
z/VM

TCP/IP Level 3A0
Diagnosis Guide
Version 3 Release 1.0

GC24-5985-00

���

z/VM

TCP/IP Level 3A0
Diagnosis Guide
Version 3 Release 1.0

GC24-5985-00

���

Note!
Before using this information and the product it supports, read the information under “Notices” on page 285.

First Edition (February 2001)

This edition applies to the IBM® Transmission Control Protocol/Internet Protocol Feature for z/VM (TCP/IP Level
3A0), program number 5654-A17 and to all subsequent releases and modifications until otherwise indicated in new
editions.

This edition replaces GC24-5851-01.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|
|
|

|

Contents

Preface vii
Programming Interface Information vii

Who Should Read This Book vii
How To Use This Book vii
How This Book is Organized vii
How Numbers Are Used in This Book viii
Where to Find More Information ix
How the Term “internet” Is Used in This Book . . x

Understanding Syntax Diagrams xi
How to Send Your Comments to IBM xiii

Summary of Changes xv
First Edition for z/VM (February 2001) xv

IP Multicasting xv
Diagnosing MPROUTE Problems xv
Diagnosing SSL Problems xv

First Edition for VM/ESA® (July 1999) xv
RouteD Diagnosis xv
Miscellaneous xv

Chapter 1. Diagnosis Overview 1

Chapter 2. Problem Identification 5
Categories that Help Identify the Problem 5

Abend 6
Message 6
Loop 7
Wait State 8
Incorrect Output 8
Performance 9
Documentation 10

Guidelines for Machine Readable Documentation. . 11
Necessary Documentation 12

Additional Documentation 12
Problem Resolution. 13
Severe Problem Resolution 13

Customer Worksheet 14
Problem Category 14
Background Information 14
Additional Information 14

Chapter 3. TCP/IP VM Structures and
Internetworking Overview 15
VM Structure 15

Virtual Machines 15
Virtual Machine Communication Facility . . . 16
Inter-User Communication Vehicle. 17
*CCS and Logical Device Service Facility . . . 17
Overview of Internetworking 17
Bridges 18
Maximum Transmission Unit (MTU) 19
Token Ring IEEE 802.5. 19
IEEE 802.3 20
Ethernet - DIX V2 21

Sub-Network Access Protocol (SNAP) 21
IP Routing. 22
Internet Addressing 22
Direct Routing 24
Indirect Routing 24
Simplified IP Datagram Routing Algorithm. . . 25
Subnetting. 25
Simplified IP Datagram Routing Algorithm with
Subnets. 26
Static Routing 27
Dynamic Routing 28
Dynamic Routing Tables 28
Example of Network Connectivity 29

Chapter 4. Server Initialization 31
CMS Servers 31

Diagnosis Method 1 31
Diagnosis Method 2 31

GCS Servers 32

Chapter 5. TCP/IP Procedures 33
TCP/IP Internals 33

Internal Procedures 33
Queues 35
Internal Activities 36

Input/Output 40
CETI Driver 40
HYPERchannel Driver 41
IUCV Links 42

Chapter 6. Diagnosing the Problem . . 45
Unable to Connect to TCP/IP Node 45

Description of the Problem 45
Symptom 45
Problem Determination 45
PING—Sending an Echo Request to a Foreign
Host 46
Resolving the PING Command Problems . . . 46

Failure of the HYPERchannel Interface 47
Description of the Problem 47
Symptom 47
Problem Determination 47
Recovery 48

Failure of an SNA IUCV Connection 48
Description of the Problem 48
Symptom 48
Problem Determination 48
Recovery 49

Chapter 7. TCP/IP Traces 51
Debugging in VM 51

Executing Traces. 51
Activating Traces 51
First-Level Trace 51
Second-Level Trace 52

© Copyright IBM Corp. 1987, 2001 iii

||
||
||
||

Directing Output 53
Process Names 54

Single Process Names 54
Group Process Names 113

Commonly Used Trace Options 125
Connection State 131

Connection State As Known by TCP. 131
Connection State As Known by Pascal or VMCF
Applications. 134
Connection State As Known by Socket
Applications. 135

Traceroute Function (TRACERTE) 135

Chapter 8. FTP Traces 137
FTP Connection 137
FTP Client Traces 138

Activating Traces 138
Trace Output 139

FTP Server Traces 143
Activating Traces 143
Trace Output 144

Chapter 9. Simple Mail Transfer
Protocol Traces 147
SMTP Client Traces 147

Activating Traces 147
Obtaining Queue Information 147

SMTP Server Traces 148
Activating Traces 148

Chapter 10. RPC Programs 155
General Information about RPC 155
RPC Call Messages 155
RPC Reply Messages 156

Accepted Reply Messages 156
Rejected Reply Messages 157

RPC Support 158
Portmapper 158

Portmapper Procedures 158

Chapter 11. RouteD Diagnosis 159
Incoming Datagram RouteD Processing 160

Outgoing Datagram RouteD Generation . . . 161
RouteD Route Table and Interface List 161

Diagnosing Problems 161
Connection Problems 162
PING Failures 162
Incorrect Output 163
Session Outages 164

Activating RouteD Trace and Debug. 164
RouteD Trace and Debug Commands 165
Purpose 165
Operands. 165
Usage Notes. 165
RouteD Trace and Debug SMSG Commands . . 166
Purpose 166
Operands. 166
Usage Notes. 167
Examples 167

Trace Output 167

Chapter 12. Diagnosing MPROUTE
Problems 171
Diagnosing MPROUTE Problems 172

Abends 172
MPROUTE Connection Problems 172
Routing Failures 172

Using Privileged MPROUTE SMSG Commands 173
All OSPF Configuration Information. 174
Configured OSPF Areas and Ranges 176
Configured OSPF Interfaces 177
Configured OSPF Non-broadcast, Multi-access
Networks. 178
Configured OSPF Virtual Links 178
Configured OSPF Neighbors 179
OSPF Link State Advertisement 180
OSPF Area Statistics and Parameters 182
OSPF External Advertisements 183
OSPF Area Link State Database 184
OSPF Interface Statistics and Parameters . . . 186
OSPF Neighbor Statistics and Parameters . . . 188
OSPF Router Routes 190
OSPF Link State Database Statistics 191
OSPF Routing Protocol Statistics 192
MPROUTE Routing Table 194
Route Expansion Information 195
RIP Configuration Information 196
Configured RIP Interfaces 198
RIP Routes to Be Accepted 199
RIP Interface Statistics and Parameters 200

MPROUTE Traces and Debug Information. . . . 201
Starting MPROUTE Tracing and Debugging
from the VM Console 202
Starting MPROUTE Tracing and Debugging
using the SMSG Command. 202
Destination of MPROUTE Trace and Debug
Output 203

Sample MPROUTE Trace Output 203

Chapter 13. SSL Server Diagnosis . . 217
SSL component Flow 218

Invoking Trace Activity on the SSL Server . . . 219
Diagnosing Problems 221

Symptom - The SSL server could not be started 221
Symptom - The SSL server is restarted by the
stack at regular intervals 222
Symptom - The correct parameters are not being
passed to the SSL server. 222
Symptom - The inability to connect to an
application server listening on a secure port . . 222
Symptom - Connections close due to errors . . 223
Symptom - Incorrect input or output 223

Trace Output 224
Trace Normal 224
Trace Connections NODATA 224
Trace Connections DATA 225
Trace FLOW. 225
Displaying Local Host Information 228

Chapter 14. Network File System . . . 229
VM NFS Client Support 229

iv z/VM: TCP/IP Diagnosis Guide

|
||
||
||
||
||
||
||
||
||
|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
|
||
|
||
|
||
||

||
||
||
||
||
|
||
|
||
|
||
||
||
||
||
||
||
||
||

||

Activating Traces for NFS Client 229
VM NFS Server Support. 229

NFS Protocol 229
Mount Protocol. 229
PCNFSD Protocol 229
General NFS Debugging Features 229
Activating Traces for NFS Server 231
Additional Trace Options 232

Chapter 15. Remote Printing Traces 237
Remote Printing Client Traces 237

Activating Remote Printing Client Traces . . . 237
Remote Printing Client Trace Output 237
Remote Printing Server Traces 240
Activating Remote Printing Server Traces . . . 241
Remote Printing Server Trace Output 241

Chapter 16. Remote Execution
Protocol Traces 247
Remote Execution Protocol Client Traces 247

Activating Remote Execution Protocol Client
Traces 247
Remote Execution Protocol Client Trace Output 247
Remote Execution Protocol Server Traces . . . 248
Activating Remote Execution Protocol Server
Traces 248
Remote Execution Protocol Server Trace Output 249

Chapter 17. TFTP Client Traces. . . . 251
Activating Traces 251
Trace Output 251

Chapter 18. TFTPD Traces 253
Activating Traces 253

Trace Output 253
Formats of TFTPD Trace Records 254
TFTPD Trace Codes: 255

TFTPD Trace Entry: 1000 256
TFTPD Trace Entry: 1500 256
TFTPD Trace Entry: 2000 256
TFTPD Trace Entry: 2500 256
TFTPD Trace Entry: 3000 257
TFTPD Trace Entry: 3500 257
TFTPD Trace Entry: 4000 257
TFTPD Trace Entry: 4100 257
TFTPD Trace Entry: 4200 257
TFTPD Trace Entry: 4300 258
TFTPD Trace Entry: 5000 258
TFTPD Trace Entry: 5100 258
TFTPD Trace Entry: 5200 258
TFTPD Trace Entry: 6100 258
TFTPD Trace Entry: 6200 259
TFTPD Trace Entry: 6300 259
TFTPD Trace Entry: 6301 259
TFTPD Trace Entry: 6302 259
TFTPD Trace Entry: 6303 260
TFTPD Trace Entry: 6304 260
TFTPD Trace Entry: 6305 260

Chapter 19. BOOT Protocol Daemon
(BOOTPD) Traces 261
Activating Traces 261

Trace Output 261
BOOTPD Trace Records 262

Chapter 20. Dynamic Host
Configuration Protocol Daemon
(DHCPD) Traces 265
Activating Traces 265

Trace Output 265
DHCPD Trace Records 266

Chapter 21. Hardware Trace Functions 269
PCCA Devices 269

PCCA Block Structure 269
CCW 272

CETI Devices 276
Matching CCW Traces and TCP/IP Traces. . . . 277

Appendix A. Return Codes 279
TCP/IP Return Codes 279
UDP Error Return Codes 280

Appendix B. Related Protocol
Specifications 281

Notices 285
Trademarks 287

Glossary 289

Bibliography. 307
z/VM Base Publications 307

Evaluation 307
Installation and Service 307
Planning and Administration 307
Customization 307
Operation 307
Application Programming 307
End Use 308
Diagnosis. 308

Publications for Additional Facilities. 308
DFSMS/VM® 308
OSA/SF 308
Language Environment® 308

Publications for Optional Features 308
CMS Utilities Feature. 308
TCP/IP Feature for z/VM 308
OpenEdition® DCE Feature for VM/ESA®. . . 308
LANRES/VM 309

CD-ROM 309
Other TCP/IP Related Publications 309

Index 311

Contents v

||

vi z/VM: TCP/IP Diagnosis Guide

Preface

This TCP/IP Diagnosis Guide is intended to provide information for diagnosing
problems occurring in IBM’s* Transmission Control Protocol/Internet Protocol
(TCP/IP) networks.

Programming Interface Information
This book documents information NOT intended to be used as Programming
Interfaces of z/VM.

Warning: Do not use this Diagnosis, Modification, or Tuning Information as a
programming interface.

Who Should Read This Book
This book is intended to be used by system programmers or TCP/IP
administrators for diagnosing problems. You should use this book to:
v Analyze a problem in a VM TCP/IP implementation
v Classify the problem as a specific type

You should be familiar with TCP/IP and the protocol commands to use this book.

How To Use This Book
You should read this book when you want to diagnose and report problems that
can occur in TCP/IP networks.

How This Book is Organized
Chapter 1. Diagnosis Overview, describes basic problem determination steps. A
flow diagram shows the process to follow when determining problems.

Chapter 2. Problem Identification, describes problem categories and the structure of
service support to help you solve your problems.

Chapter 3. TCP/IP VM Structures and Internetworking Overview, describes the
structures of the TCP/IP implementation for VM and an overview of
Internetworking.

Chapter 4. Server Initialization, describes the mechanism used to start each TCP/IP
server.

Chapter 5. TCP/IP Procedures, describes TCPIP internal procedures, queues, and
activities and input/output functions.

Chapter 6. Diagnosing the Problem, provides information about diagnosing
TCP/IP problems. The chapter also provides a systematic approach to solving
TCP/IP problems.

Chapter 7. TCP/IP Traces, describes how to activate traces and direct trace output.
The chapter also describes single and group processes.

© Copyright IBM Corp. 1987, 2001 vii

Chapter 8. FTP Traces, describes how to activate and interpret File Transfer
Protocol (FTP) traces.

Chapter 9. Simple Mail Transfer Protocol Traces, describes how to activate and
interpret Simple Mail Transfer Protocol (SMTP) traces.

Chapter 10. RPC Programs, describes how to activate and interpret Remote
Procedure Call (RPC) traces.

Chapter 11. RouteD Diagnosis, describes how to activate, debug, and interpret
RouteD traces, and diagnose problems.

Chapter 12. Diagnosing MPROUTE Problems, describes how to activate, debug,
and interpret OSP traces, and diagnose OSP problems.

Chapter 13. SSL Server Diagnosis, describes how to debug and interpret SSL server
traces.

Chapter 14. Network File System, describes how to debug NFS Server problems
plus interpret NFS traces.

Chapter 15. Remote Printing Traces, describes the tracing capabilities available in
the client and server functions provided with the Remote Printing implementation
in TCP/IP for VM.

Chapter 16. Remote Execution Protocol Traces, describes the tracing capabilities
available in the client and server functions provided with the Remote Printing
implementation in TCP/IP for VM.

Chapter 17. TFTP Client Traces, describes how to activate and interpret TFTP client
traces.

Chapter 18. TFTPD Traces, describes how to activate and interpret TFTPD traces.

Chapter 19. BOOT Protocol Daemon (BOOTPD) Traces, describes how to activate
and interpret BOOTPD traces.

Chapter 20. Dynamic Host Configuration Protocol Daemon (DHCPD) Traces,
describes how to activate and interpret DHCPD traces.

Chapter 21. Hardware Trace Functions, describes how to activate and interpret
traces on PCCA and CETI devices. The chapter also provides samples of Channel
Control Word (CCW) traces.

Appendix A. Return Codes, describes TCP/IP return codes.

Appendix B. Related Protocol Specifications, describes the TCP/IP RFCs.

This book also includes a glossary, a bibliography, and an index.

How Numbers Are Used in This Book
In this book, numbers over four digits are represented in metric style. A space is
used rather than a comma to separate groups of three digits. For example, the
number sixteen thousand, one hundred forty-seven is written 16 147.

viii z/VM: TCP/IP Diagnosis Guide

|
|

Where to Find More Information
The “Glossary” on page 289, defines terms used throughout this book associated
with TCP/IP communication in an internet environment.

For more information about related publications, see “Bibliography” on page 307.

Table 1 shows where to find specific information about TCP/IP for VM
applications, functions, and protocols.

Table 1. Usage of TCP/IP Version 2 for VM Applications, Functions, and Protocols

Applications, Functions, and
Protocols

Topic Book

BOOTP Daemon (BOOTPD) Setting up the Server Planning and Customization Program
Directory

Usage Planning and Customization

Commands Planning and Customization

DHCP Daemon (DHCPD) Setting up the Server Planning and Customization Program
Directory

Usage Planning and Customization

Commands Planning and Customization

eXternal Data Representation (XDR) Usage Programmer’s Reference

File Transfer Protocol (FTP) Setting Up the Server Planning and Customization Program
Directory

Usage User’s Guide

Commands User’s Guide

Kerberos Setting Up the Server Planning and Customization Program
Directory

Usage Programmer’s Reference

Commands User’s Guide

MPROUTE Setting Up the Server Planning and Customization

NETSTAT Usage User’s Guide

Network Computing System (NCS) Setting Up NCS Planning and Customization Program
Directory

Usage Programmer’s Reference User’s Guide

Network File System (NFS) Setting Up the Server Planning and Customization Program
Directory

Usage User’s Guide

OSF/Motif** Usage Programmer’s Reference

PING Usage Planning and Customization Program
Directory User’s Guide

Portmapper** Setting Up the Server Planning and Customization Program
Directory

Usage Programmer’s Reference User’s Guide

Remote Execution Protocol (REXEC) Setting Up the Server Planning and Customization Program
Directory

Usage User’s Guide

Preface ix

Table 1. Usage of TCP/IP Version 2 for VM Applications, Functions, and Protocols (continued)

Applications, Functions, and
Protocols

Topic Book

Remote Printing Setting Up the Server Planning and Customization Program
Directory

Usage User’s Guide

Remote Procedure Calls (RPC) Usage Programmer’s Reference

Resolver CMS Program Interface Programmer’s Reference

Configuration Parameters Planning and Customization Program
Directory

RouteD Setting Up the Server Planning and Customization Program
Directory

RPCGEN command Usage Programmer’s Reference

Simple Mail Transfer Protocol (SMTP) Setting Up the Server Planning and Customization Program
Directory

Usage User’s Guide

Interface to SMTP Programmer’s Reference

Simple Network Management
Protocol (SNMP)

Setting Up the Server and Agent Planning and Customization Program
Directory

Usage Planning and Customization Program
Directory User’s Guide

SNMP Distributed Program Interface
(DPI)

Usage Programmer’s Reference

Socket Calls Usage Programmer’s Reference

Secure Socket Layer (SSL) Setting Up the Server Planning and Customization

Telnet Setting Up the Server Planning and Customization Program
Directory

Usage User’s Guide

Commands User’s Guide

Trivial File Transfer Protocol (TFTP) Usage User’s Guide

Commands User’s Guide

Trivial File Transfer Protocol Daemon
(TFTPD)

Setting up the Server Planning and Customization Program
Directory

Usage Planning and Customization

Commands Planning and Customization

X Window System Usage Programmer’s Reference

X Window System GDDM® Support Setting Up the Interface Planning and Customization Program
Directory

Usage User’s Guide

How the Term “internet” Is Used in This Book
In this book, an internet is a logical collection of networks supported by routers,
gateways, bridges, hosts, and various layers of protocols, which permit the
network to function as a large, virtual network.

x z/VM: TCP/IP Diagnosis Guide

Note: The term “internet” is used as a generic term for a TCP/IP network, and
should not be confused with the Internet, which consists of large national
backbone networks (such as MILNET, NSFNet, and CREN) and a myriad of
regional and local campus networks worldwide.

Understanding Syntax Diagrams
This section describes how to read the syntax diagrams in this book.

Getting Started: To read a syntax diagram, follow the path of the line. Read from
left to right and top to bottom.
v The ��─── symbol indicates the beginning of a syntax diagram.
v The ───� symbol, at the end of a line, indicates that the syntax diagram

continues on the next line.
v The �─── symbol, at the beginning of a line, indicates that a syntax diagram

continues from the previous line.
v The ───�� symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:
v Directly on the line (required)
v Above the line (default)
v Below the line (optional).

Syntax Diagram Description Example

Abbreviations:

Uppercase letters denote the shortest acceptable abbreviation. If an item
appears entirely in uppercase letters, it cannot be abbreviated.

You can type the item in uppercase letters, lowercase letters, or any
combination.

In this example, you can enter KEYWO, KEYWOR, or KEYWORD in any
combination of uppercase and lowercase letters.

�� KEYWOrd ��

Symbols:

You must code these symbols exactly as they appear in the syntax diagram.

* Asterisk

: Colon

, Comma

= Equal Sign

- Hyphen

() Parentheses

. Period

Variables:

Highlighted lowercase items (like this) denote variables.

In this example, var_name represents a variable you must specify when you
code the KEYWORD command.

�� KEYWOrd var_name ��

Preface xi

Syntax Diagram Description Example

Repetition:

An arrow returning to the left means that the item can be repeated.

A character within the arrow means you must separate repeated items with
that character.

A footnote (1) by the arrow references a limit that tells how many times the
item can be repeated.

�� � repeat ��

�� �

,

repeat ��

�� �
(1)

repeat ��

Notes:

1 Specify repeat up to 5 times.

Required Choices:

When two or more items are in a stack and one of them is on the line, you
must specify one item.

In this example, you must choose A, B, or C.

�� A
B
C

��

Optional Choice:

When an item is below the line, the item is optional. In this example, you
can choose A or nothing at all.

When two or more items are in a stack below the line, all of them are
optional. In this example, you can choose A, B, C, or nothing at all.

��
A

��

��
A
B
C

��

Defaults:

Defaults are above the line. The system uses the default unless you override
it. You can override the default by coding an option from the stack below
the line.

In this example, A is the default. You can override A by choosing B or C.

��
A

B
C

��

xii z/VM: TCP/IP Diagnosis Guide

Syntax Diagram Description Example

Repeatable Choices:

A stack of items followed by an arrow returning to the left means that you
can select more than one item or, in some cases, repeat a single item.

In this example, you can choose any combination of A, B, or C.

�� � A
B
C

��

Syntax Fragments:

Some diagrams, because of their length, must fragment the syntax. The
fragment name appears between vertical bars in the diagram. The expanded
fragment appears in the diagram after a heading with the same fragment
name.

In this example, the fragment is named “A Fragment.”

�� A Fragment ��

A Fragment:

A

B
C

How to Send Your Comments to IBM
Your feedback is important in helping us to provide the most accurate and
high-quality information. If you have comments about this book or any other VM
documentation, send your comments to us using one of the following methods. Be
sure to include the name of the book, the form number (including the suffix), and
the page, section title, or topic you are commenting on.
v Visit the z/VM web site at:

http://www.ibm.com/servers/eserver/zseries/zvm

There you will find the feedback page where you can enter and submit your
comments.

v Send your comments by electronic mail to one of the following addresses:

Internet: pubrcf@vnet.ibm.com

IBMLink™: GDLVME(PUBRCF)
v Fill out the Readers’ Comments form at the back of this book and return it using

one of the following methods:
– Mail it to the address printed on the form (no postage required in the USA).
– Fax it to 1-607-752-2327.
– Give it to an IBM representative.

Preface xiii

|

xiv z/VM: TCP/IP Diagnosis Guide

Summary of Changes

This section describes the technical changes made in this edition of the book and in
previous editions. For your convenience, the changes made in this edition are
identified in the text by a vertical bar (|) in the left margin. This edition may also
include minor corrections and editorial changes that are not identified.

First Edition for z/VM (February 2001)
This edition contains updates for the General Availability of TCP/IP Level 3A0
Diagnosis Guide:

IP Multicasting
MULTICAST and IGMP traces were added to the ″TCP/IP Traces″ chapter. The
MULTICAST trace provides information about the multicast options associated
with sockets. The IGMP trace provides information about the Internet Group
Management Protocol (IGMP).

Support for IP Multicasting Class D type addresses used in IP addresses has been
added.

Diagnosing MPROUTE Problems
Chapter 12. Diagnosing MPROUTE Problems, has been added. The chapter
describes how to activate, debug, and interpret OSP traces, and diagnose
MPROUTE problems.

Diagnosing SSL Problems
Chapter 13. SSL Server Diagnosis, has been added. The chapter describes how to
activate, debug, and interpret SSL traces, and diagnose SSL problems.

First Edition for VM/ESA® (July 1999)
This edition contains updates for the General Availability of TCP/IP Function
Level 320 Diagnosis Guide:

RouteD Diagnosis
This chapter has been improved to include information on incoming and outgoing
datagram processing and generation. Also more detailed problem diagnosis,
tracing output, and debug information, has been included.

Miscellaneous
Miscellaneous service updates were added since the previous release.

© Copyright IBM Corp. 1987, 2001 xv

|

|
|

|

|
|
|
|

|
|

|

|
|
|

|

|
|

xvi z/VM: TCP/IP Diagnosis Guide

Chapter 1. Diagnosis Overview

To diagnose a problem suspected to be caused by TCP/IP for VM, you first
identify the problem, then determine if it is a problem with TCP/IP, and, finally, if
it is a problem with TCP/IP, gather information about the problem so that you can
report the source of the problem to the appropriate IBM service support group.
With this information available, you can work with service support representatives
to solve the problem. The object of this book is to help you identify the source of
the problem.

Figure 1 on page 2 summarizes the procedure to follow to diagnose a problem. The
text following the figure provides more information about this procedure.

© Copyright IBM Corp. 1987, 2001 1

�1� Determine if the source of the problem is TCP/IP.

Various messages outputed to the console, together with alerts and some
diagnostic aids provide information that helps you to find the source of a
problem. If the problem is with TCP/IP, go to Step �3�; otherwise, go to
Step �2�.

�2� Check appropriate books.

Refer to the diagnosis guide of the hardware device or software application
that has the problem.

�3� Gather information.

Refer to Chapter 2. Problem Identification, for a detailed explanation of
diagnostic procedures and how to collect information relevant to the
problem.

1

7

4

10

2

8

5

3

9

6

Diagnosis
Procedure

Is
problem

with
TCP/IP?

No

No

No

Yes

Yes

Yes

Go to the diagnosis
guide for the device
or application with
the problem.

Use information in
Chapter 2 to document
the problem.

Diagnosis task
is completed.

Report the problem
to the IBM service
support group.

IBM service support
group creates an APAR.

Solution is developed
by the IBM service
support group.

Apply the solution.

Does
IBM service

support group supply
a solution?

Is
problem

resolved?

Figure 1. Overview of the Diagnosis Procedure

Diagnosis Overview

2 z/VM: TCP/IP Diagnosis Guide

�4� Try to solve the problem.

If you can solve the problem, go to Step �5�; otherwise, go to Step �6�.

�5� The diagnosis task is completed.

The problem has been solved.

�6� Report the problem to service support.

After you have gathered the information that describes the problem, report
it to service support. If you are an IBMLINK user, you can perform your
own RETAIN® searches to help identify problems. Otherwise, a
representative uses your information to build keywords to search the
RETAIN database for a solution to the problem. The object of this keyword
search using RETAIN is to find a solution by matching the problem with a
previously reported problem.

You can also visit the VM TCP/IP homepage to view PSP as well as FAQ
information at http://www.ibm.com/s390/vm/related/tcpip/

�7� Work with support representatives.

If a keyword search matches a previously reported problem, its solution
might also correct the problem. If so, go to Step �10�. If a solution to the
problem is not found in the RETAIN database, the service support
representatives will continue to work with you to solve the problem. Go to
Step �8�.

�8� Create an APAR.

If service support does not find a solution, they may create an authorized
program analysis report (APAR) on the RETAIN database.

�9� A solution is developed by the support personnel.

Using information supplied in the APAR, service support representatives
determine the cause of the problem and develop a solution for it.

�10� Apply the solution.

Apply the corrective procedure supplied by the support personnel to
correct the problem. Go to Step �4� to verify that the problem is corrected.

Diagnosis Overview

Chapter 1. Diagnosis Overview 3

Diagnosis Overview

4 z/VM: TCP/IP Diagnosis Guide

Chapter 2. Problem Identification

This chapter explains the categories that best describe a problem you might have
with TCP/IP. This chapter also describes how you can use Service Support and its
indexed database (RETAIN) to find the solution to your problem. You should
review this chapter before contacting any service support to help expedite a
solution to your problem.

Categories that Help Identify the Problem
There are seven general problem categories:
v Abend
v Message
v Loop
v Wait State
v Incorrect Output
v Performance
v Documentation.

For each category, this section provides you with:
v A description of the category
v A list of the documentation to be gathered
v Directions for preparing your findings and providing them for further service

support.

Problems that are related to installation, configuration, and general performance
should first be pursued through your marketing branch office. They have access to
facilities such as HONE, EQUAL, and the regional area Systems Centers, which
may be able to provide a resolution to the problem. The Program Directory and the
Preventive Service Planning (PSP) facility are also valuable sources of information
for these types of problems. PSP bucket information can be viewed on the TCP/IP
for z/VM home page at http://www.ibm.coms390/vm/related/tcpip/

In addition to the general categories previously listed, the following keywords can
be used to describe problems associated with TCP/IP. These keywords are used to
perform inquiries in RETAIN and in the licensed program, INFO/SYS:
v CLEAR/RESET
v DIAG/DIAGNOSTIC
v LAN
v LOCKED/HANG/HUNG
v RECFMS
v REJECT/FRMR
v SENSE
v INOP
v ETHERNET
v TOKEN-RING
v User ID names of server virtual machines

© Copyright IBM Corp. 1987, 2001 5

Abend
An abend occurs when TCP/IP unexpectedly terminates execution. In addition to
TCP/IP abends, Pascal and C runtime routines can abend.

An execution error in the Pascal runtime produces output similar to that shown in
Figure 2. The compile module is TCQUEUE and AMPX messages are Pascal runtime
errors.

For more information about Pascal execution errors, see the following books:
v VS Pascal Applications Programming Guide

v VS Pascal Language Reference.

Gather the Information
Gather the following documentation for your abend problem:
v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on

page 11)
v Client or server dump, if applicable.

You might also need to gather the following documentation:
v TCP/IP configuration
v Console listing
v TCPIP DATA file
v TCPIP PROFILE file
v Channel control word (CCW) trace with data
v TCP/IP trace
v Customized DTCPARMS file
v RSU Service Level

Document the Problem
To determine if the abend is related to TCP/IP, look at your TCP/IP dump or
console log.

Message
The message problem category describes a problem identified by a message. If the
message starts with AMPX, the error is caused by an abend in the Pascal runtime.
For more information about Pascal execution errors, see “Abend”.

Gather the Information
Gather the following documentation for your message problem:
v Console log

You might also need to gather the following documentation:

AMPX036I Assertion failure checking error
TRACE BACK OF CALLED ROUTINES

ROUTINE STMT AT ADDRESS IN MODULE
PREPENDENVELOPE 7 000AAC02 QUEUES
FROM1822 88 000EA58A FROM1822
SCHEDULER 49 000BB5FC SCHEDULER
-MAIN-PROGRAM- 5 00020130 TCPIP
VSPASCAL 001103E2

Figure 2. Pascal Execution Error

Problem Identification, Reporting, and Resolution

6 z/VM: TCP/IP Diagnosis Guide

v Host CCW trace
v Virtual Machine TCP/IP dump
v TCP/IP trace.

Document the Problem
To prepare a message problem report, follow these steps:
1. Write down the following:

v The operation you tried to perform
v The results you expected
v The results you received.

2. Write down the entire content of the message or messages, including the
message identifier.

3. Give this information to your service support person when reporting your
problem.

Loop
If an operation, such as a message or printed output, repeats endlessly, TCP/IP
could be in a loop. Some indicators of a loop problem are:
v Slow response time
v No response at all
v Inordinately high CPU utilization by TCP/IP.

Gather the Information
Gather the following documentation for your loop problem:
v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on

page 11)
v Branch Trace if appropriate.

You might also need to gather the following documentation:
v Configuration files for TCP/IP
v TCPIP DATA file
v TCPIP PROFILE file
v CCW trace
v TCP/IP trace.

Document the Problem
To prepare the loop problem report, complete the following steps:
1. Record the circumstances of the loop that indicate you have a problem.
2. Use the addresses obtained from the branch trace to locate routine name or

names, so you can determine where the loop occurs.
3. Contact the IBM service support group to report your problem. Provide the

following information:
v The symptoms that indicate you have a loop problem
v The maintenance level of your TCP/IP
v The contents of the branch trace
v The routine name or names where the loop occurs. This may be obtained

from a formatted dump.

Problem Identification, Reporting, and Resolution

Chapter 2. Problem Identification 7

Wait State
If TCP/IP applications appear to hang and connected hosts report link time-outs
on their end, TCP/IP could be in a wait state. Some indicators of a wait state
problem are:
v Application programs cannot function or terminate
v Link time-outs are observed on connected hosts
v No communication with system console is possible
v No CPU utilization by TCP/IP is observed
v No response at all
v Traffic ceases through the network connections.

Gather the Information
Gather the following documentation for your wait state problem:
v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on

page 11)
v Dump of the client or server virtual machine if appropriate.

You might also need to gather the following documentation:
v Configuration files for TCP/IP
v TCPIP DATA file
v TCPIP PROFILE file
v Virtual PSW value for the TCP/IP virtual machine
v Console log
v TCP/IP trace of events prior to the wait state occurring.

Document the Problem
To prepare the wait state problem report, complete the following steps:
1. Record the circumstances leading up to the wait state condition.
2. Use the module loadmap or the address portion of the virtual PSW value to

determine the routine name where the wait state is occurring.
3. Contact the IBM Support Center to report your problem. Provide the following

information:
v The symptoms that indicate you have a wait state problem
v The program levels where the wait state occurs
v The contents of any traces activated at the time the problem occurred
v The routine name indicated by the address portion of the PSW.

Incorrect Output
A TCP/IP incorrect output problem, such as missing, repeated, or incorrect data, is
an unexpected result received during regular network operation. Incorrect output
is the broadest problem category, and includes some of the following problems:

Problem Description

Activate Failure The inability to establish a connection with the
device.

Deactivate Failure The inability to end a connection that was
established with the device.

Load Failure Any problem that occurs during initialization.

Problem Identification, Reporting, and Resolution

8 z/VM: TCP/IP Diagnosis Guide

Dump Failure Any problem that causes the storage contents of
TCP/IP to be dumped or a Pascal trace back.

Device Failure The inability of a device to continue
communication using TCP/IP.

Gather the Information
Gather the following documentation for your incorrect output problem:
v The operation you tried to perform
v The results you expected
v The results you received.

You might also need to gather the following documentation:
v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on

page 11)
v CCW trace
v The contents of any traces activated at the time of problem
v Console log

Document the Problem
Incorrect output problems are often caused by definition errors during TCP/IP
generation. Before you contact the IBM Support Center to report your problem,
check that all statements and their keywords were correctly specified for your
system during the generation process. After you confirm that all generation
definitions were correctly specified:
1. Prepare a description of the following:

v The operation you tried to perform
v The results you expected
v The results you received.

2. Give this information to the IBM Support Center when you call to report your
problem.

Performance
A performance problem is characterized by slow response time or slow
throughput, which can be caused by congestion in the network or a malfunction of
an interface. When you suspect that you have a performance problem, gather as
much information as possible about your system before and during the poor
performance times.

Performance problems are normally caused by:
v Over-utilization of the host
v Inappropriate prioritization of an application program within the host
v Over-utilization of the communication interface
v Malfunction in the host, communication controller, or network.

Gather the Information
Gather the following documentation for your performance problem:
v The operation you tried to perform
v The results you expected
v The results you received
v TCP/IP configuration files

Problem Identification, Reporting, and Resolution

Chapter 2. Problem Identification 9

You might also need to gather the following documentation:
v TCP/IP dump (see “Guidelines for Machine Readable Documentation” on

page 11)
v Console log
v CCW trace
v TCP/IP trace.

Document the Problem
To prepare a performance problem report:
1. Write a description of the following:

v The operation you tried to perform
v The results you expected
v The results you received.

2. Record any other characteristics about your operating environment during the
time of the performance problem. Some examples of these characteristics are:
v The time of day that the poor performance occurred.
v Any unique application programs that were running at the time of the

problem.
v The physical configuration of your network, especially the LAN interfaces or

the number of virtual circuits, such as X.25, involved.
v Any modifications made to your operating system, input/output (I/O)

generation, or the connection interface, such as virtual circuits for X.25 or the
local area network (LAN) configuration for LANs.

3. Check the console for messages.

Documentation
A TCP/IP documentation problem is defined as incorrect or missing information in
any of the TCP/IP books.

If the error interferes with TCP/IP operation, report the problem to your service
support. However, for comments or suggestions on the content of a TCP/IP book,
use the Readers’ Comment Form located at the back of the book. An e-mail
address is also provided for your convenience.

Gather the Information
Gather the following information for your documentation problem:
v The name and order number of the IBM publication in error
v The page number of the error
v The description of the problem caused by the error.

Document the Problem
Give the following information to your service support personnel when you report
your problem:
v The order and revision number of the book that contains the error.

The order and revision number appear on the front cover and title page of the
book in the form xxxx-xxxx-n. The xxxx-xxxx is the order number and n is the
revision number.

v Page numbers, figure numbers, chapter titles, section headings, and any other
information that pinpoints the location of the text that contains the error.

v A description of the problem caused by the documentation error.

Problem Identification, Reporting, and Resolution

10 z/VM: TCP/IP Diagnosis Guide

Guidelines for Machine Readable Documentation
If, after talking to the Level 2 Support Center representative about a problem, it is
decided that documentation should be submitted to the TCP/IP support team, it
may be more convenient for the customer and/or the TCP/IP support team that
documentation be submitted in machine readable form (that is, on tape) or else
sent over the network. Machine readable documentation can be handled most
efficiently by the IBM support person if it conforms to the following guidelines
when creating the tape (or tapes).

When preparing machine readable documentation for submission in a z/VM
environment, the following guidelines should be followed:
1. Dumps and traces should be submitted on tape.

v For dumps:
The generation of dumps for the TCP/IP virtual machine (for program
checks) is controlled by a parameter on the ASSORTEDPARMS statement
in the PROFILE TCPIP file. Two possible formats are supported:
- CPDUMP - tells TCP/IP to generate a dump using the CP DUMP

command.
- VMDUMP - tells TCP/IP to generate a dump using the CP VMDUMP

command.

If neither of these parameters is specified on the ASSORTEDPARMS
statement, TCP/IP suppresses the dump generation for program checks.
Use of the VMDUMP parameter presumes the availability of the Dump
Viewing Facility (DVF) at your installation. Refer to the CP Command
Reference for additional information on the two dump formats.
Dumps generated for other error conditions will have a format specified
by the error processing routine that intercepted the error (such as the C
run-time library). These dumps will be in either the DUMP or VMDUMP
format.
Dumps generated in the VMDUMP format must be processed by the
Dump Viewing Facility prior to submission. Refer to the Dump Viewing
Facility Operation Guide for information on processing VMDUMP
formatted dumps. When submitting dumps processed by the applicable
facility, be sure to include all of the files produced by the processing of
the dump (DUMP, REPORT, etc.). Dumps generated in the DUMP format
must be read from the system spool to disk (using the RECEIVE
command) prior to submission.
Dump files may be transferred to tape using the VMFPLC2 command.
Refer to the Service Guide for VM for details on using VMFPLC2. Each file
dumped to tape should constitute a single tape file (that is, a tape mark
should be written after each file is dumped to tape).

v For TCP/IP Traces:
TCP/IP trace files should be transferred to tape using the VMFPLC2
command. If multiple traces are being submitted, each trace file dumped
to tape should constitute a single tape file (that is, a tape mark should be
written after each file is dumped to tape).

Note: Use of any other utility (IBM or non-IBM) to transfer dumps or traces to
tape may result in a processing delay and could result in the APAR
being returned to the customer (closed RET) due to the inability of the
change team to process the tape.

Problem Identification, Reporting, and Resolution

Chapter 2. Problem Identification 11

2. Submit other types of information (such as server virtual machine traces,
configuration files, console logs, etc.) on paper or tape. If submitted on tape,
the data should be written to tape using VMFPLC2 only, adhering to the
requirement that each file dumped to tape is followed by a tape mark.

3. Write at least ten tape marks after the last file to ensure the load processing
correctly recognizes the end of the tape and does not spin off the end off the
reel (for 3420 tapes).

4. Tapes that are submitted to the TCP/IP support team must be non-label (nl).
Cartridge (3490) or reel tapes may be used. Each tape should contain an
external label to identify the tape and its contents in some way. The problem
number/apar number should appear on the label. If multiple tapes are used, a
separate explanation should be included itemizing the contents of each tape.

5. Generate a map of the tape (or tapes) to be submitted using the VMFPLC2
SCAN command and include the hard copy output of that scan with the tapes.

Necessary Documentation
Before you call for IBM service support, have the following information available:

Information Description

Customer Number The authorization code that allows you to use
service support. Your account name, and other
customer identification should also be available.

Problem Number The problem number previously assigned to the
problem. If this is your first call about the problem,
the support center representative assigns a number
to the problem.

Operating System The operating system and level that controls the
execution of programs.

Component ID A number that is used to search the database for
information specific to TCP/IP. If you do not give
this number to the support center representative,
the amount of time taken to find a solution to your
problem increases.

Release Number An identification number that is on each TCP/IP
release.

Table 2. TCP/IP Component ID Number
Licensed IBM Program Product Component ID Number

TCP/IP (VM) 5735FAL00

A complex problem might require you to talk to a number of people when you
report your problem to service support. Therefore, you should keep all the
information that you have gathered readily available.

Note: You might want to keep the items that are constantly required, such as the
TCP/IP component ID, or VM operating system release level in a file for
easy access.

Additional Documentation
The service support representative might ask you to furnish the following
additional items:

Problem Identification, Reporting, and Resolution

12 z/VM: TCP/IP Diagnosis Guide

v The failing CPU type
v The communication interface, such as X.25 using NPSI or a LAN bridge
v The system fixes and changes.

Have a list of all program temporary fixes (PTFs) and authorized program
analysis report (APAR) fixes that have been applied to your system. You should
also have a list of any recent changes made to your system, such as user
program modifications, redefinition of statements in system generation, or a
change of parameters used to start the system.

v Documentation list
Prepare a list of all documentation that you use to operate your system and any
documentation used to locate or fix the problem.

v System configuration
System configuration information includes:
– TCPIP DATA file
– TCPIP PROFILE file
– Configuration statements for clients or servers
– Problem type

TCP/IP problems are described by one or more of the following categories:
- Abend
- Message
- Loop
- Wait State
- Incorrect Output
- Performance
- Documentation.

“Categories that Help Identify the Problem” on page 5 explains how to use
these categories when reporting your problem.

Problem Resolution
The service support representative uses the information that you provide to create
a list of categories describing your problem.

The program specialist examines all the information that has been compiled,
refines your problem definition, and attempts to solve the problem. If a solution is
not found in RETAIN or through other sources, the program specialist writes an
APAR. A number is assigned to the APAR. The APAR allows the support group to
examine your problem more closely and develop a solution. Once the solution is
developed and tested, it is entered into RETAIN and sent to you. RETAIN is kept
current with new solutions and error descriptions so that future similar problems
can be resolved through a problem category search.

Severe Problem Resolution
If your problem is so severe that it must be resolved immediately, you should
work closely with a program specialist to help develop a quick solution.

You need to provide the specialist with detailed problem information. Answer
questions and follow procedures directed by the program specialist so that a
possible quick temporary fix can be developed for your problem.

Problem Identification, Reporting, and Resolution

Chapter 2. Problem Identification 13

Customer Worksheet
You, the customer may wish to fill out an informal worksheet to use as a reference
before calling for support. By completing this worksheet before calling for support,
you will save time and help expedite your fix.

The following Problem Category topic along with the references in Chapter 2.
Problem Identification, should be reviewed before you call for service support.

Problem Category
Determine within which of the following categories your problem falls:

Category Description

Abend An abend occurs when TCP/IP unexpectedly stops processing.
These problems are explained in “Abend” on page 6.

Message The message problem category describes a problem identified by a
message. These problems are explained in “Message” on page 6.

Loop Loop problems refer to an operation that repeats endlessly. These
problems are explained in “Loop” on page 7.

Wait State Wait state problems refer to situations where TCP/IP (or possibly
specific servers) fail to respond to requests for service and no
activity takes place in the address space or virtual machine of the
affected server. These problems are explained in “Wait State” on
page 8.

Incorrect Output
An incorrect output problem, such as missing, repeated, or
incorrect data, is an unexpected result received during regular
network operation. These problems are explained in “Incorrect
Output” on page 8.

Performance A performance problem is characterized by slow response time or
slow throughput. These problems are explained in “Performance”
on page 9.

Documentation
A documentation problem is defined as incorrect, missing, or
ambiguous information in any of the TCP/IP books. These
problems are explained in “Documentation” on page 10.

Background Information
After determining the problem category and reviewing the section referring to that
category, you must gather the required information regarding your problem. Each
problem category detailed in this chapter contains a section called “Gather the
Information”. See this section to determine the appropriate information you will
need to obtain.

Additional Information
Some additional information may be required. See “Additional Documentation” on
page 12, to determine if you need more information.

Problem Identification, Reporting, and Resolution

14 z/VM: TCP/IP Diagnosis Guide

Chapter 3. TCP/IP VM Structures and Internetworking
Overview

This chapter describes the TCP/IP implementation for VM. It also provides an
overview of networking or internetworking as background information.

VM Structure
Figure 3 represents the TCP/IP layered architecture for the VM environment.

Virtual Machines
In VM, most TCP/IP servers and clients are virtual machines. Each server and
client is implemented as an independent virtual machine.

A request for service is sent to the appropriate virtual machine for processing and
then forwarded to the appropriate destination. The destination can be the TCP/IP
virtual machine if the request is outgoing, or a user’s CMS virtual machine if the
request is incoming.

The configuration and initialization steps for typical CMS type servers is shown in
figure Figure 4 on page 16.

CMS
User LPD

CP

LDSF
CCS

Telnet FTP TFTP SMTP DNS SNMP NFS BOOTPD DHCPD TFTPD Kerberos LPR RouteD X Window System RPC REXEC SSL
MPRO-
UT E

X Toolkit GDDMXD

VMCF

Figure 3. The TCP/IP Layered Architecture for VM

© Copyright IBM Corp. 1987, 2001 15

where :

�1� PROFILE EXEC on 191 accesses required disks

�2� PROFILE EXEC calls TCPRUN EXEC

�3� Locate server and server class definitions in DTCPARMS files

�4� Call any server and global exits with SETUP parameters

�5� Prepare the execution environment, issuing any needed CP and CMS
commands

�6� Calls any server and global exits with BEGIN parameters

�7� Run the server

�8� Call any server and global exits with END parameters

�9� Return to CMS or logoff

TCPRUN EXEC may also call the exits with the ADMIN or ERROR parameters if
the server cannot be started due to administration or problems.

Virtual Machine Communication Facility
The Virtual Machine Communication Facility (VMCF) is used by virtual machines
for communication. Because the TCPIP virtual machine has all of the physical
interfaces, all communication input/output (I/O) requests are sent to TCPIP for
execution.

Inbound data comes into the TCPIP virtual machine and is sent through VMCF to
the destination virtual machine. The routing for inbound data is chosen on the
basis of the virtual machine that is communicating with the destination.

1Server
191

TCPMAINT
591 or 198

General
PROFILE

EXEC

Server's Exit EXEC

Global Exit EXEC

Setup

PrepareTCPRUN EXEC

DTCPARMS

CMS or
LOGOFFSERVER'S MAIN ROUTINE

Begin End

2

4

5

3

7

8

9

6

Figure 4. The sequence of a Server Startup

TCP/IP Structures in VM

16 z/VM: TCP/IP Diagnosis Guide

Inter-User Communication Vehicle
All communication that uses the current socket interface uses the Inter-User
Communication Vehicle (IUCV) interface. For example, the Remote Procedure Call
(RPC) uses the socket interface and, therefore, RPC communication uses IUCV to
communicate with virtual machines.

*CCS and Logical Device Service Facility
*CCS is used for communication between Telnet and a user’s CMS virtual machine.
This line-mode interface permits requests to be passed between the user and Telnet
virtual machines.

When a user requires a full-screen interface, the Logical Device Service Facility
(LDSF) is used. This interface simulates a 3270 device on the user’s virtual
machine, thereby relieving TCP/IP of the need to create a full-screen interface.

Overview of Internetworking
Networking in the TCP/IP world consists of connecting different networks so that
they form one logical interconnected network. This large overall network is called
an internetwork, or more commonly, an internet. Each network uses its own physical
layer, and the different networks are connected to each other by means of
machines that are called internet gateways or simply gateways.

Note: This definition of a gateway is very different from the one used in general
network terms where it is used to describe the function of a machine that
links different network architectures. For example, a machine that connects
an OSI network to an SNA network would be described as a gateway.
Throughout this chapter, the TCP/IP definition of a gateway is used.

Figure 5 shows a simple internet with a gateway.

The function provided by these gateways is to transfer IP datagrams between the 2
networks. This function is called routing and because of this the internet gateways
are often called routers. Within this chapter, the terms router and gateway are
synonymous; both refer to a machine that transfers IP datagrams between different
networks.

Internet A

Internet
Gateway

Network 2

Network 1

Figure 5. Networks with a Gateway Forming an Internet

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 17

The linking of the networks in this way takes place at the International
Organization for Standardization (ISO) network level. It is possible to link
networks at a lower layer level using bridges. Bridges link networks at the ISO data
link layer. Bridges pass packets or frames between different physical networks
regardless of the protocols contained within them. An example of a bridge is the
IBM 8209, which can interconnect an Ethernet network and a Token-Ring network.

Note: A bridge does not connect TCP/IP networks together. It connects physical
networks together that will still form the same TCP/IP network. (A bridge
does not do IP routing.)

