.

versnum Identifies the version number of the program to be mapped.

protocol Specifies the transport protocol used by the program
(IPPROTO_TCP or IPPROTO_UDP).

Description: The pmap_getport() call returns the port number associated with the
remote program (prognum), the version (versnum), and the transport protocol
(protocol).

Return Values: The value 0 indicates that the mapping does not exist or that the
remote portmap could not be contacted. If Portmapper cannot be contacted,
rpc_createerr contains the RPC status.

See Also: getrpcport() pmap_getmaps(), pmap_rmtcall(), pmap_set(),
pmap_unset().

pmap_rmtcall()

Parameter Description

addr Points to the internet address of the foreign host.

prognum Identifies the remote program number.

versnum Identifies the version number of the remote program.

procnum Identifies the procedure to be called.

inproc Identifies the XDR procedure used to encode the arguments of the
remote procedure.

in Points to the arguments of the remote procedure.

outproc Identifies the XDR procedure used to decode the results of the
remote procedure.

#include <rpc.h>

u_short
pmap_getport(addr, prognum, versnum, protocol)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
int protocol;

#include <rpc.h>

enum clnt_stat
pmap_rmtcall(addr, prognum, versnum, procnum, inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;
u_long *portp;

pmap_getport()

220 z/VM: TCP/IP Programmer’s Reference

out Points to the results of the remote procedure.

tout Identifies the time-out period for the remote request.

portp If the call from the remote portmap service is successful, portp
contains the port number of the triple (prognum, versnum, procnum).

Description: The pmap_rmtcall() call instructs Portmapper on the host at addr to
make an RPC call to a procedure on that host, on your behalf. This procedure
should be used only for ping type functions.

Return Values: Returns a clnt_stat enumerated type.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_set(),
pmap_unset().

pmap_set()

Parameter Description
prognum Identifies the local program number.
versnum Identifies the version number of the local program.
protocol Specifies the transport protocol used by the local program.
port Identifies the port to which the local program is mapped.

Description: The pmap_set() call sets the mapping of the program (specified by
prognum, versnum, and protocol) to port on the local machine. This procedure is
automatically called by the svc_register() procedure.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(),
pmap_unset().

pmap_unset()

Parameter Description
prognum Identifies the local program number.
versnum Identifies the version number of the local program.

#include <rpc.h>

bool_t
pmap_set(prognum, versnum, protocol, port)
u_long prognum;
u_long versnum;
int protocol;
u_short port;

#include <rpc.h>

bool_t
pmap_unset(prognum, versnum)
u_long prognum;
u_long versnum;

pmap_rmtcall()

Chapter 6. Remote Procedure Calls 221

Description: The pmap_unset() call removes the mappings associated with
prognum and versnum on the local machine. All ports for each transport protocol
currently mapping the prognum and versnum are removed from the portmap
service.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(),
pmap_set().

registerrpc()

Parameter Description

prognum The program number to register.

versnum Identifies the version number to register.

procnum Specifies the procedure number to register.

procname Specifies the procedure that is called when the registered program
is requested. procname must accept a pointer to its arguments, and
return a static pointer to its results.

inproc Specifies the XDR routine used to decode the arguments.

outproc Specifies the XDR routine that encodes the results.

Description: The registerrpc() call registers a procedure (prognum, versnum,
procnum) with the local Portmapper, and creates a control structure to remember
the server procedure and its XDR routine. The control structure is used by
svc_run(). When a request arrives for the program (prognum, versnum, procnum), the
procedure procname is called. Procedures registered using registerrpc() are accessed
using the UDP transport layer.

Note: xdr_enum() cannot be used as an argument to registerrpc(). See
“xdr_enum()” on page 233 for more information.

Return Values: The value 0 indicates success; the value −1 indicates an error.

See Also: svc_register(), svc_run().

svc_destroy()

#include <rpc.h>

int
registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum;
u_long versnum;
u_long procnum;
char *(*procname) ();
xdrproc_t inproc;
xdrproc_t outproc;

pmap_unset()

222 z/VM: TCP/IP Programmer’s Reference

Parameter Description
xprt Points to the service transport handle.

Description: The svc_destroy() call deletes the RPC service transport handle xprt,
which becomes undefined after this routine is called.

See Also: svcraw_create(), svctcp_create(), svcudp_create().

svc_freeargs()

Parameter Description
xprt Points to the service transport handle.
inproc Specifies the XDR routine used to decode the arguments.
in Points to the input arguments.

Description: The svc_freeargs() call frees storage allocated to decode the
arguments to a service procedure using svc_getargs().

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: svc_getargs().

svc_getargs()

Parameter Description
xprt Points to the service transport handle.
inproc Specifies the XDR routine used to decode the arguments.
in Points to the decoded arguments.

Description: The svc_getargs() call uses the XDR routine inproc to decode the
arguments of an RPC request associated with the RPC service transport handle
xprt. The results are placed at address in.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: svc_freeargs().

#include <rpc.h>

void
svc_destroy(xprt)
SVCXPRT *xprt;

#include <rpc.h>

bool_t
svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

#include <rpc.h>

bool_t
svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

svc_destroy()

Chapter 6. Remote Procedure Calls 223

svc_getcaller()

Parameter Description
xprt Points to the service transport handle.

Description: This macro obtains the network address of the client associated with
the service transport handle xprt.

Return Values: Returns a pointer to a sockaddr_in structure.

See Also: get_myaddress().

svc_getreq()

Parameter Description
rdfds Specifies the read descriptor bit mask.

Description: The svc_getreq() call is used rather than svc_run() to implement
asynchronous event processing. The routine returns control to the program when
all sockets have been serviced.

See Also: svc_run().

svc_register()

Parameter Description

xprt Points to the service transport handle.

prognum Specifies the program number to be registered.

versnum Specifies the version number of the program to be registered.

dispatch Specifies the dispatch routine associated with prognum and
versnum.

Specifies the structure of the dispatch routine is:

#include <rpc.h>

struct sockaddr_in *
svc_getcaller(xprt)
SVCXPRT *xprt;

#include <rpc.h>

void
svc_getreq(rdfds)
int rdfds;

#include <rpc.h>

bool_t
svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum;
u_long versnum;
void (*dispatch) ();
int protocol;

svc_getcaller()

224 z/VM: TCP/IP Programmer’s Reference

#include <rpc.h>

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

protocol Specifies the protocol used. The value is generally one of the
following:
v 0 (zero)
v IPPROTO_UDP
v IPPROTO_TCP

When a value of 0 is used, the service is not registered with
Portmapper.

Note: When using a dummy RPC service transport created with svcraw_create(), a
call to xprt_register() must be made immediately after a call to svc_register().

Description: The svc_register() call associates the program described by (prognum,
versnum) with the service dispatch routine dispatch.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: registerrpc(), svc_unregister(), xprt_register().

svc_run()
The svc_run() call has no parameters.

Description: The svc_run() call does not return control. It accepts RPC requests
and calls the appropriate service using svc_getreq().

See Also: registerrpc(), svc_getreq().

svc_sendreply()

Parameter Description
xprt Points to the caller’s transport handle.
outproc Specifies the XDR procedure used to encode the results.
out Points to the results.

Description: The svc_sendreply() call is called by the service dispatch routine to
send the results of the call to the caller.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_call().

#include <rpc.h>

void
svc_run()

#include <rpc.h>

bool_t
svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

svc_register()

Chapter 6. Remote Procedure Calls 225

svc_unregister()

Parameter Description
prognum Specifies the program number that is removed.
versnum Specifies the version number of the program that is removed.

Description: The svc_unregister() call removes all local mappings of (prognum,
versnum) to dispatch routines and (prognum, versnum, *) to port numbers.

See Also: svc_register().

svcerr_auth()

Parameter Description
xprt Points to the service transport handle.
why Specifies the reason the call is refused.

Description: The svcerr_auth() call is called by a service dispatch routine that
refuses to execute an RPC request because of authentication errors.

See Also: svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

svcerr_decode()

Parameter Description
xprt Points to the service transport handle.

Description: The svcerr_decode() call is called by a service dispatch routine that
cannot decode its parameters.

See Also: svcerr_auth(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

svcerr_noproc()

#include <rpc.h>

void
svc_unregister(prognum, versnum)
u_long prognum;
u_long versnum;

#include <rpc.h>

void
svcerr_auth(xprt, why)
SVCXPRT *xprt;
enum auth_stat why;

#include <rpc.h>

void
svcerr_decode(xprt)
SVCXPRT *xprt;

svc_unregister()

226 z/VM: TCP/IP Programmer’s Reference

Parameter Description
xprt Points to the service transport handle.

Description: The svcerr_noproc() call is called by a service dispatch routine that
does not implement the requested procedure.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

svcerr_noprog()

Parameter Description
xprt Points to the service transport handle.

Description: Description: The svcerr_noprog() call is used when the desired
program is not registered.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

svcerr_progvers()

Parameter Description
xprt Points to the service transport handle.
low_vers Specifies the low version number that does not match.
high_vers Specifies the high version number that does not match.

Description: The svcerr_progvers() call is called when the version numbers of
two RPC programs do not match. The low version number corresponds to the
lowest registered version, and the high version corresponds to the highest version
registered on the portmapper.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr_progvers(), svcerr_systemerr(), svcerr_weakauth().

svcerr_systemerr()

#include <rpc.h>

void
svcerr_noproc(xprt)
SVCXPRT *xprt;

#include <rpc.h>

void
svcerr_noprog(xprt)
SVCXPRT *xprt;

#include <rpc.h>

void
svcerr_progvers(xprt, low_vers, high_vers)
SVCXPRT *xprt;
u_long low_vers;
u_long high_vers;

svcerr_noproc()

Chapter 6. Remote Procedure Calls 227

Parameter Description
xprt Points to the service transport handle.

Description: The svcerr_systemerr() call is called by a service dispatch routine
when it detects a system error that is not handled by the protocol.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr_progvers(), svcerr_weakauth().

svcerr_weakauth()

Parameter Description
xprt Points to the service transport handle.

Note: This is the equivalent of: svcerr_auth(xprt, AUTH_TOOWEAK).

Description: The svcerr_weakauth() call is called by a service dispatch routine
that cannot execute an RPC because of correct but weak authentication parameters.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr_progvers(), svcerr_systemerr().

svcraw_create()
The svcraw_create() call has no parameters.

Description: The svcraw_create() call creates a local RPC service transport used
for timings, to which it returns a pointer. Messages are passed using a buffer
within the virtual machine of the local process; so, the client process must also use
the same virtual machine. This allows the simulation of RPC programs within one
computer. See “clntraw_create()” on page 216 for more information.

Return Values: NULL indicates failure.

See Also: clntraw_create(), svc_destroy(), svctcp_create(), svcudp_create().

svctcp_create()

#include <rpc.h>

void
svcerr_systemerr(xprt)
SVCXPRT *xprt;

#include <rpc.h>

void
svcerr_weakauth(xprt)
SVCXPRT *xprt;

#include <rpc.h>

SVCXPRT *
svcraw_create()

svcerr_systemerr()

228 z/VM: TCP/IP Programmer’s Reference

Parameter Description

sock Specifies the socket descriptor. If sock is RPC_ANYSOCK, a new
socket is created. If the socket is not bound to a local TCP port, it
is bound to an arbitrary port.

send_buf_size Specifies the size of the send buffer. Specify 0 to choose the default.

recv_buf_size Specifies the size of the receive buffer. Specify 0 to choose the
default.

Description: The svctcp_create() call creates a TCP-based service transport to
which it returns a pointer. xprt—>xp_sock contains the transport’s socket
descriptor. xprt—>xp_port contains the transport’s port number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svcraw_create(), svcudp_create().

svcudp_create()

Parameter Description

sock Specifies the socket descriptor. If sock is RPC_ANYSOCK, a new
socket is created. If the socket is not bound to a local TCP port, it
is bound to an arbitrary port.

sendsz Specifies the size of the send buffer.

recvsz Specifies the size of the receive buffer.

Description: The svcudp_create() call creates a UDP-based service transport to
which it returns a pointer. xprt—>xp_sock contains the transport’s socket
descriptor. xprt—>xp_port contains the transport’s port number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svcraw_create(), svctcp_create().

xdr_accepted_reply()

#include <rpc.h>

SVCXPRT *
svctcp_create(sock, send_buf_size, recv_buf_size)
int sock;
u_int send_buf_size;
u_int recv_buf_size;

#include <rpc.h>

SVCXPRT *
svcudp_create(sock, sendsz, recvsz)
int sock;
u_int sendsz;
u_int recvsz;

svctcp_create()

Chapter 6. Remote Procedure Calls 229

Parameter Description
xdrs Points to an XDR stream.
ar Points to the reply to be represented.

Description: The xdr_accepted_reply() call translates RPC reply messages.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_array()

Parameter Description

xdrs Points to an XDR stream.

arrp Specifies the address of the pointer to the array.

sizep Points to the element count of the array.

maxsize Specifies the maximum number of elements accepted.

elsize Specifies the size of each of the array’s elements, found using
sizeof().

elproc Specifies the XDR routine that translates an individual array
element.

Description: The xdr_array() call translates between an array and its external
representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_authunix_parms()

#include <rpc.h>

bool_t
xdr_accepted_reply(xdrs, ar)
XDR *xdrs;
struct accepted_reply *ar;

#include <rpc.h>

bool_t
xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep;
u_int maxsize;
u_int elsize;
xdrproc_t elproc;

xdr_accepted_reply()

230 z/VM: TCP/IP Programmer’s Reference

Parameter Description
xdrs Points to an XDR stream.
aupp Points to the authentication information.

Description: The xdr_authunix_parms() call translates UNIX-based authentication
information.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_bool()

Parameter Description
xdrs Points to an XDR stream.
bp Points to the Boolean.

Description: The xdr_bool() call translates between Booleans and their external
representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_bytes()

Parameter Description
xdrs Points to an XDR stream.
sp Points to a pointer to the byte string.
sizep Points to the byte string size.
maxsize Specifies the maximum size of the byte string.

#include <rpc.h>

bool_t
xdr_authunix_parms(xdrs, aupp)
XDR *xdrs;
struct authunix_parms *aupp;

#include <rpc.h>

bool_t
xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

#include <rpc.h>

bool_t
xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep;
u_int maxsize;

xdr_authunix_parms()

Chapter 6. Remote Procedure Calls 231

Description: The xdr_bytes() call translates between byte strings and their
external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_callhdr()

Parameter Description
xdrs Points to an XDR stream.
chdr Points to the call header.

Description: The xdr_callhdr() call translates an RPC message header into XDR
format.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_callmsg()

Parameter Description
xdrs Points to an XDR stream.
cmsg Points to the call message.

Description: The xdr_callmsg() call translates RPC messages (header and
authentication, not argument data) to and from the xdr format.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_double()

#include <rpc.h>

bool_t
xdr_callhdr(xdrs, chdr)
XDR *xdrs;
struct rpc_msg *chdr;

#include <rpc.h>

bool_t
xdr_callmsg(xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

xdr_bytes()

232 z/VM: TCP/IP Programmer’s Reference

Parameter Description
xdrs Points to an XDR stream.
dp Points to a double-precision number.

Description: The xdr_double() call translates between C double-precision
numbers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_enum()

Parameter Description

xdrs Points to an XDR stream.

ep Points to the enumerated number. enum_t can be any enumeration
type such as enum colors, with colors declared as enum colors
(black, brown, red).

Description: The xdr_enum() call translates between C-enumerated groups and
their external representation. When calling the procedures callrpc() and
registerrpc(), a stub procedure must be created for both the server and the client
before the procedure of the application program using xdr_enum(). The following
is the format of the stub procedure.
The xdr_enum_t procedure is used as the inproc and outproc in both the client and

server RPCs.

For example, an RPC client would contain the following lines:

#include <rpc.h>

bool_t
xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

#include <rpc.h>

bool_t
xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

#include <rpc.h>

enum colors (black, brown, red)
void
static xdr_enum_t(xdrs, ep)
XDR *xdrs;
enum colors *ep;
{

xdr_enum(xdrs, ep)
}

xdr_double()

Chapter 6. Remote Procedure Calls 233

An RPC server would contain the following line:
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_float()

Parameter Description
xdrs Points to an XDR stream.
fp Points to the floating-point number.

Description: The xdr_float() call translates between C floating-point numbers and
their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_inline()

Parameter Description
xdrs Points to an XDR stream.
len Specifies the byte length of the desired buffer.

Description: The xdr_inline() call returns a pointer to a continuous piece of the
XDR stream’s buffer. The value is long * rather than char *, because the external
data representation of any object is always an integer multiple of 32 bits.

...

error = callrpc(argv[1],ENUMRCVPROG,VERSION,ENUMRCVPROC,xdr_enum_t,&innumber,xdr_enum_t,
&outnumber);

...

...

registerrpc(ENUMRCVPROG,VERSION,ENUMRCVPROC,xdr_enum_t,xdr_enum_t);

...

#include <rpc.h>

bool_t
xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

#include <rpc.h>

long *
xdr_inline(xdrs, len)
XDR *xdrs;
u_int len;

xdr_enum()

234 z/VM: TCP/IP Programmer’s Reference

Note: xdr_inline() can return NULL if there is not sufficient space in the stream
buffer to satisfy the request.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_int()

Parameter Description
xdrs Points to an XDR stream.
ip Points to the integer.

Description: The xdr_int() call translates between C integers and their external
representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_long()

Parameter Description
xdrs Points to an XDR stream.
lp Points to the long integer.

Description: The xdr_long() call translates between C long integers and their
external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_opaque()

#include <rpc.h>

bool_t
xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

#include <rpc.h>

bool_t
xdr_long(xdrs, lp)
XDR *xdrs;
long *lp;

xdr_inline()

Chapter 6. Remote Procedure Calls 235

Parameter Description
xdrs Points to an XDR stream.
cp Points to the opaque object.
cnt Specifies the size of the opaque object.

Description: The xdr_opaque() call translates between fixed-size opaque data and
its external representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_opaque_auth()

Parameter Description
xdrs Points to an XDR stream.
ap Points to the opaque authentication information.

Description: The xdr_opaque_auth() call translates RPC message authentications.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_pmap()

Parameter Description
xdrs Points to an XDR stream.
regs Points to the portmap parameters.

Description: The xdr_pmap() call translates an RPC procedure identification, such
as is used in calls to Portmapper.

Return Values: The value 1 indicates success; the value 0 indicates an error.

#include <rpc.h>

bool_t
xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

#include <rpc.h>

bool_t
xdr_opaque_auth(xdrs, ap)
XDR *xdrs;
struct opaque_auth *ap;

#include <rpc.h>

bool_t
xdr_pmap(xdrs, regs)
XDR *xdrs;
struct pmap *regs;

xdr_opaque()

236 z/VM: TCP/IP Programmer’s Reference

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_pmaplist()

Parameter Description
xdrs Points to an XDR stream.
rp Points to a pointer to the portmap data array.

Description: The xdr_pmaplist() call translates a variable number of RPC
procedure identifications, such as Portmapper creates.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_pointer()

Parameter Description

xdrs Points to an XDR stream.

pp Points to a pointer.

size Specifies the size of the target.

proc Specifies the XDR procedure that translates an individual element
of the type addressed by the pointer.

Description: The xdr_pointer() call provides pointer-chasing within structures.
This differs from the xdr_reference() call in that it can serialize or deserialize trees
correctly.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_reference()

#include <rpc.h>

bool_t
xdr_pmaplist(xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

#include <rpc.h>

bool_t
xdr_pointer(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

xdr_pmap()

Chapter 6. Remote Procedure Calls 237

Parameter Description

xdrs Points to an XDR stream.

pp Points to a pointer.

size Specifies the size of the target.

proc Specifies the XDR procedure that translates an individual element
of the type addressed by the pointer.

Description: The xdr_reference() call provides pointer-chasing within structures.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_rejected_reply()

Parameter Description
xdrs Points to an XDR stream.
rr Points to the rejected reply.

Description: The xdr_rejected_reply() call translates RPC reply messages.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_replymsg()

Parameter Description
xdrs Points to an XDR stream.
rmsg Points to the reply message.

Description: The xdr_replymsg() call translates RPC reply messages.

#include <rpc.h>

bool_t
xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
u_int size;
xdrproc_t proc;

#include <rpc.h>

bool_t
xdr_rejected_reply(xdrs, rr)
XDR *xdrs;
struct rejected_reply *rr;

#include <rpc.h>

bool_t
xdr_replymsg(xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *rmsg;

xdr_reference()

238 z/VM: TCP/IP Programmer’s Reference

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_short()

Parameter Description
xdrs Points to an XDR stream.
sp Points to the short integer.

Description: The xdr_short() call translates between C short integers and their
external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_string()

Parameter Description
xdrs Points to an XDR stream.
sp Points to a pointer to the string.
maxsize Specifies the maximum size of the string.

Description: The xdr_string() call translates between C strings and their external
representations. The xdr_string() call is the only xdr routine to convert ASCII to
EBCDIC.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_u_int()

#include <rpc.h>

bool_t
xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

#include <rpc.h>

bool_t
xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

xdr_replymsg()

Chapter 6. Remote Procedure Calls 239

Parameter Description
xdrs Points to an XDR stream.
up Points to the unsigned integer.

Description: The xdr_u_int() call translates between C unsigned integers and
their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_u_long()

Parameter Description
xdrs Points to an XDR stream.
ulp Points to the unsigned long integer.

Description: The xdr_u_long() call translates between C unsigned long integers
and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_u_short()

Parameter Description
xdrs Points to an XDR stream.
usp Points to the unsigned short integer.

Description: The xdr_u_short() call translates between C unsigned short integers
and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

#include <rpc.h>

bool_t
xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

#include <rpc.h>

bool_t
xdr_u_long(xdrs, ulp)
XDR *xdrs;
u_long *ulp;

#include <rpc.h>

bool_t
xdr_u_short(xdrs, usp)
XDR *xdrs;
u_short *usp;

xdr_u_int()

240 z/VM: TCP/IP Programmer’s Reference

xdr_union()

Parameter Description

xdrs Points to an XDR stream.

dscmp Points to the union’s discriminant. enum_t can be any enumeration
type.

unp Points to the union.

choices Points to an array detailing the XDR procedure to use on each arm
of the union.

dfault Specifies the default XDR procedure to use.

Description: The xdr_union() call translates between a discriminated C union and
its external representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

The following is an example of this call:

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_vector()

Parameter Description

xdrs Points to an XDR stream.

#include <rpc.h>

bool_t
xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

#include <rpc.h>

enum colors (black, brown, red);

bool_t
xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
enum colors *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

#include <rpc.h>

bool_t
xdr_vector(xdrs, basep, nelem, elemsize, xdr_elem)
XDR *xdrs;
char *basep;
u_int nelem;
u_int elemsize;
xdrproc_t xdr_elem;

xdr_union()

Chapter 6. Remote Procedure Calls 241

basep Specifies the base of the array.

nelem Specifies the element count of the array.

elemsize Specifies the size of each of the array’s elements, found using
sizeof().

xdr_elem Specifies the XDR routine that translates an individual array
element.

Description: The xdr_vector() call translates between a fixed length array and its
external representation. Unlike variable-length arrays, the storage of fixed length
arrays is static and unfreeable.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_void()
The xdr_void() call has no parameters.

Description: The xdr_void () call is used like a command that does not require
any other xdr functions. This call can be placed in the inproc or outproc parameter
of the clnt_call function when the user does not need to move data.

Return Values: Always a value of 1.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_wrapstring()

Parameter Description
xdrs Points to an XDR stream.
sp Points to a pointer to the string.

Description: The xdr_wrapstring() call is the same as calling xdr_string() with a
maximum size of MAXUNSIGNED. It is useful because many RPC procedures
implicitly invoke two-parameter XDR routines, and xdr_string() is a
three-parameter routine.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(),
registerrpc(), svc_freeargs(), svc_getargs(), svc_sendreply().

#include <rpc.h>

bool_t
xdr_void()

#include <rpc.h>

bool_t
xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

xdr_vector()

242 z/VM: TCP/IP Programmer’s Reference

xdrmem_create()

Parameter Description

xdrs Points to an XDR stream.

addr Points to the memory location.

size Specifies the maximum size of addr.

op Determines the direction of the XDR stream (XDR_ENCODE,
XDR_DECODE, or XDR_FREE).

Description: The xdrmem_create() call initializes the XDR stream pointed to by
xdrs. Data is written to, or read from, addr.

xdrrec_create()

Parameter Description

xdrs Points to an XDR stream.

sendsize Indicates the size of the send buffer. Specify 0 to choose the
default.

recvsize Indicates the size of the receive buffer. Specify 0 to choose the
default.

handle Specifies the first parameter passed to readit() and writeit().

readit() Called when a stream’s input buffer is empty.

writeit() Called when a stream’s output buffer is full.

Description: The xdrrec_create() call initializes the XDR stream pointed to by
xdrs.

Notes:
1. The op field must be set by the caller.
2. This XDR procedure implements an intermediate record string.
3. Additional bytes in the XDR stream provide record boundary information.

#include <rpc.h>

void
xdrmem_create(xdrs, addr, size, op)
XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

#include <rpc.h>

void
xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;
u_int sendsize;
u_int recvsize;
char *handle;
int (*readit) ();
int (*writeit) ();

xdrmem_create()

Chapter 6. Remote Procedure Calls 243

xdrrec_endofrecord()

Parameter Description
xdrs Points to an XDR stream.
sendnow Specifies nonzero to write out data in the output buffer.

Description: The xdrrec_endofrecord() call can be invoked only on streams
created by xdrrec_create(). Data in the output buffer is marked as a complete
record.

Return Values: The value 1 indicates success; the value 0 indicates an error.

xdrrec_eof()

Parameter Description
xdrs Points to an XDR stream.

Description: The xdrrec_eof() call can be invoked only on streams created by
xdrrec_create().

Return Values: The value 1 indicates the current record has been consumed; the
value 0 indicates continued input on the stream.

xdrrec_skiprecord()

Parameter Description
xdrs Points to an XDR stream.

Description: The xdrrec_skiprecord() call can be invoked only on streams created
by xdrrec_create(). The XDR implementation is instructed to discard the remaining
data in the input buffer.

Return Values: The value 1 indicates success; the value 0 indicates an error.

xdrstdio_create()

#include <rpc.h>
bool_t
xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
int sendnow;

#include <rpc.h>

bool_t
xdrrec_eof(xdrs)
XDR *xdrs;

#include <rpc.h>

bool_t
xdrrec_skiprecord(xdrs)
XDR *xdrs;

xdrrec_endofrecord()

244 z/VM: TCP/IP Programmer’s Reference

Parameter Description

xdrs Points to an XDR stream.

file Specifies the file name for the I/O stream.

op Determines the direction of the XDR stream (either XDR_ENCODE,
XDR_DECODE, or XDR_FREE).

Description: The xdrstdio_create() call initializes the XDR stream pointed to by
xdrs. Data is written to, or read from, file.

Note: fflush() is the destroy routine associated with this procedure. fclose() is not
called.

xprt_register()

Parameter Description

xprt Points to the service transport handle.

Description: The xprt_register() call registers service transport handles with the
RPC service package. This routine also modifies the global variable svc_fds

See Also: svc_register(), svc_fds.

xprt_unregister()

Parameter Description
xprt Points to the service transport handle.

Description: The xprt_unregister() call unregisters an RPC service transport
handle. A transport handle should be unregistered with the RPC service package
before it is destroyed. This routine also modifies the global variable svc_fds.

See also: svc_fds.

#include <rpc.h>
#include <stdio.h>

void
xdrstdio_create(xdrs, file, op)
XDR *xdrs;
FILE *file;
enum xdr_op op;

#include <rpc.h>

void
xprt_register(xprt)
SVCXPRT *xprt;

#include <rpc.h>

void
xprt_unregister(xprt)
SVCXPRT *xprt;

xdrstdio_create()

Chapter 6. Remote Procedure Calls 245

Sample RPC Programs
This appendix provides examples of the following programs:
v RPC client (see topic 246)
v RPC server (see topic 246)
v RPC raw data stream (see topic 248)

RPC Client
The following is an example of an RPC client program.
/* GENESEND.C */
/* Send an integer to the remote host and receive the integer back */
/* PORTMAPPER AND REMOTE SERVER MUST BE RUNNING */

#define VM
#include <stdio.h>
#include <rpc.h>
#include <socket.h>

#define intrcvprog ((u_long)150000)
#define version ((u_long)1)
#define intrcvproc ((u_long)1)

main(argc, argv)
int argc;
char *argv[];

{
int innumber;
int outnumber;
int error;

if (argc != 3) {
fprintf(stderr,“usage: %s hostname integer\n”, argv[0]);
exit (-1);

} /* endif */
innumber = atoi(argv[2]);
/*
* Send the integer to the server. The server should
* return the same integer.
*/

error = callrpc(argv[1],intrcvprog,version,intrcvproc,xdr_int,
(char *)&innumber,xdr_int,(char *)&outnumber);

if (error != 0) {
fprintf(stderr,“error: callrpc failed: %d \n”,error);
fprintf(stderr,“intrcprog: %d version: %d intrcvproc: %d”,

intrcvprog, version,intrcvproc);
exit(1);

} /* endif */

printf(“value sent: %d value received: %d\n”, innumber, outnumber);
exit(0);

}

RPC Server
The following is an example of an RPC server program.
/* GENERIC SERVER */
/* RECEIVE AN INTEGER OR FLOAT AND RETURN THEM RESPECTIVELY */
/* PORTMAPPER MUST BE RUNNING */

#define VM

Sample RPC Programs

246 z/VM: TCP/IP Programmer’s Reference

#include <rpc.h>
#include <stdio.h>

#define intrcvprog ((u_long)150000)
#define fltrcvprog ((u_long)150102)
#define intvers ((u_long)1)
#define intrcvproc ((u_long)1)
#define fltrcvproc ((u_long)1)
#define fltvers ((u_long)1)

main()
{

int *intrcv();
float *floatrcv();

/*REGISTER PROG, VERS AND PROC WITH THE PORTMAPPER*/

/*FIRST PROGRAM*/
registerrpc(intrcvprog,intvers,intrcvproc,intrcv,xdr_int,xdr_int);
printf(“Intrcv Registration with Port Mapper completed\n”);

/*OR MULTIPLE PROGRAMS*/
registerrpc(fltrcvprog,fltvers,fltrcvproc,floatrcv,xdr_float,xdr_float);
printf(“Floatrcv Registration with Port Mapper completed\n”);

/*
* svc_run will handle all requests for programs registered.
*/

svc_run();
printf(“Error:svc_run returned!\n”);
exit(1);

}

/*
* Procedure called by the server to receive and return an integer.
*/

int *
intrcv(in)

int *in;
{

int *out;

printf(“integer received: %d\n”,*in);
out = in;
printf(“integer being returned: %d\n”,*out);
return (out);

}

/*
* Procedure called by the server to receive and return a float.
*/

float *
floatrcv(in)

float *in;
{

float *out;

printf(“float received: %e\n”,*in);
out=in;
printf(“float being returned: %e\n”,*out);
return(out);

}

RPC Server

Chapter 6. Remote Procedure Calls 247

RPC Raw Data Stream
The following is an example of an RPC raw data stream program.
/*RAWEX */
/* AN EXAMPLE OF THE RAW CLIENT/SERVER USAGE */
/* PORTMAPPER MUST BE RUNNING */
/*
* This program does not access an external interface. It provides
* a test of the raw RPC interface allowing a client and server
* program to be in the same process.
*/

#define VM
#include <rpc.h>
#include <stdio.h>
#define rawprog ((u_long)150104)
#define rawvers ((u_long)1)
#define rawproc ((u_long)1)

extern enum clnt_stat clntraw_call();
extern void raw2();

main(argc,argv)
int argc;
char *argv[];
{

SVCXPRT *transp;
struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int bout,in;
register CLIENT *clnt;
enum clnt_stat cs;
int addrlen;

/*
* The only argument passed to the program is an integer to
* be transferred from the client to the server and back.
*/

if(argc!=2) {
printf(“usage: %s integer\n”, argv[0]);
exit(-1);

}
in = atoi(argv[1]);

/*
* Create the raw transport handle for the server.
*/

transp = svcraw_create();
if (transp == NULL) {

fprintf(stderr, “can’t create an RPC server transport\n”);
exit(-1);

}

/* In case the program is already registered, deregister it */
pmap_unset(rawprog, rawvers);

/* Register the server program with PORTMAPPER */
if (!svc_register(transp,rawprog,rawvers,raw2, 0)) {

fprintf(stderr, “can’t register service\n”);
exit(-1);

}
/*
* The following registers the transport handle with internal

RPC Raw Data Stream

248 z/VM: TCP/IP Programmer’s Reference

* data structures.
*/

xprt_register(transp);

/*
* Create the client transport handle.
*/

if ((clnt = clntraw_create(rawprog, rawvers)) == NULL) {
clnt_pcreateerror(“clntudp_create”);
exit(-1);

}
total_timeout.tv_sec = 60;
total_timeout.tv_usec = 0;
printf(“Argument: %d\n”,in);

/*
* Make the call from the client to the server.
*/

cs=clnt_call(clnt,rawproc,xdr_int,
(char *)&in,xdr_int,(char *)&bout,total_timeout);

printf(“Result: %d”,bout);
if(cs!=0) {

clnt_perror(clnt,“Client call failed”);
exit(1);

}
exit(0);

}

/*
* Service procedure called by the server when it receives the client
* request.
*/

void raw2(rqstp,transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
int in,out;
if (rqstp->rq_proc=rawproc) {

/*
* Unpack the integer passed by the client.
*/

svc_getargs(transp,xdr_int,&in);
printf(“Received: %d\n”,in);
/*
* Send the integer back to the client.
*/

out=in;
printf(“Sent: %d\n”,out);
if (!svc_sendreply(transp, xdr_int,&out)) {

printf(“Can’t reply to RPC call.\n”);
exit(1);

}
}

}

RPC Raw Data Stream

Chapter 6. Remote Procedure Calls 249

RPC Raw Data Stream

250 z/VM: TCP/IP Programmer’s Reference

Chapter 7. X Window System Interface

This chapter contains information specific to the VM implementation of the X
Window System. The X Window System application program interface (API)
allows you to write applications in the VM/CMS environment that can be
displayed on X11 servers on a TCP/IP-based network. This API provides the
application with graphics capabilities as defined by the X Window System
protocol. For more information about the X protocol and application program
interface, see the X Window System publications listed in “Bibliography” on
page 447.

What Is Provided
The X Window System support provided with TCP/IP includes support for the
following API from the X Window System Version 11, Release 4:
v X11LIB TXTLIB (Xlib, Xmu, Xext, and Xau routines)
v OLDXLIB TXTLIB (X Release 10 compatibility routines)
v XTLIB TXTLIB (X Intrinsics)
v XAWLIB TXTLIB (Athena widget set)
v Header files needed for compiling X clients

In addition, it also includes support for the following API based on Release 1.1 of
the OSF/Motif-based widget set:
v XMLIB TXTLIB (OSF/Motif-based widget set)
v Header files needed for compiling clients using the OSF/Motif-based widget set.

Software Requirements
Application programs using the X Window System API are written in C and
require the following:
v IBM C for VM/ESA Compiler, Version 3 Release 1 Program (Program Number

5654-033).
v IBM Language Environment® for MVS & VM, Version 1 Release 5 Program

(Program Number 5688-198).

Using the X Window System Interface in the VM Environment
The X Window System is a network-transparent protocol that supports windowing
and graphics. The protocol is communicated between a client or application and an
X server over a reliable bidirectional byte stream. This byte stream is provided by
the TCP/IP communication protocol.

In the VM/CMS environment, X Window System support consists of a set of
application calls that create the X protocol, as requested by the application. This
application program interface allows an application to be created, which uses the X
Window System protocol to be displayed on an X server.

In an X Window System environment, the X server distributes user input to and
accepts requests from various client programs located either on the same system or
elsewhere on a network. The X client code uses sockets to communicate with the X
server.

© Copyright IBM Corp. 1987, 2001 251

Figure 29 shows a high-level abstraction of how the X Window System works in a
VM environment. As an application writer, you need to be concerned only with the
client API in writing your application.

The communication path from the VM X Window System application to the server
involves the client code and TCP/IP. The application program that you create is
the client part of a client-server relationship. The X server provides access to the
resources that are shared among many X applications, such as the screen,
keyboard, mouse, fonts, and graphics contexts. A single X server can control more
than one physical screen.

Each client can interact with multiple servers, and each server can interact with
multiple clients.

If your application is written to the Xlib interface, it calls XOpenDisplay() to start
communication with an X server on a workstation. The Xlib code opens a
communication path called a socket to the X server, and sends the appropriate X
protocol to initiate client-server communication.

The X protocol generated by the Window System client code uses an ISO Latin-1
encoding for character strings, while the VM/CMS encoding for character strings is
EBCDIC. The X Window System client code in the VM/CMS environment
automatically transforms character strings from EBCDIC to ISO Latin-1 or from
ISO Latin-1 to EBCDIC, as needed using internal translate tables.

User Virtual Machine

┌────────────────────┬───────────────────┐
│ │ │
│ CMS │ │
│ Application │ │
│ │ │
│ │ │
│ (X client) │ │
│ │ │
├───XOpenDisplay()───┤ │
│ │ │
│ │ │ ┌──────────────┐
│ X11.4 Routines │ │ │ │
│ │ │ │ X server │
│ │ TCPIP │ INTERNET │ │
│ (Xlib) │ ├──────────────┤ │
│ │ │ │ │
├──────socket()──────┤ Virtual │ │ │
│ │ │ │ │
│ │ │ │ │
│ TCP/IP for VM │ Machine │ │ │
│ │ │ └──────────────┘
│ │ │
│ │ │
│ │ │
├────────iucv────────┴───────iucv────────┤
│ õ õ │
│ │ │ │
│ └───────────────────┘ │
│ │
│ C P │
│ │
└──┘

Figure 29. VM X Window System Application to Server

X Window System Interface

252 z/VM: TCP/IP Programmer’s Reference

When programming using the C/VM™ Compiler, CMS file identifiers are specified
as filename filetype filemode. In the following sections a file specified as
filename.filetype refers to the CMS file, file name file type.

In the VM/CMS environment, external names must be eight characters or less.
Many of the X Window System application program interface names exceed this
limit. To support the X API in CMS, all X names longer than eight characters are
remapped to unique names using the C compiler preprocessor. This name
remapping is found in a header file called X11GLUE.H, which is automatically
included in your program when you include the standard X header file called
XLIB.H. In debugging your application, it may be helpful to reference the
X11GLUE.H header file to find the remapped names of the X API routines.

Application Resource File
The X Window System allows you to modify certain characteristics of an
application at run time by means of application resources. Typically, application
resources are set to tailor the appearance and possibly the behavior of an
application. The application resources may specify information about an
application’s window sizes, placement, coloring, font usage, and other functional
details.

On a UNIX system, this information can be found in the user’s home directory in a
file called ·Xdefaults. In the VM/CMS environment, this file is called
X DEFAULTS. Each line of this file represents resource information for an
application. Figure 30 shows an example of a set of resources specified for a typical
X Window System application.

In this example, the Xclock application automatically creates a window in the
lower left corner of the screen with a digital display in orange letters on a skyblue
background.

These resources can also be set on the RESOURCE_MANAGER property of the X
server, which allows a single, central place where resources are found, which
control all applications that are displayed on an X server. You can use the xrdb
program to control the X server resource database in the resource property.

The xrdb program is an X client that you can use either to get or to set the
contents of the RESOURCE_MANAGER property on the root window of screen 0.
This property is then used by all applications at startup to control the application
resource.

XClock*geometry: 500x60+5-5
XClock*font: -bitstream-*-bold-r-*-33-240-*
XClock*foreground: orange
XClock*background: skyblue
XClock*borderWidth: 4
XClock*borderColor: blue
XClock*analog: false

Figure 30. Resources Specified for a Typical X Window System Application

X Window System Interface

Chapter 7. X Window System Interface 253

Identifying the Target Display
A CMS global command is used by the X Window System to identify the internet
address of the target display.

The following is the format of the CMS global command.

ÊÊ GLOBALV SELECT CENV SET DISPLAY internet_address :target_server Ê

Ê
.target_screen

ÊÍ

Parameter Description

internet_address
Specifies the internet address of the host machine on which the X
Window System server is running.

target_server Specifies the number of the display server on the host machine.

target_screen Specifies the screen to be used on the same target server.

Creating an Application
To create an application that uses the X Window System protocol, you should
study the X Window System application program interface.

You should ensure that the first X header file your program includes is the XLIB.H
header file. This file defines a number of preprocessor symbols, which enable your
program to compile correctly. If your program uses the X Intrinsics, you should
ensure that the INTRINSIC.H header file is the first X header file included in your
program. This file defines a number of preprocessor symbols that allow your
program to compile correctly. In addition, these header files include the CMS
header files that remap the external names of the X Window System routines to
shorter names that are unique within the X Window System support in TCP/IP.

Generating X-Window System Applications
The following steps should serve as a guideline for generating an X Window
System application called myxprog. Your installation may have different names or
techniques for performing these steps.

Before you begin to generate your application, make sure you have access to the
C/VM Compiler and to the TCPMAINT 592 minidisk, where the X Window
System support is installed. To compile your application, do the following:
1. Set the LOADLIB and TXTLIB search order by entering the following GLOBAL

commands:
SET LDRTBLS 25
GLOBAL LOADLIB SCEERUN
GLOBAL TXTLIB X11LIB COMMTXT CMSLIB

2. Compile the application with the IBM C for VM/ESA Compiler by entering the
following command:
CC myxprog (DEFINE(IBMCPP)

X Window System Interface

254 z/VM: TCP/IP Programmer’s Reference

|
|
|

|

The option passed to the CC EXEC defines the preprocessor symbol IBMCPP,
which is used in many of the X Window System header files by the C
preprocessor to generate the correct code for use under CMS. To simplify
compiling X Window System applications, you can create a version of the CC
EXEC that automatically defines this symbol. If your application includes the
XLIB.H header file as the first included X Window System header file, you do
not have to define the IBMCPP preprocessor symbol, because it is automatically
defined by this header file.

For applications written using the X Window System Toolkit, including the
INTRINSIC.H header file as the first X Window System header file also defines
the preprocessor symbol for you. You do not have to define it again when you
invoke the compiler.

3. Generate the executable module by entering the CMOD command:
CMOD myxprog

You should now have the file, myxprog MODULE, on your A disk. Verify that
you have set the LOADLIB and TXTLIB search order. To run this module, do
the following:

4. Specify the IP address of the X server on which you wish to display the
application output by setting the DISPLAY global variable in the CENV (C
Environment) group of global variables:
GLOBALV SELECT CENV SET DISPLAY charm.cambridge.ibm.com:0.0

or
GLOBALV SELECT CENV SET DISPLAY 129.42.3.105:0.0

Note: charm.cambridge.ibm.com:0.0 and 129.42.3.105:0.0 are example
addresses.

5. Allow the host application access to the X server.
On the workstation where you wish to display the application output, you
must grant permission for the VM host to access the X server. To do this enter
the xhost command:
xhost cambvm3

Note: cambvm3 is an example host name.
6. Run the application by entering the following command:

myxprog

Typically, an X application uses the global variable DISPLAY in the CENV group as
the X server address on which it is to display. Some applications also allow you to
specify this information as a command line option. You should refer to the
documentation for the application you are attempting to run for these and other
options that are available to you.

In the preceding example, the application is displayed on the X server at the
internet address associated with the name charm.cambridge.ibm.com. The
application is displayed on the X server on screen 0 on this system.

In the preceding example, the GLOBAL TXTLIB command specified the X11LIB
and COMMTXT TXTLIBs in the TXTLIB search order. Depending on the facilities
of X that your application makes use of, additional libraries may have to be
specified to generate your application. For example, to generate an application that
is written to the OSF/Motif interface, specify the following command:

X Window System Interface

Chapter 7. X Window System Interface 255

|

|

|

GLOBAL TXTLIB XMLIB XTLIB X11LIB COMMTXT CMSLIB

Table 23 describes the various TXTLIBs associated with the X Window System
support in the VM/CMS environment.

Table 23. TXTLIBs Associated with X Window System Support

TXTLIB Routine(s)

X11LIB
X11.4 X Window System client routines and
X11.4 Miscellaneous Utility routines

OLDXLIB X10 Compatibility routines

XTLIB X11.4 Intrinsics routines

XAWLIB Athena widget routines

XMLIB OSF/Motif-based widget routines

X Window System Subroutines
This section provides information about X Window System in tabular form for
quick reference.

The following tables list the subroutines supported by TCP/IP Level 320 for VM.

The subroutines are grouped according to the type of function provided.

Opening and Closing a Display
Table 24 provides the subroutines for opening and closing a display.

Table 24. Opening and Closing Display

Subroutine Description

XCloseDisplay() Closes a display.

XFree()
Frees in-memory data created by Xlib
function.

XNoOp() Executes a NoOperation protocol request.

XOpenDisplay() Opens a display.

Creating and Destroying Windows
Table 25 provides the subroutines for creating and destroying windows.

Table 25. Creating and Destroying Windows

Subroutine Description

XConfigureWindow() Configures the specified window.

XCreateSimpleWindow() Creates unmapped InputOutput subwindow.

XCreateWindow() Creates unmapped subwindow.

XDestroySubwindows()
Destroys all subwindows of specified
window.

XDestroyWindow()
Unmaps and destroys window and all
subwindows.

X Window System Interface

256 z/VM: TCP/IP Programmer’s Reference

Manipulating Windows
Table 26 provides the subroutines for manipulating windows.

Table 26. Manipulating Windows

Subroutine Description

XCirculateSubwindows() Circulates a subwindow up or down.

XCirculateSubwindowsUp()
Raises the lowest mapped child of the
window.

XCirculateSubwindowsDown()
Lowers the highest mapped child of the
window.

XIconifyWindow()
Sends a WM_CHANGE_STATE
ClientMessage to the root window of the
specified screen.

XLowerWindow() Lowers the specified window.

XMapRaised() Maps and raises the specified window.

XMapSubwindows()
Maps all subwindows of the specified
window.

XMapWindow() Maps the specified window.

XMoveResizeWindow()
Changes the specified window’s size and
location.

XMoveWindow() Moves the specified window.

XRaiseWindow() Raises the specified window.

XReconfigureWMWindow()
Issues a ConfigureWindow request on the
specified top-level window.

XResizeWindow() Changes the specified window’s size.

XRestackWindows()
Restacks a set of windows from top to
bottom.

XSetWindowBorderWidth() Changes the border width of the window.

XUnmapSubwindows()
Unmaps all subwindows of the specified
window.

XUnmapWindow() Unmaps the specified window.

XWithdrawWindow()
Unmaps the specified window and sends a
synthetic UnmapNotify event to the root
window of the specified screen.

Changing Window Attributes
Table 27 provides the subroutines for changing window attributes.

Table 27. Changing Window Attributes

Subroutine Description

XChangeWindowAttributes() Changes one or more window attributes.

XSetWindowBackground()
Sets the window’s background to a specified
pixel.

XSetWindowBackgroundPixmap()
Sets the window’s background to a specified
pixmap.

XSetWindowBorder()
Changes the window’s border to a specified
pixel.

X Window System Interface

Chapter 7. X Window System Interface 257

Table 27. Changing Window Attributes (continued)

Subroutine Description

XSetWindowBorderPixmap() Changes the window’s border tile.

XTranslateCoordinates() Transforms coordinates between windows.

Obtaining Window Information
Table 28 provides the subroutines for obtaining window information.

Table 28. Obtaining Window Information

Subroutine Description

XGetGeometry()
Gets the current geometry of the specified
drawable.

XGetWindowAttributes()
Gets the current attributes for the specified
window.

XQueryPointer()
Gets the pointer coordinates and the root
window.

XQueryTree()
Obtains the IDs of the children and parent
windows.

Obtaining Properties and Atoms
Table 29 provides the subroutines for obtaining properties and atoms.

Table 29. Properties and Atoms

Subroutine Description

XGetAtomName() Gets a name for the specified atom ID.

XInternAtom() Gets an atom for the specified name.

Manipulating Window Properties
Table 30 provides the subroutines for manipulating the properties of windows.

Table 30. Manipulating Window Properties

Subroutine Description

XChangeProperty()
Changes the property for the specified
window.

XDeleteProperty() Deletes a property for the specified window.

XGetWindowProperty()
Gets the atom type and property format for
the window.

XListProperties() Gets the specified window’s property list.

XRotateWindowProperties() Rotates the properties in a property array.

Setting Window Selections
Table 31 provides the subroutines for setting window selections.

Table 31. Setting Window Selections

Subroutine Description

XConvertSelection() Converts a selection.

X Window System Interface

258 z/VM: TCP/IP Programmer’s Reference

Table 31. Setting Window Selections (continued)

Subroutine Description

XGetSelectionOwner() Gets the selection owner.

XSetSelectionOwner() Sets the selection owner.

Manipulating Colormaps
Table 32 provides the subroutines for manipulating color maps.

Table 32. Manipulating Colormaps

Subroutine Description

XAllocStandardColormap() Allocates an XStandardColormap structure.

XCopyColormapAndFree()
Creates a new colormap from a specified
colormap.

XCreateColormap() Creates a colormap.

XFreeColormap() Frees the specified colormap.

XQueryColor() Queries the RGB value for a specified pixel.

XQueryColors()
Queries the RGB values for an array of
pixels.

XSetWindowColormap() Sets the colormap of the specified window.

Manipulating Color Cells
Table 33 provides the subroutines for manipulating color cells.

Table 33. Manipulating Color Cells

Subroutine Description

XAllocColor() Allocates a read-only color cell.

XAllocColorCells() Allocates read/write color cells.

XAllocColorPlanes() Allocates read/write color resources.

XAllocNamedColor() Allocates a read-only color cell by name.

XFreeColors() Frees colormap cells.

XLookupColor() Looks up a colorname.

XStoreColor()
Stores an RGB value into a single colormap
cell.

XStoreColors() Stores RGB values into colormap cells.

XStoreNamedColor() Sets a pixel color to the named color.

Creating and Freeing Pixmaps
Table 34 provides the subroutines for creating and freeing pixmaps.

Table 34. Creating and Freeing Pixmaps

Subroutine Description

XCreatePixmap() Creates a pixmap of a specified size.

XFreePixmap()
Frees all storage associated with specified
pixmap.

X Window System Interface

Chapter 7. X Window System Interface 259

Manipulating Graphics Contexts
Table 35 provides the subroutines for manipulating graphics contexts.

Table 35. Manipulating Graphics Contexts

Subroutine Description

XChangeGC()
Changes the components in the specified
Graphics Context (GC).

XCopyGC()
Copies the components from a source GC to
a destination GC.

XCreateGC() Creates a new GC.

XFreeGC() Frees the specified GC.

XGetGCValues()
Returns the GC values in the specified
structure.

XGContextFromGC() Obtains the GContext resource ID for GC.

XQueryBestTile() Gets the best fill tile shape.

XQueryBestSize() Gets the best size tile, stipple, or cursor.

XQueryBestStipple() Gets the best stipple shape.

XSetArcMode() Sets the arc mode of the specified GC.

XSetBackground() Sets the background of the specified GC.

XSetClipmask()
Sets the clip_mask of the specified GC to a
specified pixmap.

XSetClipOrigin() Sets the clip origin of the specified GC.

XSetClipRectangles()
Sets the clip_mask of GC to a list of
rectangles.

XSetDashes()
Sets the dashed line style components of a
specified GC.

XSetFillRule() Sets the fill rule of the specified GC.

XSetFillStyle() Sets the fill style of the specified GC.

XSetFont() Sets the current font of the specified GC.

XSetForeground() Sets the foreground of the specified GC.

XSetFunction() Sets display function in the specified GC.

XSetGraphicsExposures()
Sets the graphics-exposure flag of the
specified GC.

XSetLineAttributes() Sets the line-drawing components of the GC.

XSetPlaneMask() Sets the plane mask of the specified GC.

XSetState()
Sets the foreground, background, plane
mask, and function in GC.

XSetStipple() Sets the stipple of the specified GC.

XSetSubwindowMode()
Sets the subwindow mode of the specified
GC.

XSetTile() Sets the fill tile of the specified GC.

XSetTSOrigin()
Sets the tile or stipple origin of the specified
GC.

X Window System Interface

260 z/VM: TCP/IP Programmer’s Reference

Clearing and Copying Areas
Table 36 provides the subroutines for clearing and copying areas.

Table 36. Clearing and Copying Areas

Subroutine Description

XClearArea() Clears a rectangular area of window.

XClearWindow() Clears the entire window.

XCopyArea()
Copies the drawable area between drawables
of the same root and the same depth.

XCopyPlane() Copies single bit-plane of the drawable.

Drawing Lines
Table 37 provides the subroutines for drawing lines.

Table 37. Drawing Lines

Subroutine Description

XDraw()
Draws an arbitrary polygon or curve that is
defined by the specified list of Vertexes as
specified in vlist.

XDrawArc() Draws a single arc in the drawable.

XDrawArcs() Draws multiple arcs in a specified drawable.

XDrawFilled()
Draws arbitrary polygons or curves and then
fills them.

XDrawLine()
Draws a single line between two points in a
drawable.

XDrawLines()
Draws multiple lines in the specified
drawable.

XDrawPoint()
Draws a single point in the specified
drawable.

XDrawPoints()
Draws multiple points in the specified
drawable.

XDrawRectangle()
Draws an outline of a single rectangle in the
drawable.

XDrawRectangles()
Draws an outline of multiple rectangles in
the drawable.

XDrawSegments()
Draws multiple line segments in the
specified drawable.

Filling Areas
Table 38 provides the subroutines for filling areas.

Table 38. Filling Areas

Subroutine Description

XFillArc() Fills a single arc in drawable.

XFillArcs() Fills multiple arcs in drawable.

XFillPolygon() Fills a polygon area in the drawable.

X Window System Interface

Chapter 7. X Window System Interface 261

Table 38. Filling Areas (continued)

Subroutine Description

XFillRectangle()
Fills a single rectangular area in the
drawable.

XFillRectangles()
Fills multiple rectangular areas in the
drawable.

Loading and Freeing Fonts
Table 39 provides the subroutines for loading and freeing fonts.

Table 39. Loading and Freeing Fonts

Subroutine Description

XFreeFont()
Unloads the font and frees the storage used
by the font.

XFreeFontInfo() Frees the font information array.

XFreeFontNames() Frees a font name array.

XFreeFontPath() Frees data returned by XGetFontPath.

XGetFontPath() Gets the current font search path.

XGetFontProperty() Gets the specified font property.

XListFontsWithInfo()
Gets names and information about loaded
fonts.

XLoadFont() Loads a font.

XLoadQueryFont() Loads and queries font in one operation.

XListFonts() Gets a list of available font names.

XQueryFont() Gets information about a loaded font.

XSetFontPath() Sets the font search path.

XUnloadFont() Unloads the specified font.

Querying Character String Sizes
Table 40 provides the subroutines for querying the character size of a string.

Table 40. Querying Character String Sizes

Subroutine Description

XFreeStringList()
Frees the in-memory data associated with the
specified string list.

XQueryTextExtents()
Gets a 1-byte character string bounding box
from the server.

XQueryTextExtents16()
Gets a 2-byte character string bounding box
from the server.

XTextExtents()
Gets a bounding box of a 1-byte character
string.

XTextExtents16()
Gets a bounding box of a 2-byte character
string.

XTextPropertyToStringList()
Returns a list of strings representing the
elements of the specified XTextProperty
structure.

X Window System Interface

262 z/VM: TCP/IP Programmer’s Reference

Table 40. Querying Character String Sizes (continued)

Subroutine Description

XTextWidth() Gets the width of an 8-bit character string.

XTextWidth16() Gets the width of a 2-byte character string.

Drawing Text
Table 41 provides the subroutines for drawing text.

Table 41. Drawing Text

Subroutine Description

XDrawImageString()
Draws 8-bit image text in the specified
drawable.

XDrawImageString16()
Draws 2-byte image text in the specified
drawable.

XDrawString() Draws 8-bit text in the specified drawable.

XDrawString16() Draws 2-byte text in the specified drawable.

XDrawText()
Draws 8-bit complex text in the specified
drawable.

XDrawText16()
Draws 2-byte complex text in the specified
drawable.

Transferring Images
Table 42 provides the subroutines for transferring images.

Table 42. Transferring Images

Subroutine Description

XGetImage()
Gets the image from the rectangle in the
drawable.

XGetSubImage() Copies the rectangle on the display to image.

XPutImage()
Puts the image from memory into the
rectangle in the drawable.

Manipulating Cursors
Table 43 provides the subroutines for manipulating cursors.

Table 43. Manipulating Cursors

Subroutine Description

XCreateFontCursor() Creates a cursor from a standard font.

XCreateGlyphCursor() Creates a cursor from font glyphs.

XDefineCursor() Defines a cursor for a window.

XFreeCursor() Frees a cursor.

XQueryBestCursor() Gets useful cursor sizes.

XRecolorCursor() Changes the color of a cursor.

XUndefineCursor() Undefines a cursor for a window.

X Window System Interface

Chapter 7. X Window System Interface 263

Handling Window Manager Functions
Table 44 provides the subroutines for handling the window manager functions.

Table 44. Handling Window Manager Functions

Subroutine Description

XAddToSaveSet() Adds a window to the client’s save-set.

XAllowEvents()
Allows events to be processed after a device
is frozen.

XChangeActivePointerGrab() Changes the active pointer grab.

XChangePointerControl()
Changes the interactive feel of the pointer
device.