Figure 6 depicts a router and a bridge. The router connects Network 1 to Network
2 to form an internet.

Bridges
Bridges are not within the scope of this document; however, there are some aspects
of bridging that have a direct effect on TCP/IP networks, particularly in the area of
IP routing. This is very important because if IP datagrams are not passed properly
over a bridge, none of the higher TCP/IP protocols or applications will work
correctly.

Network 1

Router

Bridge

Token Ring

Ethernet

Bridge

Token Ring Token Ring

Network 2

Internet A

Figure 6. Routers and Bridges within an Internet

TCP/IP Structures in VM

18 z/VM: TCP/IP Diagnosis Guide

Maximum Transmission Unit (MTU)
Different physical networks have different maximum frame sizes. Within the
different frames, there is a maximum size for the data field. This value is called the
maximum transmission unit (MTU), or maximum packet size in TCP/IP terms.

Figure 7 shows the relationship of MTU to frame size.

If an IP datagram is to be sent out onto the network and the size of the datagram
is bigger than the MTU, IP will fragment the datagram, so that it will fit within the
data field of the frame. If the MTU is larger than the network can support, then the
data is lost.

The value of MTU is especially important when bridging is used because of the
different network limits. RFC 791 - Internet Protocols states that all IP hosts must be
prepared to accept datagrams of up to 576 bytes. Because of this, it is
recommended that an MTU of 576 bytes be used if bridging (or routing) problems
are suspected.

Note: MTU is equivalent to the PACKET SIZE value on the GATEWAY statement,
or the MAXMTU value when using BSDROUTINGPARMS in the TCPIP
PROFILE file.

Token Ring IEEE 802.5
When a token-ring frame passes through a bridge, the bridge adds information to
the routing information field (RIF) of the frame (assuming that the bridge supports
source route bridging). The RIF contains information concerning the route taken by
the frame and, more importantly, the maximum amount of data that the frame can
contain within its data field. This is called the maximum information field (I-field).
The value specified for the maximum I-field is sometimes referred to as the largest
frame size, but this means the largest frame size excluding headers. See Figure 8 on
page 20 for details on the relationship of the I-field to the header fields.

Note: It is important to be aware that IBM’s implementation limits the number of
bridges through which a frame can be passed to 7. An attempt to pass a
frame through an eighth bridge will fail.

The maximum I-field is always decreased by a bridge when it cannot handle the
value specified. So, for a given path through several token-ring bridges, the

Media Access Control Header Data

Maximum Frame Size

DataLogical Link Control Header

Media Access Control Sublayer

Logical Link
Control Sublayer

Data Link

Network Protocol

IPICMP

RARP

ARP

Figure 7. Relationship of MTU to Frame Size

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 19

maximum I-field is the largest value that all of the bridges will support. This value
is specified in the Routing Control (RC) field within the RIF as shown in Figure 8.

The size of the MTU is the maximum amount of data that is allowed within a
frame. The token-ring architecture specifies the maximum value of the I-field in the
data frame, which corresponds to the maximum size of the L-PDU. The maximum
I-field is determined by the bit configuration in the RC field, and is present in all
routed frames.

Table 3 shows the relationship between the RC field and the maximum I-field
values.

Table 3. Relationship between RC Field and Maximum I-Field Value

Routing Control Field Maximum I-Field in Bytes

x000 xxxx xxxx xxxx 516

x001 xxxx xxxx xxxx 1500

x010 xxxx xxxx xxxx 2052

x011 xxxx xxxx xxxx 4472

x100 xxxx xxxx xxxx 8144

x101 xxxx xxxx xxxx 11 407

x110 xxxx xxxx xxxx 17 800

In Figure 8, we can see that, within the L-PDU, the Logical Link Control (LLC)
header uses 8 bytes, and so the MTU value is 8 bytes less that the maximum
I-field. (Note that the L-PDU contains a SNAP header, as described in
“Sub-Network Access Protocol (SNAP)” on page 21) This is how to calculate the
MTU for a token ring. The token-ring bridges always adjust the value of the
maximum I-field to that of the smallest one in the path. You should always ensure
that the MTU value is less than the value specified by the bridge.

Typically, within a 4Mbps token-ring network, the value of maximum I-field will
be 2052 bytes, and so the MTU would be set to 2044 bytes (2052 minus 8 bytes for
the LLC header).

IEEE 802.3
The frame used in IEEE 802.3 Ethernet networks is shown in Figure 9 on page 21.

SD AC FC DA SA RI L-PDU FCS ED FS Data Frame

Routing
Control

DSAP SSAP CONT P_id Type Data

1 1 1 6 6 4 1 1 byte

2 2 bytes

Segment
Number . . .

I-Field

Logical Link Control
Protocol Data Unit

(L-PDU)
1 1 1 3 2 n

Figure 8. Format of an IEEE 802.5 Token-Ring Frame

TCP/IP Structures in VM

20 z/VM: TCP/IP Diagnosis Guide

The maximum size of the L-PDU for a 10Mbps network is 1500 bytes. Because 8
bytes are used within the L-PDU for the LLC header, this means that the
maximum size of the data field is 1492 bytes. Therefore, the MTU for IEEE 802.3
networks should be set to 1492 bytes.

Ethernet - DIX V2
The frame used in DIX Ethernet networks is shown in Figure 10.

There is no LLC data in an Ethernet V2 frame. The maximum size for the frame is
1526 bytes. This means that the data field can be 1500 bytes maximum. The MTU
for Ethernet V2 can be set to 1500 bytes.

It is possible to bridge Ethernet V2 frames to either IEEE 802.3 or IEEE 802.5
networks; a LLC header is added or removed from the frame, as required, as part
of the conversion when bridging.

Sub-Network Access Protocol (SNAP)
The TCP/IP software provides protocol support down to the ISO network layer.
Below this layer is the data link layer, which can be separated into two sublayers.
These are the Logical Link Control (LLC) and the Media Access Control (MAC) layers.

The IEEE 802.2 standard defines the LLC sublayer, and the MAC sublayer is
defined in IEEE 802.3, IEEE 802.4, and IEEE 802.5.

The format of an IEEE 802.2 LLC header with the SNAP header is shown in
Figure 11.

The values of the fields in the LLC header when a SNAP header is used are
specified in RFC 1042 - Standard for Transmission of IP Datagrams over IEEE 802
Networks. The values specified are:

Pre SD DA SA LEN L-PDU PAD FCS Data Frame

DSAP SSAP CONT P_id Type Data

7 1 6 6 2 4

Logical Link Control
Protocol Data Unit

(L-PDU)
1 1 1 3 2 n

Figure 9. Format of an IEEE 802.3 Frame

Pre SD DA SA Type Data FCS Data Frame

8 6 6 6 2 n 4

Figure 10. Format of an Ethernet V2 Frame

DSAP SSAP CONT P_id Type Data

SNAP Header

1 1 1 3 2

LLC with SNAP Header

Figure 11. SNAP Header

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 21

Field Value

DSAP X'AA'

SSAP X'AA'

CONT
X'03' Specifies unnumbered information (UI)

P_id X'00 00 00'

Type

X'08 00' - IP
X'08 06' - ARP
X'08 35' - RARP

IP Routing
IP routing is based on routing tables held within a router or internet host. These
tables can either be static or dynamic. Typically, static routes are predefined within a
configuration file, and dynamic routes are “learned” from the network, using a
routing protocol.

Internet Addressing
Hosts on an internet are identified by their IP address. Internet Protocol (IP) is the
protocol that is used to deliver datagrams between these hosts. It is assumed the
reader is familiar with the TCP/IP protocols. Specific information relating to the
Internet Protocol can be found in RFC 791.

An IP address is a 32-bit address that is usually represented in dotted decimal
notation, with a decimal value representing each of the 4 octets (bytes) that make
up the address. For example:

00001001010000110110000100000010 32-bit address
00001001 01000011 01100001 00000010 4 octets

9 67 97 2 dotted decimal notation (9.67.97.2)

The IP address consists of a network address and a host address. Within the internet,
the network addresses are assigned by a central authority, the Network Information
Center (NIC). The portion of the IP address that is used for each of these addresses
is determined by the class of address. There are four commonly used classes of IP
address (see Figure 12).

The class of address of the IP network is determined from the first 4 bits in the
first octet of the IP address. Figure 13 on page 23 shows how the class of address is
determined.

32-bit IP Address
Class A:

Class B:

Class C:

Class D:

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
Host

Host

Host

Net

Multicast Group ID

Net

Net

1110

Figure 12. Classes of IP Addresses

TCP/IP Structures in VM

22 z/VM: TCP/IP Diagnosis Guide

|

As shown in Figure 13, the value of the bits in the first octet determine the class of
address, and the class of address determines the range of values for the network
and host segment of the IP address. For example, the IP address 9.67.97.2 would be
a class A address, since the first 2 bits in the first octet contain B'00'. The network
part of the IP address is “9” and the host part of the IP address is “67.97.2”.

Refer to RFC 1166 - Internet Numbers for more information about IP addresses.
Refer to RFC 1060 - Assigned Numbers for more information about reserved network
and host IP addresses, such as a network broadcast address.

Figure 14 on page 24 shows a simple network with a bridge and a router.

32-bit address xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

Class A 0xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
min 00000000
max 01111111
range 0 - 127 (decimal notation)

Class B 10xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
min 10000000
max 10111111
range 128 - 191 (decimal notation)

Class C 110xxxxx xxxxxxxx xxxxxxxx xxxxxxxx
min 11000000
max 11011111
range 192 - 223 (decimal notation)

Class D 1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx
min 11100000
max 11101111
range 224 - 239.255.255.255

Figure 13. Determining the Class of an IP Address

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 23

|
|
|
|
|

Machine D is acting as an IP router and will transfer IP datagrams between the
class C, 192.9.200, network and the class A, 9, network. It is important to note that
for Machine B to communicate with Machine C using TCP/IP, both Machine D and
the bridge have to be correctly configured and working.

Direct Routing
Direct routing can take place when two hosts are directly connected to the same
physical network. This can be a bridged token-ring network, a bridged Ethernet, or
a bridged token-ring network and Ethernet. The distinction between direct routing
and indirect routing is that with direct routing an IP datagram can be delivered to
the remote host without subsequent interpretation of the IP address, by an
intermediate host or router.

In Figure 14, a datagram travelling from Machine A to Machine B would be using
direct routing, although it would be traveling through a bridge.

Indirect Routing
Indirect routing takes place when the destination is not on a directly attached IP
network, forcing the sender to forward the datagram to a router for delivery.

192.9.200.1

192.9.200.2

9.67.32.1

Bridge

Ethernet

Machine A

TCP/IP

Machine D

TCP/IP

LAN
Segment 001

9.67.32.2

192.9.200.3

Machine B

TCP/IP

Machine C

TCP/IP

LAN
Segment 002

Figure 14. Routing and Bridging

TCP/IP Structures in VM

24 z/VM: TCP/IP Diagnosis Guide

In Figure 14 on page 24, a datagram from Machine A being delivered to Machine C
would be using indirect routing, with Machine D acting as the router (or gateway).

Simplified IP Datagram Routing Algorithm
To route an IP datagram on the network, the algorithm shown in Figure 15 is used.

Using this general routing algorithm, it is very easy to determine where an IP
datagram will be routed. Following is a simple example based on the configuration
shown in Figure 14 on page 24.

Machine A IP Address = 192.9.200.1

Routing Table

Destination Gateway

192.9.200.1 192.9.200.1 (Machine A's network interface)

9.0.0.0 192.9.200.2 (Route to the 9.n.n.n address is
via Machine D, 192.9.200.2)

Machine A sends a datagram to host 192.6.200.3 (Machine B), using the direct
route, 192.9.200.1 (its own network interface). Machine A sends a datagram to host
9.67.32.2 (Machine C), using the indirect route, 192.9.200.2 (Machine D), and
Machine D then forwards the datagram to Machine C.

Subnetting
A variation of the network and host segments of an IP address, known as
subnetting, can be used to physically and logically design a network. For example,
an organization can have a single internet network address (NETID) that is known
to users outside the organization, yet configure its internal network into different
departmental subnets. Subnetwork addresses enhance local routing capabilities,
while reducing the number of network addresses required.

To illustrate this, let us consider a simple example. Assume that we have an
assigned class C network address of 192.9.200 for our site. This would mean that
we could have host addresses from 192.9.200.1 to 192.9.200.254. If we did not use
subnetting, then we could only implement a single IP network with 254 hosts. To
split our site into two logical subnetworks, we could implement the following
network scheme:

Does
destination IP

network address
equal

my IP network
address?

Send IP datagram to
gateway corresponding
to destination IP address.

Send IP datagram
on local network.

Yes

No

Figure 15. General IP Routing Algorithm

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 25

Without Subnetting:
Network Host Address
Address Range

192 9 200 host
11000000 00001001 11001000 xxxxxxxx 192.9.200 1 - 254

With Subnetting:
Subnet Host Address Subnet
Address Range Value

192 9 200 64 host
11000000 00001001 11001000 01xxxxxx 192.9.200.64 65 - 126 01

Subnet Host Address Subnet
Address Range Value

192 9 200 128 host
11000000 00001001 11001000 10xxxxxx 192.9.200.128 129 - 190 10

The subnet mask would be

255 255 255 192
11111111 11111111 11111111 11000000

Notice that there are only two subnets available, because subnets B'00' and B'11' are
both reserved. All 0’s and all 1’s have a special significance in internet addressing
and should be used with care. Also notice that the total number of host addresses
that we can use is reduced for the same reason. For instance, we cannot have a
host address of 16 because this would mean that the subnet/host segment of the
address would be B'0001000', which with the subnet mask we are using, would
mean a subnet value of B'00', which is reserved.

The same is true for the host segment of the fourth octet. A fourth octet value of
B'01111111' is reserved because, although the subnet of B'01' is valid, the host value
of B'1' is reserved.

Each bit of the network segment of the subnet mask is always assumed to be 1, so
each octet has a decimal value of 255. For example, with a class B address, the first
2 octets are assumed to be 255.255.

Simplified IP Datagram Routing Algorithm with Subnets
The algorithm to find a route for an IP datagram, when subnetting is used, is
similar to the one for general routing with the exception that the addresses being
compared are the result of a logical AND of the subnet mask and the IP address.

For example:
IP address: 9.67.32.18 00001001 01000011 00100000 00010010

<AND>
Subnet Mask: 255.255.255.240 11111111 11111111 11111111 11110000

Result of
Logical AND: 9.67.32.16 00001001 01000011 00100000 00010000

The subnet address is 9.67.32.16, and it is this value that is used to determine the
route used.

Figure 16 on page 27 shows the routing algorithm used with subnets and Figure 17
on page 27 shows how a subnet route is resolved.

TCP/IP Structures in VM

26 z/VM: TCP/IP Diagnosis Guide

Static Routing
Static routing, as the name implies, is defined within the local host, and as changes
to the network occur, must be manually changed. Typically, a configuration file
will contain the definitions for directly-attached networks, routes for specific hosts,
and a possible default route that directs packets to a destination for networks that
are not previously defined.

TCP/IP uses the GATEWAY statements, defined in the TCPIP PROFILE file, to
configure the internal routing tables. The internal routing tables for TCP/IP can be
modified by using the OBEYFILE command. Refer to the TCP/IP Planning and
Customization for details about defining the GATEWAY statements and using the
OBEYFILE command.

Note: When the GATEWAY statements are updated using OBEYFILE, all
previously-defined routes are discarded and replaced by the new GATEWAY
definitions.

Yes

No

Does
destination IP

address ANDed with
my subnet mask equal
my IP address ANDed

with my subnet
mask?

Send IP datagram to
gateway corresponding
to the destination IP
address ANDed with my
subnet mask.

Send IP datagram
on local network.

Figure 16. Routing Algorithm with Subnets

Datagram sent to gateway 9.67.32.18

IP datagram with
Destination IP address = 9.67.32.34

arrives at Machine A (9.67.32.17)

Machine A’s Routing Table

Destination

9.67.32.16 9.67.32.17 255.255.255.240
9.67.32.32 9.67.32.18 255.255.255.240

Gateway Subnet mask

00001001 01000011 00100000 00100010
9 67 32 34

11111111 11111111 11111111 11110000
255 255 255 240

00001001 01000011 00100000 00100000
9 67 32 32

<AND>

Figure 17. Example of Resolving a Subnet Route

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 27

Dynamic Routing
Dynamic routing is the inverse of static routing. A TCP/IP protocol is used to
dynamically update the internal routing tables when changes to the network occur.
TCP/IP uses the Routing Information Protocol (RIP) and the RouteD virtual
machine to monitor network changes. The TCP/IP Planning and Customization
contains more details about RouteD.

Note: When you use RouteD, the GATEWAY statements must be commented out
of the TCPIP PROFILE file, and the BSDROUTINGPARMS statements
should be used to configure the initial network definitions.

Dynamic Routing Tables
When TCP/IP is configured to use RouteD, there are actually two routing tables.
The first routing table is managed by RouteD, and is updated dynamically based
on the RIP protocol. RouteD will then update the internal routing table of the
RouteD virtual machine. The two routing tables might not be identical for the
following reasons:
v ICMP redirects are received by the TCPIP address space. TCPIP updates its

internal routing table, but these changes are not propagated to RouteD. To
prevent this situation, the parameter IGNOREREDIRECTS, should be coded in
the TCPIP PROFILE file.

v The GATEWAY statements are not commented out in the TCPIP PROFILE file. In
this situation, TCPIP will route packets based on the GATEWAY statements, and
then based on the updates by RouteD. This is similar to a condition in UNIX**
environments known as “kernel” routes.

Customizing both the GATEWAY and BSDROUTINGPARMS statements should
only be attempted by network programmers familiar with IP routing, RIP, and the
ramifications of having distinct routing tables.

TCP/IP Structures in VM

28 z/VM: TCP/IP Diagnosis Guide

Example of Network Connectivity

Figure 18 shows a host, VM1, directly connected to networks 193.9.200 and 193.0.2.
Neither network has subnets. VM1 is indirectly connected to network 128.84, which
has subnets using the high-order byte of the host number as the subnet field. The
subnet 128.84.1 is accessible through 193.9.200.2; the subnet 128.84.55 is accessible
through 193.9.200.100; and the other subnets of 128.84 are accessible through
193.0.2.2. All packets destined for a network that has no entry in the routing table
should be routed to 193.0.2.3. All packets to the host jakespc should be routed
through 193.0.2.2.

Notes:

1. Directly-attached networks must be defined in the GATEWAY table before
default networks (DEFAULTNET) or first-hop networks (FIRSTHOP) are
defined.

2. Verification of the TCPIP virtual machine is recommended for connectivity
issues, regardless of whether overt internal or external changes have been made
to the system.

193.0.2193.9.200 To all other
TCP/IP networks

128.84.1
Subnet

128.84.xx
Subnet

Link 1 Link 2

128.84.55
Subnet

Router

Router

193.9.200.100

193.9.200.2

193.0.2.2

Router

Router

193.0.2.3

Host (jakespc)

9.67.43.126

Host (VM1)

Figure 18. Example of Network Connectivity

TCP/IP Structures in VM

Chapter 3. TCP/IP VM Structures and Internetworking Overview 29

TCP/IP Structures in VM

30 z/VM: TCP/IP Diagnosis Guide

Chapter 4. Server Initialization

This chapter describes the mechanism used to start each TCP/IP server.

CMS Servers
Servers that run under CMS share a common profile, TCPROFIL EXEC. It is copied
by TCP2PROD to each server’s 191 disk as PROFILE EXEC. You should never
modify this file as it may be replaced by TCP/IP service procedures.

The profile accesses the common disks (198, 591, and 592) and then calls TCPRUN
EXEC. TCPRUN determines what kind of server is running and invokes the
appropriate server function. The kind of server is referred to as the server class. It is
obtained from the userid, nodeid, SYSTEM, or IBM DTCPARMS file.

The DTCPARMS file contains all of the information needed to establish the
necessary runtime environment and to start the server. Exits can be defined to
override any value set by a DTCPARMS file. A complete description of the
DTCPARMS file and the server initialization process can be found in the TCP/IP
Planning and Customization.

Because the various tags in the DTCPARMS file are used to determine what special
environments should be created, as well as the options or parameters that will be
passed to the server, it may become necessary to determine the precise commands
that are issued.

A trace of TCPRUN EXEC can be obtained using one of the following procedures.

Diagnosis Method 1
1. Logon to the server and indicate that you do not want the server to start.
2. Enter the command TCPRUN (DEBUG.
3. Stop the server (#CP EXT or HX)
4. Examine the trace file, TCPRUN DEBUG A.

Diagnosis Method 2
If a problem only occurs when the server is disconnected, an alternate trace
method is provided.
1. Logon to the server and indicate that you do not want the server to start.
2. Enter the command GLOBALV SELECT DTCRUN SETLP DEBUG 1.
3. Logoff.
4. Autolog the server.
5. Logon to the server and stop it (#CP EXT or HX)
6. Examine the trace file, TCPRUN DEBUG A.
7. Enter the command GLOBALV SELECT DTCRUN SETLP DEBUG (set DEBUG to null)

to turn off the trace.

© Copyright IBM Corp. 1987, 2001 31

GCS Servers
Servers that run under the GCS operating system share a common profile,
TCPROFIL GCS. It is copied by TCP2PROD to each server’s 191 disk as PROFILE
GCS. You should never modify this file as it may be replaced by TCP/IP service
procedures.

The profile will then search for and run userid GCS. The DTCPARMS file is not
used by the GCS servers.

Due to the simple nature of the relationship between the common profile and the
server-specific GCS exec, no debug facility is provided.

Server Initialization

32 z/VM: TCP/IP Diagnosis Guide

Chapter 5. TCP/IP Procedures

This chapter describes some of the internal procedures that occur in the TCP/IP
server and the types of input/output (I/O) supported by TCP/IP.

You should collect the messages, console logs, and system and user dumps
pertaining to TCP/IP server protocols and procedures. You should also trace
TCP/IP protocols or procedures to determine TCP/IP suite problems, such as TCP
requests from remote and local clients or servers.

TCP/IP Internals
The following sections describe the internal procedures, queues, and activities for
TCP/IP.

Internal Procedures
Table 4 describes the major internal Pascal procedures. These procedures are
external declarations of processes invoked by the scheduler.

Table 4. TCP/IP Internal Procedures

Procedure Description

ArpProcess Processes Address Resolution Protocol requests.

CallProcRtn Calls the appropriate processing routine for Activity Control
Blocks (ACBs) with a ProcessName of DEVICEdriverNAME.

ClientTimer Converts an INTERNALclientTIMER ACB to a notification
to the internal client.

ConsistencyChecker Schedules itself at regular intervals to perform various tests
of the TCP/IP machine’s internal consistency. The
ConsistencyChecker maintains various statistics about recent
resource usage. It tries to restart well-known clients that
appear to be inactive and attempts to collect infrequently
used, but active, TCBs.

From1822 Receives incoming datagrams and IMP messages from the
Series/1 on the Defense Data Network (DDN). Processes
incoming IMP messages and passes the incoming datagrams
to IpUp.

IntCliProc Processes notifications for the internal client.

IpDown Processes outgoing IP datagrams received from TcpDown. It
selects the network to use for the first hop, and the address
within that network to employ. It passes datagrams to
ToGlue to send to the Series/1. IpDown also processes
table-driven gateway selections for IpDown’s routings
(except for the internal loopback routes used for debugging,
which are hard coded into DispatchDatagram). All routines
are placed in IpDown and other processes, such as IpUp (for
ICMP redirect messages) and TcpIpInitialize. You can access
the routing information using these routines.

IpUp Processes incoming IP datagrams. If necessary, it
reassembles fragmented datagrams. IpUp sends completed
datagrams to TcpUp, UdpUp, or RawIpUp.

IucvApiGreeter Processes new IUCV paths from clients using IUCV APIs.

© Copyright IBM Corp. 1987, 2001 33

Table 4. TCP/IP Internal Procedures (continued)

Procedure Description

Monitor Maintains internal performance records. It receives status
requests from clients and information on the Series/1
through StatusIn. The Monitor collects run-time performance
statistics and responds to requests from clients to execute
commands that alter internal routing and addressing
information, write out performance records, control run-time
debug tracing, and indicate the clients that are authorized to
make these special requests. The Monitor also handles some
unusual situations, such as recording errors detected by the
interrupt handlers (which cannot simply write out tracing,
because they function with interrupts disabled) and
attempting to autolog well-known clients.

Notify Sends asynchronous notifications to clients. It processes
ACB, CCB, and TCB bufferpools to manage the notifications
sent to clients through VMCF.

PingProcess Processes PING requests, responses, and time-outs.

RawIpRequest Processes incoming RAWIP requests. It passes outgoing
datagrams to IpDown.

Scheduler The scheduler checks the queues of executable activities,
removes the first item of the highest priority, nonempty
queue, and invokes the indicated process. If all of the
executable job queues are empty, it is inactive until an
interrupt arrives and schedules some activity. If the
consistency checker is not currently scheduled to execute
and there is activity scheduled on the main job queue (the
ToDoQueue), the scheduler establishes a time-out, so that
the consistency checker can be invoked.

ShutDown Shuts down the TCPIP server gracefully. The DoShutDown
parameter returns a true value, and then a return from the
scheduler to main program shutdown is used to call the halt
procedure. You need to return to main to print profile
statistics.

SnmpDpiProcess Processes SNMP DPI requests from an SNMP agent.

SockRequest Processes BSD-style socket requests.

StatusOut Receives requests for information on the status of Glue from
the Monitor, which it passes to ToGlue on the Series/1.

TcpDown Creates outgoing TCP segments based on the client requests
handled by TcpRequest and the remote socket responses
handled by TcpUp. TcpDown packages these segments into
IP datagrams, which it passes to IpDown.

TcpRequest Processes client’s requests for TCP service and for handling
asynchronous notifications. Buffers outgoing client TCP
data, updates the state of TCP connections, and signals
TcpDown to send TCP segments.

TcpUp Processes incoming TCP segments received from IpUp. If
necessary, TcpUp signals Notify to generate asynchronous
notifications about TCP connections. It also processes
window and acknowledgment information from the remote
socket.

TCP/IP Procedures

34 z/VM: TCP/IP Diagnosis Guide

Table 4. TCP/IP Internal Procedures (continued)

Procedure Description

Timer Checks the TimerQueue for any time-outs that may be due
and places them in the ToDoQueue. Then Timer resets the
external timer to awaken it later if future time-outs are
pending.

Timer also encapsulates all operations involving time-outs,
including the Timer process that transforms time-outs into
active signals. The TimerQueue is referenced in the
TCQueue segment.

ToA220 Sends the outgoing datagrams supplied by IpDown to A220.
See “HYPERchannel Driver” on page 41 for more
information.

ToCeti Sends the outgoing datagrams supplied by IpDown to CETI.
See “CETI Driver” on page 40 for more information.

ToGlue Sends outgoing datagrams supplied by IpDown to the
Series/1.

ToIUCV Sends the outgoing datagrams supplied by IpDown to PVM
IUCV. See “IUCV Links” on page 42 for more information.

ToPCCA3 Sends the outgoing datagrams supplied by IpDown to
PCCA3. PCCA is the name for LAN channel-attached units.

To1822 Sends outgoing datagrams supplied by IpDown to the
Series/1 on DDN.

UdpRequest Processes incoming UDP requests. Gives outgoing
datagrams to IpDown.

1822Status Receives status information from the 1822 interrupt handlers
about the IMP and the Series/1, and passes that information
to the clients.

1822Timer Controls OutHost table cleanup, and brings down and
reinitializes IMP.

Queues
Table 5 describes the queues TCP/IP uses to control events that occur during
run-time.

Table 5. TCPIP Queues

Queue Description

InDatagram The various device drivers place incoming IP
datagrams in this queue for IpUp to process.

QueueOfCcbsForTcpResources This queue contains a list of ACBs pointing to CCBs
that have tried to perform TcpOpen, but failed
because of a lack of TCBs, data buffers, or SCBs. As
resources become available, they are assigned to the
first CCB on this list. When all resources (a TCB and
two data buffers) are available, a
RESOURCESavailable notice is sent to the client, who
reissues the open.

QueueOfCcbsForUdpResources This queue contains a list of ACBs pointing to CCBs
that have tried to perform UdpOpen, but failed
because of a lack of UCBs or SCBs. Processing is
similar to QueueOfCcbsForTcpResources.

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 35

Table 5. TCPIP Queues (continued)

Queue Description

QueueOfRcbFrustrated This queue contains raw-IP client-level requests to
send datagrams that cannot be processed, because of a
shortage of buffer space. When buffer space becomes
available internally, the RAWIPspaceAVAILABLE
notice is sent to the appropriate clients, and the
requests are removed from this queue.

QueueOfTcbFrustrated This queue contains client-level TCP send-requests
that cannot be satisfied, because of a shortage of
internal TCP buffer space. When buffer space becomes
available internally, the BUFFERspaceAVAILABLE
notice is sent to the appropriate clients, and the
requests are removed from this queue.

QueueOfUcbFrustrated This queue contains UDP client-level requests to send
datagrams that cannot be satisfied, because of a
shortage of buffer space. When buffer space becomes
available internally, the UDPdatagramSPACEavailable
notice is sent to the appropriate clients, and the
requests are removed from this queue.

Segment: EnvelopePointerType IpUp places incoming TCP segments in this queue for
TcpUp to process.

ToDoPullQueue, ToDoPushQueue This is the primary queue for executable activities.
Activities are placed in this queue directly by Signal
and indirectly by SetTimeout. The scheduler removes
these activities from the queue and invokes the
corresponding process.

Internal Activities
Table 6 describes TCP/IP internal activities performed by TCP/IP processes. An
example of called internal activities is shown in Figure 46 on page 82. Activities,
which are found in most TCP/IP internal traces, explain why the process has been
called.

Table 6. TCP/IP Internal Activities

Activity Description

ACCEPTipREQUEST Sent by the external interrupt handler to the
IPrequestor informing it of an incoming IP-level
request from a local client.

ACCEPTmonitorREQUEST Sent by the external interrupt handler to the Monitor
informing it of an incoming monitor request from a
client.

ACCEPTpingREQUEST Sent by the external interrupt handler to the PING
process informing it of an incoming PING request
from a client.

ACCEPTrawipREQUEST Sent by the external interrupt handler to the
RAWIPrequestor informing it of an incoming
RAWIP-level request.

ACCEPTtcpREQUEST Sent by the external interrupt handler to the
TCPrequestor informing it of an incoming TCP-level
request (or a request that belongs to both IP and TCP,
such as Handle) from a local client.

TCP/IP Procedures

36 z/VM: TCP/IP Diagnosis Guide

Table 6. TCP/IP Internal Activities (continued)

Activity Description

ACCEPTudpREQUEST Sent by the external interrupt handler to the
UDPrequestor to inform it of an incoming UDP-level
request.

ACKtimeoutFAILS Sent by the Timer to TcpDown when an ACK time-out
fails.

ARPtimeoutEXPIRES Sent by the Timer to the ARP process when it is time
to scan the queue for packets that are waiting for an
ARP reply. Outdated packets are discarded.

CCBwantsTCB This is not an activity. ACBs with this activity value
point to CCBs that attempted to perform TcpOpen,
but failed because of a lack of TCBs or data buffers.
These ACBs are located in
QueueOfCcbsForTcpResources.

CCBwantsUCB This is not an activity. ACBs with this activity value
point to CCBs that attempted to perform UpdOpen,
but failed because of a lack of UCBs or data buffers.
These ACBs are located in
QueueOfCcbsForUpdResources.

CHECKconsistency Sent by any process to check the ConsistencyChecker
for the internal data structures.

DELETEtcb Sent by the Timer to the TCPrequestor, signifying that
enough time has elapsed since the connection was
closed to free the TCB without endangering later
sequence numbers or allowing internal dangling
pointers.

DEVICEspecificACTIVITY Sent by a device driver to itself for a driver-specific
purpose.

DISPOSEsockTCB Sent by various processes to SockRequest to delete a
TCB owned by a BSD socket-style client.

EXAMINEincomingDATAGRAM Sent by IP-down or a network driver (such as From-r)
to IpUp when it places an incoming datagram in the
global InDatagram Queue.

EXAMINEincomingSEGMENT Sent by IpUp to TcpUp when an incoming datagram
contains a TCP segment. It places these datagrams in
the global InSegment Queue.

FINISHdatagram Sent by IP-request, TcpDown, and IpUp signifying the
presence of outgoing datagrams in the global
OutDatagram Queue. These datagrams are available
for IpDown, which completes the IP header and sends
it out.

FROMlineSENSE Sent by the 1822 interrupt handler when a unit check
ending status is given by the channel to an I/O
command.

HAVEcompletedIO Sent by the I/O interrupt to a network driver when
the most recent I/O operation has been completed.

HOSTtimeout Sent by the 1822 initialization routine to the
1822-Timer routine to check the OutHost table for
entries whose idle time limit has been exceeded.

IMPdown Sent by the From-1822 routine to the 1822-Timer
routine when there is an indication that the IMP is
about to go down.

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 37

Table 6. TCP/IP Internal Activities (continued)

Activity Description

IMPinit Sent by the From-1822 routine to the 1822-Timer
routine when there is an indication from the Series/1
that the IMP is down and needs to be reinitialized.

INFORMmonitor Sent by any internal process informing the Monitor of
some noteworthy situation or event.

INTERNALclientTMOUT Sent to the INTERNALclientTIMERname process,
which converts it to an internal client notification.

INTERNALldsfNOTIFICATION Sent to the internal client, which passes a notification
of an LDSF interrupt.

INTERNALnotification Sent to the internal client, which passes a notification.

IUCVrupt Sent to the ToIUCV process when an IUCV interrupt
occurs.

KILLdetachedTCB Sent by the Timer to TcpRequest indicating that a
TCB, which was detached from a BSD-style socket,
has not disappeared. TcpRequest then deletes it.

LOOKatTIMERqueue Sent by the external interrupt handler to awaken the
Timer process. The Timer process then removes the
appropriate items from the TimerQueue and places
them in the ToDoQueue.

NOactivity Sent when someone does not initialize an ACB.

OPENtimeoutFAILS Sent by the Timer to TcpRequest when an open
time-out fails.

PENDINGpingREQUEST This is not an activity. ACBs with this activity value
contain information on PING requests awaiting a
response or time-out. These ACBs are in a local queue
within TCPING.

PINGtimeoutFAILS Sent by the Timer to the PING process when a Ping
request times out.

PROBEtimeoutFAILS Sent by the Timer to TcpDown when a window probe
should be sent to a given connection.

PROCESSsnmpAGENTrequest Sent by Sock-request to the SNMP DPI process when a
write() is performed on a special SNMPDPI socket.

QUITwaiting Sent by the Timer to TcpRequest when a connection in
a time-wait state should be closed.

READdatagram Sent by the I/O interrupt handler to FromGlue or
StatusIn indicating that a message from the Series/1
should be read.

REASSEMBLYfails Sent by the Timer to IpUp when a datagram
reassembly times out.

REJECTunimplementedREQUEST Sent by the external interrupt handler to Monitor
instructing it to reject an unrecognized request.

RESETconnection Sent by TcpRequest to TcpDown in response to a
client’s abort or by TcpUp in response to an
unacceptable segment. It instructs TcpDown to send
an RST to the foreign socket, appearing as though it
came from the local socket with the necessary values
for RCV.NXT and SND.NXT.

RETRANSMITdata Sent by the Timer to TcpDown when TCP data should
be retransmitted.

TCP/IP Procedures

38 z/VM: TCP/IP Diagnosis Guide

Table 6. TCP/IP Internal Activities (continued)

Activity Description

RETRYread Some drivers set a time-out for this activity if they are
unable to start a read channel program. When the
time-out expires, the drivers try the read again.

RETRYwrite Some drivers set a time-out for this activity if they are
unable to start a write channel program. When the
time-out expires, the drivers try the write again.

SELECTtimeoutFAILS Sent by the Timer to Sock-request indicating that a
select() time-out has expired.

SENDdatagram Sent by IpDown to the network driver of its choice
indicating the availability of one or more datagrams to
send on that network. At present, the supported
drivers are ToGlue, ToPronet, and ToEthernet, and the
supported networks are Telenet, Pronet, and Ethernet,
respectively.

SENDnotice Sent to Notify by any process that has discovered
information that warrants sending an asynchronous
notification to a client.

SendOFFControl Sent by any internal process informing the Series/1
that the host is not ready.

SendONControl Sent by any internal process informing the Series/1
that the host is up and ready.

SENDreadDIAG Sent by any internal process conducting a test of the
Series/1 read channel.

SENDtcpDATA Sent by TcpRequest to TcpDown when data is
available to send to the specified connection.

SENDwriteDIAG Sent by any internal process before it tests the
Series/1 write channel.

SEND1822noops Sent by any internal process before it sends three 1822
NOOP messages to the IMP.

SHUTdownTCPipSERVICE Sent to the shutdown process instructing it to
terminate the TCPIP server gracefully.

STOPlingering Sent by the Timer to TcpRequest indicating that the
lingering time-out for a socket-style connection has
expired. TcpRequest then releases the client.

TERMINATEnotice Sent by the external interrupt handler to Notify when
a final response has been received for an outstanding
VMCF message that Notify has sent.

TOlineSENSE Sent by the 1822 interrupt handler when a unit check
ending status is given by the channel to an I/O
command.

TRYautologging Sent to the monitor by the timer when an autologged
client has been forced off the network. An attempt is
then made to log on the client.

TRYiucvCONNECT Sent by the IUCV driver to itself (meout)ll, so that it
can retry an IUCV connect that has failed.

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 39

Input/Output
The following sections describe the types of I/O supported by TCP/IP. These I/O
types include CETI, HYPERchannel, and IUCV.

CETI Driver
The CETI driver controls the 9370 internal adapters supported by TCP/IP for VM
implementations (token-ring, Ethernet, and X.25 adapters).

The TCCETI1_ceti1 segment is the primary CETI driver. This segment prepares
channel control words (CCWs), controls memory requirements for CETI I/Os, and
processes initializations and communication with the 9370 internal adapters.
Table 7 describes some of this segment’s procedures.

Table 7. TCPIP Internal Activities

Procedure Description

SendCetiMessage This is the output routine for a CETI data port. It sends data
passed to it over the addressed CETI port to a given
destination. The message data and an appropriate header
are placed in the correct locations in the data port buffer
area. Transfer of the message to the CETI controller is
signaled by updating the outbound control block. This
process has four steps:

1. Checks for sufficient space; a return code is issued if
there is insufficient space.

2. Moves the message and appropriate header to the proper
location in the buffer.

3. Updates the outbound control block, which notifies the
controller of the outbound message.

4. Updates host-specific information, CurrentBuff, and
statistics.

GetCetiMessage This is the primary interface for receiving messages sent to
an inbound CETI port. It retrieves the next message from
the port indicated by the portindex parameter and places it
in the specified memory. After the message has been
transferred, the control block is updated to indicate that the
buffer has been freed. Data length is set by the caller to the
maximum size message that it can accept and reset by
GetCetiMessage to the actual number of bytes transferred.
This procedure updates INDX after the message has been
transferred, so that INDX remains NumBuffs ahead of the
next inbound message. It also updates SLPT, so that SLPT
refers to the same buffer as CurrentBuff.
Note: This procedure assumes that CheckCetiIo has verified
the presence of a message.

TCP/IP Procedures

40 z/VM: TCP/IP Diagnosis Guide

Table 7. TCPIP Internal Activities (continued)

Procedure Description

ToCeti This is the primary external task entry point for activating
the CETI driver. During device initialization, this procedure
is scheduled by the interrupt handler after each I/O
completion. During normal operation, it is activated by
higher levels using the SENDdatagram event or by the
interrupt handler if attention interrupts have occurred.
During initialization, interrupts cause the next I/O operation
in the startup sequence to be initiated, and send Datagram
events are ignored. During normal operation, both attention
interrupts and send datagram events cause a process Ceti
event to occur, which places any output into the correct
buffers and passes any input to the proper protocol
software.

HYPERchannel Driver
The HYPERchannel driver was taken from TCTOPC3 PASCAL (Version 1.1) and
modified to support HYPERchannel. There are several major differences between
the IBM 8232 (supported by TCTOPC3) and A22x (370 HYPERchannel adapter).

The IBM 8232 operates like a gateway supporting various LAN attachments, such
as Ethernet, token-ring, and Proteon. TCTOPC3 implements multiple packet
blocking and media interface headers for the IBM 8232. Packets to and from the
IBM 8232 have the IP-packets encapsulated in the media-interface protocol packets.
Multiple packets can also be transferred in an IBM 8232 block transfer. An IBM
8232 block consists of one or more media-interface encapsulated packets, prefixed
by a halfword index field. The end of the block is indicated by a halfword index
field of zero.

TCTOA22 PASCAL implements the following modifications to TCTOPC3.
v An A220 block starts with the HYPERchannel basic 16-bit message

encapsulation. For more information, see Figure 19 on page 42.
v Media-interface encapsulation is not performed; however, HYPERchannel-block

encapsulation is performed.
v Only a single packet is transferred for each block.

TCTOA22 implements basic message encapsulation with an IP packet starting at
displacement +16 (for example, message header +9 = X'10' and +11 = X'04').
Figure 19 shows the basic 16-bit message encapsulation.

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 41

Two enhancements to the basic 16-bit HYPERchannel encapsulated information are
supported, depending on schedules and assignment of the MESSAGETYPE field.
v Packet-blocking

Assuming that you assigned a unique MESSAGE TYPE field, TCTOA22
conditionally implements packet blocking using the IBM 8232 model (halfword
length fields terminated with a length field of zero). This enhancement requires
your installation to specify block or nonblocking mode.

v SLS/720 Datagram Mode
SLS/720 implements an extended message header for datagram mode that is not
directly interoperable with either the 16-bit or 32-bit mode encapsulation
standard described in RFC1044. It incorporates some aspects of both 16-bit and
32-bit modes, using the first 16 bits to address the SLS/720 in the local domain
and the second 16 bits to address the adapter in the remote domain (with a pair
of SLS/720s connecting the two domains using an RS449/TELCO link).

IUCV Links
At present, IUCV links support two types of IUCV communication: Passthrough
Virtual Machine (PVM) IUCV and System Network Architecture (SNA) IUCV. They
differ only in the connect procedure.

PVM IUCV
There are two types of PVM IUCV connections:
v Remote
v Local.

Trunks to try Message Flags

Protocol server
logical address

Originating
server address

Offset to start of IP
header from byte 12

Offset to start of IP
header from message start

Access Code 0000

(No longer supported)

Physical address of
source adapter

Physical address of
destination adapter

IP type designator
0x34

IP on HYPERchannel
type code 0x05

Padding (variable length including zero bytes)

First (64-offset) bytes of IP datagram

Remainder of IP datagram

No associated data is present if IP
datagram fits in the proper message

Dest
Port #

Source
Port #

To Trunks From Trunks GNA SRCCRC EXC A/D

Associated Data

0

10

20

30

40

50

60

70

Figure 19. The TCP/IP Layered Architecture for VM

TCP/IP Procedures

42 z/VM: TCP/IP Diagnosis Guide

Remote PVM IUCV: The CONNECT request for Remote PVM IUCV contains the
following two fields:

Field Description

VM ID
The VM ID of the CONNECT request is the ID of a local virtual machine.

user The user of the CONNECT request is the user of a local virtual machine.

The format of the user field in the CONNECT request is shown in
Figure 20 on page 43.

The time-out is set for one minute, because a response (COMPCONN or SERVER)
should occur within that time. If the time-out expires, the connection is
disconnected and retried later.

If a PENDCONN interrupt is received while waiting for a response to a
CONNECT, a conflict can occur. The conflict is resolved by using the
IucvOurPvmNode field. If the PVM node name is lower in the collating sequence
than the remote node, the CONNECT request is abandoned, and the pending
incoming connection request is served. If the PVM node name is higher in the
collating sequence than the remote node, the pending incoming connection request
is abandoned, and the CONNECT request is served.

Local PVM IUCV: The CONNECT request for Local PVM IUCV contains the
following two fields:

Field Description

VM ID
The VM ID of the CONNECT request is the ID of another TCP/IP user.

user The user of the CONNECT request is the user of a local virtual machine.

The format of the user field in the CONNECT request is shown in
Figure 21.

Local IUCV links are considered to be a PVM IUCV link.

SNA IUCV
The CONNECT request for SNA IUCV contains the following two fields:

Field Description

Remote PVM node

Remote TCPIP VM ID

1ST Doubleword

2ND Doubleword

81

Figure 20. Format of the User Field for a CONNECT Request

XYZZY

XYZZY

1ST Doubleword

2ND Doubleword

81

Figure 21. Format of the User Field for a Local IUCV CONNECT Request

TCP/IP Procedures

Chapter 5. TCP/IP Procedures 43

VM ID
The VM ID of the CONNECT request is the ID of another TCP/IP user.

user The user of the CONNECT request is the user of a local virtual machine.

The format of the user field in the CONNECT request is shown in
Figure 22.

If the local SNALINK machine is the SNA PLU, there should be a short response
time. If it is the SNA SLU, then the SNALINK machine does not respond until it
receives a BIND from the SNA PLU. Therefore, do not set a time-out while waiting
for a response to your CONNECT, because the SNALINK machine does not initiate
a connect in this case.

When communicating over an established path, blocks up to 32K are sent and
received. The blocks contain packets prefixed by block headers. Each packet is
preceded by a halfword block header that contains the offset within the block of
the next block header. A zero block header indicates the end of the block. Figure 23
shows a block containing a 10-byte packet followed by a 20-byte packet.

The PVM and SNALINK machines do not look at individual packets. They send
the block as a unit to the peer TCP/IP machine using the PVM or SNA network.
This driver only issues one IUCV SEND, and waits for the COMPMSG interrupt
before issuing the next SEND. The PVM or SNALINK machine can have more than
one outstanding SEND through SNALINK.

SNALINK Program Name
(usually SNALINK)

Remote LU Name

1ST Doubleword

2ND Doubleword

81

Figure 22. Format of the User Field for an SNA IUCV CONNECT Request

12 34 0010-byte packet

Offset (dec):

20-byte packet

0 12 14 342

Figure 23. IUCV Block Header

TCP/IP Procedures

44 z/VM: TCP/IP Diagnosis Guide

Chapter 6. Diagnosing the Problem

This chapter describes how to diagnose problems associated with TCP/IP and its
interfaces. Different scenarios are used to illustrate a systematic approach to
solving TCP/IP problems, although it is unlikely that they will duplicate exactly
the problems you encounter.

The scenarios presented in this chapter include the inability to connect to a TCP/IP
node, and failure of the HYPERchannel interface and the SNA IUCV connection.
Each scenario describes the problem, explains the symptoms associated with the
problem, outlines the steps necessary to determine the nature of the problem, and
suggests recovery procedures for you to implement.

For each scenario, the following configuration is used:

Nodes and Addresses Configuration Setting

Local node name LOCAL1

Local node IP address 1.2.3.4

Remote node name REMOTE1

Remote node IP address 1.2.4.1

Unable to Connect to TCP/IP Node
This section describes a failure to establish a Telnet connection to a TCP/IP node.

Description of the Problem
You attempt to activate a Telnet connection to a remote node, REMOTE1, but the
system returns an “Invalid or unknown node” message.

Symptom
When you execute the following TELNET command, the system returns the
following message:
TELNET REMOTE1

Host 'REMOTE1' Unknown.

Problem Determination
The system returns the Host host_name Unknown message, because the node is not
defined in the HOST LOCAL file in VM, the node is not defined in the Domain
Name System (DNS), or the host resides in a domain other than that specified in
the TCPIP DATA file.

If you are unsure whether the REMOTE1 host resides in your domain, try
specifying the fully-qualified name, including both the host name and domain
name.

If you use Domain Name Server (DNS) at your site, check the DNS database for
REMOTE1 and verify that the IP address is correct.

© Copyright IBM Corp. 1987, 2001 45

Another method of narrowing down the possible problem areas is to use the PING
command to see if any communications with the remote system are possible. The
PING command sends a string to the given destination and informs you of the
message’s status. It provides an efficient method for determining whether your
configuration is correct. The destination may be specified by its name or by its IP
address. The command is issued as follows:

PING 1.2.4.1
or

PING REMOTE1

The possible errors from the PING command invocation and the probable causes
of these errors are:
v HOST UNKNOWN - Name server problem (if host name was used) or problem

with the HOSTS LOCAL file.
v DESTINATION UNREACHABLE - This indicates that the name (if specified)

was successfully resolved, but there is no route that will allow access to that
host or network.
Use the NETSTAT GATE command to verify that the 1.2.4 subnet is readable. If
not, check the GATEWAY statements in the PROFILE TCPIP file in VM. The
GATEWAY statement defines how to connect to an external network. In this
scenario, you should find the entry 1.2.4.
If you are using dynamic routing (RouteD), verify that all routing daemons are
operating, and that BSDrouting parms are correct in the PROFILE TCPIP.

v TIMEOUT - Numerous error conditions are possible in this case. It could be that
the remote host is down, network congestion prevented the return of the PING
reply, or the reply came back after the timeout period. Further analysis is
required, focusing on the possible conditions.

PING—Sending an Echo Request to a Foreign Host
The PING command sends an echo request to a foreign host to determine if the
system is accessible. PING uses ICMP as its underlying protocol.

PING Command
The TCP/IP User’s Guide has the complete PING command format.

Resolving the PING Command Problems
The echo request sent by the PING command does not guarantee delivery. More
than one PING command should be sent before you assume that a communication
failure has occurred.

A foreign host can fail to respond even after several PING commands. This can be
caused by one of the following situations:
v The foreign host may not be listening to the network.
v The foreign host may be inoperative, or some network or gateway leading from

the user to the foreign host may be inoperative.
v The foreign host may be slow because of activity.
v The packet may be too large for the foreign host
v The routing table on the local host may not have an entry for the foreign host.

Use additional PING commands to communicate with other foreign hosts in the
network to determine the condition that is causing the communication failure.

Diagnosing the Problem

46 z/VM: TCP/IP Diagnosis Guide

However, you need to know the network topology to determine the location of the
failure. Issue the PING commands in the following order, until the failure is
located:
1. Send a PING command to your local host.
2. Send a PING command to a host (other than your local host) on your local

network.
3. Send a PING command to each intermediate node that leads from your local

host to the foreign host, starting with the node closest to your local host.

A successful PING command, sent to a different host on the same network as the
original host, suggests that the original host is down, or that it is not listening to
the network.

If you cannot get echoes from any host on that network, the trouble is usually
somewhere along the path to the foreign hosts. Direct a PING command to the
gateway leading to the network in question. If the PING command fails, continue
to test along the network from the target, until you find the point of the
communication breakdown.

Failure of the HYPERchannel Interface
This scenario describes the failure of a HYPERchannel driver, during which
disruption of the channel interface stops data transmittal between processors.

Description of the Problem
HYPERchannel is a high-speed extension of a channel interface between physically
distinct processors. This interface is similar to Ethernet or token-ring LANs,
defined according to 802 IEEE standards.

A HYPERchannel failure is difficult to diagnose, because it can result from
problems with software or hardware developed by different companies.

Symptom
When a HYPERchannel interface fails, it appears as a channel failure to the host.
To quickly determine if a HYPERchannel interface has failed, use a host-based
channel program, such as NetView® or the Event Reporting Error Program (EREP).
For example, NetView generates a real-time alert if the necessary filters are set.
This alert can automatically trigger a number of actions ranging from displaying a
highlighted message on the NetView screen to taking a series of automated,
corrective steps.

Problem Determination
You should use EREP to analyze a hardware error and determine its source in the
VM environment. Although EREP is limited in diagnosing a HYPERchannel
failure, it can isolate the problem to a HYPERchannel (sub)channel.

If the HYPERchannel has failed, or if a problem is suspected, the primary
diagnostic aid available for use in the VM environment is a TCP/IP level trace.

A MORETRACE HCH can be initiated to trace HYPERchannel activity. The
second-level trace should be used as opposed to just TRACE since the latter traces
only errors, while MORETRACE traces all activity. In analyzing the resultant trace
output, it is helpful to bear in mind that HYPERchannel transmission problems on
the local LAN will normally be reflected via A220 unit check and sense

Diagnosing the Problem

Chapter 6. Diagnosing the Problem 47

information. Transmission problems involving remote LANs (via link adapters, 710,
715, 720, 730, etc.) may reflect problems with fault messages, since the A220 part of
the operation may have already completed.

Since the HYPERchannel hardware is dedicated to the TCPIP virtual machine, the
tracing facilities present in native VM can also be used to aid in problem
determination.

Recovery
If a HYPERchannel hardware problem is evident or suspected by examination of
trace and/or EREP output, then the HYPERchannel driver should be stopped
using the OBEYFILE interface and the device taken off-line. The trace information
(particularly the sense codes) and possibly the EREP data should be made
available to the hardware CE to assist in problem analysis. Once the problem has
been resolved, the NETSTAT CP and OBEYFILE interfaces can be used to reactivate
the HYPERchannel driver.

If the problem cannot be positively identified as hardware-related, stop and restart
the HYPERchannel driver via the OBEYFILE interface, ensuring that “full” tracing
is activated. If the problem does not clear, contact the IBM Support Center. Ensure
that a trace of the HYPERchannel activity is available for submission as supporting
documentation of the problem.

Failure of an SNA IUCV Connection
The SNA IUCV connection communicates with other SNA nodes and is useful for
interfacing with a token-ring or X.25 NPSI configuration.

Description of the Problem
An SNA IUCV connection failure appears as if a device is lost, and the session
between the nodes is disrupted. Use NetView or EREP to identify an SNA IUCV
failure.

Symptom
An SNA IUCV connection failure signals either a hardware failure or a session
error, depending on the status of the connection across the interface. If an active
session is using the connection, the SNA IUCV failure is classified as a session
error and a session-level failure is generated. If a connectionless data transport
fails, the SNA IUCV failure is classified as a hardware failure of the data transport
and a link-level failure is generated by the access method.

When an SNA IUCV connection is disrupted, it is detected by the application that
is sending or receiving data, or by the communication software or hardware. For
example, if you are using UDP or ICMP connectionless data transport, the
datagram detects the failure. If an active session is in progress, an SNA or TCP
connection detects the failure.

Problem Determination
Determining the cause of an SNA IUCV failure depends on whether it is a session
error or hardware failure.

Session Error
Use a logical monitoring system, such as NetView, to determine the cause of a
session error. NetView generates a real-time alert if the necessary filters are set.

Diagnosing the Problem

48 z/VM: TCP/IP Diagnosis Guide

This alert notifies the network operator by displaying a highlighted message on the
NetView console. This message lists the session partners, which allows you to
determine where the failure occurred. Using NetView, you can:
v View the network and the specific interface
v Proceed through several layers of screens to pinpoint the source of the problem
v Test the interface for operability in most cases.

For more information about NetView’s diagnostic capabilities, see NetView at a
Glance.

If you are using an X.25 NPSI configuration, loss of the CTCP in your host can
cause a session error. The default name for the CTCP is TCPIPX25. The CTCP
operates through the X.25 NPSI GATE (Generalized Access to X.25 Transport
Extension) and provides a flexible interface between the host and the simulated LU
in X.25 NPSI.

You can activate an internal trace for TCPIPX25 by putting a TRACE statement in
the X25IPI CONFIG file. Use the DATA option on the TRACE statement and
specify debug flags to view the CTCP internally. At a minimum, specify the
following debug flags:

Flag Description

0 This flag is set to 0.

1 This flag is set to 0.

2 This flag traces the IUCV interface and is set to 1.

3 This flag traces the VTAM® interface and is set to 1.

4 This flag is set to 0.

5 This flag is set to 0.

6 This flag is set to 0.

7 This flag is set to 0.

For more information about the TRACE statement, see the TCP/IP Planning and
Customization.

Hardware Failure
The operating system or access method can detect a hardware failure. When a
hardware failure occurs, the operating system displays a message and writes it to a
system error log, such as EREP. Analyze the error log to determine what hardware
component failed and why.

Recovery
The steps you take to recover the SNA IUCV link depend on your network
configuration and the cause of the failure. Once you have determined the cause,
you can use NetView to recover the SNA IUCV link:

NetView can perform the following enhanced error recovery procedures:
v Highlights the error message on the NetView console so that it does not scroll

off the screen
v Creates automated recovery procedures
v Forwards the alert to the appropriate focal point.

Diagnosing the Problem

Chapter 6. Diagnosing the Problem 49

Diagnosing the Problem

50 z/VM: TCP/IP Diagnosis Guide

Chapter 7. TCP/IP Traces

This chapter describes how to activate traces and direct the output to a file or the
screen. Single and group processes are also described and samples of trace output
are shown.

Debugging in VM
There are no special TCP/IP options or invocation parameters that are specifically
directed toward VM-specific debugging activities. Since all of the servers are
implemented as virtual machines, normal VM debugging tools are available for use
in problem analysis.

Executing Traces
Varying levels of tracing of virtual machine activity are available for use in the VM
environment. This tracing is activated through the use of the CP TRACE command.
Refer to the CP Command Reference publication for more information on the use of
these commands. The scope of the processing that one traces by virtue of these
commands should be selected judiciously. Portions of TCP/IP processing are very
timing-dependent. Excessive tracing can introduce connection failures due to
time-out limits being exceeded.

Activating Traces
There are two levels of detail for run-time traces: first-level and second-level traces.
These levels are also referred to as basic and detailed traces. Second-level traces
provide more detailed information than first-level traces. Each internal TCP/IP
process can be independently selected for first-level tracing or for the additional
level of detail provided by second-level tracing.

Use of the TRACEONLY statement restricts TCP/IP stack tracing to particular
users, devices, or IP addresses.

Activation of tracing can be accomplished by either including a list of processes to
be traced in the TCPIP profile or by using the OBEYFILE command to manipulate
the trace specifications dynamically. A combination of these methods can also be
used to vary the amount of tracing performed as needs dictate. Both levels of
tracing are eligible for manipulation by these means. The default name of the
profile is PROFILE TCPIP. For more information about OBEYFILE, see the TCP/IP
Planning and Customization.

First-Level Trace
To activate and deactivate first-level traces, use the TRACE and NOTRACE
commands, respectively.

The following is the format of the TRACE command:

© Copyright IBM Corp. 1987, 2001 51

�� TRACE �

ALL

process_name ��

The parameters of the TRACE command are:

Parameter Description

process_name Is the set of new process names to be activated by TRACE. The
new set replaces any previous set of selected processes.

ALL Is the default value and activates the ALL set of process names.

The following is the format of the NOTRACE command:

�� NOTRACE �

ALL

process_name ��

The parameters of the NOTRACE command are:

Parameter Description.

process_name Is the set of process names to be deactivated by NOTRACE.
NOTRACE deactivates a set of process names previously started
by a TRACE command.

ALL Is the default value and deactivates the entire trace process, closing
any active trace file.

Second-Level Trace
To activate and deactivate second-level traces, use the MORETRACE and
LESSTRACE commands, respectively.

The following is the format of the MORETRACE command:

�� MORETRACE �

ALL

process_name ��

The parameters of the MORETRACE command are:

Parameter Description

TCP/IP Traces

52 z/VM: TCP/IP Diagnosis Guide

process_name Is the set of process names to be activated by MORETRACE.
MORETRACE activates second-level traces.

ALL Is the default value and activates the ALL set of process names.

The following is the format of the LESSTRACE command:

�� LESSTRACE �

ALL

process_name ��

The parameters of the LESSTRACE command are:

Parameter Description

process_name Is the set of process names to be deactivated by LESSTRACE.
LESSTRACE deactivates a set of process names previously started
by a MORETRACE statement.

ALL Is the default value and deactivates the entire second-level trace
process.

Figure 43 on page 80 shows a sample trace using LESSTRACE.

Directing Output
You can send trace output either to a file or to the screen.

Output Directed to a File
The FILE command creates a file and writes the current trace output to it.

VM FILE Command:

�� FILE filename filetype
A

filemode
��

The parameters of the FILE command are:

Parameter Description

filename The name of the file to which the output is written.

filetype The file type of the file to which the output is written.

filemode The file mode where the file is written.

Output Directed to the Screen
The SCREEN command sends trace output to the TCPIP user console, closing any
active disk trace file.

TCP/IP Traces

Chapter 7. TCP/IP Traces 53

�� SCREEN ��

The SCREEN command has no parameters.

For more information about trace activation and output statements, see the TCP/IP
Planning and Customization .

Process Names
The process names entered in the TRACE, NOTRACE, MORETRACE, and
LESSTRACE commands are used in conjunction with the internal procedures listed
in “Internal Procedures” on page 33. There are single process names and group
process names. A group process combines several single processes into one process
name.

You should be as specific as possible when entering process names, because some
process names yield voluminous output. For example, the output from the
MORETRACE ALL command can be overwhelming. Also, you should not execute
traces unnecessarily, because it can adversely affect system response time.

Note: In the sample traces shown in this chapter, the home addresses could be:
v 9.67.58.233
v 9.67.58.39
v 9.67.58.193

There can be more than one name for a process. The following sections list the
different forms of the process name where appropriate.

Single Process Names
Single process names involve only one event. They are usually not as helpful as
entering a group process name or several single process names, because several
processes can give complementary information, which in some situations, could be
matched with a CCW trace, if required.

ARP
The ARP trace provides information about the ARP process, ARP table contents,
ARP packets, and ARP requests.

Figure 24 shows a sample trace of the ARP process and the ARP table content
using ARP and Parse-Tcp options.

Note: The event Arp adds translation... indicates when ARP translation
information is added to the ARP table. ARPop is the operation field in the
ARP packet. A value of 1 is an ARP request, and a value of 2 is an ARP
response.

TCP/IP Traces

54 z/VM: TCP/IP Diagnosis Guide

ScanTranslationTable: Scanning for ARP entries older than 300 seconds
ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.226
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234
ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193
ScanTranslationTable: Scanning for ARP entries older than 300 seconds
ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.226
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234
ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

Figure 24. A Sample of an ARP Trace (Part 1 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 55

Arpin: Processing Arp packet:
ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 1
ArpSenderHardwareAddr: 10005A140138
ArpSenderInternetAddr: 9.67.58.225
ArpTargetHardwareAddr: C53400D7C530
ArpTargetInternetAddr: 9.67.58.234

Arpin: Processing Arp packet:
ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 1
ArpSenderHardwareAddr: 10005A140138
ArpSenderInternetAddr: 9.67.58.225
ArpTargetHardwareAddr: C49C00D7C498
ArpTargetInternetAddr: 9.67.58.234

ScanTranslationTable: Scanning for ARP entries older than 300 seconds
ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.226
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233
ScanTranslationVisitNode: Deleting entry for link TR1 address 9.67.58.234, age 325 seconds
ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193
ArpReqSent: ArpEnvelopeQueue is now:

1 packets queued waiting for ARP reply
First Hop 9.67.58.234, Seconds on queue 0

Arpin: Processing Arp packet:
ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 2
ArpSenderHardwareAddr: 10005A250858
ArpSenderInternetAddr: 9.67.58.234
ArpTargetHardwareAddr: 10005A6BB806
ArpTargetInternetAddr: 9.67.58.233

Arp adds translation9.67.58.234 = IBMTR: 10005A250858
ArpReplyReceived: ArpEnvelopeQueue is now:

0 packets queued waiting for ARP reply
ScanTranslationTable: Scanning for ARP entries older than 300 seconds
ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39
ScanTranslationVisitNode: Deleting entry for link TR1 address 9.67.58.226, age 310 seconds
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234
ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

Figure 24. A Sample of an ARP Trace (Part 2 of 3)

TCP/IP Traces

56 z/VM: TCP/IP Diagnosis Guide

Figure 25 shows the MORETRACE command used in conjunction with an ARP
trace.

Arpin: Processing Arp packet:
ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 1
ArpSenderHardwareAddr: 10005A0019F5
ArpSenderInternetAddr: 9.67.58.226
ArpTargetHardwareAddr: F53400D7F530
ArpTargetInternetAddr: 9.67.58.234

Arpin: Processing Arp packet:
ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 1
ArpSenderHardwareAddr: 10005A0019F5
ArpSenderInternetAddr: 9.67.58.226
ArpTargetHardwareAddr: F53400D7F530
ArpTargetInternetAddr: 9.67.58.233

Arp adds translation9.67.58.226 = IBMTR: 10005A0019F5
ScanTranslationTable: Scanning for ARP entries older than 300 seconds
ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.226
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234
ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

Figure 24. A Sample of an ARP Trace (Part 3 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 57

CCS
Figure 26 shows a sample of a CCS CP System Service trace. This trace indicates
when a remote client has logged on using a TELNET internal client.

CLAW Trace Information
The CLAW driver support includes provisions to gather trace information to assist
in problem diagnosis. This tracing is supported by the CLAW process name.
Activation of the CLAW trace process can be accomplished by either including the
process name in the list of processes to be traced in the PROFILE TCPIP file or by
using the OBEYFILE command interface.

Two levels of tracing are supported, TRACE and MORETRACE. Specifying TRACE
CLAW results in the generation of the following output.
v Information about CLAW read and write channel program processing
v Start I/O and write complete notifications

ScanTranslationTable: Scanning for ARP entries older than 300 seconds
ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233
ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193
ArpReqSent: ArpEnvelopeQueue is now:

1 packets queued waiting for ARP reply
First Hop 9.67.58.234, Seconds on queue 0

Arpin: Processing Arp packet:
ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 0
ArpSenderHardwareAddr: 10005A250858
ArpSenderInternetAddr: 9.67.58.234
ArpTargetHardwareAddr: 10005A6BB806
ArpTargetInternetAddr: 9.67.58.233

Arp adds translation9.67.58.234 = IBMTR: 10005A250858
ArpReplyReceived: ArpEnvelopeQueue is now:

0 packets queued waiting for ARP reply
ScanTranslationTable: Scanning for ARP entries older than 300 seconds
ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.234
ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193
.
.
.
ScanTranslationTable: Scanning for ARP entries older than 300 seconds
ScanTranslationVisitNode: NOT deleting entry for link ETH1 address 9.67.58.39
ScanTranslationVisitNode: NOT deleting entry for link TR1 address 9.67.58.233
ScanTranslationVisitNode: Deleting entry for link TR1 address 9.67.58.2 34, age 342 seconds
ScanTranslationVisitNode: NOT deleting entry for link TR2 address 9.67.58.193

Figure 25. A Sample of an ARP Trace Using MORETRACE

Telnet server: Conn 0:Connection opened 09/07/97 at 12:29:14
Foreign internet address and port: net address = 9.67.58.226, port= 1030

12:30:04 09/07/97 PCCA3 common routine KILL TCB #1000 (INTCLIEN) Foreign host aborted the
connection

Bytes: 9313 sent, 292 received
Segs in: 67 OK, 24 pushed
Max use: 1 in retransmit Q

Figure 26. A Sample of a CCS Trace

TCP/IP Traces

58 z/VM: TCP/IP Diagnosis Guide

v CSW information on I/O completions
v Data from Sense ID channel command execution
v Statistical information about packets (queue sizes, packet data lengths, and so

forth)
v ACB information.

Figure 27 shows an abridged section of a sample trace of the CLAW process.

:
ToClaw: Acb Received:
11793672:

Have completed I/O -> To-CLAW (from Claw interrupt handler)
IoDevice 0A90
Csw:

Keys: 00, CcwAddress: 006BABB0
Unit Status: 0C, Channel Status: 00
Byte Count: 0

Device AIXV3:
Type: CLAW, Status: Sense ID on input
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

CLAW device AIXV3:
Received Sense ID data: FF 30 88 61 00 00 00 on device 0A90

ToClaw: Acb Received:
11793672:

Have completed I/O -> To-CLAW (from Claw interrupt handler)
IoDevice 0A91
Csw:

Keys: 00, CcwAddress: 006BABB0
Unit Status: 0C, Channel Status: 00
Byte Count: 0

Device AIXV3:
Type: CLAW, Status: Sense ID on output
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

Figure 27. A Sample of a CLAW Trace (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 59

Specifying MORETRACE CLAW results in the generation of the following output:
v All trace information described for TRACE CLAW, above
v Envelope and CLAW control packet information
v IP datagram information

CLAW device AIXV3:
Received Sense ID data: FF 30 88 61 00 00 00 on device 0A91

CLAW device AIXV3:
CallSio: Starting I/O on device 0A90. First command 02

ToClaw: Acb Received:
11793984:

Send datagram -> To-CLAW (from To-CLAW)
Device AIXV3:

Type: CLAW, Status: Waiting for start pkt
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 1 0
CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 32
CLAW device AIXV3:

CallSio: Starting I/O on device 0A91. First command 01
ToClaw: Acb Received:
11793984:

Have completed I/O -> To-CLAW (from Claw interrupt handler)
IoDevice 0A91
Csw:

Keys: 00, CcwAddress: 00001018
Unit Status: 0C, Channel Status: 00
Byte Count: 1

Device AIXV3:
Type: CLAW, Status: Waiting for start pkt
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

CLAW device AIXV3: ToClaw write complete.
CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 0
ToClaw: Acb Received:
11793672:

Have completed I/O -> To-CLAW (from Claw interrupt handler)
IoDevice 0A90
Csw:

Keys: 00, CcwAddress: 00002878
Unit Status: 00, Channel Status: 80
Byte Count: 8208

Device AIXV3:
Type: CLAW, Status: Waiting for start pkt
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

Claw device AIXV3: System validate completed.
CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 2 0
CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 32
CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 32
CLAW device AIXV3:

CallSio: Starting I/O on device 0A91. First command 01
:

Figure 27. A Sample of a CLAW Trace (Part 2 of 2)

TCP/IP Traces

60 z/VM: TCP/IP Diagnosis Guide

v Read and write channel program information when I/O is started

Figure 28 on page 62 shows an abridged section of a sample trace of the CLAW
process when MORETRACE is specified.

TCP/IP Traces

Chapter 7. TCP/IP Traces 61

:
ToClaw: Acb Received:
11777704:

Send datagram -> To-CLAW (from To-CLAW)
Device AIXV3:

Type: CLAW, Status: Ready
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 0
ToClaw: Acb Received:
11777704:

Have completed I/O -> To-CLAW (from Claw wait scan)
IoDevice 0000
Csw:

Keys: 00, CcwAddress: 00000000
Unit Status: 00, Channel Status: 00
Byte Count: 0

Device AIXV3:
Type: CLAW, Status: Ready
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

CLAW device AIXV3: Received Control Packet:
Connection Response: Version=2, Link ID=2, Correlator=0,
Return Code=0, Work station application=TCPIP,
Host application=TCPIP

CLAW device AIXV3: Received Control Packet:
Disconnect: Version=2, Link ID=2, Correlator=0,
Return Code=0, Work station application= ,
Host application=

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 1 0
CLAW device AIXV3: Sending envelope:

Disconnect: Version=2, Link ID=2, Correlator=0,
Return Code=0, Work station application=TCPIP,
Host application=TCPIP

CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 32
CLAW device AIXV3: StartClawOutputIo
CCWB at 00692D80, real address=0001FD80, data at 0069B000
OpCode=01 Address=016000 Flags=60 Length=0020
OpCode=22 Address=01FD8F Flags=60 Length=0001
OpCode=08 Address=020008 Flags=00 Length=0000
CLAW device AIXV3:

CallSio: Starting I/O on device 0A91. First command 01
CLAW device AIXV3: ToClaw: Sio returned 0 on device 0A91
ToClaw: Acb Received:
11777600:

Send datagram -> To-CLAW (from To-CLAW)
Device AIXV3:

Type: CLAW, Status: Ready
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

Figure 28. A Sample of a CLAW Trace Using MORETRACE (Part 1 of 3)

TCP/IP Traces

62 z/VM: TCP/IP Diagnosis Guide

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 0
ToClaw: Acb Received:
11777704:

Have completed I/O -> To-CLAW (from Claw interrupt handler)
IoDevice 0A91
Csw:

Keys: 00, CcwAddress: 00020018
Unit Status: 0C, Channel Status: 00
Byte Count: 1

Device AIXV3:
Type: CLAW, Status: Ready
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

CLAW device AIXV3: ToClaw write complete.
CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 0
ToClaw: Acb Received:
11777704:

Have completed I/O -> To-CLAW (from Claw interrupt handler)
IoDevice 0A90
Csw:

Keys: 00, CcwAddress: 0001F998
Unit Status: 00, Channel Status: 80
Byte Count: 8208

Device AIXV3:
Type: CLAW, Status: Ready
Envelope queue size: 0
Address: 0A90
Host name: HOST
Adapter name: PSCA
Control task name: NONE

CLAW device AIXV3:
UnpackReads: NetType 98 AdapterNumber 1 BytesToMove 156

CLAW device AIXV3: Received IP datagram:
IP Datagram:
version: 4
Internet Header Length: 5 = 20 bytes
Type of Service:Precedence = Routine
Total Length: 156 bytes
Identification: 3590
Flags: May Fragment, Last Fragment
Fragment Offset: 0
Time To Live: 255
Protocol: ICMP
Header CheckSum: 42324
Source Address: 01020301
Destination Address: 01020302

Figure 28. A Sample of a CLAW Trace Using MORETRACE (Part 2 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 63

It is not recommended that either level of CLAW tracing be activated as a normal
course of business. These traces have the potential to generate large amounts of
data and there is a fair amount of overhead associated with them. In sample traces
of the same test traffic, MORETRACE CLAW generated more than twice as many
lines of output as TRACE CLAW. Both should be used with discretion, with
exploitation of MORETRACE CLAW reserved for those situations where a
CLAW-related problem is evident and you wish to maximize the collection of
diagnostic data.

Congestion
Figure 29 shows a sample of a TCP Congestion Control trace.

A TCP Congestion Control trace gives information about internal TCPIP
congestion.

CLAW device AIXV3: ToClaw PackWrites: Queuesizes: 0 1
CLAW device AIXV3: Sending envelope:

IP Datagram:
version: 4
Internet Header Length: 5 = 20 bytes
Type of Service:Precedence = Routine
Total Length: 156 bytes
Identification: 3590
Flags: May Fragment, Last Fragment
Fragment Offset: 0
Time To Live: 60
Protocol: ICMP
Header CheckSum: 26709
Source Address: 01020302
Destination Address: 01020301

CLAW device AIXV3: ToClaw PackWrites: LengthOfData: 156
CLAW device AIXV3: StartClawOutputIo
CCWB at 00692D80, real address=0001FD80, data at 0069B000
OpCode=09 Address=016000 Flags=60 Length=009C
OpCode=22 Address=01FD8F Flags=60 Length=0001
OpCode=08 Address=020018 Flags=00 Length=0000
CLAW device AIXV3:

CallSio: Starting I/O on device 0A91. First command 09
CLAW device AIXV3: ToClaw: Sio returned 0 on device 0A91

:

Figure 28. A Sample of a CLAW Trace Using MORETRACE (Part 3 of 3)

TCP/IP Traces

64 z/VM: TCP/IP Diagnosis Guide

CONSISTENCYCHECKER or CONSISTENCY_CHECKER
The Consistency Checker or Consistency_Checker trace provides information about
a TCPIP user’s internal consistency, including the number of buffers allocated and
the number of active connections. The Consistency Checker is not enabled unless
the ASSORTEDPARMS configuration statement option CHECKCONSISTENCY has
been specified.

Figure 30 shows a sample of a Consistency Checker trace.

.

.

.
TCPUTI032I Conn 1004: TcpSlowStart: CongestionWindow now 536, was 65535. Thr
esh now 1072, was 65535. MSS 536, SndWnd 0
TCPUTI032I Conn 1004: TcpSlowStart: CongestionWindow now 536, was 536. Thres
h now 1072, was 1072. MSS 536, SndWnd 0
TCPUTI032I Conn 1004: TcpSlowStart: CongestionWindow now 536, was 536. Thres
h now 1072, was 1072. MSS 536, SndWnd 0
TCPUTI015I 11:17:49 05/28/91 TCP-request KILL TCB #1004 (USER11) Foreign h
ost did not respond within OPEN timeout
TCPUTI019I Bytes: 1 sent, 0 acked, 0 received
TCPUTI027I Max use: 1 in retransmit Q
TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 65535, Thresh
old 65535, MSS 536, increment 536
TCPUTI032I Conn 1004: TcpSlowStart: CongestionWindow now 536, was 65535. Thr
esh now 4096, was 65535. MSS 536, SndWnd 8192
TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 536, Threshol
d 4096, MSS 536, increment 536
TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 1072, Thresho
ld 4096, MSS 536, increment 536
TCPDOW021I Avoiding small packet. Desired 3, Max seg 536, MaxSndWnd div 2 40
96, HowManyInUse 1
TCPDOW021I Avoiding small packet. Desired 6, Max seg 536, MaxSndWnd div 2 40
96, HowManyInUse 1
TCPDOW021I Avoiding small packet. Desired 9, Max seg 536, MaxSndWnd div 2 40
96, HowManyInUse 1
TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 1608, Thresho
ld 4096, MSS 536, increment 536
TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 2144, Thresho
ld 4096, MSS 536, increment 536
TCPROU003I Conn 1004: Opening congestion win: CongestionWindow 3216, Thresho
ld 4096, MSS 536, increment 536
TCPUTI015I 11:20:37 05/28/91 TCP-request KILL TCB #1004 (USER11) You abort
ed the connection
TCPUTI019I Bytes: 73 sent, 2293 received
TCPUTI022I Segs in: 19 OK
TCPUTI027I Max use: 1 in retransmit Q

.

.

.

Figure 29. A Sample of a Congestion Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 65

PCCA3 device LCS1: PCCA reports home hardware address 02608C1A73F5 for link ETH1
PCCA3 device LCS1: PCCA reports home hardware address 10005A6BB806 for link TR1
PCCA3 device LCS1: PCCA reports home hardware address 10005A6BAFDF for link TR2
Maximum recent queues: Timer = 5, ToDo = 4
ToTcpBuff buffers allocated: InUse conns = 0, NotInUse conns = 0
ToCpBuff buffers allocated: InUse conns = 0 NotInUse conns = 0
FromTcpBuff buffers allocated: InUse conns = 0 NotInUse conns = 0
FromCpBuff buffers allocated: InUse conns = 0, NotInUse conns = 0
CheckTree traversing tree IP routing via TreeTraverse
NodeCount 5, tree head says 5
CheckTree traversing tree IP routing via NormalTraverse
NodeCount 5, tree head says 5
Height 4
Free count 295, tree count 5, total 300, expected 300

CheckTree traversing tree TCP connections via TreeTraverse
NodeCount 5, tree head says 5
CheckTree traversing tree TCP connections via NormalTraverse
NodeCount 5, tree head says 5
Height 4
Free count 251, tree count 5, total 256, expected 256

CheckTree traversing tree UDP ports via TreeTraverse
NodeCount 4, tree head says 4
CheckTree traversing tree UDP ports via NormalTraverse
NodeCount 4, tree head says 4
Height 3
Free count 26, tree count 4, total 30, expected 30

CheckTree traversing tree Address translation via TreeTraverse
NodeCount 5, tree head says 5
CheckTree traversing tree Address translation via NormalTraverse
NodeCount 5, tree head says 5
Height 4
Free count 1495, tree count 5, total 1500, expected 1500

Figure 30. A Sample of a CONSISTENCYCHECKER Trace (Part 1 of 2)

TCP/IP Traces

66 z/VM: TCP/IP Diagnosis Guide

ELANS
The ELANS trace provides ELANS adapter status, ARP translations, received frame
type, LLC frame type, and the entering ELANS procedure name.

ICMP
The ICMP trace provides information about the ICMP packets sent from the
networks, and gives the IP addresses or names if the names are in the HOST
LOCAL file. Figure 31 shows a sample of an ICMP trace. ICMP was specified in
the TRACE statement in the PROFILE TCPIP file.

17:36:23 10/24/97 PCCA3 common routine KILL TCB #1001 (FTPSERVE) Foreign host ab
orted the connection

Bytes: 409 sent, 80 received
Segs in: 18 OK
Max use: 2 in retransmit Q

Telnet server: Conn 0:Connection opened 10/24/90 at 17:36:35
Foreign internet address and port: net address = 9.67.58.225, port= 1071

Telnet server: Conn 1:Connection opened 10/24/90 at 17:37:17
Foreign internet address and port: net address = 9.67.43.126, port= 3213

Maximum recent queues: Timer = 7, ToDo = 3
ToTcpBuff buffers allocated: InUse conns = 0, NotInUse conns = 0
ToCpBuff buffers allocated: InUse conns = 0 NotInUse conns = 0
FromTcpBuff buffers allocated: InUse conns = 0 NotInUse conns = 0
FromCpBuff buffers allocated: InUse conns = 0, NotInUse conns = 0
CheckTree traversing tree IP routing via TreeTraverse
NodeCount 5, tree head says 5
CheckTree traversing tree IP routing via NormalTraverse
NodeCount 5, tree head says 5
Height 4
Free count 295, tree count 5, total 300, expected 300

CheckTree traversing tree TCP connections via TreeTraverse
NodeCount 8, tree head says 8
CheckTree traversing tree TCP connections via NormalTraverse
NodeCount 8, tree head says 8
Height 6
Free count 248, tree count 8, total 256, expected 256
CheckTree traversing tree UDP ports via TreeTraverse
NodeCount 4, tree head says 4
CheckTree traversing tree UDP ports via NormalTraverse
NodeCount 4, tree head says 4
Height 3
Free count 26, tree count 4, total 30, expected 30
CheckTree traversing tree Address translation via TreeTraverse
NodeCount 5, tree head says 5
CheckTree traversing tree Address translation via NormalTraverse
NodeCount 5, tree head says 5
Height 4
Free count 1495, tree count 5, total 1500, expected 1500
CcbGarbageCollect disposing of CCB for client TCPUSR13
17:38:18 10/24/97 TCP-request KILL TCB #1006 (FTPSERVE) OK

Bytes: 11457 sent, 2 received
Segs in: 5 OK
Max use: 3 in retransmit Q

Telnet server: Conn 2:Connection opened 10/24/97 at 17:39:21
Foreign internet address and port: net address = 9.67.58.225, port= 1072

Telnet server: Conn 3:Connection opened 10/24/97 at 17:41:27
Foreign internet address and port: net address = 9.67.58.225, port= 1073

Figure 30. A Sample of a CONSISTENCYCHECKER Trace (Part 2 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 67

IGMP
The IGMP trace provides information about the Internet Group Management
Protocol (IGMP). This includes information about joining and leaving IGMP
multicast groups. It also displays IGMP query and report messages received and
the IGMP reports sent out. Figure 32 shows a sample of a IGMP trace. IGMP was
specified in the TRACE statement in the PROFILE TCPIP file.

PCCA3 initializing:
Device LCS1:

Type: LCS, Status: Not started
Envelope queue size: 0
Address: 0560

TCP-IP initialization complete.
PCCA3 device LCS1: Received startup packet

IP-up sees ICMP datagram, code 3, subcode: 3, source: Loopback, dest: Loopback, len: 36
PCCA3 device LCS1: PCCA reports home hardware address 02608C1A73F5 for link ETH1
PCCA3 device LCS1: PCCA reports home hardware address 10005A6BB806 for link TR1
PCCA3 device LCS1: PCCA reports home hardware address 10005A6BAFDF for link TR2

IP-up sees ICMP datagram, code 0, subcode: 0, source: RALVMM, dest: SA23, len: 256
IP-up sees ICMP datagram, code 3, subcode: 3, source: Loopback, dest: Loopback, len: 36
IP-up sees ICMP datagram, code 0, subcode: 0, source: APOLLO, dest: SA23, len: 256

Figure 31. A Sample of an ICMP Trace

TCP/IP Traces

68 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

ILANS
The ILANS trace provides ILANS adapter status, ARP translations, received frame
type, LLC frame type, and the entering ILANS procedure name. If you run the
ILANS trace from the PROFILE TCPIP, it shows the adapter address.

Figure 33 shows a sample of an ILANS trace.

DTCIPU055I IgmpAddGroup: Adding multicast group 224.0.0.9 on link TRING interface 9.130.48.70
DTCPDO088I SendIGMP : Sent IGMP report for multicast group 224.0.0.9 on link TRING interface 9.130.48.70
DTCIPU080I IGMPaddGroup: IGMP report message pending for group 224.0.0.9
DTCIPU057I IgmpHandle: received IGMP datagram
DTCPRC001I version: 4
DTCPRC002I Internet Header Length: 5 = 20 bytes
DTCPRC009I Type of Service:Precedence = Routine
DTCPRC010I Total Length: 28 bytes
DTCPRC011I Identification: 0
DTCPRC009I Flags: May Fragment, Last Fragment
DTCPRC009I Fragment Offset: 0
DTCPRC019I Time To Live: 1
DTCPRC020I Protocol: IGMP
DTCPRC021I Header CheckSum: 40975
DTCPRC022I Source Address: 09823046
DTCPRC023I Destination Address: E0000009
DTCIPU049I IP-up sees IGMP datagram, code: 18, source: 9.130.48.70, dest: 224.0.0.9, group: 224.0.0.9, len: 8
DTCIPU050I IgmpHandle: dropping loopback IGMP datagram
DTCIPU055I IgmpAddGroup: Adding multicast group 224.0.0.9 on link FDNET interface 9.130.248.99
DTCPDO088I SendIGMP : Sent IGMP report for multicast group 224.0.0.9 on link FDNET interface 9.130.248.99
DTCIPU080I IGMPaddGroup: IGMP report message pending for group 224.0.0.9
DTCPDO088I SendIGMP : Sent IGMP report for multicast group 224.0.0.9 on link TRING interface 9.130.48.70
DTCPDO088I SendIGMP : Sent IGMP report for multicast group 224.0.0.9 on link FDNET interface 9.130.248.99
:
DTCIPU057I IgmpHandle: received IGMP datagram
DTCPRC001I version: 4
DTCPRC002I Internet Header Length: 5 = 20 bytes
DTCPRC009I Type of Service:Precedence = Routine
DTCPRC010I Total Length: 28 bytes
DTCPRC011I Identification: 36252
DTCPRC009I Flags: May Fragment, Last Fragment
DTCPRC009I Fragment Offset: 0
DTCPRC019I Time To Live: 1
DTCPRC020I Protocol: IGMP
DTCPRC021I Header CheckSum: 37567
DTCPRC022I Source Address: 0982B001
DTCPRC023I Destination Address: E0000001
DTCIPU049I IP-up sees IGMP datagram, code: 17, source: 9.130.176.1, dest: 224.0.0.1, group: *, len: 8
DTCIPU059I IgmpHandle: processing IGMP query
DTCIPU078I IgmpHandle: IGMP report message pending for group 224.0.0.9
DTCIPU082I IgmpHandle: completed IGMP query processing

Figure 32. A Sample of an IGMP Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 69

|

INITIALIZE
The initialization trace provides information about TCPIP initialization. The return
codes for the AUTOLOG and FORCE commands are also provided.

Figure 34 shows a sample of an INITIALIZE trace using MORETRACE. The
information provided by MORETRACE includes a list of autologged clients,
authorizations, and reserved ports and a table of local ports.

CETI device initializing:
Device ILANS1:

Type: ILANS, Status: Not started
Envelope queue size: 0
Address: 0240

TCP-IP initialization complete.
ILANS device ILANS1: Entering IlansLevel2Init
ILANS device ILANS1: Sending SET_NET_PARMS.request
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS device ILANS1: SET_NET_PARMS.confirm:
Completion status 00000000, Extended Status 00000000
ILANS device ILANS1: Sending DLM_RTV_ATTRIB.request
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS device ILANS1: CIOA MAC primitive type is CC31
ILANS device ILANS1: DLM_RTV_ATTRIB.confirm: Completion status 00000000
Node address: 10005A4209A0
ILANS device ILANS1: Sending DL_ACTIVATE_SAP.request
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS device ILANS1: CIOA LLC primitive type is CC0D
ILANS device ILANS1: DL_ACTIVATE_SAP.confirm: Completion status 00000000, PSapId '0007120C'X
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS device ILANS1: Entering DispatchTr: EtherType '0806'X
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS device ILANS1: Entering DispatchTr: EtherType '0806'X
Arp adds translation9.67.58.234 = IBMTR: 10005A250858
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS device ILANS1: Entering DispatchTr: EtherType '0800'X
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS device ILANS1: Entering DispatchTr: EtherType '0800'X
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS device ILANS1: Entering DispatchTr: EtherType '0806'X
Arp adds translation9.67.58.226 = IBMTR: 10005A0019F5
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS device ILANS1: Entering DispatchTr: EtherType '0800'X
CETI shutting down:
Device ILANS1:

Type: ILANS, Status: Ready
Envelope queue size: 0
Address: 0240

Final result of DoHaltIo for device 0242: Cond code 0
Final result of DoHaltIo for device 0243: Cond code 0

Figure 33. A Sample of an ILANS Trace

TCP/IP Traces

70 z/VM: TCP/IP Diagnosis Guide

TCPIP AT GDLVM7 VIA RSCS 09/07/97 11:09:58 EST FRIDAY
VM TCP/IP V2R4

Initializing...
UnlockAll issuing "CP UNLOCK TCPIP 0 DFF"
COMMAND COMPLETE
LCS devices will use diagnose 98 real channel program support
Trying to open GDLVM7 TCPIP *
Trying to open PROFILE TCPIP *
Using profile file PROFILE TCPIP *
PCCA3 initializing:
Device LCS1:

Type: LCS, Status: Not started
Envelope queue size: 0
Address: 0560

Telnet server: Using port 23
Telnet server: No inactivity timeout
Telnet server: Every 1800 seconds a timing mark option packet will be sent.
**
Log of IBM TCP/IP Telnet Server Users started on 09/07/97 at 11:10:43

State after initialization:

Client list: Queue size = 19
13610776:
PrevCCB: Client list
NextCCB: 13611528
Authorization: Monitor, Informed
No outstanding VMCF messages
Handled notices: none
Last touched: 20
Login name: OPERATOR
Notice list: empty
Reserved socket list: empty
VMCF error count: 0

13611528:
PrevCCB: 13610776
NextCCB: 13612280
Authorization: Monitor, Informed
No outstanding VMCF messages
Handled notices: none
Last touched: 20
Login name: TCPMAINT
Notice list: empty
Reserved socket list: empty
VMCF error count: 0
.
.
.
13600336:
PrevCCB: 13599584
NextCCB: Client list
No outstanding VMCF messages
Handled notices: Buffer space available, Connection state changed, Data deliv
ered, User-defined notification, Datagram space available, Urgent pending, UDP d
ata delivered, UDP datagram space available, Other external interrupt received,
User delivers line, User wants attention, Timer expired, FSend response, FReceiv
e error, RawIp packets delivered, RawIp packet space available, IUCV interrupt,
I/O interrupt, Resources available for TcpOpen, Resources available for UdpOpen,

Figure 34. A Sample of an INITIALIZE Trace Using MORETRACE (Part 1 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 71

Connection list: Queue size = 1
Ping response or timeout, SMSG received
Last touched: 41
Login name: INTCLIEN
Notice list: empty
Reserved socket list: Queue size = 1

5104192:
PrevScb: 13601048
NextScb: 13601048
Client: INTCLIEN

4671640:
PrevTcb: 5104256
NextTcb: 5104256
Backoff count 0
Client: INTCLIEN
ClientRcvNxt: 0
ClientSndNxt: 600188177
CongestionWindow: 65535, SlowStartThreshold: 65535
Local connection name: 1000
Foreign socket: net address = *, port= Unspecified
Sender frustration level: Contented
Incoming segment queue: Queue size = 1

5732096:
PrevDataBuffer: 4672528
NextDataBuffer: 4672528
First Unused Sequence Number: 0
Offset of last byte delivered: 0
Offset of last byte received: 0
Sequence number of first byte: 0

Incoming window number: 0
Initial receive sequence number: 0
Initial send sequence number: 600188176
Maximum segment size: 536
Local socket: net address = *, port= TELNET (23)
Outgoing window number: 0
Precedence: Routine
RcvNxt: 0
Round-trip information:

Smooth variance: 1.500
ReplaceSmooth TRUE

SndNxt: 600188176
SndUna: 600188176
SndWl1: 0
SndWl2: 0
SndWnd: 0
MaxSndWnd: 0
State: Listen
No pending TCP-receive

Figure 34. A Sample of an INITIALIZE Trace Using MORETRACE (Part 2 of 3)

TCP/IP Traces

72 z/VM: TCP/IP Diagnosis Guide

IPDOWN or IP-DOWN
The IPDOWN or IP-DOWN trace provides information about the IP_DOWN
process and IP packets, including the link name and link type.

Figure 35 shows a sample of an IPDOWN trace.

When you use the MORETRACE command, you receive information about the
datagram such as the length, ID, protocol, TTL, addresses, and fragments. A
sample of an IPDOWN trace using MORETRACE is shown in Figure 36.

IPUP or IP-UP
The IPUP or IP-UP trace provides the ID, length, protocol, and source address of
incoming datagrams.

Figure 37 shows a sample of an IPUP trace.

Local socket: net address = *, port = TELNET (23) * permanently reserved*
* autolog client *

VMCF error count: 0
The local port hash table:

20 = FTPSERVE has 0 TCBs for socket *.FTP default data (20) *Perm 21 = FTPS
ERVE has 0 TCBs for socket *.FTP control (21) *Perm *Autolog 23 = INTCLIEN has
1 TCBs for socket *.TELNET (23) *Perm *Autolog 25 = SMTP has 0 TCBs for socke
t *.SMTP (25) *Perm *Autolog 53 = NAMESRV has 0 TCBs for socket *.DNS (53) *Pe
rm *Autolog 53 = NAMESRV has 0 TCBs for socket *.DNS (53) *Perm *Autolog 161
= SNMP has 0 TCBs for socket *.161 *Perm *Autolog 162 = SNMPQE has 0 TCBs for
socket *.162 *Perm *Autolog 512 = REXECD has 0 TCBs for socket *.REXEC (512)
*Perm *Autolog 514 = REXECD has 0 TCBs for socket *.RSH (514) *Perm *Autolog
2049 = VMNFS has 0 TCBs for socket *.2049 *Perm *Autolog

Figure 34. A Sample of an INITIALIZE Trace Using MORETRACE (Part 3 of 3)

Ipdown: Link: Link Name: TR1, Link Type: IBMTR, Dev Name: LCS1, Dev Type: LCS, Queuesize: 0
Ipdown: FirstHop 9.67.58.234

Figure 35. A Sample of an IPDOWN Trace

IP-down: ShouldFragment: Datagram: 5046328 Packet size:0
version: 0
Internet Header Length: 5 = 20 bytes
Type of Service:Precedence = Routine
Total Length: 77 bytes
Identification: 43
Flags: May Fragment, Last Fragment
Fragment Offset: 0
Time To Live: 60
Protocol: UDP
Header CheckSum: 1443
Source Address: 09433AE9
Destination Address: 09432B64

Figure 36. A Sample of an IPDOWN Trace Using MORETRACE

TCP/IP Traces

Chapter 7. TCP/IP Traces 73

When you use the MORETRACE command, you receive additional information
about the datagram, such as TTLs and fragments. A sample of an IPUP trace using
MORETRACE is shown in Figure 38.

MONITOR
The MONITOR trace provides information about monitor requests, such as netstat,
trace modifications, and drops, from authorized users.

A sample of a MONITOR trace using the MORETRACE command is shown in
Figure 39. To receive more information from the details provided by MORETRACE,
use the MONITORquery function.

IP-up: datagram ID 52556, len 124, Protocol UDP from 9.67.43.100
DispatchDatagram: Dest 9.67.43.126, protocol 1 dispatch mode 1, PassedRoute T, DontRoute F

Figure 37. A Sample of an IPUP Trace

IP-up examining:
version: 0
Internet Header Length: 5 = 20 bytes
Type of Service:Precedence = Routine
Total Length: 124 bytes
Identification: 52670
Flags: May Fragment, Last Fragment
Fragment Offset: 0
Time To Live: 28
Protocol: UDP
Header CheckSum: 22496
Source Address: 09432B64
Destination Address: 09433AE9

Figure 38. A Sample of an IPUP Trace Using MORETRACE

TCP/IP Traces

74 z/VM: TCP/IP Diagnosis Guide

Monitor cmd: UseNewFile returns
OK

Monitor called:
External interrupt handler->Monitor: Accept monitor request

from TCPMAINT Monitor query

DoMonitorQuery called.
Mon Query: VMCF receive completed.
Mon Query: QueryRecord.QueryType = 12
Mon Query: reject/reply ret code is 0

OK
DoMonitorQuery Ending!
Monitor called:

External interrupt handler->Monitor: Accept monitor request
from TCPMAINT Monitor query

DoMonitorQuery called.
Mon Query: VMCF receive completed.
Mon Query: QueryRecord.QueryType = 2
Mon Query: reject/reply ret code is 0

OK
DoMonitorQuery Ending!
Monitor called:

External interrupt handler->Monitor: Accept monitor request
from TCPMAINT Monitor query

DoMonitorQuery called.
Mon Query: VMCF receive completed.
Mon Query: QueryRecord.QueryType = 12
Mon Query: reject/reply ret code is 0

OK
DoMonitorQuery Ending!
Monitor called:

External interrupt handler->Monitor: Accept monitor request
from TCPMAINT Monitor query

DoMonitorQuery called.
Mon Query: VMCF receive completed.
Mon Query: QueryRecord.QueryType = 14
Mon Query: reject/reply ret code is 0

OK
DoMonitorQuery Ending!
Monitor called:

External interrupt handler->Monitor: Accept monitor request
from TCPMAINT Monitor query

DoMonitorQuery called.
Mon Query: VMCF receive completed.
Mon Query: QueryRecord.QueryType = 4
Mon Query: reject/reply ret code is 0

OK
DoMonitorQuery Ending!
Monitor called:

External interrupt handler->Monitor: Accept monitor request
from TCPMAINT Monitor query

DoMonitorQuery called.
Mon Query: VMCF receive completed.
Mon Query: QueryRecord.QueryType = 12
Mon Query: reject/reply ret code is 0

OK
DoMonitorQuery Ending!
Monitor called:

External interrupt handler->Monitor: Accept monitor request
from TCPMAINT Monitor query

Figure 39. A Sample of a MONITOR Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 75

MULTICAST
The MULTICAST trace provides information about the multicast options associated
with sockets. This includes information about setting ttl, loopback, and outgoing
interface. It also includes information about joining and leaving multicast groups.
Figure 40 shows a sample of a MULTICAST trace. MULTICAST was specified in
the TRACE statement in the PROFILE TCPIP file.