XChangeSaveSet()
Adds or removes a window from the client’s
save-set.

XGetInputFocus() Gets the current input focus.

XGetPointerControl() Gets the current pointer parameters.

XGrabButton() Grabs a mouse button.

XGrabKey() Grabs a single key of the keyboard.

XGrabKeyboard() Grabs the keyboard.

XGrabPointer() Grabs the pointer.

XGrabServer() Grabs the server.

XInstallColormap() Installs a colormap.

XKillClient() Removes a client.

XListInstalledColormaps() Gets a list of currently installed colormaps.

XRemoveFromSaveSet() Removes a window from the client’s save-set.

XReparentWindow() Changes the parent of a window.

XSetCloseDownMode() Changes the close down mode.

XSetInputFocus() Sets the input focus.

XUngrabButton() Ungrabs a mouse button.

XUngrabKey() Ungrabs a key.

XUngrabKeyboard() Ungrabs the keyboard.

XUngrabPointer() Ungrabs the pointer.

XUngrabServer() Ungrabs the server.

XUninstallColormap() Uninstalls a colormap.

XWarpPointer()
Moves the pointer to arbitrary point on the
screen.

Manipulating Keyboard Settings
Table 45 provides the subroutines for manipulating keyboard settings.

Table 45. Manipulating Keyboard Settings

Subroutine Description

XAutoRepeatOff() Turns off the keyboard auto-repeat.

XAutoRepeatOn() Turns on the keyboard auto-repeat.

XBell() Sets the volume of the bell.

X Window System Interface

264 z/VM: TCP/IP Programmer’s Reference

Table 45. Manipulating Keyboard Settings (continued)

Subroutine Description

XChangeKeyboardControl() Changes the keyboard settings.

XChangeKeyboardMapping()
Changes the mapping of symbols to
keycodes.

XDeleteModifiermapEntry()
Deletes an entry from the XModifierKeymap
structure.

XFreeModifiermap() Frees XModifierKeymap structure.

XGetKeyboardControl() Gets the current keyboard settings.

XGetKeyboardMapping() Gets the mapping of symbols to keycodes.

XGetModiferMapping() Gets keycodes to be modifiers.

XGetPointerMapping() Gets the mapping of buttons on the pointer.

XInsertModifiermapEntry()
Adds an entry to the XModifierKeymap
structure.

XNewModifiermap() Creates the XModifierKeymap structure.

XQueryKeymap() Gets the state of the keyboard keys.

XSetPointerMapping() Sets the mapping of buttons on the pointer.

XSetModifierMapping() Sets keycodes to be modifiers.

Controlling the Screen Saver
Table 46 provides the subroutines for controlling the screen saver.

Table 46. Controlling the Screen Saver

Subroutine Description

XActivateScreenSaver() Activates the screen saver.

XForceScreenSaver() Turns the screen saver on or off.

XGetScreenSaver() Gets the current screen saver settings.

XResetScreenSaver() Resets the screen saver.

XSetScreenSaver() Sets the screen saver.

Manipulating Hosts and Access Control
Table 47 provides the subroutines for manipulating hosts and toggling the access
control.

Table 47. Manipulating Hosts and Access Control

Subroutine Description

XDisableAccessControl() Disables access control.

XEnableAccessControl() Enables access control.

XListHosts() Gets the list of hosts.

XSetAccessControl() Changes access control.

X Window System Interface

Chapter 7. X Window System Interface 265

Handling Events
Table 48 provides the subroutines for handling events.

Table 48. Handling Events

Subroutine Description

XCheckIfEvent()
Checks event queue for the specified event
without blocking.

XCheckMaskEvent()
Removes the next event that matches a
specified mask without blocking.

XCheckTypedEvent() Gets the next event that matches event type.

XCheckTypedWindowEvent() Gets the next event for the specified window.

XCheckWindowEvent()
Removes the next event that matches the
specified window and mask without
blocking.

XEventsQueued()
Checks the number of events in the event
queue.

XFlush() Flushes the output buffer.

XGetMotionEvents()
Gets the motion history for the specified
window.

XIfEvent()
Checks the event queue for the specified
event and removes it.

XMaskEvent()
Removes the next event that matches a
specified mask.

XNextEvent()
Gets the next event and removes it from the
queue.

XPeekEvent() Peeks at the event queue.

XPeekIfEvent()
Checks the event queue for the specified
event.

XPending()
Returns the number of events that are
pending.

XPutBackEvent()
Pushes the event back to the top of the event
queue.

XSelectInput() Selects events to be reported to the client.

XSendEvent() Sends an event to a specified window.

XSync()
Flushes the output buffer and waits until all
requests are completed.

XWindowEvent()
Removes the next event that matches the
specified window and mask.

Enabling and Disabling Synchronization
Table 49 provides the subroutines for toggling synchronization.

Table 49. Enabling and Disabling Synchronization

Subroutine Description

XSetAfterFunction() Sets the previous after function.

XSynchronize() Enables or disables synchronization.

X Window System Interface

266 z/VM: TCP/IP Programmer’s Reference

Using Default Error Handling
Table 50 provides the subroutines for using the default error handling.

Table 50. Using Default Error Handling

Subroutine Description

XDisplayName()
Gets the name of the display currently being
used.

XGetErrorText()
Gets the error text for the specified error
code.

XGetErrorDatabaseText() Gets the error text from the error database.

XSetErrorHandler() Sets the error handler.

XSetIOErrorHandler()
Sets the error handler for unrecoverable I/O
errors.

Communicating with Window Managers
Table 51 provides the subroutines for communicating with window managers.

Table 51. Communicating with Window Managers

Subroutine Description

XAllocClassHints() Allocates storage for an XClassHint structure.

XAllocIconSize() Allocates storage for an XIconSize structure.

XAllocSizeHints() Allocates storage for an XSizeHints structure.

XAllocWMHints() Allocates storage for an XWMHints structure.

XGetClassHint() Gets the class of a window.

XFetchName() Gets the name of a window.

XGetCommand() Gets a window’s WM_COMMAND property.

XGetIconName() Gets the name of an icon window.

XGetIconSizes() Gets the values of icon size atom.

XGetNormalHints() Gets size hints for window in normal state.

XGetRGBColormaps()
Gets colormap associated with specified
atom.

XGetSizeHints()
Gets the values of type WM_SIZE_HINTS
properties.

XGetStandardColormap()
Gets colormap associated with specified
atom.

XGetTextProperty() Gets a window’s property of type TEXT.

XGetTransientForHint()
Gets WM_TRANSIENT_FOR property for
window.

XGetWMClientMachine()
Gets the value of a window’s
WM_CLIENT_MACHINE property.

XGetWMColormapWindows()
Gets the value of a window’s
WM_COLORMAP_WINDOWS property.

XGetWMHints()
Gets the value of the window manager’s
hints atom.

XGetWMName() Gets the value of the WM_NAME property.

XGetWMIconName()
Gets the value of the WM_ICON_NAME
property.

X Window System Interface

Chapter 7. X Window System Interface 267

Table 51. Communicating with Window Managers (continued)

Subroutine Description

XGetWMNormalHints()
Gets the value of the window manager’s
hints atom.

XGetWMProtocols()
Gets the value of a window’s
WM_PROTOCOLS property.

XGetWMSizeHints()
Gets the values of type WM_SIZE_HINTS
properties.

XGetZoomHints() Gets values of the zoom hints atom.

XSetCommand() Sets the value of the command atom.

XSetClassHint() Sets the class of a window.

XSetIconName() Assigns a name to an icon window.

XSetIconSizes() Sets the values of icon size atom.

XSetNormalHints() Sets size hints for a window in normal state.

XSetRGBColormaps()
Sets the colormap associated with the
specified atom.

XSetSizeHints()
Sets the values of the type WM_SIZE_HINTS
properties.

XSetStandardColormap()
Sets the colormap associated with the
specified atom.

XSetStandardProperties() Specifies a minimum set of properties.

XSetTextProperty() Sets a window’s properties of type TEXT.

XSetTransientForHint()
Sets WM_TRANSIENT_FOR property for
window.

XSetWMClientMachine()
Sets a window’s WM_CLIENT_MACHINE
property.

XSetWMColormapWindows()
Sets a window’s
WM_COLORMAP_WINDOWS property.

XSetWMHints()
Sets the value of the window manager’s
hints atom.

XSetWMIconName()
Sets the value of the WM_ICON_NAME
property.

XSetWMName() Sets the value of the WM_NAME property.

XSetWMNormalHints()
Sets the value of the window manager’s
hints atom.

XSetWMProperties()
Sets the values of properties for a window
manager.

XSetWMProtocols()
Sets the value of the WM_PROTOCOLS
property.

XSetWMSizeHints()
Sets the values of type WM_SIZE_HINTS
properties.

XSetZoomHints() Sets the values of the zoom hints atom.

XStoreName() Assigns a name to a window.

Manipulating Keyboard Event Functions
Table 52 on page 269 provides the subroutines for manipulating the functions of
keyboard events.

X Window System Interface

268 z/VM: TCP/IP Programmer’s Reference

Table 52. Keyboard Event Functions

Subroutine Description

XKeycodeToKeysym() Converts a keycode to a keysym value.

XKeysymToKeycode() Converts a keysym value to keycode.

XKeysymToString() Converts a keysym value to keysym name.

XLookupKeysym()
Translates a keyboard event into a keysym
value.

XLookupMapping()
Gets the mapping of a keyboard event from
a keymap file.

XLookupString()
Translates the keyboard event into a
character string.

XRebindCode()
Changes the keyboard mapping in the
keymap file.

XRebindKeysym()
Maps the character string to a specified
keysym and modifiers.

XRefreshKeyboardMapping()
Refreshes the stored modifier and keymap
information.

XStringToKeysym()
Converts the keysym name to the keysym
value.

XUseKeymap() Changes the keymap files.

XGeometry()
Parses window geometry given padding and
font values.

XGetDefault() Gets the default window options.

XParseColor() Obtains RGB values from color name.

XParseGeometry() Parses standard window geometry options.

XWMGeometry() Obtains a window’s geometry information.

Manipulating Regions
Table 53 provides the subroutines for manipulating regions.

Table 53. Manipulating Regions

Subroutine Description

XClipBox()
Generates the smallest enclosing rectangle in
the region.

XCreateRegion() Creates a new empty region.

XEmptyRegion()
Determines whether a specified region is
empty.

XEqualRegion()
Determines whether two regions are the
same.

XIntersectRegion() Computes the intersection of two regions.

XDestroyRegion()
Frees storage associated with the specified
region.

XOffsetRegion()
Moves the specified region by the specified
amount.

XPointInRegion()
Determines if a point lies in the specified
region.

XPolygonRegion() Generates a region from points.

X Window System Interface

Chapter 7. X Window System Interface 269

Table 53. Manipulating Regions (continued)

Subroutine Description

XRectInRegion()
Determines if a rectangle lies in the specified
region.

XSetRegion() Sets the GC to the specified region.

XShrinkRegion()
Reduces the specified region by a specified
amount.

XSubtractRegion() Subtracts two regions.

XUnionRegion() Computes the union of two regions.

XUnionRectWithRegion()
Creates a union of source region and
rectangle.

XXorRegion()
Gets the difference between the union and
intersection of regions.

Using Cut and Paste Buffers
Table 54 provides the subroutines for using cut and paste buffers.

Table 54. Using Cut and Paste Buffers

Subroutine Description

XFetchBuffer() Gets data from a specified cut buffer.

XFetchBytes() Gets data from the first cut buffer.

XRotateBuffers() Rotates the cut buffers.

XStoreBuffer() Stores data in a specified cut buffer.

XStoreBytes() Stores data in first cut buffer.

Querying Visual Types
Table 55 provides the subroutines for querying visual types.

Table 55. Querying Visual Types

Subroutine Description

XGetVisualInfo() Gets a list of visual information structures.

XListDepths()
Determines the number of depths that are
available on a given screen.

XListPixmapFormats()
Gets the pixmap format information for a
given display.

XMatchVisualInfo()
Gets visual information matching screen
depth and class.

XPixmapFormatValues()
Gets the pixmap format information for a
given display.

X Window System Interface

270 z/VM: TCP/IP Programmer’s Reference

Manipulating Images
Table 56 provides the subroutines for manipulating images.

Table 56. Manipulating Images

Subroutine Description

XAddPixel()
Increases each pixel in a pixmap by a
constant value.

XCreateImage() Allocates memory for the XImage structure.

XDestroyImage() Frees memory for the XImage structure.

XGetPixel() Gets a pixel value in an image.

XPutPixel() Sets a pixel value in an image.

XSubImage()
Creates an image that is a subsection of a
specified image.

Manipulating Bitmaps
Table 57 provides the subroutines for manipulating bitmaps.

Table 57. Manipulating Bitmaps

Subroutine Description

XCreateBitmapFromData() Includes a bitmap in the C program.

XCreatePixmapFromBitmapData() Creates a pixmap using bitmap data.

XDeleteContext()
Deletes data associated with the window and
context type.

XFindContext()
Gets data associated with the window and
context type.

XReadBitmapFile() Reads in a bitmap from a file.

XSaveContext()
Stores data associated with the window and
context type.

XUniqueContext() Allocates a new context.

XWriteBitmapFile() Writes out a bitmap to a file.

Using the Resource Manager
Table 58 provides the subroutines for using the resource manager.

Table 58. Using the Resource Manager

Subroutine Description

Xpermalloc() Allocates memory that is never freed.

XrmDestroyDatabase()
Destroys a resource database and frees its
allocated memory.

XrmGetFileDatabase() Creates a database from a specified file.

XrmGetResource() Retrieves a resource from a database.

XrmGetStringDatabase() Creates a database from a specified string.

XrmInitialize() Initializes the resource manager.

XrmMergeDatabases() Merges two databases.

XrmParseCommand() Stores command options in a database.

XrmPutFileDatabase() Copies the database into a specified file.

X Window System Interface

Chapter 7. X Window System Interface 271

Table 58. Using the Resource Manager (continued)

Subroutine Description

XrmPutLineResource() Stores a single resource entry in a database.

XrmPutResource() Stores a resource in a database.

XrmPutStringResource() Stores string resource in a database.

XrmQGetResource() Retrieves a quark from a database.

XrmQGetSearchList() Gets a resource search list of database levels.

XrmQGetSearchResource() Gets a quark search list of database levels.

XrmQPutResource() Stores binding and quarks in a database.

XrmQPutStringResource()
Stores string binding and quarks in a
database.

XrmQuarkToString() Converts a quark to a character string.

XrmStringToQuark() Converts a character string to a quark.

XrmStringToQuarkList() Converts character strings to a quark list.

XrmStringToBindingQuarkList() Converts strings to bindings and quarks.

XrmUniqueQuark() Allocates a new quark.

Manipulating Display Functions
Table 59 provides the subroutines for manipulating the display functions.

Table 59. Display Functions

Subroutine Description

AllPlanes() XAllPlanes()
Returns all bits suitable for use in plane
argument.

BitMapBitOrder() XBitMapOrder()
Returns either the most or least significant
bit in each bitmap unit.

BitMapPad() XBitMapPad()
Returns the multiple of bits padding each
scanline.

BitMapUnit() XBitMapUnit() Returns the size of a bitmap’s unit in bits.

BlackPixel() XBlackPixel()
Returns the black pixel value of the screen
specified.

BlackPixelOfScreen() XBlackPixelOfScreen()
Returns the black pixel value of the screen
specified.

CellsOfScreen() XCellsOfScreen() Returns the number of colormap cells.

ConnectionNumber() XConnectionNumber() Returns the file descriptor of the connection.

CreatePixmapCursor()
XCreatePixmapCursor()

Creates a pixmap of a specified size.

CreateWindow() XCreateWindow()
Creates an unmapped subwindow for a
specified parent window.

DefaultColormap() XDefaultColormap()
Returns a default colormap ID for allocation
on the screen specified.

DefaultColormapOfScreen()
XDefaultColormapOfScreen

Returns the default colormap ID of the
screen specified.

DefaultDepth() XDefaultDepth()
Returns the depth of the default root
window.

X Window System Interface

272 z/VM: TCP/IP Programmer’s Reference

Table 59. Display Functions (continued)

Subroutine Description

DefaultDepthOfScreen()
XDefaultDepthOfScreen()

Returns the default depth of the screen
specified.

DefaultGC() XDefaultGC()
Returns the default GC of the default root
window.

DefaultGCOfScreen() XDefaultGCOfScreen()
Returns the default GC of the screen
specified.

DefaultScreen() XDefaultScreen()
Obtains the default screen referenced in the
XOpenDisplay routine.

DefaultScreenofDisplay()
XDefaultScreenofDisplay()

Returns the default screen of the display
specified.

DefaultRootWindow()
XDefaultRootWindow()

Obtains the root window for the default
screen specified.

DefaultVisual() XDefaultVisual()
Returns the default visual type of the screen
specified.

DefaultVisualOfScreen()
XDefaultVisualOfScreen()

Returns the default visual type of the screen
specified.

DisplayCells() XDisplayCells()
Displays the number of entries in the default
colormap.

DisplayHeight() XDisplayHeight() Displays the height of the screen in pixels.

DisplayHeightMM() XDisplayHeightMM()
Displays the height of the screen in
millimeters.

DisplayOfScreen() XDisplayOfScreen() Displays the type of screen specified.

DisplayPlanes() XDisplayPlanes()
Displays the depth (number of planes) of the
root window of the screen specified.

DisplayString() XDisplayString()
Displays the string passed to XOpenDisplay
when the current display was opened.

DisplayWidth() XDisplayWidth()
Displays the width of the specified screen in
pixels.

DisplayWidthMM() XDisplayWidthMM()
Displays the width of the specified screen in
millimeters.

DoesBackingStore() XDoesBackingStore()
Indicates whether the specified screen
supports backing stores.

DoesSaveUnders() XDoesSaveUnders()
Indicates whether the specified screen
supports save unders.

EventMaskOfScreen() XEventMaskOfScreen()
Returns the initial root event mask for a
specified screen.

HeightMMOfScreen() XHeightMMOfScreen()
Returns the height of a specified screen in
millimeters.

HeightOfScreen() XHeightOfScreen()
Returns the height of a specified screen in
pixels.

ImageByteOrder() XImageByteOrder()
Specifies the required byte order for each
scanline unit of an image.

IsCursorKey() Returns TRUE if keysym is on cursor key.

IsFunctionKey() Returns TRUE if keysym is on function keys.

IsKeypadKey() Returns TRUE if keysym is on keypad.

X Window System Interface

Chapter 7. X Window System Interface 273

Table 59. Display Functions (continued)

Subroutine Description

IsMiscFunctionKey()
Returns TRUE if keysym is on miscellaneous
function keys.

IsModifierKey() Returns TRUE if keysym is on modifier keys.

IsPFKey() Returns TRUE if keysym is on PF keys.

LastKnownRequestProcessed()
XLastKnownRequestProcessed()

Extracts the full serial number of the last
known request processed by the X server.

MaxCmapsOfScreen() XMaxCmapsOfScreen()
Returns the maximum number of colormaps
supported by the specified screen.

MinCmapsOfScreen() XMinCmapsOfScreen()
Returns the minimum number of colormaps
supported by the specified screen.

NextRequest() XNextRequest()
Extracts the full serial number to be used for
the next request to be processed by the X
Server.

PlanesOfScreen() XPlanesOfScreen()
Returns the depth (number of planes) in a
specified screen.

ProtocolRevision() XProtocolRevision()
Returns the minor protocol revision number
(zero) of the X server associated with the
display.

ProtocolVersion() XProtocolVersion()
Returns the major version number (11) of the
protocol associated with the display.

QLength() XQLength()
Returns the length of the event queue for the
display.

RootWindow() XRootWindow()
Returns the root window of the current
screen.

RootWindowOfScreen()
XRootWindowOfScreen()

Returns the root window of the specified
screen.

ScreenCount() XScreenCount() Returns the number of screens available.

XScreenNumberOfScreen()
Returns the screen index number of the
specified screen.

ScreenOfDisplay() XScreenOfDisplay()
Returns the pointer to the screen of the
display specified.

ServerVendor() XServerVendor()
Returns the pointer to a null-determined
string that identifies the owner of the X
server implementation.

VendorRelease() XVendorRelease()
Returns the number related to the vendor’s
release of the X server.

WhitePixel() XWhitePixel()
Returns the white pixel value for the current
screen.

WhitePixelOfScreen() XWhitePixelOfScreen()
Returns the white pixel value of the specified
screen.

WidthMMOfScreen() XWidthMMOfScreen()
Returns the width of the specified screen in
millimeters.

WidthOfScreen() XWidthOfScreen()
Returns the width of the specified screen in
pixels.

X Window System Interface

274 z/VM: TCP/IP Programmer’s Reference

Extension Routines
Table 60 lists the X Window System Extension Subroutines.

Table 60. Extension Routines

Subroutine Description

XAllocID()
Returns a resource ID that can be used when
creating new resources.

XESetCloseDisplay()
Defines a procedure to call when
XCloseDisplay is called.

XESetCopyGC()
Defines a procedure to call when a GC is
copied.

XESetCreateFont()
Defines a procedure to call when
XLoadQueryFont is called.

XESetCreateGC()
Defines a procedure to call when an new GC
is created.

XESetError()
Suppresses the call to an external error
handling routine and defines an alternative
routine for error handling.

XESetErrorString()
Defines a procedure to call when an I/O
error is detected.

XESetEventToWire()
Defines a procedure to call when an event
must be converted from the host to wire
format.

XESetFreeFont()
Defines a procedure to call when XFreeFont
is called.

XESetFreeGC()
Defines a procedure to call when a GC is
freed.

XESetWireToEvent()
Defines a procedure to call when an event is
converted from the wire to the host format.

XFreeExtensionList() Frees memory allocated by XListExtensions.

XListExtensions()
Returns a list of all extensions supported by
the server.

XQueryExtension()
Indicates whether named extension is
present.

MIT Extensions to X
Table 61 lists the routines that allow an application to use these extensions:

Table 61. MIT Extensions to X

Subroutine Description

XShapeQueryExtension
Queries to see if the server supports the
SHAPE extension.

XShapeQueryVersion
Checks the version number of the server
SHAPE extension.

XShapeCombineRegion
Converts the specified region into a list of
rectangles and calls XShapeRectangles.

XShapeCombineRectangles Performs a CombineRectangles operation.

X Window System Interface

Chapter 7. X Window System Interface 275

Table 61. MIT Extensions to X (continued)

Subroutine Description

XShapeCombineMask Performs a CombineMask operation.

XShapeCombineShape Performs a CombineShape operation.

XShapeOffsetShape Performs an OffsetShape operation.

XShapeQueryExtents
Sets the extents of the bounding and clip
shapes.

XShapeSelectInput Selects Input Events.

XShapeInputSelected
Returns the current input mask for extension
events on the specified window.

XShapeGetRectangles
Gets a list of rectangles describing the region
specified.

XMITMiscQueryExtension
Queries to see if the server supports the
MITMISC extension.

XMITMiscSetBugMode Sets the compatibility mode switch.

XMITMiscGetBugMode Queries the compatibility mode switch.

XmbufQueryExtension
Queries to see if the server supports the
MULTIBUF extension.

XmbufGetVersion Gets the version number of the extension.

XmbufCreateBuffers Requests that multiple buffers be created.

XmbufDestroyBuffers Requests that the buffers be destroyed.

XmbufDisplayBuffers Displays the indicated buffers.

XmbufGetWindowAttributes Gets the multibuffering attributes.

XmbufChangeWindowAttributes Sets the multibuffering attributes.

XmbufGetBufferAttributes Gets the attributes for the indicated buffer.

XmbufChangeBufferAttributes Sets the attributes for the indicated buffer.

XmbufGetScreenInfo
Gets the parameters controlling how mono
and stereo windows may be created on the
indicated screen.

XmbufCreateStereoWindow Creates a stereo window.

Associate Table Functions
Table 62 lists the Associate Table functions.

Table 62. Associate Table Functions

Subroutine Description

XCreateAssocTable()
Returns a pointer to the newly created
associate table.

XDeleteAssoc()
Deletes an entry from the specified associate
table.

XDestroyAssocTable()
Frees memory allocated to the specified
associate table.

XLookUpAssoc()
Obtains data from the specified associate
table.

XMakeAssoc()
Creates an entry in the specified associate
table.

X Window System Interface

276 z/VM: TCP/IP Programmer’s Reference

Miscellaneous Utility Routines
Table 63 lists the Miscellaneous Utility routines.

Table 63. Miscellaneous Utility Routines

Subroutine Description

XctCreate()
Creates an XctData structure for parsing a
Compound Text string.

XctFree()
Frees all data associated with the XctData
structure.

XctNextItem()
Parses the next item from the Compound Text
string.

XctReset()
Resets the XctData structure to reparse the
Compound Text string.

XmuAddCloseDisplayHook() Adds a callback for the given display.

XmuAddInitializer()
Registers a procedure, to be invoked the first
time XmuCallInitializers is called on a given
application context.

XmuAllStandardColormaps()
Creates all of the appropriate standard
colormaps.

XmuCallInitializers()
Calls each of the procedures that have been
registered with XmuAddInitializer.

XmuClientWindow()
Finds a window, at or below the specified
window.

XmuCompareISOLatin1()
Compares two strings, ignoring case
differences.

XmuConvertStandardSelection() Converts many standard selections.

XmuCopyISOLatin1Lowered()
Copies a string, changing all Latin-1
uppercase letters to lowercase.

XmuCopyISOLatin1Uppered()
Copies a string, changing all Latin-1
lowercase letters to uppercase.

XmuCreateColormap() Creates a colormap.

XmuCreatePixmapFromBitmap()
Creates a pixmap of the specified width,
height, and depth.

XmuCreateStippledPixmap()
Creates a two pixel by one pixel stippled
pixmap of specified depth on the specified
screen.

XmuCursorNameToIndex()
Returns the index in the standard cursor font
for the name of a standard cursor.

XmuCvtFunctionToCallback()
Converts a callback procedure to a callback
list containing that procedure.

XmuCvtStringToBackingStore() Converts a string to a backing-store integer.

XmuCvtStringToBitmap()
Creates a bitmap suitable for window
manager icons.

XmuCvtStringToCursor() Converts a string to a Cursor.

XmuCvtStringToJustify()
Converts a string to an XtJustify enumeration
value.

XmuCvtStringToLong() Converts a string to an integer of type long.

X Window System Interface

Chapter 7. X Window System Interface 277

Table 63. Miscellaneous Utility Routines (continued)

Subroutine Description

XmuCvtStringToOrientation()
Converts a string to an XtOrientation
enumeration value.

XmuCvtStringToShapeStyle() Converts a string to an integer shape style.

XmuCvtStringToWidget()
Converts a string to an immediate child
widget of the parent widget passed as an
argument.

XmuDeleteStandardColormap()
Removes the specified property from the
specified screen.

XmuDQAddDisplay() Adds the specified display to the queue.

XmuDQCreate()
Creates and returns an empty
XmuDisplayQueue.

XmuDQDestroy()
Releases all memory associated with the
specified queue.

XmuDQLookupDisplay()
Returns the queue entry for the specified
display.

XmuDQNDisplays()
Returns the number of displays in the
specified queue.

XmuDQRemoveDisplay()
Removes the specified display from the
specified queue.

XmuDrawLogo() Draws the official X Window System logo.

XmuDrawRoundedRectangle() Draws a rounded rectangle.

XmuFillRoundedRectangle() Draws a filled rounded rectangle.

XmuGetAtomName() Returns the name of an Atom.

XmuGetColormapAllocation()
Determines the best allocation of reds,
greens, and blues in a standard colormap.

XmuGetHostname() Returns the host name.

XmuInternAtom()
Caches the Atom value for one or more
displays.

XmuInternStrings()
Converts a list of atom names into Atom
values.

XmuLocateBitmapFile() Reads a file in standard bitmap file format.

XmuLookupAPL()
Maps a key event to an APL string. This
function is similar to XLookupString.

XmuLookupArabic()
Maps a key event to a Latin/Arabic (ISO
8859-6) string. This function is similar to
XLookupString.

XmuLookupCloseDisplayHook() Determines if a callback is installed.

XmuLookupCyrillic()
Maps a key event to a Latin/Cyrillic (ISO
8859-5) string. This function is similar to
XLookupString, except that it maps a

XmuLookupGreek()
Maps a key event to a Latin/Greek (ISO
8859-7) string. This function is similar to
XLookupString.

XmuLookupHebrew()
Maps a key event to a Latin/Hebrew (ISO
8859-8) string. This function is similar to
XLookupString.

X Window System Interface

278 z/VM: TCP/IP Programmer’s Reference

Table 63. Miscellaneous Utility Routines (continued)

Subroutine Description

XmuLookupJISX0201()
Maps a key event to a string in the JIS
X0201-1976 encoding. This function is similar
to XLookupString.

XmuLookupKana()
Maps a key event to a string in the JIS
X0201-1976 encoding. This function is similar
to XLookupString.

XmuLookupLatin1() This function is identical to XLookupString.

XmuLookupLatin2()
Maps a key event to a Latin-2 (ISO 8859-2)
string. This function is similar to
XLookupString.

XmuLookupLatin3()
Maps a key event to a Latin-3 (ISO 8859-3)
string. This function is similar to
XLookupString.

XmuLookupLatin4()
Maps a key event to a Latin-4 (ISO 8859-4)
string. This function is similar to
XLookupString.

XmuLookupStandardColormap()
Creates or replaces a standard colormap if
one does not currently exist.

XmuLookupString()
Maps a key event into a specific key symbol
set.

XmuMakeAtom() Creates and initializes an opaque object.

XmuNameOfAtom() Returns the name of an AtomPtr.

XmuPrintDefaultErrorMessage()
Prints an error message, equivalent to Xlib’s
default error message.

XmuReadBitmapData() Reads a standard bitmap file description.

XmuReadBitmapDataFromFile()
Reads a standard bitmap file description
from the specified file.

XmuReleaseStippledPixmap()
Frees a pixmap created with
XmuCreateStippledPixmap.

XmuRemoveCloseDisplayHook()
Deletes a callback that has been added with
XmuAddCloseDisplayHook.

XmuReshapeWidget()
Reshapes the specified widget, using the
Shape extension.

XmuScreenOfWindow()
Returns the screen on which the specified
window was created.

XmuSimpleErrorHandler()
A simple error handler for Xlib error
conditions.

XmuStandardColormap()
Creates a standard colormap for the given
screen.

XmuUpdateMapHints()
Clears the PPosition and PSize flags and sets
the USPosition and USSize flags.

XmuVisualStandardColormaps()
Creates all of the appropriate standard
colormaps for a given visual.

X Window System Interface

Chapter 7. X Window System Interface 279

X Authorization Routines
Table 64 lists the X Authorization routines.

Table 64. Authorization Data Routines

Subroutine Description

XauFileName()
Generates the default authorization file
name.

XauReadAuth() Reads the next entry from the authfile.

XuWriteAuth() Writes an authorization entry to the authfile.

XauGetAuthByAddr() Searches for an authorization entry.

XauLockAuth()
Does the work necessary to synchronously
update an authorization file.

XauUnlockAuth() Undoes the work of XauLockAuth.

XauDisposeAuth()
Frees storage allocated to hold an
authorization entry.

X Intrinsics Routines
Table 65 provides the X Intrinsics Routines.

Table 65. X Intrinsics Routines

Routine Description

CompositeClassPartInitialize
Initializes the CompositeClassPart of a
Composite Widget.

CompositeDeleteChild
Deletes a child widget from a Composite
Widget.

CompositeDestroy Destroys a composite widget.

CompositeInitialize Initializes a Composite Widget structure.

CompositeInsertChild
Inserts a child widget in a Composite
Widget.

RemoveCallback
Removes a callback procedure from a
callback list.

XrmCompileResourceList
Compiles an XtResourceList into an
XrmResourceList.

XtAddActions
Declares an action table and registers it with
the translation manager

XtAddCallback
Adds a callback procedure to the callback list
of the specified widget.

XtAddCallbacks
Adds a list of callback procedures to the
callback list of specified widget.

XtAddConverter Adds a new converter.

XtAddEventHandler

Registers an event handler procedure with
the dispatch mechanism when an event
matching the mask occurs on the specified
widget.

XtAddExposureToRegion
Computes the union of the rectangle defined
by the specified exposure event and region.

XtAddGrab Redirects user input to a model widget.

X Window System Interface

280 z/VM: TCP/IP Programmer’s Reference

Table 65. X Intrinsics Routines (continued)

Routine Description

XtAddInput Registers a new source of events.

XtAddRawEventHandler
Registers an event handler procedure with
the dispatch mechanism without causing the
server to select for that event.

XtAddTimeOut
Creates a timeout value in the default
application context and returns an identifier
for it.

XtAddWorkProc
Registers a work procedure in the default
application context.

XtAppAddActionHook
Adds an actionhook procedure to an
application context.

XtAppAddActions
Declares an action table and registers it with
the translation manager.

XtAppAddConverter Registers a new converter.

XtAppAddInput
Registers a new file as an input source for a
specified application.

XtAppAddTimeOut
Creates a timeout value and returns an
identifier for it.

XtAppAddWorkProc
Registers a work procedure for a specified
procedure.

XtAppCreateShell
Creates a top-level widget that is the root of
a widget tree.

XtAppError Calls the installed fatal error procedure.

XtAppErrorMsg Calls the high-level error handler.

XtAppGetErrorDatabase
Obtains the error database and merges it
with an application or widget-specified
database.

XtAppGetErrorDatabaseText
Obtains the error database text for an error
or warning for an error message handler.

XtAppGetSelectionTimeout
Gets and returns the current selection
timeout (ms) value.

XtAppInitialize
A convenience routine for initializing the
toolkit.

XtAppMainLoop
Processes input by calling XtAppNextEvent
and XtDispatchEvent.

XtAppNextEvent
Returns the value from the top of a specified
application input queue.

XtAppPeekEvent
Returns the value from the top of a specified
application input queue without removing
input from queue.

XtAppPending
Determines if the input queue has any events
for a specified application.

XtAppProcessEvent
Processes applications that require direct
control of the processing for different types
of input.

XtAppReleaseCacheRefs
Decrements the reference count for the
conversion entries identified by the refs
argument.

X Window System Interface

Chapter 7. X Window System Interface 281

Table 65. X Intrinsics Routines (continued)

Routine Description

XtAppSetErrorHandler
Registers a procedure to call on fatal error
conditions. The default error handler prints
the message to standard error.

XtAppSetErrorMsgHandler

Registers a procedure to call on fatal error
conditions. The default error handler
constructs a string from the error resource
database.

XtAppSetFallbackResources
Sets the fallback resource list that will be
loaded at display initialization time.

XtAppSetSelectionTimeout Sets the Intrinsics selection time-out value.

XtAppSetTypeConverter
Registers the specified type converter and
destructor in all application contexts created
by the calling process.

XtAppSetWarningHandler
Registers a procedure to call on nonfatal
error conditions. The default warning
handler prints the message to standard error.

XtAppSetWarningMsgHandler

Registers a procedure to call on nonfatal
error conditions. The default warning
handler constructs a string from error
resource database.

XtAppWarning Calls the installed nonfatal error procedure.

XtAppWarningMsg
Calls the installed high-level warning
handler.

XtAugmentTranslations
Merges new translations into an existing
widget translation table.

XtBuildEventMask
Retrieves the event mask for a specified
widget.

XtCallAcceptFocus
Calls the accept_focus procedure for the
specified widget.

XtCallActionProc
Searches for the named action routine and, if
found, calls it.

XtCallbackExclusive
Calls customized code for callbacks to create
pop-up shell.

XtCallbackNone
Calls customized code for callbacks to create
pop-up shell.

XtCallbackNonexclusive
Calls customized code for callbacks to create
pop-up shell.

XtCallbackPopdown
Pops down a shell that was mapped by
callback functions.

XtCallbackReleaseCacheRef
A callback that can be added to a callback
list to release a previously returned
XtCacheRef value.

XtCallbackReleaseCacheRefList
A callback that can be added to a callback
list to release a list of previously returned
XtCacheRef value.

XtCallCallbackList Calls all callbacks on a callback list.

XtCallCallbacks
Executes the callback procedures in a widget
callback list.

X Window System Interface

282 z/VM: TCP/IP Programmer’s Reference

Table 65. X Intrinsics Routines (continued)

Routine Description

XtCallConverter
Looks up the specified type converter in the
application context and invokes the
conversion routine.

XtCalloc Allocates and initializes an array.

XtClass
Obtains the class of a widget and returns a
pointer to the widget class structure.

XtCloseDisplay
Closes a display and removes it from an
application context.

XtConfigureWidget
Moves and resizes the sibling widget of the
child making the geometry request.

XtConvert Invokes resource conversions.

XtConvertAndStore
Looks up the type converter registered to
convert from_type to to_type and then calls
XtCallConverter.

XtConvertCase
Determines upper and lowercase equivalents
for a KeySym.

XtCopyAncestorSensitive
Copies the sensitive value from a widget
record.

XtCopyDefaultColormap
Copies the default colormap from a widget
record.

XtCopyDefaultDepth
Copies the default depth from a widget
record.

XtCopyFromParent Copies the parent from a widget record.

XtCopyScreen Copies the screen from a widget record.

XtCreateApplicationContext Creates an opaque type application context.

XtCreateApplicationShell
Creates an application shell widget by calling
XtAppCreateShell.

XtCreateManagedWidget
Creates and manages a child widget in a
single procedure.

XtCreatePopupShell Creates a pop-up shell.

XtCreateWidget Creates an instance of a widget.

XtCreateWindow
Calls XcreateWindow with the widget
structure and parameter.

XtDatabase
Obtains the resource database for a particular
display.

XtDestroyApplicationContext Destroys an application context.

XtDestroyGC
Deallocates graphics context when it is no
longer needed.

XtDestroyWidget Destroys a widget instance.

XtDirectConvert Invokes resource conversion.

XtDisownSelection
Informs the Intrinsics selection mechanism
that the specified widget is to lose ownership
of the selection.

XtDispatchEvent
Receives X events and calls appropriate event
handlers.

X Window System Interface

Chapter 7. X Window System Interface 283

Table 65. X Intrinsics Routines (continued)

Routine Description

XtDisplay
Returns the display pointer for the specified
widget.

XtDisplayInitialize
Initializes a display and adds it to an
application context.

XtDisplayOfObject
Returns the display pointer for the specified
widget.

XtDisplayStringConversionWarning
Issues a warning message for conversion
routines.

XtDisplayToApplicationContext
Retrieves the application context associated
with a Display.

XtError Calls the installed fatal error procedure.

XtErrorMsg
A low-level error and warning handler
procedure type.

XtFindFile
Searches for a file using substitutions in a
path list.

XtFree Frees an allocated block of storage.

XtGetActionKeysym
Retrieves the KeySym and modifiers that
matched the final event specification in a
translation table entry.

XtGetApplicationNameAndClass
Returns the application name and class as
passed to XtDisplayInitialize

XtGetApplicationResources
Retrieves resources that are not specific to a
widget, but apply to the overall application.

XtGetConstraintResourceList
Returns the constraint resource list for a
particular widget.

XtGetErrorDatabase
Obtains the error database and returns the
address of the error database.

XtGetErrorDatabaseText
Obtains the error database text for an error
or warning.

XtGetGC Returns a read-only sharable GC.

XtGetKeysymTable
Returns a pointer to the KeySym to KeyCode
mapping table for a particular display.

XtGetMultiClickTime Returns the multi-click time setting.

XtGetResourceList
Obtains the resource list structure for a
particular class.

XtGetSelectionRequest
Retrieves the SelectionRequest event which
triggered the convert_selection procedure.

XtGetSelectionTimeout Obtains the current selection timeout.

XtGetSelectionValue
Obtains the selection value in a single, logical
unit.

XtGetSelectionValueIncremental
Obtains the selection value using incremental
transfers.

XtGetSelectionValues
Takes a list of target types and client data
and obtains the current value of the selection
converted to each of the targets.

X Window System Interface

284 z/VM: TCP/IP Programmer’s Reference

Table 65. X Intrinsics Routines (continued)

Routine Description

XtGetSelectionValuesIncremental
A function similar to
XtGetSelectionValueIncremental except that it
takes a list of targets and client_data.

XtGetSubresources Obtains resources other than widgets.

XtGetSubvalues
Retrieves the current value of a non-widget
resource data associated with a widget
instance.

XtGetValues
Retrieves the current value of a resource
associated with a widget instance.

XtGrabButton Passively grabs a single pointer button.

XtGrabKey Passively grabs a single key of the keyboard.

XtGrabKeyboard Actively grabs the keyboard.

XtGrabPointer Actively grabs the pointer.

XtHasCallbacks
Finds the status of a specified widget
callback list.

XtInitialize Initializes the toolkit, application, and shell.

XtInitializeWidgetClass
Initializes a widget class without creating
any widgets.

XtInsertEventHandler
Registers an event handler procedure that
receives events before or after all previously
registered event handler.

XtInsertRawEventHandler

Registers an event handler procedure that
receives events before or after all previously
registered event handler without selecting for
the events.

XtInstallAccelerators
Installs accelerators from a source widget to
destination widget.

XtInstallAllAccelerators
Installs all the accelerators from a widget and
all the descendants of the widget onto one
destination widget.

XtIsApplicationShell
Determines whether a specified widget is a
subclass of an Application Shell widget.

XtIsComposite
Determines whether a specified widget is a
subclass of a Composite widget.

XtIsConstraint
Determines whether a specified widget is a
subclass of a Constraint widget.

XtIsManaged
Determines the managed state of a specified
child widget.

XtIsObject
Determines whether a specified widget is a
subclass of an Object widget.

XtIsOverrideShell
Determines whether a specified widget is a
subclass of an Override Shell widget.

XtIsRealized Determines if a widget has been realized.

XtIsRectObj
Determines whether a specified widget is a
subclass of a RectObj widget.

XtIsSensitive
Determines the current sensitivity state of a
widget.

X Window System Interface

Chapter 7. X Window System Interface 285

Table 65. X Intrinsics Routines (continued)

Routine Description

XtIsShell
Determines whether a specified widget is a
subclass of a Shell widget.

XtIsSubclass
Determines whether a specified widget is in
a specific subclass.

XtIsTopLevelShell
Determines whether a specified widget is a
subclass of a TopLevelShell widget.

XtIsTransientShell
Determines whether a specified widget is a
subclass of a TransientShell widget.

XtIsVendorShell
Determines whether a specified widget is a
subclass of a VendorShell widget.

XtIsWidget
Determines whether a specified widget is a
subclass of a Widget widget.

XtIsWMShell
Determines whether a specified widget is a
subclass of a WMShell widget.

XtKeysymToKeycodeList
Returns the list of KeyCodes that map to a
particular KeySym.

XtLastTimestampProcessed
Retrieves the timestamp from the most recent
call to XtDispatchEvent.

XtMainLoop An infinite loop which processes input.

XtMakeGeometryRequest
A request from the child widget to a parent
widget for a geometry change.

XtMakeResizeRequest Makes a resize request from a widget.

XtMalloc Allocates storage.

XtManageChild
Adds a single child to a parent widget list of
managed children.

XtManageChildren
Adds a list of widgets to the
geometry-managed, displayable, subset of its
composite parent widget.

XtMapWidget Maps a widget explicitly.

XtMenuPopupAction
Pops up a menu when a pointer button is
pressed or when the pointer is moved into
the widget.

XtMergeArgLists Merges two ArgList structures.

XtMoveWidget
Moves a sibling widget of the child making
the geometry request.

XtName
Returns a pointer to the instance name of the
specified object.

XtNameToWidget
Translates a widget name to a widget
instance.

XtNewString Copies an instance of a string.

XtNextEvent
Returns the value from the header of the
input queue.

XtOpenDisplay
Opens, initializes, and adds a display to an
application context.

XtOverrideTranslations
Overwrites existing translations with new
translations.

X Window System Interface

286 z/VM: TCP/IP Programmer’s Reference

Table 65. X Intrinsics Routines (continued)

Routine Description

XtOwnSelection
Sets the selection owner when using atomic
transfer.

XtOwnSelectionIncremental
Sets the selection owner when using
incremental transfers.

XtParent
Returns the parent widget for the specified
widget.

XtParseAcceleratorTable
Parses an accelerator table into the opaque
internal representation.

XtParseTranslationTable
Compiles a translation table into the opaque
internal representation of type XtTranslations.

XtPeekEvent
Returns the value from the front of the input
queue without removing it from the queue.

XtPending
Determines if the input queue has events
pending.

XtPopdown
Unmaps a pop-up from within an
application.

XtPopup Maps a pop-up from within an application.

XtPopupSpringLoaded
Maps a spring-loaded pop-up from within an
application.

XtProcessEvent
Processes one input event, timeout, or
alternate input source.

XtQueryGeometry
Queries the preferred geometry of a child
widget.

XtRealizeWidget Realizes a widget instances.

XtRealloc
Changes the size of an allocated block of
storage, sometimes moving it.

XtRegisterCaseConverter Registers a specified case converter.

XtRegisterGrabAction
Registers button and key grabs for a widget’s
window according to the event bindings in
the widget’s translation table.

XtReleaseGC
Deallocates a shared GC when it is no longer
needed.

XtRemoveActionHook
Removes an action hook procedure without
destroying the application context.

XtRemoveAllCallbacks
Deletes all callback procedures from a
specified widget callback list.

XtRemoveCallback
Deletes a callback procedure from a specified
widget callback list only if both the
procedure and the client data match.

XtRemoveCallbacks
Deletes a list of callback procedures from a
specified widget callback list.

XtRemoveEventHandler
Removes a previously registered event
handler.

XtRemoveGrab
Removes the redirection of user input to a
modal widget.

X Window System Interface

Chapter 7. X Window System Interface 287

Table 65. X Intrinsics Routines (continued)

Routine Description

XtRemoveInput
Discontinues a source of input by causing the
Intrinsics read routine to stop watching for
input from the input source.

XtRemoveRawEventHandler
Removes previously registered raw event
handler.

XtRemoveTimeOut
Clears a timeout value by removing the
timeout.

XtRemoveWorkProc
Removes the specified background work
procedure.

XtResizeWidget
Resizes a sibling widget of the child making
the geometry request.

XtResizeWindow
Resizes a child widget that already has the
values for its width, height, and border
width.

XtResolvePathname
Searches for a file using standard
substitutions in a path list.

XtScreen
Returns the screen pointer for the specified
widget.

XtScreenOfObject
Returns the screen pointer for the nearest
ancestor of object that is of class Widget.

XtSetErrorHandler
Registers a procedure to call under fatal error
conditions.

XtSetErrorMsgHandler
Registers a procedure to call under fatal error
conditions.

XtSetKeyboardFocus
Redirects keyboard input to a child of a
composite widget without calling
XSetInputFocus.

XtSetKeyTranslator Registers a key translator.

XtSetMappedWhenManaged
Changes the widget map_when_managed
field.

XtSetMultiClickTime Sets the multi-click time for an application.

XtSetSelectionTimeout Sets the Intrinsics selection timeout.

XtSetSensitive Sets the sensitivity state of a widget.

XtSetSubvalues
Sets the current value of a non-widget
resource associated with an instance.

XtSetTypeConverter
Registers a type converter for all application
contexts in a process.

XtSetValues
Modifies the current value of a resource
associated with widget instance.

XtSetWarningHandler
Registers a procedure to be called on
non-fatal error conditions.

XtSetWarningMsgHandler
Registers a procedure to be called on
non-fatal error conditions.

XtSetWMColormapWindows
Sets the value of the
WM_COLORMAP_WINDOWS property on a
widget’s window.

X Window System Interface

288 z/VM: TCP/IP Programmer’s Reference

Table 65. X Intrinsics Routines (continued)

Routine Description

XtStringConversionWarning
A convenience routine for old-format
resource converters that convert from strings.

XtSuperclass
Obtains the superclass of a widget by
returning a pointer to the superclass
structure of the widget.

XtToolkitInitialize Initializes the X Toolkit internals.

XtTranslateCoords
Translates an [x,y] coordinate pair from
widget coordinates to root coordinates.

XtTranslateKey The default key translator routine.

XtTranslateKeycode Registers a key translator.

XtUngrabButton Cancels a passive button grab.

XtUngrabKey Cancels a passive key grab.

XtUngrabKeyboard Cancels an active keyboard grab.

XtUngrabPointer Cancels an active pointer grab.

XtUninstallTranslations
Causes the entire translation table for widget
to be removed.

XtUnmanageChild
Removes a single child from the managed set
of its parent.

XtUnmanageChildren
Removes a list of children from the managed
list of the parent, but does not destroy the
children widgets.

XtUnmapWidget Unmaps a widget explicitly.

XtUnrealizeWidget
Destroys the associated with a widget and its
descendants.

XtVaAppCreateShell
Creates a top-level widget that is the root of
a widget tree using varargs lists.

XtVaAppInitialize

Initializes the Xtk internals, creates an
application context, opens and initializes a
display and creates the initial application
shell instance using varargs lists.

XtVaCreateArgsList
Dynamically allocates a varargs list for use
with XtVaNestedList in multiple calls.

XtVaCreateManagedWidget
Creates and manages a child widget in a
single procedure using varargs lists.

XtVaCreatePopupShell Creates a pop-up shell using varargs lists.

XtVaCreateWidget
Creates an instance of a widget using varargs
lists.

XtVaGetApplicationResources
Retrieves resources for the overall application
using varargs list.

XtVaGetSubresources
Fetches resources for widget sub-parts using
varargs list.

XtVaGetSubvalues
Retrieves the current values of non-widget
resources associated with a widget instance
using varargs lists.

XtVaGetValues
Retrieves the current values of resources
associated with a widget instance using
varargs lists.

X Window System Interface

Chapter 7. X Window System Interface 289

Table 65. X Intrinsics Routines (continued)

Routine Description

XtVaSetSubvalues
Sets the current values of non-widget
resources associated with a widget instance
using varargs lists.

XtVaSetValues
Modifies the current values of resources
associated with a widget instance using
varargs lists.

XtWarning Calls the installed non-fatal error procedure.

XtWarningMsg
Calls the installed high-level warning
handler.

XtWidgetToApplicationContext Gets the application context for given widget.

XtWindow Returns the window of the specified widget.

XtWindowOfObject
Returns the window for the nearest ancestor
of object that is of class Widget.

XtWindowToWidget
Translates a window and display pointer into
a widget instance.

Athena Widget Support
Table 66 provides the Athena widget routines.

Table 66. Athena Widget Routines

Routine Description

XawAsciiSave
Saves the changes made in the current text
source into a file.

XawAsciiSaveAsFile
Saves the contents of the current text buffer
into a named file.

XawAsciiSourceChanged
Determines if the text buffer in an AsciiSrc
object has changed.

XawAsciiSourceFreeString
Frees the storage associated with the string
from an AsciiSrc widget requested with a call
to XtGetValues.

XawDialogAddButton Adds a new button to a Dialog widget.

XawDialogGetValueString
Returns the character string in the text field
of a Dialog Widget.

XawDiskSourceCreate Creates a disk source.

XawFormDoLayout Forces or defers a re-layout of the form.

XawInitializeWidgetSet
Forces a reference to vendor shell so that the
one in this widget is installed.

XawListChange Changes the list that is displayed.

XawListHighlight Highlights an item in the list.

XawListShowCurrent Retrieves the list element that is currently set.

XawListUnhighlight Unhighlights an item in the list.

XawPanedAllowResize
Enables or disables a child’s request for pane
resizing.

XawPanedGetMinMax
Retrieves the minimum and maximum height
settings for a pane.

X Window System Interface

290 z/VM: TCP/IP Programmer’s Reference

Table 66. Athena Widget Routines (continued)

Routine Description

XawPanedGetNumSub
Retrieves the number of panes in a paned
widget.

XawPanedSetMinMax
Sets the minimum and maximum height
settings for a pane.

XawPanedSetRefigureMode
Enables or disables automatic recalculation of
pane sizes and positions

XawScrollbarSetThumb
Sets the position and length of a Scrollbar
thumb.

XawSimpleMenuAddGlobalActions
Registers an XawPositionSimpleMenu global
action routine.

XawSimpleMenuClearActiveEntry
Clears the SimpleMenu widget’s internal
information about the currently highlighted
menu entry.

XawSimpleMenuGetActiveEntry Gets the currently highlighted menu entry.

XawStringSourceCreate Creates a string source.

XawTextDisableRedisplay
Disables redisplay while making several
changes to a Text Widget.

XawTextDisplay Displays batched updates.

XawTextDisplayCaret Enables and disables the insert point.

XawTextEnableRedisplay Enables redisplay.

XawTextGetInsertionPoint
Returns the current position of the insert
point.

XawTextGetSelectionPos
Retrieves the text that has been selected by
this text widget.

XawTextGetSource
Retrieves the current text source for the
specified widget.

XawTextInvalidate Redisplays a range of characters.

XawTextReplace Modifies the text in an editable Text widget.

XawTextSearch Searches for a string in a Text widget.

XawTextSetInsertionPoint
Moves the insert point to the specified source
position.

XawTextSetLastPos
Sets the last position data in an AsciiSource
Object.

XawTextSetSelection Selects a piece of text.

XawTextSetSelectionArray
Assigns a new selection array to a text
widget.

XawTextSetSource
Replaces the text source in the specified
widget.

XawTextSinkClearToBackground
Clears a region of the sink to the background
color

XawTextSinkDisplayText
Stub function that in subclasses will display
text.

XawTextSinkFindDistance
Finds the Pixel Distance between two text
Positions.

XawTextSinkFindPosition Finds a position in the text.

X Window System Interface

Chapter 7. X Window System Interface 291

Table 66. Athena Widget Routines (continued)

Routine Description

XawTextSinkGetCursorBounds Finds the bounding box for the insert cursor.

XawTextSinkInsertCursor Places the InsertCursor.

XawTextSinkMaxHeight
Finds the Minimum height that will contain
a given number of lines.

XawTextSinkMaxLines
Finds the Maximum number of lines that
will fit in a given height.

XawTextSinkResolve Resolves a location to a position.

XawTextSinkSetTabs Sets the Tab stops.

XawTextSourceConvertSelection Dummy selection converter.

XawTextSourceRead Reads the source into a buffer.

XawTextSourceReplace Replaces a block of text with new text.

XawTextSourceScan
Scans the text source for the number and
type of item specified.

XawTextSourceSearch
Searches the text source for the text block
passed.

XawTextSourceSetSelection Allows special setting of the selection.

XawTextTopPosition
Returns the character position of the
left-most character on the first line displayed
in the widget.

XawTextUnsetSelection
Unhighlights previously highlighted text in a
widget.

XawToggleChangeRadioGroup
Allows a toggle widget to change radio
groups.

XawToggleGetCurrent
Returns the RadioData associated with the
toggle widget that is currently active in a
toggle group.

XawToggleSetCurrent
Sets the Toggle widget associated with the
radio_data specified.

XawToggleUnsetCurrent
Unsets all Toggles in the radio_group
specified.

Extension Routines
X Window System Extension Routines allow you to create extensions to the core
Xlib functions with the same performance characteristics. The following are the
protocol requests for X Window System extensions:
v XQueryExtension
v XListExtensions
v XFreeExtensionList

For a table that lists these extension routines and provides a description of each
extension routine, see Table 60 on page 275.

X Window System Interface

292 z/VM: TCP/IP Programmer’s Reference

MIT Extensions to X
The AIX extensions described in the IBM AIX X-Windows Programmer’s Reference are
not supported by the X Window System API provided by the TCP/IP library
routines.

The following MIT extensions are supported by the TCP/IP Level 3A0:
v SHAPE
v MITMISC
v MULTIBUF

See Table 61 on page 275

Associate Table Functions
When you need to associate arbitrary information with resource IDs, the
XAssocTable allows you to associate your own data structures with X resources,
such as bitmaps, pixmaps, fonts, and windows.

An XAssocTable can be used to type X resources. For example, to create three or
four types of windows with different properties, each window ID is associated
with a pointer to a user-defined window property data structure. (A generic type,
called XID, is defined in XLIB.H.)

Follow these guidelines when using an XAssocTable:
v Ensure the correct display is active before initiating an XAssocTable function,

because all XIDs are relative to a specified display.
v Restrict the size of the table (number of buckets in the hashing system) to a

power of two, and assign no more than eight XIDs for each bucket to maximize
the efficiency of the table.

There is no restriction on the number of XIDs for each table or display, or the
number of displays for each table. For a table that lists these associate table
functions and provides a description of each function, see Table 62 on page 276.

Miscellaneous Utility Routines
Included in the X11LIB TXTLIB are the MIT X Miscellaneous Utility routines. These
routines are a set of common utility functions that have been useful to application
writers. For a table that lists these utility routines and provides a description of
each utility routine, see Table 63 on page 277.

X Authorization Routines
Included in the X11LIB TXTLIB are the MIT X Authorization routines. These
routines are used to deal with X authorization data in X clients. For a table that
lists these subroutines and provides a description of each authorization routine, see
Table 64 on page 280.

X Window System Toolkit
An X Window System Toolkit is a set of library functions layered on top of the X
Window System Xlib functions that allows you to simplify the design of
applications by providing an underlying set of common user interface functions.
Included are mechanisms for defining and expanding interclient and

X Window System Interface

Chapter 7. X Window System Interface 293

|
|
|
|

intracomponent interaction independently, masking implementation details from
both the application and component implementor.

An X Window System Toolkit consists of the following:
v A set of programming mechanisms, called Intrinsics, used to build widgets.
v An architectural model to help programmers design new widgets, with enough

flexibility to accommodate different application interface layers.
v A consistent interface, in the form of a coordinated set of widgets and

composition policies, some of which are application domain-specific, while
others are common across several application domains.