DoMonitorQuery called.
Mon Query: VMCF receive completed.
Mon Query: QueryRecord.QueryType = 2
Mon Query: reject/reply ret code is 0

OK
DoMonitorQuery Ending!
Monitor called:

External interrupt handler->Monitor: Accept monitor request
from TCPMAINT Monitor query
DoMonitorQuery called.
Mon Query: VMCF receive completed.
Mon Query: QueryRecord.QueryType = 8
10:52:37 09/11/90 Monitor KILL TCB #1010 (INTCLIEN) Connection dropped by operator

Bytes: 6469 sent, 13213 received
Segs in: 110 OK, 35 pushed
Max use: 1 in retransmit Q

Respond to TCPMAINT :
OK

Monitor: SimpleResponse--SendMessage RetCode is
OK

Monitor called:
External interrupt handler->Monitor: Accept monitor request

from TCPMAINT Monitor command

Monitor cmd: VMCF receive completed.

Figure 39. A Sample of a MONITOR Trace Using MORETRACE (Part 2 of 2)

DTCSOC031I SetSockOptIp : Set IP_MULTICAST_TTL : 1
DTCIPU070I Multicast Socket Options
DTCIPU071I Output Interface address : *
DTCIPU072I Time to live (TTL) : 1
DTCIPU073I Loopback : Enabled
DTCIPU075I Number of Multicast groups : 0
DTCSOC032I SetSockOptIp : Set IP_ADD_MEMBERSHIP; multicast group: 224.0.0.9 interface: 9.130.48.70
DTCIPU076I IpMcastAdd: Adding multicast group 224.0.0.9 on link TRING interface 9.130.48.70
DTCIPU070I Multicast Socket Options
DTCIPU071I Output Interface address : *
DTCIPU072I Time to live (TTL) : 1
DTCIPU073I Loopback : Enabled
DTCIPU075I Number of Multicast groups : 1
DTCIPU063I Multicast Group Information
DTCIPU064I Multicast Group Address : 224.0.0.9
DTCIPU065I Interface Address : 9.130.48.70
DTCIPU084I Link Name : TRING
DTCIPU066I Reference Count : 1
DTCIPU067I Report pending : Yes
DTCIPU069I MAC address : C00000040000

Figure 40. A Sample of a MULTICAST Trace (Part 1 of 2)

TCP/IP Traces

76 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

NOPROCESS or NO-PROCESS or NONE
NOPROCESS or NO-PROCESS or NONE all suppress tracing. They are similar to
the NOTRACE and LESSTRACE commands.

NOTIFY
NOTIFY traces the NOTIFY VMCF transactions between users and TCPIP. It
provides information about MSGIG, CALLCODEs, ACB numbers, text of notices,
return codes of VMCF transactions, and transaction parameters, such as LENA,
LENB, VADA, and VADB. Figure 41 shows a sample of a NOTIFY trace.

DTCSOC032I SetSockOptIp : Set IP_ADD_MEMBERSHIP; multicast group: 224.0.0.9 interface: 9.130.176.198
DTCIPU076I IpMcastAdd: Adding multicast group 224.0.0.9 on link ETRING interface 9.130.176.198
DTCIPU070I Multicast Socket Options
DTCIPU071I Output Interface address : *
DTCIPU072I Time to live (TTL) : 1
DTCIPU073I Loopback : Enabled
DTCIPU075I Number of Multicast groups : 2
DTCIPU063I Multicast Group Information
DTCIPU064I Multicast Group Address : 224.0.0.9
DTCIPU065I Interface Address : 9.130.48.70
DTCIPU084I Link Name : TRING
DTCIPU066I Reference Count : 1
DTCIPU067I Report pending : Yes
DTCIPU069I MAC address : C00000040000
DTCIPU063I Multicast Group Information
DTCIPU064I Multicast Group Address : 224.0.0.9
DTCIPU065I Interface Address : 9.130.176.198
DTCIPU084I Link Name : ETRING
DTCIPU066I Reference Count : 1
DTCIPU067I Report pending : Yes
DTCIPU069I MAC address : 01005E000009

Figure 40. A Sample of a MULTICAST Trace (Part 2 of 2)

Notify called for ACB 13719104:
Send notice -> Notify (from UDP-request)
Last touched: 70090

Client: TCPMAINT
Notice: UDP data delivered

UDP data delivered is NOT valid.
Notify called for ACB 13719104:

Send notice -> Notify (from IP-up)
Last touched: 70090

Client: NAMESRV
Notice: UDP data delivered

UDP data delivered is valid.
ProduceMessage: Message id = 111 CallCode = 16 ReturnCode = 0
NOTIFY: UDP INFO
LenA = 49
LenB = 234881024 VadB = 1039
AnInteger = 49
Connection = 4096

Figure 41. A Sample of a NOTIFY Trace (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 77

|

Figure 42 shows a sample of a NOTIFY trace using the MORETRACE command,
which provides additional information about allocated buffers for users and the
number of notices stacked.

Notify called for ACB 13719104:
Terminate notice -> Notify (from External interrupt handler)
Last touched: 70090

Client name: NAMESRV
Message identifier:111

Notify called for ACB 13719104:
Send notice -> Notify (from IP-up)
Last touched: 70090

Client: TCPMAINT
Notice: UDP data delivered

UDP data delivered is valid.
ProduceMessage: Message id = 113 CallCode = 16 ReturnCode = 0
NOTIFY: UDP INFO
LenA = 65
LenB = 234881024 VadB = 53
AnInteger = 65
Connection = 4096
Notify called for ACB 13719416:

Send notice -> Notify (from UDP-request)
Last touched: 70090

Client: NAMESRV
Notice: UDP data delivered

UDP data delivered is NOT valid.
Notify called for ACB 13719416:

Terminate notice -> Notify (from External interrupt handler)
Last touched: 70090

Client name: TCPMAINT
Message identifier:113

Notify called for ACB 13719416:
Send notice -> Notify (from PCCA3 common routine)
Last touched: 70090

Client: SNMPQE
Notice: RawIp packets delivered

RawIp packets delivered is valid.
Notify called for ACB 13718896:

Send notice -> Notify (from PCCA3 common routine)
Last touched: 70091
Timeout: 73504.811 seconds

Client: TCPMAINT
Notice: Ping response or timeout

PingTurnCode: OK
Elapsed time: 0.109 seconds

Ping response or timeout is valid.
ProduceMessage: Message id = 115 CallCode = 30 ReturnCode = 0

Figure 41. A Sample of a NOTIFY Trace (Part 2 of 2)

TCP/IP Traces

78 z/VM: TCP/IP Diagnosis Guide

PARSE-TCP
The PARSE-TCP trace provides information about the options and statements
parsed during TCPIP initialization or after reading an OBEYFILE containing
information about home links. PARSE-TCP produces the TCP/IP configuration if it
is specified in the TRACE statement of the TCPIP PROFILE. This trace is helpful
when running many test cases, because it can suggest the traces that should be
executed.

Figure 43 shows a sample of the console log after executing an OBEYFILE
command. The OBEYFILE contained the following commands:
TRACE parse-tcp
MORETRACE tcp
LESSTRACE tcp-request.

Note: MORETRACE activates TCP traces on both the TRACE and
DETAILEDTRACE statements in Figure 43. For more information on TCP

Notify called for ACB 13720144:
Send notice -> Notify (from PCCA3 common routine)
Last touched: 70215
Timeout: 73349.117 seconds

Client: SNMPQE
Notice: RawIp packets delivered

Notify allocates buffer #0
FindAndSendNotice(SNMPQE) finds 1 notices queued
RawIp packets delivered is valid.
WrapUp(SNMPQE): 13719728:

Send notice -> Notify (from PCCA3 common routine)
Last touched: 70215
Timeout: 73349.117 seconds

Client: SNMPQE
Notice: RawIp packets delivered

WrapUp frees buffer #0
Notify called for ACB 13719520:

Send notice -> Notify (from PCCA3 common routine)
Last touched: 70215
Timeout: 73635.007 seconds

Client: TCPMAINT
Notice: Ping response or timeout

PingTurnCode: OK
Elapsed time: 0.110 seconds

Notify allocates buffer #0
FindAndSendNotice(TCPMAINT) finds 1 notices queued
Ping response or timeout is valid.

ProduceMessage: Message id = 121 CallCode = 30 ReturnCode = 0
Send ExternalBuffer 0 to TCPMAINT

Notify called for ACB 13719520:
Terminate notice -> Notify (from External interrupt handler)
Last touched: 70215
Timeout: 73635.007 seconds

Client name: TCPMAINT
Message identifier:121

WrapUp(TCPMAINT): 13720144:
Send notice -> Notify (from PCCA3 common routine)
Last touched: 70215
Timeout: 73635.007 seconds

Client: TCPMAINT
Notice: Ping response or timeout

PingTurnCode: OK
Elapsed time: 0.110 seconds

WrapUp frees buffer #0

Figure 42. A Sample of a NOTIFY Trace Using MORETRACE

TCP/IP Traces

Chapter 7. TCP/IP Traces 79

group processes, see “TCP” on page 125. TCPREQUEST is not listed in the
DETAILEDTRACE statement in Figure 43, because the LESSTRACE
command in the OBEYFILE excludes TCP-request.

PING
The PING trace provides information about outgoing PING requests from home
clients, ICMP datagrams, and associated data. It is helpful to match ICMP
datagram data with CCW traces.

Figure 44 shows a sample of a PING trace.

All tracing goes to screen
Trace: TCP congestion control, Notify, Parse-Tcp, Retransmit-datagram,
Roundtrip, TCP-down, TCP-request, TCP-up
DetailedTrace: TCP congestion control, Notify, Retransmit-datagram,
Roundtrip, TCP-down, TCP-up

BSD info for links:
ETH1: BrdAddr 9.67.58.63, DstAddr *, MaxMtu 0, Metric 0, SubnetMask 255.255.255.224
TR1: BrdAddr 9.67.58.255, DstAddr *, MaxMtu 0, Metric 0, SubnetMask 255.255.255.224
TR2: BrdAddr 9.67.58.223, DstAddr *, MaxMtu 0, Metric 0, SubnetMask 255.255.255.224

Figure 43. A Sample of a PARSE-TCP Trace Using MORETRACE and LESSTRACE

Ping called:
13714800:

Accept ping request -> Ping process (from External interrupt handler)
Last touched: 23
Timeout: 203.493 seconds

Client name: TCPMAINT
Address: 9.67.43.126
Length: 256
Timeout: 10

DoPing sending datagram:
version: 0
Internet Header Length: 5 = 20 bytes
Type of Service:Precedence = Routine
Total Length: 276 bytes
Identification: 1234
Flags: May Fragment, Last Fragment
Fragment Offset: 0
Time To Live: 60
Protocol: ICMP
Header CheckSum: 43
Source Address: 09433AE9
Destination Address: 09432B7E

Figure 44. A Sample of a PING Trace (Part 1 of 2)

TCP/IP Traces

80 z/VM: TCP/IP Diagnosis Guide

ROUNDTRIP or ROUND-TRIP
The ROUNDTRIP or ROUND-TRIP trace shows the average round-trip time.

Figure 45 shows a sample of the ROUNDTRIP trace.

Data:
08 00 23 43 00 D1 46 A8 47 83 D5 AB 53 8D 8B 5B
7F D6 A3 7F 8D 5B 7B ED 22 72 5C 92 64 42 3E 79
18 27 2F ED 6B B9 68 04 B1 04 66 C5 27 80 03 9D
78 BB 4F 97 53 A2 0A 52 39 85 D4 A9 5D 53 DA B8
02 6D 9D 11 28 2B 06 E1 DE 16 C9 5F 2B CC 3A 08
C6 7E 72 00 BB C8 C0 E4 11 E3 C5 A8 76 C2 2A 6D
72 13 47 6F 4D F0 3E C9 34 29 02 F9 4E 5C B8 80
74 F3 01 33 FA 1C 8B CB D9 45 B7 9B D3 9B B3 5A
5D A1 06 68 B3 8F 20 E0 CC 82 50 C8 2B 63 AC BD
0D 21 5A EE 3B DB C9 96 DB 6F B5 7B 91 48 EC 56
39 82 E8 37 FB 0E DF E4 F3 91 D1 AF 3C 13 7D 29
B8 AF 57 73 23 E8 97 B6 4E A2 12 1D 6B 8B 7F A5
CF A9 64 2B C5 62 1D 1D 62 C2 3B 0A B5 E0 35 12
8D C9 E3 0B 09 EB 9E 8E 3C 37 A5 16 07 F0 83 29
B6 BC 09 3A C8 40 E1 A1 84 73 F5 F5 73 86 97 1E
E1 C2 BA 0B 30 05 E2 D9 33 21 36 C5 53 75 19 23

UpToPing processing datagram:
version: 0
Internet Header Length: 5 = 20 bytes
Type of Service:Precedence = Routine
Total Length: 276 bytes
Identification: 1234
Flags: May Fragment, Last Fragment
Fragment Offset: 0
Time To Live: 58
Protocol: ICMP
Header CheckSum: 555
Source Address: 09432B7E
Destination Address: 09433AE9
Data:

00 00 2B 43 00 D1 46 A8 47 83 D5 AB 53 8D 8B 5B
7F D6 A3 7F 8D 5B 7B ED 22 72 5C 92 64 42 3E 79
18 27 2F ED 6B B9 68 04 B1 04 66 C5 27 80 03 9D
78 BB 4F 97 53 A2 0A 52 39 85 D4 A9 5D 53 DA B8
02 6D 9D 11 28 2B 06 E1 DE 16 C9 5F 2B CC 3A 08
C6 7E 72 00 BB C8 C0 E4 11 E3 C5 A8 76 C2 2A 6D
72 13 47 6F 4D F0 3E C9 34 29 02 F9 4E 5C B8 80
74 F3 01 33 FA 1C 8B CB D9 45 B7 9B D3 9B B3 5A
5D A1 06 68 B3 8F 20 E0 CC 82 50 C8 2B 63 AC BD
0D 21 5A EE 3B DB C9 96 DB 6F B5 7B 91 48 EC 56
39 82 E8 37 FB 0E DF E4 F3 91 D1 AF 3C 13 7D 29
B8 AF 57 73 23 E8 97 B6 4E A2 12 1D 6B 8B 7F A5
CF A9 64 2B C5 62 1D 1D 62 C2 3B 0A B5 E0 35 12
8D C9 E3 0B 09 EB 9E 8E 3C 37 A5 16 07 F0 83 29
B6 BC 09 3A C8 40 E1 A1 84 73 F5 F5 73 86 97 1E
E1 C2 BA 0B 30 05 E2 D9 33 21 36 C5 53 75 19 23

UpToPing: Ping was requested by TCPMAINT
UpToPing: Ping took 0.314 seconds

Figure 44. A Sample of a PING Trace (Part 2 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 81

SCHEDULER
The SCHEDULER trace shows the next main process to be executed. Because
scheduler trace entries contain a time stamp, it is often helpful to include TRACE
SCHEDULER when diagnosing other problems so that events can be placed in
time.

Figure 46 shows a sample of a SCHEDULER trace.

Note: The number in each line of the SCHEDULER trace is a partial time stamp
that shows in relative terms when each event occurred. The values are in
16-microsecond units.

Figure 47 shows a sample of a SCHEDULER trace using the MORETRACE
command, which adds information about the ACB to be processed. This trace
provides information, such as message identifiers, client calls, and details related to
VMCF communication.

RecordSend: Timeout interval is 300 timer units
Ack #1 took 0.043; # acked: 1, ave RT: 0.043
Avg time in burst: 0.043, err 0.000 => smooth RT: 0.043, smooth var: 0.022

RecordSend: Timeout interval is 75 timer units
Ack #4 took 0.075; # acked: 2, ave RT: 0.059
Avg time in burst: 0.075, err 0.032 => smooth RT: 0.047, smooth var: 0.024

RecordSend: Timeout interval is 75 timer units
Ack #22 took 0.040; # acked: 3, ave RT: 0.053
Avg time in burst: 0.040, err 0.007 => smooth RT: 0.046, smooth var: 0.020

RecordSend: Timeout interval is 75 timer units
Ack #25 took 0.041; # acked: 4, ave RT: 0.050
Avg time in burst: 0.041, err 0.005 => smooth RT: 0.045, smooth var: 0.016

RecordSend: Timeout interval is 75 timer units
Ack #31 took 0.058; # acked: 5, ave RT: 0.051
Avg time in burst: 0.058, err 0.013 => smooth RT: 0.047, smooth var: 0.015

RecordSend: Timeout interval is 75 timer units
Ack #34 took 0.049; # acked: 6, ave RT: 0.051
Avg time in burst: 0.049, err 0.002 => smooth RT: 0.047, smooth var: 0.012

Figure 45. A Sample of a ROUNDTRIP Trace

Scheduler: 2312233908 Accept TCP request -> TCP-request
Scheduler: 2312801249 Accept TCP request -> TCP-request
Scheduler: 2312801447 Accept TCP request -> TCP-request
Scheduler: 2312801649 Accept monitor request -> Monitor
Scheduler: 2312801997 Accept ping request -> Ping process
Scheduler: 2312802206 Examine incoming datagram -> IP-up
Scheduler: 2312802343 Examine incoming datagram -> IP-up
Scheduler: 2312802446 Send notice -> Notify
Scheduler: 2312802615 Terminate notice -> Notify
Scheduler: 2312802739 Accept TCP request -> TCP-request
Scheduler: 2313031379 Accept TCP request -> TCP-request
Scheduler: 2313031645 Accept monitor request -> Monitor

Figure 46. A Sample of a SCHEDULER Trace

TCP/IP Traces

82 z/VM: TCP/IP Diagnosis Guide

DASD 03EE LINKED R/O; R/W BY TCPMNTA
DMSACP723I Z (3EE) R/O
DASD 03EE DETACHED
DTCSCH004I Scheduler: 2339349463 Accept TCP request -> TCP-request
DTCPRI048I 32871464:
DTCPRI058I Accept TCP request -> TCP-request (from Extnl interrupt hndlr)
DTCPRI061I Client name: TCPMNTA
DTCPRI062I Message identifier:10
DTCPRI063I Client call: End TCP/IP service
DTCSCH004I Scheduler: 2339442590 Look at Timer Queue -> Timer
DTCPRI048I 32871464:
DTCPRI058I Look at Timer Queue -> Timer (from External interrupt handler)
DTCSCH004I Scheduler: 2339442967 Check consistency -> Consistency checker
DTCPRI048I 32871944:
DTCPRI058I Check consistency -> Consistency checker (from Timer)
DTCSCH004I Scheduler: 2339443369 Terminate notice -> Notify
DTCPRI048I 32871944:
DTCPRI058I Terminate notice -> Notify (from External interrupt handler)
DTCPRI098I Client name: FTPSRVA
DTCPRI099I Message identifier:-3
DTCPRI100I Return code: Abnormal condition during inter-VM communication (VMCF Rc=0 User=FTPSRVA)
DTCSCH004I Scheduler: 2339449984 Look at Timer Queue -> Timer
DTCPRI048I 32871944:
DTCPRI058I Look at Timer Queue -> Timer (from External interrupt handler)
DTCSCH004I Scheduler: 2339450329 Internal Telnet timeout -> Internal Telnet timeout handler
DTCPRI048I 32871584:
DTCPRI058I Internal Telnet timeout -> Internal Telnet timeout handler (from Timer)
DTCPRI103I Timer Datum: 16777216, Timer Number: 1
DTCSCH004I Scheduler: 2339450814 Internal Telnet notification -> Internal Telnet server
DTCPRI048I 32871944:
DTCPRI058I Internal Telnet notification -> Internal Telnet server (from Internal Telnet timeout hndlr)
DTCPRI005I Notification: Timer expired
DTCPRI015I Datum: 16777216, Associated timer: 1
DTCSCH004I Scheduler: 2339521596 Accept TCP request -> TCP-request
DTCPRI048I 32871944:
DTCPRI058I Accept TCP request -> TCP-request (from External interrupt handler)
DTCPRI061I Client name: TCPMNTA
DTCPRI062I Message identifier:6
DTCPRI063I Client call: Begin TCP/IP service
DTCSCH004I Scheduler: 2339522504 Accept TCP request -> TCP-request
DTCPRI048I 32871944:
DTCPRI058I Accept TCP request -> TCP-request (from External interrupt handler)
DTCPRI061I Client name: TCPMNTA
DTCPRI062I Message identifier:8
DTCPRI063I Client call: Handle notice
DTCPRC104I Notices: Buffer space available, Connection state changed

Figure 47. A Sample of a SCHEDULER Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 83

, Data delivered, User-defined notification, Datagram space available
, Urgent pending, UDP data delivered, UDP datagram space available
, Other external interrupt received, User delivers line
, User wants attention, Timer expired, FSend response, FReceive error
, RawIp packets delivered, RawIp packet space available, IUCV interrupt
, I/O interrupt, Resources available for TcpOpen
, Resources available for UdpOpen, Ping response or timeout, SMSG received
DTCSCH004I Scheduler: 2339523820 Accept monitor request -> Monitor
DTCPRI048I 32871944:
DTCPRI058I Accept monitor request -> Monitor (from External interrupt handler)
DTCPRI061I Client name: TCPMNTA
DTCPRI062I Message identifier:10
DTCPRI063I Client call: Monitor query
DTCSCH004I Scheduler: 2339524493 Accept ping request -> Ping process
DTCPRI048I 32871944:
DTCPRI058I Accept ping request -> Ping process (from External interrupt handler)
DTCPRI070I Client name: TCPMNTA
DTCPRI071I Address: 9.130.3.2
DTCPRI072I Length: 256
DTCPRI073I Timeout: 10
DTCSCH004I Scheduler: 2339525028 Examine incoming datagram -> IP-up
DTCPRI048I 32871824:
DTCPRI058I Examine incoming datagram -> IP-up (from Ping process)
DTCPRI280I Timeout: 64.829 seconds
DTCSCH004I Scheduler: 2339525285 Examine incoming datagram -> IP-up
DTCPRI048I 32871944:
DTCPRI058I Examine incoming datagram -> IP-up (from IP-up)
DTCSCH004I Scheduler: 2339525450 Send notice -> Notify
DTCPRI048I 32871704:

Figure 47. A Sample of a SCHEDULER Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

84 z/VM: TCP/IP Diagnosis Guide

SHUTDOWN or SHUT-DOWN
The SHUTDOWN or SHUT-DOWN trace provides information about clients and
servers, TCPIP shut down, and the status of pending communication between
clients and TCPIP.

Figure 49 shows a sample of a SHUTDOWN trace.

DTCPRI058I Send notice -> Notify (from IP-up)
DTCPRI280I Timeout: 492.394 seconds
DTCPRI081I Client: TCPMNTA
DTCPRI084I Notice: Ping response or timeout
DTCPRI092I PingTurnCode: OK
DTCPRI093I Elapsed time: 0.004 seconds
DTCSCH004I Scheduler: 2339528415 Terminate notice -> Notify
DTCPRI048I 32871704:
DTCPRI058I Terminate notice -> Notify (from External interrupt handler)
DTCPRI280I Timeout: 492.394 seconds
DTCPRI098I Client name: TCPMNTA
DTCPRI099I Message identifier:5
DTCSCH004I Scheduler: 2339529294 Accept TCP request -> TCP-request
DTCPRI048I 32871824:
DTCPRI058I Accept TCP request -> TCP-request (from External interrupt handler)
DTCPRI280I Timeout: 64.829 seconds
DTCPRI061I Client name: TCPMNTA
DTCPRI062I Message identifier:14
DTCPRI063I Client call: End TCP/IP service
DTCSCH004I Scheduler: 2339670616 Accept TCP request -> TCP-request
DTCPRI048I 32871824:
DTCPRI058I Accept TCP request -> TCP-request (from External interrupt handler)
DTCPRI280I Timeout: 64.829 seconds
DTCPRI061I Client name: TCPMNTA
DTCPRI062I Message identifier:6
DTCPRI063I Client call: Begin TCP/IP service
DTCSCH004I Scheduler: 2339671667 Accept monitor request -> Monitor
DTCPRI048I 32871824:
DTCPRI058I Accept monitor request -> Monitor (from External interrupt handler)
DTCPRI280I Timeout: 64.829 seconds
DTCPRI061I Client name: TCPMNTA
DTCPRI062I Message identifier:8
DTCPRI063I Client call: Monitor command
DASD 03EE LINKED R/O; R/W BY TCPMNTA
DMSACP723I Z (3EE) R/O
DASD 03EE DETACHED

Figure 48. continuation of the SCHEDULER Trace

11:01:57 09/07/90 Shutdown KILL TCB #1001 (FTPSERVE) TCP/IP service is being shut down
Bytes: 0 sent, 0 received
Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1003 (SMTP) TCP/IP service is being shut down
Bytes: 0 sent, 0 received
Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1007 (NAMESRV) TCP/IP service is being shut down
Bytes: 0 sent, 0 received
Max use: 0 in retransmit Q

Figure 49. A Sample of a SHUTDOWN Trace (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 85

SNMPDPI
The SNMPDPI trace provides SNMP “sub-agent” tracing. It lists the MIB queries
by the SNMP agent.

Figure 50 shows a sample of an SNMPDPI trace.

SOCKET
The SOCKET trace provides information about the requests made through the
IUCV socket interface, as well as most responses.

11:01:57 09/07/90 Shutdown KILL TCB #1000 (INTCLIEN) TCP/IP service is being shut down
Bytes: 0 sent, 0 received
Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1008 (SNMP) You aborted the connection
Bytes: 0 sent, 0 received
Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1002 (PORTMAP) You aborted the connection
Bytes: 0 sent, 0 received
Max use: 0 in retransmit Q

11:01:57 09/07/90 Shutdown KILL TCB #1006 (SNMPQE) You aborted the connection
Bytes: 0 sent, 0 received
Max use: 0 in retransmit Q

7 active clients, with 4 connections in use.
I will delay shutting down for 30 seconds, so that
RSTs and shutdown notifications may be delivered.
If you wish to shutdown immediately, without warning,
type #CP EXT again.

Server Telnet closed down. Bye.
PCCA3 shutting down:

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 0
Address: 0560

UnlockAll issuing "CP UNLOCK TCPIP 0 DFF"
COMMAND COMPLETE
ShutDown at 75442.687 seconds

Figure 49. A Sample of a SHUTDOWN Trace (Part 2 of 2)

SNMP DPI process called for ACB 13657768:
Process SNMP agent request -> SNMP DPI sub-agent (from Sock-request)

SnmpAgentCcb SNMPD, SnmpAgentSockNumber 7
ProcessMibRequest: Cmd 2, ObjectId 1.3.6.1.2.1.2.2.1.2.1.,

GroupId 1.3.6.1.2.1.2.2.1.2..
ProcessMibRequest: Name ifDescr, EffectiveCmd 2,

EffectiveObjectId 1.3.6.1.2.1.2.2.1.2.1., Instance 1
mkDPIresponse: ret_code 0
object_id 1.3.6.1.2.1.2.2.1.2.2, set_type 2, value_len 13
D80638:49424D20 4E505349 20582E32 35000000
SNMP DPI process called for ACB 13657456:

Process SNMP agent request -> SNMP DPI sub-agent (from Sock-request)
Timeout: 209.996 seconds

SnmpAgentCcb SNMPD, SnmpAgentSockNumber 7
ProcessMibRequest: Cmd 1, ObjectId 1.3.6.1.2.1.2.2.1.2.7.,

GroupId 1.3.6.1.2.1.2.2.1.2.7.
ProcessMibRequest: Name ifDescr, EffectiveCmd 1,

EffectiveObjectId 1.3.6.1.2.1.2.2.1.2.7., Instance 7
mkDPIresponse: ret_code 2

Figure 50. A Sample of an SNMPDPI Trace

TCP/IP Traces

86 z/VM: TCP/IP Diagnosis Guide

Figure 51 shows a sample of a SOCKET trace.

SSL
The SSL trace provides information about the SSL server’s socket activities that are
unique to the SSL server and information about secure connections.

Figure 52 shows a sample of an SSL trace.

.

.

.
SkSimpleResponse: Client USER8 06319a70, retcode 0 errno 49
Sock-request called for ACB TCPPRI048I 106078608:
DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)
DTCPRI038I Interrupt type: Pending message
DTCPRI039I Path id: 3

MsgId 666, Length 16, TrgCls: 00190003, Reply len 8, Flags 07
SkSimpleResponse: Client USER8 06319a70, retcode 3 errno 0
Sock-request called for ACB TCPPRI048I 106078608:
DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)
DTCPRI038I Interrupt type: Pending message
DTCPRI039I Path id: 3

MsgId 667, Length 16, TrgCls: 00020003, Reply len 8, Flags 07
SkSimpleResponse: Client USER8 06319a70, retcode 0 errno 0
Sock-request called for ACB TCPPRI048I 106078608:
DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)
DTCPRI038I Interrupt type: Pending message
DTCPRI039I Path id: 3

MsgId 668, Length 0, TrgCls: 000D0003, Reply len 8, Flags 87
PrmMsgHi 0, PrmMsgLo 5

SkSimpleResponse: Client USER8 06319a70, retcode 0 errno 0
Sock-request called for ACB TCPPRI048I 106078608:
DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)
DTCPRI038I Interrupt type: Pending message
DTCPRI039I Path id: 3

MsgId 669, Length 16, TrgCls: 00190004, Reply len 8, Flags 07
SkSimpleResponse: Client USER8 06319a70, retcode 4 errno 0
Sock-request called for ACB TCPPRI048I 106078608:
DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)
DTCPRI038I Interrupt type: Pending message
DTCPRI039I Path id: 3

MsgId 670, Length 16, TrgCls: 00020004, Reply len 8, Flags 07
SkSimpleResponse: Client USER8 06319a70, retcode 0 errno 0
Sock-request called for ACB TCPPRI048I 106078608:
DTCPRI052I IUCV interrupt -> Sock-request (from External interrupt handler)
DTCPRI038I Interrupt type: Pending message
DTCPRI039I Path id: 3

MsgId 671, Length 52, TrgCls: 00130008, Reply len 40, Flags 07
SkBlockRequest: Pathid 3, Msgid 671, Retryable F
.
.
.

Figure 51. A Sample of a SOCKET Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 87

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

TCPDOWN or TCP-DOWN
The TCPDOWN or TCP-DOWN trace provides information about the outgoing
TCP datagrams, such as data byte length, source port, destination port, and the
connection to which the call is related. TCPDOWN also provides some information
about the other fields in outgoing datagrams, such as:
v Sequence (seq) number
v Acknowledgment (ack) number
v Segment size.

Figure 53 shows a sample of a TCPDOWN trace in which A or AP control bits are
posted (Ack and PUSH).

18:34:14 DTCSSL007I SkTcpSoc: Socket number 1 assigned by the stack.
18:34:14 DTCSSL009I SetIBMSockOpt: SO_PRIVSOCK issued for socket number 1.
18:34:16 DTCSSL007I SkTcpSoc: Socket number 5 assigned by the stack.
18:34:16 DTCSSL008I SetIBMSockOpt: Socket number 5 is now socket type SO_SSL.
18:34:16 DTCSSL027I Port 1024 being used by the SSL security server.
18:34:16 DTCSSL029I 3 concurrent connections can be handled by the SSL security
server.
18:34:16 DTCSSL024I SkSslAcc: Socket number 6 assigned by the stack for SSL
main accept processing.
18:34:26 DTCSSL025I SkTcpAcc: Socket number 7 assigned by the stack for SSLadmin
accept processing.
18:37:21 DTCSSL001I Connection destined for secure port 423.
18:37:21 DTCSSL003I Certificate label to be used: MEDCERT.
18:37:21 DTCSSL005I TCB 93975872 found for SSL security server.
18:37:21 DTCSSL014I Secure connection opened. Secure connections allowed
decreased to 2.
18:37:21 DTCSSL015I Maximum secure connections not reached. Passive open issued
for SSL security server port 1024.
18:37:21 DTCSSL028I SockAddrSsl: Family: 2, From_address: 9.130.58.177, From_port:1167,
To_address: 9.130.249.34, To_port: 423, Labe
l: MEDCERT, Other Tcb: 93975872.
18:37:21 DTCSSL007I SkTcpSoc: Socket number 7 assigned by the stack.
18:37:21 DTCSSL024I SkSslAcc: Socket number 8 assigned by the stack for SSL
main accept processing.
18:37:21 DTCSSL008I SetIBMSockOpt: Socket number 7 is now socket type SO_SSL.
18:37:21 DTCSSL030I SSL security server issues a connect for the real server
at address: 9.130.249.34 port: 423.
18:37:21 DTCSSL032I 5 bytes received by SSLSERV from the secure client.
18:37:21 DTCSSL032I 37 bytes received by SSLSERV from the secure client.
18:37:22 DTCSSL031I 1615 bytes sent by SSLSERV to the secure client.
18:37:22 DTCSSL032I 5 bytes received by SSLSERV from the secure client.
18:37:22 DTCSSL032I 68 bytes received by SSLSERV from the secure client.

Figure 52. A Sample of an SSL Trace

TCP/IP Traces

88 z/VM: TCP/IP Diagnosis Guide

|

When you activate a TCPDOWN trace using the MORETRACE command, the
foreign host IP address is given and the format of the output is easier to read.

Figure 54 shows a sample of a TCPDOWN trace using the MORETRACE
command.

TCP-down called for ACB 13716048:
ACK timeout fails #1007 -> TCP-down (from Timer)
Last touched: 2782
TCP-down constructing datagram with 0 bytes of text
ConstructGram sending header: Port 1037->23: #626673280 Ack=639844686 Wnd=65527

A
TCP-down called for ACB 13715736:

Send TCP data #1007 -> TCP-down (from TCP-request)
Last touched: 2783
Timeout: 2947.615 seconds

TCP-down: desired segment size = 18 -> PUSH
TCP-down finds ready segment size = 18
TCP-down constructing datagram with 18 bytes of text
ConstructGram sending header: Port 1037->23: #626673280 Ack=639844686 Wnd=65527 AP
TCP-down has sent out 18 bytes data; SegLen 18 ; SndNxt 22, ClientSndNxt = 22

Figure 53. A Sample of a TCPDOWN Trace

MakeHead in TCP-down: SourcePort is 1038
DestinationPort is TELNET (23)
ConnectionName is 1007

TCP-down making header seq #650306676
TCP-down: window size: 32768
GuessSegSize(9.67.43.126) => 0.0.0.0 -> 9.67.58.234 Link Name: TR1,
Link Type: IBMTR, Dev Name: LCS1, Dev Type: LCS, max: 0
TCP-down sending max seg size = 536
TCP-down constructing datagram with 0 bytes of text
ConstructGram sending header:

Source Port: 1038
Destination Port: 23
Sequence Number: 650306676
Data Offset: 6
Control Bits: SYN
Window: 32768

Figure 54. A Sample of a TCPDOWN Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 89

TCPUP or TCP-UP
The TCPUP or TCP-UP trace provides information about incoming TCP datagrams,
such as the connection number, local destination port, sequence number,
acknowledgment number, and window size.

Figure 55 shows a sample of a TCPUP trace.

Checksum: 15721
Options:

Maximum segment size: 536
GuessSegSize(9.67.43.126) => 0.0.0.0 -> 9.67.58.234 Link Name: TR1,
Link Type: IBMTR, Dev Name: LCS1, Dev Type: LCS, max: 0

TCP-down called for ACB 13715632:
ACK timeout fails #1007 -> TCP-down (from Timer)
Last touched: 2872
Timeout: 3015.271 seconds
MakeHead in TCP-down: SourcePort is 1038

DestinationPort is TELNET (23)
ConnectionName is 1007

TCP-down making header seq #650306677
TCP-down acking #666910577
TCP-down: window size: 32768
TCP-down constructing datagram with 0 bytes of text
ConstructGram sending header:

Source Port: 1038
Destination Port: 23
Sequence Number: 650306677
Acknowledgement Number: 666910577
Data Offset: 5
Control Bits: ACK
Window: 32768
Checksum: 31536

TCP-down called for ACB 13715736:
Send TCP data #1007 -> TCP-down (from TCP-request)
Last touched: 2873
Timeout: 3042.149 seconds

TCP-down: desired segment size = 3 -> PUSH
TCP-down finds ready segment size = 3
MakeHead in TCP-down: SourcePort is 1038

DestinationPort is TELNET (23)
ConnectionName is 1007

TCP-down making header seq #650306677
TCP-down acking #666910577
TCP-down: window size: 32768
TCP-down constructing datagram with 3 bytes of text
TCP-down: CopyAllText takes 3 bytes from a buffer
ConstructGram sending header:

Source Port: 1038
Destination Port: 23
Sequence Number: 650306677
Acknowledgement Number: 666910577
Data Offset: 5
Control Bits: ACK PSH
Window: 32768
Checksum: 57145

TCP-down has sent out 3 bytes data; SegLen 3 ; SndNxt 4, ClientSndNxt = 4

Figure 54. A Sample of a TCPDOWN Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

90 z/VM: TCP/IP Diagnosis Guide

Figure 56 shows a sample of a TCPUP trace using the MORETRACE command,
which provides complete information about each incoming TCP datagram, except
the data.

TCP-up's next segment: Port 1073->23: #568559375 Ack=500632569 Wnd=15652 A
Valid TCP checksum
#1006 Established I=1 O=1H1

W57921 RNxt=275 CliRNxt=275 SNxt=42269 SUna=42025 SWnd=15896 MaxSWnd=16384 CWnd=
33641 Thresh=5912 Con Re Pen2048

Acceptable segment
* #1006 Established I=1 RNxt=275 CliRNxt=275 SNxt=42269 SUna=42269 SWnd=15652 M
axSWnd=16384 CWnd=33755 Thresh=5912 Pen2048

TCP-up's next segment: Port 1071->23: #495605235 Ack=323725624 Wnd=14676 A
Valid TCP checksum
#1000 Established I=1 O=1H1

W114300 RNxt=235 CliRNxt=235 SNxt=99624 SUna=99380 SWnd=14920 MaxSWnd=16384 CWnd
=1960 Thresh=7460 Con Re Pen2048

Acceptable segment
* #1000 Established I=1 RNxt=235 CliRNxt=235 SNxt=99624 SUna=99624 SWnd=14676 M
axSWnd=16384 CWnd=1960 Thresh=7460 Pen2048

TCP-up's next segment: Port 1072->23: #536754847 Ack=469782320 Wnd=15652 A
Valid TCP checksum
#1007 Established I=1 O=1H1

W83772 RNxt=247 CliRNxt=247 SNxt=68120 SUna=67876 SWnd=15896 MaxSWnd=16384 CWnd=
38023 Thresh=7216 Con Re Pen2048

Acceptable segment
* #1007 Established I=1 RNxt=247 CliRNxt=247 SNxt=68120 SUna=68120 SWnd=15652 M
axSWnd=16384 CWnd=38124 Thresh=7216 Pen2048

Figure 55. A Sample of a TCPUP Trace

TCP/IP Traces

Chapter 7. TCP/IP Traces 91

Next TCP header:
Source Port:1073
Destination Port: 23
Sequence Number: 568559378
Acknowledgement Number: 500650786
Data Offset: 5
Control bits: ACK
Window: 15284
Checksum: 2161

Client text starts at 21
Valid TCP checksum

5240128:
PrevTcb: 5241080
NextTcb: 12153680
Backoff count 0
Client: INTCLIEN
Last state notice: Open
ClientRcvNxt: 568559378
ClientSndNxt: 500650786
CongestionWindow: 23488, SlowStartThreshold: 8070
Local connection name: 1006
ConnectionTimeoutTime in 150 seconds
Foreign socket: net address = 9.67.58.225, port= 1073
Sender frustration level: Contented
Incoming segment queue: Queue size = 1

5940600:
PrevDataBuffer: 5241032
NextDataBuffer: 5241032
First Unused Sequence Number: 568559378
Offset of last byte delivered: 0
Offset of last byte received: 0
Sequence number of first byte: 568559378

Incoming window number: 568561149
Initial receive sequence number: 568559100
Initial send sequence number: 500590300
Maximum segment size: 1960
Local socket: net address = 9.67.58.233, port= TELNET (23)
Outgoing segment queue: Queue size = 1

5944840:
PrevDataBuffer: 5241056
NextDataBuffer: 5241056
First Unused Sequence Number: 500650786
Offset of last byte delivered: 0
Offset of last byte received: 220
Sequence number of first byte: 500650566

Outgoing window number: 500666070
Precedence: Routine
RcvNxt: 568559378
Round-trip information:

How many in use: 1
First free: 14
First used: 13
Max number unacked: 1
Retransmission timeout: 1181.832 seconds
Smooth trip time: 0.049
Smooth variance: 0.032
Total acked: 252
Average trip time: 0.185
Acks not counted in round-trip time: 3
ReplaceSmooth FALSE

Figure 56. A Sample of a TCPUP Trace Using MORETRACE (Part 1 of 3)

TCP/IP Traces

92 z/VM: TCP/IP Diagnosis Guide

SndNxt: 500650786
SndUna: 500650566
SndWl1: 568559378
SndWl2: 500650566
SndWnd: 15504
MaxSndWnd: 16384
State: Established
Pending TCP-receive buffer: 2048
WorkOn called:

ClientTextStart = 21
ForeignAddress = 9.67.58.225
ForeignPort = 1073
LocalAddress = 9.67.58.233
LocalPort = TELNET (23)
SegPrc = Routine
SegLen = 0
TextLength = 0
TCB = 5240128:

PrevTcb: 5241080
NextTcb: 12153680
Backoff count 0
Client: INTCLIEN
Last state notice: Open
ClientRcvNxt: 568559378
ClientSndNxt: 500650786
CongestionWindow: 23488, SlowStartThreshold: 8070
Local connection name: 1006
ConnectionTimeoutTime in 145 seconds
Foreign socket: net address = 9.67.58.225, port= 1073
Sender frustration level: Contented
Incoming segment queue: Queue size = 1

5940600:
PrevDataBuffer: 5241032
NextDataBuffer: 5241032
First Unused Sequence Number: 568559378
Offset of last byte delivered: 0
Offset of last byte received: 0
Sequence number of first byte: 568559378

Incoming window number: 568561149
Initial receive sequence number: 568559100
Initial send sequence number: 500590300
Maximum segment size: 1960
Local socket: net address = 9.67.58.233, port= TELNET (23)
Outgoing segment queue: Queue size = 1

5944840:
PrevDataBuffer: 5241056
NextDataBuffer: 5241056
First Unused Sequence Number: 500650786
Offset of last byte delivered: 0
Offset of last byte received: 220
Sequence number of first byte: 500650566

Figure 56. A Sample of a TCPUP Trace Using MORETRACE (Part 2 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 93

TCPREQUEST or TCP-REQUEST
The TCPREQUEST or TCP-REQUEST trace provides information about all TCP
service requests from local clients and servers. TCP services are requested by the
standard procedure. For more information about the standard request procedure,
see the TCP/IP Programmer’s Reference. TCPREQUEST traces can be matched with
client traces, such as FTP traces.

The information contained in a TCPREQUEST trace includes:
v Client name: User ID of the requester
v Message identifier
v Client call (VMCF function only)
v Connection number
v Length
v Handle notices requests, if applicable.

Outgoing window number: 500666070
Precedence: Routine
RcvNxt: 568559378
Round-trip information:

How many in use: 1
First free: 14
First used: 13
Max number unacked: 1
Retransmission timeout: 1181.832 seconds
Smooth trip time: 0.049
Smooth variance: 0.032
Total acked: 252
Average trip time: 0.185
Acks not counted in round-trip time: 3
ReplaceSmooth FALSE

SndNxt: 500650786
SndUna: 500650566
SndWl1: 568559378
SndWl2: 500650566
SndWnd: 15504
MaxSndWnd: 16384
State: Established
Pending TCP-receive buffer: 2048

Acceptable segment
SND.UNA = 60486
Old: SndWnd = 15504, Wl1 = 278, Wl2 = 60266
New: SndWnd = 15284, Wl1 = 278, Wl2 = 60486
Finished with DataBuffer ending at 60486

* #1006 Established I=1 RNxt=278 CliRNxt=278 SNxt=60486 SUna=60486 SWnd=15284 M
axSWnd=16384 CWnd=23651 Thresh=8070 Pen2048

Next TCP header:
Source Port: 1073
Destination Port: 23
Sequence Number: 568559378
Acknowledgement Number: 500651006
Data Offset: 5
Control Bits: ACK
Window: 15064
Checksum: 2161

Client text starts at 21
Valid TCP checksum

Figure 56. A Sample of a TCPUP Trace Using MORETRACE (Part 3 of 3)

TCP/IP Traces

94 z/VM: TCP/IP Diagnosis Guide

The connection number is the TCP/IP connection number shown by NETSTAT in
client traces. This number is computed to match TCP/IP clients with VMCF
connections.

Figure 57 shows a sample of a TCPREQUEST trace. In this sample trace, the length
equals 65535. A port value of 65535 is an X'FFFF' UNSPECIFIEDport. If a port is
specified on a foreign socket, the UNSPECIFIEDaddress (X'00000000') and
UNSPECIFIEDport means that the client or server is on a passive open port.
However, local ports and addresses are specified.

TCP/IP Traces

Chapter 7. TCP/IP Traces 95

The TCPREQUEST trace using the MORETRACE command adds the following
information:
v Foreign and local IP addresses on active open ports

TCP-request called for ACB 13715112:
Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1259

Client name: TCPUSRX
Message identifier:10
Client call: End TCP/IP service

TCP-request KILLING CLIENT: TCPUSRX Client has ended TCP/IP service
TCP-request called for ACB 13715112:

Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1275

Client name: TCPUSRX
Message identifier:6
Client call: Begin TCP/IP service

TCP-request KILLING CLIENT: TCPUSRX Client reinitialized TCP/IP service
TCP-request called for ACB 13715840:

Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1288

Client name: TCPUSRX
Message identifier:12
Client call: Handle notice
Notices: Buffer space available, Connection state changed, Data delivered,

UDP data delivered, Timer expired, FSend response, FReceive error, IUCV interrupt
TCP-request called for ACB 13714800:

Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1288
Timeout: 1190.212 seconds

Client name: TCPUSRX
Message identifier:24
Client call: Open TCP

TcpRequest FindTcb: OurClientOwnsPort: FALSE, OtherClientOwnsPort: FALSE
TCP-request called for ACB 13715840:

Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1288
Timeout: 1411.224 seconds

Client name: TCPUSRX
Message identifier:26
Client call: FReceive TCP
Connection number: 1009
Length: 65535

TCP-request called for ACB 13715840:
Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1295
Timeout: 1411.224 seconds

Client name: TCPUSRX
Message identifier:28
Client call: FSend TCP
Connection number: 1009
Length: 14

TCP-request called for ACB 13715840:
Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1295
Timeout: 1411.224 seconds

Client name: TCPUSRX
Message identifier:30
Client call: FReceive TCP
Connection number: 1009
Length: 65535

Figure 57. A Sample of a TCPREQUEST Trace

TCP/IP Traces

96 z/VM: TCP/IP Diagnosis Guide

v Status of the open client port on passive open ports
v Parameters of established connections.

Figure 58 shows a sample of the TCPREQUEST trace using MORETRACE.