The fundamental data type of the X Window System Toolkit is the widget. A
widget is allocated dynamically and contains state information. Every widget
belongs to one widget class that is allocated statically and initialized. The widget
class contains the operations allowed on widgets of that class.

An X Window System Toolkit manages the following functions:
v Toolkit initialization
v Widgets and widget geometry
v Memory
v Window, file, and timer events
v Input focus
v Selections
v Resources and resource conversion
v Translation of events
v Graphics contexts
v Pixmaps
v Errors and warnings.

In the VM/CMS environment, you must remap many of the X Widget and X
Intrinsics routine names. This remapping is done in a file called XT_REMAP.H.
This file is automatically included by the INTRINSIC.H header file. In debugging
your application, it may be helpful to reference the XT_REMAP.H file to find the
remapped names of the X Toolkit routines.

Some of the X Window System header files have been renamed from their original
distribution names, because of the file-naming conventions in the VM/CMS
environment. Such name changes are generally restricted to those header files used
internally by the actual widget code, rather than the application header files, to
minimize the number of changes required for an application to be ported to the
VM/CMS environment.

In porting applications to the VM/CMS environment, you may have to make file
name changes as shown in Table 67 on page 295.

X Window System Interface

294 z/VM: TCP/IP Programmer’s Reference

Table 67. X Intrinsic Header File Names

MIT Distribution Name TCP/IP Name

CompositeI.h ComposiI.h

CompositeP.h ComposiP.h

ConstrainP.h ConstraP.h

IntrinsicI.h IntriniI.h

IntrinsicP.h IntriniP.h

PassivGraI.h PassivGr.h

ProtocolsP.h ProtocoP.h

SelectionI.h SelectiI.h

WindowObjP.h WindowOP.h

Application Resources
X applications can be modified at run time by a set of resources. Applications that
make use of an X Window System toolkit can be modified by additional sets of
application resources. These resources are searched until a resource specification is
found. The X Intrinsics determine the actual search order used for determining a
resource value.

The search order used in the CMS environment in descending order of preference
is:
1. Command Line

Standard arguments include:
a. Command switches (-display, -fg, -foreground, +rv, and so forth)
b. Resource manager directives (-name, -xrm)
c. Natural language directive (-xnllanguage)

2. User Environment File
Use the first source found from:
a. The file named by the XENVIRONMENT environment variable, which can

be set with the CMS command:
GLOBALV SELECT CENV SET XENVIRONMENT filename.filetype

b. XDEFAULT. host file
In this case, host is the string returned by the gethostname() call.

3. Server and User Preference Resources
Use the first source found from:
a. RESOURCE_MANAGER property on the root window (screen())
b. X.DEFAULTS file

4. Application User Resources
Use the first source found from:
a. The file named by the XUSERFILESEARCHPATH environment variable that

can be set with the CMS command:
GLOBALV SELECT CENV SET XUSERFILESEARCHPATH filename.filetype

b. The file, which is called XAPDF.classname.xapplresdir, if the XAPPLRESDIR
environment variable has been set. In this case, XAPDF is the file name; and
classname is the file type. The environment variable, xapplresdir, contains the
value of the file mode.

X Window System Interface

Chapter 7. X Window System Interface 295

The XAPPLRESDIR environment variable can be set with the CMS
command:
GLOBALV SELECT CENV SET XAPPLRESDIR filemode

The CMS file name XAPDF is modified if a natural language directive is
specified to be XAPDF xnllanguage, where xnllanguage is the string specified
by the natural language directive.

5. Application Class Resources
Use the first source found from:
a. The file named by the XFILESEARCHPATH environment variable, which

can be set with the CMS command:
GLOBALV SELECT CENV SET XFILESEARCHPATH filename.filetype

b. The default application resource file named XAPDF.classname, where
classname is the application-specified class name.
The CMS file name XAPDF is modified if a natural language directive is
specified as xnllanguageXAPDF, where xnllanguage is the string specified by
the natural language directive.

c. Fallback resources defined by XtAppSetFallbackResources within the
application.

Athena Widget Set
The X Window System Support with TCP/IP includes the widget set developed at
MIT, which is generally known as the Athena widget set.

The Athena widget set supports the following widgets:

AsciiSink Paned

AsciiSrc Scrollbar

AsciiText Simple

Box SimpleMenu

Clock Sme (Simple Menu Entry)

Command SmeBSB (BSB Menu Entry)

Dialog Smeline

Form StripChart

Grip Text

Label TextSink

List TextSrc

Logo Toggle

Mailbox VPaned

MenuButton Viewport

For a complete list of the widgets supported by the Athena widget set, see
“Athena Widget Support” on page 290.

Some of the header files have been renamed from their original distribution names,
because of the file-naming conventions in the VM/CMS environment. In addition,
some of the header file names were changed to eliminate duplicate file names with
the OSF/Motif-based Widget support. If your application uses these header files, it

X Window System Interface

296 z/VM: TCP/IP Programmer’s Reference

will have to be modified to use the new header file name, see Table 68.

Table 68. Athena Header File Names

MIT Distribution Name TCP/IP Name

AsciiSinkP.h AscSinkP.h

AsciiSrcP.h AscSrcP.h

AsciiTextP.h AscTextP.h

Command.h ACommand.h

CommandP.h ACommanP.h

Form.h AForm.h

FormP.h AFormP.h

Label.h ALabel.h

LabelP.h ALabelP.h

List.h AList.h

ListP.h AListP.h

MenuButtoP.h MenuButP.h

Scrollbar.h AScrollb.h

ScrollbarP.h AScrollP.h

SimpleMenP.h SimpleMP.h

StripCharP.h StripChP.h

TemplateP.h TemplatP.h

Text.h AText.h

TextSinkP.h TextSinP.h

TextP.h ATextP.h

TextSrcP.h ATextSrP.h

ViewportP.h ViewporP.h

OSF/Motif-Based Widget Support
The X Window System support with TCP/IP includes the OSF/Motif-based widget
set (Release 1.1).

The OSF/Motif-based Widget set supports the

X Window System Interface

Chapter 7. X Window System Interface 297

following gadgets and widgets:

ArrowButton MenuShell

ArrowGadget MessageBox

ArrowButtonGadget PanedWindow

BulletinBoard PushButton

CascadeButton PushButtonGadget

CascadeButtonGadget RowColumn

Command Sash

DialogShell Scale

DrawingArea ScrollBar

DrawnButton ScrolledWindow

FileSelectionBox SelectionBox

FileSelectionDialog SelectionDialog

Form Separator

Frame SeparatorGadget

Label Text

LabelGadget ToggleButton

List ToggleButtonGadget

MainWindow

Some of the header files have been renamed from their original distribution names,
because of the file-naming conventions in the CMS environment. Such name
changes are generally restricted to those header files used internally by the actual
widget code, rather than the application header files, to minimize the number of
changes required for an application to be ported to the VM/CMS environment.

In porting applications to the CMS environment, you may have to make header
file name changes as shown in Table 67 on page 295. In porting applications to the
CMS environment, the header file name changes shown in Table 69 on page 299
may have to be made.

X Window System Interface

298 z/VM: TCP/IP Programmer’s Reference

Table 69. OSF/Motif Header File Names

OSF/Motif Distribution Name TCP/IP Name

BulletinBP.h BulletBP.h

CascadeBG.h CascadBG.h

CascadeBGP.h CascaBGP.h

CascadeBP.h CascadBP.h

CutPasteP.h CutPastP.h

MenuShellP.h MenuSheP.h

MessageBP.h MessagBP.h

RowColumnP.h RowColuP.h

ScrollBarP.h ScrollBP.h

ScrolledWP.h ScrollWP.h

SelectioB.h SelectiB.h

SelectioBP.h SelectBP.h

SeparatoG.h SeparatG.h

SeparatoGP.h SeparaGP.h

SeparatorP.h SeparatP.h

ToggleBGP.h TogglBGP.h

ToggleBP.h ToggleBP.h

Sample X Window System Applications
This section contains the following sample programs:
v A simple program that uses Xlib calls (see page “Xlib Sample Program”)
v A simple program that uses the Athena widget set (see page “Athena Widget

Sample Program” on page 300)
v A simple program that uses the OSF/Motif-based widget set (see page

“OSF/Motif-Based Widget Sample Program” on page 302).

Xlib Sample Program
The following is an X Window System program that uses basic Xlib functions to
create a window, map the window to the screen, wait 60 seconds, destroy the
window, and end.
/*
* This is an X window program using X11 API,
* that opens the display and creates a window, waits
* 60 seconds, then destroys the window before ending.
*/

#include <Xlib.h>
#include <types.h>
#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];
{

Display *dp;
Window w;

/*
* X will lookup the value of the DISPLAY global variable in

X Window System Interface

Chapter 7. X Window System Interface 299

* the CENV group when passed a NULL pointer in XOpenDisplay.
*/

dp = XOpenDisplay(NULL);

/*
* Create a 200X200 window at xy(40,40) with black border and name.
*/

w = XCreateSimpleWindow(dp, RootWindow(dp, 0),
40, 40, 200, 200, 2, BlackPixel(dp, 0),
WhitePixel(dp, 0));

XStoreName(dp, w, “VM/CMS X Sample”);
XSetIconName(dp, w, “X Sample”);

/*
* Map the window to the display.
* This will cause the window to become visible on the screen.
*/

XMapWindow(dp, w);

/*
* Force X to write buffered requests.
*/

XFlush(dp);

fprintf(stderr, “Going to sleep now.... 60 seconds...\n”);
system(“CP SLEEP 60 SEC”);
fprintf(stderr, “Okay, back!\n”);

/*
* Destroy the window and end the connection to the X Server.
*/

XDestroyWindow(dp, w);
XCloseDisplay(dp);

}

Athena Widget Sample Program
The following is a simple X Window System program that uses the Athena Label
widget to create a window with the string Hello, World centered in the middle of a
window.
/*
* This an example of how "Hello, World" could be written using
* The X Toolkit and the Athena widget set.
*
* November 14, 1989 - Chris D. Peterson
*/

/*
* $XConsortium: xhw.c,v 1.7 89/12/11 15:31:33 kit Exp $
*
* Copyright 1989 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, distribute, and sell this
* software and its documentation for any purpose is hereby
* granted without fee, provided that the above copyright notice
* appear in all copies and that both that copyright notice and
* this permission notice appear in supporting documentation, and
* that the name of M.I.T. not be used in advertising or
* publicity pertaining to distribution of the software
* without specific, written prior permission. M.I.T. makes no

Xlib Sample Program

300 z/VM: TCP/IP Programmer’s Reference

* representations about the suitability of this software
* for any purpose. It is provided "as is" without express or
* implied warranty.
*
* M.I.T. DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
* IN NO EVENT SHALL M.I.T. BE LIABLE FOR ANY SPECIAL, INDIRECT
* OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

#include <stdio.h>
#include <X11/Intrinsic.h> /* Include standard Toolkit Header file.

We do not need "StringDefs.h" */
#ifdef IBMCPP
#include <X11/Xaw/ALabel.h> /* Include the Label widget’s header file. */
#else
#include <X11/Xaw/Label.h> /* Include the Label widget’s header file. */
#endif
#include <X11/Xaw/Cardinals.h> /* Definition of ZERO. */

/*
* These resources will be loaded only if there is no app-defaults
* file for this application. Since this is such a simple application
* I am just loading the resources here. For more complex applications
* It is best to install an app-defaults file.
*/

String fallback_resources[] = { "*Label.Label: Hello, World", NULL };

main(argc, argv)
int argc;
char **argv;
{

XtAppContext app_con;
Widget toplevel;

/*
* Initialize the Toolkit, set the fallback resources, and get
* the application context associated with this application.
*/

toplevel = XtAppInitialize(&app_con, "Xhw", NULL, ZERO, &argc, argv,
fallback_resources, NULL, ZERO);

/*
* Create a Widget to display the string. The label is picked up
* from the resource database.
*/

(void) XtCreateManagedWidget("label", labelWidgetClass, toplevel,
NULL, ZERO);

/*
* Create the windows, and set their attributes according
* to the Widget data.
*/

XtRealizeWidget(toplevel);
/*
* Now process the events.

Athena Widget Sample Program

Chapter 7. X Window System Interface 301

*/

XtAppMainLoop(app_con);
}

OSF/Motif-Based Widget Sample Program
The following is a simple X Window System program that uses the
OSF/Motif-based PushButton widget to pop up a window with the string Press
here in it. It exits when you press the button.
#include <stdio.h>
#include <X11/Intrinsic.h>
#include <Xm/Shell.h>
#include <Xm/PushB.h>
static void CloseApp();
Widget Shell;
Widget Button;
void main(argc, argv)
int argc;
char *argv[];
{

Arg args[10];
int n;
XmString xst;
Display *display;
XtAppContext app_context;

XtToolkitInitialize();
app_context = XtCreateApplicationContext();
display = XtOpenDisplay(app_context, NULL, argv[0], “Xsamp3”,

NULL, 0, &argc, argv);
if (display == NULL) {

fprintf(stderr, “%s: Can’t open display\n”, argv[0]);
exit(1);

}

n = 0;
XtSetArg(args[n], XmNwidth, 100); n++;
XtSetArg(args[n], XmNheight, 75); n++;
XtSetArg(args[n], XmNallowShellResize, True); n++;
Shell = XtAppCreateShell(argv[0], NULL, applicationShellWidgetClass,

display, args, n);
XtRealizeWidget(Shell);
n = 0;
Button = XmCreatePushButton(Shell, “Press here”, args, n);
XtManageChild(Button);
XtAddCallback (Button, XmNactivateCallback, CloseApp, NULL);

XtAppMainLoop(app_context);
}

/**/
/* CloseApp() */
/**/
static
void CloseApp(w, client_data, call_data)
Widget w;
caddr_t client_data;
caddr_t call_data;
{

exit(0);
}

Athena Widget Sample Program

302 z/VM: TCP/IP Programmer’s Reference

Chapter 8. Kerberos Authentication System

This chapter describes the Kerberos Authentication system and the routines that
you can use to write applications that make use of the ticket-granting system.

Kerberos is an authentication system that can be used within or across a TCP/IP
network to identify clients and authenticate connection requests.

Most conventional time-sharing systems require prospective users to identify
themselves to the system during the logon process. For example, in an VM
environment a CMS user must enter a CMS user ID and password to access the
applications running on the system. In other environments that contain
workstations, you cannot rely on the operating system to provide authentication.
Because of this limitation, a third party must authenticate the prospective user. In a
TCP/IP environment, Kerberos provides this authentication service. You must
supply a password only when first contacting Kerberos. You do not have to enter a
password for each remote service that you request.

The Kerberos system in TCP/IP consists of the following protocols and functions:
v Authentication server
v Ticket-granting server
v Kerberos database
v Administration server
v Kerberos applications library
v Applications
v User programs.

Authentication Server
When you log on to most computer systems, you must identify yourself with a
password. Initiating the Kerberos session is similar to logging on to any other
time-sharing system, except that Kerberos requires additional checks. The
authentication server provides a way for authenticated users to prove their identity
to other servers across a network. The authentication server reads the Kerberos
database to verify that the client making the request is the client named in the
request.

Name Structures
For Kerberos to authenticate a client, that client must first be assigned a Kerberos
name. A Kerberos name consists of three parts:

Parameter Description

principal name Specifies the unique name of a user (client) or service.

instance Specifies a label that is used to distinguish among variations of the
principal name. An instance allows for the possibility that the same
client or service can exist in several forms, which require distinct
authentication.

For users, an instance can provide different identifiers for different
privileges. For example, the admin instance provides special
privileges to the users assigned to it.

© Copyright IBM Corp. 1987, 2001 303

For services, an instance usually specifies the host name of the
machine that provides the service.

realm Specifies the domain name of an administrative entity. The realm
identifies each independent Kerberos site. The principal name and
instance are qualified by the realm to which they belong, and are
unique only within that realm. The realm is commonly the domain
name.

When writing a Kerberos name, the principal name is separated from the instance (if
not NULL) by a period. The realm follows, preceded by an @ sign. The following
are examples of valid Kerberos names:

NAME DESCRIPTION
billb Principal name
jis.admin Principal name and instance
srz@inorg.chem.edu Principal name, null instance, realm
trees.root@org.chem.edu Principal name, instance, realm

Tickets and Authenticators
Kerberos uses the combination of a ticket and an authenticator to provide
authentication.

A ticket includes the following information:
v The client’s identity
v A session key
v A time stamp
v A lifetime for the ticket
v A service name

This information is encrypted in a private key, which is known only to Kerberos
and the end server. A ticket can be used multiple times by the named client to gain
access to the named server for the lifetime of the ticket.

An authenticator contains the name of the client, the client’s fully qualified domain
name, and the current time. The authenticator maintains this initial information to
keep other users from capturing and using tickets not granted to them and
impersonating another user. This initial information, when compared against the
information contained in the ticket, verifies that the client presenting the ticket is
the same client to whom the ticket was issued. Unlike a ticket, the authenticator
can be used only once. A new authenticator must be obtained each time a client
program needs access to a service.

Note: The design of Kerberos assumes that system clocks are synchronized to
within a few minutes on all machines that run Kerberos-authenticated
services.

Communicating with the Authentication Server
The following four steps describe the authentication process. You must:
1. Establish your identity with the authentication server.
2. Obtain the initial ticket to access the ticket-granting server.
3. Request a ticket for a specific service from the ticket-granting server.
4. Present your ticket to the end server.

Kerberos Authentication System

304 z/VM: TCP/IP Programmer’s Reference

When you contact Kerberos, you are prompted for your user name. A request is
then sent to the authentication server containing your name and the name of a
special service called the ticket-granting server.

The authentication server searches the Kerberos database for your user name. If
your user name appears in the database, the authentication server generates a
random session key and the initial ticket.

The information contained in the ticket is encrypted in a key known only to the
ticket-granting server and to the authentication server. The encrypted ticket and
the session key are further encrypted, using a key known only to the Kerberos
authentication server and the requester, and derived from the user’s password.

In the TCP/IP implementation of Kerberos, the network service that supplies the
tickets is called the KERBEROS server. The KERBEROS server is comprised of the
authentication server and the ticket-granting server. For information about how to
set up the KERBEROS server, see TCP/IP Planning and Customization.

When you receive the initial ticket, you are prompted for your password, which is
converted to a data encryption standard key and used to decrypt the response
from the authentication server. Your password is not passed to Kerberos; it is only
used locally to decrypt the initial ticket. The ticket and session key, along with the
other information provided by the authentication server, are kept for future use.

Ticket-Granting Server
A ticket, granted by the ticket-granting server, is valid only for a single, specific
service. You must obtain a ticket for each service you wish to access. The ticket can
be used to access the service over the lifetime of the ticket.

The ticket granting server generates tickets to be used by client applications with
different servers. To obtain a ticket for a new service, the program must provide
the ticket-granting server with the name of the target service, as well as the initial
ticket and the authenticator. The ticket-granting server again compares information,
builds a ticket for the new service, and generates a new random session key. This
information is encrypted and returned to the client program to authorize access to
the new service.

Accessing a Service
Once you have been authenticated and obtained a ticket to a service, the client
application then builds an authenticator, encrypting your name and fully qualified
domain name, as well as the current time, with the session key that was originally
received. With this information you can prove your identity for the lifetime of the
ticket-granting ticket.

The target service decrypts the ticket, and uses the session key included in the
ticket to decrypt the authenticator. The target service compares the information
contained in the ticket and the authenticator. If the information matches, the
request for the service is authorized. If the information does not match, the request
for service is denied.

A client can request that a server prove its identity. To do so, the server returns an
authenticator time stamp, incremented by one, back to the client.

Kerberos Authentication System

Chapter 8. Kerberos Authentication System 305

Figure 31 summarizes the ticket-granting process for accessing a service.

1. Client asks the authentication server for a ticket to the ticket-granting server.
2. The authentication server provides the client with a ticket to the ticket-granting

server.
3. Client asks the ticket-granting server for a ticket to a service.
4. Ticket-granting server provides the client with a ticket to a service.
5. Client accesses the service.
6. Service returns incremented time stamp.

Note: The authentication server and the ticket-granting server are implemented in
a single program (KERBEROS authentication server or KERBEROS server).

Kerberos Database
Kerberos requires that each realm maintain a database of Kerberos user names
(principal names), their private session keys, their expiration dates, and other
administrative information. The authentication server reads this database to
authenticate clients, but cannot change or update the information residing on the
database. The administration server has both read and write authority. Only one
Kerberos database can be maintained in each realm. TCP/IP provides this database
with its Kerberos support.

Administration Server
The Administration server, known as ADMSERV, provides a read-write interface to
the Kerberos database. You can request to change a password by using the
KPASSWD program. Database administrators use the KADMIN program to add or
update information from the database. All transactions performed with the
ADMSERV server are logged. Both KADMIN and KPASSWD client applications
use the authentication server rather than the ticket-granting server to get a ticket
for the ADMSERV server. You must enter the password.

The Figure 32 on page 307 summarizes the steps involving the Kerberos database
and the ADMSERV.

┌───────┬────────────────┐ 1 ┌─────────────┐ ┌──────────────────┐
│ Kerberos │Í───────────┤ │ │ │
│ D │ Authentication │ 2 │ User │ │ │
│ A Server ├───────────Ê│ │ │ │
│ T │ │ │ │ │ Server │
│ A - - - - - - - - │ │- - - - - - -│ 5 │ │
│ B │ Ticket │ 3 │ ├──────────Ê│ │
│ A Granting │Í───────────┤ Client │ 6 │ │
│ S │ Server │ 4 │ │Í──────────┤ │
│ E ├───────────Ê│ │ │ │
└───────┴────────────────┘ └─────────────┘ └──────────────────┘

Figure 31. Protocol for Accessing a Service

Kerberos Authentication System

306 z/VM: TCP/IP Programmer’s Reference

Kerberos C Language Applications Library
The Kerberos applications library provides an interface for client and server
application programs. Usually these applications are used to write application
programs in the C language. The applications library also contains routines for
creating and reading authentication requests, and routines for creating and passing
safe or private messages.

krb_mk_req() is the most commonly used client-side routine. krb_rd_req() is the
most commonly used server-side routine.

The following is an example of a typical client-server exchange:
1. The client supplies krb_mk_req() with the service principal name, service

instance, and realm of the target service.
2. The client sends the message returned by the krb_mk_req() routine over the

network to the server-side of the application.
3. When the server receives this message, it calls krb_rd_req().
4. krb_rd_req() authenticates the identity of the requester and returns either

permission or denial to access the application program.

Note: If the application requires that the messages exchanged between client and
server be secret, the krb_mk_priv() and krb_rd_priv() routines are used to
encrypt and decrypt the exchanges.

┌────────────────────┐
│ │
│ User/Administrator │
│ │
└────────────────────┘

│ õ
1 │ │ 3
│ │
ø │

┌────────────────────┐ ┌────────────────────┐
│ │ ──────Ê │ Kerberos │
│ ADMSERV Server │ 2 │ Database │
│ │ Í────── │ │
└────────────────────┘ └────────────────────┘

1. The user or administrator makes a request to the ADMSERV server, using the KPASSWD
user command or the KADMIN utility program.

2. The following two steps occur:
a. The ADMSERV verifies the identity of a requestor.
b. ADMSERV updates or retrieves the database entry.

3. The ADMSERV server informs the client of the result of the operation.

Notes:

1. The client does not need an initial ticket for this operation.

2. The ADMSERV has read/write access to the database, while the VMKERB server has
read only access to the same database.

Figure 32. Protocol for Changing the Kerberos Database

Kerberos C Language Applications Library

Chapter 8. Kerberos Authentication System 307

Kerberos Routines Reference
This section provides a reference for Kerberos routines. Table 70 provides the
names, descriptions, and page numbers of the routines, located in the KRB
TXTLIB, which are needed to interface with Kerberos.

Table 70. Kerberos krb_ Routines Reference

Kerberos krb_ Routine Description page

krb_get_cred() Searches the caller’s ticket file for a
ticket containing the specified
principal name, instance, and realm.

309

krb_kntoln() Converts a Kerberos name to a local
name.

309

krb_mk_err() Constructs an application level error
message that can be used in
conjunction with the krb_mk_priv()
and krb_mk_safe() routines.

310

krb_mk_priv() Creates an encrypted, authenticated
message from any arbitrary
application data pointed to by in.

310

krb_mk_req() Takes a pointer to a text structure in
which an authenticator is to be built.
It also takes the principal name,
instance, and realm of the service to be
used and an optional checksum.

311

krb_mk_safe() Creates an authenticated, but
unencrypted message from any
arbitrary application data pointed to
by in.

311

krb_rd_err() Unpacks a message received from
krb_mk_err().

312

krb_rd_priv() Decrypts and authenticates a message
received from krb_mk_priv().

313

krb_rd_req() Finds out information about the
principal name when a request has
been made to a service.

314

krb_rd_safe() Authenticates a message received
from krb_mk_safe().

315

krb_recvauth() Called by the server to verify an
authentication message received from
a client.

315

krb_sendauth() Prepares and transmits a ticket over a
file descriptor.

316

Client Commands
Kerberos provides the following end-user commands:
v KINIT, to log on to Kerberos
v KLIST, to display Kerberos tickets
v KDESTROY, to destroy Kerberos tickets
v KPASSWD, to change a Kerberos password

For information about how to use these commands, see TCP/IP User’s Guide.

Kerberos Routines Reference

308 z/VM: TCP/IP Programmer’s Reference

Applications
You are responsible for securing your particular application through Kerberos.
Programmers can write routines to call the applications library as an interface to
their applications programs.

For a sample of a typical client program that establishes a connection on a remote
server and a typical service program that authenticates a client’s service request,
see “Sample Kerberos Programs” on page 318.

Kerberos Routines
This section provides the syntax, parameters, and other appropriate information for
routines, located in the KRB TXTLIB, which are needed to interface with Kerberos.

krb_get_cred()

Parameter Description

service Specifies the first part of the Kerberos name (principal name) of the
target service.

instance Specifies the second part of the Kerberos name of the target
service.

realm Specifies the third part of the Kerberos name of the target service.

c Points to the structure, which is filled with credentials information.

Description: The krb_get_cred() routine searches the caller’s ticket file (tickets are
maintained in the TMP TKT0 file) for a ticket containing the specified principal
name, instance, and realm. If a matching ticket is found, krb_get_cred() fills the
specified CREDENTIALS structure with the ticket information. See the KRB.H
header file for a definition of the CREDENTIALS structure.

Return Values: If successful, krb_get_cred() returns KSUCCESS. The error
GC_TKFIL is returned when any of the following occur:
v The ticket cannot be read.
v The ticket file does not belong to the user.
v The ticket file is not a regular file.

If the ticket file cannot be found, krb_get_cred() returns GC_NOTKT.

See the KRB.H header file for a definition of the GC_TKFIL and GC_NOTKT
return codes.

krb_kntoln()

int krb_get_cred(service, instance, realm, c)
char *service;
char *instance;
char *realm;
CREDENTIALS *c;

int krb_kntoln(ad, lname)
AUTH_DAT *ad;
char *lname;

Applications

Chapter 8. Kerberos Authentication System 309

Parameter Description

ad Specifies an authentication structure containing a Kerberos name.

lname Specifies a local name.

Description: The krb_kntoln() routine takes a Kerberos name in an AUTH_DAT
structure and checks that the instance is NULL and that the realm is the same as the
local realm.

Return Values: KSUCCESS indicates success. The principal name is returned in
lname. KFAILURE indicates an error.

krb_mk_err()

Parameter Description
out Points to the output buffer area.
code Specifies an application-specific error code.
string Specifies an application-specific error string.

Description: The krb_mk_err() routine constructs an application-level error
message consisting of the protocol version number, the message type, the host byte
order, the specified code, and the text string. The krb_mk_err() routine returns a
packet pointed to by out. The returned packet can be used in conjunction with the
krb_mk_priv() and krb_mk_safe() routines.

The counterpart of the krb_mk_err() routine is the krb_rd_err() routine, which
reads the message that is returned.

Return Values: krb_mk_error() returns an application-level error message pointed
to by out. The long integer that is returned specifies the length of the message
pointed to by out.

krb_mk_priv()

Parameter Description
in Points to an input structure containing application data.
out Points to the output structure containing the encrypted data.
in_length Specifies the length of the application data pointed to by in.
schedule Specifies the session key schedule.
key Points to a private session key.
sender Specifies the fully qualified domain name of the sender.
receiver Specifies the fully qualified domain name of the receiver.

long krb_mk_err(out, code, string)
unsigned char *out;
long code;
char *string;

long krb_mk_priv(in, out, in_length, schedule, key, sender, receiver)
unsigned char *in;
unsigned char *out;
unsigned long in_length;
des_key_schedule schedule;
C_Block key;
struct sockaddr_in *sender;
struct sockaddr_in *receiver;

krb_kntoln()

310 z/VM: TCP/IP Programmer’s Reference

Description: The krb_mk_priv() routine constructs an AUTH_MSG_PRIV message.
The routine takes user data pointed to by in, of length specified by in_length, and
creates a packet in out. This packet consists of the message type, the host byte
order, user data, a time stamp, and the network address of the sender and receiver.

The packet is encrypted using the supplied key and schedule. The returned packet is
decoded by the krb_rd_priv() routine in the receiver. In addition to providing
privacy, this protocol message protects against modifications, insertions, or replays.

Return Values: krb_mk_priv() places the encrypted and authenticated message and
header information in the area pointed to by out. The length of the output is
returned upon success; the value −1 indicates an error.

krb_mk_req()

Parameter Description

authent Points to the text structure in which an authenticator (including a
service ticket) is to be built.

service Specifies the first part of the Kerberos name (principal name) of the
service.

instance Specifies the second part of the Kerberos name of the service.

realm Specifies the third part of the Kerberos name of the service.

checksum Specifies any long integer supplied by the calling routine for
verification.

Description: The krb_mk_req() routine generates an authenticator by taking the
principal name, instance, and realm of the service and an optional checksum. The
application decides how to generate the checksum.

krb_mk_req() then retrieves a ticket for the desired service and creates an
authenticator. If the ticket is not in the ticket file, krb_mk_req() obtains the desired
ticket from the KERBEROS server. The calling routine passes the returned
authenticator to the service, where it is read by krb_rd_req().

The authenticator cannot be modified without the session key contained in the
ticket. The checksum can be used to verify the authenticity of the returned data.

Return Values: krb_mk_req() returns an authenticator, which is built in the authent
structure and is accessible to the calling procedure. The return code is an index
into an array of error messages called krb_err_txt. A return code of KSUCCESS
indicates success; otherwise, an error.

krb_mk_safe()

extern char *krb_err_txt[];
int krb_mk_req(authent, service, instance, realm, checksum)
KTEXT authent;
char *service;
char *instance;
char *realm;
unsigned long checksum;

krb_mk_priv()

Chapter 8. Kerberos Authentication System 311

Parameter Description
in Points to an input structure containing application data.
out Points to the output structure containing the encrypted data.
in_length Indicates the length of the application data pointed to by in.
key Points to a private session key.
sender Specifies the fully qualified domain name of the sender.
receiver Specifies the fully qualified domain name of the receiver.

Description: The krb_mk_safe() routine constructs an AUTH_MSG_SAFE message.
The routine takes user data pointed to by in of length in_length. The krb_mk_safe()
routine then creates a packet in out consisting of the user data, a time stamp, the
Kerberos protocol version, the host byte order, and the network addresses of the
sender and receiver. A checksum is derived from this information using the
specified private session key. This protocol message does not provide privacy (the
data is not encrypted), but it does protect against modifications, insertions, or
replays. The message is received and verified using the krb_rd_safe() function.

The authentication provided by this routine is not as stringent as that provided by
krb_mk_priv().

Return Values: krb_mk_safe() places the encapsulated message and header
information in the area pointed to by out. The length of the output is returned
upon success; the value −1 indicates an error.

krb_rd_err()

Parameter Description

in Points to the beginning of the received message.

in_length Indicates the length of the received message pointed to by in.

code Points to a value filled with the error value provided by the
application.

msg_data Points to the MSG_DAT structure, defined in KRB.H, which is
filled by krb_rd_err().

Description: The krb_rd_err() routine unpacks a message received from
krb_mk_err(), and fills the following MSG_DAT fields:

Parameter Description
app_data Points to the application error text.
app_length Indicates the in_length specified by the calling routine.

krb_rd_err() detects host byte order differences and swaps bytes accordingly.

long krb_mk_safe(in, out, in_length, key, sender, receiver)
unsigned char *in;
unsigned char *out;
unsigned long in_length;
C_Block *key;
struct sockaddr_in *sender;
struct sockaddr_in *receiver;

int krb_rd_err(in, in_length, code, msg_data)
unsigned char *in;
unsigned long in_length;
long *code;
MSG_DAT *msg_data;

krb_mk_safe()

312 z/VM: TCP/IP Programmer’s Reference

Return Values: krb_rd_err() places the decrypted message and header information
in the area pointed to by msg_data. The value 0 (RD_AP_OK) indicates success.
Other return codes that indicate failure are:
v RD_AP_VERSION
v RD_AP_MSG_TYPE

See the KRB.H header file for a description of these return codes. See the PROT.H
header file for the definition, current protocol version, and possible Kerberos
message types.

krb_rd_priv()

Parameter Description

in Points to the beginning of the received message.

in_length Indicates the length of the received message pointed to by in.

schedule Specifies the session key schedule.

key Points to a private session key.

sender Specifies the fully qualified domain name of the sender to be
checked against the message pointed to by in.

receiver Specifies the fully qualified domain name of the receiver to be
checked against the message pointed to by in.

msg_data Points to the MSG_DAT structure, defined in KRB.H, which is
filled by krb_rd_priv().

Description: The krb_rd_priv() routine decrypts and authenticates a message
received from krb_mk_priv(), and, if successful, fills the following MSG_DAT
fields:

Parameter Description
app_data Points to the decrypted application data.
app_length Indicates the length of the app_data field.
time_sec Specifies the time stamps in the message.
time_5ms Specifies the time stamps in the message.

krb_rd_priv() detects host byte order differences and swaps bytes accordingly.
krb_rd_priv() checks for additional errors (see Return Values).

Return Values: krb_rd_priv() places the decrypted message and header
information in the area pointed to by msg_data. The value 0 (RD_AP_OK) indicates
success; a return code indicates an error. Valid error codes are:
v RD_AP_VERSION
v RD_AP_MSG_TYPE
v RD_AP_MODIFIED
v RD_AP_TIME

long krb_rd_priv(in, in_length, schedule, key, sender, receiver, msg_data)
unsigned char *in;
unsigned long in_length;
des_key_schedule schedule;
C_Block key;
struct sockaddr_in *sender;
struct sockaddr_in *receiver;
MSG_DAT *msg_data;

krb_rd_err()

Chapter 8. Kerberos Authentication System 313

See the KRB.H header file for a description of these return codes. See the PROT.H
header file for the definition, current protocol version, and possible Kerberos
message types.

krb_rd_req()

Parameter Description

authent Specifies the authenticator of type KTEXT.

service Specifies the first part of the Kerberos name (principal name).

instance Specifies the second part of the Kerberos name.

from_addr Specifies the address of the host originating the request, obtained
from the incoming packet, to check against the client’s host address
in the authenticator. This is ignored in the current version.

ad Points to the structure AUTH_DAT, which is filled with
information obtained from the authenticator.

filename Specifies an optional file name containing the secret keys for the
service.

Description: The krb_rd_req() routine reads an authentication request and returns
information about the identity of the requestor or an indication that the identity
information was not authentic.

The service and instance parameters name the desired service and are used to get
the service’s key from a key file to decrypt the ticket in the received message, and
compare it against the service name contained in the ticket.

The krb_rd_req() routine is used by a service to obtain information about the
principal name when a request has been made to a service. The application protocol
passes the authenticator from the client to the service. The authenticator is then
passed to krb_rd_req() to extract the desired information.

If the value of filename is a null string, the ETC SRVTAB file (the default key file) is
searched to find the secret keys. If the value of filename is NULL, the routine
assumes that the keys have been set and does not search for them. For information
on ETC SRVTAB, see TCP/IP Planning and Customization.

Return Values: The value 0 (RD_AP_OK) indicates success. If a packet was forged,
modified, or replayed, authentication fails. If the authentication fails, a nonzero
value is returned indicating the particular problem encountered. Valid error codes
are:
v RD_AP_VERSION
v RD_AP_MSG_TYPE
v RD_AP_MODIFIED
v RD_AP_UNDEC
v RD_AP_INCON
v RD_AP_BADD

int krb_rd_req(authent, service, instance, from_addr, ad, filename)
KTEXT authent;
char *service;
char *instance;
unsigned long from_addr;
AUTH_DAT *ad;
char *filename;

krb_rd_priv()

314 z/VM: TCP/IP Programmer’s Reference

v RD_AP_TIME
v RD_AP_NYV
v RD_AP_EXP

See the KRB.H header file for a description of these return codes. See the PROT.H
header file for the definition, current protocol version, and possible Kerberos
message types.

krb_rd_safe()

Parameter Description

in Points to the beginning of the received message.

in_length Indicates the length of the received message pointed to by in.

key Points to a private session key.

sender Specifies the fully qualified domain name of the sender to be
checked against the message pointed to be in.

receiver Specifies the fully qualified domain name of the receiver to be
checked against the message pointed to be in.

msg_data Points to the MSG_DAT structure, defined in KRB.H, which is
filled by krb_rd_safe().

Description: The krb_rd_safe() routine authenticates a message received from
krb_mk_safe(), and, if successful, fills the following MSG_DAT fields:

Parameter Description
app_data Points to the decrypted application data.
app_length Indicates the length of the app_data field.
time_sec Specifies the time stamps in the message.
time_5ms Specifies the time stamps in the message.

krb_rd_safe() detects host byte order differences and swaps bytes accordingly.
krb_rd_safe() checks for additional errors (see Return Values).

Return Values: The authenticated message is placed in the area pointed to by
msg_data. The value 0 (RD_AP_OK) indicates success; otherwise, a return code
indicates an error. Valid error codes are:
v RD_AP_VERSION
v RD_AP_MSG_TYPE
v RD_AP_MODIFIED
v RD_AP_TIME

See the KRB.H header file for a description of these return codes. See the PROT.H
for the definition, current protocol version, and possible Kerberos message types.

krb_recvauth()

long krb_rd_safe(in, in_length, key, sender, receiver, msg_data)
unsigned char *in;
unsigned long in_length;
C_Block *key;
struct sockaddr_in *sender;
struct sockaddr_in *receiver;
MSG_DAT *msg_data;

krb_rd_req()

Chapter 8. Kerberos Authentication System 315

Parameter Description

options Indicates a bit-field of selected options. The only option valid for
krb_recvauth() is KOPT_DO_MUTUAL.

fd Specifies the socket descriptor from which to read the
authentication message (and write to, if mutual authentication is
requested).

ticket Specifies a Kerberos ticket, which is part of the received message
sent by the client.

service Specifies the first part of the Kerberos name (principal name) of the
target service.

instance Specifies the second part of the Kerberos name of the target
service.

faddr Specifies the network address of the sending host (client).

laddr Specifies the network address of the local server. Can be NULL,
unless mutual authentication is requested.

kdata Specifies the authentication information extracted from the
message.

filename Specifies the name of the file containing the server’s keys. filename
is passed to krb_rd_req(). If filename is NULL, the ETC SRVTAB
file is used.

schedule Specifies the session key schedule.

version Specifies the version string, which should be large enough to hold
a KRB_SENDAUTH_VLEN character string (defined in KRB.H).

Description: The krb_recvauth() routine is called by the server to verify an
authentication message received from a client. The client must use the
corresponding routine, krb_sendauth(), to prepare and transmit this authentication
message. For an example of the usage of krb_recvauth(), see “Sample Kerberos
Programs” on page 318.

Return Values: The integer KSUCCESS indicates that the authentication was
successful. KFAILURE indicates that the authentication has failed.

krb_sendauth()

int krb_recvauth(options, fd, ticket, service, instance, faddr, laddr, kdata, filename,
schedule, version)
long options;
int fd;
KTEXT ticket;
char *service;
char *instance;
struct sockaddr_in *faddr;
struct sockaddr_in *laddr;
AUTH_DAT *kdata;
char *filename;
des_key_schedule schedule;
char *version;

krb_recvauth()

316 z/VM: TCP/IP Programmer’s Reference

Parameter Description

options Indicates a bit-field of selected options.

fd Specifies the socket descriptor to write to (and read from, if mutual
authentication is requested).

ticket Indicates the area where the ticket is returned when any option
except KOPT_DONT_MK_REQ is requested. When
KOPT_DONT_MK_REQ is requested, you must supply a value for
ticket.

service Specifies the first part of the Kerberos name (principal name) of the
target service.

instance Specifies the second part of the Kerberos name of the target
service.

realm Specifies the third part of the Kerberos name of the target service.
If realm is NULL, the local realm is used.

checksum Specifies any long integer supplied by the calling routine for
mutual authentication purposes.

msg_data Points to the MSG_DAT structure, defined in KRB.H, which is
filled by krb_sendauth(), if the mutual authentication option is
specified.

cred Specifies the space you must allocate to hold the session key.

schedule Specifies the space you must allocate to hold the session key
schedule.

laddr Specifies the network address of the client.

faddr Specifies the network address of the server.

version Specifies the version string, which should be large enough to hold
a KRB_SENDAUTH_VLEN character string (as defined in KRB.H).

Description: The krb_sendauth() routine takes the supplied information and
prepares and transmits a ticket over a file descriptor for a desired service, instance,
and realm, and performs mutual authentication if requested.

The following options can be specified:
v KOPT_DO_MUTUAL
v KOPT_DONT_CANON
v KOPT_DONT_MK_REQ

int krb_sendauth(options, fd, ticket, service, instance, realm, checksum, msg_data, cred,
schedule, laddr, faddr, version)
long options;
int fd;
KTEXT ticket;
char *service;
char *instance;
char *realm;
unsigned long checksum;
MSG_DAT *msg_data;
CREDENTIALS *cred;
struct sockaddr_in *faddr;
struct sockaddr_in *laddr;
des_key_schedule schedule;
char *version;

krb_sendauth()

Chapter 8. Kerberos Authentication System 317

The KOPT_DO_MUTUAL option requests mutual authentication. If you select
KOPT_DO_MUTUAL, you must supply the checksum, msg_data, cred, schedule, laddr,
and faddr variables. The krb_mk_priv() routine performs the mutual authentication
on the remote side. The krb_rd_priv() routine performs the mutual authentication
on the local side.

The KOPT_DONT_CANON option requests that instance not be used as a host
name.

The KOPT_DONT_MK_REQ option requests that a server ticket not be supplied by
the KERBEROS server. You must supply the ticket variable.

For an example of the usage of krb_sendauth(), see “Sample Kerberos Programs”.

Return Values: KSUCCESS indicates that a ticket was successfully transmitted.
KFAILURE indicates an error.

Sample Kerberos Programs
This section provides examples of the following programs:
v Kerberos client (SAMPLE@C C).
v Kerberos server (SAMPLE@S C).

Kerberos Client
The following is an example of a Kerberos client program.
/*
* $Source: /mit/kerberos/src/appl/sample/RCS/sample_client.c,v $
* $Author: jtkohl $
*
* Copyright 1987, 1988 by the Massachusetts Institute of Technology.
*
* For copying and distribution information,
* please see the file <mit-copyright.h>.
*
* sample_client:
* A sample Kerberos client, which connects to a server on a remote host,
* at port “sample” (be sure to define it in /etc/services)
* and authenticates itself to the server. The server then writes back
* (in ASCII) the authenticated name.
*
* Usage:
* sample_client <hostname> <checksum>
*
* <hostname> is the name of the foreign host to contact.
*
* <checksum> is an integer checksum to be used for the call to krb_mk_req()
* and mutual authentication
*
*/

#define VM
#include <mit-copy.h>
#include <stdio.h>
#include <types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <des_ext.h>
#include <krb_ext.h>
#include <manifest.h>

krb_sendauth()

318 z/VM: TCP/IP Programmer’s Reference

#include <krb.h>
#include <errno.h>
#include <tcperrno.h>

#define SAMPLE_SERVICE “sample”

extern char *malloc();

main(argc, argv)
int argc;
char **argv;
{

struct servent *sp;
struct hostent *hp;
struct sockaddr_in sin, lsin;
char *remote_host;
int status;
int sock, namelen;
KTEXT_ST ticket;
char buf[512];
long authopts;
MSG_DAT msg_data;
CREDENTIALS cred;
Key_schedule sched;
long cksum;

if (argc != 3) {
fprintf(stderr, “usage: %s <hostname> <checksum>\n”,argv[0]);
exit(1);

}

/* convert cksum to internal rep */
cksum = atol(argv[2]);

(void) printf(“Setting checksum to %ld\n”,cksum);

/* clear out the structure first */
(void) memset((char *)&sin, 0, sizeof(sin));

/* find the port number for knetd */
sp = getservbyname(SAMPLE_SERVICE, “tcp”);
if (!sp) {

fprintf(stderr,
“unknown service %s/tcp; check etc services file\n”,
SAMPLE_SERVICE);

exit(1);
}
/* copy the port number */
sin.sin_port = sp->s_port;
sin.sin_family = AF_INET;

/* look up the server host */
hp = gethostbyname(argv[1]);
if (!hp) {

fprintf(stderr, “unknown host %s\n”,argv[1]);
exit(1);

}

/* copy the hostname into dynamic storage */
remote_host = malloc(strlen(hp->h_name) + 1);
(void) strcpy(remote_host, hp->h_name);

/* set up the address of the foreign socket for connect() */
sin.sin_family = hp->h_addrtype;
(void) memcpy((char *)sin_addr,

(char *)hp->h_addr,

Kerberos Client

Chapter 8. Kerberos Authentication System 319

sizeof(hp->h_addr));

/* open a TCP socket */
sock = socket(PF_INET, SOCK_STREAM, 0);
if (sock < 0) {

tcperror(“socket”);
exit(1);

}

/* connect to the server */
if (connect(sock, &sin, sizeof(sin)) < 0) {

tcperror(“connect”);
close(sock);
exit(1);

}

/* find out who I am, now that we are connected and therefore bound */
namelen = sizeof(lsin);
if (getsockname(sock, (struct sockaddr *) &lsin, &namelen) < 0) {

tcperror(“getsockname”);
close(sock);
exit(1);

/* call Kerberos library routine to obtain an authenticator,
pass it over the socket to the server, and obtain mutual
authentication. */

authopts = KOPT_DO_MUTUAL;
status = krb_sendauth(authopts, sock, &ticket,

SAMPLE_SERVICE, remote_host,
NULL, cksum, &msg_data, &cred,
sched, &lsin, &sin, “VERSION9”);

if (status != KSUCCESS) {
fprintf(stderr, “%s: cannot authenticate to server: %s\n”,

argv[0], krb_err_txt[status]);
exit(1);

}

/* After we send the authenticator to the server, it will write
back the name we authenticated to. Recv what it has to say. */

status = recv(sock, buf, 512,0);
if (status < 0) {

printf(“error: recv\n”);
exit(1);

}

/* make sure it’s null terminated before printing */
if (status < 512)

buf[status] = ’\0’;

printf(“The server says:\n%s\n”, buf);

close(sock);
exit(0);

}

Kerberos Server
The following is an example of a Kerberos server program.
/*
* $Source: /mit/kerberos/src/appl/sample/RCS/sample_server.c,v $
* $Author: jtkohl $
*
* Copyright 1987, 1988 by the Massachusetts Institute of Technology.
*
* For copying and distribution information,

Kerberos Client

320 z/VM: TCP/IP Programmer’s Reference

* please see the file <mit-copyright.h>.
*
* sample_server:
* A sample Kerberos server, which reads a ticket from a TCP socket,
* decodes it, and writes back the results (in ASCII) to the client.
*
* Usage:
* sample_server
*
* file descriptor 0 (zero) should be a socket connected to the requesting
* client (this will be correct if this server is started by inetd).
*/

#define VM
#include <mit-copy.h>
#include <stdio.h>
#include <types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <krb.h>
#include <krb_ext.h>
#include <des_ext.h>
#include <manifest.h>
#include <netdb.h>
#include <syslog.h>
#include <errno.h>
#include <tcperrno.h>
#define SAMPLE_SERVICE “sample”
#define SAMPLE_SERVER “sample”
#define SRVTAB “”

main()
{

struct sockaddr_in peername, myname;
int namelen = sizeof(peername);
int status, count, len;
long authopts;
AUTH_DAT auth_data;
KTEXT_ST clt_ticket;
Key_schedule sched;
char instance[INST_SZ];
char version[9];
char retbuf[512];
char lname[ANAME_SZ];
int s, ns;
struct servent *sp;

openlog(“sample_server”, 0);

sp = getservbyname(SAMPLE_SERVICE, “tcp”);
if (!sp) {

fprintf(stderr,
“unknown service %s/tcp; check etc services file\n”,
SAMPLE_SERVICE);

exit(1);
}
/* copy the port number */
myname.sin_port = sp->s_port;
myname.sin_family = AF_INET;

s = socket(AF_INET, SOCK_STREAM, 0);
if (s < 0) {

printf(“sample_s: socket”);
exit(1);

}
if (bind(s, &myname, sizeof myname) < 0) {

printf(“sample_s: bind”);
exit(1);

Kerberos Server

Chapter 8. Kerberos Authentication System 321

}
if (listen(s, 10) < 0) {

tcperror(“sample_s: listen”);
exit(1);

}
again:

namelen = sizeof(peername);
ns = accept(s, &peername, &namelen);
/*
* To verify authenticity, we need to know the address of the
* client.
*/

if (getpeername(ns, (struct sockaddr *)&peername, &namelen) < 0) {
syslog(LOG_ERR, “getpeername: %m”);
exit(1);

}
/* for mutual authentication, we need to know our address */
namelen = sizeof(myname);
if (getsockname(ns, (struct sockaddr *)&myname, &namelen) < 0) {
syslog(LOG_ERR, “getsocknamename: %m”);
exit(1);
}

/* read the authenticator and decode it. Since we
don’t care what the instance is, we use “*” so that krb_rd_req
will fill it in from the authenticator */

(void) strcpy(instance, “*”);

/* we want mutual authentication */
authopts = KOPT_DO_MUTUAL;
status = krb_recvauth(authopts, ns, &clt_ticket,

SAMPLE_SERVER, instance, &peername, &myname, &auth_data,
SRVTAB, sched, version);

if (status != KSUCCESS) {
syslog(LOG_ERR, “Kerberos error: %s\n”, krb_err_txt[status]);
(void) sprintf(retbuf, “Kerberos error: %s\n”,

krb_err_txt[status]);
} else {

/* Check the version string (8 chars) */
if (strncmp(version, “VERSION9”, 8)) {

/* didn’t match the expected version */
/* could do something different, but we just log an error

and continue */
version[8] = ’\0’; /* make sure null term */
syslog(LOG_ERR, “Version mismatch: ’%s’ isn’t ’VERSION9’”,

version);
}
/* now that we have decoded the authenticator, translate

the kerberos principal.instance@realm into a local name */
if (krb_kntoln(&auth_data, lname) != KSUCCESS)

strcpy(lname,
“*No local name returned by krb_kntoln*”);

/* compose the reply */
sprintf(retbuf,

“You are %s.%s@%s (local name %s),\n at address %s,
version %s,

cksum %ld\n”,
auth_data.pname,
auth_data.pinst,
auth_data.prealm,
lname,
inet_ntoa(peername.sin_addr),
version,
auth_data.checksum);

}

Kerberos Server

322 z/VM: TCP/IP Programmer’s Reference

/* write back the response */
if ((count = send(ns, retbuf, (len = strlen(retbuf) + 1),0)) <

0) {
syslog(LOG_ERR,“write: %m”);
exit(1);

} else if (count != len) {
syslog(LOG_ERR, “write count incorrect: %d != %d\n”,

count, len);
exit(1);

}

/* close up and exit */
close(ns);
goto again;
exit(0);

}

Kerberos Server

Chapter 8. Kerberos Authentication System 323

Kerberos Server

324 z/VM: TCP/IP Programmer’s Reference

Chapter 9. SNMP Agent Distributed Program Interface

The Simple Network Management Protocol (SNMP) agent distributed program
interface (DPI) permits end users to dynamically add, delete, or replace
management variables in the local Management Information Base (MIB) without
requiring you to recompile the SNMP agent.

SNMP Agents and Subagents
SNMP defines an architecture that consists of network management stations
(SNMP clients), network elements (hosts and gateways), and network management
agents and subagents. The network management agents perform information
management functions, such as gathering and maintaining network performance
information and formatting and passing this data to clients when requested. This
information is collectively called the Management Information Base (MIB). For
more information about clients, agents, and the MIB, see the TCP/IP User’s Guide.

A subagent provides an extension to the functionality provided by the SNMP
agent. The subagent allows you to define your own MIB variables, which are
useful in your environment, and register them with the SNMP agent. When
requests for these variables are received by the SNMP agent, the agent passes the
request to the subagent. The subagent then returns a response to the agent. The
SNMP agent creates an SNMP response packet and sends the response to the
remote network management station that initiated the request. The existence of the
subagent is transparent to the network management station.

To allow the subagents to perform these functions, the SNMP agent binds to an
arbitrarily chosen TCP port and listens for connection requests. A well-known port
is not used. Every invocation of the SNMP agent potentially results in a different
TCP port being used.

A subagent of the SNMP agent determines the port number by sending a GET
request for the MIB variable, which represents the value of the TCP port. The
subagent is not required to create and parse SNMP packets, because the DPI C
language application program interface (API) has a library routine
query_DPI_port(). This routine handles the GET request and response called
Protocol Data Units (PDUs) necessary to obtain the port number of the TCP port
used by the agent for DPI requests. After the subagent obtains the value of the DPI
TCP port, it should make a TCP connection to the appropriate port. After a
successful connect(), the subagent registers the set of variables it supports with the
SNMP agent. When all variable classes are registered, the subagent waits for
requests from the SNMP agent.

Note: Although TCP/IP for VM V2R4 supports SNMP DPI 1.0 subagents, you
should recompile and link-edit the SNMP DPI subagents when upgrading to
DPI 1.1.

© Copyright IBM Corp. 1987, 2001 325

Processing DPI Requests
The SNMP agent can initiate three DPI requests: GET, SET, and GET-NEXT. These
requests correspond to the three SNMP requests that a network management
station can make. The subagent responds to a request with a response packet. The
response packet can be created using the mkDPIresponse() library routine, which is
part of the DPI API library.

The SNMP subagent can initiate only two requests: REGISTER and TRAP. For an
overview of the SNMP DPI, see Figure 33.

Notes:

1. The SNMP agent communicates with the SNMP manager by the standard
SNMP protocol.

2. The SNMP agent communicates with the TCP/IP layers and kernel (operating
system) in an implementation-dependent manner. It implements the standard
MIB II view.

3. An SNMP Subagent, running as a separate process (potentially even on another
machine), can register objects with the SNMP agent.

4. The SNMP agent decodes SNMP Packets. If such a packet contains a Get,
GetNext or Set request for an object registered by a subagent, it sends the
request to the subagent by a query packet.

5. The SNMP subagent sends responses back by a reply packet.
6. The SNMP agent then encodes the reply into an SNMP packet and sends it

back to the requesting SNMP manager.
7. If the subagent wants to report an important state change, it sends a trap

packet to the SNMP agent, which encodes it into an SNMP trap packet and
sends it to the manager(s).

┌─────────────────────────────────┐
│ Network │
│ Network Manager │
│ │
├─────────────────────────────────┤
│ SNMP Protocol │
└────────────┬────────────────────┘

õ | Get õ
| | GetNext | GetResponse

Trap | | Set |
| ø |

┌─────┴────────────────────┴──────┐ ┌──────────────────────┐
│ SNMP Protocol | | DPI Interface |
├────────────────────────┬────────┤ Reply │ ┌─────────────────┤
		Í───────────┤				
SNMP Agent				Client		
õ ┌───────────┼─Ê	MIB query					
		Get/Set	├───────────Ê		or	
Trap		info	SNMP			
├─────┼──────┼───────┐		trap		SNMP		
│ ø		DPI	Í───────────┤	Sub-Agent		
TCP/IP layers,						
Kernel			Í───────────┤			
└────────────────────┴───┴────────┘ Register └────┴─────────────────┘

Figure 33. SNMP DPI overview

SNMP Agent Distributed Program Interface

326 z/VM: TCP/IP Programmer’s Reference

Processing a GET Request
The DPI packet is parsed, using the pDPIpacket() routine, to get the object ID of
the requested variable. If the specified object ID of the requested variable is not
supported by the subagent, the subagent returns an error indication of
SNMP_NO_SUCH_NAME. Name, type, or value information is not returned. For
example:
unsigned char *cp;

cp = mkDPIresponse(SNMP_NO_SUCH_NAME,0);

If the object ID of the variable is supported, an error is not returned and the name,
type, and value of the object ID are returned using the mkDPIset() and
mkDPIresponse() routines. The following is an example of an object ID, whose
type is string, being returned.
char *obj_id;

unsigned char *cp;
struct dpi_set_packet *ret_value;
char *data;

/* obj_id = object ID of variable, like 1.3.6.1.2.1.1.1 */
/* should be identical to object ID sent in GET request */
data = a string to be returned;
ret_value = mkDPIset(obj_id,SNMP_TYPE_STRING,

strlen(data)+1,data);
cp = mkDPIresponse(0,ret_value);

Processing a SET Request
Processing a SET request is similar to processing a GET request, but you must pass
additional information to the subagent. This additional information consists of the
type, length, and value to be set.

If the object ID of the variable is not supported, the subagent returns an error
indication of SNMP_NO_SUCH_NAME. If the object ID of the variable is
supported, but cannot be set, an error indication of SNMP_READ_ONLY is
returned. If the object ID of the variable is supported, and is successfully set, the
message SNMP_NO_ERROR is returned.

Processing a GET_NEXT Request
Parsing a GET_NEXT request yields two parameters: the object ID of the requested
variable and the reason for this request. This allows the subagent to return the
name, type, and value of the next supported variable, whose name
lexicographically follows that of the passed object ID.

Subagents can support several different groups of the MIB tree. However, the
subagent cannot jump from one group to another. You must first determine the
reason for the request to then determine the path to traverse in the MIB tree. The
second parameter contains this reason and is the group prefix of the MIB tree that
is supported by the subagent.

If the object ID of the next variable supported by the subagent does not match this
group prefix, the subagent must return SNMP_NO_SUCH_NAME. If required, the
SNMP agent will call on the subagent again and pass a different group prefix.

SNMP Agent Distributed Program Interface

Chapter 9. SNMP Agent Distributed Program Interface 327

For example, if you have two subagents, the first subagent registers two group
prefixes, A and C, and supports variables A.1, A.2, and C.1. The second subagent
registers the group prefix B, and supports variable B.1.

When a remote management station begins dumping the MIB, starting from A, the
following sequence of queries is performed.

Subagent 1 is called:
get_next(A,A) == A.1
get_next(A.1,A) == A.2
get_next(A.2,A) == error(no such name)

Subagent 2 is then called:
get_next(A.2,B) == B.1
get_next(B.1,B) == error(no such name)

Subagent 1 is then called:
get_next(B.1,C) == C.1
get_next(C.1,C) == error(no such name)

Processing a REGISTER Request
A subagent must register the variables that it supports with the SNMP agent.
Packets can be created using the mkDPIregister() routine.

For example:
unsigned char *cp;

cp = mkDPIregister(’1.3.6.1.2.1.1.2.’);

Note: Object IDs are registered with a trailing dot (“.”). Although DPI 1.0 level did
accept an Object ID without a trailing dot, the new level (DPI 1.1) does not.

Processing a TRAP Request
A subagent can request that the SNMP agent generate a TRAP for it. The subagent
must provide the desired values for the generic and specific parameters of the
TRAP. The subagent can optionally provide a name, type, and value parameter.
The DPI API library routine mkDPItrap() can be used to generate the TRAP packet.

Compiling and Linking
To compile your program, you must include the SNMP_DPI.H header file.

To compile and link your applications, use the following procedures:
1. To set up the C environment, enter the following commands:

SET LDRTBLS nn
GLOBAL LOADLIB SCEERUN
GLOBAL TXTLIB SCEELKED

2. To compile your program, enter one of the following commands:
v Place compile options on the CC command:

CC filename (def(VM)

v Place #define VM in the first line of all user’s C source files:
CC filename

3. To generate an executable module, enter the following command:

SNMP Agent Distributed Program Interface

328 z/VM: TCP/IP Programmer’s Reference

TCPLOAD load_list control_file c (TXTLIB DPILIB

Notes:

1. It is necessary to global CMSLIB TXTLIB only when running in 370 mode.
2. Make sure you have access to the IBM C for VM/ESA Compiler and to the

TCPMAINT 592 minidisk.
3. For the syntax of the TCPLOAD EXEC, see “TCPLOAD EXEC” on page 2 and

for the syntax of the SET LDRTBLS command, see “SET LDRTBLS Command”
on page 4.

SNMP DPI Reference
The following table provides a reference for SNMP DPI. Table 71 describes each
SNMP DPI routine supported by TCP/IP, and identifies the page in the book
where you can find more information.

Table 71. SNMP DPI Reference

SNMP DPI Routine Description page

DPIdebug() Used to turn some DPI internal
tracing on or off.

329

fDPIparse() Frees a parse tree previously created
by a call to pDPIpacket().

330

mkDPIlist() Creates the portion of the parse tree
that represents a list of name and
value pairs.

330

mkDPIregister() Creates a register request packet and
returns a pointer to a static buffer.

331

mkDPIresponse() Creates a response packet. 331

mkDPIset() Creates a representation of a parse
tree name and value pair.

332

mkDPItrap() Creates a trap request packet. 333

mkDPItrape() Creates an extended trap. Basically
the same as the mkDPItrap() routine
but allows you to pass a list of
variables and an enterprise object ID.

334

pDPIpacket() Parses a DPI packet and returns a
parse tree representation.

335

query_DPI_port() Determines what TCP port is
associated with DPI.

336

DPI Library Routines
This section provides the syntax, parameters, and other appropriate information for
each DPI routine supported by TCP/IP Level 310 for VM.

DPIdebug()

#include <snmp_dpi.h>
#include <types.h>

void DPIdebug(onoff)
int *onoff;

SNMP Agent Distributed Program Interface

Chapter 9. SNMP Agent Distributed Program Interface 329

Parameter Description
onoff Specifies an integer. A value of 0 turns tracing off and a value of 1

(or nonzero) turns tracing on.

Description: The DPIdebug() routine can be used to turn DPI internal tracing on or
off.

fDPIparse()

Parameter Description
hdr Specifies a parse tree.

Description: The fDPIparse() routine frees a parse tree that was previously created
by a call to pDPIpacket(). After calling fDPIparse(), no further references to the
parse tree can be made.

mkDPIlist()

Parameter Description
packet Specifies a pointer to a structure dpi_set_packet.
oid_name Specifies the object identifier of the variable.
type Specifies the type of the value.
len Specifies the length of the value.
value Specifies a pointer to the value.

Description: The mkDPIlist() routine can be used to create the portion of the parse
tree that represents a list of name and value pairs. Each entry in the list represents
a name and value pair (as would normally be returned in a response packet). If the
pointer packet is NULL, then a new dpi_set_packet structure is dynamically
allocated and the pointer to that structure is returned. The structure contains the
new name and value pair. If the pointer packet is not NULL, then a new
dpi_set_packet structure is dynamically allocated and chained to the list. The new
structure contains the new name and value pair. The pointer packet is returned to
the caller. If an error is detected, a NULL pointer is returned.

The value of type can be the same as for mkDPIset(). These values are defined in
the snmp_dpi.h header file.

#include <snmp_dpi.h>
#include <types.h>

void fDPIparse(hdr)
struct snmp_dpi_hdr *hdr;

#include <snmp_dpi.h>
#include <types.h>

struct dpi_set_packet *mkDPIlist(packet, oid_name, type, len, value)
struct dpi_set_packet *packet;
char *oid_name;
int type;
int len;
char *value;

DPIdebug()

330 z/VM: TCP/IP Programmer’s Reference

As a result, the structure dpi_set_packet has changed and now has a next pointer
(zero in case of a mkDPIset() call and also zero upon the first mkDPIlist() call). The
following is the format of dpi_set_packet:

A subagent writer would normally look only at the dpi_set_packet structure when
receieving a SNMP_DPI_SET request and after having issued a pDPIpacket() call.

mkDPIregister()

Parameter Description

oid_name Specifies the object identifier of the variable to be registered. Object
identifiers are registered with a trailing dot (“.”).

Description: The mkDPIregister() routine creates a register request packet and
returns a pointer to a static buffer, which holds the packet contents. The length of
the remaining packet is stored in the first two bytes of the packet.

Return Values: If successful, returns a pointer to a static buffer containing the
packet contents. A NULL pointer is returned if an error is detected during the
creation of the packet.

Example: The following is an example of the mkDPIregister() routine.
unsigned char *packet;
int len;

/* register sysDescr variable */
packet = mkDPIregister(“1.3.6.1.2.1.1.1.“);

len = *packet * 256 + *(packet + 1);
len += 2; /* include length bytes */

mkDPIresponse()

Parameter Description

ret_code Determines the error code to be returned.

value_list Points to a parse tree containing the name, type, and value
information to be returned.

struct dpi_set_packet {
char *object_id;
unsigned char type;
unsigned short value_len;
char *value;
struct dpi_set_packet *next;

};

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPIregister(oid_name)
char *oid_name;

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPIresponse(ret_code, value_list)
int ret_code;
struct dpi_set_packet *value_list;

mkDPIlist()

Chapter 9. SNMP Agent Distributed Program Interface 331

Description: The mkDPIresponse() routine creates a response packet. The first
parameter, ret_code, is the error code to be returned. Zero indicates no error.
Possible errors include the following:
v SNMP_NO_ERROR
v SNMP_TOO_BIG
v SNMP_NO_SUCH_NAME
v SNMP_BAD_VALUE
v SNMP_READ_ONLY
v SNMP_GEN_ERR

See the SNMP_DPI.H header file for a description of these messages.

If ret_code does not indicate an error, then the second parameter is a pointer to a
parse tree created by mkDPIset(), which represents the name, type, and value
information being returned. If an error is indicated, the second parameter is passed
as a NULL pointer.

The length of the remaining packet is stored in the first two bytes of the packet.

Note: mkDPIresponse() always frees the passed parse tree.

Return Values: If successful, mkDPIresponse() returns a pointer to a static buffer
containing the packet contents. This is the same buffer used by mkDPIregister(). A
NULL pointer is returned if an error is detected during the creation of the packet.

Example: The following is an example of the mkDPIresponse() routine.
unsigned char *packet;

int error_code;
struct dpi_set_packet *ret_value;

packet = mkDPIresponse(error_code, ret_value);

len = *packet * 256 + *(packet + 1);
len += 2; /* include length bytes */

mkDPIset()

Parameter Description
oid_name Specifies the object identifier of the variable.
type Specifies the type of the object identifier.
len Indicates the length of the value.
value Points to the first byte of the value of the object identifier.

Description: The mkDPIset() routine can be used to create the portion of a parse
tree that represents a name and value pair (as would normally be returned in a
response packet). It returns a pointer to a dynamically allocated parse tree
representing the name, type, and value information. If there is an error detected
while creating the parse tree, a NULL pointer is returned.

#include <snmp_dpi.h>
#include <types.h>

struct dpi_set_packet *mkDPIset(oid_name, type, len, value)
char *oid_name;
int type;
int len;
char *value;

mkDPIresponse()

332 z/VM: TCP/IP Programmer’s Reference

The value of type can be one of the following (which are defined in the
SNMP_DPI.H header file):
v SNMP_TYPE_NUMBER
v SNMP_TYPE_STRING
v SNMP_TYPE_OBJECT
v SNMP_TYPE_INTERNET
v SNMP_TYPE_COUNTER
v SNMP_TYPE_GAUGE
v SNMP_TYPE_TICKS

The value parameter is always a pointer to the first byte of the object ID’s value.

Note: The parse tree is dynamically allocated, and copies are made of the passed
parameters. After a successful call to mkDPIset(), the application can dispose
of the passed parameters without affecting the contents of the parse tree.

Return Values: Returns a pointer to a parse tree containing the name, type, and
value information.

mkDPItrap()

Parameter Description

generic Specifies the generic field in the SNMP TRAP packet.

specific Identifies the specific field in the SNMP TRAP packet.

value_list Passes the name and value pair to be placed into the SNMP
packet.

Description: The mkDPItrap() routine creates a TRAP request packet. The
information contained in value_list is passed as the set_packet portion of the parse
tree.

The length of the remaining packet is stored in the first two bytes of the packet.

Note: mkDPItrap() always frees the passed parse tree.

Return Values: If the packet can be created, a pointer to a static buffer containing
the packet contents is returned. This is the same buffer that is used by
mkDPIregister(). If an error is encountered while creating the packet, a NULL
pointer is returned.

Example: The following is an example of the mkDPItrap() routine.
struct dpi_set_packet *if_index_value;
unsigned long data;
unsigned char *packet;
int len;

data = 3; /* interface number = 3 */
if_index_value = mkDPIset(“1.3.6.1.2.1.2.2.1.1“, SNMP_TYPE_NUMBER,

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPItrap(generic, specific, value_list)
int generic;
int specific;
struct dpi_set_packet *value_list;

mkDPIset()

Chapter 9. SNMP Agent Distributed Program Interface 333

sizeof(unsigned long), &data);
packet = mkDPItrap(2, 0, if_index_value);
len = *packet * 256 + *(packet + 1);
len += 2; /* include length bytes */
write(fd,packet,len);

mkDPItrape()

Parameter Description

generic Specifies the generic field for the SNMP TRAP packet.

specific Specifies the specific field for the SNMP TRAP packet.

value_list Specifies a pointer to a structure dpi_set_packet, which contains
one or more variables to be sent with the SNMP TRAP packet. Or
NULL if no variables are to be send.

enterprise_oid Specifies a pointer to a character string representing the enterprise
object ID (in ASN.1 notation, for example, 1.3.6.1.4.1.2.2.1.4).
Specifies NULL if you want the SNMP agent to use its own
enterprise object ID.

Description: The mkDPItrape() routine can be used to create an extended trap. An
extended trap resembles the mkDPItrap() routine, but it allows you to pass a list of
variables and an enterprise-object ID.

The structure for dpi_trap_packet has changed, but this structure is not exposed to
subagent writers.

Example of an Extended Trap
The following is a piece of sample code to send an extended trap. No error
checking is done.
struct dpi_set_packet *set;
int len;
long int num = 15; /* 4 octet integer */
unsigned long int ctr = 1234;
char str][= "a string";
unsigned char *packet;

set = 0;
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.1",SNMP_TYPE_NUMBER,sizeof(num),&num);
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.2",SNMP_TYPE_STRING,strlen(str),str);
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.6",SNMP_TYPE_COUNTER,sizeof(ctr),&ctr);

packet = mkDPItrape(6L, 37L, set, "1.3.6.1.4.1.2.2.1.4");

len = *packet * 256 + *(packet+1);
len += 2;

write(fd, packet, len) /* use send on OS/2 */

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPItrape(generic, specific, value_list, enterprise_oid)
long int generic; /* 4 octet integer */
long int specific;
struct dpi_set_packet *value_list;
char *enterprise_oid;

mkDPItrap()

334 z/VM: TCP/IP Programmer’s Reference

You can use a mkDPIset() call to create an initial dpi_set_packet for the first name
and value pair. So the following sample is equivalent to the one above.
struct dpi_set_packet *set;
int len;
long int num = 15; /* 4 octet integer */
unsigned long int ctr = 1234;
char str][= "a string";
unsigned char *packet;

set = mkDPIset("1.3.6.1.4.1.2.2.1.4.1",SNMP_TYPE_NUMBER,sizeof(num),&num);
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.2",SNMP_TYPE_STRING,strlen(str),str);
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.6",SNMP_TYPE_COUNTER,sizeof(ctr),&ctr);

packet = mkDPItrape(6L, 37L, set, "1.3.6.1.4.1.2.2.1.4");

len = *packet * 256 + *(packet+1);
len += 2;

write(fd, packet, len) /* use send on OS/2 */

If the high order bit must be on for the specific trap type, then a negative integer
must be passed.

pDPIpacket()

Parameter Description
packet Specifies the DPI packet to be parsed.

Description: The pDPIpacket() routine parses a DPI packet and returns a parse tree
representing its contents. The parse tree is dynamically allocated and contains
copies of the information within the DPI packet. After a successful call to
pDPIpacket(), the packet can be disposed of in any manner the application
chooses, without affecting the contents of the parse tree.

Return Values: If pDPIpacket() is successful, a parse tree is returned. If an error is
encountered during the parse, a NULL pointer is returned.

Note: The parse tree structures are defined in the SNMP_DPI.H header file.

Example: The following is an example of the mkDPItrap() routine. The root of the
parse tree is represented by an snmp_dpi_hdr structure.
struct snmp_dpi_hdr {

unsigned char proto_major;
unsigned char proto_minor;
unsigned char proto_release;

unsigned char packet_type;
union {

struct dpi_get_packet *dpi_get;
struct dpi_next_packet *dpi_next;
struct dpi_set_packet *dpi_set;
struct dpi_resp_packet *dpi_response;
struct dpi_trap_packet *dpi_trap;

} packet_body;
};

#include <snmp_dpi.h>
#include <types.h>

struct snmp_dpi_hdr *pDPIpacket(packet)
unsigned char *packet;

mkDPItrape()

Chapter 9. SNMP Agent Distributed Program Interface 335

The packet_type field can have one of the following values, which are defined in the
SNMP_DPI.H header file:
v SNMP_DPI_GET
v SNMP_DPI_GET_NEXT
v SNMP_DPI_SET

The packet_type field indicates the request that is made of the DPI client. For each
of these requests, the remainder of the packet_body is different. If a GET request is
indicated, the object ID of the desired variable is passed in a dpi_get_packet
structure.
struct dpi_get_packet {

char *object_id;
};

A GET-NEXT request is similar, but the dpi_next_packet structure also contains the
object ID prefix of the group that is currently being traversed.
struct dpi_next_packet {

char *object_id;
char *group_id;

};

If the next object, whose object ID lexicographically follows the object ID indicated
by object_id, does not begin with the suffix indicated by the group_id, the DPI client
must return an error indication of SNMP_NO_SUCH_NAME.

A SET request has the most data associated with it, and this is contained in a
dpi_set_packet structure.
struct dpi_set_packet {

char *object_id;
unsigned char type:
unsigned short value_len;
char *value;

};

The object ID of the variable to be modified is indicated by object_id. The type of
the variable is provided in type and can have one of the following values:
v SNMP_TYPE_NUMBER
v SNMP_TYPE_STRING
v SNMP_TYPE_OBJECT
v SNMP_TYPE_EMPTY
v SNMP_TYPE_INTERNET
v SNMP_TYPE_COUNTER
v SNMP_TYPE_GAUGE
v SNMP_TYPE_TICKS

The length of the value to be set is stored in value_len and value contains a pointer
to the value.

Note: The storage pointed to by value is reclaimed when the parse tree is freed.
The DPI client must make provision for copying the value contents.

query_DPI_port()

pDPIpacket()

336 z/VM: TCP/IP Programmer’s Reference

Parameter Description

host_name Points to the SNMP agent’s host name or internet address.

community_name
Points to the community name to be used when making a request.

Description: The query_DPI_port() routine is used by a DPI client to determine the
TCP port number that is associated with the DPI. This port number is needed to
connect() to the SNMP agent. The port number is obtained through an SNMP GET
request. community_name and host_name are the arguments that are passed to the
query_DPI_port() routine.

Return Values: An integer representing the TCP port number is returned if
successful; a −1 is returned if the port cannot be determined.

Sample SNMP DPI Client Program
This section provides an example of an SNMP DPI agent program. You can run the
dpisample program against the SNMP agents that support the SNMP-DPI
interface, as described in RFC 1228.

The sample can be used to test agent DPI implementations because it provides
variables of all types and also allows you to generate traps of all types.

The DPISAMPLE program implements a set of variables in the DPISAMPLE table
which consists of a set of objects in the IBM Research tree (1.4.1.2.2.1.4). See
Figure 34 on page 339 for the object type and objectID.

The DPISAMPLE Program (Sample DPI Subagent)
The DPISAMPLE program accepts the following arguments:

ÊÊ DPISAMPLE
?

-d0

-d n
Ê

#include <snmp_dpi.h>

int query_DPI_port (host_name, community_name)
char *host_name;
char *community_name;

query_DPI_port()

Chapter 9. SNMP Agent Distributed Program Interface 337

Ê

»

-trap gtype stype data

-trape gtype stype enterprise data n
-ent_traps
-ent_trapse
-std_traps
-all_traps
-iucv-uSNMPD

-iucv -u agent_userid
LOOPBACK PUBLIC

-inet
agent_hostname community

ÊÍ

Parameter Description

? Invokes output with an explanation about how the dpisample
command is used. This option should be used in a C-shell
environment.

-d n Sets the debug level. The level, n, has a range from 0 — 4, 0 is
silent and 4 is most verbose. The default level is 0.

-trap Generates a trap with the following options:

gtype Specifies the type as generic. The available ranges are 0 —
6.

stype Specifies the type as specific.

data Passes data as an additional value for the variable
dpiSample.stype.0. Data is interpreted depending on stype.
The following list describes the available values for the
stype parameter and their data descriptions:
1 number
2 octet string
3 object id
4 empty (ignored)
5 internet address
6 counter
7 gauge
8 time ticks
9 display string
other octet string

-trape Generates an extended trap (available with DPI 1.1 level) with the
following defined options:

gtype Specifies the trap as generic. The available ranges are 0 —
6.

stype Specifies the type as specific.

enterprise
Provides the object ID for the extended trap.

data Passes data values for additional variables. Data is passed
as octet strings. Instances of data can be 1-n.

The DPISAMPLE Program (Sample DPI Subagent)

338 z/VM: TCP/IP Programmer’s Reference

-ent_traps Generates nine enterprise-specific traps with stype values of 1 — 9,
using the internal dpiSample variables as data.

-ent_trapse Generates nine enterprise-specific traps with stype values of 11 —
19, using the internal dpiSample variables as data.

-std_traps Generates and simulates the standard five SNMP traps (generic
types 1 — 5) including the link-down trap.

-all_traps Generates both the standard traps (-std_traps) and the
enterprise-specific traps with stype of 1 — 9 (-ent_traps).

-iucv Specifies that an AF_IUCV socket is to be used to connect to the
SNMP agent. The -iucv parameter is the default.

-u agent_userid Specifies the user ID where the SNMP agent (SNMPD) is running.
The default is SNMPD.

-inet Specifies that an AF_INET socket is to be used to connect to the
SNMP agent.

agent_hostname Specifies the host name of the system where an SNMP-DPI capable
agent is running. The default, if -inet is specified, is LOOPBACK.

community_name
Specifies the community name to get the dpiPort. The default is
PUBLIC.

DPISAMPLE TABLE

Client Sample Program
The following is an example of a SNMP-DPI subagent program.
/***/
/* */
/* SNMP-DPI - SNMP Distributed Programming Interface */
/* */
/* May 1991 - Version 1.0 - SNMP-DPI Version 1.0 (RFC1228) */
/* Created by IBM Research. */
/* Feb 1992 - Version 1.1 - Allow enterpriseID to be passed with */
/* a (enterprise specific) trap */
/* - allow multiple variables to be passed */
/* - Use 4 octets (INTEGER from RFC1157) */
/* for generic and specific type. */

DPISAMPLE.C supports these variables as an SNMP DPI sample sub-agent
it also generates enterprise specific traps via DPI with these objects.
DPISample 1.3.6.1.4.1.2.2.1.4. table 0
DPISampleNumber 1.3.6.1.4.1.2.2.1.4.1. number 10
next one is to be able to send a badValue with a SET request
DPISampleNumberString 1.3.6.1.4.1.2.2.1.4.1.1. string 10
DPISampleOctetString 1.3.6.1.4.1.2.2.1.4.2. string 10
DPISampleObjectID 1.3.6.1.4.1.2.2.1.4.3. object 10
XGMON/SQESERV does not allow to specify empty (so use empty string)
DPISampleEmpty 1.3.6.1.4.1.2.2.1.4.4. string 10
DPISampleInetAddress 1.3.6.1.4.1.2.2.1.4.5. internet 10
DPISampleCounter 1.3.6.1.4.1.2.2.1.4.6. counter 10
DPISampleGauge 1.3.6.1.4.1.2.2.1.4.7. gauge 10
DPISampleTimeTicks 1.3.6.1.4.1.2.2.1.4.8. ticks 10
DPISampleDisplayString 1.3.6.1.4.1.2.2.1.4.9. display 10
DPISampleCommand 1.3.6.1.4.1.2.2.1.4.10. display 1

Figure 34. DPISAMPLE Table MIB descriptions

The DPISAMPLE Program (Sample DPI Subagent)

Chapter 9. SNMP Agent Distributed Program Interface 339

/* Jun 1992 - Make it run on OS/2 as well */
/* Note: dpisample = dpisampl on OS/2 */
/* */
/* Copyright None */
/* */
/* dpisample.c - a sample SNMP-DPI subagent */
/* - can be used to test agent DPI implementations. */
/* */
/* For testing with XGMON and/or SQESERV (SNMP Query Engine) */
/* it is best to keep the following define for OID in sync */
/* with the dpiSample objectID in the MIB description file */
/* (mib_desc for XGMON, MIB_DESC DATA for SQESERV on VM and */
/* MIB@DESC.DATA for SQESERV on MVS, MIB2TBL on OS/2). */
/* */
/***/

#define OID "1.3.6.1.4.1.2.2.1.4."
#define ENTERPRISE_OID "1.3.6.1.4.1.2.2.1.4" /* dpiSample */
#define ifIndex "1.3.6.1.2.1.2.2.1.1.0"
#define egpNeighAddr "1.3.6.1.2.8.5.1.2.0"
#define PUBLIC_COMMUNITY_NAME "public"

#if defined(VM) || defined(MVS)

#define SNMPAGENTUSERID "SNMPD"
#define SNMPIUCVNAME "SNMP_DPI"
#pragma csect(CODE, "$DPISAMP")
#pragma csect(STATIC,"#DPISAMP")
#include <manifest.h> /* VM specific things */
#include "snmpnms.h" /* short external names for VM/MVS */
#include "snmp_vm.h" /* more of those short names */
#include <saiucv.h>
#include <bsdtime.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <netdb.h>
#include <inet.h>
extern char ebcdicto][, asciitoe][;
#pragma linkage(cmxlate,OS)
#define DO_ETOA(a) cmxlate((a),ebcdictoascii,strlen((a)))
#define DO_ATOE(a) cmxlate((a),asciitoebcdic,strlen((a)))
#define DO_ERROR(a) tcperror((a))
#define LOOPBACK "loopback"
#define IUCV TRUE
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))

#else /* we are not on VM or MVS */

#ifdef OS2
#define INCL_DOSPROCESS
#include <stdlib.h>
#include <types.h>
//#include <doscalls.h> /* GKS */
#include <os2.h> /* GKS */
#ifndef sleep
#define sleep(a) DosSleep(1000L * (a)) /*GKS*/

#endif
#define close soclose
/*char * malloc(); */
/*unsigned long strtoul(); */

#endif

//#include <sys/time.h> /* GKS */
#include <sys/types.h>
#include <sys/socket.h>

Client Sample Program

340 z/VM: TCP/IP Programmer’s Reference

#include <netinet/in.h>
#include <netdb.h>
// #include <arpa/inet.h>
#define DO_ETOA(a) ; /* no need for this */
#define DO_ATOE(a) ; /* no need for this */
#define DO_ERROR(a) perror((a))
#define LOOPBACK "localhost"
#define IUCV FALSE
#ifdef AIX221
#define isdigit(c) (((c) >= ’0’) && ((c) <= ’9’))

#else
// #include <sys/select.h>
#endif /* AIX221 */

#endif /* defined(VM) || defined(MVS) */

#include <stdio.h>
#ifdef OS2
#include <dpi/snmp_dpi.h>

#else
#include "snmp_dpi.h"

#endif

#define WAIT_FOR_AGENT 3 /* time to wait before closing agent fd */

#ifndef TRUE
#define TRUE 1
#define FALSE 0

#endif

#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments();
static void send_packet();
static void print_val();
static void usage();
static void init_connection();
static void init_variables();
static void await_and_read_packet();
static void handle_packet();
static void do_get();
static void do_set();
static void issue_traps();
static void issue_one_trap();
static void issue_one_trape();
static void issue_std_traps();
static void issue_ent_traps();
static void issue_ent_trapse();
static void do_register();
static void dump_bfr();
static struct dpi_set_packet *addtoset();
//extern unsigned long lookup_host();

#else /* _NO_PROTO */ /* for ANSI-C compiler */

static void check_arguments(const int argc, char *argv][);
static void send_packet(const char * packet);
static void print_val(const int index);
static void usage(const char *progname, const int exit_rc);
static void init_connection(void);
static void init_variables(void);
static void await_and_read_packet(void);
static void handle_packet(void);
static void do_get(void);
static void do_set(void);
static void issue_traps(void);
static void issue_one_trap(void);
static void issue_one_trape(void);

Client Sample Program

Chapter 9. SNMP Agent Distributed Program Interface 341

static void issue_std_traps(void);
static void issue_ent_traps(void);
static void issue_ent_trapse(void);
static void do_register(void);
static void dump_bfr(const char *buf, const int len);
static struct dpi_set_packet *addtoset(struct dpi_set_packet *data,

int stype);
static unsigned long lookup_host(const char *hostname);

#endif /* _NO_PROTO */

#define OSTRING "hex01-04:"
#define DSTRING "Initial Display String"
#define COMMAND "None"
#define BUFSIZE 4096
#define TIMEOUT 3
#define PACKET_LEN(packet) (((unsigned char)*(packet)) * 256 + \

((unsigned char)*((packet) + 1)) + 2)

/* We have the following instances for OID.x variables */
/* 0 - table */

static long number = 0; /* 1 - a number */
static unsigned char *ostring = 0; /* 2 - octet string */
static int ostring_len = 0; /* and its length */
static unsigned char *objectID = 0; /* 3 - objectID */
static int objectID_len= 0; /* and its length */

/* 4 - some empty variable */
static unsigned long ipaddr = 0; /* 5 - ipaddress */
static unsigned long counter = 1; /* 6 - a counter */
static unsigned long gauge = 1; /* 7 - a gauge */
static unsigned long ticks = 1; /* 8 - time ticks */
static unsigned char *dstring = 0; /* 9 - display string */
static unsigned char *command = 0; /* 10 - command */

static char *DPI_var][= {
"dpiSample",
"dpiSampleNumber",
"dpiSampleOctetString",
"dpiSampleObjectID",
"dpiSampleEmpty",
"dpiSampleInetAddress",
"dpiSampleCounter",
"dpiSampleGauge",
"dpiSampleTimeTicks",
"dpiSampleDisplayString",
"dpiSampleCommand"

};

static short int valid_types][= { /* SNMP_TYPEs accepted on SET */
-1, /* 0 do not check type */
SNMP_TYPE_NUMBER, /* 1 number */
SNMP_TYPE_STRING, /* 2 octet string */
SNMP_TYPE_OBJECT, /* 3 object identifier */
-1, /* SNMP_TYPE_EMPTY */ /* 4 do not check type */
SNMP_TYPE_INTERNET, /* 5 internet address */
SNMP_TYPE_COUNTER, /* 6 counter */
SNMP_TYPE_GAUGE, /* 7 gauge */
SNMP_TYPE_TICKS, /* 8 time ticks */
SNMP_TYPE_STRING, /* 9 display string */
SNMP_TYPE_STRING /* 10 command (display string) */

#define OID_COUNT_FOR_TRAPS 9
#define OID_COUNT 10
};

static char *packet = NULL; /* ptr to send packet. */
static char inbuf]BUFSIZE[; /* buffer for receive packets */
static int dpi_fd; /* fd for socket to DPI agent */

Client Sample Program

342 z/VM: TCP/IP Programmer’s Reference

static short int dpi_port; /* DPI_port at agent */
static unsigned long dpi_ipaddress; /* IP address of DPI agent */
static char *dpi_hostname; /* hostname of DPI agent */
static char *dpi_userid; /* userid of DPI agent VM/MVS */
static char *var_gid; /* groupID received */
static char *var_oid; /* objectID received */
static int var_index; /* OID variable index */
static unsigned char var_type; /* SET value type */
static char *var_value; /* SET value */
static short int var_value_len; /* SET value length */
static int debug_lvl = 0; /* current debug level */
static int use_iucv = IUCV; /* optional use of AF_IUCV */
static int do_quit = FALSE;/* Quit in await loop */
static int trap_gtype = 0; /* trap generic type */
static int trap_stype = 0; /* trap specific type */
static char *trap_data = NULL;/* trap data */
static int do_trap = 0; /* switch for traps */
#define ONE_TRAP 1
#define ONE_TRAPE 2
#define STD_TRAPS 3
#define ENT_TRAPS 4
#define ENT_TRAPSE 5
#define ALL_TRAPS 6
#define MAX_TRAPE_DATA 10 /* data for extended trap */
static long trape_gtype = 6; /* trap generic type */
static long trape_stype = 11; /* trap specific type */
static char *trape_eprise = NULL; /* enterprise id */
static char *trape_data]MAX_TRAPE_DATA[; /* pointers to data values */
static int trape_datacnt; /* actual number of values */

#ifdef _NO_PROTO /* for classic K&R C */
main(argc, argv) /* main line */
int argc;
char *argv][;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
main(const int argc, char *argv][) /* main line */
#endif /* _NO_PROTO */
{

check_arguments(argc, argv); /* check callers arguments */
dpi_ipaddress = lookup_host(dpi_hostname); /* get ip address */
init_connection(); /* connect to specified agent */
init_variables(); /* initialize our variables */
if (do_trap) { /* we just need to do traps */

issue_traps(); /* issue the trap(s) */
sleep(WAIT_FOR_AGENT); /* sleep a bit, so agent can */
close(dpi_fd); /* read data before we close */
exit(0); /* and that’s it */

} /* end if (do_trap) */
do_register(); /* register our objectIDs */
printf("%s ready and awaiting queries from agent\n",argv]0[);
while (do_quit == FALSE) { /* forever until quit or error */

await_and_read_packet(); /* wait for next packet */
handle_packet(); /* handle it */
if (do_trap) issue_traps(); /* request to issue traps */

} /* while loop */
sleep(WAIT_FOR_AGENT); /* allow agent to read response */
printf("Quitting, %s set to: quit\n",DPI_var]10[);
exit(2); /* sampleDisplayString == quit */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_traps(void)
#endif /* _NO_PROTO */
{

switch (do_trap) { /* let’s see which one(s) */

Client Sample Program

Chapter 9. SNMP Agent Distributed Program Interface 343

case ONE_TRAP: /* only need to issue one trap */
issue_one_trap(); /* go issue the one trap */
break;

case ONE_TRAPE: /* only need to issue one trape */
issue_one_trape(); /* go issue the one trape */
break;

case STD_TRAPS: /* only need to issue std traps */
issue_std_traps(); /* standard traps gtypes 0-5 */
break;

case ENT_TRAPS: /* only need to issue ent traps */
issue_ent_traps(); /* enterprise specific traps */
break;

case ENT_TRAPSE: /* only need to issue ent trapse */
issue_ent_trapse(); /* enterprise specific trapse */
break;

case ALL_TRAPS: /* only need to issue std traps */
issue_std_traps(); /* standard traps gtypes 0-5 */
issue_ent_traps(); /* enterprise specific traps */
issue_ent_trapse(); /* enterprise specific trapse */
break;

default:
break;

} /* end switch (do_trap) */
do_trap = 0; /* reset do_trap switch */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void await_and_read_packet() /* await packet from DPI agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void await_and_read_packet(void)/* await packet from DPI agent */
#endif /* _NO_PROTO */
{

int len, rc, bytes_to_read, bytes_read = 0;
#ifdef OS2

int socks]5[;
#else

fd_set read_mask;
#endif

struct timeval timeout;

#ifdef OS2
socks]0[= dpi_fd;
rc = select(socks, 1, 0, 0, -1L);

#else
FD_ZERO(&read_mask);
FD_SET(dpi_fd, &read_mask); /* wait for data */
rc = select(dpi_fd+1, &read_mask, NULL, NULL, NULL);

#endif
if (rc != 1) { /* exit on error */

DO_ERROR("await_and_read_packet: select");
close(dpi_fd);
exit(1);

}
#ifdef OS2

len = recv(dpi_fd, inbuf, 2, 0); /* read 2 bytes first */
#else

len = read(dpi_fd, inbuf, 2); /* read 2 bytes first */
#endif

if (len <= 0) { /* exit on error or EOF */
if (len < 0) DO_ERROR("await_and_read_packet: read");
else printf("Quitting, EOF received from DPI-agent\n");
close(dpi_fd);
exit(1);

}
bytes_to_read = (inbuf]0[<< 8) + inbuf]1[; /* bytes to follow */
if (BUFSIZE < (bytes_to_read + 2)) { /* exit if too much */

printf("Quitting, packet larger than %d byte buffer\n",BUFSIZE);

Client Sample Program

344 z/VM: TCP/IP Programmer’s Reference

close(dpi_fd);
exit(1);

}
while (bytes_to_read > 0) { /* while bytes to read */

#ifdef OS2
socks]0[= dpi_fd;
len = select(socks, 1, 0, 0, 3000L);

#else
timeout.tv_sec = 3; /* wait max 3 seconds */
timeout.tv_usec = 0;
FD_SET(dpi_fd, &read_mask); /* check for data */
len = select(dpi_fd+1, &read_mask, NULL, NULL, &timeout);

#endif
if (len == 1) { /* select returned OK */

#ifdef OS2
len = recv(dpi_fd, &inbuf]2[+ bytes_read, bytes_to_read, 0);

#else
len = read(dpi_fd, &inbuf]2[+ bytes_read, bytes_to_read);

#endif
} /* end if (len == 1) */
if (len <= 0) { /* exit on error or EOF */

if (len < 0) DO_ERROR("await_and_read_packet: read");
printf("Can’t read remainder of packet\n");
close(dpi_fd);
exit(1);

} else { /* count bytes_read */
bytes_read += len;
bytes_to_read -= len;

}
} /* while (bytes_to_read > 0) */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void handle_packet() /* handle DPI packet from agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void handle_packet(void) /* handle DPI packet from agent */
#endif /* _NO_PROTO */
{

struct snmp_dpi_hdr *hdr;

if (debug_lvl > 2) {
printf("Received following SNMP-DPI packet:\n");
dump_bfr(inbuf, PACKET_LEN(inbuf));

}
hdr = pDPIpacket(inbuf); /* parse received packet */
if (hdr == 0) { /* ignore if can’t parse */

printf("Ignore received packet, could not parse it!\n");
return;

}
packet = NULL;
var_type = 0;
var_oid = "";
var_gid = "";
switch (hdr->packet_type) {
/* extract pointers and/or data from specific packet types, */
/* such that we can use them independent of packet type. */
case SNMP_DPI_GET:
if (debug_lvl > 0) printf("SNMP_DPI_GET for ");
var_oid = hdr->packet_body.dpi_get->object_id;
break;

case SNMP_DPI_GET_NEXT:
if (debug_lvl > 0) printf("SNMP_DPI_GET_NEXT for ");
var_oid = hdr->packet_body.dpi_next->object_id;
var_gid = hdr->packet_body.dpi_next->group_id;
break;

case SNMP_DPI_SET:
if (debug_lvl > 0) printf("SNMP_DPI_SET for ");

Client Sample Program

Chapter 9. SNMP Agent Distributed Program Interface 345

var_value_len = hdr->packet_body.dpi_set->value_len;
var_value = hdr->packet_body.dpi_set->value;
var_oid = hdr->packet_body.dpi_set->object_id;
var_type = hdr->packet_body.dpi_set->type;
break;

default: /* Return a GEN_ERROR */
if (debug_lvl > 0) printf("Unexpected packet_type %d, genErr\n",

hdr->packet_type);
packet = mkDPIresponse(SNMP_GEN_ERR, NULL);
fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
send_packet(packet);
return;
break;

} /* end switch(hdr->packet_type) */
if (debug_lvl > 0) printf("objectID: %s \n",var_oid);

if (strlen(var_oid) <= strlen(OID)) { /* not in our tree */
if (hdr->packet_type == SNMP_DPI_GET_NEXT) var_index = 0; /* OK */
else { /* cannot handle */

if (debug_lvl>0) printf("...Ignored %s, noSuchName\n",var_oid);
packet = mkDPIresponse(SNMP_NO_SUCH_NAME, NULL);
fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
send_packet(packet);
return;

}
} else { /* Extract our variable index (from OID.index.instance) */

/* We handle any instance the same (we only have one instance) */
var_index = atoi(&var_oid]strlen(OID)[);

}
if (debug_lvl > 1) {

printf("...The groupID=%s\n",var_gid);
printf("...Handle as if objectID=%s%d\n",OID,var_index);

}
switch (hdr->packet_type) {
case SNMP_DPI_GET:
do_get(); /* do a get to return response */
break;

case SNMP_DPI_GET_NEXT:
{ char toid]256[; /* space for temporary objectID */
var_index++; /* do a get for the next variable */
sprintf(toid,"%s%d",OID,var_index); /* construct objectID */
var_oid = toid; /* point to it */
do_get(); /* do a get to return response */

} break;
case SNMP_DPI_SET:
if (debug_lvl > 1) printf("...value_type=%d\n",var_type);
do_set(); /* set new value first */
if (packet) break; /* some error response was generated */
do_get(); /* do a get to return response */
break;

}
fDPIparse(hdr); /* return storage allocated by pDPIpacket() */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_get() /* handle SNMP_GET request */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_get(void) /* handle SNMP_GET request */
#endif /* _NO_PROTO */
{

struct dpi_set_packet *data = NULL;

switch (var_index) {
case 0: /* table, cannot be queried by itself */
printf("...Should not issue GET for table %s.0\n", OID);
break;

case 1: /* a number */

Client Sample Program

346 z/VM: TCP/IP Programmer’s Reference

data = mkDPIset(var_oid,SNMP_TYPE_NUMBER,sizeof(number),&number);
break;

case 2: /* an octet_string (can have binary data) */
data = mkDPIset(var_oid,SNMP_TYPE_STRING,ostring_len,ostring);
break;

case 3: /* object id */
data = mkDPIset(var_oid,SNMP_TYPE_OBJECT,objectID_len,objectID);
break;

case 4: /* some empty variable */
data = mkDPIset(var_oid,SNMP_TYPE_EMPTY,0,NULL);
break;

case 5: /* internet address */
data = mkDPIset(var_oid,SNMP_TYPE_INTERNET,sizeof(ipaddr),&ipaddr);
break;

case 6: /* counter (unsigned) */
data =mkDPIset(var_oid,SNMP_TYPE_COUNTER,sizeof(counter),&counter);
break;

case 7: /* gauge (unsigned) */
data = mkDPIset(var_oid,SNMP_TYPE_GAUGE,sizeof(gauge),&gauge);
break;

case 8: /* time ticks (unsigned) */
data = mkDPIset(var_oid,SNMP_TYPE_TICKS,sizeof(ticks),&ticks);
break;

case 9: /* a display_string (printable ascii only) */
DO_ETOA(dstring);
data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(dstring),dstring);
DO_ATOE(dstring);
break;

case 10: /* a command request (command is a display string) */
DO_ETOA(command);
data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(command),command);
DO_ATOE(command);
break;

default: /* Return a NoSuchName */
if (debug_lvl > 1)

printf("...GET]NEXT[for %s, not found\n", var_oid);
break;

} /* end switch (var_index) */

if (data) {
if (debug_lvl > 0) {

printf("...Sending response oid: %s type: %d\n",
var_oid, data->type);

printf("......Current value: ");
print_val(var_index); /* prints \n at end */

}
packet = mkDPIresponse(SNMP_NO_ERROR,data);

} else { /* Could have been an error in mkDPIset though */
if (debug_lvl > 0) printf("...Sending response noSuchName\n");
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);

} /* end if (data) */
if (packet) send_packet(packet);

}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_set() /* handle SNMP_SET request */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_set(void) /* handle SNMP_SET request */
#endif /* _NO_PROTO */
{

unsigned long *ulp;
long *lp;

if (valid_types]var_index[!= var_type &&
valid_types]var_index[!= -1) {
printf("...Ignored set request with type %d, expect type %d,",

var_type, valid_types]var_index[);

Client Sample Program

Chapter 9. SNMP Agent Distributed Program Interface 347

printf(" Returning badValue\n");
packet = mkDPIresponse(SNMP_BAD_VALUE, NULL);
if (packet) send_packet(packet);
return;

}
switch (var_index) {
case 0: /* table, cannot set table. */
if (debug_lvl > 0) printf("...Ignored set TABLE, noSuchName\n");
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
break;

case 1: /* a number */
lp = (long *)var_value;
number = *lp;
break;

case 2: /* an octet_string (can have binary data) */
free(ostring);
ostring = (char *)malloc(var_value_len + 1);
bcopy(var_value, ostring, var_value_len);
ostring_len = var_value_len;
ostring]var_value_len[= ’\0’; /* so we can use it as a string */
break;

case 3: /* object id */
free(objectID);
objectID = (char *)malloc(var_value_len + 1);
bcopy(var_value, objectID, var_value_len);
objectID_len = var_value_len;
if (objectID]objectID_len -1[) {

objectID]objectID_len++[= ’\0’; /* a valid one needs a null */
if (debug_lvl > 0)

printf("...added a terminating null to objectID\n");
}
break;

case 4: /* an empty variable, cannot set */
if (debug_lvl > 0) printf("...Ignored set EMPTY, readOnly\n");
packet = mkDPIresponse(SNMP_READ_ONLY,NULL);
break;

case 5: /* Internet address */
ulp = (unsigned long *)var_value;
ipaddr = *ulp;
break;

case 6: /* counter (unsigned) */
ulp = (unsigned long *)var_value;
counter = *ulp;
break;

case 7: /* gauge (unsigned) */
ulp = (unsigned long *)var_value;
gauge = *ulp;
break;

case 8: /* time ticks (unsigned) */
ulp = (unsigned long *)var_value;
ticks = *ulp;
break;

case 9: /* a display_string (printable ascii only) */
free(dstring);
dstring = (char *)malloc(var_value_len + 1);
bcopy(var_value, dstring, var_value_len);
dstring]var_value_len[= ’\0’; /* so we can use it as a string */
DO_ATOE(dstring);
break;

case 10: /* a request to execute a command */
free(command);
command = (char *)malloc(var_value_len + 1);
bcopy(var_value, command, var_value_len);
command]var_value_len[= ’\0’; /* so we can use it as a string */
DO_ATOE(command);
if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;
else if (strcmp("std_traps",command) == 0) do_trap = STD_TRAPS;

Client Sample Program

348 z/VM: TCP/IP Programmer’s Reference

else if (strcmp("ent_traps",command) == 0) do_trap = ENT_TRAPS;
else if (strcmp("ent_trapse",command) == 0) do_trap = ENT_TRAPSE;
else if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;
else if (strcmp("quit",command) == 0) do_quit = TRUE;
else break;
if (debug_lvl > 0)

printf("...Action requested: %s set to: %s\n",
DPI_var]10[, command);

break;
default: /* NoSuchName */
if (debug_lvl > 0)

printf("...Ignored set for %s, noSuchName\n", var_oid);
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
break;

} /* end switch (var_index) */
if (packet) send_packet(packet);

}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_std_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_std_traps(void)
#endif /* _NO_PROTO */
{

trap_stype = 0;
trap_data = dpi_hostname;
for (trap_gtype=0; trap_gtype<6; trap_gtype++) {

issue_one_trap();
if (trap_gtype == 0) sleep(10); /* some managers purge cache */

}
}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_ent_traps(void)
#endif /* _NO_PROTO */
{

char temp_string]256[;

trap_gtype = 6;
for (trap_stype = 1; trap_stype < 10; trap_stype++) {
trap_data = temp_string;
switch (trap_stype) {
case 1 :
sprintf(temp_string,"%ld",number);
break;

case 2 :
sprintf(temp_string,"%s",ostring);
break;

case 3 :
trap_data = objectID;
break;

case 4 :
trap_data = "";
break;

case 5 :
trap_data = dpi_hostname;
break;

case 6 :
sleep(1); /* give manager a break */
sprintf(temp_string,"%lu",counter);
break;

case 7 :
sprintf(temp_string,"%lu",gauge);
break;

case 8 :

Client Sample Program

Chapter 9. SNMP Agent Distributed Program Interface 349

sprintf(temp_string,"%lu",ticks);
break;

case 9 :
trap_data = dstring;
break;

} /* end switch (trap_stype) */
issue_one_trap();

}
}

/* issue a set of extended traps, pass enterprise ID and multiple
* variable (assume octect string) as passed by caller
*/

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent_trapse()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_ent_trapse(void)
#endif /* _NO_PROTO */
{
int i, n;
struct dpi_set_packet *data = NULL;
unsigned char *packet = NULL;
unsigned long ipaddr, ulnum;
char oid]256[;
char *cp;

trape_gtype = 6;
trape_eprise = ENTERPRISE_OID;
for (n=11; n < (11+OID_COUNT_FOR_TRAPS); n++) {

data = 0;
trape_stype = n;
for (i=1; i<=(n-10); i++)

data = addtoset(data, i);
if (data == 0) {

printf("Could not make dpi_set_packet\n");
return;

}
packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
if ((debug_lvl > 0) && (packet)) {

printf("sending trape packet: %lu %lu enterprise=%s\n",
trape_gtype, trape_stype, trape_eprise);

}
if (packet) send_packet(packet);
else printf("Could not make trape packet\n");

}
}

/* issue one extended trap, pass enterprise ID and multiple
* variable (assume octect string) as passed by caller
*/

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_one_trape()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_one_trape(void)
#endif /* _NO_PROTO */
{
struct dpi_set_packet *data = NULL;
unsigned char *packet = NULL;
char oid]256[;
char *cp;
int i;

for (i=0; i<trape_datacnt; i++) {
sprintf(oid,"%s2.%d",OID,i);
/* assume an octet_string (could have hex data) */
data = mkDPIlist(data, oid, SNMP_TYPE_STRING,

strlen(trape_data]i[), trape_data]i[);

Client Sample Program

350 z/VM: TCP/IP Programmer’s Reference

if (data == 0) {
printf("Could not make dpiset_packet\n");

} else if (debug_lvl > 0) {
printf("Preparing:]oid=%s[value: ", oid);
printf("’");
for (cp = trape_data]i[; *cp; cp++) /* loop through data */

printf("%2.2x",*cp); /* hex print one byte */
printf("’H\n");

}
}
packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
if ((debug_lvl > 0) && (packet)) {

printf("sending trape packet: %lu %lu enterprise=%s\n",
trape_gtype, trape_stype, trape_eprise);

}
if (packet) send_packet(packet);
else printf("Could not make trape packet\n");

}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_one_trap()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_one_trap(void)
#endif /* _NO_PROTO */
{
long int num; /* must be 4 bytes */
struct dpi_set_packet *data = NULL;
unsigned char *packet = NULL;
unsigned long ipaddr, ulnum;
char oid]256[;
char *cp;

switch (trap_gtype) {
/* all traps are handled more or less the same sofar. */
/* could put specific handling here if needed/wanted. */
case 0: /* simulate cold start */
case 1: /* simulate warm start */
case 4: /* simulate authentication failure */
strcpy(oid,"none");
break;

case 2: /* simulate link down */
case 3: /* simulate link up */
strcpy(oid,ifIndex);
num = 1;
data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
break;

case 5: /* simulate EGP neighbor loss */
strcpy(oid,egpNeighAddr);
ipaddr = lookup_host(trap_data);
data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
break;

case 6: /* simulate enterprise specific trap */
sprintf(oid,"%s%d.0",OID, trap_stype);
switch (trap_stype) {
case 1: /* a number */
num = strtol(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
break;

case 2: /* an octet_string (could have hex data) */
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
break;

case 3: /* object id */
data = mkDPIset(oid,SNMP_TYPE_OBJECT,strlen(trap_data) + 1,

trap_data);
break;

case 4: /* an empty variable value */
data = mkDPIset(oid, SNMP_TYPE_EMPTY, 0, 0);

Client Sample Program

Chapter 9. SNMP Agent Distributed Program Interface 351

break;
case 5: /* internet address */
ipaddr = lookup_host(trap_data);
data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
break;

case 6: /* counter (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_COUNTER, sizeof(ulnum), &ulnum);
break;

case 7: /* gauge (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_GAUGE, sizeof(ulnum), &ulnum);
break;

case 8: /* time ticks (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_TICKS, sizeof(num), &ulnum);
break;

case 9: /* a display_string (ascii only) */
DO_ETOA(trap_data);
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
DO_ATOE(trap_data);
break;

default: /* handle as string */
printf("Unknown specific trap type: %s, assume octet_string\n",

trap_stype);
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
break;

} /* end switch (trap_stype) */
break;

default: /* unknown trap */
printf("Unknown general trap type: %s\n", trap_gtype);
return;
break;

} /* end switch (trap_gtype) */

packet = mkDPItrap(trap_gtype,trap_stype,data);
if ((debug_lvl > 0) && (packet)) {

printf("sending trap packet: %u %u]oid=%s[value: ",
trap_gtype, trap_stype, oid);

if (trap_stype == 2) {
printf("’");
for (cp = trap_data; *cp; cp++) /* loop through data */

printf("%2.2x",*cp); /* hex print one byte */
printf("’H\n");

} else printf("%s\n", trap_data);
}
if (packet) send_packet(packet);
else printf("Could not make trap packet\n");

}

#ifdef _NO_PROTO /* for classic K&R C */
static void send_packet(packet) /* DPI packet to agent */
char *packet;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void send_packet(const char *packet) /* DPI packet to agent */
#endif /* _NO_PROTO */
{

int rc;

if (debug_lvl > 2) {
printf("...Sending DPI packet:\n");
dump_bfr(packet, PACKET_LEN(packet));

}
#ifdef OS2

rc = send(dpi_fd,packet,PACKET_LEN(packet),0);
#else

rc = write(dpi_fd,packet,PACKET_LEN(packet));

Client Sample Program

352 z/VM: TCP/IP Programmer’s Reference

#endif
if (rc != PACKET_LEN(packet)) DO_ERROR("send_packet: write");
/* no need to free packet (static buffer in mkDPI.... routine) */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_register() /* register our objectIDs with agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_register(void) /* register our objectIDs with agent */
#endif /* _NO_PROTO */
{

int i, rc;
char toid]256[;

if (debug_lvl > 0) printf("Registering variables:\n");
for (i=1; i<=OID_COUNT; i++) {

sprintf(toid,"%s%d.",OID,i);
packet = mkDPIregister(toid);

#ifdef OS2
rc = send(dpi_fd, packet, PACKET_LEN(packet),0);

#else
rc = write(dpi_fd, packet, PACKET_LEN(packet));

#endif
if (rc <= 0) {

DO_ERROR("do_register: write");
printf("Quitting, unsuccessful register for %s\n",toid);
close(dpi_fd);
exit(1);

}
if (debug_lvl > 0) {

printf("...Registered: %-25s oid: %s\n",DPI_var]i[,toid);
printf("......Initial value: ");
print_val(i); /* prints \n at end */

}
}

}

/* add specified variable to list of variable in the dpi_set_packet
*/

#ifdef _NO_PROTO /* for classic K&R C */
struct dpi_set_packet *addtoset(data, stype)
struct dpi_set_packet *data;
int stype;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
struct dpi_set_packet *addtoset(struct dpi_set_packet *data, int stype)
#endif /* _NO_PROTO */
{

char var_oid]256[;

sprintf(var_oid,"%s%d.0",OID, stype);
switch (stype) {
case 1: /* a number */
data = mkDPIlist(data, var_oid, SNMP_TYPE_NUMBER,

sizeof(number), &number);
break;

case 2: /* an octet_string (can have binary data) */
data = mkDPIlist(data, var_oid, SNMP_TYPE_STRING,

ostring_len, ostring);
break;

case 3: /* object id */
data = mkDPIlist(data, var_oid, SNMP_TYPE_OBJECT,

objectID_len, objectID);
break;

case 4: /* some empty variable */
data = mkDPIlist(data, var_oid, SNMP_TYPE_EMPTY, 0, NULL);
break;

case 5: /* internet address */

Client Sample Program

Chapter 9. SNMP Agent Distributed Program Interface 353

data = mkDPIlist(data, var_oid, SNMP_TYPE_INTERNET,
sizeof(ipaddr), &ipaddr);

break;
case 6: /* counter (unsigned) */
data =mkDPIlist(data, var_oid, SNMP_TYPE_COUNTER,

sizeof(counter), &counter);
break;

case 7: /* gauge (unsigned) */
data = mkDPIlist(data, var_oid, SNMP_TYPE_GAUGE,

sizeof(gauge), &gauge);
break;

case 8: /* time ticks (unsigned) */
data = mkDPIlist(data, var_oid, SNMP_TYPE_TICKS,

sizeof(ticks), &ticks);
break;

case 9: /* a display_string (printable ascii only) */
DO_ETOA(dstring);
data = mkDPIlist(data, var_oid, SNMP_TYPE_STRING,

strlen(dstring), dstring);
DO_ATOE(dstring);
break;

} /* end switch (stype) */
return(data);

}

#ifdef _NO_PROTO /* for classic K&R C */
static void print_val(index)
int index;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void print_val(const int index)
#endif /* _NO_PROTO */
{

char *cp;
struct in_addr display_ipaddr;

switch (index) {
case 1 :
printf("%ld\n",number);
break;

case 2 :
printf("’");
for (cp = ostring; cp < ostring + ostring_len; cp++)

printf("%2.2x",*cp);
printf("’H\n");
break;

case 3 :
printf("%*s\n", objectID_len, objectID);
break;

case 4 :
printf("no value (EMPTY)\n");
break;

case 5 :
display_ipaddr.s_addr = (u_long) ipaddr;
printf("%s\n",inet_ntoa(display_ipaddr));

/* This worked on VM, MVS and AIX, but not on OS/2
* printf("%d.%d.%d.%d\n", (ipaddr >> 24), ((ipaddr << 8) >> 24),
* ((ipaddr << 16) >> 24), ((ipaddr << 24) >> 24));
*/

break;
case 6 :
printf("%lu\n",counter);
break;

case 7 :
printf("%lu\n",gauge);
break;

case 8 :
printf("%lu\n",ticks);

Client Sample Program

354 z/VM: TCP/IP Programmer’s Reference

break;
case 9 :
printf("%s\n",dstring);
break;

case 10 :
printf("%s\n",command);
break;