TCP/IP Traces

Chapter 7. TCP/IP Traces 97

TCP-request called for ACB 13715632:
Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1377
Timeout: 1347.787 seconds

Client name: TCPUSRX
Message identifier:22
Client call: Handle notice
Notices: Buffer space available, Connection state changed, Data delivered,

FSend response, FReceive error, IUCV interrupt
TCP-request called for ACB 13715632:

Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1377
Timeout: 1347.787 seconds

Client name: TCPUSRX
Message identifier:24
Client call: Open TCP

Client Open: Ccb found.
Client Open: VMCF receive completed.
Active Open: Foreign Addr: 9.67.43.126

Local Addr: 9.67.58.233
Client Open: sockets OK.
TcpRequest FindTcb: OurClientOwnsPort: FALSE, OtherClientOwnsPort: FALSE
Open: Tcb #1004 owned by TCPUSRX found in state Closed
New Open: Incoming buffer OK.
Open timeout set for 1504.859 seconds
New Open: Ready to send SYN.
DoOpen: ready to exit.
Open: Ready to OK open.
Client Open: ready to exit.
TCP-request called for ACB 13715840:

Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1378
Timeout: 1504.859 seconds

Client name: TCPUSRX
Message identifier:26
Client call: FReceive TCP
Connection number: 1004
Length: 65535

#1004 Established I=1 RNxt=1 CliRNxt=1 SNxt=1 SUna=1
SWnd=8192 MaxSWnd=8192 CWnd=536 Thresh=4096 Pen65535
TCP-request called for ACB 13715840:

Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1384
Timeout: 1504.859 seconds

Client name: TCPUSRX
Message identifier:28
Client call: FSend TCP
Connection number: 1004
Length: 14

TCP-request called for ACB 13715840:
Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1384
Timeout: 1504.859 seconds

Client name: TCPUSRX
Message identifier:30
Client call: FReceive TCP
Connection number: 1004
Length: 65535

#1004 Established I=2 O=1H1W8193 RNxt=131 CliRNxt=131 SNxt=15 SUna=1SWn d=8192
MaxSWnd=8192 CWnd=536 Thresh=4096 ConRe Pen65535
.
.
.

Figure 58. A Sample of a TCPREQUEST Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

98 z/VM: TCP/IP Diagnosis Guide

TELNET
Although the TELNET server is different from other protocols, TELNET must be
traced like an internal TCPIP process. The TELNET trace includes events that are
not specifically related to TELNET. It provides information about inbound and
outbound negotiations, negotiated options, and the status of connections.

Table 8 describes the TELNET commands from RFC 854, when the codes and code
sequences are preceded by an IAC. For more information about TELNET
commands, see RFC 854. These commands can be retrieved in TELNET traces for
SendNegotiation events and data. Subnegotiations that are started with an SB
command, code 250 (X'FA') and code 240 (X'F0'), are also provided.

Table 8. Telnet Commands from RFC 854

Command Code Description

SE 240 End of subnegotiation parameters.

NOP 241 No operation.

Data Mark 242 The data stream portion of a Synch. This should
always be accompanied by a TCP Urgent
notification.

Break 243 NVT character BRK.

Interrupt Process 244 The function IP.

Abort output 245 The function AO.

Are You There 246 The function AYT.

Erase character 247 The function EC.

Erase Line 248 The function EL.

Go ahead 249 The GA signal.

TCP-request called for ACB 13715840:
Accept TCP request -> TCP-request (from External interrupt handler)
Last touched: 1398

Client name: TCPUSRX
Message identifier:36
Client call: Open TCP

Client Open: Ccb found.
Client Open: VMCF receive completed.
Client Open: sockets OK.
TcpRequest FindTcb: OurClientOwnsPort: FALSE, OtherClientOwnsPort: FALSE
Open: Tcb #1000 owned by TCPUSRX found in state Closed
New Open: Incoming buffer OK.
Open timeout set for 1526.740 seconds
15:09:38 TCPUSRX Passive open #1000 Local = SA23, port 1036;

Foreign = RALVMM port Unspecified
TCPUSRX has 3 sockets:

Perm=F, AutoCli=F, Local=SA23 1033, TCB Q = 1
1009 Closed, Foreign=RALVMM 21

Perm=F, AutoCli=F, Local=SA23 1035, TCB Q = 1
1004 Established, Foreign=RALVMM 21

Perm=F, AutoCli=F, Local=SA23 1036, TCB Q = 1
1000 Listen, Foreign=RALVMM 65535

DoOpen: ready to exit.
Open: Ready to OK open.
Client Open: ready to exit.

Figure 58. A Sample of a TCPREQUEST Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 99

Table 8. Telnet Commands from RFC 854 (continued)

Command Code Description

SB 250 Indicates that what follows is subnegotiation of the
indicated option.

WILL (option code) 251 Indicates the desire to begin performing, or
confirmation that you are now performing, the
indicated option.

WON’T (option code) 252 Indicates the refusal to perform, or continue
performing, the indicated option.

DO (option code) 253 Indicates the request that the other party perform,
or confirmation that you are expecting the other
party to perform, the indicated option.

DON’T (option code) 254 Indicates the demand that the other party stop
performing, or confirmation that you are no longer
expecting the other party to perform, the indicated
option.

IAC 255 Data Byte 255.

Table 9 lists the options available for TELNET commands from RFC1060, and
RFC1647. For more information about TELNET protocols, see RFC’s 1060, 1011 and
1647.

Table 9. Telnet Command Options from RFC 1060
Option Name

0 Binary Transmission
1 Echo
2 Reconnection
3 Suppress Go Ahead
4 Approx Message Size Negotiation
5 Status
6 Timing Mark
7 Remote Controlled Trans and Echo
8 Output Line Width
9 Output Page Size
10 Output Carriage-Return Disposition
11 Output Horizontal Tab Stops
12 Output Horizontal Tab Disposition
13 Output Formfeed Disposition
14 Output Vertical Tabstops
15 Output Vertical Tab Disposition
16 Output Linefeed Disposition
17 Extended ASCII
18 Logout
19 Byte Macro
20 Data Entry Terminal
21 SUPDUP
22 SUPDUP Output
23 Send Location
24 Terminal Type
25 End of Record
26 TACACS User Identification
27 Output Marking
28 Terminal Location Number

TCP/IP Traces

100 z/VM: TCP/IP Diagnosis Guide

Table 9. Telnet Command Options from RFC 1060 (continued)
Option Name

29 Telnet 3270 Regime
30 X.3 PAD
31 Negotiate About Window Size
32 Terminal Speed
33 Remote Flow Control
34 Linemode
35 X Display Location
40 TN3270E
255 Extended-Options-List

Figure 59 shows a sample of a TELNET trace. A terminal type subnegotiation,
option 24 X'18', is included in this sample. The urgent field in TCP datagrams is
sometimes used for TELNET connections. For more information about the urgent
field, see the DATA MARK command in Table 8 on page 99

TCP/IP Traces

Chapter 7. TCP/IP Traces 101

Internal client sees Acb:
13715528:

Internal Telnet notification -> Internal Telnet server (from Notify)
Last touched: 594

Connection: 1007
Notification: Connection state changed

New state: Trying to open
Reason: OK

TcpNoteGotten: Tag = Connection state changed
; NewState = Trying to open
Internal client sees Acb:
13715528:

Internal Telnet notification -> Internal Telnet server (from Notify)
Last touched: 594

Connection: 1007
Notification: Connection state changed

New state: Open
Reason: OK

TcpNoteGotten: Tag = Connection state changed
; NewState = Open
Conn 1: StToCpStateChanged: New state (ord) is 1
Conn 1: StToTcpStateChanged: New state (ord) is 1
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
Conn 1: in SendNegotiation: sending claim (ord) 253 for option (ord) 24
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
CONNECTION OPENED 09/26/90 at 13:17:04
STMASTER StateArray index: 1; Tcp Conn#: 1007
Telnet server: Conn 1:Connection opened 09/26/90 at 13:17:04
Conn 1: Foreign internet address and port: net address = 9.67.58.226, port= 1059

Foreign internet address and port: net address = 9.67.58.226, port= 1059
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpDONE.
Internal client sees Acb:
13716568:

Internal Telnet notification -> Internal Telnet server (from Notify)
Last touched: 595

Connection: 1007
Notification: Data delivered

Bytes delivered: 3
Push flag: TRUE

Figure 59. A Sample of a TELNET Trace (Part 1 of 3)

TCP/IP Traces

102 z/VM: TCP/IP Diagnosis Guide

TcpNoteGotten: Tag = Data delivered
Conn 1: StToCpStateChanged: New state (ord) is 5
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpTELNETdata.
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
Conn 1: Negot. received for TERMINALtype
Conn 1: in SendSEND
Conn 1: LenToSend: 6 ToTcpPos: 6 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 6
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpDONE.
Internal client sees Acb:
13716568:

Internal Telnet notification -> Internal Telnet server (from Notify)
Last touched: 595

Connection: 1007
Notification: Data delivered

Bytes delivered: 18
Push flag: TRUE

TcpNoteGotten: Tag = Data delivered
Conn 1: StToCpStateChanged: New state (ord) is 5
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpTELNETdata.
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
Conn 1: SB received for TERMINALtype
Conn 1: Terminal type is settled; it is: IBM-3278-2-E
Conn 1: TermTypeSubNeg. complete; Result is (ord) 3
Conn 1: in SendNegotiation: sending claim (ord) 253 for option (ord) 25
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: in SendNegotiation: sending claim (ord) 251 for option (ord) 25
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: in SendNegotiation: sending claim (ord) 253 for option (ord) 0
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: in SendNegotiation: sending claim (ord) 251 for option (ord) 0
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1

Figure 59. A Sample of a TELNET Trace (Part 2 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 103

Figure 60 shows a sample of a TELNET trace using the MORETRACE command.
MORETRACE provides all of the data that is sent and received between two hosts
connected by TELNET. The data is displayed in hexadecimal and EBCDIC
characters and, therefore, you can trace the complete negotiations and data
exchanges.

MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpDONE.
Internal client sees Acb:
13716360:

Internal Telnet notification -> Internal Telnet server (from Notify)
Last touched: 595

Connection: 1007
Notification: Data delivered

Bytes delivered: 3
Push flag: TRUE

TcpNoteGotten: Tag = Data delivered
Conn 1: StToCpStateChanged: New state (ord) is 5
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpTELNETdata.
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
Conn 1: Negot. received for USEeor
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpDONE.

Figure 59. A Sample of a TELNET Trace (Part 3 of 3)

TCP/IP Traces

104 z/VM: TCP/IP Diagnosis Guide

Internal client sees Acb:
13715216:

Internal Telnet notification -> Internal Telnet server (from Notify)
Last touched: 831
Timeout: 778.669 seconds

Connection: 1007
Notification: Connection state changed

New state: Trying to open
Reason: OK

TcpNoteGotten: Tag = Connection state changed
; NewState = Trying to open
Internal client sees Acb:
13715216:

Internal Telnet notification -> Internal Telnet server (from Notify)
Last touched: 832
Timeout: 778.669 seconds

Connection: 1007
Notification: Connection state changed

New state: Open
Reason: OK

TcpNoteGotten: Tag = Connection state changed
; NewState = Open
Conn 1: StToCpStateChanged: New state (ord) is 1
Conn 1: StToTcpStateChanged: New state (ord) is 1
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
Conn 1: in SendNegotiation: sending claim (ord) 253 for option (ord) 24
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
FF FD 18
}
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
CONNECTION OPENED 09/26/90 at 13:21:12
STMASTER StateArray index: 1; Tcp Conn#: 1007
Telnet server: Conn 1:Connection opened 09/26/90 at 13:21:12
Conn 1: Foreign internet address and port: net address = 9.67.58.226, port= 1061

Foreign internet address and port: net address = 9.67.58.226, port= 1061
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpDONE.
Internal client sees Acb:
13716048:

Internal Telnet notification -> Internal Telnet server (from Notify)
Last touched: 832

Connection: 1007
Notification: Data delivered

Bytes delivered: 3
Push flag: TRUE

TcpNoteGotten: Tag = Data delivered
Conn 1: StToCpStateChanged: New state (ord) is 5
Conn 1: Telnet data received from TCP:
FF
FB
18

Û

Figure 60. A Sample of a TELNET Trace Using MORETRACE (Part 1 of 4)

TCP/IP Traces

Chapter 7. TCP/IP Traces 105

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: TnToCp Gobblechar: Found IAC at offset 0, FromTcpPos is 0
Conn 1: In GetIac: FirstChar is FB {
Conn 1: In GetIac: FirstChar is 18
Conn 1: StToCpGo returns TOcpTELNETdata.
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
Conn 1: Negot. received for TERMINALtype
Conn 1: in SendSEND
Conn 1: LenToSend: 6 ToTcpPos: 6 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 6
FF FA 18 01 FF F0
z p
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpDONE.
Internal client sees Acb:
13716464:

Internal Telnet notification -> Internal Telnet server (from Internal Telnet
timeout handler)

Last touched: 832
Notification: Timer expired

Datum: 2000, Associated timer: 1
TcpNoteGotten: Tag = Timer expired
Entering ScanConnections
Internal client sees Acb:
13716152:

Internal Telnet notification -> Internal Telnet server (from Notify)
Last touched: 832

Connection: 1007
Notification: Data delivered

Bytes delivered: 18
Push flag: TRUE

TcpNoteGotten: Tag = Data delivered
Conn 1: StToCpStateChanged: New state (ord) is 5
Conn 1: Telnet data received from TCP:
FF
FA
18
00
49
42
4D
2D
33
32
37
38
2D
32
2D
45
FF
F0

Figure 60. A Sample of a TELNET Trace Using MORETRACE (Part 2 of 4)

TCP/IP Traces

106 z/VM: TCP/IP Diagnosis Guide

Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: TnToCp Gobblechar: Found IAC at offset 0, FromTcpPos is 0
Conn 1: In GetIac: FirstChar is FA z
Conn 1: In GetIac: FirstChar is 18
Conn 1: In GetIac: FirstChar is 00
Conn 1: In GetIac: FirstChar is 49 I
Conn 1: In GetIac: FirstChar is 42 B
Conn 1: In GetIac: FirstChar is 4D M
Conn 1: In GetIac: FirstChar is 2D -
Conn 1: In GetIac: FirstChar is 33 3
Conn 1: In GetIac: FirstChar is 32 2
Conn 1: In GetIac: FirstChar is 37 7
Conn 1: In GetIac: FirstChar is 38 8
Conn 1: In GetIac: FirstChar is 2D -
Conn 1: In GetIac: FirstChar is 32 2
Conn 1: In GetIac: FirstChar is 2D -
Conn 1: In GetIac: FirstChar is 45 E
Conn 1: In GetIac: FirstChar is FF
Conn 1: In GetIac: FirstChar is F0 p
Conn 1: StToCpGo returns TOcpTELNETdata.
Schedule called. FirstOneToDo = -1; LastOneToDo = -1; NextToDo = -1
Conn 1: SB received for TERMINALtype
Conn 1: Terminal type is settled; it is: IBM-3278-2-E
Conn 1: TermTypeSubNeg. complete; Result is (ord) 3
Conn 1: in SendNegotiation: sending claim (ord) 253 for option (ord) 25
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
FF FD 19
}

Figure 60. A Sample of a TELNET Trace Using MORETRACE (Part 3 of 4)

TCP/IP Traces

Chapter 7. TCP/IP Traces 107

TIMER
The TIMER trace shows the processes with time-out marks. Figure 61 shows a
sample of a TIMER trace.

Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: in SendNegotiation: sending claim (ord) 251 for option (ord) 25
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
FF FB 19
{
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: in SendNegotiation: sending claim (ord) 253 for option (ord) 0
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
FF FD 00
}
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: in SendNegotiation: sending claim (ord) 251 for option (ord) 0
Conn 1: LenToSend: 3 ToTcpPos: 3 UrgentHighWaterMark: -1
Conn 1: TcpSend: TurnCode = OK; LenToSend = 3
FF FB 00
{
Conn 1: TcpSend successful --
ToTcpPos: 0 UrgentHighWaterMark: -1
Conn 1: LenToSend: 0 ToTcpPos: 0 UrgentHighWaterMark: -1
MainLoop calling 1; LastOneToDo = 1; NextToDo = -1
Conn 1: CallToCp Which Conn = 1
Conn 1: Urginfo: Mode is ; Number bytes is 0
Conn 1: StToCpGo returns TOcpDONE.

Figure 60. A Sample of a TELNET Trace Using MORETRACE (Part 4 of 4)

TCP/IP Traces

108 z/VM: TCP/IP Diagnosis Guide

When you execute a TIMER trace with the MORETRACE command, it provides
details about each timer event and request from a process. Figure 62 shows a
sample of a TIMER trace using MORETRACE.

In SetTheComparator, time is: 1809.320 seconds
Setting clock comparator to 1819.320 seconds
In SetTheComparator, time is: 1809.464 seconds
Setting clock comparator to 1821.709 seconds
Timer called at 1821.711 seconds
Timeout due: Internal Telnet timeout handler = Internal Telnet timeout

-> 2 pending timeouts left; 1 active signals
In SetTheComparator, time is: 1821.724 seconds
Setting clock comparator to 1831.011 seconds
Timer called at 1831.014 seconds
Timeout due: Consistency checker = Check consistency

-> 2 pending timeouts left; 1 active signals
In SetTheComparator, time is: 1831.026 seconds
Setting clock comparator to 1941.737 seconds
In SetTheComparator, time is: 1831.066 seconds
Setting clock comparator to 1891.066 seconds
In SetTheComparator, time is: 1845.219 seconds
Setting clock comparator to 1855.219 seconds
In SetTheComparator, time is: 1845.295 seconds
Setting clock comparator to 1891.066 seconds
In SetTheComparator, time is: 1854.782 seconds
Setting clock comparator to 1864.781 seconds
Timer called at 1864.784 seconds
Timeout due: Ping process = Ping timeout fails

-> 4 pending timeouts left; 1 active signals
In SetTheComparator, time is: 1864.797 seconds
Setting clock comparator to 1891.066 seconds

Figure 61. A Sample of a TIMER Trace

PutAcbInOrder adding Acb:
13715216:

Ping timeout fails -> No process! (from Timer)
Last touched: 1812
Timeout: 1910.945 seconds

In PutAcbInOrder, timer queue is
The time is 1900.966 seconds

Timer Queue:Queue size = 5
13715216:
PrevACB: Timer queue
NextACB: 13714904

QueueHead:Timer queue
Ping timeout fails -> No process! (from Timer)
Last touched: 1812
Timeout: 1910.945 seconds

Figure 62. A Sample of a TIMER Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 109

UDPREQUEST
The UDPREQUEST trace provides information about all UDP service requests from
local clients and servers. Figure 63 shows a sample of a UDPREQUEST trace.

13714904:
PrevACB: 13715216
NextACB: 13715632

QueueHead:Timer queue
Internal Telnet timeout -> Internal Telnet timeout handler (from Timer)
Last touched: 1737
Timeout: 1941.737 seconds

Timer Datum: 2000, Timer Number: 1

13715632:
PrevACB: 13714904
NextACB: 13716048

QueueHead:Timer queue
Check consistency -> Consistency checker (from Timer)
Last touched: 1803
Timeout: 1951.205 seconds

13716048:
PrevACB: 13715632
NextACB: 13715320

QueueHead:Timer queue
ARP timeout expires -> ARP (from Timer)
Last touched: 1769
Timeout: 2034.862 seconds

13715320:
PrevACB: 13716048
NextACB: Timer queue

QueueHead:Timer queue
Open timeout fails #1006 -> TCP-request (from Timer)
Last touched: 71
Timeout: 604874.674 seconds

In SetTheComparator, time is: 1901.123 seconds
Setting clock comparator to 1910.945 seconds
CancelTimeout removing ACB:
13715216:

PrevACB: Timer queue
NextACB: 13714904

QueueHead:Timer queue
Ping timeout fails -> Ping process (from Timer)
Last touched: 1812
Timeout: 1910.945 seconds

In SetTheComparator, time is: 1901.251 seconds
Setting clock comparator to 1941.737 seconds
PutAcbInOrder adding Acb:
13715736:

Ping timeout fails -> No process! (from Timer)
Last touched: 1827
Timeout: 1926.436 seconds

In PutAcbInOrder, timer queue is
The time is 1916.457 seconds

Figure 62. A Sample of a TIMER Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

110 z/VM: TCP/IP Diagnosis Guide

When you execute a UDPREQUEST trace using the MORETRACE command, it
adds information about datagram checksums and UCBs. Figure 64 shows a sample
of the UDPREQUEST trace using MORETRACE.

UDP-request called for ACB 13706816:
Accept UDP request -> UDP-request (from External interrupt handler)

Client name: VMNFS
Message identifier:10
Client call: Open UDP
Connection number: 0

UDP-request called for ACB 13706816:
Accept UDP request -> UDP-request (from External interrupt handler)

Client name: VMNFS
Message identifier:14
Client call: Send UDP
Connection number: 0
VadA: 0075A028, LenA: 56, VadB: 111, LenB: 14.0.0.0

UDP-request: Local Socket:
net address = *, port= 2049

UDP-request: Foreign Socket:
net address = 14.0.0.0, port= PORTMAP (111)

UDP-request called for ACB 13706608:
Accept UDP request -> UDP-request (from External interrupt handler)

Client name: VMNFS
Message identifier:16
Client call: Receive UDP
Connection number: 0

UDP-request called for ACB 13707128:
Accept UDP request -> UDP-request (from External interrupt handler)

Client name: VMNFS
Message identifier:18
Client call: Send UDP
Connection number: 0
VadA: 0075A028, LenA: 56, VadB: 111, LenB: 14.0.0.0

UDP-request: Local Socket:
net address = *, port= 2049

UDP-request: Foreign Socket:
net address = 14.0.0.0, port= PORTMAP (111)

Figure 63. A Sample of a UDPREQUEST Trace

UDP-checksum: datagram = 8DD1 pseudo-header = 88AE final = E97F
UDP-checksum: datagram = C48C pseudo-header = 88C8 final = B2AA
UDP-checksum: datagram = 8DD1 pseudo-header = 88AD final = E980
UDP-request called for ACB 13706504:

Figure 64. A Sample of a UDPREQUEST Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 111

UDPUP
The UDPUP trace provides information about incoming UDP datagrams. Figure 65
shows a sample of a UDPUP trace using the MORETRACE command with a
remote VM/NFS server and a local Portmapper client. Note that the control blocks
for UDP connections are UCBs and not TCBs.

Accept UDP request -> UDP-request (from External interrupt handler)
Timeout: 1190.772 seconds

Client name: VMNFS
Message identifier:10
Client call: Open UDP
Connection number: 0

UDP-request: Ccb found.
UDP-request: Client UdpOpen called.
ClientUDPOpen: Response.Connection = 34817
UDP-request called for ACB 13706504:

Accept UDP request -> UDP-request (from External interrupt handler)
Timeout: 1190.772 seconds

Client name: VMNFS
Message identifier:14
Client call: Send UDP
Connection number: 0
VadA: 0075A028, LenA: 56, VadB: 111, LenB: 14.0.0.0

UDP-request: Ccb found.
UDP-request: Client UdpSend called.
CheckClient: Ucb found
5028920:

PrevUcb: 12952304
NextUcb: 12952304
BytesIn: 0, BytesOut: 0
Socket:

VMNFS has 0 TCBs for socket *.2049 *Perm *Autolog ConnIndex: 0, Frustration: Contented
IncomingDatagram queue size: 0
ShouldChecksum: TRUE, UdpReceivePending: FALSE,WhetherDatagramDelivered: FALSE

UDP-request: Local Socket:
net address = *, port= 2049

UDP-request: Foreign Socket:
net address = 14.0.0.0, port= PORTMAP (111)

UDP-request: Udp-Send: sending 64 byte UDP datagram.
UDP-checksum: datagram = 15FF pseudo-header = 1C51 final = CDAF
UDP-checksum: datagram = 15FF pseudo-header = 1C51 final = CDAF
UDP-checksum: datagram = 0896 pseudo-header = 1C35 final = DB34
UDP-checksum: datagram = 0896 pseudo-header = 1C35 final = DB34

Figure 64. A Sample of a UDPREQUEST Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

112 z/VM: TCP/IP Diagnosis Guide

Group Process Names
Group process names combine more than one single process into the same process
name. In all trace commands, TRACE, NOTRACE, MORETRACE, and
LESSTRACE, you can enter more than one group process name.

ALL
The ALL trace provides information about all available events. You must be very
careful when using the ALL trace, because it can overwhelm the console and
adversely affect system response time.

CETI
The CETI group process combines TOCETI, ELANS, ILANS, and TOX25ICA traces.
This group traces all activities related to 9370 integrated adapters. CETI provides
information about CCW addresses, CCW status, and packet information such as
protocols, LLC types, node addresses, and ARP address translations performed by
CETI adapters. Figure 66. shows a sample of a CETI trace.

DASD 3EE DETACHED
UptoUDP called:
UptoUDP: Destination port # 34078936
UptoUDP: Ucb not found - dropping datagram
UptoUDP called:
UptoUDP: Destination port # 34078936
UptoUDP: Ucb not found - dropping datagram
UptoUDP called:
UptoUDP: Destination port # 34078929
UptoUDP: Ucb not found - dropping datagram
UptoUDP called:
UptoUDP: Destination port # 7274560
UptoUDP: Ucb found:
5028816:

PrevUcb: 12686112
NextUcb: 12686112
BytesIn: 0, BytesOut: 0
Socket:

PORTMAP has 0 TCBs for socket *.PORTMAP (111) ConnIndex: -23, Frustration: Contented
IncomingDatagram queue size: 0
ShouldChecksum: TRUE, UdpReceivePending: FALSE,WhetherDatagramDelivered: FALSE

UptoUDP called:
UptoUDP: Destination port # 134283479
UptoUDP: Ucb found:
5028920:

PrevUcb: 12952304
NextUcb: 12952304
BytesIn: 0, BytesOut: 64
Socket:

VMNFS has 0 TCBs for socket *.2049 *Perm *Autolog ConnIndex: 0, Frustration: Contented
IncomingDatagram queue size: 0
ShouldChecksum: TRUE, UdpReceivePending: FALSE,WhetherDatagramDelivered: FALSE

UptoUDP called:
UptoUDP: Destination port # 7274560
UptoUDP: Ucb found:
5028816:

PrevUcb: 12686112
NextUcb: 12686112
BytesIn: 56, BytesOut: 36
Socket:

PORTMAP has 0 TCBs for socket *.PORTMAP (111) ConnIndex: -23, Frustration: Contented
IncomingDatagram queue size: 0
ShouldChecksum: TRUE, UdpReceivePending: FALSE,WhetherDatagramDelivered: FALSE

Figure 65. A Sample of a UDPUP Trace Using MORETRACE

TCP/IP Traces

Chapter 7. TCP/IP Traces 113

When you execute a CETI trace using the MORETRACE command, trace data is in
hexadecimal form with a MESSAGE TEXT entry, and details about IP packets are
provided. Figure 67 shows a sample of a CETI trace using MORETRACE.

13714696:
Have completed I/O -> To-CETI (from Scheduler)
Last touched: 33

IoDevice 0240
Csw:

Keys: 00, CcwAddress: 00000000
Unit Status: 80, Channel Status: 00
Byte Count: 0

Device status is Ready
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 1
ILANS ILANS1: CheckCetiIo finds inbound msg uses 1 buffers. Msg type 33554538
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS ILANS1: Entering GetCetiMessage: Max len 2074 PeekOnly 54042
ILANS ILANS1: Entering UpdateControlBlocks. UsedBuffs 1
ILANS device ILANS1: CIOA MAC primitive type is CC31
ILANS device ILANS1: DLM_RTV_ATTRIB.confirm: Completion status 00000000
Node address: 10005A4209A0
ILANS device ILANS1: Sending DL_ACTIVATE_SAP.request
ILANS ILANS1: Entering SendCetiMessage: DataLen 88 MsgType 4 MsgFlags '00'X
ILANS ILANS1: CheckCetiSpace returns SpaceAvail 41680, Cspace 37512
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: Entering EnableCetiRupt
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: ToCeti: Acb Received:
.
.
.
13714696:

Have completed I/O -> To-CETI (from Scheduler)
Last touched: 34

IoDevice 0240
Csw:

Keys: 00, CcwAddress: 00000000
Unit Status: 80, Channel Status: 00
Byte Count: 0

Device status is Ready
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 1
ILANS ILANS1: CheckCetiIo finds inbound msg uses 1 buffers. Msg type 67108929
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS ILANS1: Entering GetCetiMessage: Max len 2074 PeekOnly 16831258
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS ILANS1: Entering GetCetiMessage: Max len 2085 PeekOnly 13482920
ILANS ILANS1: Entering UpdateControlBlocks. UsedBuffs 1
ILANS device ILANS1: Entering DispatchTr: EtherType '0806'X
Arp adds translation9.67.58.226 = IBMTR: 10005A0019F5
ILANS ILANS1: Entering CheckCetiOutput. Queue sizes: 0 1
ILANS ILANS1: Entering SendCetiMessage: DataLen 63 MsgType 4 MsgFlags '00'X
ILANS ILANS1: CheckCetiSpace returns SpaceAvail 41680, Cspace 35428
ILANS ILANS1: SendCetiMessage returns 0
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: Entering EnableCetiRupt
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: ToCeti: Acb Received:

Figure 66. A Sample of a CETI Trace

TCP/IP Traces

114 z/VM: TCP/IP Diagnosis Guide

13714696:
Send datagram -> Device driver(ILANS1) (from UDP-request)
Last touched: 32

Device status is Ready
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: Entering CheckCetiOutput. Queue sizes: 1 0
ILANS ILANS1: Entering SendCetiMessage: DataLen 65 MsgType 4 MsgFlags '00'X
ILANS ILANS1: CheckCetiSpace returns SpaceAvail 41680, Cspace 35428
Message Text
000000:001E0D11 00230000 000711DA FFFFFFFF FFFFAA00 00FF0002 00210000 80008220
000020:00000008 06000608 00060400 0110005A 4209A009 433AE94E 38001616 9009433A
000040:EA000101
ILANS ILANS1: SendCetiMessage returns 0
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 2
ILANS ILANS1: CheckCetiIo finds inbound msg uses 1 buffers. Msg type 67108929
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS ILANS1: Entering GetCetiMessage: Max len 2074 PeekOnly 16831258
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS ILANS1: Entering GetCetiMessage: Max len 2085 PeekOnly 13482920
ILANS ILANS1: Entering UpdateControlBlocks. UsedBuffs 1
Message Text
000000:001E4D11 00230000 00000000 00000000 10005A42 09A0AA01 00020021 00010220
000020:00000008 06000608 00060400 0110005A 4209A009 433AE94E 38001616 9009433A
000040:EA000101
ILANS device ILANS1: Entering DispatchTr: EtherType '0806'X
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 1
ILANS ILANS1: CheckCetiIo finds inbound msg uses 1 buffers. Msg type 67108929
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS ILANS1: Entering GetCetiMessage: Max len 2074 PeekOnly 16831258
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS ILANS1: Entering GetCetiMessage: Max len 2085 PeekOnly 13482920
ILANS ILANS1: Entering UpdateControlBlocks. UsedBuffs 1
Message Text
000000:001E4D11 00230000 00000000 00000000 10005A25 0858AA00 00020021 000202A0
000020:00000008 06000608 00060400 0210005A 25085809 433AEA10 005A4209 A009433A
000040:E9000101
ILANS device ILANS1: Entering DispatchTr: EtherType '0806'X
Arpin: Processing Arp packet:

ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 0
ArpSenderHardwareAddr: 10005A250858
ArpSenderInternetAddr: 9.67.58.234
ArpTargetHardwareAddr: 10005A4209A0
ArpTargetInternetAddr: 9.67.58.233

Arp adds translation9.67.58.234 = IBMTR: 10005A250858
ILANS ILANS1: Entering CheckCetiOutput. Queue sizes: 1 0
ILANS ILANS1: Entering SendCetiMessage: DataLen 112 MsgType 4 MsgFlags '00'X
ILANS ILANS1: CheckCetiSpace returns SpaceAvail 41680, Cspace 33344
Message Text
000000:001E0D11 00520000 000711DA 10005A25 0858AA00 00FF0000 00520000 80000000
000020:00080045 00004D00 2B00003C 1105A309 433AE909 432B6404 00003500 39ED0000
000040:01010000 01000000 00000006 52414C56 4D4D0854 43504950 44455607 52414C45
000060:49474803 49424D03 434F4D00 00010001
ILANS ILANS1: SendCetiMessage returns 0
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 1
ILANS ILANS1: CheckCetiIo finds inbound msg uses 1 buffers. Msg type 67109025
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS ILANS1: Entering GetCetiMessage: Max len 2074 PeekOnly 16831258
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS ILANS1: Entering GetCetiMessage: Max len 2085 PeekOnly 13480744

Figure 67. A Sample of a CETI Trace Using MORETRACE (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 115

HANDLERS
The HANDLERS group process combines A220 handler, external interrupt handler,
I/O interrupt handler, DDN1822 I/O interrupt handler, IUCV handler, and PCCA
handler traces.

ILANS ILANS1: Entering UpdateControlBlocks. UsedBuffs 1
Message Text
000000:001E4D11 00830000 00000000 00000000 10005A25 0858AA00 00020081 000302A0
000020:00000008 00450000 7C75E700 001C11AF B709432B 6409433A E9003504 000068B3
000040:B7000185 80000100 01000000 00065241 4C564D4D 08544350 49504445 56075241
000060:4C454947 48034942 4D03434F 4D000001 00010652 414C564D 4D085443 50495044
000080:45560752 414C4549 47480349 424D0343 4F4D0000 01000100 000E1000 0409432B
0000A0:7E000000
ILANS device ILANS1: Entering DispatchTr: EtherType '0800'X
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: Entering EnableCetiRupt
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: ToCeti: Acb Received:
13715008:

Send datagram -> Device driver(ILANS1) (from Ping process)
Last touched: 33

Device status is Ready
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: Entering CheckCetiOutput. Queue sizes: 1 0
ILANS ILANS1: Entering SendCetiMessage: DataLen 311 MsgType 4 MsgFlags '00'X
ILANS ILANS1: CheckCetiSpace returns SpaceAvail 41680, Cspace 31260
Message Text
000000:001E0D11 01190000 000711DA 10005A25 0858AA00 00FF0000 01190000 80000000
000020:00080045 00011404 D200003C 01002B09 433AE909 432B7E08 0024E300 D1450847
000040:83D5AB53 8D8B5B7F D6A37F8D 5B7BED22 725C9264 423E7918 272FED6B B96804B1
000060:0466C527 80039D78 BB4F9753 A20A5239 85D4A95D 53DAB802 6D9D1128 2B06E1DE
000080:16C95F2B CC3A08C6 7E7200BB C8C0E411 E3C5A876 C22A6D72 13476F4D F03EC934
0000A0:2902F94E 5CB88074 F30133FA 1C8BCBD9 45B79BD3 9BB35A5D A10668B3 8F20E0CC
0000C0:8250C82B 63ACBD0D 215AEE3B DBC996DB 6FB57B91 48EC5639 82E837FB 0EDFE4F3
0000E0:91D1AF3C 137D29B8 AF577323 E897B64E A2121D6B 8B7FA5CF A9642BC5 621D1D62
000100:C23B0AB5 E035128D C9E30B09 EB9E8E3C 37A51607 F08329B6 BC093AC8 40E1A184
000120:73F5F573 86971EE1 C2BA0B30 05E2D933 2136C553 75192300
ILANS ILANS1: SendCetiMessage returns 0
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 1
ILANS ILANS1: CheckCetiIo finds inbound msg uses 1 buffers. Msg type 67109177
ILANS device ILANS1: Entering IlansPortInput: MsgType 0
ILANS ILANS1: Entering GetCetiMessage: Max len 2074 PeekOnly 16831258
ILANS device ILANS1: CIOA LLC primitive type is 4D11
ILANS ILANS1: Entering GetCetiMessage: Max len 2085 PeekOnly 13480744
ILANS ILANS1: Entering UpdateControlBlocks. UsedBuffs 1
Message Text
000000:001E4D11 011B0000 00000000 00000000 10005A25 0858AA00 00020119 000402A0
000020:00000008 00450001 1404D200 003A0102 2B09432B 7E09433A E900002C E300D145
000040:084783D5 AB538D8B 5B7FD6A3 7F8D5B7B ED22725C 9264423E 7918272F ED6BB968
000060:04B10466 C5278003 9D78BB4F 9753A20A 523985D4 A95D53DA B8026D9D 11282B06
000080:E1DE16C9 5F2BCC3A 08C67E72 00BBC8C0 E411E3C5 A876C22A 6D721347 6F4DF03E
0000A0:C9342902 F94E5CB8 8074F301 33FA1C8B CBD945B7 9BD39BB3 5A5DA106 68B38F20
0000C0:E0CC8250 C82B63AC BD0D215A EE3BDBC9 96DB6FB5 7B9148EC 563982E8 37FB0EDF
0000E0:E4F391D1 AF3C137D 29B8AF57 7323E897 B64EA212 1D6B8B7F A5CFA964 2BC5621D
000100:1D62C23B 0AB5E035 128DC9E3 0B09EB9E 8E3C37A5 1607F083 29B6BC09 3AC840E1
000120:A18473F5 F5738697 1EE1C2BA 0B3005E2 D9332136 C5537519 23000000
ILANS device ILANS1: Entering DispatchTr: EtherType '0800'X
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: Entering EnableCetiRupt
ILANS ILANS1: CheckCetiIo finds inbound port has FilledBuffs 0
ILANS ILANS1: ToCeti: Acb Received:

Figure 67. A Sample of a CETI Trace Using MORETRACE (Part 2 of 2)

TCP/IP Traces

116 z/VM: TCP/IP Diagnosis Guide

HCH
The HCH group process combines A220 handler and A220 common routine traces.

IUCV
The IUCV group process combines IUCV handler and TOIUCV traces. It provides
information about IUCV activities. Figure 68 shows a sample of an IUCV trace in
which the local TCPIP client is TCPIP1, the other local TCPIP server is user
TCPIP2, and the device name is LOCIUVC.

Figure 68 also shows an ICMP trace. An ICMP datagram with an ICMP request
code of 8 and a PING trace executed from TCPIP2 is also shown.

TCP/IP Traces

Chapter 7. TCP/IP Traces 117

TCPIP1 AT VMHOST01 VIA RSCS 09/26/97 14:34:12 EST WEDNESDAY
VM TCP/IP V2R4

Initializing...
UnlockAll issuing "CP UNLOCK TCPIP1 0 DFF"
COMMAND COMPLETE
LCS devices will use diagnose 98 real channel program support
Trying to open VMHOST01 TCPIP *
Using profile file VMHOST01 TCPIP *
IUCV initializing:
Device LOCIUCV:

Type: PVM IUCV, Status: Not started
Envelope queue size: 0
VM id: TCPIP2
UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY
Our PVM node: A

PVM IUCV LOCIUCV : ToIucv IssueConnect: Vm Id: TCPIP2, DWord1: XYZZY, DWord2: XYZZY
PVM IUCV LOCIUCV : ToIucv: Connect returns pathid 1
Telnet server: Using port 23
Telnet server: No inactivity timeout
Telnet server: Every 1800 seconds a timing mark option packet will be sent.
**
Log of IBM TCP/IP Telnet Server Users started on 09/26/90 at 14:35:04

TCP-IP initialization complete.
ToIucv: Acb Received:
13592024:

IUCV interrupt -> To-IUCV (from External interrupt handler)
Last touched: 48
Interrupt type: Pending connection

Path id: 0
VMid: TCPIP2, User1: XYZZY, User2: XYZZY

ToIucv: Received PENDCONN. pendcuser1: XYZZY, pendcuser2: XYZZY, pendcvmid: TCPIP2,
IucvPathid: 0

Device LOCIUCV:
Type: PVM IUCV, Status: Issued connect
Envelope queue size: 0
VM id: TCPIP2
UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY
Our PVM node: A

ToIucv: Severing path 1
PVM IUCV LOCIUCV : ToIucv: Accepting path 0
PVM IUCV LOCIUCV : ToIucv PackWrites: Queuesize, SavedEnv: 0 0
Telnet server: Global connection to *CCS CP System Service established
Telnet server: First line of *CCS logo is: VIRTUAL MACHINE/SYSTEM PRODUCT

ToIucv: Acb Received:
13591920:

Try IUCV connect -> To-IUCV (from Timer)
Last touched: 103

Device LOCIUCV:
Type: PVM IUCV, Status: Connected
Envelope queue size: 0
VM id: TCPIP2
UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY
Our PVM node: A

ToIucv: Acb Received:
13591920:

IUCV interrupt -> To-IUCV (from External interrupt handler)
Last touched: 187
Interrupt type: Pending message

Path id: 0
MsgId 1586, Length 280, TrgCls: 00000000, Reply len 0, Flags 17

Figure 68. A Sample of an IUCV Trace (Part 1 of 3)

TCP/IP Traces

118 z/VM: TCP/IP Diagnosis Guide

Device LOCIUCV:
Type: PVM IUCV, Status: Connected
Envelope queue size: 0
VM id: TCPIP2
UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY
Our PVM node: A

PVM IUCV LOCIUCV : ToIucv UnpackReads: bytestomove = 276
IP-up sees ICMP datagram, code 8, sub code: 0, source: HOST02, dest: HOST01, len: 256

PVM IUCV LOCIUCV : IUCV UnpackReads: BlockHeader copied from InputPosition: 12672 278
PVM IUCV LOCIUCV : ToIUCV UnpackReads: PacketsInInBlock = 1
ToIucv: Acb Received:
13592440:

Send datagram -> Device driver(LOCIUCV) (from To-IUCV)
Last touched: 188

Device LOCIUCV:
Type: PVM IUCV, Status: Connected
Envelope queue size: 1
VM id: TCPIP2
UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY
Our PVM node: A

PVM IUCV LOCIUCV : ToIucv PackWrites: Queuesize, SavedEnv: 1 0
PVM IUCV LOCIUCV : PackWrites packing packet with length 276
ToIucv: Acb Received:
13592440:

IUCV interrupt -> To-IUCV (from External interrupt handler)
Last touched: 188
Interrupt type: Pending message completion

Path id: 0
audit: 0000

Device LOCIUCV:
Type: PVM IUCV, Status: Sending message
Envelope queue size: 0
VM id: TCPIP2
UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY
Our PVM node: A

PVM IUCV LOCIUCV : ToIUCV write complete. PacketsInOutBlock = 1
PVM IUCV LOCIUCV : ToIucv PackWrites: Queuesize, SavedEnv: 0 0

#CP EXT
14:37:39 09/26/90 Shutdown KILL TCB #1000 (INTCLIEN) TCP/IP service is being shut down

Bytes: 0 sent, 0 received
Max use: 0 in retransmit Q

1 active client, with 1 connection in use.
I will delay shutting down for 30 seconds, so that
RSTs and shutdown notifications may be delivered.
If you wish to shutdown immediately, without warning,
type #CP EXT again.

Server Telnet closed down. Bye.
ToIucv: Acb Received:
13591816:

Device-specific activity -> To-IUCV (from Timer)
Last touched: 217

Device LOCIUCV:
Type: PVM IUCV, Status: Connected
Envelope queue size: 0
VM id: TCPIP2
UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY
Our PVM node: A

Figure 68. A Sample of an IUCV Trace (Part 2 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 119

PCCA
The PCCA group process combines PCCA handler and PCCA common routine
traces. It provides information about I/O operations to be performed on the
channel-attached LAN adapters. The trace output lists the device, type, CCW
address, CCW operation, number of bytes, and unit status of I/O requested
operations.

Figure 69 shows a sample of a PCCA trace in which an ACB (13715112) acquires
the home hardware address for link TR2 with ctrlcommand 04 on networktype 2,
adapter 1. Figure 69 also shows an ACB with an ARP address translation for IP
address 9.67.58.234. For more information about the commands used in this trace,
see “CCW” on page 272.

IUCV shutting down:
Device LOCIUCV:

Type: PVM IUCV, Status: Connected
Envelope queue size: 0
VM id: TCPIP2
UserDoubleWord 1: XYZZY, UserDoubleWord 2: XYZZY
Our PVM node: A

ToIucv: Severing path 0
UnlockAll issuing "CP UNLOCK TCPIP 0 DFF"
COMMAND COMPLETE
ShutDown at 234.795 seconds

Figure 68. A Sample of an IUCV Trace (Part 3 of 3)

TCP/IP Traces

120 z/VM: TCP/IP Diagnosis Guide

ToPcca3: Acb Received:
13715112:

Have completed I/O -> PCCA3 common routine (from PCCA3 handler)
Last touched: 20

IoDevice 0560
Csw:

Keys: E0, CcwAddress: 007B7118
Unit Status: 0C, Channel Status: 00
Byte Count: 20402

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 0
Address: 0560

PCCA3 device LCS1: Received PCCA control packet:
PccaCtrlCommand: 4, PccaCtrlNetType2: 2, PccaCtrlAdapter2: 1
PccaCtrlRetcode: 0, PccaCtrlSequence: 0, PccaCtrlFlags: 00
PccaCtrlHardwareAddress: 10005A6BAFDF
PCCA3 device LCS1: PCCA reports home hardware address 10005A6BAFDF for link TR2
PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 76
PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1
PCCA3 device LCS1: CallSio: Starting I/O on device 0560. First command 02, UseDiag98 True
PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0
ToPcca3: Acb Received:
13715008:

Send datagram -> PCCA3 common routine (from PCCA3 common routine)
Last touched: 20

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 0
Address: 0560

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0
ToPcca3: Acb Received:
13715008:

Send datagram -> Device driver(LCS1) (from UDP-request)
Last touched: 23

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 1
Address: 0560

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 1 0
PCCA3 device LCS1: ToPcca PackWrites: LengthOfData, BlockHeader: 54 56
PCCA3 device LCS1: CallSio: Starting I/O on device 0561. First command 01, UseDiag98 True
ToPcca3: Acb Received:

Figure 69. A Sample of a PCCA Trace (Part 1 of 2)

TCP/IP Traces

Chapter 7. TCP/IP Traces 121

The PCCA trace using the MORETRACE command provides the following
additional information for Pccactrl fields:
v Command
v Return code
v Net numbers
v Adapter numbers
v Flags.

13715008:
Have completed I/O -> PCCA3 common routine (from PCCA3 handler)
Last touched: 23

IoDevice 0561
Csw:

Keys: E0, CcwAddress: 007B70C0
Unit Status: 0C, Channel Status: 00
Byte Count: 0

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 0
Address: 0560

PCCA3 device LCS1: ToPcca write complete. PacketsInOutBlock = 1
PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0
ToPcca3: Acb Received:
13715008:

Have completed I/O -> PCCA3 common routine (from PCCA3 handler)
Last touched: 23

IoDevice 0560
Csw:

Keys: E0, CcwAddress: 007B7118
Unit Status: 0C, Channel Status: 00
Byte Count: 20422

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 0
Address: 0560

PCCA3 device LCS1: UnpackReads: NetType 2 AdapterNumber 0 BytesToMove 54
PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 56
PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1
PCCA3 device LCS1: CallSio: Starting I/O on device 0560. First command 02, UseDiag98 True
PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0
ToPcca3: Acb Received:
13715008:

Have completed I/O -> PCCA3 common routine (from PCCA3 handler)
Last touched: 23

IoDevice 0560
Csw:

Keys: E0, CcwAddress: 007B7118
Unit Status: 0C, Channel Status: 00
Byte Count: 20422

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 0
Address: 0560

PCCA3 device LCS1: UnpackReads: NetType 2 AdapterNumber 0 BytesToMove 54
Arp adds translation 9.67.58.234 = IBMTR: 10005A250858
PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 56
PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1
PCCA3 device LCS1: CallSio: Starting I/O on device 0560. First command 02, UseDiag98 True
PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 1 0
PCCA3 device LCS1: ToPcca PackWrites: LengthOfData, BlockHeader: 101 104
PCCA3 device LCS1: CallSio: Starting I/O on device 0561. First command 01, UseDiag98 True

Figure 69. A Sample of a PCCA Trace (Part 2 of 2)

TCP/IP Traces

122 z/VM: TCP/IP Diagnosis Guide

Hardware addresses, IP headers, ICMP headers, and ARP headers are also
provided.

Figure 70 shows a sample of a PCCA trace using the MORETRACE command. The
following information is shown.
v ACB 13715216 receives a PCCA control packet for the first adapter on a

token-ring.
v The first command was 02 (read).
v ACB 13714696 is an ARP request from the local host to IP address 9.67.58.234.
v The CCW is 01 (write). For more information about CCW codes, see Table 23 on

page 272
v The last ACB is the ARP response from 9.67.58.234. It provides ARP packet

information: hardware type (6), hardware addresses of both hosts, and IP
addresses.

Information about LLC, such as the source SAP (AA), the destination SAP (AA),
and protocol type (0806) is also shown.

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0
ToPcca3: Acb Received:
13715216:

Have completed I/O -> PCCA3 common routine (from PCCA3 handler)
Last touched: 20

IoDevice 0560
Csw:

Keys: E0, CcwAddress: 00559118
Unit Status: 0C, Channel Status: 00
Byte Count: 20402

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 0
Address: 0560

PCCA3 device LCS1: Received PCCA control packet:
PccaCtrlCommand: 4, PccaCtrlNetType2: 2, PccaCtrlAdapter2: 0
PccaCtrlRetcode: 0, PccaCtrlSequence: 0, PccaCtrlFlags: 00
PccaCtrlHardwareAddress: 10005A6BB806
PCCA3 device LCS1: PCCA reports home hardware address 10005A6BB806 for link TR1
PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 76
PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1
PCCA3 device LCS1: CallSio: Starting I/O on device 0560. First command 02, UseDiag98 True
PCCA3 device LCS1: ToPcca3: Sio returned 0 on device 0560

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 0 0
.
.
.
ToPcca3: Acb Received:
13714696:

Send datagram -> Device driver(LCS1) (from UDP-request)
Last touched: 23

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 1
Address: 0560

Figure 70. A Sample of a PCCA Trace Using MORETRACE (Part 1 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 123

PCCA3 device LCS1: ToPcca PackWrites: Queuesizes, SavedEnv: 0 1 0
PCCA3 device LCS1: Sending envelope to PCCA:

Access control field: 60
Frame control field: 40
Token ring dest address: FFFFFFFFFFFF
Token ring src address: 90005A6BB806
Routing info: 8220
Destination SAP: AA
Source SAP: AA
Control: 03
Protocol id:000000
Ethernet type: 0806
ARP packet:

ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 0
ArpSenderHardwareAddr: 10005A6BB806
ArpSenderInternetAddr: 9.67.58.233
ArpTargetHardwareAddr: C53400D7C530
ArpTargetInternetAddr: 9.67.58.234

PCCA3 device LCS1: ToPcca PackWrites: LengthOfData, BlockHeader: 54 56
PCCA3 device LCS1: StartPccaOutputIo: OutputPosition is 56
PCCA3 device LCS1: CallSio: Starting I/O on device 0561. First command 01, UseDiag98 True
PCCA3 device LCS1: ToPcca3: Sio returned 0 on device 0561
.
.
.
ToPcca3: Acb Received:
13714696:

Have completed I/O -> PCCA3 common routine (from PCCA3 handler)
Last touched: 23

IoDevice 0560
Csw:

Keys: E0, CcwAddress: 00559118
Unit Status: 0C, Channel Status: 00
Byte Count: 20422

Device LCS1:
Type: LCS, Status: Ready
Envelope queue size: 0
Address: 0560

PCCA3 device LCS1: UnpackReads: NetType 2 AdapterNumber 0 BytesToMove 54
PCCA3 device LCS1: Received envelope from PCCA:

Access control field: 18
Frame control field: 40
Token ring dest address: 10005A6BB806
Token ring src address: 90005A250858
Routing info: 02A0
Destination SAP: AA
Source SAP: AA
Control: 03
Protocol id:000000
Ethernet type: 0806

Figure 70. A Sample of a PCCA Trace Using MORETRACE (Part 2 of 3)

TCP/IP Traces

124 z/VM: TCP/IP Diagnosis Guide

RAWIP
The RAWIP group process combines RAWIPREQUEST and RAWIPUP traces.

TCP
The TCP group process combines TCP congestion control, notify, retransmit,
round-trip, TCPDOWN, TCPREQUEST, and TCPUP traces.

TCPIP or TCP-IP
The TCPIP or TCP-IP group process combines TCP congestion control, IPDOWN,
IPREQUEST, IPUP, notify, retransmit, round-trip, TCPDOWN, TCPREQUEST, and
TCPUP traces.

UDP
The UDP group process combines UDPREQUEST and UDPUP traces.

Commonly Used Trace Options
The preceding sections have attempted to provide information and examples of the
various types of traces that can be obtained for the TCP/IP virtual machine. The
slightly more difficult task is to determine which trace options are complementary
and which are the most beneficial or most expensive in terms of obtaining viable
problem determination data. The table below provides a high-level overview of the
most commonly used trace options, along with brief explanations of the type of
events they generate and the “relative” cost of activating the trace option.

ARP packet:
ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 0
ArpSenderHardwareAddr: 10005A250858
ArpSenderInternetAddr: 9.67.58.234
ArpTargetHardwareAddr: 10005A6BB806
ArpTargetInternetAddr: 9.67.58.233

Arpin: Processing Arp packet:
ArpHardwareType: 6
ArpProtocolType: 2048
ArpHardwareLen: 6
ArpProtocolLen: 4
ArpOp: 0
ArpSenderHardwareAddr: 10005A250858
ArpSenderInternetAddr: 9.67.58.234
ArpTargetHardwareAddr: 10005A6BB806
ArpTargetInternetAddr: 9.67.58.233

Arp adds translation 9.67.58.234 = IBMTR: 10005A250858
PCCA3 device LCS1: ToPcca3: BlockHeader copied from InputPosition: 0 56
PCCA3 device LCS1: ToPcca UnpackReads: PacketsInInBlock = 1
PCCA3 device LCS1: CallSio: Starting I/O on device 0560. First command 02, UseDiag98 True
PCCA3 device LCS1: ToPcca3: Sio returned 0 on device 0560

Figure 70. A Sample of a PCCA Trace Using MORETRACE (Part 3 of 3)

TCP/IP Traces

Chapter 7. TCP/IP Traces 125

Table 10. Commonly-used Trace Options

Option name TRACE output Addl MORETRACE output

ARP Maintenance of queue of
packets waiting for ARP
response. Errors in ARP
processing.

No output caused by received
ARP broadcasts.

All received ARP packets.

Can generate a lot of output
if much broadcast ARP traffic
on network.

CETI Internal workings of CETI
drivers (ELANS, ILANS, X.25
ICA). I/O interrupts. Length
of packets received and sent.
Device initialization.

Can generate a lot of output
if there’s a lot of broadcast
traffic on the network, even if
little activity is occurring
locally on the host.

Hex dump of received and
transmitted packets, and ARP
processing info.

Main disadvantage of
MORETRACE is that large
packets increase the size of
the trace. This is mainly a
concern with FTP and other
bulk data transfers. But the
packet trace can be
invaluable.

CLAW Information about CLAW
read and write channel
program processing. Start
I/O and write complete
notifications. CSW
information on I/O
completions. Data from Sense
ID channel command
execution. Statistical
information about packets.
ACB information.

MORETRACE CLAW output
adds envelope and CLAW
control packet information, IP
datagram information, and
read / write channel program
information when I/O is
started.

CONGESTION Traces some aspects of
TCP-layer
“congestion-control”.

Usable as part of TCP or
TCPIP tracing; not useful by
itself.

No additional tracing

CONSISTENCYCHECKER Every 5 minutes, print
various queue sizes.

Useful to determine free pool
status in Version 1.

More detail.

MORETRACE doesn’t cost
much more than TRACE,
since output is only every 5
minutes.

HCH Hyperchannel device driver
message headers, some
return codes

Queue sizes, packet sizes,
I/O interrupts.

If Hyperchannel tracing is
needed, then MORETRACE
is worthwhile. That is,
TRACE alone isn’t too useful.

ICMP Received ICMP packets Additional information on
Redirect packets

TCP/IP Traces

126 z/VM: TCP/IP Diagnosis Guide

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

IPDOWN Errors in ICMP packet
generation. Redirect
processing. Fragmentation of
outbound packets. Routing of
outbound packets.

IP headers of outbound
packets and fragments.

IPUP Internal IPUP activity
information, Reassembly of
fragments, Bad received
checksums, Information on
received datagrams, IP option
errors, and Packet
forwarding.

Additional details on
reassembly and redirect. IP
headers of packets other than
TCP protocol.

Note: If IP tracing is required, it is almost always worthwhile to trace IPUP and IPDOWN
together.

In two sample traces of the same traffic, MORETRACE IPUP IPDOWN generated 2.5 times
as many lines of output as TRACE IPUP IPDOWN, mainly because of the multiple-line
tracing of outbound IP headers generated by MORETRACE IPDOWN.

TRACE IPUP output includes datagram id’s of incoming packets, useful for correlating with
network monitor tracing. MORETRACE IPDOWN must be used to get datagram id’s of
outgoing packets.

IUCV IUCV driver (PVMIUCV,
SNAIUCV, IUCV, X25NPSI
devices) details, including
path establishment

No additional tracing

IUCVSIGNON IUCV driver, path
establishment only

No additional tracing

NOTIFY Tracing related to sending of
notifications to the internal
client (Telnet server) and
VMCF clients (Pascal
interface and direct VMCF
interface).

In addition, events involving
IUCV clients (socket interface
and direct IUCV interface)
are processed through
TCNOTIF PASCAL, so they
will show up here too, even
though no VMCF message is
actually sent.

Additional details.

In two sample traces of the
same traffic, MORETRACE
NOTIFY generated twice as
many lines of output as
TRACE NOTIFY. If
notifications are suspected to
be a problem, the extra
output is worthwhile.

PCCA LCS driver packet sizes,
block headers, I/O interrupts.

Can generate a lot of output
if there is a lot of broadcast
traffic on the network, even if
little activity is occurring
locally on the host.

Packet headers, SIO return
codes

TCP/IP Traces

Chapter 7. TCP/IP Traces 127

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

PING Traces ping requests and
responses generated through
the PING command or
directly by the PingRequest
Pascal call or PINGreq VMCF
call.

No additional tracing

RAWIPREQUEST Traces requests using Raw IP
through the Pascal interface
or VMCF interface. Raw IP
routines include

v RawIpOpen (OPENrawip)

v RawIpClose (CLOSErawip)

v RawIpSend (SENDrawip)

v RawIpReceive
(RECEIVErawip)

IP packet headers as supplied
by application, before they
are completed by the
FillIpHeader routine.

In two sample traces of the
same traffic, MORETRACE
RAWIPREQUEST generated
1.6 times as many lines of
output as TRACE
RAWIPREQUEST. The extra
output is worthwhile.

RAWIPUP Messages pertaining to
queuing received IP packets
for applications using Raw IP
interface or raw sockets.

No additional tracing

Note: NOTIFY is also useful for looking at raw IP activity, since it traces
RAWIPpacketsDELIVERED notifications.

RETRANSMIT, REXMIT Retransmissions by local TCP.
Duplicate packets received,
indicating possibly
unnecessary retransmission
by foreign TCP.

No additional tracing

ROUNDTRIP “Round-trip” times, i.e. time
between sending TCP packet
and receiving
acknowledgment.

Not very useful by itself.

No additional tracing

SCHEDULER Lists the internal TCPIP
processes as they are called.
Listing is one per line.

Much more detail on why
each process is called.

MORETRACE SCHEDULER
is gives a good overall view
of what is happening in
TCPIP; quite useful as a
debugging tool.

SNMPDPI SNMP“sub-agent” tracing.
Lists MIB queries by the
SNMP agent.

No additional tracing

SOCKET Trace requests made through
IUCV socket interface, and
most responses.

A little extra tracing in bind()
processing

TCP Includes TCPREQUEST,
TCPDOWN, TCPUP,
ROUNDTRIP, NOTIFY,
REXMIT, and CONGESTION.

See individual entries.
MORETRACE TCP sets
detailed tracing for all the
above names.

TCP/IP Traces

128 z/VM: TCP/IP Diagnosis Guide

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

TCPDOWN Trace information related to
outbound TCP packets, both
data packets and
acknowledgments.

More verbose listing, can be
twice as long as TRACE
TCPDOWN.

Much of the extra output is
redundant and verbose, and
is not worthwhile, especially
if a large data transfer is to
be traced.

TCPIP, TCP-IP Includes TCPREQUEST,
TCPDOWN, TCPUP,
ROUNDTRIP, NOTIFY,
REXMIT, CONGESTION,
IPDOWN, and IPUP

See individual entries.
MORETRACE TCPIP sets
detailed tracing for all the
above names.

TCPREQUEST Information pertaining to
execution of the following
Pascal-interface and
VMCF-interface requests:

v TcpAbort (ABORTtcp)

v TcpClose (CLOSEtcp)

v TcpOpen and TcpWaitOpen
(OPENtcp)

v TcpSend (SENDtcp)

v TcpReceive (RECEIVEtcp)

v TcpStatus (STATUStcp)

v TcpFReceive and
TcpWaitReceive
(FRECEIVEtcp)

v TcpFSend and TcpWaitSend
(FSENDtcp)

v BeginTcpIp
(BEGINtcpIPservice)

v EndTcpIp
(ENDtcpIPservice)

v Handle (HANDLEnotice)

v IsLocalAddress
(IShostLOCAL)

Also traces requests produced
by the Version 1 socket
interface module,
CMSOCKET C, for stream
sockets and initialization.

In two sample traces of the
same traffic, MORETRACE
TCPREQUEST generated 1.5
times as many lines of output
as TRACE TCPREQUEST. But
the extra detail, including
information on open calls,
and compact display of
TCB’s, is worthwhile.

TCP/IP Traces

Chapter 7. TCP/IP Traces 129

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

TCPUP Information related to
processing of incoming TCP
packets.

In two sample traces of the
same traffic, MORETRACE
TCPUP generated 14 times as
many lines of output as
TRACE TCPUP.

This extra volume makes a
huge difference when tracing
a large data transfer. So
MORETRACE TCPUP is
probably unnecessary in the
first stage of gathering trace
information.

TELNET The Telnet server is a TCP/IP
application program that,
unlike other applications,
runs as a process in the
TCPIP virtual machine (the
“internal client”) instead of in
its own virtual machine. So
tracing of the Telnet server
application is enabled via the
TRACE and MORETRACE
commands used in the rest of
TCPIP.

MORETRACE output adds
tracing of data, including:
Data accepted from logical
devices, data presented to
logical devices, data sent to
TCP, data received from TCP,
data sent to *CCS, data
received from *CCS. Some
data is printed one byte per
line, which greatly increases
the number of lines of trace
output, though not
necessarily the space
occupied on disk or tape.

For most Telnet server
problems, MORETRACE
TELNET is probably a good
choice.

TIMER Information related to
internal timeout processing
within TCPIP. Probably
useful only for debugging
internal problems.

If a timer problem is
suspected, then
MORETRACE TIMER output
would be useful to a person
familiar with TCPIP internals.
Output may be 12 times as
large as TRACE.

TCP/IP Traces

130 z/VM: TCP/IP Diagnosis Guide

Table 10. Commonly-used Trace Options (continued)

Option name TRACE output Addl MORETRACE output

UDPREQUEST Information pertaining to
execution of the following
Pascal-interface and
VMCF-interface requests:

v UdpClose (CLOSEudp)

v UdpOpen (OPENudp)

v UdpSend (SENDudp)

v UdpNReceive
(NRECEIVEtcp)

v UdpReceive
(RECEIVEudp)

Also traces requests produced
by the Version 1 socket
interface module,
CMSOCKET C, for datagram
sockets.

In two sample traces of the
same traffic, MORETRACE
UDPREQUEST generated 2.5
times as many lines of output
as TRACE UDPREQUEST.
But the extra detail, including
display of UCB’s, is
worthwhile.

UDPUP Information about processing
of inbound UDP packets.
Useless without
MORETRACE.

Port number in following
message is wrong: UptoUDP:
Destination port # 65536108

The port number is only the
high-order halfword. 65536108
= X'03E8006C', so port
number is X'3E8' = 1000.

Note: NOTIFY is also useful for looking at UDP activity, since it traces
UDPdatagramDELIVERED notifications.

Connection State
A connection state is a description of the status of a logical communication path
between two “sockets”. The terms used to describe this status vary according to
the perspective from which the connection state is viewed. The following sections
discuss the connection state as seen from the perspectives of the TCP layer, Pascal
or VMCF applications, and socket applications.

Connection State As Known by TCP
The TCP layer in the host at each end of a TCP connection keeps its own variable
containing the state of the connection, using the connection states defined in RFC
793. This is the state shown in NETSTAT output.

Ignoring state transitions, which do not tend to conform to these simplistic
definitions, the following table lists the connection states and what each typically
implies about the state of the connection. See section 3.2 of RFC 793 for more
information on connection states.

TCP/IP Traces

Chapter 7. TCP/IP Traces 131

Table 11. TCP Connection States

State name Typical Situation

LISTEN Waiting for a connection request from the address and port
listed in the Foreign Socket column of NETSTAT.

v “HOSTA..*” means waiting for a connection request from
any port on host HOSTA.

v “*..100” means waiting for a connection request from
port 100 on any host.

v “*..*” means waiting for a connection request from any
port on any host.

If the application uses the Pascal interface or VMCF
interface, it has done a TcpOpen (or TcpWaitOpen) with an
initial pseudo-state of LISTENING.

If the application uses the socket interface, from C or via
IUCV, it has done a listen(), and the listen backlog has not
been reached.

SYN-SENT The application has done an “active open” and is waiting
for a response from the foreign server.

If the application uses the Pascal interface or VMCF
interface, it has done a TcpOpen (or TcpWaitOpen) with an
initial pseudo-state of TRYINGtoOPEN.

If the application uses the socket interface, from C or via
IUCV, it has done a connect().

SYN-RECEIVED Represents a condition where TCP is waiting for a
confirming connection request acknowledgement after
having received and sent a connection request. This
sometimes means that a SYN was received on a connection
in LISTEN state, but connection establishment hasn’t been
able to proceed further because a routing problem prevents
the response from reaching the foreign host.

ESTABLISHED Connection is completely established. Both sides can send
and receive data. This is the normal state for the data
transfer phase of a connection.

FIN-WAIT-1 Application has issued a TcpClose or close(). A FIN packet
was sent but not acknowledged, and a FIN hasn’t been
received from the foreign host.

TCP/IP Traces

132 z/VM: TCP/IP Diagnosis Guide

Table 11. TCP Connection States (continued)

State name Typical Situation

FIN-WAIT-2 Application has issued a TcpClose or close(). FIN packet
was sent and has been acknowledged. TCP is now waiting
for the foreign host to send a FIN.

This is the state a connection enters when the application
closes but the application on the other end doesn’t close.
There is no timeout in this state, since the FIN has been
acknowledged.

If the foreign host sends an ACK packet in response to the
the local host’s FIN and then goes away without sending
an RST, or if the RST is lost, then the connection will stay
in this state for an indefinite period of time (until the
application aborts the connection or terminates).

In this state, data can be received but not sent. Some
applications may intentionally put the connection into this
state because they plan to send data in one direction.
However, in most cases, this is not a long-term state.
Usually, persistence of this state indicates an error
condition.

CLOSE-WAIT The local host has received a FIN from the foreign host and
has acknowledged it, but the application hasn’t issued a
TcpClose or close().

In this state, data can be sent but not received. Some
applications may intentionally put the connection in this
state because they plan to send data in one direction.
However, in most cases, this is not a long-term state.
Usually, persistence of this state indicates an error
condition.

CLOSING Represents waiting for a connection termination request
acknowledgement from the remote TCP. This state (and the
LAST-ACK state) indicates that both sides have closed the
connection. Data cannot be sent in either direction.

LAST-ACK Represents waiting for an acknowledgement of the
connection termination request previously sent to the
remote TCP (which included an acknowledgement of the
remote TCP’s connection termination request). This state
(and the CLOSING state) indicates that both sides have
closed the connection. Data cannot be sent in either
direction.

TIME-WAIT Both sides have closed the connection, and all packets have
been acknowledged. The connection stays in this state for
2 * MSL (MSL = 60 seconds) as required by the protocol
specification, to ensure that foreign host has received the
acknowledgment of its FIN.

In VM TCP/IP, connections in TIME-WAIT state do not
usually appear in the output from the NETSTAT command.
The ALLCONN or TELNET parameters must be supplied
on the NETSTAT command to see connections in this state.

TCP/IP Traces

Chapter 7. TCP/IP Traces 133

Table 11. TCP Connection States (continued)

State name Typical Situation

CLOSED The connection is completely closed.

In TCP/IP for VM, connections in CLOSED state do not
usually appear in the output from the NETSTAT command.
The ALLCONN parameter must be supplied on the
NETSTAT command to see connections in this state.

Connection State As Known by Pascal or VMCF Applications
Pascal and direct VMCF applications do not see the actual TCP states described in
Table 11. Rather, the connection state in the StatusInfoType record and in
CONNECTIONstateCHANGED notifications is expressed as a “pseudo-state”. The
pseudo-state contains the connection state information needed by an application
program, while hiding protocol details that are not important to an application.

Table 12. Connection Pseudo-states

State name Meaning, from CMCOMM
COPY

Corresponding TCP states

LISTENING Waiting for a foreign site to
open a connection

LISTEN

TRYINGtoOPEN Trying to contact a foreign
site to establish a connection.

SYN-SENT, SYN-RECEIVED

OPEN Data can go either way on
the connection

Either:

v ESTABLISHED

v CLOSE-WAIT, but input
data still queued for
application

SENDINGonly Data can be sent out but not
received on this connection.
This means that the foreign
site has done a one-way
close.

CLOSE-WAIT, and no input
data queued for application

RECEIVINGonly Data can be received but not
sent on this connection. This
means that the client has
done a one-way close.

Either:

v FIN-WAIT-1

v FIN-WAIT-2

v LAST-ACK, but input data
still queued for application

v CLOSING, but input data
still queued for application

v TIME-WAIT, but input
data still queued for
application

TCP/IP Traces

134 z/VM: TCP/IP Diagnosis Guide

Table 12. Connection Pseudo-states (continued)

State name Meaning, from CMCOMM
COPY

Corresponding TCP states

CONNECTIONclosing Data may no longer be
transmitted on this
connection since the TCP/IP
service is in the process of
closing down the connection.

Either:

v LAST-ACK, and no input
data queued for
application

v CLOSING, and no input
data queued for
application

v TIME-WAIT, and no input
data queued for
application

NONEXISTENT The connection no longer
exists.

CLOSED

Connection State As Known by Socket Applications
The socket interface does not allow for programs to see explicit connection states.
The connection state is inferred from the response to various socket calls.
v A successful return from connect() means that the connection is in an OPEN

pseudo-state. The socket returned from a successful accept() call is also assumed
to be in an OPEN pseudo-state.

v A return code of 0 from read(), recv(), etc., indicates that foreign host has done
one-way close. This is like SENDINGonly pseudo-state.

v A return code of -1 from read(), recv(), etc., with an errno value of
ECONNABORTED, ECONNRESET, or ETIMEDOUT, indicates that the
connection has been abruptly closed (reset) for the given reason.

Note that internal TCP/IP traces show CONNECTIONstateCHANGED
notifications being sent to socket programs. In fact, the notification is converted to
the proper socket state information so that the program may find out about the
state change on its next socket call.

Traceroute Function (TRACERTE)
The Traceroute function sends UDP requests with varying Time-to-Lives (TTL) and
listens for TTL-exceeded messages from the routers between the local host and the
foreign host. Traceroute uses RAW sockets, so you must have OBEYFILE authority
to use this command. The range of port numbers that Traceroute uses are normally
invalid, but you can change it if the target host is using a nonstandard UDP port.

To debug network problems, use the TRACERTE command. See the TCP/IP User’s
Guide for a complete format of the TRACERTE command.

�� TRACERTE ?
host_name

��

The following are examples of using the TRACERTE command:

TCP/IP Traces

Chapter 7. TCP/IP Traces 135

tracerte cyst.watson.ibm.com
Trace route to CYST.WATSON.IBM.COM (9.2.91.34)
1 (9.67.22.2) 67 ms 53 ms 60 ms
2 * * *
3 (9.67.1.5) 119 ms 83 ms 65 ms
4 (9.3.8.14) 77 ms 80 ms 87 ms
5 (9.158.1.1) 94 ms 89 ms 85 ms
6 (9.31.3.1) 189 ms 197 ms *
7 * * (9.31.16.2) 954 ms
8 (129.34.31.33) 164 ms 181 ms 216 ms
9 (9.2.95.1) 198 ms 182 ms 178 ms
10 (9.2.91.34) 178 ms 187 ms *
> Note that the second hop does not send Time-to-live exceeded
> messages. Also, we occasionally lose a packet (hops 6,7, and 10).

Ready;
tracerte 129.35.130.09
Trace route to 129.35.130.09 (129.35.130.9)
1 (9.67.22.2) 61 ms 62 ms 56 ms
2 * * *
3 (9.67.1.5) 74 ms 73 ms 80 ms
4 (9.3.8.1) 182 ms 200 ms 184 ms
5 (129.35.208.2) 170 ms 167 ms 163 ms
6 * (129.35.208.2) 192 ms !H 157 ms !H
> The network was found, but no host was found

tracerte 129.45.45.45
Trace route to 129.45.45.45 (129.45.45.45)
1 (9.67.22.2) 320 ms 56 ms 71 ms
2 * * *
3 (9.67.1.5) 67 ms 64 ms 65 ms
4 (9.67.1.5) 171 ms !N 68 ms !N 61 ms !N
> Could not route to that network.

Traceroute uses the site tables for inverse name resolution rather than the domain
name server. If a host name is found in the site table, it is printed along with its IP
address.
tracerte EVANS
Trace route to EVANS (129.45.45.45)
1 BART (9.67.60.85) 20 ms 56 ms 71 ms
2 BUZZ (9.67.60.84) 55 ms 56 ms 54 ms
3 EVANS (9.67.30.25) 67 ms 64 ms 65 ms

TCP/IP Traces

136 z/VM: TCP/IP Diagnosis Guide

Chapter 8. FTP Traces

This chapter describes File Transfer Protocol (FTP) traces, including the relationship
between FTP user and server functions. This chapter also describes how to activate
and interpret FTP client and server traces.

FTP Connection
A control connection is initiated by the user-Protocol Interpreter (PI) following the
Telnet protocol (x) and the server-Protocol Interpreter (PI) response to the standard
FTP commands. Figure 71 shows the relationship between user and server
functions.

Note: PI is the Protocol Interpreter and DTP is the Data Transfer Process. The data
connection can be used in either direction and it does not have to be active.

Once the parameters from the data connections have been transmitted, the
user-DTP must be in listen status on the specified data port. The server initiates
the data connection using the default data port requested by the user. For VM FTP
implementations, the client issues a PORT command. The port is then assigned by
TCPIP after an open request. The format of the PORT command is:

�� PORT 9.67.58.127p1p2 ��

The only parameter for the PORT command is:

Parameter Description

9.67.58.127,p1,p2 Is the address space for the default data port.

┌─────────────────┐
│ ┌─────────────┐ │ ┌──────────┐
│ │ User │�┼───�│ User │
│ │ Interface │ │ └──────────┘
│ └─────────────┘ │
│] │

┌──────────────┐ │ ^ │
│ ┌──────────┐ │ FTP Commands │ ┌─────────────┐ │
│ │ Server │�┼─────────────────┼�│ User │ │
│ │ PI │ │ FTP Replies │ │ PI │ │
│ └──────────┘ │ │ └─────────────┘ │
│] │ │] │
│ ^ │ │ ^ │

┌──────────┐ │ ┌──────────┐ │ Data │ ┌─────────────┐ │ ┌──────────┐
│ File │�───┼�│ Server │�┼─────────────────┼�│ User │�┼───�│ File │
│ System │ │ │ DTP │ │ Connection │ │ DTP │ │ │ System │
└──────────┘ │ └──────────┘ │ │ └─────────────┘ │ └──────────┘

└──────────────┘ └─────────────────┘

FTP Server FTP User

Figure 71. The FTP Model

© Copyright IBM Corp. 1987, 2001 137

The server initiates, maintains, and closes the data connection. However, when a
user transmits data, an end of file (EOF) closes the data connection.

FTP Client Traces
The following sections describe how to activate FTP client traces and interpret the
output.

Activating Traces
FTP client traces are activated by specifying the TRACE parameter in addition to
the usual processing parameters on invocation of the FTP command. Tracing can
also be activated interactively once an FTP session has been established by using
the DEBUG subcommand of FTP. The following is the format for the FTP TRACE
command in VM:

�� FTP foreignhost
portnumber

TRACE ��

The parameters for the FTP command are:

Parameter Description

foreignhost Specifies the name of the foreign host to which you
are connecting. The host may be specified by its
host name or internet address.

portnumber Specifies the number of the port to request
connection to. This parameter is usually used for
system testing only.

EXIT Terminates FTP when an error occurs, returning an
error code.

TRACE Starts the generation of tracing output. TRACE is
used to assist in debugging.

TRANSLATE filename Specifies the name of a translation table file other
than a standard table.

To enable or disable the trace mode interactively, use the DEBUG subcommand of
FTP. The format of the DEBUG subcommand is:

�� DEBUG ��

The DEBUG subcommand has no parameters.

Trace output is directed to the virtual machine console.

For more information about the FTP command and DEBUG subcommand, see the
TCP/IP User’s Guide.

File Transfer Protocol Traces

138 z/VM: TCP/IP Diagnosis Guide

Trace Output
The output from FTP traces shows the sequence of commands requested by the
TCP/IP user. Transferred data is not traced.

You can relate FTP client and server traces if the connection has been interrupted
or closed at the client’s request or initiated by the server. TCP requests that are
traced by the client program include:
v TcpOpen
v BeginTcpIp
v TcpWaitReceive
v TcpWaitSend.

The messages issued by FTP are referenced in RFC 959. The first five significant
digit values for FTP return codes are:

1yz Positive preliminary reply

2yz Positive completion reply

3yz Positive intermediate reply

4yz Transient negative completion reply

5yz Permanent negative completion reply.

Figure 72 shows a sample of an FTP client trace. In the trace, input from the
keyboard or a file is preceded by:
===

Information that the FTP client is sending over the control connection is preceded
by:
>>>

Action taken by the FTP client program is preceded by:
==>

The other statements in the trace flow are self-explanatory and can be found in the
source code of the FTP modules.

File Transfer Protocol Traces

Chapter 8. FTP Traces 139

FTP 9.67.43.126 TRACE
VM TCP/IP FTP V2R4
about to call BeginTcpIp
Connecting to 9.67.43.126, port 21
SysAct 0 21 155396990 CC -1
==> Active open to host 9.67.43.126 port 21
from host 0 port 65535
In SysRead, calling TcpWaitReceive with args: 0 00035BD4
65535
In SysRead, TcpWaitReceive returned: 131
220-FTPSERVE at HOSTVM.ENDICOTT.IBM.COM, 08:56:14 EDT TUESDAY 10/02/97
220 Connection will close if idle for more than 5 minutes.
GetReply returns 220
USER (identify yourself to the host):
===tcpusrx
>>>USER tcpusrx
In SysSendFlush, calling TcpWaitSend with args: 0 00034260
14
In SysSendFlush, TcpWaitSend returned: OK
In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535
In SysRead, TcpWaitReceive returned: 27
331 Send password, please
GetReply returns 331
Password:
===________ (non-display entry)
>>>PASS ********
In SysSendFlush, calling TcpWaitSend with args: 0 00034260 13
In SysSendFlush, TcpWaitSend returned: OK
In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535
In SysRead, TcpWaitReceive returned: 56
230 SYLVAIN logged in; working directory = SYLVAIN 191
GetReplCodeText returns 230 230 SYLVAIN logged in; working directory = SYLVAIN
191
leaving dologin

Figure 72. A Sample of an FTP Client Trace (Part 1 of 2)

File Transfer Protocol Traces

140 z/VM: TCP/IP Diagnosis Guide

The following describes the sequence of major events in the FTP client trace
sample output:
1. The connection to the remote host is opened through the FTP server’s listen

port.

Trace Item Description

9.67.43.126 Address space of the remote host server.

21 Port 21, which is used for FTP connections.

Command:
===get example.fileone
Filename: "$FTCOPY$.FTPUT1.A"
==> Passive open
Passive open successful: Fd = 3, TcpId = 1
>>>PORT 9,67,58,226,4,72
In SysSendFlush, calling TcpWaitSend with args: 0 00034260 23
In SysSendFlush, TcpWaitSend returned: OK
In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535
In SysRead, TcpWaitReceive returned: 21
200 Port request OK
GetReply returns 200
>>>RETR example.fileone
In SysSendFlush, calling TcpWaitSend with args: 0 00034260 22
In SysSendFlush, TcpWaitSend returned: OK
In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535
In SysRead, TcpWaitReceive returned: 36
150 Sending file 'example.fileone'
GetReplCodeText returns 150 150 Sending file 'example.fileone'
In UntilOpen: Note received:
=>TcpId 1 Connection state changed Trying to open
In UntilOpen: Note received:
=> TcpId 1 Connection state changed Open
Transferring in AsciiToRecord
In GetFromTcp, calling TcpWaitReceive with args: 1002BF000 32768
In GetFromTcp, TcpWaitReceive returned: 1072
GetFromTcp: 1072 bytes in buffer
In GetFromTcp, calling TcpWaitReceive with args: 1002BF000 32768
In GetFromTcp, TcpWaitReceive returned: -35
Sysclose called with fd = 3
In SysClose: Note received: => TcpId 1 Connection state changed Sending only
In SysClose: Note received: => TcpId 1 Connection state changed Connection
closing
Exiting from SysClose: fd = 3, TcpId = 1
In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535
In SysRead, TcpWaitReceive returned: 37
250 Transfer completed successfully
GetReply returns 250
1072 bytes transferred. Transfer rate 2.17 Kbytes/sec.
Command:
===quit
>>>QUIT
In SysSendFlush, calling TcpWaitSend with args: 0 00034260 6
In SysSendFlush, TcpWaitSend returned: OK
In SysRead, calling TcpWaitReceive with args: 0 00035BD4 65535
In SysRead, TcpWaitReceive returned: 37
221 Quit command received. Goodbye
GetReply returns 221
Entering WaitAndClose
In WaitAndClose: Note received: => TcpId 1 Connection state changed

Nonexistent
In WaitAndClose: Note received: => TcpId 0 Connection state changed
Sending only

Figure 72. A Sample of an FTP Client Trace (Part 2 of 2)

File Transfer Protocol Traces

Chapter 8. FTP Traces 141

0 Local host number.

65535 UNSPECIFIEDport, which is used to request an
available port from TCPIP with TcpOpen
functions.

2. Data is received from the remote server.

Trace Item Description

In SysRead Name of the FTP client procedure.

TcpWaitReceive Name of a TCPIP client procedure.

0 ID of the connection between the TCPIP and
FTP client.

00035BD4 Buffer address that contains the data or text to
be sent by the remote host.

65535 Buffer size authorized by the client.

131 Length of the data received, plus carriage
returns and line feeds (CR/LF) for:
v Outbound connections (preceding the text

line of output)
v Inbound connections (following the text line

of output); if this number is negative, it is a
return code.

3. SysSendFlush, an FTP client procedure, flushes buffered output and adds
CR/LFs.

Trace Item Description

TcpWaitSend Name of the TCP/IP function called.

0 Name of the control connection ID.

00034260 Buffer address of the data or command sent to
the remote host.

13 Length of the command sent plus CR/LF.
4. FTP performs a passive open to the remote host FTP server.

Trace Item Description

Fd=3 Internal connection slot number in the FTP
client program; the Fd for the first control
connection is 1.

TcpId Connection ID between the TCPIP and FTP
client.

9,67,58,226,4,72 Host address space, 9.67.58.226, and port
number, 1096. The port number is obtained by
converting 4 and 72 to hexadecimal (X'04' and
X'48'), and then converting X'0448' to a decimal.

5. The trace shows the evolving status of the data connection (TcpId 1) while in
routine UntilOpen. The purpose of the UntilOpen routine is to wait for the
server to complete the data connection after the open has been requested from
TCPIP. The status of the connection changes from:
TryingToOpen

to

File Transfer Protocol Traces

142 z/VM: TCP/IP Diagnosis Guide

Open.

6. A return code (-35) signifies that the remote host is closing the connection.
7. The status of the data connection being closed by TCPIP is displayed.

FTP Server Traces
The following sections describe how to activate FTP server traces and interpret the
output.

Activating Traces
Activation of the tracing facilities within the FTP server is accomplished by
specifying a trace parameter at server initialization, or by using the FTP Server
SMSG interface to issue an SMSG TRACE ON command. For information about
the SMSG TRACE command, refer to the ’Configuring the FTP Virtual Machine’
chapter in the TCP/IP Planning and Customization. The method of specifying the
parameters varies according to operating system environment.

In the VM environment, the FTP server is activated during processing performed
in the server virtual machine when its PROFILE EXEC executes the SRVRFTP
command. Tracing is activated by specifying the TRACE parameter in addition to
the usual processing parameters on command invocation. Figure 73 demonstrates
the use of the TRACE parameter for the SRVRFTP command:

The processing parameters that can be supplied are similar to those shown in
Figure 73.

Note that Figure 73 is only intended to highlight the specification of the parameter
necessary to activate tracing. Refer to the TCP/IP Planning and Customization for
information on the usage of the other parameters.

The TRACE option of FTP server provides three different types of information:

Console Output
Console output is standard for normal operations. The trace option adds
information about the general FTP server operations. For example, LINK
operations with return codes are provided. Console output is obtained in
the following format:

VM Standard console output.

Log The log gives information about abnormal run-time situations, such as
broken connections with TCPIP or with the remote client and remote port
that is unavailable. The following describes how to obtain the log:

VM FTPSERVE LOG A file.

�� SRVRFTP
PORT 21

PORT port_number

INACTIVE 300

INACTIVE number_seconds TRACE
�

�
RACF ANONYMOU

��

Figure 73. SRVRFTP Command Invocation Parameters

File Transfer Protocol Traces

Chapter 8. FTP Traces 143

Debug File
The debug file provides complete information about internal FTP server
activities. The following describes how to obtain the debug file:

VM FILE DEBUGTRA A file.

Trace Output
Tracing the internal operations of the FTP server provides information about the
processes, ports, and connections. The complete text of messages sent to clients,
operations, and the status of the data and control connections are also documented.

Figure 74 shows a sample of an FTP Server Trace.

File Transfer Protocol Traces

144 z/VM: TCP/IP Diagnosis Guide

OpenConnection(00000000,21,00000000,65535,2147483647,FALSE
AdvertizeService gets connection #0
Got note Connection state changed for #0, Trying to open
OpenConnection(00000000,21,00000000,65535,2147483647,FALSE
AdvertizeService gets connection #1
Got note Connection state changed for #0, Open
Allocating buffer of 32768 bytes
Allocating RdFromDiskBuf of 16384 bytes
Send reply '220-FTPSERVE at ENDVM23.TCPIPDEV.ENDICOTT.IBM, 18:22:54 EST THURSDAY
10/04/97'
Send reply '220 Connection will close if idle for more than 5 minutes.'
ReinitContConn(0)
GetData(0)
In GetData, TcpFReceive: Where = 1
Got note Data delivered for #0, 14 bytes
14 bytes arrived on conn #0
Send reply '230 TCPUSR1 logged in with no special access privileges'
GetData(0)
In GetData, TcpFReceive: Where = 1
Got note Data delivered for #0, 13 bytes
13 bytes arrived on conn #0
Send reply '332 Supply minidisk password using 'account''
GetData(0)
In GetData, TcpFReceive: Where = 1
Got note Data delivered for #0, 11 bytes
11 bytes arrived on conn #0
Send reply '230 Working directory is TCPUSR1 191 (ReadOnly)'
GetData(0)
In GetData, TcpFReceive: Where = 1
Got note Data delivered for #0, 22 bytes
22 bytes arrived on conn #0
Send reply '200 Port request OK.'
GetData(0)
In GetData, TcpFReceive: Where = 1
Got note Data delivered for #0, 19 bytes
19 bytes arrived on conn #0
OpenConnection(09433AE9,20,09433AE9,1029,30,TRUE
Send reply '125 List started OK'
SOpenfscb: name is: CONN-2.FTPLIST.A
SOpenFscb: ESTATE returns: 0
TidyFile: FINIS returns -450887680
GetData(0)
In GetData, TcpFReceive: Where = 1
Got note Connection state changed for #2, Open
Allocating buffer of 32768 bytes
Allocating RdFromDiskBuf of 16384 bytes
Data connection 2 open for sending
ReinitDataConn(2)
FtpFormat: A FtpMode: S FtpOptFormat: 0
RecordFormat: V RecordLength: 65535
StartTransfer for 2:
Xfread: totalread = 79 Result = 0 FByte = 1 LByte = 0
79 bytes sent on connection 2
Got note FSend response for #2, SendTurnCode = 0
Xfread: totalread = 0 Result = -12 FByte = 80 LByte = 79
Calling CMS(ERASE CONN-2 FTPLIST A)

Figure 74. A Sample of an FTP Server Trace (Part 1 of 2)

File Transfer Protocol Traces

Chapter 8. FTP Traces 145

Closing connection #2
Completed CloseConnection
Got note Connection state changed for #2, Receiving only
Got note Connection state changed for #2, Connection closing
CloseCompleted on #2: OK
Send reply '250 List completed successfully.'
DataReply: Setting CmdInProgress to CUNKNOWN on conn #2, was SYST
Got note Other external interrupt received for #-48, RuptCode = 64
Aborting connection #0
CloseCompleted on #0: Software error in TCP/IP!
Error completion on #0: Software error in TCP/IP!

Figure 74. A Sample of an FTP Server Trace (Part 2 of 2)

146 z/VM: TCP/IP Diagnosis Guide

Chapter 9. Simple Mail Transfer Protocol Traces

This chapter describes how to activate and interpret Simple Mail Transfer Protocol
(SMTP) traces.

SMTP Client Traces
The client interface to SMTP is in the form of some type of electronic mailing
handling program. There is no formal command interface. The mailing programs
(procedures) communicate with the IBM TCP/IP implementation of SMTP. The
client programming interfaces that are available for use with the TCP/IP Feature
for z/VM are the CMS SENDFILE and NOTE commands.

Activating Traces
Trace activation in the client environment is dependent on the type of mail
handling facilities made available at an installation. The client interfaces provided
with the TCP/IP product are in the form of a REXX EXEC procedures for VM.

The NOTE and SENDFILE EXEC procedures are written in the REXX procedures
language, so various levels of traces are available for use. Refer to the applicable
level of the System Product Interpreter Reference publication for more information.
The results of any chosen trace level will be directed to the user’s console.

Obtaining Queue Information
Clients can obtain information about mail that SMTP is delivering or waiting to
deliver. While this facility is not considered to be a formal diagnostic aid, it can be
used in situations where it is felt that an inordinate delay in mail delivery is
occurring to determine if further investigation is warranted.

The SMTPQUEU command is used to obtain the queue information. It causes the
SMTP virtual machine to deliver a piece of mail that lists the mail queued for
delivery at each site. The mail is spooled to the user that issued the SMPTQUEU
command. Figure 75 on page 148 shows the format of the output returned by the
SMTP server.

© Copyright IBM Corp. 1987, 2001 147

SMTP Server Traces
The following sections describe how to activate and interpret SMTP server traces.
In order to help with interpreting trace output, a list of the SMTP commands that
can appear in the trace data along with descriptions of these commands is
supplied below. The SMTP server provides the interface between the internet and
IBM host systems. For more information about the SMTP protocol, see RFC 821.

Activating Traces
SMTP server traces can be activated by including a TRACE statement in the SMTP
CONFIG file, or by using the SMSG interface to the SMTP machine to issue an
SMSG TRACE command. For information on the syntax of the TRACE statement
or the SMSG TRACE command as well as information on what types of traces are
available, refer to the SMTP chapter in the VM TCP/IP Planning and
Customization manual. Sample trace data for several of the available trace
commands is provided at the end of this chapter.

SMTP Commands
SMTP commands define the mail transfer or the mail system function requested by
the user. The commands are character strings terminated by the carriage return
and line feed characters (CR/LF). The SMTP command codes are alphabetic
characters. These characters are separated by a space if parameters follow the
command or a CR/LF if there are no parameters.

Table 13 describes the SMTP commands that are helpful when interpreting SMTP
trace output.

Table 13. SMTP Commands

Name Command Description

DATA DATA The receiver treats the lines following the DATA
command as mail data from the sender. This
command causes the mail data that is transferred to
be appended to the mail data buffer. The mail data
can contain any of the 128 ASCII character codes. The
mail data is terminated by a line containing only a
period, that is the character sequence CR/LF CR/LF.

220-ENDVMM.ENDICOTT.IBM.COM running IBM VM SMTP
Level nnn on Fri, 26 Jul 97 09:55:05 E
220 DT
050 VERB ON
250 Verbose Mode On
050 QUEU
250-Queues on ENDVMM.ENDICOTT.IBM.COM at 09:55:05 EDT on 07/26/97
250-Spool Queue: Empty
250-Undeliverable Queue: Empty
250-Resolution Queues:
250-Resolver Process Queue: Empty
250-Resolver Send Queue: Empty
250-Resolver Wait Queue: Empty
250-Resolver Retry Queue: Empty
250-Resolver Completed Queue: Empty
250-Resolver Error Pending Queue: Empty
250 OK

Figure 75. Sample Outout form a Mail Queue Query

SMTP Traces

148 z/VM: TCP/IP Diagnosis Guide

Table 13. SMTP Commands (continued)

Name Command Description

EXTENDED
HELLO

EHLO This command identifies the SMTP client to the
SMTP server and asks the server to send a reply
stating which SMTP Service Extensions the server
supports. The argument field contains the host name
of the client.

EXPAND EXPN This command asks the receiver to confirm that the
argument identifies a mailing list and, if so, to return
the membership of that list. The full name of the
users, if known, and the fully specified mailboxes are
returned in a multiline reply.

HELLO HELO This command identifies the sender-SMTP to the
receiver-SMTP. The argument field contains the host
name of the sender-SMTP.

HELP HELP This command causes the receiver to send
information to the sender of the HELP command.
The command returns specific information about any
command listed as a HELP argument.

MAIL MAIL This command initiates a mail transaction for mail
data that is delivered to one or more mailboxes. The
required argument field contains a reverse path. If
the EHLO command was specified, the optional SIZE
field may be used to indicate the size of the mail in
bytes, and the optional BODY field may be used to
specify whether a 7-bit message or an 8-bit MIME
message is being sent.

NOOP NOOP This command requests an OK reply from the
receiver. It does not affect any parameters or
previously entered commands.

QUIT QUIT This command requests an OK reply from the
receiver, and then it closes the transmission channel.

RECIPIENT RCPT This command identifies an individual recipient of
the mail data; multiple recipients are specified by
multiple RCPT commands.

RESET RSET This command aborts the current mail transaction.
Any stored sender, recipient, or mail data is
discarded, and all buffers and state tables are cleared.
The receiver sends an OK reply.

VERIFY VRFY This command asks the receiver to confirm that the
argument identifies a user. If it is a user name, the
full name of the user, if known, and the fully
specified mailbox are returned.

Figure 76 on page 150 shows the SMTP reply codes. The information shown in this
figure is from RFC 821, and RFC 1869.

SMTP Traces

Chapter 9. Simple Mail Transfer Protocol Traces 149

Sample Debug Trace
The following describes how the output from an SMTP server trace using TRACE
DEBUG is organized:

Conn_number
This is the TCP connection number. A value of 257 identifies a server
working in batch mode. This often occurs when a server is reading a file
that it has received from a local user before sending the file to the remote
host.

In/Out_char
This character indicates the way the message or command is traveling. A >
symbol indicates an outgoing message or command and a < symbol
indicates an incoming message or command.

RFC's 821 and 1869
Simple Mail Transfer Protocol

4.2.1. REPLY CODES BY FUNCTION GROUPS

500 Syntax error, command unrecognized
{This may include errors such as command line too long}

501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command parameter not implemented

211 System status, or system help reply
214 Help message

{Information on how to use the receiver or the meaning of a
particular non-standard command; this reply is useful only
to the human user}

220 <domain> Service ready
221 <domain> Service closing transmission channel
421 <domain> Service not available,

closing transmission channel
{This may be a reply to any command if the service knows it
must shut down}

250 Requested mail action okay, completed
251 User not local; will forward to <forward-path>
450 Requested mail action not taken: mailbox unavailable

{E.g., mailbox busy}
550 Requested action not taken: mailbox unavailable

{E.g., mailbox not found, no access}
451 Requested action aborted: error in processing
551 User not local; please try <forward-path>
452 Requested action not taken: insufficient system storage
552 Requested mail action aborted: exceeded storage allocation
553 Requested action not taken: mailbox name not allowed

{E.g., mailbox syntax incorrect}
354 Start mail input; end with <CRLF>.<CRLF>
554 Transaction failed
555 Requested action not taken:

parameters associated with a MAIL FROM
or RCPT TO command are not recgnized

Postel {Page 35}

Figure 76. SMTP Reply Codes. From RFC 821, and RFC 1869

SMTP Traces

150 z/VM: TCP/IP Diagnosis Guide

Cmd_line
This is the information exchanged between hosts.

Figure 77 is a sample of an SMTP server trace using the TRACE DEBUG statement.
Although all transactions between the local and remote hosts are shown, the data
transferred by the DATA command is not shown.

In Figure 77, HOSTA is the local host, and HOSTB is the remote host. All lines starting
with 257 show the SMTP server handling note 00000001 from local user TCPUSRA.
Lines starting with a connection number of 1 show note 00000001 being sent to
TCPUSRB@HOSTB. Lines starting with a connection number of 0 show HOSTB sending a
note from TCPUSRB to the local host. The local host designates this note as note
00000002.

Sample LOG Information
In addition to the data that can be obtained using the TRACE command, the SMTP
server provides LOG information. This LOG information can be directed to the
console (the default), or to the SMTP LOG file on minidisk.