} /* end switch(index) */
}

#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments(argc, argv) /* check arguments */
int argc;
char *argv][;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void check_arguments(const int argc, char *argv][)
#endif /* _NO_PROTO */
{

char *hname, *cname;
int i, j;

dpi_userid = hname = cname = NULL;
for (i=1; argc > i; i++) {

if (strcmp(argv]i[,"-d") == 0) {
i++;
if (argc > i) {

debug_lvl = atoi(argv]i[);
if (debug_lvl >= 5) {

DPIdebug(1);
}

}
} else if (strcmp(argv]i[,"-trap") == 0) {

if (argc > i+3) {
trap_gtype = atoi(argv]i+1[);
trap_stype = atoi(argv]i+2[);
trap_data = argv]i+3[;
i = i + 3;
do_trap = ONE_TRAP;

} else usage(argv]0[, 1);
} else if (strcmp(argv]i[,"-trape") == 0) {

if (argc > i+4) {
trape_gtype = strtoul(argv]i+1[,(char**)0,10);
trape_stype = strtoul(argv]i+2[,(char**)0,10);
trape_eprise = argv]i+3[;
for (i = i + 4, j = 0;

(argc > i) && (j < MAX_TRAPE_DATA);
i++, j++) {

trape_data]j[= argv]i[;
}
trape_datacnt = j;
do_trap = ONE_TRAPE;
break; /* -trape must be last option */

} else usage(argv]0[, 1);
} else if (strcmp(argv]i[,"-all_traps") == 0) {

do_trap = ALL_TRAPS;
} else if (strcmp(argv]i[,"-std_traps") == 0) {

do_trap = STD_TRAPS;
} else if (strcmp(argv]i[,"-ent_traps") == 0) {

do_trap = ENT_TRAPS;
} else if (strcmp(argv]i[,"-ent_trapse") == 0) {

do_trap = ENT_TRAPSE;
#if defined(VM) || defined(MVS)

} else if (strcmp(argv]i[,"-inet") == 0) {
use_iucv = 0;

} else if (strcmp(argv]i[,"-iucv") == 0) {
use_iucv = TRUE;

} else if (strcmp(argv]i[,"-u") == 0) {

Client Sample Program

Chapter 9. SNMP Agent Distributed Program Interface 355

use_iucv = TRUE; /* -u implies -iucv */
i++;
if (argc > i) {

dpi_userid = argv]i[;
}

#endif
} else if (strcmp(argv]i[,"?") == 0) {

usage(argv]0[, 0);
} else {
if (hname == NULL) hname = argv]i[;
else if (cname == NULL) cname = argv]i[;
else usage(argv]0[, 1);

}
}
if (hname == NULL) hname = LOOPBACK; /* use default */
if (cname == NULL) cname = PUBLIC_COMMUNITY_NAME; /* use default */

#if defined(VM) || defined(MVS)
if (dpi_userid == NULL) dpi_userid = SNMPAGENTUSERID;
if (debug_lvl > 2)

printf("hname=%s, cname=%s, userid=%s\n",hname,cname,dpi_userid);
#else

if (debug_lvl > 2)
printf("hname=%s, cname=%s\n",hname,cname);

#endif
if (use_iucv != TRUE) {

DO_ETOA(cname); /* for VM or MVS */
dpi_port = query_DPI_port(hname,cname);
DO_ATOE(cname); /* for VM or MVS */
if (dpi_port == -1) {

printf("No response from agent at %s(%s)\n",hname,cname);
exit(1);

}
} else dpi_port == -1;
dpi_hostname = hname;

}

#ifdef _NO_PROTO /* for classic K&R C */
static void usage(pname, exit_rc)
char *pname;
int exit_rc;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void usage(const char *pname, const int exit_rc)
#endif /* _NO_PROTO */
{

printf("Usage: %s]-d debug_lvl[]-trap g_type s_type data[", pname);
printf("]-all_traps[\n");
printf("%*s]-trape g_type s_type enterprise data1 data2 .. datan[\n",

strlen(pname)+8,"");
printf("%*s]-std_traps[]-ent_traps[]-ent_trapse[\n",

strlen(pname)+8,"");
#if defined(VM) || defined(MVS)

printf("%*s]-iucv[]-u agent_userid[\n",strlen(pname)+8, "");
printf("%*s", strlen(pname)+8, "");
printf("]-inet[]agent_hostname]community_name[[\n");
printf("default: -d 0 -iucv -u %s\n", SNMPAGENTUSERID);
printf(" -inet %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);

#else
printf("%*s]agent_hostname]community_name[[\n",strlen(pname)+8,"");
printf("default: -d 0 %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);

#endif
exit(exit_rc);

}

#ifdef _NO_PROTO /* for classic K&R C */
static void init_variables() /* initialize our variables */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void init_variables(void) /* initialize our variables */

Client Sample Program

356 z/VM: TCP/IP Programmer’s Reference

#endif /* _NO_PROTO */
{

char ch, *cp;

ostring = (char *)malloc(strlen(OSTRING) + 4 + 1);
bcopy(OSTRING,ostring,strlen(OSTRING));
ostring_len = strlen(OSTRING);
for (ch=1;ch<5;ch++) /* add hex data 0x01020304 */

ostring]ostring_len++[= ch;
ostring]ostring_len[= ’\0’; /* so we can use it as a string */
objectID = (char *)malloc(strlen(OID));
objectID_len = strlen(OID);
bcopy(OID,objectID,strlen(OID));
if (objectID]objectID_len - 1[== ’.’) /* if trailing dot, */

objectID]objectID_len - 1[= ’\0’; /* remove it */
else objectID_len++; /* length includes null */
dstring = (char *)malloc(strlen(DSTRING)+1);
bcopy(DSTRING,dstring,strlen(DSTRING)+1);
command = (char *)malloc(strlen(COMMAND)+1);
bcopy(COMMAND,command,strlen(COMMAND)+1);
ipaddr = dpi_ipaddress;

}

#ifdef _NO_PROTO /* for classic K&R C */
static void init_connection() /* connect to the DPI agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void init_connection(void) /* connect to the DPI agent */
#endif /* _NO_PROTO */
{

int rc;
int sasize; /* size of socket structure */
struct sockaddr_in sin; /* socket address AF_INET */
struct sockaddr *sa; /* socket address general */

#if defined(VM) || defined (MVS)
struct sockaddr_iucv siu; /* socket address AF_IUCV */

if (use_iucv == TRUE) {
printf("Connecting to %s DPI_port %d userid %s (TCP, AF_IUCV)\n",

dpi_hostname,dpi_port,dpi_userid);
bzero(&siu,sizeof(siu));
siu.siucv_family = AF_IUCV;
siu.siucv_addr = dpi_ipaddress;
siu.siucv_port = dpi_port;
memset(siu.siucv_nodeid, ’ ’ , sizeof(siu.siucv_nodeid));
memset(siu.siucv_userid, ’ ’ , sizeof(siu.siucv_userid));
memset(siu.siucv_name, ’ ’ , sizeof(siu.siucv_name));
bcopy(dpi_userid, siu.siucv_userid, min(8,strlen(dpi_userid)));
bcopy(SNMPIUCVNAME, siu.siucv_name, min(8,strlen(SNMPIUCVNAME)));
dpi_fd = socket(AF_IUCV, SOCK_STREAM, 0);
sa = (struct sockaddr *) &siu;
sasize = sizeof(struct sockaddr_iucv);

} else {
#endif

printf("Connecting to %s DPI_port %d (TCP, AF_INET)\n",
dpi_hostname,dpi_port);

bzero(&sin,sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(dpi_port);
sin.sin_addr.s_addr = dpi_ipaddress;
dpi_fd = socket(AF_INET, SOCK_STREAM, 0);
sa = (struct sockaddr *) &sin;
sasize = sizeof(struct sockaddr_in);

#if defined(VM) || defined (MVS)
}

#endif
if (dpi_fd < 0) { /* exit on error */

Client Sample Program

Chapter 9. SNMP Agent Distributed Program Interface 357

DO_ERROR("init_connection: socket");
exit(1);

}
rc = connect(dpi_fd, sa, sasize); /* connect to agent */
if (rc != 0) { /* exit on error */

DO_ERROR("init_connection: connect");
close(dpi_fd);
exit(1);

}
}

#ifdef _NO_PROTO /* for classic K&R C */
static void dump_bfr(buf, len) /* hex dump buffer */
char *buf;
int len;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void dump_bfr(const char *buf, const int len)
#endif /* _NO_PROTO */
{

register int i;

if (len == 0) printf(" empty buffer\n"); /* buffer is empty */
for (i=0;i<len;i++) { /* loop through buffer */

if ((i&15) == 0) printf(" "); /* indent new line */
printf("%2.2x",(unsigned char)buf]i[);/* hex print one byte */
if ((i&15) == 15) printf("\n"); /* nl every 16 bytes */
else if ((i&3) == 3) printf(" "); /* space every 4 bytes */

}
if (i&15) printf("\n"); /* always end with nl */

}

unsigned long lookup_host(const char *hostname)
{

register unsigned long ret_addr;

if ((*hostname >= ’0’) && (*hostname <= ’9’))
ret_addr = inet_addr(hostname);

else {
struct hostent *host;
struct in_addr *addr;

host = gethostbyname(hostname);
if (host == NULL) return(0);
addr = (struct in_addr *) (host->h_addr_list]0[);
ret_addr = addr->s_addr;

}
return(ret_addr);

}

Compiling and Linking the DPISAMPLE.C Source Code
When compiling the Sample DPI Subagent program you may specify the following
compile time flags:

NO_PROTO
The DPISAMPLE.C code assumes that it is compiled with an ANSI-C
compliant compiler. It can be compiled without ANSI-C by defining this
flag.

VM Indicates that compilation id for VM and uses VM-specific includes. Some
VM/MVS specific code is compiled.

Client Sample Program

358 z/VM: TCP/IP Programmer’s Reference

Chapter 10. SMTP Virtual Machine Interfaces

Electronic mail (e-mail) is prepared using local mail preparation facilities (or, user
agents) such as the CMS NOTE and SENDFILE commands; these facilities are not
discussed here. This chapter describes the interfaces to the SMTP virtual machine
itself, and may be of interest to users who implement electronic mail programs that
communicate with the IBM z/VM implementation of SMTP.

The interfaces to the SMTP virtual machine are:
v The TCP/IP network

SMTP commands and replies can be sent and received interactively over a TCP
network connection. Mail from TCP network sites destined for local VM users
(or users on an RSCS network attached to the local z/VM system) arrives over
this interface. All commands and data received and transmitted through this
interface must be composed of ASCII characters.

v The local z/VM system (and systems attached to the local z/VM system by an
RSCS network)
SMTP commands can be written to a batch file and then spooled to the virtual
reader of the SMTP virtual machine. SMTP processes each of the commands in
this file, in order, as if they had been transmitted over a TCP connection. This is
how mail is sent from local z/VM users (or users on an RSCS network attached
to the local z/VM system) to recipients on the TCP network. Batch SMTP (or,
BSMTP) files must contain commands and data composed of EBCDIC characters.

SMTP Transactions
Electronic mail is sent by a series of request/response transactions between a
client, the sender-SMTP, and a server, the receiver-SMTP. These transactions pass (1)
the message proper, which is composed of a header and a body (which by definition,
are separated by the first blank line present in this information), and (2) SMTP
commands, which are referred to as (and comprise) the mail envelope. These
commands contain additional information about the mail, such as the host sending
the mail and its source and destination addresses. Envelope addresses may be
derived from information in the message header, supplied by the user interface, or
derived from local configuration information.

The SMTP envelope is constructed at the sender-SMTP site. If this is the originating
site, the information is typically provided by the user agent when the message is
first queued for the sender-SMTP program. Each intermediate site receives the piece
of mail and resends it on to the next site using an envelope that it creates. The
content of the new envelope may be different from that of the one it received.

The envelope contains, at a minimum, the HELO or EHLO, MAIL FROM:, RCPT
TO:, DATA, and QUIT commands. These, and other commands that can optionally
appear in the envelope, are described in the next section. Some of these commands
can appear more than once in an envelope. Also, more than one piece of mail can
be sent using a given envelope.

© Copyright IBM Corp. 1987, 2001 359

SMTP Commands
This section describes SMTP commands that are recognized by the z/VM SMTP
implementation. These commands are used to interface with user agent mail
facilities (such as the CMS NOTE and SENDFILE commands) as well as with other
SMTP servers.

For more complete information about SMTP and the commands that can be used
with this protocol, it is suggested that you review the following RFCs:
v RFC 821, Simple Mail Transfer Protocol

v RFC 822, Standard for the Format of ARPA Internet Text Messages

v RFC 1869, SMTP Service Extensions

v RFC 1870, SMTP Service Extension for Message Size Declaration

v RFC 1652, SMTP Service Extension for 8bit-MIME transport

These RFCs are the basis for modern naming specifications associated with the
SMTP protocol.

Note: The SMTP commands SEND, SOML, SAML, and TURN are not supported
by the z/VM SMTP implementation, so are not described here.

HELO
The HELO command is used to identify the domain name of the sending host to
SMTP. This command is used to initiate a mail transaction, and must be sent (once)
before a MAIL FROM: command is used.

ÊÊ HELO domain_name ÊÍ

Parameter Description

domain_name Specifies the domain name of the sending host. The domain_name
may be specified as either:
v a domain name
v an IP address in decimal integer form that is prefixed by the

number or (US) pound sign (“#” or X'7B')
v an IP address in dotted-decimal form, enclosed in brackets.

When HELO commands are received over a TCP connection, SMTP replies with
the message 250 SMTP_server_domain is my domain name. The SMTP server client
verification exit or built-in client verification function can be used to determine if
the provided domain_name matches the client IP address and to include the result
of that determination in the mail headers. See TCP/IP Planning and Customization
for detailed information about configuring SMTP to use this support.

When HELO commands are received over a batch SMTP connection, SMTP replies
with the message 250 SMTP_server_domain is my domain name. Additional text is
included with this message that indicates whether the provided domain_name does
or does not match the host name of the spool file origination point. The 250 reply
code indicates the HELO command is accepted and that SMTP commands can
continue to be sent and received.

SMTP Virtual Machine Interfaces

360 z/VM: TCP/IP Programmer’s Reference

EHLO
The EHLO command operates and can be used in the same way as the HELO
command. However, it additionally requests that the returned reply should
identify specific SMTP service extensions that are supported by the SMTP server.

ÊÊ EHLO domain_name ÊÍ

Parameter Description

domain_name Specifies the domain name of the sending host. The domain_name
may be specified as either:
v a domain name
v an IP address in decimal integer form that is prefixed by the

number or (US) pound sign (“#” or X'7B')
v an IP address in dotted-decimal form, enclosed in brackets.

If a server does not support SMTP service extensions, the client receives a negative
reply to its EHLO command. When this occurs, the client should either supply a
HELO command, if the mail being delivered can be processed without the use of
SMTP service extensions, or it should end the current mail transaction.

If a client receives a positive response to an EHLO command, the server is then
known to support one or more SMTP service extensions. This reply then can be
further used by the client to determine whether certain kinds of mail can be
effectively processed by that server.

For example, if the positive response includes the SIZE keyword, the server
supports the SMTP service extension for Message Size Declaration. Whereas, if this
response includes the 8BITMIME keyword, the server supports the SMTP service
extension for 8-bit MIME transport.

SMTP supports the following service extensions:

EXPN HELP SIZE 8BITMIME

Following is an example of a positive reply to a client (c) EHLO command from an
SMTP server (s) that supports these service extensions:
s: (wait for connection on TCP port 25)
c: (open connection to server)
s: 220 HOSTA.IBM.COM running IBM VM SMTP Level 320 on Sat, 1 May 99 ...
c: EHLO HOSTB.IBM.COM
s: 250-HOSTA.IBM.COM is my domain name.
s: 250-EXPN
s: 250-HELP
s: 250-8BITMIME
s: 250 SIZE 524288
...

The hyphen (-), when present as the fourth character of a response, indicates the
response is continued on the next line.

MAIL FROM
The MAIL FROM: command is used (once), after a HELO or EHLO command, to
identify the sender of a piece of mail.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 361

ÊÊ MAIL FROM: <sender_path_address>
SIZE=number_of_bytes
BODY=7BIT
BODY=8BITMIME

ÊÍ

Parameter Description

sender_path_address Specifies the full path address of the sender of the
mail. Definitions for valid sender_path_address
specifications can be obtained from the RFCs that
define the naming conventions used throughout
the Internet. For detailed information, consult the
RFCs listed in the section “SMTP Commands” on
page 360.

SIZE=number_of_bytes Specifies the size of the mail, in bytes, including
carriage return/line feed (CRLF, X'0D0A') pairs. The
SIZE parameter has a range from 0 to 2,147,483,647.

BODY=7BIT Specifies that the message is encoded using seven
significant bits per 8-bit octet (byte). In practice,
however, the body is typically encoded using all
eight bits.

BODY=8BITMIME Specifies that the message is encoded using all
eight bits of each octet (byte) and may contain
MIME headers.

Note: The SIZE, BODY=7BIT, and BODY=8BITMIME options of the MAIL FROM:
command should be used only if an EHLO command was used to initiate a
mail transaction. If an EHLO command was not used for this purpose,
SMTP ignores these parameters if they are present.

If the SMTP server is known to support the SMTP service extension for Message
Size Declaration, the client sending the mail can specify the optional SIZE=
parameter with its MAIL FROM: commands. The client then can use the responses
to these commands to determine whether the receiving SMTP server has sufficient
resources available to process its mail before any data is transmitted to that server.

When a MAIL FROM: command is received that includes the optional SIZE=
parameter, the SMTP server compares the supplied number_of_bytes value to its
allowed maximum message size (defined by the MAXMAILBYTES statement in the
SMTP CONFIG file) to determine if the mail should be accepted. If number_of_bytes
exceeds the MAXMAILBYTES value, a reply code 552 is returned to the client.

The SIZE= parameter is evaluated only for MAIL FROM: commands received over
a TCP connection; this parameter and its value are ignored when they are received
over a batch connection.

RCPT TO
The RCPT TO: command specifies the recipient(s) of a piece of mail. This
command can be repeated any number of times.

ÊÊ RCPT TO: <recipient_path_address> ÊÍ

SMTP Virtual Machine Interfaces

362 z/VM: TCP/IP Programmer’s Reference

Parameter Description

recipient_path_address Specifies the full path address of a mail recipient.
Definitions for valid recipient_path_address
specifications can be obtained from the RFCs that
define the naming conventions used throughout
the Internet. For detailed information, consult the
RFCs listed in the section “SMTP Commands” on
page 360.

A RCPT TO: command must be used after a MAIL FROM: command. If the host
system is not aware of the recipient’s host, a negative reply is returned in response
to the RCPT TO: command.

DATA
The DATA command indicates that the next information provided by the client
should be construed as the text of the mail being delivered (that is, the header and
body of the mail message).

ÊÊ DATA ÊÍ

The DATA command has no parameters.

The DATA command is used after a HELO or EHLO command, a MAIL FROM:
command, and at least one RCPT TO: command have been accepted. When the
DATA command has been accepted, the following response (reply code 354) is
returned to indicate that the body of the mail can be transmitted:
354 Enter mail body. End new line with just a ’.’

The body of the mail is terminated by transmitting a single ASCII period (.) on a
line by itself. When SMTP detects this “end of data” indicator, it returns the
following reply:
250 Mail Delivered

When mail is received over a TCP connection, this ASCII period should be
followed by the ASCII CR-LF sequence (carriage return/line feed sequence, X'0D0A').
If any record in the body of the mail begins with a period, the sending SMTP
program must convert the period into a pair of periods (..). Then, when the
receiving SMTP encounters a record in the body of the mail that begins with two
periods, it discards the leading period. This convention permits the mail body to
contain records that would otherwise be incorrectly interpreted as the “end of
data” indicator. These rules must be followed over both TCP and batch SMTP
connections. The CMS NOTE and SENDFILE execs perform this period doubling
on all mail spooled to SMTP. If the body of the mail in a batch SMTP command
file is not explicitly terminated by a record with a single period, SMTP supplies
one.

After the “end of data” indicator has been received, the SMTP connection is reset
to its initial state (that is, the state before any sender or recipients have been
specified). Additional MAIL FROM:, RCPT TO:, DATA, and other commands can
again be sent. If no further mail is to be delivered through this connection, the
connection should then be terminated with a QUIT command. If the QUIT
command is omitted from the end of a batch SMTP command file, the QUIT is
implicit — SMTP will proceed as if it had been provided.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 363

If SMTP runs out of local mail storage space, it returns a 451 reply code to the
sender-SMTP client. Local mail storage space is constrained by the size of the
SMTP server A-disk (191 minidisk). For a large batch SMTP file, disk storage
equivalent to four times the size of that file may be required for it to be processed
by SMTP.

If the body of the mail being delivered is found to exceed the MAXMAILBYTES
value established in the SMTP CONFIG file, a reply code 552 is returned to the
client. See the TCP/IP Planning and Customization for more information about the
MAXMAILBYTES configuration statement.

When mail arrives over a batch SMTP connection from an RSCS network host, and
the REWRITE822HEADER configuration option was specified in the SMTP
configuration file, then header fields are modified to ensure that all addresses are
fully qualified domain names. See the TCP/IP Planning and Customization for more
information about the header rewriting.

RSET
The RSET command resets an SMTP connection to an initial state. That is, all
information about the current mail transaction is discarded, and the connection is
ready to process a new mail transaction.

ÊÊ RSET ÊÍ

The RSET command has no parameters.

QUIT
The QUIT command terminates an SMTP connection.

ÊÊ QUIT ÊÍ

The QUIT command has no parameters.

NOOP
The NOOP command has no intrinsic function. However, it will cause the
receiver-SMTP to return an “OK” response (reply code 250).

ÊÊ NOOP ÊÍ

The NOOP command has no parameters.

HELP
The HELP command returns brief information about one or more SMTP
commands.

SMTP Virtual Machine Interfaces

364 z/VM: TCP/IP Programmer’s Reference

ÊÊ HELP
command_name

ÊÍ

Parameter Description

command_name Identifies a specific SMTP command.

The HELP command returns a multiple-line reply with brief help information
about the SMTP commands supported by a host. If an SMTP command is specified
for command_name, information about that specific command is returned.

QUEU
The QUEU command returns a multiple-line reply with information about the
content of the mail processing queues maintained within the SMTP server.

ÊÊ QUEU
DATE

ÊÍ

Parameter Description

DATE Causes information about the age of any queued mail to be
included in the QUEU command response. By default, age
information is not included in such responses.

The z/VM SMTP server maintains various internal queues for handling mail, that
can be generalized to two categories — the mail (delivery) queues, and the mail
resolution (or, resolver) queues. The QUEU command returns a multiple-line reply
with information about the content of these queues, which are described in more
detail here.

Mail Delivery Queues:

Queue Name Description

Spool Contains mail that is destined for recipients on the local z/VM
system, or for recipients on an RSCS system attached to the local
z/VM system. This queue is generally empty, because SMTP can
deliver this mail quickly by spooling it directly to the local
recipient, or to the RSCS virtual machine for delivery to an RSCS
network recipient.

Active Identifies mail that is currently being transmitted by SMTP to a
TCP network destination. All mail queued for that same
destination is shown to be Active.

Queued Identifies mail that has arrived over either a TCP or batch SMTP
connection that is to be forwarded to a TCP network destination
(possibly because of source routing). When SMTP obtains sufficient
resources from the TCPIP virtual machine to process this mail, it is
transferred to the Active queue.

Retry Identifies mail for which SMTP has made one or more previous
delivery attempts that were not successful. Delivery attempts may
fail for a variety of reasons; two common reasons are:

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 365

v The SMTP server could not open a connection to deliver the
mail.

v Delivery of the mail was interrupted for some reason, such as a
broken connection or a temporary error condition at the target
host.

After the RETRYINT interval (defined in the SMTP CONFIG file)
has passed, mail in the Retry queue is promoted to the Queued
queue (or state) for another delivery attempt. For more information
about the RETRYINT configuration parameter, see the TCP/IP
Planning and Customization.

Undeliverable Identifies mail that SMTP cannot deliver to a local z/VM recipient,
or to a recipient on the RSCS network attached to the local VM
system, due to insufficient spooling resources on the local z/VM
system. After spool space has been increased and SMTP has been
reinitialized, delivery of this mail is again attempted.

Mail Resolution Queues:

The mail resolution (or, resolver) queues are used to maintain the status of host
resolution queries — performed through DNS services — for mail host domains,
originators, and recipients, when such resolution is necessary. If the SMTP server is
configured to not use a name server, but only local host tables, these queues are
not used.

Several notes regarding the response information associated with mail resolution
queues follow:
v If a queue is empty the word Empty appears in the response, to the right of the

name of that queue.
v If a queue contains active queries, a line that identifies that queue will be

present; information about the mail in that queue, and its associated query (or
queries) is provided immediately after this identification line.

v Because of timing situations that can occur within the SMTP server, a queue
identification line may at times show that a queue is active (that is, Empty is not
indicated), but no mail entries will be present.

Queue Name Description

Process This queue is generally empty, as it contains queries that have not
yet been acted upon by the SMTP server. Once a query has been
initially processed, it is placed in the Resolver Send queue.

Send Identifies queries that are awaiting SMTP resolver processing.
SMTP staggers the number of queries it submits to a name sever,
to prevent overloading the network and the name server.

Wait Identifies queries for which the SMTP server is waiting a response
from a name server. Queries remain in this queue for a specific
amount of time, within which a reply should be received from the
name server.

If a query is successful, that query is then placed in the Resolver
Completed queue.

If a reply is not received for a query within the allotted time (that
is, the resolver time-out has expired), that query is removed from
this queue and placed in the Resolver Retry queue.

SMTP Virtual Machine Interfaces

366 z/VM: TCP/IP Programmer’s Reference

Note: The duration of the resolver time-out period can be
controlled using the TCPIP DATA file RESOLVERTIMEOUT
configuration statement. See the TCP/IP Planning and
Customization for more information about this statement.

Retry Identifies queries that have previously failed, possibly because:
v a name server response was not received for a query (within the

designated time-out period), or
v the name server returned a temporary error that has forced the

SMTP server to retry a query. A temporary error occurs if, for
example, the name server truncates a packet, or if the name
server detects a processing error.

Note: Mail for which queries are present in this queue can be
significantly affected by the values defined for the
RESOLVERRETRYINT and RETRYAGE configuration
statements in the SMTP CONFIG file. See the TCP/IP
Planning and Customization for more information about these
statements.

Completed Identifies queries that have been resolved and are waiting to be
recorded by SMTP (and, possibly incorporated within a piece of
mail). After the resolved information has been recorded, SMTP
attempts to deliver the mail.

Error Identifies queries for which a name server response was obtained,
but for which no answer was obtained. Mail that corresponds to
such queries is returned to the originator as undeliverable, with an
unknown recipient error indicated.

VRFY
The VRFY (“verify”) command determines if a given mailbox or user ID exists on
the host where SMTP is running.

ÊÊ VRFYverify_string ÊÍ

Parameter Description

verify_string Specifies the name of a mailbox or user ID whose existence is to be
verified.

The z/VM implementation of SMTP responds to the VRFY command and the
EXPN command (see the EXPN command below) in the same manner. Thus, the
VRFY command can be used with z/VM systems to expand a mailing list defined
on such system; when this is done, a multiple-line reply may be returned in
response to the VRFY command.

The VRFY command can also be used to verify the existence of the POSTMASTER
mailbox or mailboxes defined for a system.

On z/VM systems, mailing lists are defined by the site administrator and are
stored in the SMTP NAMES file; POSTMASTER mailboxes are defined by the
POSTMASTER configuration statement in the SMTP CONFIG file. See the TCP/IP
Planning and Customization for more information about defining mailing lists and
specifying POSTMASTER mailboxes.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 367

Some example VRFY commands (issued against an SMTP server running on host
TESTVM1 at “somewhere.com”) and their corresponding responses follow:
vrfy tcpmaint 250 <tcpmaint@abcvm1.somewhere.com>

vrfy tcpadmin-list 250-<tcpmaint@abcvm1.somewhere.com>
250-<tcpadmin@abcvm1.somewhere.com>
250-<tcpadmin@adminpc.somewhere.com>
250 <maint@abcvm1.somewhere.com>

vrfy postmaster 250-<TCPMAINT@TESTVM1.somewhere.com>
250-<TCPADMIN@TESTVM1.SOMEWHERE.COM>
250 <TCPADMIN@ADMINPC.SOMEWHERE.COM>

The hyphen (-), when present as the fourth character of a response, indicates the
response is continued on the next line.

EXPN
The EXPN (“expand”) command expands a mailing list defined on the host where
SMTP is running.

ÊÊ EXPNexpand_string ÊÍ

Parameter Description

expand_string Specifies the name of the mailing list to be expanded.

The EXPN command operates and can be used in the same way as the VRFY
command.

VERB
The VERB command is used to enable or disable “verbose” mode for batch SMTP
connections.

ÊÊ VERB
OFF
ON ÊÍ

Parameter Description

ON Specifies that verbose mode is to be enabled (turned on). When
verbose mode is enabled for a batch SMTP connection, SMTP
commands and their associated replies are recorded in a batch
SMTP response file; this file is sent back to the origination point of
the batch SMTP command file when the batch transaction is
complete.

OFF Specifies that verbose mode is to be disabled (turned off); this is
the default. When verbose mode is disabled for a batch SMTP
connection, only SMTP replies are recorded in the batch SMTP
response file; this file is not returned to the origination point of the
batch SMTP command file.

See “SMTP Command Responses” on page 369 for more information about the
batch SMTP response file, how this file is handled, and how origination points are
determined.

SMTP Virtual Machine Interfaces

368 z/VM: TCP/IP Programmer’s Reference

Note: The VERB command has no effect when issued over a TCP connection.

TICK
The TICK command can be used (in conjunction with the VERB ON command) to
cause an identifier string to be inserted into a batch SMTP response file.

ÊÊ TICK identifier ÊÍ

Parameter Description

identifier Specifies an identification string to be included in a batch SMTP
response file.

This command can be useful for some mail systems that keep track of batch SMTP
response files and their content.

Note: The TICK command has no effect when it is issued over a TCP connection.

SMTP Command Example
The following is an example of an SMTP envelope and its contained piece of mail.
The SMTP commands that comprise the envelope are in upper case boldface text.
The information after the DATA command, and before the single ASCII period (the
“end of data” indicator) is the message header and body. The body is distinguished
from the header by the blank line that follows the “Subject: Update” line of text.
HELO yourhost.yourdomain.edu
MAIL FROM: <carol@yourhost.yourdomain.edu>
RCPT TO: <msgs@host1.somewhere.com>
RCPT TO: <alice@host2.somewhere.com>
DATA
Date: Sun, 30 Nov 98 nn:nn:nn EST
From: Carol <carol@yourhost.yourdomain.edu>
To: <msgs@host1.somewhere.com>
Cc: <alice@host2.somewhere.com>
Subject: Update

Mike: Cindy stubbed her toe. Bobby went to
baseball camp. Marsha made the cheerleading team.
Jan got glasses. Peter has an identity crisis.
Greg made dates with 3 girls and couldn't
remember their names.

.
QUIT

SMTP Command Responses
The z/VM SMTP server can accept SMTP commands that arrive over a TCP
connection or over a batch SMTP (BSMTP) connection. With either type of
connection, a response (or, reply) is generated for each command received by
SMTP. Each reply is prefixed with a three-digit number, or code. The nature of
each response can be determined by inspecting the first digit of this reply code;
possible values for this digit are:

Digit Description
0 Echo reply; used only in batch SMTP response files. Received

commands are “echoed” in these files to provide contextual
information for other reply codes.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 369

1 Positive Preliminary reply. SMTP does not use a 1 as the first digit
of a reply code, because there are no SMTP commands for which
such a reply is applicable.

2 Positive Completion reply; command accepted.
3 Positive Intermediate reply; data associated with the command

should now be provided.
4 Temporary Negative Completion reply; try the command again,

but at a later time.
5 Permanent Negative Completion reply; the command has been

rejected.

For SMTP commands that arrive over a TCP connection, all responses (positive or
negative) are returned over that TCP connection.

Similarly, for SMTP commands that arrive over a batch SMTP connection, all
responses are written to a batch SMTP response file. If verbose mode is enabled for
a batch SMTP connection (through use of the VERB ON command), SMTP returns
this response file to the origination point of the spool file. The origination point is
determined either from the ORIGINID field of the spool file (if the spool file was
generated on the same z/VM system as the SMTP virtual machine) or from the
spool file TAG field (if the spool file arrived from a remote system through the
RSCS network). If the batch SMTP connection is not in verbose mode, the batch
SMTP response file is not returned to the point of origin.

If an error occurs during the processing of commands over a batch SMTP
connection, such as reception of a negative response (with a first digit of 4 or 5), an
error report is mailed back to the sender of the mail. The sender is determined
from the last valid MAIL FROM: command that was received by SMTP. If the
sender cannot be determined from a MAIL FROM: command, the sender is
assumed to be the origination point of the batch SMTP command file. The error
report mailed to the sender includes the batch SMTP response file and the text of
the undeliverable mail.

Note: All SMTP commands and data that arrive over TCP or batch SMTP
connections are subject to the restrictions imposed by both SMTP
conventions and constants defined in either the SMTPGLOB COPY file, or
within other SMTP source files. Any changes made to these files to
overcome a restriction will require the affected source files to be recompiled,
and the SMTP module to be rebuilt. Several significant restrictions, the
relevant constants, and their default values are:
v Command lines must not exceed MaxCommandLine (552 characters).
v Data lines longer than MaxDataLine (1024 characters) are wrapped.
v Path addresses must not exceed MaxPathLength (256 characters).
v Domain names must not exceed MaxDomainName (256 characters).
v User names, the local part of a mailbox specification, must not exceed

MaxUserName (256 characters).

Path Address Modifications
When SMTP processes MAIL FROM: and RCPT TO: commands, the path addresses
specified with these commands may be modified by SMTP due to use of the
SOURCEROUTES configuration statement, or based on the content of the path
addresses themselves. See the TCP/IP Planning and Customization for more

SMTP Virtual Machine Interfaces

370 z/VM: TCP/IP Programmer’s Reference

information about the SOURCEROUTES statement and its affect on path addresses.
For content-based changes, certain path addresses will be rewritten by SMTP as
follows:
1. If the local part of a mailbox name includes a percent sign (%) and the domain

of the mailbox is that of the host system where SMTP is running, the given
domain name is eliminated, and the portion of the “local part” to the right of
the percent sign (%) is used as the destination domain. For example, the path
address:
john%yourvm@ourvm.our.edu

is rewritten by SMTP running at “ourvm.our.edu” as:
john@yourvm

2. Path addresses with source routes are accepted and rewritten to remove the
domain name of the host system where SMTP is running. For example, the
path address:
@ourvm.our.edu,@next.host.edu:john@yourvm

is rewritten by SMTP running at “ourvm.our.edu” as:
@next.host.edu:john@yourvm

Definitions for “valid path format” specifications can be obtained from the RFCs
that define the naming conventions used throughout the Internet. For detailed
information, consult the RFCs listed in the section “SMTP Commands” on
page 360.

Batch SMTP Command Files
Batch SMTP command files are files that contain an SMTP envelope (as described
in “SMTP Transactions” on page 359) which are sent to the virtual reader of the
SMTP virtual machine using the CMS PUNCH, DISK DUMP, SENDFILE, or
NETDATA SEND commands. For a description of these commands, see the z/VM:
CMS Command Reference. These files are encoded using EBCDIC.

Batch SMTP command files can be sent by users on the same z/VM system, or any
system connected through an RSCS network. For information about RSCS
networks, see the RSCS General Information.

Batch SMTP files may be modified when they are processed by the SMTP server, as
follows:
v All trailing blanks are removed from each record of a file sent in PUNCH

format. Trailing blanks are preserved for files send in NETDATA or DISK DUMP
format.

v A record that is entirely blank will be treated as a record with a single blank.

Batch SMTP Examples
The following sections contain examples that demonstrate batch SMTP capabilities.

Sending Mail to a TCP Network Recipient
The example that follows shows the content of a batch SMTP file used to send mail
from a CMS user (CAROL at YOURHOST) to two TCP network recipients. The VERB
ON command will cause a batch SMTP response file to be returned to the CMS
user CAROL. The text included with the TICK command will appear in this file as
well, so that the nature of the response file will be evident when it is returned.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 371

VERB ON
TICK Carol's Batch Test File
HELO yourhost.yourdomain.edu
MAIL FROM: <carol@yourhost.yourdomain.edu>
RCPT TO: <msgs@host1.somewhere.com>
RCPT TO: <alice@host2.somewhere.com>
DATA
Date: Sun, 30 Nov 98 nn:nn:nn EST
From: Carol <carol@yourhost.yourdomain.edu>
To: <msgs@host1.somewhere.com>
Cc: <alice@host2.somewhere.com>
Subject: Update

Mike: Cindy stubbed her toe. Bobby went to
baseball camp. Marsha made the cheerleading team.
Jan got glasses. Peter has an identity crisis.
Greg made dates with 3 girls and couldn't
remember their names.

.
QUIT

With the exception of the VERB and TICK commands, this sample batch SMTP file
contains commands that are identical to those shown in “SMTP Command
Example” on page 369.

Following is the batch SMTP response file (BSMTP REPLY) produced for the
previous command file:
220-YOURHOST.YOURDOMAIN.EDU running IBM VM SMTP Level 320 on Sun, 30 Nov 1998 nn
220 :nn:n EST
050 VERB ON
250 Verbose Mode On
050 TICK Carol's Batch Test File
250 OK
050 HELO yourhost.yourdomain.edu
250 YOURHOST.YOURDOMAIN.EDU is my domain name. Yours too, I see!
050 MAIL FROM: <carol@yourhost.yourdomain.edu>
250 OK
050 RCPT TO: <msgs@host1.somewhere.com>
250 OK
050 RCPT TO: <alice@host2.somewhere.com>
250 OK
050 DATA
354 Enter mail body. End by new line with just a '.'
250 Mail Delivered
050 QUIT
221
YOURHOST.YOURDOMAIN.EDU running IBM VM SMTP Level 320 closing connection

Querying SMTP Delivery Queues
The SMTP delivery queues can be queried by sending a file that contains VERB
ON and QUEU commands to the SMTP virtual machine. A batch SMTP response
file that contains the QUEU command results is then returned to the originating
user ID.

The SMTPQUEU EXEC (supplied with TCP/IP Function Level 320 on the
TCPMAINT 592 “Client-code” minidisk) generates such a file and sends it to the
SMTP virtual machine.

Sample content for a BSMTP REPLY file returned in response to an SMTPQUEU
command follows:

SMTP Virtual Machine Interfaces

372 z/VM: TCP/IP Programmer’s Reference

220-YOURHOST.YOURDOMAIN.EDU running IBM VM SMTP Level 320 on Sun, 30 Nov 1998 nn
220 :nn:n EST
050-VERB ON
050
250 Verbose Mode On
050-QUEU
050
250-Queues on YOURHOST.YOURDOMAIN.EDU at nn:nn:nn EST on 11/30/98
250-Spool Queue: Empty
250-Queue for Site: 123.45.67.89 RETRY QUEUE Last Tried: nn:nn:nn
250-Note 00000005 to <MSGS@HOST1.SOMEWHERE.COM>
250-Queue for Site: 98.76.54.32 RETRY QUEUE Last Tried: nn:nn:nn
250-Placeholder...no files queued for this site
250-Undeliverable Queue: Empty
250-Resolution Queues:
250-Resolver Process Queue: Empty
250-Resolver Send Queue: Empty
250-Resolver Wait Queue:
250-00000013 <userx@somehost.nowhereville.com>
250-Resolver Retry Queue: Empty
250-Resolver Completed Queue: Empty
250-Resolver Error Pending Queue: Empty
250 OK

SMTP Exit Routines
The SMTP user exits described in the next sections allow you greater control over
each piece of mail that is processed by the SMTP server. To effectively use these
exits and their parameters, it is necessary to understand SMTP transactions. Refer
to the previous sections in this chapter for information about the commands,
messages, and replies that are used to facilitate e-mail transactions between the
sender and receiver of a piece of mail.

Client Verification Exit
When a client connects to SMTP, the originating mail domain must be provided.
The client verification exit can be used to verify that the domain name provided by
a client matches that client’s IP address. Thus, this exit allows flexibility on actions
you can take to deal with spoofing problems. In spoofing, the client provides a
falsified domain in order to cause mail to appear to have come from someone (or
somewhere) else. When client verification is performed, you might choose to
include the verification results in mail headers, or possibly reject future
communications on a connection.

With the client verification exit, you can perform any or all of the following:
v Reject mail from a particular host.
v Mark certain trusted sites as verified, but perform verification on all others.
v Control which users can use a particular SMTP server.

The exit can be further customized to perform additional actions that are unique or
required for your environment.

Note: The client verification exit is called for each HELO or EHLO command
processed for each mail item received from the network. Client verification
is not performed for mail items received from the SMTP virtual reader.

Built-in Client Verification Function
In addition to the exit, SMTP can be configured to perform client verification
through internal processing. When this support is enabled, this “built-in” client

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 373

verification function will be called for each HELO or EHLO processed for each
mail item. See the TCP/IP Planning and Customization for detailed information about
configuring SMTP to use this support.

The built-in client verification function of the SMTP server can be used to
determine if a client host name and client IP address match, and to include the
result of that determination in the mail headers. This function will perform a DNS
lookup against the HELO or EHLO command data provided by a client, and will
then insert a message into the mail header that reflects the result of this lookup.

Client verification performed using the built-in function has three possible
outcomes:

Success
The data the client provided in the HELO or EHLO command corresponds to the
client address. The following line is inserted into the mail header:
X-Comment: localhost: Mail was sent by host

Failure
The data the client provided in the HELO or EHLO command is not associated
with the client IP address. In this case, a reverse name lookup is done against the
client IP address to determine the actual host name. The following line is inserted
into the mail header:
X-Comment: localhost: Host host claimed to be helodata

Unknown
The validation could not be performed. This situation could occur if the name
server is not responding, or the verification could not be performed in the allotted
time (as controlled by the VERIFYCLIENTDELAY statement). The following line is
inserted into the mail header:
X-Warning: localhost: Could not confirm that host [ipaddr] is helodata

The terms used in the previously listed mail header messages are described in
more detail here:

localhost
the local VM host name

helodata
the data the client provided with the HELO or EHLO command

host the host name determined by the reverse DNS lookup; if a host name is
not found, “unknown host” will be used

ipaddr
the client IP address.

Client Verification Exit Parameter Lists
The parameter lists passed to the REXX and the assembler exit routines follow.
When you customize either of these exits, keep in mind the following:
v Because an identical exit parameter list definition is used for all of the SMTP

user exits, not all parameters may be meaningful for this exit. Parameters that
are not used by this exit are indicated in the exit parameter lists; their values
should be ignored.

v For the REXX exit, the value of an unused parameter will be such that any
parsing will not be affected.

SMTP Virtual Machine Interfaces

374 z/VM: TCP/IP Programmer’s Reference

Parameter descriptions that pertain to both the REXX and assembler exits are
provided on page 376.

REXX Parameter List

Inputs:

Table 72. Client Verification REXX Exit Parameter List
Argument Description

ARG(1) Parameter list defined as follows:
v Exit type
v Version number
v Mail record ID
v Port number of SMTP server
v IP address of SMTP server
v Port number of client
v IP address of client
v Filename of note on disk
v Verify Client status
v Maximum length of Return String

ARG(2) SMTP command string
ARG(3) HELO/EHLO name
ARG(4-6) Not used

Outputs:

The following are returned to the caller in the RESULT variable via a REXX
RETURN statement:

Argument Description

RC The exit return code; this must be a 4-byte binary value.

Return String An exit-specified string; the returned value must have a length less
than or equal to the maximum length passed to the exit.

Assembler Parameter List
Following is the parameter list that is passed to the assembler exit routine. General
Register 1 points to the parameter list.

Table 73. Client Verificaiton ASSEMBLER Exit Parameter List
Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type
+4 4 Input Int Version number
+8 4 Input Int Mail record ID

+12 4 Input Int Port number of SMTP server
+16 4 Input Int IP address of SMTP server
+20 4 Input Int Port number of client
+24 4 Input Int IP address of client
+28 4 Input Ptr Address of SMTP command string
+32 4 Input Int Length of SMTP command string

┌────────┬──────────────────────────────┐
│ RC │ Return String │
└────────┴──────────────────────────────┘

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 375

Table 73. Client Verificaiton ASSEMBLER Exit Parameter List (continued)
Offset in
Decimal

Len In/Out Type Description

+36 4 Input Ptr Address of HELO/EHLO name
+40 4 Input Int Length of HELO/EHLO name
+44 24 Not used
+68 4 Input Int Verify Client status
+72 4 Output Ptr Address of Return String
+76 4 Output Int Length of Return String
+80 4 Input Int Maximum length of Return String
+84 8 Not used
+92 4 Input/ Output Char User Word 1
+96 4 Input/ Output Char User Word 2

+100 4 Output Int Return code from exit

Parameter Descriptions
Exit type

A four-character field that indicates the type of exit called. For the client
verification exit, this is VERX.

Version number
The parameter list version number; if the parameter list format is changed, the
version number will change. Your exit should verify it has received the
expected version number. The current version number is 1.

Mail record ID
A number that uniquely identifies a piece of mail so that multiple exit calls can
be correlated to the same piece of mail. A value of 0 indicates a mail record ID
is not available.

Port number of SMTP server
The port number used by the SMTP server for this connection.

IP address of SMTP server
For the REXX exit, a dotted-decimal format IP address is provided; for the
assembler exit, this is an IP address in decimal integer form. For multi-homed
hosts, this address can be compared with the client IP address to determine in
which part of the network the client host resides.

Port number of client
If the connection no longer exists, -1 is supplied. Otherwise, this is the port
number used by the foreign host for this connection.

IP address of client
For the REXX exit, a dotted-decimal format IP address is provided; for the
assembler exit, this is an IP address in decimal integer form.

SMTP command string
Contains the HELO/EHLO command and the domain specified for this
command. The string has been converted to uppercase (for example, “HELO
DOMAIN1”).

HELO/EHLO name
A string that contains the name specified on the HELO or EHLO command;
this string may be either:
v a domain name

SMTP Virtual Machine Interfaces

376 z/VM: TCP/IP Programmer’s Reference

v an IP address in decimal integer form that is prefixed by the number or (US)
pound sign (“#” or X'7B')

v an IP address in dotted-decimal form, enclosed in brackets.

For example, if the command HELO #123456 is provided by an SMTP client, this
parameter would contain #123456.

The name has already been verified to have the correct syntax.

Verify Client status
A number that indicates client verification results. For this exit, client
verification results are unknown when the exit receives control; thus, this field
will contain a 3. Possible values and their meanings are:

0 Client verification passed.
1 Client verification failed.
2 Client verification was not performed.
3 Client verification results are unknown.

Return String
When the exit returns a return code of 3, this value is appended to the
X-Comment that is inserted in the mail header. When the exit returns a return
code of 5, the Return String value is appended to the 550 reply code.

Maximum length of Return String
The current maximum is 512 bytes; ensure the Return String length is less than
this value. If the returned string is longer than the indicated maximum, the
return string is truncated and the following message is displayed on the SMTP
sever console:
Return data from exit exitname exittype too long, data truncated

Normal processing continues.

User Word 1
Provided for use by the assembler exit only. The user word specified upon
return from this exit will be passed back in this field for any future calls; 0 is
the initial value. The SMTP server does not use this value in any way.

User Word 2
Provided for use by the assembler exit only. The user word specified upon
return from this exit will be passed back in this field for any future calls; 0 is
the initial value. The SMTP server does not use this value in any way.

Return Codes from the Client Verification Exit Routine
Following are the return codes recognized by SMTP for this exit.

Table 74. Client Verification Exit Return Codes

Return Code Explanation

0 Do not verify client. A comment will not be inserted in the mail header.

1 Perform verification using the built-in client verification function.

2 Mark as verified. The following comment will be inserted in the mail
header:

X-Comment: localhost: Mail was sent by host

3 The following comment will be inserted in the mail header:

X-Comment: Return String

where the value for Return String can be specified by the exit.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 377

Table 74. Client Verification Exit Return Codes (continued)

Return Code Explanation

4 Disable the exit. The following message will be displayed on the SMTP
console:

VERIFYCLIENT EXIT function disabled

The exit will no longer be called. The client will not be verified and no
comment will be inserted in the mail header.

5 Reject this command with: 550 Return String

If a return string is not provided by the exit, then the default message will
be displayed:

550 Access denied

All future communications on this connection will be rejected with this 550
message.

Other Any return code other than the above causes SMTP to issue this message:

Unexpected return from user exit exitname exittype, RC = rc

SMTP treats this return code as if it were a return code of 0.

Client Verification Sample Exits
Sample Client Verification exit routines are supplied with TCP/IP on the
TCPMAINT 591 disk. The supplied samples are:

SMTPVERX SEXEC
REXX exit routine that contains a sample framework for performing client
verification actions. Your customized exit should be stored on the
TCPMAINT 198 disk as SMTPVERX EXEC.

SMTPVERX SAMPASM
The assembler exit routine called by the SMTP server; the exit is used to
call SMTPVERX EXEC and to pass results back to the SMTP server. Your
customized exit should be stored on the TCPMAINT 198 disk as file
SMTPVERX ASSEMBLE. The customized ASSEMBLE file must be
assembled (by using the VMFHLASM SMTPVERX DMSVM command), and the
resulting text deck placed on the TCPMAINT 198 disk.

These samples are for illustrative purposes only. They should be modified to meet
the needs of your installation before placing them in a production environment.
The assembler exit will have better performance characteristics than the REXX exit.
For best performance, EXECLOAD any REXX exits.

Using the Mail Forwarding Exit
When SMTP clients use the VM SMTP server to send mail to hosts that their
workstations cannot reach directly, this is an instance of mail forwarding. The mail
forwarding exit provides a mechanism to control this activity. When SMTP
determines the addressee specified on a RCPT TO: command is not “defined on” the
local system, it has detected mail forwarding, and it will call this exit routine.

The phrase “defined on” in the previous paragraph is meant to convey that SMTP
considers a user to be a local user, in addition to any other criteria, if that user is
defined in the SMTP NAMES file — regardless of whether mail delivery to that
user is performed via spooling (RSCS services) or through a network TCP

SMTP Virtual Machine Interfaces

378 z/VM: TCP/IP Programmer’s Reference

|
|

|
|
|
|

|
|
|
|
|
|
|

|

connection. Also, keep in mind that the determination of whether mail forwarding
is occurring is made on a recipient-by-recipient basis, not on other aspects of a
given piece of mail. A piece of mail with multiple recipients can contain
occurrences of both mail forwarding and local delivery.

With the mail forwarding exit, you can perform any or all of the following:
v Allow mail forwarding and mail delivery to proceed without interruption.
v Disallow mail forwarding from a known sender of “junk” mail, and possibly

reject future communications on a connection used for this purpose.
v Intercept mail from specific clients and forward that mail to a local VM user ID

for further analysis.
v Restrict the ability to forward mail to a particular set of hosts.

The exit can be further customized to perform additional actions that are required
for your environment.

Note: The mail forwarding exit is only called for mail items received from the
network; it is not called for mail items generated on the VM system or
received via RSCS.

This exit can also be used to control spamming. Spamming is the act of sending
mail to a large number of e-mail addressees and is often compared to the term
“junk mail”, used to describe similar activities performed via postal services. Spam
is a piece of mail that is perceived by the recipients to be unsolicited and
unwanted. There are two aspects to consider when trying to control spamming
problems:
v Is your system being used to relay spam messages to recipients throughout the

internet?
v Are incoming spam messages to your local users seriously taxing or overloading

your system?

The relaying of spam messages may be treated like any other type of mail
forwarding. The exit can prevent delivery of all forwarded mail, prevent delivery
of mail from particular sites known for spamming, or only allow delivery of mail
from particular trusted sites. Handling spam messages directed to your local users
will require the use of the SMTP command exit. When you address spamming
problems, it’s important to realize that one person may consider a piece of mail to
be a spam, while the same piece of mail may be valuable to someone else. There
are no explicit rules that determine what is and is not spam.

In addition to the exit, SMTP can be configured to enable or disable mail
forwarding for all mail. If mail forwarding is disabled in this manner and SMTP
determines the recipient specified on a RCPT TO: record is not defined on the local
system, it has detected mail forwarding, and it will reject the delivery of the mail
to that recipient. See the TCP/IP Planning and Customization for more information
about configuring SMTP to accept or reject all forwarded mail.

Mail Forwarding Exit Parameter Lists
The parameter lists passed to the REXX and the assembler exit routines follow.
When you customize either of these exits, keep in mind the following:
v Because an identical exit parameter list definition is used for all of the SMTP

user exits, not all parameters may be meaningful for this exit. Parameters that
are not used by this exit are indicated in the exit parameter lists; their values
should be ignored.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 379

v For the REXX exit, the value of an unused parameter will be such that any
parsing will not be affected.

Parameter descriptions that pertain to both the REXX and assembler exits are
provided on page 381.

REXX Parameter List

Inputs:

Table 75. Mail Forwarding REXX Exit Parameter List
Argument Description

ARG(1) Parameter list defined as follows:
v Exit type
v Version number
v Mail record ID
v Port number of SMTP server
v IP address of SMTP server
v Port number of client
v IP address of client
v Filename of note on disk
v Verify Client status
v Maximum length of Return String

ARG(2) SMTP command string
ARG(3) HELO/EHLO name
ARG(4) MAIL FROM: string
ARG(5) Client domain name
ARG(6) Not used

Outputs:

The following are returned to the caller in the RESULT variable via a REXX
RETURN statement:

Argument Description

RC The exit return code; this must be a 4-byte binary value.

Return String An exit-specified string; the returned value must have a length less
than or equal to the maximum length passed to the exit.

Assembler Parameter List
Following is the parameter list that is passed to the assembler exit routine. General
Register 1 points to the parameter list.

Table 76. Mail Forwarding ASSEMBLER Exit Parameter List
Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type
+4 4 Input Int Version number
+8 4 Input Int Mail record ID

+12 4 Input Int Port number of SMTP server
+16 4 Input Int IP address of SMTP server

┌────────┬──────────────────────────────┐
│ RC │ Return String │
└────────┴──────────────────────────────┘

SMTP Virtual Machine Interfaces

380 z/VM: TCP/IP Programmer’s Reference

Table 76. Mail Forwarding ASSEMBLER Exit Parameter List (continued)
Offset in
Decimal

Len In/Out Type Description

+20 4 Input Int Port number of client
+24 4 Input Int IP address of client
+28 4 Input Ptr Address of SMTP command string
+32 4 Input Int Length of SMTP command string
+36 4 Input Ptr Address of HELO/EHLO name
+40 4 Input Int Length of HELO/EHLO name
+44 4 Input Ptr Address of client domain name
+48 4 Input Int Length of client domain name
+52 4 Input Ptr Address of MAIL FROM: string
+56 4 Input Int Length of MAIL FROM: string
+60 8 Input Char File name of note on disk
+68 4 Input Int Verify Client status
+72 4 Output Ptr Address of Return String
+76 4 Output Int Length of Return String
+80 4 Input Int Maximum length of Return String
+84 8 Not used
+92 4 Input/ Output Char User Word 1
+96 4 Input/ Output Char User Word 2

+100 4 Output Int Return code from exit

Parameter Descriptions:

Exit type
A four-character field that indicates the type of exit called. For the mail
forwarding exit, this is FWDX.

Version number
The parameter list version number; if the parameter list format is changed, the
version number will change. Your exit should verify it has received the
expected version number. The current version number is 1.

Mail record ID
A number that uniquely identifies a piece of mail so that multiple exit calls can
be correlated to the same piece of mail. A value of 0 indicates a mail record ID
is not available.

Port number of SMTP server
The port number used by the SMTP server for this connection.

IP address of SMTP server
For the REXX exit, a dotted-decimal format IP address is provided; for the
assembler exit, this is an IP address in decimal integer form. For multi-homed
hosts, this address can be compared with the client IP address to determine in
which part of the network the client host resides.

Port number of client
If the connection no longer exists, -1 is supplied. Otherwise, this is the port
number used by the foreign host for this connection.

IP address of client
For the REXX exit, a dotted-decimal format IP address is provided; for the
assembler exit, this is an IP address in decimal integer form.

SMTP command string
Contains the name specified on the RCPT TO: command. The recipient path,

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 381

enclosed in angle brackets (< and >), is included. The recipient path may be in
any valid path format; it has already been verified to have the correct syntax.
Because the recipient address has been resolved, this string may not exactly
match the data provided with the RCPT TO: command.

For example, if the following has been specified by the SMTP client:
RCPT TO: <usera@host1>

the SMTP command string might contain: <usera@host1.com>

HELO/EHLO name
A string that contains the name specified on the HELO or EHLO command;
this string may be either:
v a domain name
v an IP address in decimal integer form that is prefixed by the number or (US)

pound sign (“#” or X'7B')
v an IP address in dotted-decimal form, enclosed in brackets.

For example, if the command HELO #123456 is provided by an SMTP client, this
parameter would contain: #123456.

The name has already been verified to have the correct syntax.

Client domain name
The domain name that corresponds to the client IP address. The length of this
field will be zero if:
v client verification was not performed
v the results of client verification are unknown
v a reverse lookup failed

In all other cases, this will be a domain name.

MAIL FROM: string
Contains the name specified on the MAIL FROM: command. The sender path,
enclosed in angle brackets (< and >), is included. The sender path may be in
any valid path format; it has already been verified to have the correct syntax.
Because the sender address has been resolved, this string may not exactly
match the data provided with the MAIL FROM: command.

For example, if the following has been specified by the SMTP client:
MAIL FROM: <userb@host2>

the SMTP command string might contain: <userb@host2.com>

File name of note on disk
Name of the file created after the “end of data” (EOD) condition, a period (.),
is received. Prior to either of these conditions, the file name is not defined; in
this case, an asterisk (*) will be supplied.

Verify Client status
A number that indicates client verification results. Possible values and their
meanings are:

0 Client verification passed.
1 Client verification failed.
2 Client verification was not performed.
3 Client verification results are unknown.

Return String
When the exit returns a return code of 1 or 5, this value is appended to the 551
or 550 reply code. When the exit returns a return code of 2, the Return String
value should contain a VM user ID to which mail should be transferred.

SMTP Virtual Machine Interfaces

382 z/VM: TCP/IP Programmer’s Reference

Maximum length of Return String
The current maximum is 512 bytes; ensure the Return String length is less than
this value. If the returned string is longer than the indicated maximum, the
return string is truncated and the following message is displayed on the SMTP
sever console:

Return data from exit exitname exittype too long, data truncated

Normal processing continues.

User Word 1
Provided for use by the assembler exit only. The user word specified upon
return from this exit will be passed back in this field for any future calls; 0 is
the initial value. The SMTP server does not use this value in any way.

User Word 2
Provided for use by the assembler exit only. The user word specified upon
return from this exit will be passed back in this field for any future calls; 0 is
the initial value. The SMTP server does not use this value in any way.

Return Codes from the Mail Forwarding Exit Routine
Following are the return codes recognized by SMTP for this exit.

Table 77. Mail Forwarding Exit Return Codes

Return Code Explanation

0 Accept and attempt mail delivery.

1 Reject mail with: 551 Return String

If a return string is not provided by the exit, the following default message
will be used:

551 User not local; please try user@otherhost

If the server has already responded to the command, this return code will
result in error mail being sent back to the sender.

2 Accept and forward to the local VM user ID specified by Return String. If
the VM user ID is null or is not valid, the mail will be delivered to the local
postmaster; the mail will not be delivered to the addressee.

4 Disable the exit. The following message will be displayed on the SMTP
console:

FORWARD MAIL EXIT function disabled

The exit will no longer be called. SMTP will attempt to deliver this mail.

5 Reject this command with: 550 Return String

If a return string is not provided by the exit, then the default message will
be displayed:

550 Access denied

All future communications on this connection will be rejected with this 550
message.

Other Any return code other than the above causes SMTP to issue this message:

Unexpected return from user exit exitname exittype, RC = rc

SMTP treats this return code as if it were a return code of 0.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 383

Mail Forwarding Sample Exits
Sample Mail Forwarding exit routines are supplied with TCP/IP on the
TCPMAINT 591 disk. The supplied samples are:

SMTPFWDX SEXEC
REXX exit routine that contains a sample framework for handling
forwarded mail items. Your customized exit should be stored on the
TCPMAINT 198 disk as file SMTPFWDX EXEC.

SMTPFWDX SAMPASM
The assembler exit routine called by the SMTP server; the exit is used to
call SMTPFWDX EXEC and to pass results back to the SMTP server. Your
customized exit should be stored on the TCPMAINT 198 disk as file
SMTPFWDX ASSEMBLE. The customized ASSEMBLE file must be
assembled (by using the VMFHLASM SMTPFWDX DMSVM command), and the
resulting text deck placed on the TCPMAINT 198 disk.

These samples are for illustrative purposes only. They should be modified to meet
the needs of your installation before placing them in a production environment.
The assembler exit will have better performance characteristics than the REXX exit.
For best performance, EXECLOAD any REXX exits.

Using the SMTP Command Exit
The SMTP server can be configured to call an exit routine whenever certain SMTP
commands are received, through use of the SMTP command exit. This exit can be
defined such that is invoked for any or all the commands that follow:

HELO
The SMTP 'HELO' command.

EHLO
The SMTP 'EHLO' command.

MAIL
The SMTP 'MAIL FROM:' command.

RCPT
The SMTP 'RCPT TO:' command.

DATA
The SMTP 'DATA' command.

EOD The “end of data” condition. This occurs when a period (.) is received by
the server, usually after all data has been transmitted.

VRFY
The SMTP 'VRFY' command.

EXPN
The SMTP 'EXPN' command.

RSET
The SMTP 'RSET' command.

PUNCH
The point in time when the server is about to deliver mail to a local
destination on the same node or RSCS network; this command is unique to
the VM TCP/IP SMTP server.

SMTP Virtual Machine Interfaces

384 z/VM: TCP/IP Programmer’s Reference

|
|

|
|
|
|

|
|
|
|
|
|
|

|

Notes:

1. The person responsible for creating or maintaining programs that exploit this
capability should be knowledgeable of the protocol(s) related to the SMTP
commands that are processed using this exit.

2. Only one SMTP command exit can be active at a time.

The SMTP command exit could be used for a wide variety of purposes; several
possible uses are included here:
v Reject particular SMTP commands. For example, you may not want your server

to support the VRFY and EXPN commands.
v Handle the delivery of local mail in a specific manner.
v Screen and reject mail that contains offensive language, or fails to meet other

criteria defined by your installation.

Note: Scanning the content of a message will severely degrade server performance.

SMTP Command Exit Parameter Lists
The parameter lists passed to the REXX and the assembler exit routines follow.
When you customize either of these exits, keep in mind the in mind the following:
v Because an identical exit parameter list definition is used for all of the SMTP

user exits, not all parameters may be meaningful for this exit. Parameters that
are not used by this exit are indicated in the exit parameter lists; their values
should be ignored.

v For the REXX exit, the value of an unused parameter will be such that any
parsing will not be affected.

Parameter descriptions that pertain to both the REXX and assembler exits are
provided on page 386.

REXX Parameter List

Inputs:

Table 78. SMTP Commands REXX Exit Parameter List
Argument Description

ARG(1) Parameter list defined as follows:
v Exit type
v Version number
v Mail record ID
v Port number of SMTP server
v IP address of SMTP server
v Port number of client
v IP address of client
v Filename of note on disk
v Verify Client status
v Maximum length of Return String

ARG(2) SMTP command string
ARG(3) HELO/EHLO name
ARG(4) MAIL FROM: string
ARG(5) Client domain name
ARG(6) Batch VM user ID

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 385

Outputs: The following are returned to the caller in the RESULT variable via a
REXX RETURN statement:

Argument Description

RC The exit return code; this must be a 4-byte numeric value.

Return String An exit-specified string; the returned value must have a length less
than or equal to the maximum length passed to the exit.

Assembler Parameter List
Following is the parameter list that is passed to the assembler exit routine. General
Register 1 points to the parameter list.

Table 79. SMTP Commands ASSEMBLER Exit Parameter List
Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type
+4 4 Input Int Version number
+8 4 Input Int Mail record ID

+12 4 Input Int Port number of SMTP server
+16 4 Input Int IP address of SMTP server
+20 4 Input Int Port number of client
+24 4 Input Int IP address of client
+28 4 Input Ptr Address of SMTP command string
+32 4 Input Int Length of SMTP command string
+36 4 Input Ptr Address of HELO/EHLO name
+40 4 Input Int Length of HELO/EHLO name
+44 4 Input Ptr Address of client domain name
+48 4 Input Int Length of client domain name
+52 4 Input Ptr Address of MAIL FROM: string
+56 4 Input Int Length of MAIL FROM: string
+60 8 Input Char File name of note on disk
+68 4 Input Int Verify client status
+72 4 Output Ptr Address of Return String
+76 4 Output Int Length of Return String
+80 4 Input Int Maximum length of Return String
+84 8 Input Char Batch VM User ID
+92 4 Input/ Output Char User Word 1
+96 4 Input/ Output Char User Word 2

+100 4 Output Int Return code from exit

Parameter Descriptions:

Exit type
A four-character field that indicates the type of exit called. For the SMTP
command exit, this is CMDX.

Version number
The parameter list version number; if the parameter list format is changed, the
version number will change. Your exit should verify it has received the
expected version number. The current version number is 1.

┌────────┬──────────────────────────────┐
│ RC │ Return String │
└────────┴──────────────────────────────┘

SMTP Virtual Machine Interfaces

386 z/VM: TCP/IP Programmer’s Reference

Mail record ID
A number that uniquely identifies a piece of mail so that multiple exit calls can
be correlated to the same piece of mail. A value of 0 indicates a mail record ID
is not available.

Port number of SMTP server
The port number used by the SMTP server for this connection.

IP address of SMTP server
For the REXX exit, a dotted-decimal format IP address is provided; for the
assembler exit, this is an IP address in decimal integer form. For multi-homed
hosts, this address can be compared with the client IP address to determine in
which part of the network the client host resides.

Port number of client
If the connection no longer exists, or if the command was received over a batch
(BSMTP) connection, -1 is supplied. Otherwise, this is the port number used by
the foreign host for this connection.

IP address of client
For the REXX exit, a dotted-decimal format IP address is provided; for the
assembler exit, this is an IP address in decimal integer form. If the relevant
SMTP command was received over a batch SMTP (BSMTP) connection, this
field is 0.

File name of note on disk
Name of the file created after the “end of data” (EOD) condition, a period (.),
is received. Prior to either of these conditions, the file name is not defined; in
this case, an asterisk (*) will be supplied.

Verify Client status
A number that indicates client verification results. Possible values and their
meanings are:

0 Client verification passed.
1 Client verification failed.
2 Client verification was not performed.
3 Client verification results are unknown.

SMTP command string
Contains the current command and parameters; the string has been converted
to uppercase. For example, if this exit was called for the MAIL FROM:
command, this string might contain: MAIL FROM: <USERA@MYDOMAIN>.

HELO/EHLO name
A string that contains the name specified on the HELO or EHLO command;
this string may be either:
v a domain name
v an IP address in decimal integer form that is prefixed by the number or (US)

pound sign (“#” or X'7B')
v an IP address in dotted-decimal form, enclosed in brackets.

For example, if the command HELO #123456 is provided by an SMTP client, this
parameter would contain: #123456.

The name has already been verified to have the correct syntax.

MAIL FROM: string
Contains the name specified on the MAIL FROM: command. The sender path,
enclosed in angle brackets (< and >), is included. The sender path may be in
any valid path format; it has already been verified to have the correct syntax.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 387

Because the sender address has been resolved, this string may not exactly
match the data provided with the MAIL FROM: command.

For example, if the following has been specified by the SMTP client:
MAIL FROM: <userb@host2>

the SMTP command string might contain: <userb@host2.com>

Client domain name
The domain name that corresponds to the client IP address. This field will be a
null string if:
v client verification was not performed
v the results of client verification are unknown
v a reverse lookup failed

In all other cases, this will be a domain name.

Batch VM user ID
This field is only used when SMTP commands arrive over a batch SMTP
(BSMTP) connection. If this exit is called for batch SMTP connections, this field
will contain the VM User ID that originated the mail. Otherwise, this field is
not defined and will contain nulls.

User Word 1
Provided for use by the assembler exit only. The user word specified upon
return from this exit will be passed back in this field for any future calls; 0 is
the initial value. The SMTP server does not use this value in any way.

User Word 2
Provided for use by the assembler exit only. The user word specified upon
return from this exit will be passed back in this field for any future calls; 0 is
the initial value. The SMTP server does not use this value in any way.

Return String
When the exit returns a return code of 1 or 5, this value is appended to the 550
reply code.

Maximum length of Return String
The current maximum is 512 bytes; ensure the Return String length is less than
this value. If the returned string is longer than the indicated maximum, the
return string is truncated and the following message is displayed on the SMTP
sever console:

Return data from exit exitname exittype too long, data truncated

Normal processing continues.

Return Codes from the SMTP Command Exit Routine
Following are the return codes recognized by SMTP for this exit.

Table 80. SMTP Command Exit Return Codes

Return Code Explanation

0 Accept command, and continue normal processing.

SMTP Virtual Machine Interfaces

388 z/VM: TCP/IP Programmer’s Reference

Table 80. SMTP Command Exit Return Codes (continued)

Return Code Explanation

1 Reject mail with: 551 Return String

If a return string is not provided by the exit, the following default message
will be used:

550 Command Rejected

This return code is valid for only the PUNCH command; if 1 is retuned for
a PUNCH command exit call, it will be handled as an invalid exit return
code.

2 The PUNCH command has been handled by the exit routine; therefore,
bypass file delivery. This return code is valid for only the PUNCH
command; if 1 is retuned for a PUNCH command exit call, it will be
handled as an invalid exit return code.

4 Disable the exit. The following message will be displayed on the SMTP
console:

SMTPCMDS EXIT function disabled

The exit will no longer be called. The command will be attempted, and
processing will continue.

5 Reject this command with: 550 Return String

If a return string is not provided by the exit, then the default message will
be displayed:

550 Access denied

All future communications on this connection will be rejected with this 550
message. This return code is valid for only the PUNCH command; if 1 is
retuned for a PUNCH command exit call, it will be handled as an invalid
exit return code.

Other Any return code other than the above causes SMTP to issue this message:

Unexpected return from user exit exitname exittype, RC = rc

SMTP treats this return code as if it were a return code of 0.

Sample SMTP Command Exits
Sample SMTP Command exit routines are supplied with TCP/IP on the
TCPMAINT 591 disk. The supplied samples are:

SMTPCMDX SEXEC
REXX exit routine that contains a sample framework for SMTP command
processing. Your customized exit should be stored on the TCPMAINT 198
disk as file SMTPCMDX EXEC.

SMTPCMDX SAMPASM
The assembler exit routine called by the SMTP server; the exit is used to
call SMTPCMDX EXEC and to pass results back to the SMTP server. Your
customized exit should be stored on the TCPMAINT 198 disk as file
SMTPCMDX ASSEMBLE. The customized ASSEMBLE file must be
assembled (by using the VMFHLASM SMTPCMDX DMSVM command), and the
resulting text deck placed on the TCPMAINT 198 disk.

These samples are for illustrative purposes only. They should be modified to meet
the needs of your installation before placing them in a production environment.

SMTP Virtual Machine Interfaces

Chapter 10. SMTP Virtual Machine Interfaces 389

|
|

|
|
|
|

|
|
|
|
|
|
|

|

The assembler exit will have better performance characteristics than the REXX exit.
For best performance, EXECLOAD any REXX exits.

SMTP Virtual Machine Interfaces

390 z/VM: TCP/IP Programmer’s Reference

Chapter 11. Telnet Exits

The Telnet server exits described in the sections that follow provide CP command
simulation, TN3270E printer management, and system access control when Telnet
connections are established with your host.

While the SCEXIT or PMEXIT is running, the TCP/IP service machine cannot
service any other requests. Therefore, it is advised that processing performed
within these exits should be minimized.

Also, in environments with a high rate of TN3270 and/or TN3270E session
creation and termination, the use of a REXX exec could adversely affect
performance. While calling such an exec may be useful for designing and testing a
prototype, a production-level exit should be written in assembler. For such
environments, the supplied sample Telnet session connection exit (SCEXIT
SAMPASM) and printer management exit (PMEXIT SAMPASM) should be used as
a basis for assemble files which directly perform any actions appropriate for your
environment. It is recommended that execs be used only for designing and testing
an exit prototype; for best performance, such execs should be EXECLOADed.

Telnet Session Connection Exit
When a Telnet client establishes a session with TCP/IP for VM and
InternalClientParms ConnectExit has been specified, the exit routine receives
control using standard OS linkage conventions. Register 1 points to a parameter
list to be used by the exit.

© Copyright IBM Corp. 1987, 2001 391

|
|
|
|
|
|
|
|
|

Telnet Exit Parameter List
Table 81. Telnet Session Connection Exit Parameter List
Offset Len Name In/Out Description

+0 1 SCREASON Input Reason Exit was called
X'01' - Client connect

+1 1 SCFLAG1 Output Flags
1... - Hide VM logo from client
.1.. - Hide command simulation
..xx xxxx - Reserved

+2 2 Reserved
+4 4 SCIPADDR Input IP address of client
+8 2 SCPORT Input Telnet server port number
+10 2 SCCMDL Input

Output
Length of command buffer
Length of command placed in buffer

+12 4 SCCPCMD Input Address of command buffer
+16 4 SCRC Output Return code

0 = Give client VM logo
4 = Reject client, no message
8 = Perform command in SCCPCMD;

SCCMDL must be non-zero
12 = Same as 0, and disable exit
16 = Same as 4, and disable exit
20 = Same as 8, and disable exit

All others will reject the client, and a message is
displayed on the TCPIP virtual machine console.

+20 2 SCFPORT Input Client foreign port number
+22 2 Reserved
+24 16 SCLUNAME Input Client-provided LU name
+40 4 SCLIPADD Input Local IP address to which client connected

Sample Exit
Sample Telnet connection exit routines are supplied with TCP/IP on the
TCPMAINT 591 minidisk. The supplied samples are:

SCEXIT SEXEC
REXX exit routine that contains the logic for allowing or denying access by
Telnet clients. Your customized exit should be stored on the TCPMAINT
198 disk as file SCEXIT EXEC.

SCEXIT SAMPASM
The assembler exit routine called by the Telnet server; the exit is used to
call SCEXIT EXEC and to pass results back to the Telnet server. Your
customized exit should be stored on the TCPMAINT 198 disk as file
SCEXIT ASSEMBLE. The customized ASSEMBLE file must be assembled
(by using the VMFHLASM SCEXIT DMSVM command), and the resulting text
deck placed on the TCPMAINT 198 disk.

The sample exit is enabled by including the following in PROFILE TCPIP:
InternalClientParms
ConnectExit SCEXIT

EndInternalClientParms

Telnet Session Connection Exit

392 z/VM: TCP/IP Programmer’s Reference

|||||

|
|

|
|
|
|

|
|
|
|
|
|
|

|

Telnet Printer Management Exit
When a client establishes a TN3270E printer session with TCP/IP for VM and
InternalClientParms TN3270EExit has been specified, the exit routine receives
control when a printer session is established or terminated. The exit is called using
standard CMS linkage conventions. General Register 1 points to a paramater list
that the exit may use.

Telnet Printer Management Exit Parameter List
Table 82. Telnet Exit Parameter List
Offset Len Name In/Out Description

+0 1 PMXVERSN Input Parameter list version number
X'01' - Version 1

+1 1 PMXREASN Input Reason exit called
X'00' - Printer connected
X'01' - Printer disconnected

+2 2 Reserved
+4 4 PMXIPADD Input Client IP address
+8 2 PMXFPORT Input Client port number
+A 2 PMXLPORT Input Telnet server port number
+C 4 PMXLDEV Input Logical device number
+10 8 PMXLUNAM Input Logical unit name specified by client
+18 8 PMXUSER Input Associated user identifier. If no matching

TN3270E configuration statement exists, contains “?”
+20 4 PMXVDEV Input Associated virtual device address. If no matching

TN3270E configuration statement exists, contains “?”
+24 4 PMXRC Output Return code

0 = Accept client
4 = Reject client
8 = Same as 0, and disable exit
12 = Same as 4, and disable exit

All others will reject client, and a message is
displayed on the TCPIP virtual machine console.

Sample Exit
Sample printer management exit routines are supplied with TCP/IP on the
TCPMAINT 591 minidisk. The supplied samples are:

PMEXIT SEXEC
REXX exit routine that contains the logic for allowing or denying access by
TN3270 clients. Your customized exit should be stored on the TCPMAINT
198 disk as file PMEXIT EXEC.

PMEXIT SAMPASM
The assembler exit routine called by the Telnet server; the exit is used to
call PMEXIT EXEC and to pass results back to the Telnet server. Your
customized exit should be stored on the TCPMAINT 198 disk as file
PMEXIT ASSEMBLE. The customized ASSEMBLE file must be assembled
(by using the VMFHLASM PMEXIT DMSVM command, and the resulting text
deck placed on the TCPMAINT 198 disk.

Enable the sample exit by including the following in PROFILE TCPIP:

Telnet Printer Management Exit

Chapter 11. Telnet Exits 393

|
|

|
|
|
|

|
|
|
|
|
|
|

|

InternalClientParms
TN3270EExit PMEXIT

EndInternalClientParms

Telnet Printer Management Exit

394 z/VM: TCP/IP Programmer’s Reference

Chapter 12. FTP Server Exit

The FTP server user exits described in the next sections allow you greater control
over commands received by the FTP server and allows for auditing of FTP logins,
logouts and file transfers.

The exit is enabled using the FTAUDIT, FTCHKCMD, and FTCHKDIR startup
parameters on the SRVRFTP command or by using the FTP SMSG commands. The
startup parameters and SMSG commands are documented in TCP/IP Planning and
Customization.

Since the use of the FTP exits adversely affects performance, it is advised that
processing performed within the exit should be minimized. While calling a REXX
exec is useful for designing an exit prototype, a production-level exit should be
written entirely in assembler. For best performance, any REXX execs should be
EXECLOADed.

The FTP Server Exit

Sample Exit
Sample FTP server exit routines are supplied with TCP/IP on the TCPMAINT 591
minidisk. The supplied samples are:

FTPEXIT SEXEC
REXX exit routine that contains sample logic for login and directory
control, and FTP command processing. Your customized exit should be
stored on the TCPMAINT 198 disk as file FTPEXIT EXEC.

FTPEXIT SAMPASM
The assembler exit routine called by the FTP server; the exit is used to call
FTPEXIT EXEC and to pass results back to the FTP server. Your
customized exit should be stored on the TCPMAINT 198 disk as file
FTPEXIT ASSEMBLE. The customized ASSEMBLE file must be assembled
(by using the VMFHLASM FTPEXIT DMSVM command), and the resulting text
deck placed on the TCPMAINT 198 disk.

These samples are for illustrative purposes only. They should be modified to meet
the needs of your installation before placing them in a production environment.

Audit Processing
With the FTP server exit enabled for audit processing, the FTP Exit will be called
for each of the following events:
v LOGIN

Auditing occurs following FTP user login validation
v LOGOUT

Logout occurs when a:
– user enters a QUIT command
– user enters a new USER command while already logged in
– connection is dropped by an SMSG DROP command
– client aborts the connection

© Copyright IBM Corp. 1987, 2001 395

|
|
|
|

|
|
|
|
|
|
|

– connection is closed because the server is shutting down
– connection times out

v DATA TRANSFER
Data transfers include the following commands:
– APPE (client append command)
– STOR, STOU (client put command)
– RETR (client get command)
– LIST, NLST (client dir, ls commands)

Note: Audit exit processing is enabled with the FTAUDIT startup parameter or
with the SMSG command to enable exits.

Audit Processing Parameter List
Table 83. FTP Exit Audit Parameter List
Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type (AUDX)
+4 4 Input Int Version number
+8 8 Input Char FTP server command
+16 4 Input Ptr Address of command argument string;

the first halfword contains the length.
+20 8 Input Char Login user ID
+28 8 Input Char LOGONBY user ID
+36 4 Input Int IP address of client
+40 4 Input Ptr Address of current working

directory name; the first halfword
contains the length.

+44 4 Input Ptr Address of target directory or file;
the first halfword contains the length.

+48 4 Input Int Number of bytes transferred.
+52 2 Input Int Port number of FTP server
+54 2 Input Int Port number of FTP client
+56 8 Input Char Event date (yyyymmdd)
+64 8 Input Char Event time (hh:mm:ss)
+72 8 Not used
+80 4 Output Int Return code from exit

Audit Processing Parameter Descriptions
Exit Type

A 4 character field that indicates the type of exit processing to be performed.
For audit processing, this is AUDX.

Version number
If the parameter list format is changed, then the version number will change.
Your exit should verify it has received the expected version number. The
current version number is 1.

FTP server command
This field contains one of the following commands: LOGIN, LOGOUT, XFER.

FTP command argument string

FTP Server Exit

396 z/VM: TCP/IP Programmer’s Reference

v For data transfer (XFER) commands, this string indicates the transfer
direction. SENDING indicates data is being transferred to a client;
RECEIVING indicates data is being received from a client.

v For login commands, this string indicates the command that initiated login
validation processing (USER for anonymous logins or PASS)

v For logout commands, this string indicates the command or function which
initiated the logout (QUIT, USER, DROPPED, TIMEOUT, SHUTDOWN,
ABORTED).

Login user ID
The VM user identifier associated with this FTP session. All FTP client
authorization checks are made using the login user ID.

LOGONBY user ID
The alternate logon name whose password is used for login authorization
checking. A user ID will be present in this field only when the client has issued
a USER subcommand that includes the userid/BY/byuserid operands; otherwise,
a hyphen (-) will be present.

IP address of client
The IP address in decimal integer form.

Current working directory name
This field is not used for login or logout processing and will contain a hyphen
(-). For data transfers, this field contains the type of directory in use, followed
by the working directory name. For example:

Directory Type Working Directory passed to FTPEXIT

Minidisk DSK TERI.191
Shared File System SFS SERVK1:TERI.
Byte File System BFS /../VMBFS:BFS:TERI/
Virtual Reader RDR TERI.RDR

Target file
Target file for data transfer. Minidisk, SFS, or RDR files are identified in upper
case using the filename.filetype format. BFS files are identified using a mixed
case filename, that can be up to 255 characters long. This field is not used for
login and logout processing and will contain a hyphen (-).

Number of bytes transferred

v For data transfer (XFER) commands, this field contains the number of bytes
transferred on the data connection.

v For login commands, this field contains a zero.
v For logout commands, this field contains a zero.

Port number of FTP server
The port number used by the FTP server for this control connection.

Port number of client
The port number used by the foreign host for this control connection.

Event date
The date format for this parameter is yyyymmdd.

Event time
The time format for this parameter is hh:mm:ss.

FTP Server Exit

Chapter 12. FTP Server Exit 397

Return code from exit
An integer return code. For a list of return codes recognized by the FTP server
see “Return Codes from Audit Processing”.

Return Codes from Audit Processing

Return Code Use / Description

0 Continue processing.

8 Continue processing, but disable audit exit. The following message is
displayed on the FTP server console: “FTP AUDX exit has been disabled”.

Other Any return code other than the above causes FTP to issue the message:
“Unexpected return from user exit FTPEXIT AUDX, RC = rc”. The server
will treat this return code as if it were a return code of 0.

General Command Processing
With the FTP server exit enabled for general command exit processing, the FTP exit
will be called to perform command validation for every received FTP command.

Commands that may be passed to this exit follow:

ABOR ACCT ALLO APPE CDUP CWD

DELE HELP LIST MKD MODE NLST

NOOP PASS PASV PORT PWD QUIT

REIN REST RETR RMD RNFR RNTO

SITE SYST STAT STOR STOU STRU

TYPE USER XCWD XMKD XPWD UNKNOWN

Note: See RFC 959 for details about each command.

The general command exit can be used to perform additional security checking
and then take an appropriate action, such as the following:
v Reject commands from a particular IP address, user ID or LOGONBY user ID
v Reject a subset of commands for anonymous users
v Reject transfer requests for specific files
v Reject all users from issuing store (APPE, STOR, STOU) commands

Note: General command exit processing is enabled with the FTCHKCMD startup
parameter or with the SMSG command to enable exits.

General Command Processing Parameter List
Table 84. FTP Exit Parameter List
Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type (CMDX)
+4 4 Input Int Version number
+8 8 Input Char FTP server command
+16 4 Input Ptr Address of command argument string;

the first halfword contains the length.

FTP Server Exit

398 z/VM: TCP/IP Programmer’s Reference

Table 84. FTP Exit Parameter List (continued)
Offset in
Decimal

Len In/Out Type Description

+20 8 Input Char Login user ID
+28 8 Input Char LOGONBY user ID
+36 4 Input Int IP address of client
+40 4 Input Ptr Address of current working

directory name; The first halfword
contains the length.

+44 8 - - Not used
+52 2 Input Int Port number of FTP server
+54 2 Input Int Port number of FTP client
+56 16 - - Not used
+72 4 Input Int Maximum length of return string
+76 4 Output Int Address of return string (message text)
+80 4 Output Int Return code from exit

General Command Processing Parameter Descriptions
Exit Type

A 4 character field that indicates the type of exit processing to be performed.
For command exit processing, this is CMDX.

Version number
If the parameter list format is changed, then the version number will change.
Your exit should verify it has received the expected version number. The
current version number is 1.

FTP server command
Commands received by the server such as USER, STOR, and DELE.

FTP command argument string
The argument string provided by the client. For ACCT and PASS commands,
the argument string will contain all asterisks (********).

Login user ID
The VM user identifier associated with this FTP session. All FTP client
authorization checks are made using the login user ID.

LOGONBY user ID
The alternate logon name (userid) whose password is used for login
authorization checking. A user ID will be present in this field only when the
client has issued a USER subcommand that includes the userid/BY/byuserid
operands; otherwise, a hyphen (-) will be present.

IP address of client
The IP address in decimal integer form.

Current working directory name
This field contains the type of directory, followed by the working directory
name. For example:

Directory Type Working Directory passed to FTPEXIT

Minidisk DSK TERI.191

Shared File System SFS SERVK1:TERI.

Byte File System BFS /../VMBFS:BFS:TERI/

FTP Server Exit

Chapter 12. FTP Server Exit 399

Directory Type Working Directory passed to FTPEXIT

Virtual reader RDR TERI.RDR

No directory defined -

Port number of FTP server
The port number used by the FTP server for this control connection.

Port number of client
The port number used by the foreign host for this control connection.

Maximum length of return string
The current maximum is 1000 bytes. If the returned string is longer than the
maximum, the return string is truncated.

Return string
A return string is to be included as part of the server reply to an FTP client.
This string is used only when a return code of 4 or 12 is returned by the exit.

Return code from exit
An integer return code. For a list of return codes recognized by the FTP server
see “Return Codes from General Command Processing”.

Example
If the FTP client provides the command “PUT PROFILE.EXEC”, the parameter
values provided to the FTPEXIT might be:

Exit Type : AUDX

FTP command : XFER

Client IP Address : 9.111.32.29

UserID : TERI

ByUserID : -

Bytes transferred : 2141

Server Port : 1021

Client Port : 21400

Event Date : 19990309

Event Time : 14:44:34

Working Directory : SFS SERVK1:TERI.

Command args : RECEIVING

Target File : PROFILE.EXEC

Return Codes from General Command Processing

Return Code Use / Description

0 Accept command and continue processing

4 Reject client command with “502 return_string”. If return string is not
provided, return the default message “502 command rejected”.

8 Accept command, continue normal processing, but disable command exit
processing. The following message is displayed on the FTP server console:
“FTP CMDX exit has been disabled”.

12 Same as 4 and disable command exit processing. The following message is
displayed on the FTP server console: “FTP CMDX exit has been disabled”.

FTP Server Exit

400 z/VM: TCP/IP Programmer’s Reference

Return Code Use / Description

Other Any return code other than the above causes FTP to issue the message:
“Unexpected return from user exit FTPEXIT CMDX, RC = rc”. The server
will treat this return code as if it were a return code of 0.

Change Directory Processing
With the FTP server the exit will be called to validate FTP directory changes and
provide greater control over access to system resources by selectively honoring or
refusing a client change directory request. The exit is called when an FTP client
provides one of the following commands:
v CWD or CD to change the working directory
v CDUP to change the working directory to the parent directory
v PASS with a default directory defined in CHKIPADR EXEC
v USER for an anonymous login with a default directory defined in CHKIPADR

EXEC
v APPE, DELE, LIST, NLST, RETR, SIZE, STOR, and STOU commands that

involve an explicit change in directory.

Notes:

1. CD command exit processing is enabled with the FTCHKDIR startup
parameter or with the SMSG command to enable exits.

2. The CD command exit cannot be used to alter the directory name provided by
the client.

Change Directory Processing Parameter List
Table 85. FTP Exit Parameter List

Offset
in

Decimal

Len In/Out Type Description

+0 4 Input Char Exit type (DIRX)
+4 4 Input Int Version number
+8 8 Input Char FTP server command

+16 4 Input Ptr Address of command argument string;
the first halfword contains the length.

+20 8 Input Char Login user ID
+28 8 Input Char LOGONBY user ID
+36 4 Input Int IP address of client
+40 4 Input Ptr Address of current working

directory name; the first halfword
contains the length.

+44 4 Input Ptr Address of target directory or file;
the first halfword contains the length.

+48 4 - - Not used
+52 2 Input Int Port number of FTP server
+54 2 Input Int Port number of FTP client
+56 16 - - Not used
+72 4 Input Int Maximum length of return string
+76 4 Output Int Address of return string (message text)
+80 4 Output Int Return code from exit

FTP Server Exit

Chapter 12. FTP Server Exit 401

|
|

Change Directory Processing Parameter Descriptions
Exit Type

A 4 character field that indicates the type of exit processing to be performed.
For CD command exit processing, this is DIRX.

Version number
If the parameter list format is changed, then the version number will change.
Your exit should verify it has received the expected version number. The
current version number is 1.

FTP server command
This field will contain APPE, CWD, CDUP, DELE, LIST, NLST, PASS, RETR,
SIZE, STOR, STOU, or USER.

FTP command argument string
The argument string entered by the client. For PASS commands, the argument
string will contain asterisks (********).

Login user ID
The VM user identifier associated with this FTP session. All FTP client
authorization checks are made using the login user ID.

LOGONBY user ID
The alternate logon name (userid) whose password is used for login
authorization checking. A user ID will be present in this field only when the
client has issued a USER subcommand that includes the userid/BY/byuserid
operands; otherwise, a hyphen (-) will be present.

IP address of client
The IP address in decimal integer form.

Current working directory name
This field contains the type of directory, followed by the working directory
name. For example:

Directory Type Working Directory Passed to FTPEXIT

Minidisk DSK TERI.191

Shared File System SFS SERVK1:TERI.

Byte File System BFS /../VMBFS:BFS:TERI/

Virtual reader RDR TERI.RDR

No directory defined -

Target directory
This field contains the fully-qualified target directory for the command. Format
of the target directory is similar to the current working directory name format.
The following examples show representative values that would be passed to
the exit for certain actions or requests made by a client user.

For user login:

FTP command : PASS
Working Directory : -
Command args : ********
Target Directory : DSK TERI.191

FTP Server Exit

402 z/VM: TCP/IP Programmer’s Reference

|
|

For a CD to a BFS directory request:

FTP command : CWD
Working Directory : DSK TERI.191
Command args : /../VMBFS:BFS:SCOTT/
Target Directory : BFS /../VMBFS:BFS:SCOTT/

For a CD to a BFS subdirectory request:

FTP command : CWD
Working Directory : BFS /../VMBFS:BFS:SCOTT/
Command args : SUBDIR
Target Directory : BFS /../VMBFS:BFS:SCOTT/SUBDIR/

Port number of FTP server
The port number used by the FTP server for this control connection.

Port number of client
The port number used by the foreign host for this control connection.

Maximum length of return string
The current maximum is 1000 bytes. If the returned string is longer than the
maximum, the return string is truncated.

Return string
A return string is to be included as part of the server reply to an FTP client.
This string is used only when a return code of 4 or 12 is returned by the exit.

Return code from exit
An integer return code. For a list of return codes recognized by the FTP server
see “Return Codes from the FTPEXIT Routine for CD Command Processing”.

Return Codes from the FTPEXIT Routine for CD Command
Processing

Return Code Use / Description

0 Accept command and continue normal processing

4 Reject client command with “502 return_string”. If return string is not
provided, display the default message “502 command rejected”.

8 Accept command, continue normal processing, but disable CD command
exit processing. The following message is displayed on the FTP server
console: “FTP DIRX exit has been disabled”.

12 Same as 4 and disable CD command exit processing. The following
message is displayed on the FTP server console: “FTP DIRX exit has been
disabled”.

Other Any return code other than the above causes FTP to issue the message:
“Unexpected return from user exit FTPEXIT DIRX, RC = rc”. The server
will treat this return code as if it were a return code of 0.

FTP Server Exit

Chapter 12. FTP Server Exit 403

404 z/VM: TCP/IP Programmer’s Reference

Appendix A. Pascal Return Codes

When using Pascal procedure calls, check to determine whether the call has been
completed successfully. Use the SayCalRe function (see “SayCalRe” on page 124) to
convert the ReturnCode parameter to a printable form.

The SayCalRe function converts a return code value into a descriptive message. For
example, if SayCalRe is invoked with the integer constant BADlengthARGUMENT,
it returns the message buffer length specified. For a description of Pascal return
codes and their equivalent message text from SayCalRe, see Table 86.

Most return codes are self-explanatory in the context where they occur. The return
codes you see as a result of issuing a TCP/UDP/IP request are in the range −128
to 0. For more information, see the Explanatory Notes at the end of Table 86.

Table 86. Pascal Language Return Codes

Return Code Numeric
Value

Message Text

OK 0 OK.

ABNORMALcondition¹ −1 Abnormal condition during
inter−address communication.
(VMCF. RC=nn User=xxxxxxxx)

ALREADYclosing −2 Connection already closing.

BADlengthARGUMENT −3 Invalid length specified.

CANNOTsendDATA² −4 Cannot send data.

CLIENTrestart −5 Client reinitialized TCP/IP
service.

CONNECTIONalreadyEXISTS −6 Connection already exists.

DESTINATIONunreachable −7 Destination address is
unreachable.

ERRORinPROFILE −8 Error in profile file; details are in
PROFILE.TCPERROR.

FATALerror³ −9 Fatal inter−address
communications error. (VMCF.
RC=nn User=xxxxxxxx)

HASnoPASSWORD −10 No password in RACF® directory.

INCORRECTpassword −11 TCPIP not authorized to access
file.

INVALIDrequest −12 Invalid request.

INVALIDuserID −13 Invalid user ID.

INVALIDvirtualADDRESS −14 Invalid virtual address.

KILLEDbyCLIENT −15 You aborted the connection.

LOCALportNOTavailable −16 The requested local port is not
available.

MINIDISKinUSE −17 File is in use by someone else and
cannot be accessed.

MINIDISKnotAVAILABLE −18 File not available.

© Copyright IBM Corp. 1987, 2001 405

Table 86. Pascal Language Return Codes (continued)

Return Code Numeric
Value

Message Text

NObufferSPACE⁴ −19 No more space for data currently
available.

NOmoreINCOMINGdata −20 The foreign host has closed this
connection.

NONlocalADDRESS −21 The internet address is not local to
this host.

NOoutstandingNOTIFICATIONS −22 No outstanding notifications.

NOsuchCONNECTION −23 No such connection.

NOtcpIPservice −24 No TCP/IP service available.

NOTyetBEGUN −25 Not yet begun TCP/IP service.

NOTyetOPEN −26 The connection is not yet open.

OPENrejected −27 Foreign host rejected the open
attempt.

PARAMlocalADDRESS −28 TcpOpen error: invalid local
address.

PARAMstate −29 TcpOpen error: invalid initial
state.

PARAMtimeout −30 Invalid time−out parameter.

PARAMunspecADDRESS −31 TcpOpen error: unspecified
foreign address in active open.

PARAMunspecPORT −32 TcpOpen error: unspecified
foreign port in active open.

PROFILEnotFOUND −33 TCPIP cannot read profile file.

RECEIVEstillPENDING −34 Receive still pending on this
connection.

REMOTEclose −35 Foreign host unexpectedly closed
the connection.

REMOTEreset −36 Foreign host aborted the
connection.

SOFTWAREerror −37 Software error in TCP/IP!

TCPipSHUTDOWN −38 TCP/IP service is being shut
down.

TIMEOUTconnection −39 Foreign host is no longer
responding.

TIMEOUTopen −40 Foreign host did not respond
within OPEN time−out

TOOmanyOPENS −41 Too many open connections
already exist.

UNAUTHORIZEDuser −43 You are not authorized to issue
this command.

UNEXPECTEDsyn −44 Foreign host violated the
connection protocol.

UNIMPLEMENTEDrequest −45 Unimplemented TCP/IP request.

UNKNOWNhost −46 Destination host is not known.

Pascal Return Codes

406 z/VM: TCP/IP Programmer’s Reference

Table 86. Pascal Language Return Codes (continued)

Return Code Numeric
Value

Message Text

UNREACHABLEnetwork −47 Destination network is
unreachable.

UNSPECIFIEDconnection −48 Unspecified connection.

VIRTUALmemoryTOOsmall −49 Client virtual machine has too
little storage.

WRONGsecORprc −50 Foreign host disagreed on security
or precedence.

YOURend −55 Client has ended TCP/IP service.

0resources −56 TCP cannot handle any more
connections now.

UDPlocalADDRESS −57 Invalid local address for UDP.

UDPunspecADDRESS −59 Address unspecified when
specification necessary.

UDPunspecPORT −60 Port unspecified when
specification necessary.

UDPzeroRESOURCES −61 UDP cannot handle any more
traffic.

FSENDstillPENDING −62 FSend still pending on this
connection.

DROPPEDbyOPERATOR −79 Connection dropped by operator.

ERRORopeningORreadingFILE −80 Error opening or reading file.

FILEformatINVALID −81 File format invalid.

Explanatory Notes
1. ABNORMALcondition

The actual VMCF return code is available in the external integer variable
LastVmcfCode, and is included in the output of SayCalRe if called
immediately after the error is detected.

2. CANNOTsendDATA
Cannot send data on this connection because the connection state is invalid
for sending data.

3. FATALerror
The actual VMCF return code is available in the external integer variable
LastVmcfCode, and is included in the output of SayCalRe if called
immediately after the error is detected.

4. NObufferSPACE
Applies to this connection only. Space may still be available for other
connections.

Pascal Return Codes

Appendix A. Pascal Return Codes 407

Explanatory Notes

408 z/VM: TCP/IP Programmer’s Reference

Appendix B. C API System Return Codes

This appendix provides a reference for system calls. Table 87 provides the
system-wide message numbers set by the system calls. These message numbers are
contained in the compiler file ERRNO.H and in the TCP file TCPERRNO.H.

Table 87. System Return Codes

Message Code Description

EPERM 1 Permission denied.

ENOENT 2 No such file or directory.

ESRCH 3 No such process.

EINTR 4 Interrupted system call.

EIO 5 I/O error.

ENXIO 6 No such device or address.

E2BIG 7 Argument list too long.

ENOEXEC 8 Exec format error.

EBADF 9 Bad file number.

ECHILD 10 No children.

EAGAIN 11 No more processes.

ENOMEM 12 Not enough memory.

EACCES 13 Permission denied.

EFAULT 14 Bad address.

ENOTBLK 15 Block device required.

EBUSY 16 Device busy.

EEXIST 17 File exists.

EXDEV 18 Cross device link.

ENODEV 19 No such device.

ENOTDIR 20 Not a directory.

EISDIR 21 Is a directory.

EINVAL 22 Invalid argument.

ENFILE 23 File table overflow.

EMFILE 24 Too many open files.

ENOTTY 25 Inappropriate device call.

ETXTBSY 26 Text file busy.

EFBIG 27 File too large.

ENOSPC 28 No space left on device.

ESPIPE 29 Illegal seek.

EROFS 30 Read only file system.

EMLINK 31 Too many links.

EPIPE 32 Broken pipe.

EDOM 33 Argument too large.

© Copyright IBM Corp. 1987, 2001 409

Table 87. System Return Codes (continued)

Message Code Description

ERANGE 34 Result too large.

EWOULDBLOCK 35 Operation would block.

EINPROGRESS 36 Operation now in progress.

EALREADY 37 Operation already in progress.

ENOTSOCK 38 Socket operation on non-socket.

EDESTADDRREQ 39 Destination address required.

EMSGSIZE 40 Message too long.

EPROTOTYPE 41 Protocol wrong type for socket.

ENOPROTOOPT 42 Protocol not available.

EPROTONOSUPPORT 43 Protocol not supported.

ESOCKTNOSUPPORT 44 Socket type not supported.

EOPNOTSUPP 45 Operation not supported on
socket.

EPFNOSUPPORT 46 Protocol family not supported.

EAFNOSUPPORT 47 Address family not supported by
protocol family.

EADDRINUSE 48 Address already in use.

EADDRNOTAVAIL 49 Cannot assign requested address.

ENETDOWN 50 Network is down.

ENETUNREACH 51 Network is unreachable.

ENETRESET 52 Network dropped connection on
reset.

ECONNABORTED 53 Software caused connection abort.

ECONNRESET 54 Connection reset by peer.

ENOBUFS 55 No buffer space available.

EISCONN 56 Socket is already connected.

ENOTCONN 57 Socket is not connected.

ESHUTDOWN 58 Cannot send after socket
shutdown.

ETOOMANYREFS 59 Too many references: cannot
splice.

ETIMEDOUT 60 Connection timed out.

ECONNREFUSED 61 Connection refused.

ELOOP 62 Too many levels of symbolic
loops.

ENAMETOOLONG 63 File name too long.

EHOSTDOWN 64 Host is down.

EHOSTUNREACH 65 No route to host.

ENOTEMPTY 66 Directory not empty.

EPROCLIM 67 Too many processes.

EUSERS 68 Too many users.

EDQUOT 69 Disc quota exceeded.

C API System Return Codes

410 z/VM: TCP/IP Programmer’s Reference

Table 87. System Return Codes (continued)

Message Code Description

ESTALE 70 Stale NFS file handle.

EREMOTE 71 Too many levels of remote in
path.

ENOSTR 72 Device is not a stream.

ETIME 73 Timer expired.

ENOSR 74 Out of streams resources.

ENOMSG 75 No message of desired type.

EBADMSG 76 Trying to read unreadable
message.

EIDRM 77 Identifier removed.

EDEADLK 78 Deadlock condition.

ENOLCK 79 No record locks available.

ENONET 80 Machine is not on the network.

ERREMOTE 81 Object is remote.

ENOLINK 82 Link has been severed.

EADV 83 Advertise error.

ESRMNT 84 Srmount error.

ECOMM 85 Communication error on send.

EPROTO 86 Protocol error.

EMULTIHOP 87 Multihop attempted.

EDOTDOT 88 Cross mount point.

EREMCHG 89 Remote address changed.

C API System Return Codes

Appendix B. C API System Return Codes 411

C API System Return Codes

412 z/VM: TCP/IP Programmer’s Reference

Appendix C. Well-Known Port Assignments

This appendix lists the well-known port assignments for transport protocols TCP
and UDP, and includes port number, keyword, and a description of the reserved
port assignment. You can also find a list of these well-known port numbers in the
ETC SERVICES file.

TCP Well-Known Port Assignments
Table 88 lists the well-known port assignments for TCP.

Table 88. TCP Well-Known Port Assignments

Port Number Keyword Reserved for Services Description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 systat active users active users

13 daytime daytime daytime

15 netstat Netstat who is up or Netstat

19 chargen ttytst source character generator

21 ftp FTP File Transfer Protocol

23 telnet Telnet Telnet

25 smtp mail Simple Mail Transfer Protocol

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain name server domain name server

57 mtp private terminal access private terminal access

69 tftp TFTP Trivial File Transfer Protocol

77 rje netrjs any private RJE service

79 finger finger finger

87 link ttylink any private terminal link

95 supdup supdup SUPDUP Protocol

101 hostname hostname nic hostname server, usually from SRI-NIC

109 pop postoffice Post Office Protocol

111 sunrpc sunrpc Sun remote procedure call

113 auth authentication authentication service

115 sftp sftp Simple File Transfer Protocol

117 uucp-path UUCP path service UUCP path service

119 untp readnews untp USENET News Transfer Protocol

© Copyright IBM Corp. 1987, 2001 413

Table 88. TCP Well-Known Port Assignments (continued)

Port Number Keyword Reserved for Services Description

123 ntp NTP Network Time Protocol

160–223 reserved

512 REXEC REXEC Remote Execution Protocol

514 RSH RSHELL Remote Shell Service

712 vexec vice-exec Andrew File System authenticated service

713 vlogin vice-login Andrew File System authenticated service

714 vshell vice-shell Andrew File System authenticated service

2001 filesrv Andrew File System service

2106 venus.itc Andrew File System service, for the Venus
process

UDP Well-Known Port Assignments
Table 89 lists the well-known port assignments for UDP.

Table 89. UDP Well-Known Port Assignments

Port Number Keyword Reserved for Services Description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 users active users active users

13 daytime daytime daytime

15 netstat Netstat Netstat

19 chargen ttytst source character generator

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain nameserver domain name server

67 bootpd BOOTP BOOTP Daemon

69 tftp TFTP Trivial File Transfer Protocol

75 any private dial out service

77 rje netrjs any private RJE service

79 finger finger finger

111 sunrpc sunrpc Sun remote procedure call

123 ntp NTP Network Time Protocol

160–223 reserved

531 rvd-control rvd control port

2001 rauth2 Andrew File System service, for the
Venus process

Well-Known Port Assignments

414 z/VM: TCP/IP Programmer’s Reference

Table 89. UDP Well-Known Port Assignments (continued)

Port Number Keyword Reserved for Services Description

2002 rfilebulk Andrew File System service, for the
Venus process

2003 rfilesrv Andrew File System service, for the
Venus process

2018 console Andrew File System service

2115 ropcons Andrew File System service, for the
Venus process

2131 rupdsrv assigned in pairs; bulk must be srv
+1

2132 rupdbulk; assigned in pairs; bulk must be srv
+1

2133 rupdsrv1 assigned in pairs; bulk must be srv
+1

2134 rupdbulk1; assigned in pairs; bulk must be srv
+1

Well-Known Port Assignments

Appendix C. Well-Known Port Assignments 415

Well-Known Port Assignments

416 z/VM: TCP/IP Programmer’s Reference

Appendix D. Related Protocol Specifications

IBM is committed to industry standards. The internet protocol suite is still evolving
through Requests for Comments (RFC). New protocols are being designed and
implemented by researchers, and are brought to the attention of the internet
community in the form of RFCs. Some of these are so useful that they become a
recommended protocol. That is, all future implementations for TCP/IP are
recommended to implement this particular function or protocol. These become the
de facto standards, on which the TCP/IP protocol suite is built.

Many features of TCP/IP for VM are based on the following RFCs:

RFC Title Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol: or Converting Network Protocol Addresses
to 48.Bit Ethernet Address for Transmission on Ethernet Hardware

D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

877 Standard for the Transmission of IP Datagrams over Public Data Networks J.T. Korb

885 Telnet End of Record Option J.B. Postel

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C.
Mogul, M. Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl,
E.J. Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun Microsystems
Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell, J.S.
Quarterman

1032 Domain Administrators Guide M.K. Stahl

© Copyright IBM Corp. 1987, 2001 417

RFC Title Author

1033 Domain Administrators Operations Guide M. Lottor

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks J.B. Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol Specification K. Hardwick, J.
Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L. Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun Microsystems
Incorporated

1058 Routing Information Protocol C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems
Incorporated

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts-Communication Layers R.T. Braden

1123 Requirements for Internet Hosts-Application and Support R.T. Braden

1155 Structure and Identification of Management Information for TCP/IP-Based
Internets

M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-based
Internets

K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP), J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1179 Line Printer Daemon Protocol The Wollongong Group, L.
McLaughlin III

1180 TCP/IP Tutorial, T. J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions (Updates RFC 1034, RFC 1035) C.F. Everhart, L.A.
Mamakos, R. Ullmann, P.V.
Mockapetris,

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie,
J.R. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI Networks D. Katz

1198 FYI on the X Window System R.W. Scheifler

1207 FYI on Questions and Answers: Answers to Commonly Asked Experienced
Internet User Questions

G.S. Malkin, A.N. Marine,
J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based
Internets: MIB-II,

K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program
Interface

G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB IEEE 802 4 Token Bus MIB K. McCloghrie, R. Fox

1231 IEEE 802.5 Token Ring MIB IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E.
Decker

RFCs

418 z/VM: TCP/IP Programmer’s Reference

|||

RFC Title Author

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version 3) S. Willis, J. Burruss

1293 Inverse Address Resolution Protocol T. Bradley, C. Brown

1270 SNMP Communications Services F. Kastenholz, ed.

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D.
Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked New Internet
User Questions

G.S. Malkin, A.N. Marine

1350 TFTP Protocol K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K.
McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J.
Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K. McCloghrie, J. Davin, J.
Galvin

1354 IP Forwarding Table MIB F. Baker

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D. Robinson, R.
Ullmann

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

1389 RIP Version 2 MIB Extension G. Malkin

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol

D. Haskin

1398 Definitions of Managed Objects for the Ethernet-like Interface Types F. Kastenholz

1440 SIFT/UFT:Sender-Initiated/Unsolicited File Transfer R. Troth

1483 Multiprotocol Encapsulation over ATM Adaptation Layer 5 J. Heinanen

1540 IAB Official Protocol Standards J.B. Postel

1583 OSPF Version 2 J.Moy

1647 TN3270 Enhancements B. Kelly

1700 Assigned Numbers J.K. Reynolds, J.B. Postel

1723 RIP Version 2 — Carrying Additional Information G. Malkin

1813 NFS Version 3 Protocol Specification B. Callaghan, B.
Pawlowski, P. Stauback,
Sun Microsystems
Incorporated

2225 Classical IP and ARP over ATM M. Laubach, J. Halpern

These documents can be obtained from:

RFCs

Appendix D. Related Protocol Specifications 419

|||

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or on a subscription basis. Online copies are available
using FTP from the NIC at nic.ddn.mil. Use FTP to download the files, using the
following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

Where:
nnnn Is the RFC number.
TXT Is the text format.
PS Is the PostScript format.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil. Information is also available
through http://www.internic.net.

RFCs

420 z/VM: TCP/IP Programmer’s Reference

Appendix E. Abbreviations and Acronyms

The following abbreviations and acronyms are used throughout this book.

AIX Advanced Interactive Executive
ANSI American National Standards Institute
API Application Program Interface
APPC Advanced Program-to-Program Communications
APPN® Advanced Peer-to-Peer Networking®

ARP Address Resolution Protocol
ASCII American National Standard Code for Information Interchange
ASN.1 Abstract Syntax Notation One
ATM Asynchronous Transfer Mode
AUI Attachment Unit Interface
BFS Byte File System
BIOS Basic Input/Output System
BNC Bayonet Neill-Concelman
CCITT Comite Consultatif International Telegraphique et Telephonique.

The International Telegraph and Telephone Consultative
Committee

CETI Continuously Executing Transfer Interface
CLAW Common Link Access to Workstation
CLIST Command List
CMS Conversational Monitor System
CP Control Program
CPI Common Programming Interface
CREN Corporation for Research and Education Networking
CSD Corrective Service Diskette
CTC Channel-to-Channel
CU Control Unit
CUA® Common User Access®

DASD Direct Access Storage Device
DBCS Double Byte Character Set
DLL Dynamic Link Library
DNS Domain Name System
DOS Disk Operating System
DPI Distributed Program Interface
EBCDIC Extended Binary-Coded Decimal Interchange Code
ELANS IBM Ethernet LAN Subsystem
EISA Enhanced Industry Standard Adapter
ESCON® Enterprise Systems Connection Architecture®

FAT File Allocation Table
FDDI Fiber Distributed Data Interface
FTAM File Transfer Access Management
FTP File Transfer Protocol
FTP API File Transfer Protocol Applications Programming Interface
GCS Group Control System
GDDM® Graphical Data Display Manager
GDDMXD Graphics Data Display Manager Interface for X Window System
GDF Graphics Data File
HCH HYPERchannel device

© Copyright IBM Corp. 1987, 2001 421

HIPPI High Performance Parallel Interface
HPFS High Performance File System
ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronic Engineers
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
ILANS IBM Token-Ring LAN Subsystem
IP Internet Protocol
IPL Initial Program Load
ISA Industry Standard Adapter
ISDN Integrated Services Digital Network
ISO International Organization for Standardization
IUCV Inter-User Communication Vehicle
JES Job Entry Subsystem
JIS Japanese Institute of Standards
JCL Job Control Language
LAN Local Area Network
LAPS LAN Adapter Protocol Support
LCS IBM LAN Channel Station
LPD Line Printer Daemon
LPQ Line Printer Query
LPR Line Printer Client
LPRM Line Printer Remove
LPRMON Line Printer Monitor
LU Logical Unit
MAC Media Access Control
Mbps Megabits per second
MBps Megabytes per second
MCA Micro Channel® Adapter
MIB Management Information Base
MIH Missing Interrupt Handler
MILNET Military Network
MHS Message Handling System
MTU Maximum Transmission Unit
MVS Multiple Virtual Storage
MX Mail Exchange
NCP Network Control Program
NCS Network Computing System
NDIS Network Driver Interface Specification
NFS Network File System
NIC Network Information Center
NLS National Language Support
NSFNET National Science Foundation Network
OS/2® Operating System/2®

OSA Open Systems Adapter
OSF Open Software Foundation, Inc.
OSI Open Systems Interconnection
OSIMF/6000 Open Systems Interconnection Messaging and Filing/6000
OV/MVS OfficeVision/MVS™

OV/VM OfficeVision/VM™

PAD Packet Assembly/Disassembly
PC Personal Computer
PCA Parallel Channel Adapter
PDN Public Data Network
PDU Protocol Data Units

Abbreviations and Acronyms

422 z/VM: TCP/IP Programmer’s Reference

||

PING Packet Internet Groper
PIOAM Parallel I/O Access Method
POP Post Office Protocol
PROFS® Professional Office Systems
PSCA Personal System Channel Attach
PSDN Packet Switching Data Network
PU Physical Unit
PVM Passthrough Virtual Machine
RACF Resource Access Control Facility
RARP Reverse Address Resolution Protocol
REXEC Remote Execution
REXX Restructured Extended Executor Language
RFC Request For Comments
RIP Routing Information Protocol
RISC Reduced Instruction Set Computer
RPC Remote Procedure Call
RSCS Remote Spooling Communications Subsystem
SAA System Application Architecture
SBCS Single Byte Character Set
SDLC Synchronous Data Link Control
SFS Shared File System
SLIP Serial Line Internet Protocol
SMIL Structure for Management Information
SMTP Simple Mail Transfer Protocol
SNA Systems Network Architecture
SNMP Simple Network Management Protocol
SOA Start of Authority
SPOOL Simultaneous Peripheral Operations Online
SQL IBM Structured Query Language
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
TFTP Trivial File Transfer Protocol
TSO Time Sharing Option
TTL Time-to-Live
UDP User Datagram Protocol
VGA Video Graphic Array
VM Virtual Machine
VMCF Virtual Machine Communication Facility
VM/ESA Virtual Machine/Enterprise System Architecture
VMSES/E Virtual Machine Serviceability Enhancements Staged/Extended
VTAM® Virtual Telecommunications Access Method
WAN Wide Area Network
XDR eXternal Data Representation

Abbreviations and Acronyms

Appendix E. Abbreviations and Acronyms 423

Abbreviations and Acronyms

424 z/VM: TCP/IP Programmer’s Reference

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes to the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1987, 2001 425

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Corporation
Mail Station P300,
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A.
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities on non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

426 z/VM: TCP/IP Programmer’s Reference

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

Advanced Peer-to-Peer Networking AIX
BookManager C/370
CICS Common User Access
CUA DATABASE 2
DB2 DFSMS/VM
ESCONN GDDM
IBM IBMLink
IMS Language Environment
Micro Channel MVS
MVS/ESA MVS/XA
OfficeVision OfficeVision/MVS
OpenEdition OpenExtensions
Operating System/2 OS/2
OS/390 PROFS
RACF S/390
System/390 VM/ESA
VTAM z/VM

UNIX is a registered trademark in the United States and/or other countries.