IBM VM SMTP Level nnn on Tue, 23 Oct 97 17:19:23 EST
257> 220 HOSTA.IBM.COM running IBM VM SMTP Level nnn on Tue, 23 Oct 97 17:19:25 EST
257< HELO HOSTA.IBM.COM
257> 250 HOSTA.IBM.COM is my domain name. Yours too, I see!
257< MAIL FROM:<TCPUSRA@HOSTA.IBM.COM>
257> 250 OK
257< RCPT TO:<tcpusrb@hostb>
257> 250 OK
257< DATA
257> 354 Enter mail body. End by new line with just a '.'
257> 250 Mail Delivered
257< QUIT
257> 221 HOSTA.IBM.COM running IBM VM SMTP Level nnnMX closing connection

1< 220 HOSTB.IBM.COM running IBM VM SMTP Level nnn on Tue, 23 Oct 90 17:22:53 EST
1> EHLO HOSTA.IBM.COM
1< 250-HOSTB.IBM.COM is my domain name.
1< 250-EXPN
1< 250-HELP
1< 250 SIZE 20000768
1> MAIL FROM:<TCPUSRA@HOSTA.IBM.COM> SIZE=210
1< 250 OK
1> RCPT TO:<tcpusrb@hostb.IBM.COM>
1< 250 OK
1> DATA
1< 354 Enter mail body. End by new line with just a '.'
1< 250 Mail Delivered
1> QUIT
1< 221 HOSTB.IBM.COM running IBM VM SMTP Level nnnMX closing connection
0> 220 HOSTA.IBM.COM running IBM VM SMTP Level nnn on Tue, 23 Oct 90 17:23:18 EST
0< HELO HOSTB.IBM.COM
0> 250 HOSTA.IBM.COM is my domain name.
0< MAIL FROM:<TCPUSRB@HOSTB.IBM.COM>
0> 250 OK
0< RCPT TO:<tcpusra@hosta.IBM.COM>
0> 250 OK
0< DATA
0> 354 Enter mail body. End by new line with just a '.'
0> 250 Mail Delivered
0< QUIT
0> 221 HOSTA.IBM.COM running IBM VM SMTP Level nnnMX closing connection

Figure 77. A Sample of an SMTP Server Trace Using the DEBUG Statement

SMTP Traces

Chapter 9. Simple Mail Transfer Protocol Traces 151

Figure 78 shows sample LOG information matching the sample trace shown in
Figure 77 on page 151 For example, the line starting with 10/23/97 17:23:18 shows
when HOSTB is connected to the local host’s port on connection 0 before sending
note 00000002.

Sample Resolver Trace
You can also enable the Resolver Trace for the SMTP server virtual machine. The
Resolver Trace displays all requests and responses for name resolution to the
console. To activate this type of tracing, add a TRACE RESOLVER statement to the
SMTP CONFIG file.

Figure 79 shows a sample of a resolver trace.

IBM VM SMTP Level nnn on Tue, 23 Oct 97 17:19:23 EST
10/23/97 17:19:24 Received Spool File 2289 From TCPUSRA at HOSTA
10/23/97 17:19:25 BSMTP Helo Domain: HOSTA.IBM.COM Yours too, I see!
10/23/97 17:19:25 Received Note 00000001 via BSMTP From <TCPUSRA@HOSTA.IBM.COM>
10/23/97 17:20:31 Delivered Note 00000001 to <tcpusrb@hostb.IBM.COM>
10/23/97 17:23:18 TCP (0) Helo Domain: HOSTB.IBM.COM
10/23/97 17:24:21 Received Note 00000002 via TCP (0) From <TCPUSRB@HOSTB.IBM.COM>
10/23/97 17:24:23 Delivered Note 00000002 to TCPUSRA at HOSTA

Figure 78. Sample LOG Output

10/25/97 07:32:12 Resolving Recipient Address: <tcpuser@9.67.58.233 >
10/25/97 07:32:12 Resolving Recipient Address: <tcpfoo@hostvm>
* * * * * Beginning of Message * * * * *
Query Id: 1
Flags: 0000 0001 0000 0000
Number of Question RRs: 1
Question 1: 9.67.58.233 MX IN
Number of Answer RRs: 0
Number of Authority RRs: 0
Number of Additional RRs: 0
* * * * * End of Message * * * * *
10/25/97 07:32:12 # 1 UDP Query Sent, Try: 1 to NS(.1.) := 14.0.0.0
10/25/97 07:32:12 # 1 Adding Request to Wait Queue
10/25/97 07:32:12 # 1 Setting Wait Timer: 30 seconds
* * * * * Beginning of Message * * * * *
Query Id: 2
Flags: 0000 0001 0000 0000
Number of Question RRs: 1
Question 1: hostvm.ENDICOTT.IBM.COM MX IN
Number of Answer RRs: 0
Number of Authority RRs: 0
Number of Additional RRs: 0
* * * * * End of Message * * * * *

Figure 79. A Sample of an SMTP Resolver Trace (Part 1 of 2)

SMTP Traces

152 z/VM: TCP/IP Diagnosis Guide

Sample Notification Trace
TCP/IP Notification Tracing is enabled via a TRACE NOTICE statement in the
SMTP CONFIG file. All TCP/IP notification events are traced to the console.
Figure 80 shows a sample of a notification trace.

10/25/97 07:32:12 # 2 UDP Query Sent, Try: 1 to NS(.1.) := 14.0.0.0
10/25/97 07:32:12 # 2 Adding Request to Wait Queue
10/25/97 07:32:13 UDP packet arrived, 50 bytes, FullLength 50 bytes.
* * * * * Beginning of Message * * * * *
Query Id: 2
Flags: 1000 0101 1000 0011
Number of Question RRs: 1
Question 1: hostvm.ENDICOTT.IBM.COM MX IN
Number of Answer RRs: 0
Number of Authority RRs: 0
Number of Additional RRs: 0
* * * * * End of Message * * * * *
* * * * * Beginning of Message * * * * *
Query Id: 3
Flags: 0000 0001 0000 0000
Number of Question RRs: 1
Question 1: hostvm.ENDICOTT.IBM.COM A IN
Number of Answer RRs: 0
Number of Authority RRs: 0
Number of Additional RRs: 0
* * * * * End of Message * * * * *
10/25/97 07:32:27 # 3 UDP Query Sent, Try: 1 to NS(.1.) := 14.0.0.0
10/25/97 07:32:27 # 3 Adding Request to Wait Queue
10/25/97 07:32:28 UDP packet arrived, 50 bytes, FullLength 50 bytes.
* * * * * Beginning of Message * * * * *
Query Id: 3
Flags: 1000 0101 1000 0011
Number of Question RRs: 1
Question 1: hostvm.ENDICOTT.IBM.COM A IN
Number of Answer RRs: 0
Number of Authority RRs: 0
Number of Additional RRs: 0
* * * * * End of Message * * * * *

Figure 79. A Sample of an SMTP Resolver Trace (Part 2 of 2)

12/10/97 22:59:14 TCP/IP Event Notification: I/O Interrupt
12/10/97 22:59:14 TCP/IP Event Notification: IUCV Interrupt
12/10/97 22:59:14 TCP/IP Event Notification: IUCV Interrupt
12/10/97 22:59:14 TCP/IP Event Notification: UDP Datagram Delivered
12/10/97 22:59:14 TCP/IP Event Notification: UDP Datagram Delivered
12/10/97 22:59:14 TCP/IP Event Notification: UDP Datagram Delivered
12/10/97 22:59:14 TCP/IP Event Notification: Connection State Changed
12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1, bytes delivered=92
12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1, bytes delivered=50
12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1, bytes delivered=8
12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1, bytes delivered=8
12/10/97 22:59:14 TCP/IP Event Notification: Data Delivered on Conn 1, bytes delivered=55
12/10/97 22:59:15 TCP/IP Event Notification: Data Delivered on Conn 1, bytes delivered=20
12/10/97 22:59:15 TCP/IP Event Notification: Connection State Changed
12/10/97 22:59:16 TCP/IP Event Notification: Connection State Changed
12/10/97 22:59:16 TCP/IP Event Notification: Connection State Changed

Figure 80. A Sample of a Notification Trace

SMTP Traces

Chapter 9. Simple Mail Transfer Protocol Traces 153

Sample Connection Activity Trace
TCP/IP Connection Activity Tracing is enabled via a TRACE CONN statement in
the SMTP CONFIG file. All connection state changes are logged to the console.
Figure 81 shows a sample of a connection activity trace.

12/10/97 22:44:30 Connection State Change, Conn = 1, State = Open
12/10/97 22:44:31 Connection State Change, Conn = 1, State = Connection closing
12/10/97 22:44:31 Connection State Change, Conn = 1, State = Nonexistent

Figure 81. A Sample of a Connection Activity Trace

SMTP Traces

154 z/VM: TCP/IP Diagnosis Guide

Chapter 10. RPC Programs

This chapter describes Remote Procedure Call (RPC) programs, including call
messages and reply messages. For more information about RPC, see RFCs 1014
and 1057. This chapter also describes Portmapper.

General Information about RPC
The current version of RPC is Version 2. The layout for RPC messages is either a
CALL-MSG or REPLY-MSG. Both layouts need a transaction identifier (XID) to
identify and reliably map port numbers, and a field to identify whether the
message is a CALL-MSG or REPLY-MSG.

The following sections describe the structure of call and reply messages.

RPC Call Messages
The first word in a call message is the XID, the message identifier. The second
word indicates the type of message, which is 0 for a call message. Figure 82 shows
the structure of a call message. The offsets and their corresponding field
descriptions are:

Offset Field Description

X'00' XID, message identifier

X'04' Type of message (0)

X'08' RPC version

X'0C' RPC program number

X'10' Program version

X'14' Procedure number

X'18' Authentication credentials field

X'1C' Byte length of Cred Data field

X'1C'+Cred-L Authentication verifier (see Table 14 on page 156)

X'20'+Cred-L Authentication verifier data length

Data field Data specific to the procedure called.

© Copyright IBM Corp. 1987, 2001 155

Table 14 describes the RPC credentials found in the Cred data field, shown in
Figure 82.

Table 14. RPC Credentials

Name Number Description

AUTH_NULL 0 The client does not know its identity or the server
does not need to know the identity of the client.

AUTH_UNIX 1 Client identifies itself as a UNIX system.

AUTH_SHORT 2 Used as an abbreviated authentication structure.

AUTH_DES 3 Used for a DES authentication.

RPC Reply Messages
The first word in a reply message is the XID. The second word indicates the type
of message, which is 1 for a reply message. There are two types of reply messages:
accepted and rejected. If the value of the reply_stat field is 0, the message has been
accepted. If the value of the reply_stat field is 1, the message has been rejected.

Accepted Reply Messages
Figure 83 shows the structure of an accepted reply message. The offsets and their
corresponding field descriptions are:

Offset Field Description

X'00' XID, message identifier

X'04' Type of message, 1

X'08' Reply stat

X'0C' Authentication verifier (see Table 14)

X'10' Authentication verifier data byte length

X'14' Accept_stat

X'18' Acc_stat dependent data.

Offset 0 4 8 C
┌────────┬────────┬────────┬────────┐
│ XID │00000000│RPC Ver │ Prog # │
├────────┼────────┼────────┼────────┤
│Prog Ver│ Proc # │ Cred │ Cred-L │
├────────┴────────┴────────┴────────┤
│ │
│ Cred Data │
│ │
├────────┬────────┬─────────────────┤
│ Verf │ Verf-L │ │
├────────┴────────┘ │
│ Vref Data │
├───────────────────────────────────┤
│ │
│ Procedure specific Data │
│ │
└───────────────────────────────────┘

Figure 82. RPC Call Message Structure

Remote Procedure Call Programs

156 z/VM: TCP/IP Diagnosis Guide

Acc_stat is a one word return code for NFS procedures that has a value described
in Table 15. If acc_stat=SUCCESS, the data is specific to the procedure. If
acc_stat=PROG_MISMATCH, two words with the latest and earliest supported
versions of the program are returned. For the other acc_stat values described in
Table 15, data is not returned. For more information about acc_stat values, see RFC
1057.

Table 15. RPC Accept_stat Values

Name Number Description

SUCCESS 0 RPC executed successfully.

PROG_UNAVAIL 1 Remote has not exported program.

PROG_MISMATCH 2 Program cannot support version number.

PROC_UNAVAIL 3 Program cannot support procedure.

GARBAGE_ARGS 4 Procedure cannot decode parameters.

Rejected Reply Messages
Figure 84 shows the structure of a rejected reply message. The offsets and their
corresponding field descriptions are:

Offset Field Description

X'00' XID, message identifier

X'04' Type of message, 1

X'08' Reply_stat, 1

X'0C' Reject_stat switch

X'10' Reject_stat specific data.

The reject_stat switch indicates the reason for a rejected reply message. If the value
of the reject_stat switch is 1, an RPC_MISMATCH, indicating that the version of
RPC is not supported, has occurred. The reject_stat dependent field, shown in
Figure 84, contains the latest and earliest RPC supported versions. If the value of

Offset 0 4 8 C
┌────────┬────────┬────────┬────────┐
│ XID │00000001│Rep-stat│ Vref │
├────────┼────────┼────────┴────────┤
│ Vref-L │Acc-stat│ │
├────────┴────────┘ │
│ │
│ Procedure specific Data │
│ │
└───────────────────────────────────┘

Figure 83. Structure of an RPC Accepted Reply Message

Offset 0 4 8 C
┌────────┬────────┬────────┬────────┐
│ XID │00000001│00000001│Rej-stat│
├────────┴────────┴────────┴────────┤
│ Reject stat Dependent │
└───────────────────────────────────┘

Figure 84. Structure of an RPC Rejected Reply Message

Remote Procedure Call Programs

Chapter 10. RPC Programs 157

the reject_stat switch is 0, an AUTH_ERROR, indicating an authentication error,
has occurred. The reject stat dependent field, shown in Figure 84, contains a one
word auth_stat value. Table 16 describes the auth_stat values. For more
information about auth_stat values, see RFC 1057.

Table 16. RPC Auth_stat Values

Name Number Description

AUTH_BACKRED 1 Bad credential, seal broken

AUTH_CTEDCRED 2 Client must begin new session

AUTH_ERF 3 Bad verifier, seal broken

AUTH_REJECTEDVERF 4 Verifier expired or replayed

AUTH_TOOWEAK 5 Rejected for security reasons

RPC Support
RPC supports the following functions:

Authentication
The mount service uses AUTH_UNIX and AUTH_NONE style
authentication only.

Transport Protocols
The mount service is supported on both UDP and TCP.

Port Number
Consult the server’s portmapper, described in RFC 1057, to find the port
number on which the mount service is registered. The port number is
usually 111.

Portmapper
Portmapper is a program that maps client programs to the port numbers of server
programs. The current version for RPC program 100000 (Portmapper) is Version 2.
For more information about Portmapper, see Appendix A of RFC 1057.

Portmapper Procedures
Table 17 describes Portmapper procedures.

Table 17. Portmapper Procedures

Name Number Description

PMAPROC_NULL 0 Procedure 0 is a dummy procedure that senses the
server.

PMAPROC_SET 1 Registers a program on Portmapper.

PMAPROC_UNSET 2 Removes a registered program from Portmapper.

PMAPROC_GETPORT 3 Gives client’s program and version number. The
server responds to the local port of the program.

PMAPROC_DUMP 4 Lists all entries in Portmapper. This is similar to
the RPCINFO command.

PMAPROC_CALLIT 5 Used by a client to call another remote procedure
on the same host without the procedure number.

Remote Procedure Call Programs

158 z/VM: TCP/IP Diagnosis Guide

Chapter 11. RouteD Diagnosis

RouteD is a server that implements the Routing Information Protocol (RIP)
described in RFC 1058 (RIP Version 1) and RFC 1723 (RIP Version 2). It provides an
alternative to static TCP/IP gateway definitions. When properly configured, the
z/VM host running with RouteD becomes an active RIP router in a TCP/IP
network. The RouteD server dynamically creates and maintains network routing
tables using RIP. This protocol allows gateways and routers to periodically
broadcast their routing tables to adjacent networks, and enables the RouteD server
to update its host routing table. For example, the RouteD server can determine if a
new route has been created, if a route is temporarily unavailable, or if a more
efficient route exists for a given destination.

Before RouteD was implemented for TCP/IP, static route tables were used for
routing IP datagrams over connected networks. However, the use of static routes
prevents a host from being readily able to respond to changes in the network. By
implementing the Routing Information Protocol (RIP) between a host and TCP/IP,
the RouteD server dynamically updates the internal routing tables when changes
to the network occur.

The RouteD server reacts to network topology changes on behalf of TCP/IP by
maintaining the host routing tables, processing and generating RIP datagrams, and
performing error recovery procedures.

Figure 85 on page 160 shows the RouteD environment.

© Copyright IBM Corp. 1987, 2001 159

The RouteD protocol is based on the exchange of RIP messages. There are two
types of messages:
v Request message - Sent from a client (another RIP router) as a request to

transmit all or part of the receiving host’s routing table.
v Response message - Sent from RouteD to a client (another RIP router)

containing all or part of the sending host’s routing table.

Incoming Datagram RouteD Processing
Only RIP datagrams are processed by the RouteD server, as opposed to the router
itself, which actually routes datagrams as previously described. Incoming RIP
datagrams contain one of the following commands:
v Request
v Response
v Trace On
v Trace Off

Incoming Request Datagrams
Request datagrams are requests from other routers for one or more of the
RouteD server’s routes. The internet addresses of the desired routes are
listed in the datagram. A special form of the Request datagram requests a
single route in an illegal address family (AF_UNSPEC) and lists a metric
(hop count) of 16, which is considered infinity in RIP. This request is
treated as a request for the server’s complete routing table.

Note: This form of request is issued by RouteD only during initialization.

VM

PS/2

Token Ring

ROUTED

TCPIP

3172

ROUTED SNMPD

TCPIP

SNMPREQD

Figure 85. RouteD Environment

RouteD Diagnosis

160 z/VM: TCP/IP Diagnosis Guide

Incoming Response Datagrams
Response datagrams contain routing table entries, and are sent by routers
periodically and on demand. The RouteD server transmits a complete set
of routes on each attached network every thirty seconds, by using
Response datagrams.

Incoming Trace On and Trace Off Datagrams
Tracing is not officially supported in RIP, but these datagram types are
reserved and most RouteD servers choose to process them. Trace On turns
on tracing (or expands the amount of tracing currently in effect), and Trace
Off turns off tracing.

Outgoing Datagram RouteD Generation
The RouteD server transmits only Request and Response datagrams.

Outgoing Request Datagrams
Request datagrams are generated during RouteD startup, requesting
complete route tables from adjacent routers. This is the only time Request
datagrams are generated by RouteD. The other form of the Request
datagram is used by other applications to query the server route tables.

Outgoing Response Datagrams
The RouteD server transmits a complete set of routes to adjacent routers
every thirty seconds using Response datagrams. RouteD servers that are
started as passive routers collect data only; they provide routing
information only when requested via a port other than port 520.

In addition, the RouteD server replies to incoming Request datagrams by
sending Response datagrams containing the requested routing information.

RouteD Route Table and Interface List
RouteD maintains its own route table, which is similar to IP’s. While these two
tables must be synchronized, they do not need to be identical. There are cases
where routes are known to RouteD but are not known to IP, and other cases where
routes are known to IP but are not known to RouteD. Therefore, two tables must
be maintained. RouteD’s route table is implemented as a hash table, with doubly
linked lists used as hash chains to hold collisions.

RouteD also maintains an interface list, which contains all the active interfaces that
RouteD can use. When an interface’s three minute timer expires, that interface is
removed from the active interface list. When a datagram arrives on that interface,
it is again added to the active interface list. The RouteD interface list is
implemented as a linked list.

Diagnosing Problems
Problems with RouteD are generally reported under one of the following
categories:
v “Connection Problems” on page 162
v “PING Failures” on page 162
v “Incorrect Output” on page 163
v “Session Outages” on page 164

Use the information provided in the following sections for problem determination
and diagnosis of errors reported against RouteD.

RouteD Diagnosis

Chapter 11. RouteD Diagnosis 161

Connection Problems
RouteD connection problems are reported when RouteD is unable to connect to
TCP/IP. Generally, this type of problem is caused by an error in the TCP/IP
configuration or supporting definitions.

In configurations with multiple stacks, a RouteD server must be started for each
stack that requires routing services. To associate with a particular stack, use the
PORT statement of the TCP/IP configuration file (PROFILE TCPIP) to define the
name of the RouteD server virtual machine that will service that stack. The user ID
of the RouteD server for a given stack must also be included in its OBEY list in
PROFILE TCPIP.

Documentation
The following documentation should be available for initial diagnosis of RouteD
connection problems:
v PROFILE TCPIP information
v TCPIP DATA information
v DTCPARMS information
v RouteD ETC GATEWAYS file information
v ROUTED CONFIG file information
v Trace output

Analysis
Refer to the TCP/IP Planning and Customization for problems related to TCP/IP
configuration.

Diagnostic steps for connection problems:
1. Verify the accuracy of the RouteD startup parameters that have been specified

in the DTCPARMS file.
2. Make sure that RouteD is configured correctly in the PROFILE TCPIP

information.
3. UDP port 520 must be reserved for RouteD. Verify that the assigned port

number and the RouteD server user ID are correct.
4. Ensure that TCPIP DATA designates the correct TCP/IP stack machine.

PING Failures
If the PING command fails on a system where RouteD is being used, a client is
unable to get a response to a PING command. Before doing anything else, run
NETSTAT GATE. This should tell you which gateways are configured. If no gateways
are configured, PING will not work. In addition to this, run NETSTAT DEVLINK, and
ensure that the device for the link of the address you are trying to PING is in
″Ready″ status. If the device status is ″Inactive″, PING will not work.

Documentation
The following documentation should be available for initial diagnosis of ping
failures:
v PROFILE TCPIP information
v NETSTAT GATE command results

More documentation that might be needed is described in the “Analysis” section.

Analysis
Table 18 on page 163 shows symptoms of ping failures and describes the steps
needed for initial diagnosis of the error.

RouteD Diagnosis

162 z/VM: TCP/IP Diagnosis Guide

Table 18. RouteD ping Failures

ping Failure Action Steps

Incorrect response
(ping timed out or
Network
Unreachable)

1. Make sure that the ping command contains a valid destination IP
address for the remote host.

If the destination IP address is a virtual IP address (VIPA), make
sure that VIPA is defined correctly. See the TCP/IP Planning and
Customization for information about rules and recommendations
for defining a virtual IP address.

2. Make sure that the router providing the RIP support involved in
the ping transaction is active and is running with a correct level
of some application that provides RIP support.

If the destination router is not running RIP, make sure that static
routes are defined from the destination router to the local host.

3. If the ping command was issued from a client on a z/VM server,
issue a NETSTAT GATE command to display the routing tables.
Verify that the routes and networks are correct as defined in
PROFILE TCPIP and the ETC GATEWAYS file. In addition, issue
a NETSTAT DEVLINK command to insure that the device associated
with the link for the desired IP address is in ″Ready″ status.

4. If the ping command was issued from a workstation operating
system, verify that the routes and networks are defined correctly
in the TCP/IP configuration and the ETC GATEWAYS file of
TCP/IP.

5. If there are no problems with the routes and networks, check for
broken or poorly-connected cables between the client and the
remote host. This includes checking the internet interfaces (such
as Token-Ring and Ethernet) on the server.

6. Consider whether changes may have taken place elsewhere in the
network. For example, if a second host has been added using the
same IP address as a host involved in routing your PING’s
packets, the packets may get misrouted and the PING will time
out. Likewise, failure to subnet when required can lead to
packets being incorrectly routed. Some routing hardware uses
more robust routing algorithms than others, so if hardware has
changed anywhere along the route of your PING, an
unsupported network configuration that previously functioned
might now fail.

Unknown Host If the ping command was issued with a name, try again with the
actual IP address. If the ping command is successful with an IP
address, then the problem is with nameserving and not RouteD.

Incorrect Output
Problems with incorrect output are reported when the data sent to the client is not
seen in its expected form. This could be incorrect TCP/IP output, RIP commands
that are not valid, incorrect RIP broadcasting information, incorrect updates of
routing tables, or truncation of packets.

Documentation
The following documentation should be available for initial diagnosis of incorrect
output:
v TCP/IP and/or RouteD Messages
v Trace data
v PROFILE TCPIP information

RouteD Diagnosis

Chapter 11. RouteD Diagnosis 163

Analysis
Table 19 shows symptoms of incorrect output and describes the actions needed for
initial diagnosis of the error.

Table 19. RouteD Incorrect Output

Incorrect Output Action Steps

TCP/IP Incorrect Output 1. If the TCP/IP console shows a message, refer to TCP/IP
Messages and Codes and follow the directions for system
programmer response for the message.

2. In the event of TCP/IP loops or hangs, refer to the z/VM:
Diagnosis Guide.

RouteD Incorrect Output If the RouteD console shows a message, refer to TCP/IP
Messages and Codes and follow the directions for system
programmer response for the message.

Session Outages
Session outages are reported as an unexpected abend or termination of a TCP/IP
connection.

Documentation
The following documentation should be available for initial diagnosis of session
outages:
v TCP/IP and/or RouteD Messages
v Trace data
v TCPIP PROFILE information
v NETSTAT GATE command results

Analysis
Table 20 shows symptoms of session outages and describes the steps needed for
initial diagnosis of the error.

Table 20. RouteD Session Outages

Session Outage Action Steps

TCP/IP session
outage

1. If the TCP/IP console shows a TCP/IP error message, refer
toTCP/IP Messages and Codes and follow the directions for system
programmer response for the message.

2. In the event of a TCP/IP abend, refer to the z/VM: Diagnosis
Guide.

session outage If an error message is displayed, refer to TCP/IP Messages and Codes
and follow the directions for system programmer response for the
message.

Activating RouteD Trace and Debug
RouteD trace facilities exist that can be useful in identifying the cause of routing
problems. This section discusses these trace and debug requests and how they can
be started and stopped.

The activation of trace facilities in RouteD is accomplished by specifying the
desired trace level parameter in addition to the usual processing parameters on
command invocation.

RouteD Diagnosis

164 z/VM: TCP/IP Diagnosis Guide

You can initialize RouteD with the tracing option. The tracing option is set by
editing the DTCPARMS file, and specifying the necessary parameters for the
:Parms. tag of the DTCPARMS file.

RouteD Trace and Debug Commands

Purpose
Use the ROUTED command to enable the following trace and debug parameters.

�� ROUTED

�

–dp
(1)

–t

��

Notes:

1 The –t option can be repeated up to 4 times to achieve the desired level of
tracing.

Trace information is written to the spooled console of the server virtual machine.

The trace and debug parameters that can be specified for the RouteD server are:

Operands
–dp

Activates tracing of packets to and from adjacent routers in addition to RIP
network routing tables that are received and broadcasted. Packets are
displayed in data format. Output is written to the console.

–t Activates tracing of actions by the RouteD server.

–t –t
Activates tracing of actions and packets sent or received.

–t –t –t
Activates tracing of actions, packets sent or received, and packet history.
Circular trace buffers are used for each interface to record the history of all
packets traced. This history is included in the trace output whenever an
interface becomes inactive.

–t –t –t –t
Activates tracing of actions, packets sent or received, packet history, and packet
contents. The RIP network routing information is included in the trace output.

Note: Spaces are required between each –t parameter when more than one is
specified.

Usage Notes
1. For information on the remaining available RouteD parameters see the TCP/IP

Planning and Customization.
2. Parameters are separated by one or more blanks.
3. Parameters can be specified in mixed case.

RouteD Diagnosis

Chapter 11. RouteD Diagnosis 165

RouteD Trace and Debug SMSG Commands

Purpose
Use the SMSG command to enable or disable RouteD trace and debug parameters
that may or may not have been specified at server initialization or on a previous
SMSG command. The {q} form of an operand deactivates the function associated
with that operand.

�� SMSG server_id

�

HELP

PARMS parms
TABLES

��

Operands
server_id

Specifies the user ID of the virtual machine running the VM RouteD server.

HELP
Provides a list of valid SMSG commands accepted by RouteD.

PARMS
One or more of the following parameters separated by a space.

parms

–dp[q]
Activates tracing of packets to and from adjacent routers in addition to RIP
network routing tables that are received and broadcasted. Packets are
displayed in data format. Output is written to the console.

–dq
Disables “–dp” tracing.

–t Activates tracing of actions by the RouteD server.

–t –t
Activates tracing of actions and packets sent or received.

–t –t –t
Activates tracing of actions, packets sent or received, and packet history.
Circular trace buffers are used for each interface to record the history of all
packets traced. This history is included in the trace output whenever an
interface becomes inactive.

–t –t –t –t
Activates tracing of actions, packets sent or received, packet history, and
packet contents. The RIP network routing information is included in the
trace output.

Note: Spaces are required between each –t parameter when more than one
is specified.

–tq
Disable all “–t” traces.

RouteD Diagnosis

166 z/VM: TCP/IP Diagnosis Guide

|
|

|
|

TABLES
Activates the display of the following RouteD internal tables;

routing
RouteD’s routing tables

interface
Interface connections defined by ″Device and Link″ statements.

gateways options
Options as defined in the ″ETC GATEWAYS″ file

Note: This option is provided primarily for debugging purposes only.

Usage Notes
1. For information about other supported RouteD SMSG parameters see the

TCP/IP Planning and Customization.

Examples
The following SMSG command passes parameters to a RouteD server running in
the ROUTED2 virtual machine.
smsg routed2 parms –dp –t
Ready;
10:04:20 * MSG FROM ROUTED2 : PARMS –DP –T

Trace Output
Figure 86 shows an example of the output received from a RouteD server with
tracing enabled (that is, the –dp –t –t –t –t parameter had been specified).

RouteD Diagnosis

Chapter 11. RouteD Diagnosis 167

DTCRUN1011E Server started at 08:39:00 on 27 Jan 1999 (Wednesday)
DTCRUN1011E Running "ROUTED -DP -T -T -T -T"
DTCRTD4820I VM TCP/IP RouteD Server Level 320
DTCRTD4929I Port 520 assigned to router
DTCRTD4828I Input parameter(s): -DP -T -T -T -T
DTCRTD4868I Tracing actions enabled Wed Jan 27 08:39:02 1999
DTCRTD4869I Tracing packets enabled Wed Jan 27 08:39:02 1999
DTCRTD4870I Tracing history enabled Wed Jan 27 08:39:02 1999
DTCRTD4871I Tracing packet contents enabled Wed Jan 27 08:39:02 1999
DTCRTD4823I Tracing debug packets enabled Wed Jan 27 08:39:02 1999
DTCRTD4932I **
DTCRTD8488I Opening RouteD config file (ROUTED CONFIG)
DTCRTD4932I **
DTCRTD8497I RIP_SUPPLY_CONTROL: RIP1
DTCRTD8497I RIP_RECEIVE_CONTROL: ANY
DTCRTD8498I RIP2 authentication disabled at router-wide level (all interfaces)
DTCRTD4932I **
DTCRTD4850I Processing interface TR1
DTCRTD4932I **
DTCRTD4948I This interface is not point-to-point
DTCRTD4943I Adding network route for interface
DTCRTD4882I Wed Jan 27 08:39:03 1999:
DTCRTD4883I ADD destination 9.0.0.0, router 9.127.32.100, metric 1, flags UP, state INTERFACE|CHANGED|INTERNAL, timer 0
DTCRTD4943I Adding subnetwork route for interface
DTCRTD4883I ADD destination 9.127.32.0, router 9.127.32.100, metric 1, flags UP, state INTERFACE|CHANGED|SUBNET, timer 0
DTCRTD4932I **
DTCRTD4850I Processing interface PORTER
DTCRTD4932I **
DTCRTD4940I Point-to-point interface, using dstaddr
DTCRTD4943I Adding subnetwork route for interface
DTCRTD4883I ADD destination 9.127.68.20, router 9.127.68.21, metric 1, flags UP, state INTERFACE|CHANGED|SUBNET, timer 0
DTCRTD4943I Adding host route for interface
DTCRTD4883I ADD destination 9.127.68.22, router 9.127.68.21, metric 1, flags UP|HOST, state INTERFACE|CHANGED, timer 0
DTCRTD4932I **
DTCRTD4850I Processing interface STOUT
DTCRTD4932I **
DTCRTD4940I Point-to-point interface, using dstaddr
DTCRTD4943I Adding subnetwork route for interface
DTCRTD4883I ADD destination 9.127.68.24, router 9.127.68.25, metric 1, flags UP, state INTERFACE|CHANGED|SUBNET, timer 0
DTCRTD4943I Adding host route for interface
DTCRTD4883I ADD destination 9.127.68.26, router 9.127.68.25, metric 1, flags UP|HOST, state INTERFACE|CHANGED, timer 0
DTCRTD4932I **
DTCRTD4934I Opening ETC GATEWAYS file (ETC GATEWAYS)
DTCRTD4932I **
DTCRTD4925I Start of ETC GATEWAYS processing
DTCRTD4945I ifwithnet: compare with PORTER
DTCRTD4947I netmatch 9.127.68.22 and 9.127.68.21
DTCRTD4936I Adding passive host route 9.127.68.22 via gateway 9.127.68.21, metric 1
DTCRTD4883I DELETE destination 9.127.68.22, router 9.127.68.21, metric 1, flags UP|HOST, state INTERFACE|CHANGED, timer 0
DTCRTD4921I Deleting route to interface PORTER? (timed out?)
DTCRTD4883I ADD destination 9.127.68.22, router 9.127.68.21, metric 1, flags UP|HOST, state PASSIVE|INTERFACE|CHANGED, time
DTCRTD4945I ifwithnet: compare with STOUT
DTCRTD4947I netmatch 9.127.68.26 and 9.127.68.25
DTCRTD4936I Adding passive host route 9.127.68.26 via gateway 9.127.68.25, metric 1
DTCRTD4883I DELETE destination 9.127.68.26, router 9.127.68.25, metric 1, flags UP|HOST, state INTERFACE|CHANGED, timer 0
DTCRTD4921I Deleting route to interface STOUT? (timed out?)
DTCRTD4883I ADD destination 9.127.68.26, router 9.127.68.25, metric 1, flags UP|HOST, state PASSIVE|INTERFACE|CHANGED, time
DTCRTD4926I End of ETC GATEWAYS processing
DTCRTD4849I RouteD Server started

Figure 86. A sample RouteD Server Trace (Part 1 of 3)

RouteD Diagnosis

168 z/VM: TCP/IP Diagnosis Guide

=============== Sending packet to client (length=24)
0000 01010000 00000000 00000000 00000000 00000000 00000010 00000000 00000000
0020(32)
DTCRTD4899I REQUEST to 9.127.32.255 -> 520 ver 1 Wed Jan 27 08:39:18 1999
=============== RIP net info (length=20)
0000 00000000 00000000 00000000 00000000 00000010 00000000 00000000 00000000
0020(32)
DTCRTD4903I (request for full tables)
=============== Sending packet to client (length=24)
0000 01010000 00000000 00000000 00000000 00000000 00000010 00000000 00000000
0020(32)
DTCRTD4899I REQUEST to 9.127.68.22 -> 520 ver 1 Wed Jan 27 08:39:21 1999
=============== RIP net info (length=20)
0000 00000000 00000000 00000000 00000000 00000010 00000000 00000000 00000000
0020(32)
DTCRTD4903I (request for full tables)
=============== Sending packet to client (length=24)
0000 01010000 00000000 00000000 00000000 00000000 00000010 00000000 00000000
0020(32)
DTCRTD4899I REQUEST to 9.127.68.26 -> 520 ver 1 Wed Jan 27 08:39:21 1999
=============== RIP net info (length=20)
0000 00000000 00000000 00000000 00000000 00000010 00000000 00000000 00000000
0020(32)
DTCRTD4903I (request for full tables)
DTCRTD4829I Waiting for incoming packets
=============== Received packet from client (length=4)
0000 02010000 00000002 00eb24b0 00d33410 00000000 00000000 00000000 00000000
0020(32)
DTCRTD4899I RESPONSE from 9.127.32.29 -> 520 ver 1 Wed Jan 27 08:39:21 1999
=============== Received packet from client (length=24)
0000 02010000 00020000 00000000 00000000 00000000 00000004 00000000 00000000
0020(32)
DTCRTD4899I RESPONSE from 9.127.32.252 -> 520 ver 1 Wed Jan 27 08:39:21 1999
=============== RIP net info (length=20)
0000 00020000 00000000 00000000 00000000 00000004 00000000 00000000 00000000
0020(32)
DTCRTD4902I destination 0.0.0.0 metric 4
DTCRTD4882I Wed Jan 27 08:39:23 1999:
DTCRTD4883I ADD destination 0.0.0.0, router 9.127.32.252, metric 5, flags UP|GATEWAY, state CHANGED|DEFAULT, timer 0
DTCRTD4829I Waiting for incoming packets
=============== Received packet from client (length=24)
0000 02010000 00020000 00000000 00000000 00000000 00000004 00000000 00000000
0020(32)
DTCRTD4899I RESPONSE from 9.127.32.251 -> 520 ver 1 Wed Jan 27 08:39:24 1999
=============== RIP net info (length=20)
0000 00020000 00000000 00000000 00000000 00000004 00000000 00000000 00000000
0020(32)
DTCRTD4902I destination 0.0.0.0 metric 4
DTCRTD4829I Waiting for incoming packets

Figure 86. A sample RouteD Server Trace (Part 2 of 3)

RouteD Diagnosis

Chapter 11. RouteD Diagnosis 169

=============== Received packet from client (length=24)
0000 02010000 00020000 00000000 00000000 00000000 00000004 00000000 00000000
0020(32)
DTCRTD4899I RESPONSE from 9.127.32.249 -> 520 ver 1 Wed Jan 27 08:39:36 1999
=============== RIP net info (length=20)
0000 00020000 00000000 00000000 00000000 00000004 00000000 00000000 00000000
0020(32)
DTCRTD4902I destination 0.0.0.0 metric 4
DTCRTD4829I Waiting for incoming packets
=============== Received packet from client (length=4)
0000 02010000 00020000 00000000 00000000 00000000 00000005 00000000 00000000
0020(32)
DTCRTD4899I RESPONSE from 9.127.32.29 -> 520 ver 1 Wed Jan 27 08:39:38 1999
DTCRTD4829I Waiting for incoming packets
=============== Received packet from client (length=24)
0000 02010000 00020000 00000000 00000000 00000000 00000004 00000000 00000000
0020(32)
DTCRTD4899I RESPONSE from 9.127.32.250 -> 520 ver 1 Wed Jan 27 08:39:41 1999
=============== RIP net info (length=20)
0000 00020000 00000000 00000000 00000000 00000004 00000000 00000000 00000000
0020(32)
DTCRTD4902I destination 0.0.0.0 metric 4

Figure 86. A sample RouteD Server Trace (Part 3 of 3)

RouteD Diagnosis

170 z/VM: TCP/IP Diagnosis Guide

Chapter 12. Diagnosing MPROUTE Problems

MPROUTE implements the Open Shortest Path First (OSPF) protocol described in
RFC 1583 (OSPF Version 2) as well as the Routing Information Protocols (RIP)
described in RFC 1058 (RIP Version 1) and in RFC 1723 (RIP Version 2). MPROUTE
provides an alternative to the static TCP/IP gateway definitions. When configured
properly, the VM host running with MPROUTE becomes an active OSPF and/or
RIP router in a TCP/IP network. Either (or both) of these two routing protocols
can be used to dynamically maintain the host routing table. For example,
MPROUTE can determine that a new route has been created, that a route is
temporarily unavailable, or that a more efficient route exists.

MPROUTE has the following characteristics:
v A one-to-one relationship exists between an instance of MPROUTE and a

TCP/IP stack.
v MPROUTE and ROUTED cannot run on the same TCP/IP stack concurrently.
v All dynamic routes are deleted from the routing table upon initialization of

MPROUTE.
v Internet Control Message Protocol (ICMP) Redirects are ignored when

MPROUTE is active.
v Unlike ROUTED, MPROUTE does not make use of the BSD Routing Parameters.

Instead, the Maximum Transmission Unit (MTU), subnet mask, and destination
address parameters are configured via the OSPF_Interface, RIP_Interface, and
Interface statements in the MPROUTE configuration file.

v MPROUTE uses its virtual machine console for its logging and tracing. The
console is used for major events such as initialization, termination, error
conditions, the receipt and transmission of OSPF/RIP packets as well as
communications between MPROUTE and the TCP/IP stack.

v If you want to communicate a routing protocol over an interface, configure the
interface to MPROUTE using the OSPF_Interface or RIP_Interface configuration
statement.

v Interfaces that are not involved in the communication of the RIP or OSPF
protocol (such as VIPA interfaces) must be configured to MPROUTE using the
INTERFACE configuration statement, unless it is a non-point-to-point interface
and all default values as specified on the Interface statement are acceptable.

v MPROUTE is enhanced with Virtual IP Addressing (VIPA) to handle network
interface failures by switching to alternate paths. The virtual routes are included
in the OSPF and RIP advertisements to adjacent routers. Adjacent routers learn
about virtual routes from the advertisements and can use them to reach the
destinations at the VM host.

MPROUTE works best without static routes, and the use of static routes (defined
via the GATEWAY TCP/IP configuration statement) is not recommended. Static
routes may interfere with the discovery of a better route to the destination as well
as inhibit the ability to switch to another route if the destination should become
unreachable via the static route. For example, if you define a static host route
through one interface and that interface becomes unreachable, MPROUTE does not
acknowledge your static route and does not define a host route through an
alternate interface.

© Copyright IBM Corp. 1987, 2001 171

|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

If static routes must be defined, all static routes will be considered to be of equal
cost and static routes will not be replaced by OSPF or RIP routes. Use extreme care
when working with static routes and MPROUTE. Set IMPORT_STATIC_ROUTES =
YES on the AS_Boundary_Routing configuration statement or set
SEND_STATIC_ROUTES = YES on the RIP_Interface configuration statement if you
want the static routes to be advertised to other routers.

MPROUTE must be defined correctly to TCP/IP. For detailed information about
TCP/IP definitions, refer to the chapter on configuring MPROUTE in the TCP/IP
Planning and Customization.

Diagnosing MPROUTE Problems
Problems with MPROUTE are generally reported under one of the following
categories:
v Abends
v MPROUTE connection problems
v Routing failures

These categories are described in the following sections.

Abends
An abend during MPROUTE processing should result in messages and
error-related information being sent to the MPROUTE virtual machine’s console. A
dump of the error is needed unless the symptoms match a known problem.

MPROUTE Connection Problems
MPROUTE connection problems are reported when MPROUTE is unable to
connect to TCP/IP or to one of the ports required for OSPF or RIP communication.
Generally, an inability to connect to TCP/IP is caused by an error in the
configuration or definitions in TCP/IP. An inability to connect to one of the
required ports is generally caused by an error in the configuration or definitions in
TCP/IP or by attempting to start MPROUTE when either MPROUTE or ROUTED
is already connected to the specified stack.

If MPROUTE cannot communicate with the stack or is unable to initialize its
required ports, it issues an error message describing the problem and terminates.

Routing Failures
If a client is unable to reach its desired destination on a system where MPROUTE
is being used, the first step in diagnosis is to issue the NETSTAT GATE command.
This command displays the routes in the TCP/IP routing table and lets you
determine if the contents are as expected relative to the destination trying to be
reached.

Documenting Routing Failures
The following documentation should be available for initial diagnosis of routing
failures:
v The MPROUTE virtual machine’s console.
v Output from NETSTAT GATE.
v The file containing MPROUTE’s trace and debug information. For details, see

“MPROUTE Traces and Debug Information” on page 201.

Diagnosing MPROUTE Problems

172 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|

|
|
|

|
|

|
|

|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|
|
|

|

|

|
|

v Output from appropriate MPROUTE SMSG commands as described in “Using
Privileged MPROUTE SMSG Commands”.

Analyzing Routing Failures
When analyzing routing failures, follow these guidelines:
v Make sure that the address used in attempting to contact the remote host is a

valid IP address.
v If the output from the NETSTAT GATE command does not show the expected

results relative to the desired destination, do one or more of the following:
– Make sure that the router(s) involved in providing information relative to this

destination are operational and participating in the correct routing protocol.
– Make sure that the physical connections involved in reaching the destination

are active.
– Use the MPROUTE SMSG commands described in “Using Privileged

MPROUTE SMSG Commands” to determine if anything in the configuration
or current state of MPROUTE has resulted in the absence of a route to the
destination.

Using Privileged MPROUTE SMSG Commands
The VM Special Message Facility (SMSG) command provides an interface for
authorized users to display OSPF and RIP configuration and state information.
Authorized users are defined in the OBEY list. See the OBEY statement in the
TCP/IP Planning and Customization chapter ″Configuring the TCP/IP Server″ for
more information on defining authorized users. SMSG command responses are
returned to the originator of the command. The following sections provide details
on the types of data that can be displayed as well as examples of the generated
output.

Table 21.

Command Description Page

SMSG OSPF LIST ALL Lists all OSPF-related information. 174

SMSG OSPF LIST AREAS Lists all OSPF-related configured areas. 176

SMSG OSPF LIST
INTERFACES

Lists the IP address and configured
parameters for each OSPF interface.

177

SMSG OSPF LIST NBMA Lists the interface address and polling
interval for interfaces connected to
non-broadcast, multi-accessed networks.

178

SMSG OSPF LIST VLINKS Lists virtual links which have been
configured with this router as an endpoint.

178

SMSG OSPF LIST
NEIGHBORS

Lists neighbors to non-broadcast networks. 179

SMSG OSPF LSA Lists contents of a single link state
advertisement.

180

SMSG OSPF AREASUM Lists the statistics and parameters for all
OSPF areas attached to the router.

182

SMSG OSPF EXTERNAL Lists the AS external advertisements
belonging to the OSPF routing domain.

183

SMSG OSPF DATABASE Lists a description of the contents of a
particular OSPF area link state database.

184

SMSG OSPF INTERFACE Lists statistics and parameters related to
OSPF interfaces.

186

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 173

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

||

|||

|||

|||

|
|
|
|
|

||
|
|

|

||
|
|

|
|
||

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

Table 21. (continued)

Command Description Page

SMSG OSPF NEIGHBOR Lists statistics and parameters related to
OSPF neighbors.

188

SMSG OSPF ROUTERS Lists all routes to other routers that have
been calculated by OSPF and are now present
in the routing table.

190

SMSG OSPF DBSIZE Lists the number of LSAs currently in the
link state database, categorized by type.

191

SMSG OSPF STATISTICS Lists the statistics generated by the OSPF
protocol.

192

SMSG RTTABLE Lists all routes in the MPROUTE routing
table.

194

SMSG RTTABLE DEST Lists information about a particular route. 195

SMSG RIP LIST ALL Lists all RIP-related configuration
information.

196

SMSG RIP LIST
INTERFACES

Lists the IP address and configured
parameters for each RIP interface.

198

SMSG RIP LIST
ACCEPTED

Lists the routes to be unconditionally
accepted.

199

SMSG RIP INTERFACE Lists statistics and parameters related to RIP
interfaces.

200

SMSG DEBUG and TRACE SMSG DEBUG changes the MPROUTE
internal debugging level. SMSG TRACE
changes the MPROUTE external tracing level.

202

All OSPF Configuration Information

�� SMSG server_id OSPF LIST ALL ��

DESCRIPTION

This SMSG command lists all OSPF-related information.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7831I Global configuration

OSPF Protocol: Enabled
External Comparison: Type 2
AS boundary capability: Enabled
Import external routes: RIP DIR SUB
Orig. default route: No

Diagnosing MPROUTE Problems

174 z/VM: TCP/IP Diagnosis Guide

|

|||

||
|
|

||
|
|

|

||
|
|

||
|
|

||
|
|

|||

||
|
|

|
|
|
|
|

|
|
|
|
|

||
|
|

||
|
|

|

|

|

|

|||||||||||||||

|
|

|

|

|

|
|

|

|

|
|
|
|
|
|

Default route cost: (1, Type 2)
Default forward. addr.: 0.0.0.0
Demand Circuits: Enabled

DTCMPR7832I Area configuration
Area ID AuType Stub Default-cost Import-summaries
0.0.0.0 0=None No N/A N/A
2.2.2.2 0=None No N/A N/A

--Area ranges--
Area ID Address Mask Advertise
2.2.2.2 9.130.251.18 255.255.255.240 Yes
2.2.2.2 9.130.251.26 255.255.255.240 Yes

DTCMPR7833I Interface configuration
IP address Area Cost Rtrns TrnsDly Pri Hello Dead
10.0.0.16 0.0.0.0 1 5 1 1 20 80
9.130.249.46 0.0.0.0 7 5 1 3 20 80
9.130.251.26 0.0.0.0 5 5 1 2 20 80

DTCMPR7836I Virtual link configuration
Virtual endpoint Transit area Rtrns TrnsDly Hello Dead
9.130.251.25 0.0.0.1 20 5 40 160

DTCMPR7835I NBMA configuration
Interface Addr Poll Interval
9.130.249.46 120

DTCMPR7834I Neighbor configuration
Neighbor Addr Interface Address DR eligible
9.130.251.25 9.130.251.26 Yes
9.130.48.107 9.130.251.26 No

OSPF Protocol Displays that OSPF is enabled or disabled.