NetView is a registered trademark in the United States and other countries licensed
exclusively through Tivoli.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 427

428 z/VM: TCP/IP Programmer’s Reference

Glossary

This glossary describes the most common terms
associated with TCP/IP communication in an
internet environment, as used in this book.

If you do not find the term you are looking for,
see the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

For abbreviations, the definition usually consists
only of the words represented by the letters; for
complete definitions, see the entries for the
words.

Numerics
3172. IBM Interconnect Controller.

3174. IBM Establishment Controller.

3270. Refers to a series of IBM display devices; for
example, the IBM 3275, 3276 Controller Display Station,
3277, 3278, and 3279 Display Stations, the 3290
Information Panel, and the 3287 and 3286 printers. A
specific device type is used only when a distinction is
required between device types. Information about
display terminal usage also refers to the IBM 3138,
3148, and 3158 Display Consoles when used in display
mode, unless otherwise noted.

37xx Communication Controller. A network interface
used to connect a TCP/IP for VM or MVS network that
supports X.25 connections. NCP with X.25 NPSI must
be running in the controller, and VTAM must be
running on the host.

6611. IBM Network Processor.

8232. IBM LAN Station.

9370. Refers to a series of processors, namely the IBM
9373 Model 20, the IBM 9375 Models 40 and 60, and
the IBM 9377 Model 90 and other models.

A
abend. The abnormal termination of a program or
task.

abstract syntax. A description of a data structure that
is independent of machine-oriented structures and
encodings.

Abstract Syntax Notation One (ASN.1). The OSI
language for describing abstract syntax.

active gateway. A gateway that is treated like a
network interface in that it is expected to exchange
routing information, and if it does not do so for a
period of time, the route associated with the gateway is
deleted.

active open. The state of a connection that is actively
seeking a service. Contrast with passive open.

adapter. A piece of hardware that connects a computer
and an external device. An auxiliary device or unit
used to extend the operation of another system.

address. The unique code assigned to each device or
workstation connected to a network. A standard
internet address uses a two-part, 32-bit address field.
The first part of the address field contains the network
address; the second part contains the local address.

address mask. A bit mask used to select bits from an
Internet address for subnet addressing. The mask is 32
bits long and selects the network portion of the Internet
address and one or more bits of the local portion. It is
sometimes called a subnet mask.

address resolution. A means for mapping network
layer addresses onto media-specific addresses. See ARP.

Address Resolution Protocol (ARP). A protocol used
to dynamically bind an internet address to a hardware
address. ARP is implemented on a single physical
network and is limited to networks that support
broadcast addressing.

address space. A collection of bytes that are allocated,
and in many ways managed, as a single entity by CP.
Each byte within an address space is identified by a
unique address. An address space represents an extent
of storage available to a program. Address spaces
allocated by VM range in size from 64KB to 2GB.

Advanced Interactive Executive (AIX). IBM’s licensed
version of the UNIX operating system.

Advanced Program-to-Program Communications
(APPC). The interprogram communication service
within SNA LU 6.2 on which the APPC/VM interface
is based.

Advanced Research Projects Agency (ARPA). Now
called DARPA, its the U.S. Government agency that
funded the ARPANET.

Advanced Research Projects Agency Network
(ARPANET). A packet switched network developed in
the early 1970’s that is the forerunner of today’s
Internet. It was decommissioned in June 1990.

© Copyright IBM Corp. 1987, 2001 429

agent. As defined in the SNMP architecture, an agent,
or an SNMP server is responsible for performing the
network management functions requested by the
network management stations.

AIX. Advanced Interactive Executive.

American National Standard Code for Information
Interchange (ASCII). The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), used for information
interchange among data processing systems, data
communication systems, and associated equipment. The
ASCII set consists of control characters and graphic
characters. The default file transfer type for FTP, used
to transfer files that contain ASCII text characters.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.
ANSI is sponsored by the Computer and Business
Equipment Manufacturer Association and is responsible
for establishing voluntary industry standards.

ANSI. American National Standards Institute.

API. Application Program Interface.

APPC. Advanced Program-to-Program
Communications.

application. The use to which an information
processing system is put, for example, a payroll
application, an airline reservation application, a
network application.

application layer. The seventh layer of the OSI (Open
Systems Interconnection) model for data
communication. It defines protocols for user or
application programs.

Application Program Interface (API). The formally
defined programming-language interface between an
IBM system control program or licensed program and
its user. APIs allow programmers to write application
programs that use the TCP, UDP, and IP layers of the
TCP/IP protocol suite.

argument. A parameter passed between a calling
program and a called program.

ARP. Address Resolution Protocol.

ARPA. Advanced Research Projects Agency.

ARPANET. Advanced Research Projects Agency
Network.

ASCII. American National Standard Code for
Information Interchange. The default file transfer type
for FTP, used to transfer files that contain ASCII text
characters.

ASN.1. Abstract Syntax Notation One.

ASYNC. Asynchronous.

asynchronous (ASYNC). Without regular time
relationship; unexpected or unpredictable with respect
to the execution of program instruction. See
synchronous.

asynchronous communication. A method of
communication supported by the operating system that
allows an exchange of data with remote device, using
either a start-stop line or an X.25 line. Asynchronous
communications include the file transfer and the
interactive terminal facility support.

Athena Widgets. The X Window widget set developed
by MIT for Project Athena.

Attachment Unit Interface (AUI). Connector used
with thick Ethernet that often includes a drop cable.

AUI. Attachment Unit Interface.

attention key. A function key on terminals that, when
pressed, causes an I/O interruption in the processing
unit.

authentication server. The service that reads a
Kerberos database to verify that a client making a
request for access to an end-service is the client named
in the request. The authentication server provides an
authenticated client ticket as permission to access the
ticket-granting server.

authenticator. Information encrypted by a Kerberos
authentication server that a client presents along with a
ticket to an end-server as permission to access the
service.

authorization. The right granted to a user to
communicate with, or to make use of, a computer
system or service.

B
backbone. In a local area network multiple-bridge
ring configuration, a high-speed link to which rings are
connected by means of bridges. A backbone can be
configured as a bus or as a ring. In a wide area
network, a high-speed link to which nodes or data
switching exchanges (DSES) are connected.

background task. A task with which the user is not
currently interacting, but continues to run.

baseband. Characteristic of any network technology
that uses a single carrier frequency and requires all
stations attached to the network to participate in every
transmission. See broadband.

Basic Encoding Rules (BER). Standard rules for
encoding data units described in ASN.1. Sometimes

430 z/VM: TCP/IP Programmer’s Reference

incorrectly grouped under the term ASN.1, which
correctly refers only to the abstract description
language, not the encoding technique.

Basic Input/Output System (BIOS). A set of routines
that permanently resides in read-only memory (ROM)
in a PC. The BIOS performs the most basic tasks, such
as sending a character to the printer, booting the
computer, and reading the keyboard.

batch. An accumulation of data to be processed. A
group of records or data processing jobs brought
together for processing or transmission. Pertaining to
activity involving little or no user action. See interactive

Bayonet Neill-Concelman (BNC). A standardized
connector used with Thinnet and coaxial cable.

Because It’s Time NETwork (BITNET). A network of
hosts that use the Network Job Entry (NJE) protocol to
communicate. The network is primarily composed of
universities, nonprofit organizations, and research
centers. BITNET has recently merged with the
Computer and Science Network (CSNET) to form the
Corporation for Research and Educational Networking
(CSNET). See CSNET.

BER. Basic Encoding Rules.

Berkeley Software Distribution (BSD). Term used
when describing different versions of the Berkeley
UNIX software, as in “4.3BSD UNIX”.

BFS. Byte File System.

big-endian. A format for storage or transmission of
binary data in which the most significant bit (or byte)
comes first. The reverse convention is little-endian.

BIOS. Basic Input/Output System.

BITNET. Because It’s Time NETwork.

block. A string of data elements recorded, processed,
or transmitted as a unit. The elements can be
characters, words, or physical records.

blocking mode. If the execution of the program
cannot continue until some event occurs, the operating
system suspends the program until that event occurs.

BNC. Bayonet Neill-Concelman.

BOOTPD. Bootstrap Protocol Daemon.

Bootstrap Protocol Daemon (BOOTPD). The BOOTP
daemon responds to client requests for boot
information using information contained in a BOOTP
machine file.

bridge. A router that connects two or more networks
and forwards packets among them. The operations
carried out by a bridge are done at the physical layer
and are transparent to TCP/IP and TCP/IP routing. A

functional unit that connects two local area networks
(LANs) that use the same logical link control (LLC)
procedures but may use different medium access
control (MAC) procedures.

broadband. Characteristic of any network that
multiplexes multiple, independent network carriers
onto a single cable. This is usually done using
frequency division multiplexing. Broadband technology
allows several networks to coexist on one single cable;
traffic from one network does not interfere with traffic
from another, because the “conversations” happen on
different frequencies in the ether, similar to a
commercial radio system.

broadcast. The simultaneous transmission of data
packets to all nodes on a network or subnetwork.

broadcast address. An address that is common to all
nodes on a network.

BSD. Berkeley Software Distribution.

bus topology. A network configuration in which only
one path is maintained between stations. Any data
transmitted by a station is concurrently available to all
other stations on the link.

byte-ordering. The method of sorting bytes under
specific machine architectures. Of the two common
methods, little endian byte ordering places the least
significant byte first. This method is used in Intel**
microprocessors. In the second method, big endian byte
ordering, the most significant byte is placed first. This
method is used in Motorola microprocessors.

Byte File System (BFS). A file system in which a file
consists of an ordered sequence of bytes rather than
records. BFS files can be organized into hierarchical
directories. Byte file systems are enrolled as file spaces
in CMS file pools.

C
Carrier Sense Multiple Access with Collision
Detection (CSMA/CD). The access method used by
local area networking technologies such as Ethernet.

case-sensitive. A condition in which entries for an
entry field must conform to a specific lowercase,
uppercase, or mixed-case format to be valid.

CCITT. Comite Consultatif International
Telegraphique et Telephonique.

channel. A path in a system that connects a processor
and main storage with an I/O device.

channel-attached. pertaining to attachment of devices
directly by data channels (I/O channels)to a computer.
Pertaining to devices attached to a controlling unit by
cables, rather than by telecommunication lines.
Synonymous with local, locally attached.

Glossary 431

checksum. The sum of a group of data associated with
the group and used for checking purposes.

CICS. Customer Information Control System.

Class A network. An internet network in which the
high-order bit of the address is 0. The host number
occupies the three, low-order octets.

Class B network. An internet network in which the
high-order bit of the address is 1, and the next
high-order bit is 0. The host number occupies the two
low-order octets.

Class C network. An internet network in which the
two high-order bits of the address are 1 and the next
high-order bit is 0. The host number occupies the
low-order octet.

CLAW. Common Link Access to Workstation.

client. A function that requests services from a server,
and makes them available to the user. In MVS, an
address space that is using TCP/IP services.

client-server model. A common way to describe
network services and the model user processes
(programs) of those services. Examples include the
name server and resolver paradigm of the DNS and file
server/file client relationships such as NFS and diskless
hosts.

client-server relationship. Any device that provides
resources or services to other devices on a network is a
server. Any device that employs the resources provided
by a server is a client. A machine can run client and
server processes at the same time.

CLIST. Command List.

CLPA. Create Link Pack Area.

CMS. Conversational Monitor System.

Comite Consultatif International Telegraphicque et
Telephonique (CCITT). The International Telegraph
and Telephone Consultative Committee. A unit of the
International Telecommunications Union (ITU) of the
United Nations. CCITT produces technical standards,
known as “recommendations,” for all internationally
controlled aspects of analog and digital communication.

command. The name and any parameters associated
with an action that can be performed by a program.
The command is entered by the user; the computer
performs the action requested by the command name.

Command List (CLIST). A list of commands and
statements designed to perform a specific function for
the user.

command prompt. A displayed symbol, such as [C:\]
that requests input from a user.

Common Link Access to Workstation (CLAW). A
continuously executing duplex channel program
designed to minimize host interrupts while maximizing
channel utilization.

communications adapter. A hardware feature that
enables a computer or device to become a part of a
data network.

community name. A password used by hosts running
Simple Network Management Protocol (SNMP) agents
to access remote network management stations.

compile. To translate a program written in a
high-level language into a machine language program.
The computer actions required to transform a source
file into an executable object file.

compiler. A program that translates a source program
into an executable program (an object program).

Computer and Science Network (CSNET). A large
computer network, mostly in the U.S. but with
international connections. CSNET sites include
universities, research labs, and some commercial
companies. It is now merged with BITNET to form
CREN. See BITNET.

connection. An association established between
functional units for conveying information. The path
between two protocol modules that provides reliable
stream delivery service. In an internet, a connection
extends from a TCP module on one machine to a TCP
module on the other.

Control Program (CP). The VM operating system that
manages the real processor’s resources and is
responsible for simulating System/370s or 390s for
individual users.

conversational monitor system (CMS). A virtual
machine operating system that provides general
interactive time sharing, problem solving, and program
development capabilities, and operates only under
control of the VM//ESA control program.

Corporation for Research and Educational
Networking (CREN). A large computer network
formed from the merging of BITNET and CSNET. See
BITNET and CSNET.

CP. Control Program.

Create Link Pack Area (CLPA). A parameter specified
at startup, which says to create the link pack area.

CREN. Corporation for Research and Educational
Networking.

CSMA/CD. Carrier Sense Multiple Access with
Collision Detection.

CSNET. Computer and Science Network.

432 z/VM: TCP/IP Programmer’s Reference

Customer Information Control System (CICS). An
IBM-licensed program that enables transactions entered
at remote terminals to be processed concurrently by
user written application programs. It includes facilities
for building, using, and maintaining databases.

D
daemon. A background process usually started at
system initialization that runs continuously and
performs a function required by other processes. Some
daemons are triggered automatically to perform their
task; others operate periodically.

DASD. Direct Access Storage Device.

DARPA. Defense Advanced Research Projects Agency.

DATABASE 2 (DB2). An IBM relational database
management system for the MVS operating system.

database administrator (DBA). An individual or
group responsible for the rules by which data is
accessed and stored. The DBA is usually responsible for
database integrity, security, performance and recovery.

datagram. A basic unit of information that is passed
across the internet, it consists of one or more data
packets.

data link layer. Layer 2 of the OSI (Open Systems
Interconnection) model; it defines protocols governing
data packetizing and transmission into and out of each
node.

data set. The major unit of data storage and retrieval
in MVS, consisting of a collection of data in one of
several prescribed arrangements and described by
control information to which the system has access.
Synonymous with file in VM and OS/2.

DB2. DATABASE 2.

DBA. Database administrator.

DBCS. Double Byte Character Set.

DDN. Defense Data Network.

decryption. The unscrambling of data using an
algorithm that works under the control of a key. The
key allows data to be protected even when the
algorithm is unknown. Data is unscrambled after
transmission.

default. A value, attribute, or option that is assumed
when none is explicitly specified.

Defense Advanced Research Projects Agency
(DARPA). The U.S. government agency that funded
the ARPANET.

Defense Data Network (DDN). Comprises the
MILNET and several other Department of Defense
networks.

destination node. The node to which a request or data
is sent.

DHCPD. Dynamic Host Configuration Protocol
Daemon.

Direct Access Storage Device (DASD). A device in
which access to data is independent of where data
resides on the device.

directory. A named grouping of files in a file system.

Disk Operating System (DOS). An operating system
for computer systems that use disks and diskettes for
auxiliary storage of programs and data.

display terminal. An input/output unit by which a
user communicates with a data-processing system or
sub-system. Usually includes a keyboard and always
provides a visual presentation of data; for example, an
IBM 3179 display.

Distributed Program Interface (DPI). A programming
interface that provides an extension to the function
provided by the SNMP agents.

DLL. Dynamic Link Library.

DNS. Domain Name System.

domain. In an internet, a part of the naming hierarchy.
Syntactically, a domain name consists of a sequence of
names (labels) separated by periods (dots).

Domain Name System (DNS). A system in which a
resolver queries name servers for resource records
about a host.

domain naming. A hierarchical system for naming
network resources.

DOS. Disk Operating System.

dotted-decimal notation. The syntactic representation
for a 32-bit integer that consists of four 8-bit numbers,
written in base 10 and separated by periods (dots).
Many internet application programs accept dotted
decimal notations in place of destination machine
names.

double-byte character set (DBCS). A set of characters
in which each character is represented by two bytes.
Languages such as Japanese, Chinese, Korean, which
contain more symbols than can be represented by 256
code points, require double-byte character sets. Because
each character requires 2 bytes, the typing, display, and
printing of DBCS characters requires hardware and
programs that support DBCS.

Glossary 433

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and is
capable of being addressed as a unit.

DPI. Distributed Program Interface.

Dynamic Host Configuration Protocol Daemon
(DHCPD). The DHCP daemon (DHCPD server)
responds to client requests for boot information using
information contained in a DHCP machine file. This
information includes the IP address of the client, the IP
address of the TFTP daemon, and information about
the files to request from the TFTP daemon.

dynamic resource allocation. An allocation technique
in which the resources assigned for execution of
computer programs are determined by criteria applied
at the moment of need.

dynamic link library (DLL). A module containing
dynamic link routines that is linked at load or run time.

E
EBCDIC. Extended binary-coded decimal interchange
code.

EGP. Exterior Gateway Protocol.

encapsulation. A process used by layered protocols in
which a lower-level protocol accepts a message from a
higher-level protocol and places it in the data portion
of the low-level frame. As an example, in Internet
terminology, a packet would contain a header from the
physical layer, followed by a header from the network
layer (IP), followed by a header from the transport
layer (TCP), followed by the application protocol data.

encryption. The scrambling or encoding of data using
an algorithm that works under the control of a key. The
key allows data to be protected even when the
algorithm is unknown. Data is scrambled prior to
transmission.

ES/9370 Integrated Adapters. An adapter you can use
in TCP/IP for VM to connect into Token-Ring networks
and Ethernet networks, as well as TCP/IP networks
that support X.25 connections.

Ethernet. The name given to a local area
packet-switched network technology invented in the
early 1970s by Xerox**, Incorporated. Ethernet uses a
Carrier Sense Multiple Access/Collision Detection
(CSMA/CD) mechanism to send packets.

EXEC. In a VM operating system, a user-written
command file that contains CMS commands, other
user-written commands, and execution control
statements, such as branches.

extended binary-coded decimal interchange code
(EBCDIC). A coded character set consisting of 8-bit
coded characters.

extended character. A character other than a 7-bit
ASCII character. An extended character can be a 1-bit
code point with the 8th bit set (ordinal 128-255) or a
2-bit code point (ordinal 256 and greater).

Exterior Gateway Protocol (EGP). A reachability
routing protocol used by gateways in a two-level
internet.

eXternal Data Representation (XDR). A standard
developed by Sun Microsystems, Incorporated for
representing data in machine-independent format.

F
FAT. File Allocation Table.

FDDI. Fiber Distributed Data Interface. Also used to
abbreviate Fiber Optic Distributed Data Interface.

Fiber Distributed Data Interface (FDDI). The ANSI
standard for high-speed transmission over fiber optic
cable.

Fiber Optic Network. A network based on the
technology and standards that define data transmission
using cables of glass or plastic fibers carrying visible
light. Fiber optic network advantages are: higher
transmission speeds, greater carrying capacity, and
lighter, more compact cable.

file. In VM and OS/2, a named set of records stored
or processed as a unit. Synonymous with data set in
MVS.

File Allocation Table (FAT). A table used to allocate
space on a disk for a file.

File Transfer Access and Management (FTAM). An
application service element that enables user
application processes to manage and access a file
system, which may be distributed.

File Transfer Protocol (FTP). A TCP/IP protocol used
for transferring files to and from foreign hosts. FTP also
provides the capability to access directories. Password
protection is provided as part of the protocol.

foreign host. Any machine on a network that can be
interconnected.

foreign network. In an internet, any other network
interconnected to the local network by one or more
intermediate gateways or routers.

foreign node. See foreign host.

frame. The portion of a tape on a line perpendicular
to the reference edge, on which binary characters can
be written or read simultaneously.

FTAM. File Transfer Access and Management.

434 z/VM: TCP/IP Programmer’s Reference

FTP. File Transfer Protocol.

fullword. A computer word. In System/370, 32 bits or
4 bytes.

G
gadget. A windowless graphical object that looks like
its equivalent like-named widget but does not support
the translations, actions, or pop-up widget children
supplied by that widget.

gateway. A functional unit that interconnects a local
data network with another network having different
protocols. A host that connects a TCP/IP network to a
non-TCP/IP network at the application layer. See also
router.

gather and scatter data. Two related operations.
During the gather operation, data is taken from
multiple buffers and transmitted. In the scatter
operation, data is received and stored in multiple
buffers.

GC. Graphics Context.

GContext. See Graphics Context.

GCS. Group Control System.

GDDM. Graphical Data Display Manager.

GDDMXD. Graphical Data Display Manager interface
for X Window System. A graphical interface that
formats and displays alphanumeric, data, graphics, and
images on workstation display devices that support the
X Window System.

GDF. Graphics data file.

Graphical Display Data Manager (GDDM). A group
of routines that allows pictures to be defined and
displayed procedurally through function routines that
correspond to graphic primitives.

Graphics Context (GC). The storage area for graphics
output. Also known as GC and GContext. Used only
with graphics that have the same root and depth as the
graphics content.

Group Control System (GCS) . A component of
VM/ESA, consisting of a shared segment that you can
Initial Program Load (IPL) and run in a virtual
machine. It provides simulated MVS services and
unique supervisor services to help support a native
SNA network.

H
handle. A temporary data representation that
identifies a file.

halfword. A contiguous sequence of bits or characters
that constitutes half a fullword and can be addressed as
a unit.

HASP. Houston automatic spooling priority system.

HDLC. High-level Data Link Control.

header file. A file that contains constant declarations,
type declarations, and variable declarations and
assignments. Header files are supplied with all
programming interfaces.

High-level Data Link Control (HDLC). An ISO
protocol for X.25 international communication.

High Performance File System (HPFS). An OS/2 file
management system that supports high-speed buffer
storage, long file names, and extended attributes.

hop count. The number of gateways or routers
through which a packet passes on its way to its
destination.

host. A computer connected to a network, which
provides an access method to that network. A host
provides end-user services and can be a client, a server,
or a client and server simultaneously.

Houston automatic spooling priority system (HASP).
A computer program that provides supplementary job
management, data management, and task management
functions such as control of job flow, ordering of tasks,
and spooling.

HPFS. High Performance File System.

HYPERchannel Adapter. A network interface used to
connect a TCP/IP for VM or MVS host into an existing
TCP/IP HYPERchannel network, or to connect TCP/IP
hosts together to create a TCP/IP HYPERchannel
network.

I
IAB. Internet Activities Board.

ICMP. Internet Control Message Protocol.

IEEE. Institute of Electrical and Electronic Engineers.

IETF. Internet Engineering Task Force.

IGMP. Internet Group Management Protocol (IGMP).

IGP. Interior Gateway Protocol.

include file. A file that contains preprocessor text,
which is called by a program, using a standard
programming call. Synonymous with header file.

IMS. Information Management System.

Glossary 435

Information Management System (IMS). A
database/data communication (DB/DC) system that
can manage complex databases and networks.

initial program load (IPL). The initialization
procedure that causes an operating system to
commence operation.

instance. Indicates a label that is used to distinguish
among the variations of the principal name. An instance
allows for the possibility that the same client or service
can exist in several forms that require distinct
authentication.

Institute of Electrical and Electronic Engineers
(IEEE). An electronics industry organization.

Integrated Services Digital Network (ISDN). A
digital, end-to-end telecommunication network that
supports multiple services including, but not limited to,
voice and data.

interactive. Pertaining to a program or a system that
alternately accepts input and then responds. An
interactive system is conversational; that is, a
continuous dialog exists between user and system. See
batch.

Interior Gateway Protocol (IGP). The protocol used to
exchange routing information between collaborating
routers in the Internet. RIP is an example of an IGP.

Internet. The largest internet in the world consisting
of large national backbone nets (such as MILNET,
NSFNET, and CREN) and a myriad of regional and
local campus networks all over the world. The Internet
uses the Internet protocol suite. To be on the Internet,
you must have IP connectivity (be able to TELNET to,
or PING, other systems). Networks with only electronic
mail connectivity are not actually classified as being on
the Internet.

Internet Activities Board (IAB). The technical body
that oversees the development of the Internet suite of
protocols (commonly referred to as TCP/IP). It has two
task forces (the IRTF and the IETF) each charged with
investigating a particular area.

Internet address. A 32-bit address assigned to hosts
using TCP/IP. An internet address consists of a
network number and a local address. Internet addresses
are represented in a dotted-decimal notation and are
used to route packets through the network.

Internet Engineering Task Force (IETF). One of the
task forces of the IAB. The IETF is responsible for
solving short-term engineering needs of the Internet.

International Organization for Standardization (ISO).
An organization of national standards bodies from
various countries established to promote development
of standards to facilitate international exchange of

goods and services, and develop cooperation in
intellectual, scientific, technological, and economic
activity.

internet or internetwork. A collection of packet
switching networks interconnected by gateways,
routers, bridges, and hosts to function as a single,
coordinated, virtual network.

internet address. The unique 32-bit address
identifying each node in an internet. See also address.

Internet Control Message Protocol (ICMP). The part
of the Internet Protocol layer that handles error
messages and control messages.

Internet Group Management Protocol (IGMP). IGMP
is used by IP hosts to report their host group
memberships to multicast routers.

Internet Protocol (IP). The TCP/IP layer between the
higher level host-to-host protocol and the local network
protocols. IP uses local area network protocols to carry
packets, in the form of datagrams, to the next gateway,
router, or destination host.

interoperability. The capability of different hardware
and software by different vendors to effectively
communicate together.

Inter-user communication vehicle (IUCV). A VM
facility for passing data between virtual machines and
VM components.

intrinsics X-Toolkit. A set management mechanism
that provides for constructing and interfacing between
composite X Window widgets, their children, and other
clients. Also, intrinsics provide the ability to organize a
collection of widgets into an application.

IP. Internet Protocol.

IP datagram. The fundamental unit of information
passed across the Internet. An IP datagram contains
source and destination addresses along with data and a
number of fields that define such things as the length
of the datagram, the header checksum, and flags to say
whether the datagram can be (or has been) fragmented.

IPL. Initial Program Load.

ISDN. Integrated Services Digital Network.

ISO. International Organization for Standardization.

IUCV. Inter-User Communication Vehicle.

J
JCL. Job Control Language.

JES. Job Entry Subsystem.

436 z/VM: TCP/IP Programmer’s Reference

JIS. Japanese Institute of Standards.

Job Control Language (JCL). A problem-oriented
language designed to express statements in a job that
are used to identify the job or describe its requirements
to an operating system.

Job Entry Subsystem (JES). An IBM System/370
licensed program that receives jobs into the system and
processes all output data produced by the jobs.

JUNET. The Japanese Academic and Research
Network that connects various UNIX operating
systems.

K
Kanji. A graphic character set consisting of symbols
used in Japanese ideographic alphabets. Each character
is represented by 2 bytes.

katakana. A character set of symbols used on one of
the two common Japanese phonetic alphabets, which is
used primarily to write foreign words phonetically. See
also kanji.

Kerberos. A system that provides authentication
service to users in a network environment.

Kerberos Authentication System. An authentication
mechanism used to check authorization at the user
level.

L
LaMail. The client that communicates with the OS/2
Presentation Manager to manage mail on the network.

LAN. Local area network.

Line Printer Client (LPR). A client command that
allows the local host to submit a file to be printed on a
remote print server.

Line Printer Daemon (LPD). The remote printer
server that allows other hosts to print on a printer local
to your host.

little-endian. A format for storage or transmission of
binary data in which the least significant bit (or byte)
comes first. The reverse convention is big-endian.

LLB. Local Location Broker.

local area network (LAN). A data network located on
the user’s premises in which serial transmission is used
for direct data communication among data stations.

local host. In an internet, the computer to which a
user’s terminal is directly connected without using the
internet.

Local Location Broker (LLB). In Network Computing
System (NCS) Location Broker, a server that maintains
information about objects on the local host and
provides the Location Broker forwarding facility.

local network. The portion of a network that is
physically connected to the host without intermediate
gateways or routers.

logical character delete symbol. A special editing
symbol, usually the at (@) sign, which causes CP to
delete it and the immediately preceding character from
the input line. If many delete symbols are consecutively
entered, the same number of preceding characters are
deleted from the input line.

Logical Unit (LU). An entity addressable within an
SNA-defined network. LUs are categorized by the types
of communication they support.

LPD. Line Printer Daemon.

LPR. Line Printer Client.

LU. Logical Unit.

LU-LU session. In SNA, a session between two logical
units (LUs). It provides communication between two
end users, or between an end user and an LU services
component.

LU type. In SNA, the classification of an LU-LU
session in terms of the specific subset of SNA protocols
and options supported by the logical units (LUs) for
that session.

M
MAC. Media Access Control.

mail gateway. A machine that connects two or more
electronic mail systems (often different mail systems on
different networks) and transfers messages between
them.

Management Information Base (MIB). A standard
used to define SNMP objects, such as packet counts
and routing tables, that are in a TCP/IP environment.

mapping. The process of relating internet addresses to
physical addresses in the network.

mask. A pattern of characters used to control retention
or elimination of portions of another pattern of
characters. To use a pattern of characters to control
retention or elimination of another pattern of
characters. A pattern of characters that controls the
keeping, deleting, or testing of portions of another
pattern of characters.

Maximum Transmission Unit (MTU). The largest
possible unit of data that can be sent on a given
physical medium.

Glossary 437

media access control (MAC). The method used by
network adapters to determine which adapter has
access to the physical network at a given time.

Message Handling System (MHS). The system of
message user agents, message transfer agents, message
stores, and access units that together provide OSI
electronic mail.

MHS. Message Handling System.

MIB. Management Information Base.

microcode. A code, representing the instructions of an
instruction set, which is implemented in a part of
storage that is not program-addressable.

MILNET. Military Network.

Military Network (MILNET). Originally part of the
ARPANET, MILNET was partitioned in 1984 to make it
possible for military installations to have reliable
network service, while the ARPANET continued to be
used for research. See DDN.

minidisk. Logical divisions of a physical direct access
storage device.

modem (modulator/demodulator). A device that
converts digital data from a computer to an analog
signal that can be transmitted on a telecommunication
line, and converts the analog signal received to data for
the computer.

Motif. see OSF/Motif.

mouse. An input device that is used to move a pointer
on the screen and select items.

MTU. Maximum Transmission Unit.

multicast. The simultaneous transmission of data
packets to a group of selected nodes on a network or
subnetwork.

multiconnection server. A server that is capable of
accepting simultaneous, multiple connections.

Multiple Virtual Storage (MVS). Implies MVS/370,
the MVS/XA product, and the MVS/ESA product.

multitasking. A mode of operation that provides for
the concurrent performance execution of two or more
tasks.

MVS. Multiple Virtual Storage.

N
name server. The server that stores resource records
about hosts.

National Science Foundation (NSF). Sponsor of the
NSFNET.

National Science Foundation Network (NSFNET). A
collection of local, regional, and mid-level networks in
the U.S. tied together by a high-speed backbone.
NSFNET provides scientists access to a number of
supercomputers across the country.

NCK**. Network Computing Kernel.

NCP. Network Control Program.

NCS. Network Computing System.

NDB. Network Database.

NDIS. Network Driver Interface Specification.

Netman. This device keyword specifies that this
device is a 3172 LAN Channel Station that supports
IBM Enterprise-Specific SNMP Management
Information Base (MIB) variables for 3172. TCP/IP for
VM supports SNMP GET and SNMP GETNEXT
operations to request and retrieve 3172
Enterprise-Specific MIB variables. These requests are
answered only by those 3172 devices with the
NETMAN option in the PROFILE TCPIP file.

NetView. A system 390-based, IBM-licensed program
used to monitor, manage, and diagnose the problems of
a network.

network. An arrangement of nodes and connecting
branches. Connections are made between data stations.
Physical network refers to the hardware that makes up
a network. Logical network refers to the abstract
organization overlaid on one or more physical
networks. An internet is an example of a logical
network.

network adapter. A physical device, and its associated
software, that enables a processor or controller to be
connected to a network.

network administrator. The person responsible for the
installation, management, control, and configuration of
a network.

Network Computing Kernel (NCK). In the Network
Computing System (NCS), the combination of the
remote procedure call runtime library and the Location
Broker.

Network Computing System (NCS). A set of software
components developed by Apollo, Incorporated, that
conform to the Network Computing Architecture
(NCA). NCS is made up of two parts: the nidl compiler
and Network Computing Kernel (NCK). NCS is a
programming tool kit that allows programmers to
distribute processing power to other hosts.

Network Control Program (NCP). An IBM-licensed
program that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability.

438 z/VM: TCP/IP Programmer’s Reference

network database (NDB). An IBM-licensed program
that provides communication controller support for
single-domain, multiple-domain, and interconnected
network capability. NDB allows interoperability among
different database systems, and uses RPC protocol with
a client/server type of relationship. NDB is used for
data conversion, security, I/O buffer management, and
transaction management.

Network Driver Interface Specification (NDIS). An
industry-standard specification used by applications as
an interface with network adapter device drivers.

network elements. As defined in the SNMP
architecture, network elements are gateways, routers,
and hosts that contain management agents responsible
for performing the network management functions
requested by the network management stations.

network file system (NFS). The NFS protocol, which
was developed by Sun Microsystems, Incorporated,
allows computers in a network to access each other’s
file systems. Once accessed, the file system appears to
reside on the local host.

Network Information Center (NIC). Originally there
was only one, located at SRI International and tasked to
serve the ARPANET (and later DDN) community.
Today, there are many NICs operated by local, regional,
and national networks all over the world. Such centers
provide user assistance, document service, training, and
more.

Network Interface Definition Language (NIDL). A
declarative language for the definition of interfaces that
has two forms, a Pascal-like syntax and a C-like syntax.
NIDL is a component of the Network Computing
Architecture.

Network Job Entry (NJE). In object distribution, an
entry in the network job table that specifies the system
action required for incoming network jobs sent by a
particular user or group of users. Each entry is
identified by the user ID of the originating user or
group.

network layer. Layer 3 of the Open Systems
Interconnection (OSI) model; it defines protocols
governing data routing.

network management stations. As defined in the
SNMP architecture, network management stations, or
SNMP clients, execute management applications that
monitor and control network elements.

NFS. Network file system.

NIC. Network Information Center.

NIDL. Network Interface Definition Language.

NJE. Network Job Entry.

node. In a network, a point at which one or more
functional units connect channels or data circuits. In a
network topology, the point at an end of a branch.

nonblocking mode. If the execution of the program
cannot continue until some event occurs, the operating
system does not suspend the program until that event
occurs. Instead, the operating system returns an error
message to the program.

NPSI. X.25 NCP Packet Switching Interface.

NSF. National Science Foundation.

NSFNET. National Science Foundation Network.

O
octet. A byte composed of eight binary elements.

OfficeVision (OV). IBM’s new proprietary, integrated
office management system used for sending, receiving,
and filing electronic mail, and a variety of other office
tasks. OfficeVision replaces PROFS

Offload host. Any device that is handling the TCP/IP
processing for the MVS host where TCP/IP for MVS is
installed. Currently, the only supported Offload host is
the 3172-3.

Offload system. Represents both the MVS host where
TCP/IP for MVS is installed and the Offload host that
is handling the TCP/IP Offload processing.

open system. A system with specified standards and
that therefore can be readily connected to other systems
that comply with the same standards.

Open Systems Interconnection (OSI). The
interconnection of open systems in accordance with
specific ISO standards. The use of standardized
procedures to enable the interconnection of data
processing systems.

Operating System/2 (OS/2). Pertaining to the IBM
licensed program that can be used as the operating
system for personal computers. The OS/2 licensed
program can perform multiple tasks at the same time.

OS/2. Operating System/2.

OSF/Motif. OSF/Motif is an X Window System toolkit
defined by Open Software Foundation, Inc. (OSF),
which enables the application programmer to include
standard graphic elements that have a 3-D appearance.
Performance of the graphic elements is increased with
gadgets and windowless widgets.

OSI. Open Systems Interconnection.

out-of-band data. Data that is placed in a secondary
channel for transmission. Primary and secondary
communication channels are created physically by

Glossary 439

modulation on a different frequency, or logically by
specifying a different logical channel. A primary
channel can have a greater capacity than a secondary
one.

OV. OfficeVision.

P
packet. A sequence of binary digits, including data
and control signals, that is transmitted and switched as
a composite whole.

Packet Switching Data Network (PSDN). A network
that uses packet switching as a means of transmitting
data.

parameter. A variable that is given a constant value
for a specified application.

parse. To analyze the operands entered with a
command.

passive open. The state of a connection that is
prepared to provide a service on demand. Contrast
with active open.

Partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data.

PC. Personal computer.

PCA. Personal Channel Attach.

PC Network. A low-cost, broadband network that
allows attached IBM personal computers, such as IBM
5150 Personal Computers, IBM Computer ATs, IBM
PC/XTs, and IBM Portable Personal Computers to
communicate and to share resources.

PDS. Partitioned data set.

PDN. Public Data Network.

PDU. Protocol data unit.

peer-to-peer. In network architecture, any functional
unit that resides in the same layer as another entity.

Personal Channel Attach (PCA). see Personal System
Channel Attach.

Personal Computer (PC). A microcomputer primarily
intended for stand-alone use by an individual.

Personal System Channel Attach (PSCA). An adapter
card to connect a micro-channel based personal
computer (or processor) to a System/370 parallel
channel.

physical layer. Layer 1 of the Open Systems
Interconnection (OSI) model; it details protocols
governing transmission media and signals.

physical unit (PU). In SNA, the component that
manages and monitors the resources, such as attached
links and adjacent link stations, associated with a node,
as requested by an SSPC via an SSPC-PU session. An
SSPC activates a session with the physical unit in order
to indirectly manage, through the PU, resources of the
node such as attached links.

PING. The command that sends an ICMP Echo
Request packet to a host, gateway, or router with the
expectation of receiving a reply.

PM. Presentation Manager.

PMANT. In OS/2, the 3270 client terminal emulation
program that is invoked by the PMANT command.

polling. On a multipoint connection or a
point-to-point connection, the process whereby data
stations are invited one at a time to transmit.
Interrogation of devices for such purposes as to avoid
contention, to determine operational status, or to
determine readiness to send or receive data.

POP. Post Office Protocol.

port. An endpoint for communication between
devices, generally referring to a logical connection. A
16-bit number identifying a particular Transmission
Control Protocol or User Datagram Protocol resource
within a given TCP/IP node.

PORTMAP. Synonymous with Portmapper.

Portmapper. A program that maps client programs to
the port numbers of server programs. Portmapper is
used with Remote Procedure Call (RPC) programs.

Post Office Protocol (POP). A protocol used for
exchanging network mail.

presentation layer. Layer 6 of the Open Systems
Interconnections (OSI) model; it defines protocols
governing data formats and conversions.

Presentation Manager (PM). A component of OS/2
that provides a complete graphics-based user interface,
with pull-down windows, action bars, and layered
menus.

principal name. Specifies the unique name of a user
(client) or service.

PostScript. A standard that defines how text and
graphics are presented on printers and display devices.

process. A unique, finite course of events defined by
its purpose or by its effect, achieved under defined
conditions. Any operation or combination of operations
on data. A function being performed or waiting to be

440 z/VM: TCP/IP Programmer’s Reference

performed. A program in operation; for example, a
daemon is a system process that is always running on
the system.

Professional Office Systems (PROFS). IBM’s
proprietary, integrated office management system used
for sending, receiving, and filing electronic mail, and a
variety of other office tasks. PROFS has been replaced
by OfficeVision. See OfficeVision.

PROFS. Professional Office Systems.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in achieving
communication. Protocols can determine low-level
details of machine-to-machine interfaces, such as the
order in which bits from a byte are sent; they can also
determine high-level exchanges between application
programs, such as file transfer.

Protocol data unit (PDU). A set of commands used by
the SNMP agent to request management station data.

protocol suite. A set of protocols that cooperate to
handle the transmission tasks for a data communication
system.

PSCA. Personal System Channel Attach.

PSDN. Packet Switching Data Network.

PU. Physical unit.

Public Data Network (PDN). A network established
and operated by a telecommunication administration or
by a Recognized Private Operating Agency (RPOA) for
the specific purpose of providing circuit-switched,
packet-switched, and leased-circuit services to the
public.

Q
queue. A line or list formed by items in a system
waiting for service; for example, tasks to be performed
or messages to be transmitted. To arrange in, or form, a
queue.

R
RACF. Resource access control facility.

RARP. Reverse Address Resolution Protocol.

read-only access. An access mode associated with a
virtual disk directory that lets a user read, but not write
or update, any file on the disk directory.

read/write access. An access mode associated with a
virtual disk directory that lets a user read and write
any file on the disk directory (if write authorized).

realm. One of the three parts of a Kerberos name. The
realm specifies the network address of the principal
name or instance. This address must be expressed as a
fully qualified domain name, not as a “dot numeric”
internet address.

recursion. A process involving numerous steps, in
which the output of each step is used for the successive
step.

reduced instruction-set computer (RISC). A computer
that uses a small, simplified set of frequently used
instructions for rapid execution.

reentrant. The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

Remote Execution Protocol (REXEC). A protocol that
allows the execution of a command or program on a
foreign host. The local host receives the results of the
command execution. This protocol uses the REXEC
command.

remote host. A machine on a network that requires a
physical link to interconnect with the network.

remote logon. The process by which a terminal user
establishes a terminal session with a remote host.

Remote Procedure Call (RPC). A facility that a client
uses to request the execution of a procedure call from a
server. This facility includes a library of procedures and
an eXternal data representation.

Remote Spooling Communications Subsystem
(RSCS). An IBM-licensed program that transfers spool
files, commands, and messages between VM users,
remote stations, and remote and local batch systems,
through HASP-compatible telecommunication facilities.

Request For Comments (RFC). A series of documents
that covers a broad range of topics affecting
internetwork communication. Some RFCs are
established as internet standards.

resolver. A program or subroutine that obtains
information from a name server or local table for use
by the calling program.

resource access control facility (RACF). An
IBM-licensed program that provides for access control
by identifying and by verifying the users to the system,
authorizing access to protected resources, logging the
detected unauthorized attempts to enter the system,
and logging the detected accesses to protected
resources.

resource records. Individual records of data used by
the Domain Name System. Examples of resource
records include the following: a host’s Internet Protocol
addresses, preferred mail addresses, and aliases.

Glossary 441

response unit (RU). In SNA, a message unit that
acknowledges a request unit. It may contain prefix
information received in a request unit. If positive, the
response unit may contain additional information such
as session parameters in response to BIND SESSION. If
negative, it contains sense data defining the exception
condition.

Restructured Extended Executor (REXX) language. A
general purpose programming language, particularly
suitable for EXEC procedures, XEDIT macros, or
programs for personal computing. Procedures, XEDIT
macros, and programs written in this language can be
interpreted by the Procedures Language VM/REXX
interpreter.

return code. A code used to influence the execution of
succeeding instructions. A value returned to a program
to indicate the results of an operation requested by that
program.

Reverse Address Resolution Protocol (RARP). A
protocol that maintains a database of mappings
between physical hardware addresses and IP addresses.

REXEC. Remote Execution Protocol.

REXX. Restructured Extended Executor language.

RFC. Request For Comments.

RIP. Routing Information Protocol.

RISC. Reduced instruction-set computer.

router. A device that connects networks at the ISO
Network Layer. A router is protocol-dependent and
connects only networks operating the same protocol.
Routers do more than transmit data; they also select the
best transmission paths and optimum sizes for packets.
In TCP/IP, routers operate at the Internetwork layer.
See also gateway.

Routing Information Protocol (RIP). The protocol that
maintains routing table entries for gateways, routers,
and hosts.

routing table. A list of network numbers and the
information needed to route packets to each.

RPC. Remote Procedure Call.

RSCS. Remote Spooling Communications Subsystem.

RU. Response unit.

S
SAA. Systems Application Architecture.

SBCS. Single Byte Character Set.

SDLC. Synchronous data link control.

Sendmail. The OS/2 mail server that uses Simple
Mail Transfer Protocol to route mail from one host to
another host on the network.

serial line. A network media that is a de facto
standard, not an international standard, commonly
used for point-to-point TCP/IP connections. Generally,
a serial line consists of an RS-232 connection into a
modem and over a telephone line.

semantics. The relationships of characters or groups of
characters to their meanings, independent of the
manner of their interpretation and use. The
relationships between symbols and their meanings.

server. A function that provides services for users. A
machine can run client and server processes at the
same time.

SFS. Shared File System.

Shared File System (SFS). A part of CMS that lets
users organize their files into groups known as
directories and selectively share those files and
directories with other users.

Simple Mail Transfer Protocol (SMTP). A TCP/IP
application protocol used to transfer mail between
users on different systems. SMTP specifies how mail
systems interact and the format of control messages
they use to transfer mail.

Simple Network Management Protocol (SNMP). A
protocol that allows network management by elements,
such as gateways, routers, and hosts. This protocol
provides a means of communication between network
elements regarding network resources.

simultaneous peripheral operations online (SPOOL).
(Noun) An area of auxiliary storage defined to
temporarily hold data during its transfer between
peripheral equipment and the processor. (Verb) To use
auxiliary storage as a buffer storage to reduce
processing delays when transferring data between
peripheral equipment and the processing storage of a
computer.

single-byte character set (SBCS). A character set in
which each character is represented by a one-byte code.
Contrast with double-byte character set.

SMI. Structure for Management Information.

SMTP. Simple Mail Transfer Protocol.

SNA. Systems Network Architecture.

SNALINK. SNA Network Link.

SNA Network Link. An SNA network link function of
TCP/IP for VM and MVS hosts running TCP/IP to
communicate through an existing SNA backbone.

SNMP. Simple Network Management Protocol.

442 z/VM: TCP/IP Programmer’s Reference

SOA. Start of authority record.

socket. An endpoint for communication between
processes or applications. A pair consisting of TCP port
and IP address, or UDP port and IP address.

socket address. An address that results when the port
identification number is combined with an internet
address.

socket interface. An application interface that allows
users to write their own applications to supplement
those supplied by TCP/IP.

SPOOL. Simultaneous peripheral operations online.

spooling. The processing of files created by or
intended for virtual readers, punches, and printers. The
spool files can be sent from one virtual device to
another, from one virtual machine to another, and to
read devices.

SQL. Structured Query Language.

SQL/DS. Structured Query Language/Data System.

start of authority record (SOA). In the Domain Name
System, the resource record that defines a zone.

stream. A continuous sequence of data elements being
transmitted, or intended for transmission, in character
or binary-digit form, using a defined format.

Structured Query Language (SQL). Fourth generation
English-like programming language used to perform
queries on relational databases.

Structured Query Language/Data System (SQL/DS).
An IBM relational database management system for the
VM and VSE operating systems.

Structure for Management Information (SMI). The
rules used to define the objects that can be accessed
through a network management protocol. See also MIB.

subagent. In the SNMP architecture, a subagent
provides an extension to the utility provided by the
SNMP agent.

subdirectory. A directory contained within another
directory in a file system hierarchy.

subnet. A networking scheme that divides a single
logical network into smaller physical networks to
simplify routing.

subnet address. The portion of the host address that
identifies a subnetwork.

subnet mask. A mask used in the IP protocol layer to
separate the subnet address from the host portion of
the address.

subnetwork. Synonymous with subnet.

subsystem. A secondary or subordinate system,
usually capable of operating independent of, or
asynchronously with, a controlling system.

SYNC. Synchronous.

synchronous (SYNC). Pertaining to two or more
processes that depend on the occurrences of a specific
event such as common timing signal. Occurring with a
regular or predictable time relationship. See
asynchronous.

synchronous data link control (SDLC). A data link
over which communication is conducted using the
synchronous data protocol.

Systems Application Architecture (SAA). A formal
set of rules that enables applications to be run without
modification in different computer environments.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T
TALK. An interactive messaging system that sends
messages between the local host and a foreign host.

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telnet. The Terminal Emulation Protocol, a TCP/IP
application protocol for remote connection service.
Telnet allows a user at one site to gain access to a
foreign host as if the user’s terminal were connected
directly to that foreign host.

terminal emulator. A program that imitates the
function of a particular kind of terminal.

Terminate and Stay Resident (TSR) program. A TSR
is a program that installs part of itself as an extension
of DOS when it is executed.

TFTPD. Trivial File Transfer Protocol Daemon.

ticket. Encrypted information obtained from a
Kerberos authentication server or a ticket-granting
server. A ticket authenticates a user and, in conjunction
with an authenticator, serves as permission to access a
service when presented by the authenticated user.

ticket-granting server. Grants Kerberos tickets to
authenticated users as permission to access an
end-service.

Glossary 443

Time Sharing Option (TSO). An operating system
option; for System/370 system, the option provides
interactive time sharing from remote terminals

time stamp. To apply the current system time. The
value on an object that is an indication of the system
time at some critical point in the history of the object.
In query, the identification of the day and time when a
query report was created that query automatically
provides on each report.

TN3270. An informally defined protocol for
transmitting 3270 data streams over Telnet.

token. In a local network, the symbol of authority
passed among data stations to indicate the station
temporarily in control of the transmission medium.

token-bus. See bus topology.

token ring. As defined in IEEE 802.5, a
communication method that uses a token to control
access to the LAN. The difference between a token bus
and a token ring is that a token-ring LAN does not use
a master controller to control the token. Instead, each
computer knows the address of the computer that
should receive the token next. When a computer with
the token has nothing to transmit, it passes the token to
the next computer in line.

token-ring network. A ring network that allows
unidirectional data transmission between data stations
by a token-passing procedure over one transmission
medium, so that the transmitted data returns to the
transmitting station.

Transmission Control Protocol (TCP). The TCP/IP
layer that provides reliable, process-to-process data
stream delivery between nodes in interconnected
computer networks. TCP assumes that IP (Internet
Protocol) is the underlying protocol.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A suite of protocols designed to allow
communication between networks regardless of the
technologies implemented in each network.

transport layer. Layer 4 of the Open Systems
Interconnection (OSI) model; it defines protocols
governing message structure and some error checking.

TRAP. An unsolicited message that is sent by an
SNMP agent to an SNMP network management station.

Trivial File Transfer Protocol Daemon (TFTPD). The
TFTP daemon (TFTPD server) transfers files between
the Byte File System (BFS) and TFTP clients. TFTPD
supports access to files maintained in a BFS directory
structure that is mounted.

TSO. Time Sharing Option.

TSR. Terminate and stay resident. TSR usually refers
to a terminate-and-stay-resident program.

U
UDP. User Datagram Protocol.

user. A function that uses the services provided by a
server. A host can be a user and a server at the same
time. See client.

User Datagram Protocol (UDP). A datagram level
protocol built directly on the IP layer. UDP is used for
application-to-application programs between TCP/IP
hosts.

user exit. A point in an IBM-supplied program at
which a user routine may be given control.

user profile. A description of a user, including user
ID, user name, defaults, password, access authorization,
and attributes.

V
virtual address. The address of a location in virtual
storage. A virtual address must be translated into a real
address to process the data in processor storage.

Virtual Machine (VM). Licensed software whose full
name is Virtual Machine/Enterprise Systems
Architecture (VM/ESA) It is a software operating
system that manages the resources of a real processor
to provide virtual machines to end users. It includes
time-sharing system control program (CP), the
conversational monitor system (CMS), the group
control system (GCS), and the dump viewing facility
(DVF).

Virtual Machine Communication Facility (VMCF). A
connectionless mechanism for communication between
address spaces.

Virtual Machine/System Product (VM/SP). An
IBM-licensed program that manages the resources of a
single computer so that multiple computing systems
appear to exist. Each virtual machine is the functional
equivalent of a real machine.

virtual storage. Storage space that can be regarded as
addressable main storage by the user of a computer
system in which virtual addresses are mapped into real
addresses. The size of virtual storage is limited by the
addressing scheme of the computing system and by the
amount of auxiliary storage available, not by the actual
number of main storage locations.

Virtual Telecommunications Access Method (VTAM).
An IBM-licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

444 z/VM: TCP/IP Programmer’s Reference

VM. Virtual Machine.

VMCF. Virtual Machine Communication Facility.

VM/ESA. Virtual Machine/Enterprise System
Architecture

VMSES/E. Virtual Machine Serviceability
Enhancements Staged/Extended.

VTAM. Virtual Telecommunications Access Method.

W
WAN. Wide area network.

well-known port. A port number that has been
preassigned for specific use by a specific protocol or
application. Clients and servers using the same protocol
communicate over the same well-known port.

wide area network (WAN). A network that provides
communication services to a geographic area larger
than that served by a local area network.

widget. The basic data type of the X Window System
Toolkit. Every widget belongs to a widget class that
contains the allowed operations for that corresponding
class.

window. An area of the screen with visible boundaries
through which a panel or portion of a panel is
displayed.

working directory. The directory in which an
application program is found. The working directory
becomes the current directory when the application is
started.

X
X Client. An application program which uses the X
protocol to communicate windowing and graphics
requests to an X Server.

XDR. eXternal Data Representation.

XEDIT. The CMS facility, containing the XEDIT
command and XEDIT subcommands and macros, that
lets a user create, change, and manipulate CMS files.

X Server. A program which interprets the X protocol
and controls one or more screens, a pointing device, a
keyboard, and various resources associated with the X
Window System, such as Graphics Contexts, Pixmaps,
and color tables.

X Window System. The X Window System is a
protocol designed to support network transparent
windowing and graphics. TCP/IP for VM and MVS
provides client support for the X Window System
application program interface.

X Window System API. An application program
interface designed as a distributed,
network-transparent, device-independent, windowing
and graphics system.

X Window System Toolkit. Functions for developing
application environments.

X.25. A CCITT communication protocol that defines
the interface between data terminal equipment and
packet switching networks.

X.25 NCP Packet Switching Interface (X.25 NPSI). An
IBM-licensed program that allows users to
communicate over packet switched data networks that
have interfaces complying with Recommendation X.25
(Geneva** 1980) of the CCITT. It allows SNA programs
to communicate with SNA equipment or with non-SNA
equipment over such networks.

Z
ZAP. To modify or dump an individual text file/data
set using the ZAP command or the ZAPTEXT EXEC.

ZAP disk. The virtual disk in the VM operating
system that contains the user-written modifications to
VTAM code.

zone. In the Domain Name System, a zone is a logical
grouping of domain names that is assigned to a
particular organization. Once an organization controls
its own zone, it can change the data in the zone, add
new tree sections connected to the zone, delete existing
nodes, or delegate new subzones under its zone.

Glossary 445

446 z/VM: TCP/IP Programmer’s Reference

Bibliography

This bibliography lists the publications that
provide information about your z/VM system.
The z/VM library includes z/VM base
publications, publications for additional facilities
included with z/VM, and publications for z/VM
optional features. For abstracts of z/VM
publications and information about current
editions and available publication formats, see
z/VM: General Information.

z/VM Base Publications

Evaluation
v z/VM: Licensed Program Specifications, GC24-5943
v z/VM: General Information, GC24-5944

Installation and Service
v z/VM: Installation Guide, GC24-5945
v z/VM: Service Guide, GC24-5946
v z/VM: VMSES/E Introduction and Reference,

GC24-5947

Planning and Administration
v z/VM: Planning and Administration, SC24-5948
v z/VM: CMS File Pool Planning, Administration,

and Operation, SC24-5949
v z/VM: Migration Guide, GC24-5928
v VM/ESA: REXX/EXEC Migration Tool for

VM/ESA, GC24-5752
v z/VM: Running Guest Operating Systems,

SC24-5950
v VM/ESA: Connectivity Planning, Administration,

and Operation, SC24-5756
v z/VM: Group Control System, SC24-5951
v z/VM: Performance, SC24-5952

Customization
v z/VM: CP Exit Customization, SC24-5953

Operation
v z/VM: System Operation, SC24-5954
v z/VM: Virtual Machine Operation, SC24-5955

Application Programming
v z/VM: CP Programming Services, SC24-5956
v z/VM: CMS Application Development Guide,

SC24-5957
v z/VM: CMS Application Development Guide for

Assembler, SC24-5958
v z/VM: CMS Callable Services Reference, SC24-5959
v z/VM: CMS Macros and Functions Reference,

SC24-5960
v z/VM: CMS Application Multitasking, SC24-5961
v VM/ESA: REXX/VM Primer, SC24-5598
v z/VM: REXX/VM User’s Guide, SC24-5962
v z/VM: REXX/VM Reference, SC24-5963
v z/VM: OpenExtensions POSIX Conformance

Document, GC24-5976
v z/VM: OpenExtensions User’s Guide, SC24-5977
v z/VM: OpenExtensions Command Reference,

SC24-5978
v z/VM: OpenExtensions Advanced Application

Programming Tools, SC24-5979
v z/VM: OpenExtensions Callable Services Reference,

SC24-5980
v z/VM: Reusable Server Kernel Programmer’s Guide

and Reference, SC24-5964
v z/VM: Enterprise Systems Architecture/Extended

Configuration Principles of Operation, SC24-5965
v C for VM/ESA: Library Reference, SC23-3908
v OS/390: DFSMS Program Management,

SC27-0806
v z/VM: Program Management Binder for CMS,

SC24-5934
v Debug Tool User’s Guide and Reference, SC09-2137
v External Security Interface (RACROUTE) Macro

Reference for MVS and VM, GC28-1366
v VM/ESA: Programmer’s Guide to the

Server-Requester Programming Interface for VM,
SC24-5455

v VM/ESA: CPI Communications User’s Guide,
SC24-5595

v Common Programming Interface Communications
Reference, SC26-4399

v Common Programming Interface Resource Recovery
Reference, SC31-6821

© Copyright IBM Corp. 1987, 2001 447

End Use
v z/VM: CP Command and Utility Reference,

SC24-5967
v VM/ESA: CMS Primer, SC24-5458
v z/VM: CMS User’s Guide, SC24-5968
v z/VM: CMS Command Reference, SC24-5969
v z/VM: CMS Pipelines User’s Guide, SC24-5970
v z/VM: CMS Pipelines Reference, SC24-5971
v CMS/TSO Pipelines: Author’s Edition, SL26-0018
v z/VM: XEDIT User’s Guide, SC24-5972
v z/VM: XEDIT Command and Macro Reference,

SC24-5973
v z/VM: Quick Reference, SC24-5986

Diagnosis
v z/VM: System Messages and Codes, GC24-5974
v z/VM: Diagnosis Guide, GC24-5975
v z/VM: VM Dump Tool, GC24-5887
v z/VM: Dump Viewing Facility, GC24-5966

Publications for Additional
Facilities

DFSMS/VM®

v VM/ESA: DFSMS/VM Function Level 221
Planning Guide, GC35-0121

v VM/ESA: DFSMS/VM Function Level 221
Installation and Customization, SC26-4704

v VM/ESA: DFSMS/VM Function Level 221 Storage
Administration Guide and Reference, SH35-0111

v VM/ESA: DFSMS/VM Function Level 221
Removable Media Services User’s Guide and
Reference, SC35-0141

v VM/ESA: DFSMS/VM Function Level 221
Messages and Codes, SC26-4707

v VM/ESA: DFSMS/VM Function Level 221
Diagnosis Guide, LY27-9589

OSA/SF
v S/390: Planning for the S/390 Open Systems

Adapter (OSA-1, OSA-2) Feature, GC23-3870
v VM/ESA: Open Systems Adapter Support Facility

User’s Guide for OSA-2, SC28-1992
v S/390: Open Systems Adapter-Express Customer’s

Guide and Reference, SA22-7403

Language Environment ®

v Language Environment for OS/390 & VM:
Concepts Guide, GC28-1945

v Language Environment for OS/390 & VM:
Migration Guide, SC28-1944

v Language Environment for OS/390 & VM:
Programming Guide, SC28-1939

v Language Environment for OS/390 & VM:
Programming Reference, SC28-1940

v Language Environment for OS/390 & VM: Writing
Interlanguage Communication Applications,
SC28-1943

v Language Environment for OS/390 & VM:
Debugging Guide and Run-Time Messages,
SC28-1942

Publications for Optional
Features

CMS Utilities Feature
v VM/ESA: CMS Utilities Feature, SC24-5535

TCP/IP Feature for z/VM
v z/VM: TCP/IP Level 3A0 Planning and

Customization, SC24-5981
v z/VM: TCP/IP Level 3A0 User’s Guide, SC24-5982
v z/VM: TCP/IP Level 3A0 Programmer’s Reference,

SC24-5983
v z/VM: TCP/IP Level 3A0 Messages and Codes,

GC24-5984
v z/VM: TCP/IP Level 3A0 Diagnosis Guide,

GC24-5985

OpenEdition ® DCE Feature for
VM/ESA®

v OpenEdition DCE for VM/ESA: Introducing the
OpenEdition Distributed Computing Environment,
SC24-5735

v OpenEdition DCE for VM/ESA: Planning,
SC24-5737

v OpenEdition DCE for VM/ESA: Configuring and
Getting Started, SC24-5734

v OpenEdition DCE for VM/ESA: Administration
Guide, SC24-5730

v OpenEdition DCE for VM/ESA: Administration
Reference, SC24-5731

v OpenEdition DCE for VM/ESA: Application
Development Guide, SC24-5732

448 z/VM: TCP/IP Programmer’s Reference

v OpenEdition DCE for VM/ESA: Application
Development Reference, SC24-5733

v OpenEdition DCE for VM/ESA: User’s Guide,
SC24-5738

v OpenEdition DCE for VM/ESA: Messages and
Codes, SC24-5736

LANRES/VM
v LAN Resource Extension and Services/VM:

Licensed Program Specifications, GC24-5617
v LAN Resource Extension and Services/VM: General

Information, GC24-5618
v LAN Resource Extension and Services/VM: Guide

and Reference, SC24-5622

CD-ROM
The following CD-ROM contains all the IBM
libraries that are available in IBM BookManager®

format for current VM system products and
current IBM licensed programs that run on VM. It
also contains PDF versions of z/VM publications
and publications for some related IBM licensed
programs.
v Online Library Omnibus Edition: VM Collection,

SK2T-2067

Note: Only unlicensed publications are included.

Other TCP/IP Related
Publications
This section lists other publications, outside the
z/VM 3.1.0 library, that you may find helpful.
v TCP/IP Tutorial and Technical Overview,

GG24-3376
v TCP/IP Illustrated, Volume 1: The Protocols,

SR28-5586
v Internetworking with TCP/IP Volume I: Principles,

Protocols, and Architecture, SC31-6144
v Internetworking With TCP/IP Volume II:

Implementation and Internals, SC31-6145
v Internetworking With TCP/IP Volume III:

Client-Server Programming and Applications,
SC31-6146

v DNS and BIND in a Nutshell, SR28-4970
v "MIB II Extends SNMP Interoperability," C.

Vanderberg, Data Communications, October 1990.
v "Network Management and the Design of SNMP,"

J.D. Case, J.R. Davin, M.S. Fedor, M.L.
Schoffstall.

v "Network Management of TCP/IP Networks:
Present and Future," A. Ben-Artzi, A. Chandna,
V. Warrier.

v "Special Issue: Network Management and
Network Security,"ConneXions-The
Interoperability Report, Volume 4, No. 8, August
1990.

v The Art of Distributed Application: Programming
Techniques for Remote Procedure Calls, John R.
Corbin, Springer-Verlog, 1991.

v The Simple Book: An Introduction to Management
of TCP/IP-based Internets, Marshall T Rose,
Prentice Hall, Englewood Cliffs, New Jersey,
1991.

Bibliography 449

450 z/VM: TCP/IP Programmer’s Reference

Index

A
abbreviations and acronyms 421
accept() 22
ACCEPT (IUCV) 177
address, socket 7
address families, socket 6
address information file 18
Addressing within an internet domain 7
Addressing within an IUCV domain 8
AddUserNote 110
administration server 306
AF_INET address family 6
AF_INET domain example 26
AF_IUCV address family 6
AF_IUCV domain example 27
Aliases information file 18
APITYPE=3 (multiple request) 174
applications program interface (API)

IUCV sockets API 171
ASCII to EBCDIC translation tables 18
associate table functions 293
asynchronous communication, sequence

(Pascal API) 95
auth_destroy() 207

authenticators 304
communicating 304
name structures 303
tickets 304

authentication server 303, 305
authnone_create() 208
authunix_create() 208
authunix_create_default() 208

B
BeginTcpIp (Pascal) 110
Berkeley socket implementation 17
big endian byte ordering convention 7
bind() 23
BIND (IUCV) 178
BUFFERspaceAVAILABLE (VMCF) 164
byte order, network 7

C
C socket application programming

interface 5
C socket calls

getibmsockopt()
call example 37
description 36
return values 38

ibmsflush() 51
setibmsockopt()

call example 72, 74
description 72
return values 74
structure elements 73

sock_debug() 79
sock_debug_bulk_perf0()

description 80

C socket calls (continued)
sock_debug_bulk_perf0() (continued)

example 80
sock_do_bulkmode() 80
sock_do_teststor() 81

C socket program library 89
C socket programs, examples

TCP client 89
TCP server 90
UDP client 92
UDP server 93

C Socket Quick Reference 19
callrpc() 209
ClearTimer 111
client

Kerberos 179, 318, 320
remote procedure calls 201
SNMP DPI programs 337

client verification exit, SMTP 373
clnt_broadcast() 209
clnt_call() 211
clnt_destroy() 213
clnt_freeres() 213
clnt_geterr() 213
clnt_pcreateerror() 214
clnt_perrno() 214
clnt_perror() 214
clnt_spcreateerror() 215
clnt_sperrno() 215
clnt_sperror() 216
clntcp_create() 212
clntraw_create() 216
clnttcp_create() 217
clntudp_create() 217
close() 27
command exit, SMTP 384
compiling and linking

general for all APIs 1
SNMP DPI 328
X Windows 254

connect() 27
CONNECT (IUCV) 180
connection information record

(Pascal) 97
connection states (Pascal) 96
CONNECTIONclosing (Pascal) 96
CONNECTIONstateCHANGED

(VMCF) 164
CreateTimer 111
CREDENTIALS structure 309

D
DATA 363
data structures

Pascal 96
VMCF 147

DATAdelivered (VMCF) 164
datagram socket, interface 5

TCPIP.DATA 79, 81
debugging messages 19
DestroyTimer 111

directories
Kerberos 307
remote procedure calls 206
sockets 8

DPI client program 337, 339

E
EBCDIC to ASCII translation tables 18
EHLO 361
EndTcpIp (Pascal) 111
envelope, SMTP

description 359
example 369

environment variables 17
HOSTALIASES 18
SOCK_DEBUG 19
X-ADDR 18
X-SITE 18
X-XLATE 18

ETC SERVICES file 413
exit routines, SMTP 373, 390
Exits, Server

Telnet 391
EXPN 368
extension routines (X window

system) 292
eXternal Data Representation protocol,

general information 201

F
FCNTL (IUCV) 180
fDPIparse() 330
file specification record (Pascal) 105
ForeignSocket 98

G
GET, SNMP DPI request 327
get_myaddress() 218
GET-NEXT, SNMP DPI request 327
GETCLIENTID (IUCV) 181
getdtablesize() 33
gethostbyaddr() 33
gethostbyname() 34
gethostent() 35
gethostid() 36
GETHOSTID (IUCV) 182
gethostname() 36
Gethostname (REXX) 182
GetHostNumber 112
GetHostResol 112
GetHostString 113
GetIBMSockopt 36
GetIdentity 113
getnetbyaddr() 38
getnetbyname() 39
getnetent() 40
GetNextNote 113
getpeername() 40

© Copyright IBM Corp. 1987, 2001 451

GETPEERNAME (IUCV) 183
getprotobyname() 41
getprotobynumber() 41
getprotoent() 42
getservbyname() 43
getservbyport() 43
getservent() 44
GetSmsg 114
getsockname() 44
GETSOCKNAME (IUCV) 183
getsockopt() 45
GETSOCKOPT (IUCV) 184
givesocket() 49
GIVESOCKET (IUCV) 185

H
Handle (Pascal) 114
handling external interrupts 107
HELO 360
HELP 364
host information file 18
Host lokkup routines 109
HOSTALIASES environment variable 18
HOSTS ADDRINFO 18
HOSTS SITEINFO 18
htonl() 51
htons() 51

I
ibmsflush() 51
inet_addr() 52
inet_lnaof() 52
inet_makeaddr() 53
inet_netof() 53
inet_network() 53
inet_ntoa() 54
initialization procedures, TCP/UDP

(Pascal) 106
inter-communication vehicle sockets 169
interface, C socket 5
internet addressing 7
ioctl() 54
IOCTL (IUCV) 186
IPUSER variable, returned by socket

call 173
IsLocalAddress 115
IsLocalHost 115
IUCV, subsystem communication macros

IUCV CONNECT 171
IUCV PURGE 175
IUCV REJECT 175, 200
IUCV REPLY 175
IUCV SEND 171
IUCVMCOM SEVER 174

IUCV socket API 171
IUCV socket call, buffer formats

ACCEPT 178
BIND 178
CANCEL 179
CLOSE 179
CONNECT 180
FCNTL 181
GETCLIENTID 182
GETHOSTID 182
GETHOSTNAME 183

IUCV socket call, buffer formats
(continued)

GETPEERNAME 183
GETSOCKNAME 184
GETSOCKOPT 185
GIVESOCKET 186
IOCTL 187
LASTERRNO 200
LISTEN 189
READ 190
READV 190
RECV 191
RECVMSG 191
RRCVFROM 191
SELECT 192
SELECT and SELECTEX

DESCRIPTOR_SET macro 191
descriptor sets 191
FD_CLR macro 191
FD_ISSET macro 191

SELECTEX 192
SEND 193
SENDTO 195
SHUTDOWN 197
SOCKET 197
TAKESOCKET 198
WRITE 199
WRITEV 199

IUCV socket calls
ACCEPT 177
BIND 178
CLOSE 179
CONNECT 180
FCNTL 180
GETCLENTID 181
GETHOSTID 182
GETHOSTNAME 182
GETPEERNAME 183
GETSOCKNAME 183
GETSOCKOPT 184
GIVESOCKET 185
IOCTL 186
LISTEN 188
MAXDESC 189
READ 189
READV 189
RECV 190
RECVFROM 190
RECVMSG 190
SELECT 191
SELECTEX 191
SEND 193
SENDMSG 194
SENDTO 194
SETSOCKOPT 195
SHUTDOWN 196
SOCKET 197
TAKESOCKET 198
WRITE 199
WRITEV 199

IUCV sockets, general
connect parameters 171
general information 169
issuing socket calls 174
lasterrno special request 200
multiple-req socket program

(apitype=3) 171, 174

IUCV sockets, general (continued)
path severance 173
response from initial message 172
response from TCPIP 175
restrictions 169
send parameters, initial message 171
sever, application initiated 173
sever, clean_up of stream sockets 173
sever, TCPIP initiated 173
socket API 171
socket call syntax 176
waiting for response from TCPIP 175

IUCV Sockets, prerequisite
knowledge 169

K
Kerberos

administration server 306
applications library 307
authentication server

authenticators 304
communicating 304
name structures 303
tickets 304

authentication system 303, 325
database 306
encryption 305
Kerberos routines

krb_get_cred() 309
krb_kntoln() 309
krb_mk_err() 310
krb_mk_priv() 310
krb_mk_req() 311
krb_mk_safe() 311
krb_rd_err() 312
krb_rd_priv() 313
krb_rd_req() 314
krb_rd_safe() 315
krb_recvauth() 315
krb_sendauth() 316

Quick Reference routines 308
sample programs

client 318
server 320

ticket granting service 305
user programs 308

L
LDRTBLS, SET command 4
level parameter on C socket calls

on getibmsockopt() 37
on setibmsockopt() 72

libraries
Kerberos 306, 307
remote procedure calls 206
SNMP DPI 329
sockets 16

listen() 56, 188
LISTENING (Pascal) 96
little endian byte ordering convention 7

M
mail forwarding exit, SMTP 378
MAILFROM 361

452 z/VM: TCP/IP Programmer’s Reference

Management Information Base
(MIB) 325, 327

maxdesc() 57
MAXDESC (IUCV) 189
messages

Pascal 104
system 1

mkDPIregister() 331
mkDPIresponse() 331
mkDPIset() 332
mkDPItrap() 333
MonCommand 116
Monitor procedures 108
monitor query 117
MonQuery 117
MSG_DAT fields 312, 313, 315, 317

N
names

Kerberos 303, 304
network, physical 5
network byte order 7

big endian byte ordering 7
htonl() 51
htons() 51
little endian byte ordering 7
ntohl() 58
ntohs() 59

NONEXISTENT (Pascal) 96
NOOP 364
notification record (Pascal) 98
notifications

notifications (Pascal) 105
notifications, specifying those to

receive (VMCF) 153
notifications (VMCF) 163

NotifyIo 118
ntohl() 58
ntohs() 59

O
onoff parameter on C socket calls

on sock_debug() 80
on sock_debug_bulk_perf0() 80
on sock_do_bulkmode() 81
on sock_do_teststor() 81

OPEN (Pascal) 96
OpenAttemptTimeout 97
optlen parameter on C socket calls

on getibmsockopt() 37
on setibmsockopt() 72

optname parameter on C socket calls
on getibmsockopt() 37
on setibmsockopt() 72

optval parameter on C socket calls
on getibmsockopt() 37
on setibmsockopt() 72

OSF/Motif 251, 296, 297

P
parameter, domain (C sockets) 8
parameter, protocol (C sockets) 9
parameter, type (C sockets) 8
parse 330

Pascal
API, description 95
assembler calls

RTcpExtRupt 123
RTcpVmcfRupt 123

asynchronous communication, general
sequence 95

Compiler, IBM VS Pascal &
Library 95

connection state type
CONNECTIONclosing 96
LISTENING 96
NONEXISTENT 96
OPEN 96
RECEIVINGonly 96
SENDINGonly 97
TRYINGtoOPEN 97

data structures 96
description

connection information record 97
connection states 96
file specification record 105
notification record 98

return codes 405, 409
sample program 143
software requirements 95

password 303, 305, 306
path addresses, SMTP 370
pDPIpacket() 335
PING interface 107
PingRequest 119
PINGresponse (VMCF) 167
pmap_getmaps() 219
pmap_getport() 219
pmap_rmtcall() 220
pmap_set() 221
pmap_unset() 221
port

port assignments 204
unspecified ports 135

porting
assessing system return messages 1
printing system return messages 1
remote procedure calls 206
sockets 17

portmap 204
Portmapper 203
procedure calls, Pascal

descriptions 105
handling external interrupts

RTcpExtRupt 123
RTcpVmcfRupt 123
TcpExtRupt 128
TcpVmcfRupt 138

Host lookup routines
GetHostNumber 112
GetHostResol 112
GetHostString 113
GetIdentity 113
IsLocalAddress 115
IsLocalHost 115

Monitor procedures
MonCommand 116
MonQuery 117

notifications
description 105
GetNextNote 113

procedure calls, Pascal (continued)
notifications (continued)

Handle 114
Unhandle 142

Other routines
AddUserNote 110
GetSmsg 114
ReadXlateTable 122
SayCalRe 124
SayConSt 124
SayIntAd 124
SayIntNum 125
SayNotEn 125
SayPorTy 125
SayProTy 125

Raw IP interface
RawIpClose 119
RawIpOpen 120
RawIpReceive 120
RawIpSend 121

TCP communication procedures
TcpAbort 127
TcpClose 127
TcpFReceive, TcpReceive, and

TcpWaitReceive 128
TcpFSend, TcpSend, and

TcpWaitSend 131
TcpOpen and TcpWaitOpen 134
TcpOption 136
TcpStatus 137

TCP/UDP initialization procedures
BeginTcpIp 110
StartTcpNotice 126
TcpNameChange 133

TCP/UDP termination procedure,
EndTcpIp 106

Timer routines
ClearTimer 111
CreateTimer 111
DestroyTimer 111
SetTimer 126

UDP communication procedures
UdpClose 138
UdpNReceive 139
UdpOpen 139
UdpReceive 140
UdpSend 141

prototypes 17

Q
query_DPI_port() 336
QUEU 365
quick reference tables

Kerberos routines 308
SNMP DPI routines 329
socket calls 19
X Windows 256

QUIT 364

R
Raw IP interface 108
raw sockets 6
RawIpClose (Pascal) 119
RawIpOpen (Pascal) 120
RAWIPpacketsDELIVERED (VMCF) 166

Index 453

RawIpReceive (Pascal) 120
RawIpSend (Pascal) 121
RAWIPspaceAVAILABLE (VMCF) 167
RCPT TO 362
read() 59
readv() 60
ReadXlateTable 122
RECEIVINGonly (Pascal) 96
recv() 61
recvfrom() 62
recvmsg() 63
REGISTER, SNMP DPI request 328
registerrpc() 222
related protocols 417
remote procedure calls (RPCs) 201, 245

accessing system return
messages 206

auth_destroy() 207
authnone_create() 208
authunix_create() 208
authunix_create_default() 208
callrpc() 209
clnt_broadcast() 209
clnt_call() 211
clnt_control() 211
clnt_create() 212
clnt_destroy() 213
clnt_freeres() 213
clnt_geterr() 213
clnt_pcreateerror() 214
clnt_perrno() 214
clnt_perror() 214
clnt_spcreateerror() 215
clnt_sperrno() 215
clnt_sperror() 216
clntraw_create() 216
clnttcp_create() 217
clntudp_create() 217
enum clnt_stat structure 205
enumerations 207
general information 201
get_myaddress() 218
getrpcport() 219
interface 201
library 206
pmap_getmaps() 219
pmap_getport() 219
pmap_rmtcall() 220
pmap_set() 221
pmap_unset() 221
porting 206
Portmapper

contacting 204
target assistance 204

printing system return messages 207
registerrpc() 222
remapping file names 206
rpc_createerr 207
RPCGEN command 204
svc_destroy() 222
svc_fds() 207
svc_freeargs() 223
svc_getargs() 223
svc_getcaller() 224
svc_getreq() 224
svc_register() 224
svc_run() 225

remote procedure calls (RPCs) 201, 245
(continued)
svc_sendreply() 225
svc_unregister() 226
svcerr_auth() 226
svcerr_decode() 226
svcerr_noproc() 226
svcerr_noprog() 227
svcerr_progvers() 227
svcerr_systemerr() 227
svcerr_weakauth() 228
svcraw_create() 228
svctcp_create() 228
svcudp_create() 229
xdr_accepted_reply() 229
xdr_array() 230
xdr_authunix_parms() 230
xdr_bool() 231
xdr_bytes() 231
xdr_callhdr() 232
xdr_callmsg() 232
xdr_double() 232
xdr_enum() 233
xdr_float() 234
xdr_inline() 234
xdr_int() 235
xdr_long() 235
xdr_opaque() 235
xdr_opaque_auth() 236
xdr_pmap() 236
xdr_pmaplist() 237
xdr_pointer() 237
xdr_reference() 237
xdr_rejected_reply() 238
xdr_replymsg() 238
xdr_short() 239
xdr_string() 239
xdr_u_int() 239
xdr_u_long() 240
xdr_u_short() 240
xdr_union() 241
xdr_vector() 241
xdr_void() 242
xdr_wrapstring() 242
xdrmem_create() 243
xdrrec_create() 243
xdrrec_endofrecord() 244
xdrrec_eof() 244
xdrrec_skiprecord() 244
xdrstdio_create() 244
xprt_register() 245
xprt_unregister() 245

resolver customization 18
RESOURCESavailable (VMCF) 167
return codes

Pascal 405, 409
system

Accessing 1
Printing 1

rpc_createerr 207
RPC sample programs

client 246
raw data stream 248
server 246

RPCGEN command 204
RSET 364

S
S, defines socket descriptor on C socket

call
on getibmsockopt() 37
on ibmsflush() 51
on setibmsockopt() 72

SayCalRe 124
SayConSt 124
SayIntAd 98, 124
SayIntNum 125
SayNotEn 125
SayPorTy 125
SayProTy 125
select() 64
SELECT (IUCV) 191
selectex() 67
SELECTEX (IUCV) 191
send() 68
SEND (IUCV) 193
SENDINGonly 97
sendmsg() 69
SENDMSG (IUCV) 194
sendto() 70
SENDTO (IUCV) 194
server

Kerberos 303, 320, 325
NCS 306
remote procedure calls 203, 246, 251
sockets 90, 92

SERVICES file 413
SET, SNMP DPI request 327
SET LDRTBLS command 4
sethostent() 72
setibmsockopt() 72
setnetent() 75
setprotoent() 75
setservent() 75
setsockopt() 76
SETSOCKOPT (IUCV) 195
SetTimer 126
shutdown() 81
SHUTDOWN (IUCV) 196
SMSG command (VMCF) 114
SMTP exit routines 373, 390
SMTP interface

batch command files, format 371
batch examples

converting to batch format 371
querying delivery queues 372
sending mail 371

envelope, description of 369
path addresses 370
responses 369
SMTP commands

DATA 363
EHLO 361
EXPN 368
HELO 360
HELP 364
MAILFROM 361
NOOP 364
QUEU 365
QUIT 364
RCPT TO 362
RSET 364
TICK 369
VERB 368

454 z/VM: TCP/IP Programmer’s Reference

SMTP interface (continued)
VRFY 367

SMTP transactions 359
SMTPSEND EXEC 372
SNMP agent distributed program

interface (DPI) 325, 337
SNMP DPI

agents 325
compiling and linking 328
requests

GET 327
GET-NEXT 327
REGISTER 328
SET 327
TRAP 328

routines
DPIdebug() 329
fDPIparse() 330
mkDPIlist() 330
mkDPIregister() 331
mkDPIresponse() 331
mkDPIset() 332
mkDPItrap() 333
mkDPItrape() 334
pDPIpacket() 335
query_DPI_port() 336
Quick Reference 329

SOCK_DGRAM 8
SOCK_RAW 8
SOCK_STREAM 8
software requirements 328
subagents 325

SO_BULKMODE, on C socket calls. 36
SO_NONBLOCKLOCAL, on C socket

calls. 36
Sock_debug() 79
Sock_debug_bulk_perf0() 80
SOCK_DEBUG environment variable 19
Sock_do_bulkmode() 80
Sock_do_teststor()Sock_debug_bulk_perf0() 81
socket() 82
SOCKET (IUCV) 197
socket calls

accept() 10, 22
bind() 9, 23
close() 14, 27
connect() 10, 27
endhostent() 30
endnetent() 31
endprotoent() 31
endservent() 31
fcntl() 13, 31
getclientid() 32
getdtablesize() 33
gethostbyaddr() 33
gethostbyname() 34
gethostent() 35
gethostid() 36
gethostname() 36
getnetbyaddr() 38
getnetbyname() 39
getnetent() 40
getpeername() 40
getprotobyname() 41
getprotobynumber() 41
getprotoent() 42
getservbyname() 43

socket calls (continued)
getservbyport() 43
getservent() 44
getsockname() 44
getsockopt() 45
givesocket() 49
htonl() 51
htons() 51
ibmsflush() 51
inet_addr() 52
inet_lnaof() 52
inet_makeaddr() 53
inet_netof() 53
inet_network() 53
inet_ntoa() 54
ioctl() 13, 54
listen() 10, 56
maxdesc() 57
ntohl() 58
ntohs() 59
read() 11, 59
readv() 11, 60
recv() 11, 61
recvfrom() 11, 62
recvmsg() 12, 63
select() 12, 64
selectex() 67
send() 11, 68
sendmsg() 12, 69
sendto() 11, 70
sethostent() 72
setibmsockopt() 72
setnetent() 75
setprotoent() 75
setservent() 75
setsockopt() 76
shutdown() 81
socket() 8, 82
takesocket() 85
tcperror() 86
write() 11, 87
writev() 11, 88

SOCKET.H header file 7
socket record 98
sockets

address 7
address families

AF_INET 6
AF_IUCV 6

Addressing within an internet
domain 7

Addressing within an IUCV
domain 8

C Socket application program
interface 5

connected 11, 16, 26
definition 5
domain parameter 8
example program fragment series 8,

14
general information 5
guidelines for using types of 6
header files 17

SOCKET.H 37
interface

datagram 5
raw socket 6

sockets (continued)
interface (continued)

stream 5
transaction 6

library, C socket 16
main socket calls 8
porting 17
programming concepts 5
protocol parameter 9
TCP socket 14
type parameter 8
typical TCP socket session 14, 16
typical UDP socket session 16
UDP socket 16
unconnected 16

software requirements
Pascal 95
sockets 5
X window system 251

SOL_SOCKET, on C socket calls. 36
STANDARD TCPXLBIN 18
StartTcpNotice (Pascal) 126
stream sockets 5
stubs 205
subroutines (X window system) 256
svc_destroy() 222
svc_fds() 207
svc_freeargs() 223
svc_getargs() 223
svc_getcaller() 224
svc_getreq() 224
svc_register() 224
svc_run() 225
svc_sendreply() 225
svc_unregister() 226
svcerr_auth() 226
svcerr_decode() 226
svcerr_noproc() 226
svcerr_noprog() 227
svcerr_progvers() 227
svcerr_systemerr() 227
svcerr_weakauth() 228
svcraw_create() 228
svctcp_create() 228
svcudp_create() 229
syntax diagram

examples
default xiii
fragment xiii
return arrow xii
symbols xii
variable xii

table xii, xiii
system return codes 409

T
table

syntax diagram xii, xiii
takesocket() 85
TAKESOCKET (IUCV) 198
TCP communication procedures

(Pascal) 107
TCP/IP initialization and termination

procedures (VMCF)
abort a TCP connection 158
begin TCP/IP service 152
close a TCP connection 157

Index 455

TCP/IP initialization and termination
procedures (VMCF) (continued)

close a UDP port 160
determine whether an address is

local 161
end TCP/IP service 153
instruct TCPIP to obey a file of

commands 162
obtain current status of TCP

connection 158
obtain status information from

TCPIP 162
open a UDP port 159
open TCP connection 154
receive raw IP packets of a given

protocol 161
receive TCP data with FRECEIVEtcp

function 156
receive TCP data with RECEIVEtcp

function 157
receive UDP data 159
send an ICMP echo request 163
send raw IP packets 160
send TCP data 155
send UDP data 159
specifiying the notifications to

receive 153
tell TCPIP that your program will no

longer use a particular IP
protocol 161

tell TCPIP that your program will use
a particular IP protocol 160

TCP/UDP initialization procedures
(Pascal) 106

TCP/UDP/IP API (Pascal) 95
connection information record 97
connection state 96
data structures 96
file specification record 105
handling external interrupts 107
notification record 98
notifications 105
socket record 98
software requirements 95
using procedure calls 105

TCP/UDP termination procedure
(Pascal) 106

TcpAbort (Pascal) 127
TcpClose (Pascal) 127
tcperror() 86
TcpExtRupt 128
TcpFReceive (Pascal) 128
TcpFSend (Pascal) 131
TCPIP ATCPPSRC file (Pascal) 95
TCPLOAD

EXEC 2
using 3

TcpNameChange 133
TcpOpen (Pascal) 104, 134
TcpOption (Pascal) 136
TcpReceive (Pascal) 128
TcpSend (Pascal) 131
TcpStatus (Pascal) 137
TcpVmcfRupt 138
TcpWaitOpen (Pascal) 104, 134
TcpWaitReceive 128
TcpWaitSend 131

Textlib (TXTLIB) Files
CLIB 3
CMSLIB 3
COMMTXT 3
GLOBAL 3
IBMLIB 3
PASCAL 3
RPCLIB 3
SCEELKED 3
TCPASCAL 3
TCPLANG 3

TICK 369
ticket-granting server 305
tickets 304, 305
Timer routines 109
transaction sockets 6
transactions, SMTP 359
Translation information file 18
TRAP, SNMP DPI request 328
TRYINGtoOPEN (Pascal) 97

U
UDP communication procedure 108, 139
UDP socket session 16
UdpClose (Pascal) 138
UDPdatagramDELIVERED (VMCF) 104,

165
UDPdatagramSPACEavailable

(VMCF) 166
UdpNReceive 139
UdpReceive (Pascal) 104, 140
UDPresourcesAVAILABLE (VMCF) 167
UdpSend (Pascal) 141
Unhandle (Pascal) 142
UnNotifyIo 142
UnpackedBytes 98
URGENTpending (VMCF) 165
user exit routines, SMTP 373, 390

V
variables, environment 17
VERB 368
Virtual Machine Communication Facility

(VMCF) Interface
CALLCODE notifications

ACTIVEprobe 168
BUFFERspaceAVAILABLE 164
CONNECTIONstateCHANGED 164
DATAdelivered 164
DUMMYprobe 168
PINGresponse 167
RAWIPpacketsDELIVERED 166
RAWIPspaceAVAILABLE 167
RESOURCESavailable 167
UDPdatagramDELIVERED 165
UDPdatagramSPACEavailable 166
UDPresourcesAVAILABLE 167
URGENTpending 165

CALLCODE system queries
IShostLOCAL 161
MONITORcommand 162
MONITORquery 162
PINGreq 163

functions 149
general information

data structures 147, 154

Virtual Machine Communication Facility
(VMCF) Interface (continued)

general information (continued)
use of VMCF interrupt header

fields 148
use of VMCF parameter list

fields 148
IP CALLCODE requests

CLOSErawip 161
OPENrawip 160
RECEIVErawip 161
SENDrawip 160

TCP CALLCODE requests
ABORTtcp 158
CLOSEtcp 157
FRECEIVEtcp 156
FSENDtcp 155
OPENtcp 154
OPTIONtcp 158
RECEIVEtcp 157
SENDtcp 155
STATUStcp 158

TCP/IP initialization and termination
procedures

abort a TCP connection 158
begin TCP/IP service 152
close a TCP connection 157
close a UDP port 160
determine whether an address is

local 161
end TCP/IP service 153
instruct TCPIP to obey a file of

commands 162
obtain current status of TCP

connection 158
obtain status information from

TCPIP 162
open a UDP port 159
open TCP connection 154
receive raw IP packets of a given

protocol 161
receive TCP data with

FRECEIVEtcp function 156
receive TCP data with RECEIVEtcp

function 157
receive UDP data 159
send an ICMP echo request 163
send raw IP packets 160
send TCP data 155
send UDP data 159
specifiying the notifications to

receive 153
tell TCPIP that your program will

no longer use a particular IP
protocol 161

tell TCPIP that your program will
use a particular IP protocol 160

TCP/UDP/IP initialization and
termination procedures

BEGINtcpIPservice 152
ENDtcpIPservice 153
HANDLEnotice 153

TCPIP communication CALLCODE
notifications 151

TCPIP communication CALLCODE
requests 150

456 z/VM: TCP/IP Programmer’s Reference

Virtual Machine Communication Facility
(VMCF) Interface (continued)

UDP CALLCODE requests
CLOSEudp 160
NRECEIVEudp 159
OPENudp 159
SENDudp 159

when to use 147
VRFY 367

W
well-known port assignments

TCP 413
UDP 414

windows
changing attributes 257
communicating with window

managers 267
controlling the screen saver 265
creating and destroying 256
cut and paste buffers 270
default error handling 267
display functions 272
enabling and disabling

synchronization 266
handling events 266
hosts and access control 265
keyboard event functions 268
keyboard settings 264
manipulating bitmaps 271
manipulating images 271
manipulating properties 258
manipulating regions 269
manipulating windows 257
obtaining information 258
opening and closing 256
querying visual types 270
resource manager 271
setting selections 258
window manager functions 264

write() 87
WRITE (IUCV) 199
writev() 88
WRITEV (IUCV) 199

X
X-ADDR environment variable 18
X-SITE environment variable 18
X Window Quick Reference tables

associate table functions 276
Athena widget support 290
authorization routines 280
character string sizes, querying 262
clearing and copying areas 261
communicating with window

managers 267
controlling the screen saver 265
default error handling 267
drawing lines 261
drawing text 263
extension routines 275
filling areas 261
fonts, loading and freeing 262
handling events 266

X Window Quick Reference tables
(continued)

handling window manager
functions 264

manipulating of
bitmaps 271
color cells 259
colormaps 259
coursors 263
display functions 272
graphics contents 260
hosts and access control 265
images 271
keyboard event functions 268
keyboard settings 264
regions 269

miscellaneous utility routines 277
MIT extensions to X 275
Pixmaps, creating and freeing 259
querying visual types 270
synchronization, enabling and

disabling 266
transferring images 263
using cut and paste buffers 270
using the resource manager 271
windows

changing attributes 257
creating and destroying 256
display, opening and closing 256
manipulating 257
manipulating properties 258
obtaining information 258
properties and atoms 258
selections, setting 258

X intrinsics routiness 280

X window system

application resource file 253
application resources 295
associate table functions 293
authorization routines 293
compiling and linking 254
creating an application 254
defining widgets 294
EBCDIC-ASCII translation 252
extension routines 292
how the interface works 251
interface 251
MIT extensions 293
running an application 255
sample programs

Athena widget set, use of 300
OSF/Motif-based widget set, use

of 302
Xlib calls, use of 299

software requirements 251
subroutines

changing window attributes 257
clearing and copying areas 261
communicating with window

managers 267
controlling the screen saver 251,

265
creating and destroying

windows 256
creating and freeing pixmaps 259
drawing lines 261
drawing text 263

X window system (continued)
subroutines (continued)

enabling and disabling
synchronization 266

filling areas 261
handling events 266
handling window manager

functions 264
loading and freeing fonts 262
manipulating bitmaps 271
manipulating color cells 259
manipulating colormaps 259
manipulating cursors 263
manipulating display

functions 272
manipulating graphics

contexts 260
manipulating hosts and access

control 265
manipulating images 271
manipulating keyboard event

functions 268
manipulating keyboard

settings 264
manipulating regions 269
manipulating window

properties 258
manipulating windows 257
obtaining window

information 258
opening and closing a

display 256
properties and atoms 258
querying character string

sizes 262
querying visual types 270
setting window selections 258
transferring images 263
using cut and paste buffers 270
using default error handling 267
using the resource manager 271

target display, identifying 254
utility routines 293
widget support

Athena 296
OSF/MOTIF based 297

X Defaults 253
X Window System Toolkit 293

X-XLATE environment variable 18
xdr_accepted_reply() 229
xdr_array() 230
xdr_authunix_parms() 230
xdr_bool() 231
xdr_bytes() 231
xdr_callhdr() 232
xdr_callmsg() 232
xdr_double() 232
xdr_enum() 233
xdr_float() 234
xdr_inline() 234
xdr_int() 235
xdr_long() 235
xdr_opaque() 235
xdr_opaque_auth() 236
xdr_pmap() 236
xdr_pmaplist() 237
xdr_pointer() 237

Index 457

xdr_reference() 237

xdr_rejected_reply() 238

xdr_replymsg() 238

xdr_short() 239

xdr_string() 239

xdr_u_int() 239

xdr_u_long() 240

xdr_u_short() 240

xdr_union() 241

xdr_vector() 241

xdr_void() 242

xdr_wrapstring() 242

xdrmem_create() 243

xdrrec_create() 243

xdrrec_endofrecord() 244

xdrrec_eof() 244

xdrrec_skiprecord() 244

xdrstdio_create() 244

xprt_register() 245

xprt_unregister() 245

458 z/VM: TCP/IP Programmer’s Reference

Readers’ Comments — We’d Like to Hear from You

z/VM
TCP/IP Level 3A0
Programmer’s Reference
Version 3 Release 1.0

Publication No. SC24-5983-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

R
ea

de
rs

’C
om

m
en

ts
—

W
e’

d
Li

ke
to

H
ea

r
fr

om
Yo

u
S

C
2

4
-5

9
8

3
-0

0

S
C

24
-5

98
3-

00

I
B

M
R

C
ut

or
F

ol
d

A
lo

ng
Li

ne

C
ut

or
F

ol
d

A
lo

ng
Li

ne

F
ol

d
an

d
Ta

pe
P

le
as

e
do

no
t

st
ap

le
F

ol
d

an
d

Ta
pe

F
ol

d
an

d
Ta

pe
P

le
as

e
do

no
t

st
ap

le
F

ol
d

an
d

Ta
pe

N
O

P
O

S
TA

G
E

N
E

C
E

S
S

A
R

Y
IF

M
A

IL
E

D
IN

T
H

E
U

N
IT

E
D

S
TA

T
E

S

B
U

S
IN

E
S

S
R

E
P

LY
M

A
IL

F
IR

S
T-

C
LA

S
S

M
A

IL
P

E
R

M
IT

N
O

.
40

A
R

M
O

N
K

,
N

E
W

Y
O

R
K

P
O

S
TA

G
E

W
IL

L
B

E
P

A
ID

B
Y

A
D

D
R

E
S

S
E

E

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

__

IBMR

File Number: S370/4300/30XX-50
Program Number: 5654-A17

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-5983-00

Spine information:

IBM z/VM TCP/IP Programmer’s Reference Version 3 Release 1.0

	Contents
	Preface
	Who Should Read This Book
	What You Should Know before Reading This Book
	What This Book Contains
	How to Use This Book
	How the Term “internet” Is Used in This Book

	Where to Find More Information
	Service Information
	Understanding Syntax Diagrams
	How Numbers Are Used in This Book
	How to Send Your Comments to IBM

	Summary of Changes
	First Edition for z/VM (February 2001)
	IP Multicast
	Other Changes

	Second Edition for VM/ESA® (July 1999)
	First Edition for VM/ESA

	Chapter 1. General Programming Information
	Porting Considerations
	Accessing System Return Messages
	Printing System Return Messages

	Compiling and Linking C Applications
	Textlib (TXTLIB) Files

	TCPLOAD EXEC
	Using TCPLOAD

	SET LDRTBLS Command

	Chapter 2. C Sockets Application Program Interface
	Programming with C Sockets
	Socket Programming Concepts
	What is a Socket?

	Guidelines for Using Socket Types
	Addressing within Sockets
	Address Families
	Socket Address
	Internet Addresses
	Ports
	Network Byte Order
	Addressing within an Internet Domain
	Addressing within the IUCV Domain

	Main Socket Calls
	A Typical TCP Socket Session
	A Typical UDP Socket Session

	C Socket Library
	Porting
	Environment Variables Used by the Sockets Library
	C Socket Reference
	C Socket Calls
	accept()
	bind()
	close()
	connect()
	endhostent()
	endnetent()
	endprotoent()
	endservent()
	fcntl()
	getclientid()
	getdtablesize()
	gethostbyaddr()
	gethostbyname()
	gethostent()
	gethostid()
	gethostname()
	getibmsockopt()
	getnetbyaddr()
	getnetbyname()
	getnetent()
	getpeername()
	getprotobyname()
	getprotobynumber()
	getprotoent()
	getservbyname()
	getservbyport()
	getservent()
	getsockname()
	getsockopt()
	givesocket()
	htonl()
	htons()
	ibmsflush()
	inet_addr()
	inet_lnaof()
	inet_makeaddr()
	inet_netof()
	inet_network()
	inet_ntoa()
	ioctl()
	listen()
	maxdesc()
	ntohl()
	ntohs()
	read()
	readv()
	recv()
	recvfrom()
	recvmsg()
	select()
	selectex()
	send()
	sendmsg()
	sendto()
	sethostent()
	setibmsockopt()
	SO_BULKMODE
	SO_NONBLOCKLOCAL
	SO_IGNOREINCOMINGPUSH

	setnetent()
	setprotoent()
	setservent()
	setsockopt()
	sockdb_sock_debug()
	sock_debug_bulk_perf0 ()
	sock_do_bulkmode()
	sock_do_teststor()
	shutdown()
	socket()
	SOCK_STREAM
	SOCK_DGRAM
	SOCK_RAW

	takesocket()
	tcperror()
	write()
	writev()

	Sample C Socket Programs
	C Socket TCP Client
	C Socket TCP Server
	C Socket UDP Server
	C Socket UDP Client

	Chapter 3. TCP/UDP/IP API (Pascal Language)
	Software Requirements
	Data Structures
	Connection State
	Connection Information Record
	Socket Record
	Notification Record
	File Specification Record

	Using Procedure Calls
	Notifications
	TCP/UDP Initialization Procedures
	TCP/UDP Termination Procedure
	Handling External Interrupts
	TCP Communication Procedures
	Ping Interface
	Monitor Procedures
	UDP Communication Procedures
	Raw IP Interface
	Timer Routines
	Host Lookup Routines
	AddUserNote
	Other Routines

	Procedure Calls
	BeginTcpIp
	ClearTimer
	CreateTimer
	DestroyTimer
	EndTcpIp
	GetHostNumber
	GetHostResol
	GetHostString
	GetIdentity
	GetNextNote
	GetSmsg
	Handle
	LocalAddress
	IsLocalHost
	MonCommand
	MonQuery
	NotifyIo
	PingRequest
	RawIpClose
	RawIpOpen
	RawIpReceive
	RawIpSend
	ReadXlateTable
	RTcpExtRupt
	RTcpVmcfRupt
	SayCalRe
	SayConSt
	SayIntAd
	SayIntNum
	SayNotEn
	SayPorTy
	SayProTy
	SetTimer
	StartTcpNotice
	TcpAbort
	TcpClose
	TcpExtRupt
	TcpFReceive, TcpReceive, and TcpWaitReceive
	TcpFSend, TcpSend, and TcpWaitSend
	TcpNameChange
	TcpOpen and TcpWaitOpen
	TcpOption
	TcpStatus
	TcpVmcfRupt
	UdpClose
	UdpNReceive
	UdpOpen
	UdpReceive
	UdpSend
	Unhandle
	UnNotifyIo

	Sample Pascal Program

	Chapter 4. Virtual Machine Communication Facility Interface
	General Information
	Data Structures
	VMCF Parameter List Fields
	VMCF Interrupt Header Fields

	VMCF Functions
	VMCF TCPIP Communication CALLCODE Requests
	VMCF TCPIP Communication CALLCODE Notifications

	TCP/UDP/IP Initialization and Termination Procedures
	BEGINtcpIPservice
	HANDLEnotice
	ENDtcpIPservice

	TCP CALLCODE Requests
	OPENtcp
	SENDtcp and FSENDtcp
	FRECEIVEtcp
	RECEIVEtcp
	CLOSEtcp
	ABORTtcp
	STATUStcp
	OPTIONtcp

	UDP CALLCODE Requests
	OPENudp
	SENDudp
	NRECEIVEudp
	CLOSEudp

	IP CALLCODE Requests
	OPENrawip
	SENDrawip
	RECEIVErawip
	CLOSErawip

	CALLCODE System Queries
	IShostLOCAL
	MONITORcommand
	MONITORquery
	PINGreq

	CALLCODE Notifications
	BUFFERspaceAVAILABLE
	CONNECTIONstateCHANGED
	DATAdelivered
	URGENTpending
	UDPdatagramDELIVERED
	UDPdatagramSPACEavailable
	RAWIPpacketsDELIVERED
	RAWIPspaceAVAILABLE
	RESOURCESavailable
	UDPresourcesAVAILABLE
	PINGresponse
	DUMMYprobe
	ACTIVEprobe

	Chapter 5. Inter-User Communication Vehicle Sockets
	Prerequisite Knowledge
	Available Functions
	Socket Programming with IUCV
	Preparing to use the IUCV Socket API
	Establishing an IUCV connection to TCP/IP
	Initializing the IUCV Connection

	Severing the IUCV Connection
	Sever by the Application
	Clean-Up of Stream Sockets

	Sever by TCP/IP

	Issuing Socket Calls
	Overlapping Socket Requests
	TCP/IP Response to an IUCV Request
	Cancelling a Socket Request

	IUCV Socket Call Syntax
	IUCV Socket Calls
	ACCEPT
	BIND
	CANCEL
	CLOSE
	CONNECT
	FCNTL
	GETCLIENTID
	GETHOSTID
	GETHOSTNAME
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	GIVESOCKET
	IOCTL
	LISTEN
	MAXDESC
	READ, READV
	RECV, RECVFROM, RECVMSG
	SELECT, SELECTEX
	Descriptor Sets
	DESCRIPTOR_SET, FD_CLR, FD_ISSET Calls

	SEND
	SENDMSG
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	TAKESOCKET
	WRITE, WRITEV
	LASTERRNO

	Chapter 6. Remote Procedure Calls
	The RPC Interface
	Portmapper
	Contacting Portmapper
	Target Assistance

	RPCGEN Command
	enum clnt_stat Structure
	Remote Procedure Call Library
	Porting
	Remapping C Identifiers with RPC.H
	Accessing System Return Messages
	Printing System Return Messages
	Enumerations

	RPC Global Variables
	rpc_createerr
	svc_fds

	Remote Procedure and eXternal Data Representation Calls
	auth_destroy()
	authnone_create()
	authunix_create()
	authunix_create_default()
	callrpc()
	clnt_broadcast()
	clnt_call()
	clnt_control()
	clnt_create()
	clnt_destroy()
	clnt_freeres()
	clnt_geterr()
	clnt_pcreateerror()
	clnt_perrno()
	clnt_perror()
	clnt_spcreateerror()
	clnt_sperrno()
	clnt_sperror()
	clntraw_create()
	clnttcp_create()
	clntudp_create()
	get_myaddress()
	getrpcport()
	pmap_getmaps()
	pmap_getport()
	pmap_rmtcall()
	pmap_set()
	pmap_unset()
	registerrpc()
	svc_destroy()
	svc_freeargs()
	svc_getargs()
	svc_getcaller()
	svc_getreq()
	svc_register()
	svc_run()
	svc_sendreply()
	svc_unregister()
	svcerr_auth()
	svcerr_decode()
	svcerr_noproc()
	svcerr_noprog()
	svcerr_progvers()
	svcerr_systemerr()
	svcerr_weakauth()
	svcraw_create()
	svctcp_create()
	svcudp_create()
	xdr_accepted_reply()
	xdr_array()
	xdr_authunix_parms()
	xdr_bool()
	xdr_bytes()
	xdr_callhdr()
	xdr_callmsg()
	xdr_double()
	xdr_enum()
	xdr_float()
	xdr_inline()
	xdr_int()
	xdr_long()
	xdr_opaque()
	xdr_opaque_auth()
	xdr_pmap()
	xdr_pmaplist()
	xdr_pointer()
	xdr_reference()
	xdr_rejected_reply()
	xdr_replymsg()
	xdr_short()
	xdr_string()
	xdr_u_int()
	xdr_u_long()
	xdr_u_short()
	xdr_union()
	xdr_vector()
	xdr_void()
	xdr_wrapstring()
	xdrmem_create()
	xdrrec_create()
	xdrrec_endofrecord()
	xdrrec_eof()
	xdrrec_skiprecord()
	xdrstdio_create()
	xprt_register()
	xprt_unregister()

	Sample RPC Programs
	RPC Client
	RPC Server
	RPC Raw Data Stream

	Chapter 7. X Window System Interface
	What Is Provided
	Software Requirements
	Using the X Window System Interface in the VM Environment
	Application Resource File
	Identifying the Target Display
	Creating an Application
	Generating X-Window System Applications
	X Window System Subroutines
	Opening and Closing a Display
	Creating and Destroying Windows
	Manipulating Windows
	Changing Window Attributes
	Obtaining Window Information
	Obtaining Properties and Atoms
	Manipulating Window Properties
	Setting Window Selections
	Manipulating Colormaps
	Manipulating Color Cells
	Creating and Freeing Pixmaps
	Manipulating Graphics Contexts
	Clearing and Copying Areas
	Drawing Lines
	Filling Areas
	Loading and Freeing Fonts
	Querying Character String Sizes
	Drawing Text
	Transferring Images
	Manipulating Cursors
	Handling Window Manager Functions
	Manipulating Keyboard Settings
	Controlling the Screen Saver
	Manipulating Hosts and Access Control
	Handling Events
	Enabling and Disabling Synchronization
	Using Default Error Handling
	Communicating with Window Managers
	Manipulating Keyboard Event Functions
	Manipulating Regions
	Using Cut and Paste Buffers
	Querying Visual Types
	Manipulating Images
	Manipulating Bitmaps
	Using the Resource Manager
	Manipulating Display Functions

	Extension Routines
	MIT Extensions to X
	Associate Table Functions
	Miscellaneous Utility Routines
	X Authorization Routines
	X Intrinsics Routines
	Athena Widget Support
	Extension Routines
	MIT Extensions to X
	Associate Table Functions
	Miscellaneous Utility Routines
	X Authorization Routines
	X Window System Toolkit
	Application Resources
	Athena Widget Set
	OSF/Motif-Based Widget Support
	Sample X Window System Applications
	Xlib Sample Program
	Athena Widget Sample Program
	OSF/Motif-Based Widget Sample Program

	Chapter 8. Kerberos Authentication System
	Authentication Server
	Name Structures
	Tickets and Authenticators
	Communicating with the Authentication Server

	Ticket-Granting Server
	Accessing a Service

	Kerberos Database
	Administration Server
	Kerberos C Language Applications Library
	Kerberos Routines Reference
	Client Commands

	Applications
	Kerberos Routines
	krb_get_cred()
	krb_kntoln()
	krb_mk_err()
	krb_mk_priv()
	krb_mk_req()
	krb_mk_safe()
	krb_rd_err()
	krb_rd_priv()
	krb_rd_req()
	krb_rd_safe()
	krb_recvauth()
	krb_sendauth()

	Sample Kerberos Programs
	Kerberos Client
	Kerberos Server

	Chapter 9. SNMP Agent Distributed Program Interface
	SNMP Agents and Subagents
	Processing DPI Requests
	Processing a GET Request
	Processing a SET Request
	Processing a GET_NEXT Request
	Processing a REGISTER Request
	Processing a TRAP Request

	Compiling and Linking
	SNMP DPI Reference
	DPI Library Routines
	DPIdebug()
	fDPIparse()
	mkDPIlist()
	mkDPIregister()
	mkDPIresponse()
	mkDPIset()
	mkDPItrap()
	mkDPItrape()
	Example of an Extended Trap
	pDPIpacket()
	query_DPI_port()

	Sample SNMP DPI Client Program
	The DPISAMPLE Program (Sample DPI Subagent)
	DPISAMPLE TABLE

	Client Sample Program
	Compiling and Linking the DPISAMPLE.C Source Code

	Chapter 10. SMTP Virtual Machine Interfaces
	SMTP Transactions
	SMTP Commands
	HELO
	EHLO
	MAIL FROM
	RCPT TO
	DATA
	RSET
	QUIT
	NOOP
	HELP
	QUEU
	

	VRFY
	EXPN
	VERB
	TICK

	SMTP Command Example
	SMTP Command Responses
	Path Address Modifications
	Batch SMTP Command Files
	Batch SMTP Examples
	Sending Mail to a TCP Network Recipient
	Querying SMTP Delivery Queues

	SMTP Exit Routines
	Client Verification Exit
	Built-in Client Verification Function
	Success
	Failure
	Unknown

	Client Verification Exit Parameter Lists
	REXX Parameter List
	Assembler Parameter List
	Parameter Descriptions
	Return Codes from the Client Verification Exit Routine
	Client Verification Sample Exits

	Using the Mail Forwarding Exit
	Mail Forwarding Exit Parameter Lists
	REXX Parameter List
	Assembler Parameter List
	Return Codes from the Mail Forwarding Exit Routine
	Mail Forwarding Sample Exits

	Using the SMTP Command Exit
	SMTP Command Exit Parameter Lists
	REXX Parameter List
	Assembler Parameter List
	Return Codes from the SMTP Command Exit Routine
	Sample SMTP Command Exits

	Chapter 11. Telnet Exits
	Telnet Session Connection Exit
	Telnet Exit Parameter List
	Sample Exit

	Telnet Printer Management Exit
	Telnet Printer Management Exit Parameter List
	Sample Exit

	Chapter 12. FTP Server Exit
	The FTP Server Exit
	Sample Exit

	Audit Processing
	Audit Processing Parameter List
	Audit Processing Parameter Descriptions
	Return Codes from Audit Processing

	General Command Processing
	General Command Processing Parameter List
	General Command Processing Parameter Descriptions
	Example

	Return Codes from General Command Processing

	Change Directory Processing
	Change Directory Processing Parameter List
	Change Directory Processing Parameter Descriptions
	Return Codes from the FTPEXIT Routine for CD CommandProcessing

	Appendix A. Pascal Return Codes
	Explanatory Notes

	Appendix B. C API System Return Codes
	Appendix C. Well-Known Port Assignments
	TCP Well-Known Port Assignments
	UDP Well-Known Port Assignments

	Appendix D. Related Protocol Specifications
	Appendix E. Abbreviations and Acronyms
	Notices
	Trademarks

	Glossary
	Bibliography
	z/VM Base Publications
	Evaluation
	Installation and Service
	Planning and Administration
	Customization
	Operation
	Application Programming
	End Use
	Diagnosis

	Publications for AdditionalFacilities
	DFSMS/VM®
	OSA/SF
	Language Environment®

	Publications for OptionalFeatures
	CMS Utilities Feature
	TCP/IP Feature for z/VM
	OpenEdition® DCE Feature forVM/ESA®
	LANRES/VM

	CD-ROM
	Other TCP/IP RelatedPublications

	Index
	Readers’ Comments — We'd Like to Hear from You