External Comparison Displays the external route type used by OSPF
when importing external information into the OSPF
domain and when comparing OSPF external routes
to RIP routes.

AS boundary capability Indicates whether the router will import external
routes into the OSPF domain.

Import external routes Indicates the types of external routes that will be
imported into the OSPF domain. Displayed only
when AS Boundary Capability is enabled.

Orig default route Indicates whether the router will originate a
default route into the OSPF domain. The Originate
Default Route is displayed only when AS
Boundary Capability is enabled.

Default route cost Displays the cost and type of the default route (if
advertised). The Default Route Cost is displayed
only when AS Boundary Capability is enabled.

Default forward addr Displays the forwarding address specified in the
default route (if advertised). The Default
Forwarding Address is displayed only when AS
Boundary Capability is enabled.

Demand Circuits Indicates whether demand circuit support is
available for OSPF interfaces.

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 175

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||
|
|
|

||
|

||
|
|

||
|
|
|

||
|
|

||
|
|
|

||
|

The remainder of the SMSG <server_id> OSPF LIST ALL output is described in the
following sections:

Configured OSPF Areas and Ranges

�� SMSG server_id OSPF LIST AREAS ��

DESCRIPTION

This SMSG command lists all information concerning configured OSPF areas and
their associated ranges.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7832I Area configuration
Area ID AuType Stub Default-cost Import-summaries
0.0.0.0 0=None No N/A N/A
2.2.2.2 0=None No N/A N/A

--Area ranges--
Area ID Address Mask Advertise
2.2.2.2 9.130.251.18 255.255.255.240 Yes
2.2.2.2 9.130.251.26 255.255.255.240 Yes

Area ID Displays the area ID.

AuType Displays the method used for area authentication.
“Simple-pass” means a simple password scheme is
being used for the area authentication.

Stub Indicates whether the area is a stub area.

Default cost Displays the cost of the default route configured
for the stub area.

Import summaries Indicates whether summary advertisements are to
be imported.

Address Displays the network address for a given range
within an area.

Mask Displays the subnet mask for a given range within
an area.

Advertise Indicates whether a given range within an area is
to be advertised.

Diagnosing MPROUTE Problems

176 z/VM: TCP/IP Diagnosis Guide

|
|

|

|

|||||||||||||||

|
|

|

|
|

|

|
|

|

|

|
|
|
|
|
|
|
|
|

||

||
|
|

||

||
|

||
|

||
|

||
|

||
|

Configured OSPF Interfaces

�� SMSG server_id OSPF LIST
(1)

INTERFACES ��

Notes:

1 The keyword IFS can be substituted for INTERFACES

DESCRIPTION

This SMSG command lists the IP address and configured parameters for each
OSPF interface.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7833I Interface configuration
IP address Area Cost Rtrns TrnsDly Pri Hello Dead
10.0.0.16 0.0.0.0 1 5 1 1 20 80
9.130.249.46 0.0.0.0 7 5 1 3 20 80
9.130.251.26 0.0.0.0 5 5 1 2 20 80

IP address Indicates the IP address of the interface.

Area Indicates the OSPF area to which the interface
attaches.

Cost Indicates the TOS(type of service) 0 cost (or metric)
associated with the interface.

Rtrns Indicates the retransmission interval, which is the
number of seconds between retransmissions of
unacknowledged routing information.

TrnsDly Indicates the transmission delay, which is an
estimate of the number of seconds required to
transmit routing information over the interface.
The number of seconds must be greater than zero.

Pri Indicates the interface router priority, which is used
when selecting the designated router.

Hello Indicates the number of seconds between Hello
Packets sent from the interface.

Dead Indicates the number of seconds after Hellos cease
to be heard that the router is declared down.

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 177

|

|

|||||||||||||||||

|

|

||
|

|

|
|

|

|
|

|

|

|
|
|
|
|

||

||
|

||
|

||
|
|

||
|
|
|

||
|

||
|

||
|

Configured OSPF Non-broadcast, Multi-access Networks

�� SMSG server_id OSPF LIST NBMA ��

DESCRIPTION

This SMSG command lists the interface address and polling interval related to
interfaces connected to non-broadcast, multi-access networks.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7835I NBMA configuration

Interface Addr Poll Interval
9.130.249.46 120

Interface Addr
Indicates the IP address of the interface.

Poll Interval
Indicates the frequency (in seconds) of hello’s sent to neighbors that are
inactive.

Configured OSPF Virtual Links

�� SMSG server_id OSPF LIST VLINKS ��

DESCRIPTION

This SMSG command lists all virtual links that have been configured with this
router as the endpoint.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7836I Virtual link configuration
Virtual endpoint Transit area Rtrns TrnsDly Hello Dead
9.130.251.25 0.0.0.1 20 5 40 160

Diagnosing MPROUTE Problems

178 z/VM: TCP/IP Diagnosis Guide

|

|

|||||||||||||||

|
|

|

|
|

|

|
|

|

|

|
|
|

|
|

|
|
|

|

|

|||||||||||||||

|
|

|

|
|

|

|
|

|

|

|
|
|

Virtual endpoint Indicates the OSPF router ID of the other endpoint.

Transit area Indicates the non-backbone area through which the
virtual link is configured. Virtual links are treated
by the OSPF protocol similarly to point-to-point
networks.

Rtrns Indicates the retransmission interval, which is the
number of seconds between retransmissions of
unacknowledged routing information.

TrnsDly Indicates the transmission delay, which is an
estimate of the number of seconds required to
transmit routing information over the interface.
The number of seconds must be greater than zero.

Hello Indicates the number of seconds between Hello
Packets sent from the interface.

Dead Indicates the number of seconds after Hellos cease
to be heard that the router is declared down.

Configured OSPF Neighbors

�� SMSG server_id OSPF LIST
(1)

NEIGHBORS ��

Notes:

1 The keyword NBRS can be substituted for NEIGHBORS.

DESCRIPTION

This SMSG command lists the neighbors to non-broadcast networks.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7834I Neighbor configuration

Neighbor Addr Interface Address DR eligible
9.130.251.25 9.130.251.26 Yes
9.130.48.107 9.130.251.26 No

Neighbor Addr Indicates the IP address of the neighbor.

Interface Address Indicates the IP address of the interface to the
neighbor.

DR eligible Indicates whether the neighbor is eligible to
become the designated router on the net.

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 179

||

||
|
|
|

||
|
|

||
|
|
|

||
|

||
|

|

|

|||||||||||||||||

|

|

||
|

|

|

|

|
|

|

|

|
|
|
|

||

||
|

||
|

OSPF Link State Advertisement

�� SMSG server_id OSPF LSA LSTYPE=ls_type LSID=lsid �

�
(1)

ORIGINATOR=ad_router AREAID=area_id ��

Notes:

1 The keyword ORIG can be substituted for ORIGINATOR.

DESCRIPTION

This SMSG command displays the contents of a single link state advertisement
contained in the OSPF database.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

LSTYPE=ls_type
Specifies the link state type of the link state advertisement. Valid values are 1
thru 5.

LSID=lsid
Specifies the link state ID of the link state advertisement in dotted decimal
form.

ORIGINATOR=ad_router
Specifies the IP address (in dotted decimal form) of the router that originated
the link state advertisement.

AREAID=area_id
Specifies the OSPF area address in dotted decimal form.

For a summary of all the advertisements in the OSPF database, use the following
command:
SMSG <server_id> OSPF DATABASE AREAID=<area_id>

A link state advertisement is defined by its link state type, link state ID and its
advertising router. There is a separate link state database for each OSPF area.
Providing an area-id on the command line tells the software which database you
want to search. The different kinds of advertisements, which depend on the value
given for link-state-type, are:

Table 22.

Links Link-State Description

Router 1 Describes the collected states of a router’s interfaces

Network 2 Describes the set of routers attached to a network

Summary, IP network 3 Describes the inter-area routes to networks

Summary, ASBR 4 Describes the inter-area routes to AS boundary routers

Diagnosing MPROUTE Problems

180 z/VM: TCP/IP Diagnosis Guide

|

|

|||||||||||||||
|

|
|||||||||||

|

|

||
|

|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

||

|||

|||

|||

|||

|||

Table 22. (continued)

Links Link-State Description

AS external 5 Describes routes to destinations external to the Autonomous System

Note: The ORIGINATOR only needs to be specified for link-state-types three, four,
and five. The AREAID needs to be specified for all link-state-types except five.
Link State IDs, originators (specified by their router IDs), and area IDs take
the same format as IP addresses. For example, the backbone area can be
entered as 0.0.0.0

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7880I LSA Details

LS age: 947
LS options E,MC
LS type: 1
LS destination (ID): 9.130.249.46
LS originator: 9.130.249.46
LS sequence no: 0x80000002
LS checksum: 0xb0d0
LS length: 36
Router type: ABR
router ifcs: 1

Link ID: 9.130.251.25
Link Data: 9.130.251.26
Interface type: 4

No. of metrics: 0
TOS 0 metric: 5 (0)

LS age Indicates the age of the advertisement in seconds.

LS options Indicates the optional OSPF capabilities supported
by the piece of the routing domain described by
the advertisement. These capabilities are denoted
by E (processes type 5 externals; when this is not
set, the area to which the advertisement belongs
has been configured as a stub), T (can route based
on TOS), MC (can forward IP multicast datagrams),
and DC (can support demand circuits).

LS type Classifies the advertisement and dictates its
contents: 1 (router links advertisement), 2 (network
link advertisement), 3 (summary link
advertisement), 4 (summary ASBR advertisement),
5 (AS external link).

LS destination Identifies what is being described by the
advertisement. It depends on the advertisement
type. For router links and ASBR summaries, it is
the OSPF router ID. For network links, it is the IP
address of the network designated router. For
summary links and AS external links, it is a
network/subnet number.

LS originator OSPF router ID of the originating router.

LS sequence number Used to distinguish separate instances of the same
advertisement. Should be looked at as a signed

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 181

|

|||

|||
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||
|
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|
|
|
|

||

||
|

32-bit integer. Starts at 0x80000001, and increments
by one each time the advertisement is updated.

LS checksum A checksum of advertisement contents, used to
detect data corruption.

LS length The size of the advertisement in bytes.

Router type Indicates the level of function of the advertising
router. ASBR means that the router is an AS
boundary router, ABR that the router is an area
border router, and W that the router is a wildcard
multicast receiver.

router ifcs The number of router interfaces described in the
advertisement.

Link ID Indicates what the interface connects to. Depends
on Interface type. For interfaces to routers (that is,
point-to-point links), the Link ID is the neighbor’s
router ID. For interfaces to transit networks, it is
the IP address of the network designated router.
For interfaces to stub networks, it is the network’s
network/subnet number.

Link Data Four bytes of extra information concerning the link,
it is either the IP address of the interface (for
interfaces to point-to-point networks and transit
networks), or the subnet mask (for interfaces to
stub networks).

Interface type One of the following: 1 (point-to-point connection
to another router), 2 (connection to transit
network), 3 (connection to stub network), or 4
(virtual link).

No. of metrics The number of nonzero TOS (Type of Service)
values for which metrics are provided for this
interface.

TOS(Type of Service) 0 metric
The cost of the interface.

The LS age, LS options, LS type, LS destination, LS originator, LS sequence no, LS
checksum and LS length fields are common to all advertisements. The Router type
and # router ifcs are seen only in router links advertisements. Each link in the
router advertisement is described by the Link ID, Link Data, and Interface type
fields.

OSPF Area Statistics and Parameters

�� SMSG server_id OSPF AREASUM ��

DESCRIPTION

Diagnosing MPROUTE Problems

182 z/VM: TCP/IP Diagnosis Guide

|
|

||
|

||

||
|
|
|
|

||
|

||
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|

||
|
|

|
|

|
|
|
|
|

|

|

|||||||||||||

|
|

|

This SMSG command displays the statistics and parameters for all OSPF areas
attached to the router.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7848I Area Summary
Area ID Authentication #ifcs #nets #rtrs #brdrs Demand
0.0.0.0 None 1 0 2 1 On
2.2.2.2 None 2 0 1 1 On

Area ID Indicates the ID of the area.

Authentication Indicates the authentication method being used by
the area.

ifcs Indicates the number of router interfaces attached
to the particular area. These interfaces are not
necessarily functional.

nets Indicates the number of transit networks that have
been found while doing the SPF tree calculation for
this area.

rtrs Indicates the number of routers that have been
found when doing the SPF tree calculation for this
area.

brdrs Indicates the number of area border routers that
have been found when doing the SPF tree
calculation for this area.

Demand Indicates whether demand circuits are supported in
this area.

OSPF External Advertisements

�� SMSG server_id OSPF EXTERNAL ��

DESCRIPTION

This SMSG command lists the AS external advertisements belonging to the OSPF
routing domain. One line is printed for each advertisement. Each advertisement is
defined by the following three parameters:
v Its link state type (always five for AS external advertisements)
v Its link state ID (called the LS destination)
v The advertising router (called the LS originator)

OPERANDS

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 183

|
|

|

|
|

|

|

|
|
|
|

||

||
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|

|

|

|||||||||||||

|
|

|

|
|
|

|

|

|

|

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7853I Area Link State Database
Type LS destination LS originator Seqno Age Xsum

5 @0.0.0.0 9.130.48.107 0x80000031 1776 0x554a
5 @9.130.248.112 9.130.48.107 0x80000031 1776 0x6a0a
5 @10.0.0.0 9.130.48.107 0x80000009 1379 0x2b48

advertisements: 3
Checksum total: 0xea9c

Type Always 5 for AS external advertisements.

@ Indicates whether the originator of the LSA
supports demand circuits.

LS destination Indicates an IP network/subnet number. These
network numbers belong to other Autonomous
Systems.

LS originator Indicates the router that originated the
advertisement.

Seqno Age Xsum It is possible for several instances of an
advertisement to be present in the OSPF routing
domain at any one time. However, only the most
recent instance is kept in the OSPF link state
database (and printed by this command). The LS
sequence number (Seqno), LS age (Age) and LS
checksum (Xsum) fields are compared to see which
instance is most recent. The LS age field is
expressed in seconds. Its maximum value is 3600.

At the end of the display, the total number of AS external advertisement is printed,
along with a checksum total over all of their contents. The checksum total is
simply the 32-bit sum (carries discarded) of the individual advertisement LS
checksum fields. This information can be used to quickly determine whether two
OSPF routers have synchronized databases.

OSPF Area Link State Database

�� SMSG server_id OSPF DATABASE AREAID=area_id ��

DESCRIPTION

This SMSG command displays a description of the contents of a particular OSPF
area link state database. AS external advertisements are omitted from the display.
A single line is printed for each advertisement. Each advertisement is defined by
the following three parameters:
v Its link state type (called Type)
v Its link state ID (called the LS destination)

Diagnosing MPROUTE Problems

184 z/VM: TCP/IP Diagnosis Guide

|
|

|

|

|
|
|
|
|
|
|

||

||
|

||
|
|

||
|

||
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|||||||||||||||

|
|

|

|
|
|
|

|

|

v The advertising router (called the LS originator)

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

AREAID=area_id
Specifies the OSPF area address in dotted decimal form.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7853I Area Link State Database
Type LS destination LS originator Seqno Age Xsum

1*@9.130.48.71 9.130.48.71 0x80000046 1554 0xc449
1*@9.130.48.107 9.130.48.107 0x80000063 1188 0x630c
1 @9.130.176.198 9.130.176.198 0x80000014 1548 0xe0f8
1 @9.130.249.46 9.130.249.46 0x80000002 2949 0xb0d0
1 @9.130.251.90 9.130.251.90 0x8000000f 1757 0x7627
2*@9.130.48.107 9.130.48.107 0x8000000d 841 0x4968
2*@9.130.176.1 9.130.48.71 0x80000001 1554 0xf2fc
2*@9.130.251.89 9.130.48.107 0x8000000f 187 0x72ab

advertisements: 8
Checksum total: 0x4de53

Type Separate LS types are numerically displayed: type
1 (router links advertisements), type 2 (network
links advertisements), type 3 (network summaries),
and type 4 (AS boundary router summaries).

* Indicates whether the originator of the LSA
supports multicast OSPF function.

@ Indicates whether the originator of the LSA
supports demand circuits.

LS destination Indicates what is being described by the
advertisement.

LS originator Indicates the router that originated the
advertisement

Seqno Age Xsum It is possible for several instances of an
advertisement to be present in the OSPF routing
domain at any one time. However, only the most
recent instance is kept in the OSPF link state
database (and printed by this command). The LS
sequence number (Seqno), LS age (Age) and LS
checksum (Xsum) fields are compared to see which
instance is most recent. The LS age field is
expressed in seconds. Its maximum value is 3600.

At the end of the display, the total number of advertisements in the area database
is printed, along with a checksum total over all of their contents. The checksum
total is simply the 32-bit sum (carries discarded) of the individual advertisement
LS checksum fields. This information can be used to quickly determine whether
two OSPF routers have synchronized databases.

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 185

|

|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|

||
|

||
|

||
|

||
|

||
|
|
|
|
|
|
|
|

|
|
|
|
|

OSPF Interface Statistics and Parameters

�� SMSG server_id OSPF
(1)

INTERFACE
NAME=if_name

��

Notes:

1 The keyword IF can be substituted for INTERFACE.

DESCRIPTION

This SMSG command displays statistics and parameters related to OSPF interfaces.
If no NAME= parameter is given (see Example 1), a single line is printed
summarizing each interface. If NAME= parameter is given (see Example 2), detailed
statistics for that interface will be displayed.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

NAME=if_name
Specifies the name of the interface for which detailed statistics will be
displayed.

EXAMPLES

Sample outputs with explanations of entries follow:
---- Example 1 ----
DTCMPR7849I Interfaces
Ifc Address Phys assoc. Area Type State #nbrs #adjs
10.0.0.16 IUCVLK16 0.0.0.0 P-P 1 0 0
9.130.249.46 VCTC16 2.2.2.2 P-P 16 0 0
9.130.251.26 TR2 2.2.2.2 Brdcst 128 2 0

Ifc Address Interface IP address.

Phys Displays the interface name.

assoc. Area Attached area ID.

Type Can be either Brdcst (broadcast, for example, an
Ethernet interface), P-P (a point-to-point
network-for example, a synchronous serial line),
Multi (non-broadcast, multi-access-for example, an
X.25 connection), or VLink (an OSPF virtual link).

State Can be one of the following: 1 (down), 2 (backup),
4 (looped back), 8 (waiting), 16 (point-to-point), 32
(DR other), 64 (backup DR), or 128 (designated
router).

#nbrs Number of neighbors. This is the number of
routers whose hellos have been received, plus
those that have been configured.

Diagnosing MPROUTE Problems

186 z/VM: TCP/IP Diagnosis Guide

|

|

||||||||||||||||||||

|

|

||
|

|

|
|
|
|

|

|
|

|
|
|

|

|

|
|
|
|
|
|

||

||

||

||
|
|
|
|

||
|
|
|

||
|
|

#adjs Number of adjacencies. This is the number of
neighbors in state Exchange or greater. These are
the neighbors with whom the router has
synchronized or is in the process of
synchronization.

---- Example 2 ----
DTCMPR7850I Interface Details

Interface address: 9.130.251.26
Attached area: 0.0.0.0
Physical interface: TR2
Interface mask: 255.255.255.248
Interface type: Brdcst
State: 64
Designated Router: 9.130.251.25
Backup DR: 9.130.251.26

DR Priority: 2 Hello interval: 10 Rxmt interval: 5
Dead interval: 40 TX delay: 1 Poll interval: 0
Demand circuit: Off Hello suppress: Off Suppress Req: Off
Max pkt size: 1500 TOS 0 cost: 5

Neighbors: 1 # Adjacencies: 1 # Full adjs.: 1
Mcast floods: 4 # Mcast acks: 2 DL unicast: Off
MC forwarding: Off

Network Capabilities:
Broadcast
Demand-Circuits

Interface address Interface IP address.

Attached area Attached area ID.

Physical interface Displays interface name.

Interface mask Displays interface subnet mask.

Interface type Can be either Brdcst (broadcast-for example, an
Ethernet interface), P-P (a point-to-point
network-for example, a synchronous serial line),
Multi (non-broadcast, multi-access-for example, an
X.25 connection) or VLink (an OSPF virtual link).

State Can be one of the following: 1 (down), 2 (backup),
4 (looped back), 8 (waiting), 16 (point-to-point), 32
(DR other), 64 (backup DR), or 128 (designated
router).

Designated Router IP address of the designated router.

Backup DR IP address of the backup designated router.

DR Priority Displays the interface router priority used when
selecting the designated router.

Hello interval Displays the current hello interval value.

Rxmt interval Displays the current retransmission interval value.

Dead interval Displays the current dead interval value.

TX delay Displays the current transmission delay value.

Poll interval Displays the current poll interval value.

Demand circuit Displays the current demand circuit status.

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 187

||
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||

||

||

||
|
|
|
|

||
|
|
|

||

||

||
|

||

||

||

||

||

||

Hello suppress Displays whether Hello Suppression is currently on
or off.

Suppress req Displays whether Hello Suppression was
requested.

Max pkt size Displays the maximum size for an OSPF packet
sent out this interface.

TOS(Type of Service) 0 cost Displays the interface TOS(Type of Service) 0 cost.

Neighbors Number of neighbors. This is the number of
routers whose hellos have been received, plus
those that have been configured.

Adjacencies Number of adjacencies. This is the number of
neighbors in state Exchange or greater.

Full adj Number of full adjacencies. This is the number of
neighbors whose state is Full (and therefore with
which the router has synchronized databases).

Mcast floods Number of link state updates flooded out the
interface (not counting retransmissions).

Mcast acks Number of link state acknowledgments flooded out
the interface (not counting retransmissions).

DL unicast OSPF packets will be sent as unicast if ON.

MC forwarding If Multicast Forwarding is enabled or not.

Network Capabilities Displays the capabilities of the interface.

OSPF Neighbor Statistics and Parameters

�� SMSG server_id OSPF
(1)

NEIGHBOR
IPADDR=ip_addr

��

Notes:

1 The keyword NBR can be substituted for NEIGHBOR.

DESCRIPTION

This SMSG command displays the statistics and parameters related to OSPF
neighbors. If no IPADDR= parameter is given (see Example 1), a single line is
printed summarizing each neighbor. If an IPADDR= parameter is given (see Example
2), detailed statistics for that neighbor are displayed.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

ip_addr
Specifies the IP address (in dotted decimal form) of the neighbor for which
detailed statistics will be displayed.

Diagnosing MPROUTE Problems

188 z/VM: TCP/IP Diagnosis Guide

||
|

||
|

||
|

||

||
|
|

||
|

||
|
|

||
|

||
|

||

||

||

|

|

||||||||||||||||||||||

|

|

||
|

|

|
|
|
|

|

|
|

|
|
|

EXAMPLES

Following are sample outputs with explanations of entries:
---- Example 1 ----
DTCMPR7851I Neighbor Summary
Neighbor addr Neighbor ID State LSrxl DBsum LSreq HSup Ifc
9.130.251.25 9.130.48.107 128 0 0 0 Off TR2

Neighbor addr Displays the neighbor address.

Neighbor ID Displays the neighbor OSPF router ID.

State Can be one of the following: 1 (Down), 2
(Attempt), 4 (Init), 8 (2-Way), 16 (ExStart), 32
(Exchange), 64 (Loading), or 128 (Full).

LSrxl Displays the size of the current link state
retransmission list for this neighbor.

DBsum Displays the size of the database summary list
waiting to be sent to the neighbor.

LSreq Displays the number of more recent advertisements
that are being requested from the neighbor.

HSup Displays whether Hello Suppression is active with
the neighbor.

Ifc Displays the interface shared by the router and the
neighbor.

---- Example 2 ----
DTCMPR7852I Neighbor Details

Neighbor IP address: 9.130.251.25
OSPF Router ID: 9.130.48.107
Neighbor State: 128
Physical interface: TR2
DR choice: 9.130.251.25
Backup choice: 9.130.251.26
DR Priority: 1
Nbr options: E,MC

DB summ qlen: 0 LS rxmt qlen: 0 LS req qlen: 0
Last hello: 7 No hello: Off
LS rxmits: 0 # Direct acks: 0 # Dup LS rcvd: 0
Old LS rcvd: 0 # Dup acks rcvd: 0 # Nbr losses: 0
Adj. resets: 0

Neighbor IP address Neighbor IP address.

OSPF Router ID Neighbor OSPF router ID.

Neighbor State Can be one of the following: 1 (Down), 2
(Attempt), 4 (Init), 8 (2-Way), 16 (ExStart), 32
(Exchange), 64 (Loading), or 128 (Full).

Physical interface Displays interface name of the router and neighbor
common interface.

DR choice, Backup choice, DR Priority
Indicate the values seen in the last hello received
from the neighbor.

Nbr options Indicates the optional OSPF capabilities supported
by the neighbor. These capabilities are denoted by
E (processes type 5 externals; when this is not set

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 189

|

|

|
|
|
|
|

||

||

||
|
|

||
|

||
|

||
|

||
|

||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||

||
|
|

||
|

|
|
|

||
|
|

the area to which the common network belongs
has been configured as a stub), T (can route based
on TOS), MC (can forward IP multicast datagrams),
and DC (can support demand circuits). This field is
valid only for those neighbors in state Exchange or
greater.

DB summ qlen Indicates the number of advertisements waiting to
be summarized in Database Description packets. It
should be zero except when the neighbor is in state
Exchange.

LS rxmt qlen Indicates the number of advertisements that have
been flooded to the neighbor, but not yet
acknowledged.

LS req qlen Indicates the number of advertisements that are
being requested from the neighbor in state
Loading.

Last hello Indicates the number of seconds since a hello has
been received from the neighbor.

No hello Indicates whether Hello Suppression is active with
the neighbor.

LS rxmits Indicates the number of retransmissions that have
occurred during flooding.

Direct acks Indicates responses to duplicate link state
advertisements.

Dup LS rcvd Indicates the number of duplicate retransmissions
that have occurred during flooding.

Old LS rcvd Indicates the number of old advertisements
received during flooding.

Dup acks rcvd Indicates the number of duplicate
acknowledgments received.

Nbr losses Indicates the number of times the neighbor has
transitioned to Down state.

Adj. resets Counts entries to state ExStart.

OSPF Router Routes

�� SMSG server_id OSPF ROUTERS ��

DESCRIPTION

This SMSG command displays all routes to other routers that have been calculated
by OSPF and are now present in the routing table.

OPERANDS

Diagnosing MPROUTE Problems

190 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|

||
|
|
|

||
|
|

||
|
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||

|

|

|||||||||||||

|
|

|

|
|

|

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with an explanation of entries follows:
DTCMPR7855I OSPF Routers
DType RType Destination Area Cost Next hop(s)
ASBR SPF 9.130.48.107 0.0.0.0 7 9.130.176.1
Fadd SPF 9.130.48.254 0.0.0.0 7 9.130.176.1
Fadd SPF 9.130.48.71 0.0.0.0 1 9.130.176.1

DType Indicates the destination type:

ASBR Indicates that the destination is an AS boundary router.

ABR Indicates that the destination is an area border router.

Fadd Indicates a forwarding address (for external routes).

RType Indicates the route type and how the route was derived:

SPF Indicates that the route is an intra-area route (comes from
the Dijkstra calculation).

SPIA Indicates that it is an inter-area route (comes from
considering summary link advertisements).

Destination Indicates the destination router’s OSPF identification.

Area Displays the AS area to which it belongs.

Cost Displays the cost to reach the router.

Next hop Indicates the address of the next router on the path toward the
destination host.

OSPF Link State Database Statistics

�� SMSG server_id OSPF DBSIZE ��

DESCRIPTION

This SMSG command displays the number of LSAs currently in the link state
database, categorized by type.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

The following is a sample output:
DTCMPR7854I Link State Database Size

Router-LSAs: 3
Network-LSAs: 2

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 191

|
|

|

|

|
|
|
|
|
|

||

||

||

||

||

||
|

||
|

||

||

||

||
|

|

|

|||||||||||||

|
|

|

|
|

|

|
|

|

|

|
|
|

Summary-LSAs: 10
Summary Router-LSAs: 1
AS External-LSAs: 5
Intra-area routes: 10
Inter-area routes: 0
Type 1 external routes: 0
Type 2 external routes: 3

OSPF Routing Protocol Statistics

�� SMSG server_id OSPF
(1)

STATISTICS ��

Notes:

1 The keyword STATS can be substituted for STATISTICS.

DESCRIPTION

This SMSG command displays statistics generated by the OSPF routing protocol.
The statistics indicate how well the implementation is performing, including its
memory and network utilization. Many of the fields displayed are confirmation of
the OSPF configuration.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with explanations of entries follows:
DTCMPR7856I OSPF Statistics

OSPF Router ID: 9.130.249.46
External Comparison: Type 2
AS boundary capability: Yes
Import external routes: RIP DIR SUB
Orig. default route: No
Default route cost: (1, Type 2)
Default forward. addr.: 0.0.0.0

Attached areas: 2 OSPF packets rcvd: 40
OSPF packets rcvd w/errs: 0 Transit nodes allocated: 18
Transit nodes freed: 13 LS adv. allocated: 34
LS adv. freed: 18 Queue headers alloc: 32
Queue headers avail: 32 Maximum LSA size: 1452
Dijkstra runs: 2 Incremental summ. updates: 0
Incremental VL updates: 0 Multicast pkts sent: 64
Unicast pkts sent: 5 LS adv. aged out: 0
LS adv. flushed: 0 Ptrs to Invalid LS adv: 0
Incremental ext. updates: 3

External LSA database:

Current state: Normal

Diagnosing MPROUTE Problems

192 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|
|

|

|

|||||||||||||||

|

|

||
|

|

|
|
|
|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Number of LSAs: 5
Number of overflows: 0

OSPF Router ID Displays the router OSPF ID.

External Comparison Displays the external route type used by the router
when importing external routes.

AS boundary capability Displays whether external routes will be imported.

Import external routes Displays the external routes that will be imported.

Orig. default route Displays whether the router will advertise an OSPF
default route.

Default route cost Displays the cost and type of the default route (if
advertised).

Default forward addr Displays the forwarding address specified in the
default route (if advertised).

Attached areas Indicates the number of areas that the router has
active interfaces to.

OSPF packets rcvd Covers all types of OSPF protocol packets.

Transit nodes Allocated to store router links and network links
advertisements.

LS adv Allocated to store summary link and AS external
link advertisements.

Queue headers Form lists of link state advertisements. These lists
are used in the flooding and database exchange
processes; if the number of queue headers allocated
is not equal to the number freed, database
synchronization with some neighbor is in progress.

Maximum LSA size The size of the largest link state advertisement that
can be sent.

Dijkstra runs Indicates how many times the OSPF routing table
has been calculated from scratch.

Incremental summ updates, Incremental VL updates
Indicate that new summary link advertisements
have caused the routing table to be partially
rebuilt.

Multicast pkts sent Covers OSPF hello packets and packets sent during
the flooding procedure.

Unicast pkts sent Covers OSPF packet retransmissions and the
Database Exchange procedure.

LS adv. aged out Indicates the number of advertisements that have
hit 60 minutes. Link state advertisements are aged
out after 60 minutes. Usually they are refreshed
before this time.

LS adv. flushed Indicates the number of advertisements removed
(and not replaced) from the link state database.

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 193

|
|
|
|

||

||
|

||

||

||
|

||
|

||
|

||
|

||

||
|

||
|

||
|
|
|
|

||
|

||
|

|
|
|
|

||
|

||
|

||
|
|
|

||
|

Incremental ext. updates Displays the number of changes to external
destinations that are incrementally installed in the
routing table.

MPROUTE Routing Table

�� SMSG server_id RTTABLE ��

DESCRIPTION

This SMSG command displays all of the routes in the MPROUTE routing table.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with explanation of entries follows:

Note: Be aware that this command displays the contents of the working table that
is used by MPROUTE, not the TCP/IP routing table. The contents of the
MPROUTE routing table may contain information different from that in the
TCP/IP routing table.

DTCMPR7847I Routing Table
Type Dest net Mask Cost Age Next hop(s)

SPE2 0.0.0.0 0 2 317 9.130.251.25
Sbnt 9.0.0.0 FF000000 1 295 None
SPF 9.130.48.0 FFFFFF00 11 320 9.130.251.25
SPF 9.130.48.107 FFFFFFFF 5 320 9.130.251.25
SPE2 9.130.176.0 FFFFFF00 2 317 9.130.251.25
SPF 9.130.240.96 FFFFFFE0 15 320 9.130.251.25
SPF 9.130.248.96 FFFFFFF0 6 320 9.130.251.25
SPE2 9.130.248.112 FFFFFFF0 1 317 9.130.251.25
SPF 9.130.248.128 FFFFFFF0 15 320 9.130.251.25
SPF 9.130.248.144 FFFFFFF0 11 320 9.130.251.25
Dir* 9.130.249.32 FFFFFFF0 1 325 9.130.249.46
SPF 9.130.251.16 FFFFFFF8 1805 320 9.130.251.25
SPF* 9.130.251.24 FFFFFFF8 5 320 TR2
SPF 9.130.251.80 FFFFFFF8 1805 320 9.130.251.25
SPF 9.130.251.88 FFFFFFF8 1805 320 9.130.251.25
Dir* 10.0.0.0 FF000000 1 325 10.0.0.16

Default gateway in use.

Type Cost Age Next hop
SPE2 2 317 9.130.251.25

0 nets deleted, 0 nets inactive

Type Indicates how the route was derived:

Sbnt Indicates that the network is subnetted; such an entry is a
placeholder only.

Diagnosing MPROUTE Problems

194 z/VM: TCP/IP Diagnosis Guide

||
|
|

|

|

|||||||||||

|
|

|

|

|

|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||
|

Dir Indicates a directly connected network or subnet.

RIP Indicates a route that was learned through the RIP
protocol.

DEL Indicates the route has been deleted.

Stat Indicates a statically configured route.

SPF Indicates that the route is an OSPF intra-area route.

SPIA Indicates that the route is an OSPF inter-area route.

SPE1, SPE2
Indicates OSPF external routes (type 1 and 2, respectively).

Rnge Indicates a route type that is an active OSPF area address range
and is not used in forwarding packets.

* The route type indicates that the route has a directly connected
backup.

% The route type indicates that RIP updates are always accepted for
this network/subnet.

Dest net Indicates the IP destination.

Mask Indicates the IP destination subnet mask.

Cost Indicates the route cost.

Age Indicates the time that has elapsed since the routing table entry
was last refreshed.

Next hop(s) Indicates the IP address of the next router on the path toward the
destination host. A number in parentheses at the end of the column
indicates the number of equal-cost routes to the destination. Use
the SMSG <server_id> RTTABLE dest=<ip_addr> command to obtain
a list of the next hops.

Route Expansion Information

�� SMSG server_id RTTABLE DEST=ip_addr ��

DESCRIPTION

Use this command to obtain information about a particular route.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

DEST=ip_addr
Specifies the destination IP address (in dotted decimal form) for which
information will be displayed.

EXAMPLE

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 195

||

||
|

||

||

||

||

|
|

||
|

||
|

||
|

||

||

||

||
|

||
|
|
|
|

|

|

|||||||||||||

|
|

|

|

|

|
|

|
|
|

|

A sample output with explanation of entries follows:
DTCMPR7874I Route Expansion
Destination: 9.130.48.107
Mask: 255.255.255.255
Route Type: SPF
Distance: 5
Age: 408
Next Hop(s): 9.130.251.25 (TR2)

Destination Indicates the IP destination.

Mask Indicates the IP destination subnet mask.

Route Type Indicates how the route was derived:

SBNT Indicates that the network is subnetted; such an entry is a
placeholder only.

DIR Indicates a directly connected network or subnet.

RIP Indicates a route that was learned through the RIP
protocol.

DEL Indicates the route has been deleted.

STAT Indicates a statically configured route.

SPF Indicates that the route is an OSPF intra-area route.

SPIA Indicates that the route is an OSPF inter-area route.

SPE1, SPE2
Indicates OSPF external routes (type 1 and 2, respectively).

An asterisk (*) after the route type indicates that the route has a
directly connected backup. A percent sign (%) after the route type
indicates that RIP updates are always accepted for this
network/subnet.

Rnge Indicates a route type that is an active OSPF area address range
and is not used in forwarding packets.

Distance Indicates the route cost.

Age Indicates the time that has elapsed since the routing table entry
was last refreshed.

Next hop(s) Indicates the IP address of the next router and the interface used to
reach that router for each of the paths toward the destination host.

RIP Configuration Information

�� SMSG server_id RIP LIST ALL ��

DESCRIPTION

This SMSG command lists all RIP-related configuration information.

OPERANDS

Diagnosing MPROUTE Problems

196 z/VM: TCP/IP Diagnosis Guide

|

|
|
|
|
|
|
|
|

||

||

||

||
|

||

||
|

||

||

||

||

|
|

|
|
|
|

||
|

||

||
|

||
|

|

|

|||||||||||||||

|
|

|

|

|

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output follows:
DTCMPR7843I RIP Configuration
RIP: Enabled
RIP default origination: Disabled
Per-interface address flags:
ETRING 9.130.176.198 RIP Version 1

Send net and subnet routes
Receive No Dynamic host routes
RIP interface input metric: 1
RIP interface output metric: 0
Broadcast Style: Network
Broadcast Fill Pattern: Ones

VCTC9 9.130.249.39 RIP Version 1
Send net and subnet routes
Receive No Dynamic host routes
RIP interface input metric: 1
RIP interface output metric: 0
Broadcast Style: Network
Broadcast Fill Pattern: Ones

DTCMPR7844I RIP Route Acceptance
Accept RIP updates always for:

9.130.48.107

RIP Indicates whether RIP communication is enabled.

RIP default origination
Indicates the conditions under which RIP supports default route
generation and the advertised cost for the default route.

Per-interface address flags
Specifies information about an interface:

RIP Version
Specifies whether RIP Version 1 or RIP Version 2 packets
are being communicated over this interface.

Send Specifies which types of routes will be included in RIP
responses sent out this interface.

Receive
Specifies which types of routes will be accepted in RIP
responses received on this interface.

RIP interface input metric
Specifies the value of the metric to be added to RIP routes
received over this interface.

RIP interface output metric
Specifies the value of the metric to be added to RIP routes
advertised over this interface.

Broadcast Style
Specifies what type of Broadcast is being used.

Broadcast Fill Pattern
Specifies if ones or zeroes are used for the Broadcast Fill
Pattern.

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 197

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
|

|
|

|
|
|

||
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

Configured RIP Interfaces

�� SMSG server_id RIP LIST
(1)

INTERFACES ��

Notes:

1 The keyword IFS can be substituted for INTERFACES.

DESCRIPTION

This SMSG command lists IP addresses and configured parameters for each RIP
interface.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output with explanations of entries follows:
DTCMPR7843I RIP Configuration
RIP: Enabled
RIP default origination: Disabled
Per-interface address flags:
ETRING 9.130.176.198 RIP Version 1

Send net and subnet routes
Receive No Dynamic host routes
RIP interface input metric: 1
RIP interface output metric: 0
Broadcast Style: Network
Broadcast Fill Pattern: Ones

VCTC9 9.130.249.39 RIP Version 1
Send net and subnet routes
Receive No Dynamic host routes
RIP interface input metric: 1
RIP interface output metric: 0
Broadcast Style: Network
Broadcast Fill Pattern: Ones

RIP Indicates whether RIP communication is enabled.

RIP default origination
Indicates the conditions under which RIP supports default route
generation and the advertised cost for the default route.

Per-interface address flags
Specifies information about an interface:

RIP Version
Specifies whether RIP Version 1 or RIP Version 2 packets
are being communicated over this interface.

Send Specifies which types of routes will be included in RIP
responses sent out this interface.

Diagnosing MPROUTE Problems

198 z/VM: TCP/IP Diagnosis Guide

|

|

|||||||||||||||||

|

|

||
|

|

|
|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
|

|
|

|
|
|

||
|

Receive
Specifies which types of routes will be accepted in RIP
responses received on this interface.

RIP interface input metric
Specifies the value of the metric to be added to RIP routes
received over this interface.

RIP interface output metric
Specifies the value of the metric to be added to RIP routes
advertised over this interface.

Broadcast Style
Specifies what type of Broadcast is being used.

Broadcast Fill Pattern
Specifies if ones or zeroes are used for the Broadcast Fill
Pattern.

RIP Routes to Be Accepted

�� SMSG server_id RIP LIST ACCEPTED ��

DESCRIPTION

This SMSG command lists the routes to be unconditionally accepted, as configured
with the ACCEPT_RIP_ROUTE statement.

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

EXAMPLE

A sample output follows:
DTCMPR7844I RIP Route Acceptance
Accept RIP updates always for:

9.130.48.107

Accept RIP updates always for
Indicates for which destination network, networks, subnet, or
subnets RIP updates are always accepted.

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 199

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|

|||||||||||||||

|
|

|

|
|

|

|
|

|

|

|
|
|
|

|
|
|

RIP Interface Statistics and Parameters

�� SMSG server_id RIP
(1)

INTERFACE
NAME=if_name

��

Notes:

1 The keyword IF can be substituted for INTERFACE.

DESCRIPTION

This SMSG command displays statistics and parameters related to RIP interfaces. If
no NAME= parameter is given (SMSG <server_id> RIP INTERFACE), a single line is
printed summarizing each interface. (See Example 1.) If a NAME= parameter is given,
detailed statistics for that interface are displayed. (See Example 2.)

OPERANDS

server_id
Specifies the user ID of the MPROUTE server virtual machine.

NAME=if_name
Specifies the name of the interface for which detailed statistics will be
displayed.

EXAMPLES

Following are sample outputs with explanations of entries:
---- Example 1 ----
DTCMPR7859I RIP Interfaces
Ifc Address Ifc Name Subnet Mask MTU Destination
9.130.249.39 VCTC9 255.255.255.240 576 9.130.48.134
9.130.176.198 ETRING 255.255.255.0 1500 N/A

Ifc Address Indicates the interface IP address.

Ifc Name Indicates the interface name.

Subnet Mask Indicates the subnet mask.

MTU Indicates the value of the Maximum Transmission
Unit.

Destination Indicates the RIP identification for the destination
router when the interface is point-to-point.

---- Example 2 ----
DTCMPR7860I RIP Interface Details
Interface address: 9.130.176.198
Interface Name: ETRING
Subnet Mask: 255.255.255.0
MTU 576
Destination Address: N/A

RIP Version: 1 Send Pois. Rev. Routes: Yes
In Metric: 1 Out Metric: 0
Receive Net Routes: Yes Receive Subnet Routes: Yes

Diagnosing MPROUTE Problems

200 z/VM: TCP/IP Diagnosis Guide

|

|

||||||||||||||||||||||

|

|

||
|

|

|
|
|
|

|

|
|

|
|
|

|

|

|
|
|
|
|
|
|

||

||

||

||
|

||
|

|
|
|
|
|
|
|
|
|
|
|

Receive Host Routes: No Send Default Routes: No
Send Net Routes: Yes Send Subnet Routes: Yes
Send Static Routes: No Send Host Routes: No

Interface address Indicates the interface IP address.

Interface Name Indicates the interface name.

Subnet Mask Indicates the subnet mask.

MTU Indicates the value of the Maximum Transmission
Unit.

Destination Address Indicates the RIP identification for the destination
router when the interface is point-to-point.

RIP Version Indicates whether RIP Version 1 or RIP Version 2
packets are communicated over this route.

Send Pois. Rev. Routes Indicates whether poisoned reverse routes are
advertised in RIP responses sent over this interface.
A poisoned reverse route is one with an infinite
metric (a metric of 16).

In Metric Indicates the RIP interface input metric.

Out Metric Indicates the RIP interface output metric.

Receive Net Routes Indicates whether network routes are accepted in
RIP responses received over this interface.

Receive Subnet Routes Indicates whether subnet routes are accepted in
RIP responses received over this interface.

Receive Host Routes Indicates whether host routes are accepted in RIP
responses received over this interface.

Send Default Routes Indicates whether the default route, if available, is
advertised in RIP responses sent over this route.

Send Net Routes Indicates whether network routes are advertised in
RIP responses sent over this interface.

Send Subnet Routes Indicates whether subnet routes are advertised in
RIP responses sent over this interface.

Send Static Routes Indicates whether static routes are advertised in
RIP responses sent over this interface.

Send Host Routes Indicates whether host routes are advertised in RIP
responses sent over this interface.

MPROUTE Traces and Debug Information
MPROUTE internal tracing and debugging can be started when MPROUTE is
started. Also, the SMSG command can be used to start, stop, or alter MPROUTE’s
tracing and debugging after MPROUTE has been started.

This section describes each of these methods.

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 201

|
|
|
|

||

||

||

||
|

||
|

||
|

||
|
|
|

||

||

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

|
|

|
|
|

|

Starting MPROUTE Tracing and Debugging from the VM
Console

If MPROUTE is started from the command line (using the mproute command),
parameters can be specified to indicate the level of tracing or debugging desired.

─tn (where n is a supported trace level)
This option specifies the external tracing level. It is intended for customers,
testers, service, or developers, and provides information on the operation
of the routing application. This option can be used for many purposes,
such as debugging a configuration, education on the operation of the
routing application, verification of testcases, and so on. The following
levels are supported:
v 1 = Provides all informational messages.
v 2 = Provides formatted packet tracing.

─dn (where n is a supported debug level)
This option specifies the internal debugging level. It is intended for service
or developers only, and provides internal debugging information needed
for debugging problems. The following levels are supported:
v 1 = Provides internal debugging messages.
v 2 = Provides unformatted hex packet tracing.
v 3 = Provides function entry/exit trace.
v 4 = Provides task add/run.

Notes:

1.

For debug, levels 3 and 4, the thread ID can be suppressed in the output by
setting the environment variable _DEBUG_NOTHREADID nefore starting
MPROUTE. For example:
GLOBALV SELECT CENV SETLP _DEBUG_NOTHREADID YES

2.

The trace and debug levels are cumulative; each level includes all lower levels.
For example, ─t2 provides formatted packet trace and informational messages.
You can enter more than one parameter by inserting a space after each
parameter; for example, mproute ─t1 ─d2.
Parameters can be specified in mixed case.

Starting MPROUTE Tracing and Debugging using the SMSG
Command

�� SMSG server_id DEBUG=debug_level
TRACE=trace_level

��

Operands
server_id

Specifies the user ID of the MPROUTE server virtual machine.

Diagnosing MPROUTE Problems

202 z/VM: TCP/IP Diagnosis Guide

|

|

|
|

|
|
|
|
|
|
|

|

|

|
|
|
|

|

|

|

|

|

|

|
|
|

|

|

|
|

|
|

|

|

|

|

||||||||||||||||||

|
|

|

|
|

DEBUG=debug_level
Sets or changes the MPROUTE internal debugging level. The following debug
levels are available:

debug_level Description

0 Turns debug messages off.

1 Provides internal debugging messages.

2 Provides unformatted hex packet tracing.

3 Provides function entry/exit trace.

4 Provides task add/run.

TRACE=trace_level
Sets or changes the level of MPROUTE external tracing. The following trace
levels are available:

trace_level Description

0 Turns MPROUTE tracing off.

1 Provides all informational messages.

2 Provides formatted packet tracing.

Note: Use of MPROUTE tracing affects the MPROUTE performance and may
require increasing the DEAD_ROUTER_INTERVAL on OSPF interfaces.

Examples
1. The following SMSG command passes a trace operand to an MPROUTE server

running in the MPROUTE1 virtual machine.
smsg mproute1 trace=0
Ready;
07:02:30 * MSG FROM MPROUTE1 : MPROUTE SMSG command accepted

Destination of MPROUTE Trace and Debug Output
Output from MPROUTE’s tracing and debugging is written to the VM console.

Sample MPROUTE Trace Output
Following is a sample MPROUTE trace with descriptions for some of the trace
entries:
DTCRUN1022I Console log will be sent to user TCPMAINT
DTCRUN1022I Console log will be sent to user TCPMNT12
DTCRUN1027I Server will use TcpipUserid TCPTES12
DTCRUN1021R To cancel OSPF ROUTING DAEMON startup,

type any non-blank character and press ENTER.
To continue startup, just press ENTER.

DTCRUN1011E Server started at 10:23:48 on 19 Sep 2000 (Tuesday)
DTCRUN1011E Running "MPROUTE -T1"
�1� 10:23:48.803087 DTCMPR7800I MPROUTE starting
10:23:48.830997 DTCMPR7817I Using defined OSPF protocol 89
10:23:48.846173 DTCMPR8088I The (ETC GATEWAYS) file was found,

MPROUTE server will ignore it
10:23:48.847472 DTCMPR8080I Opening MPROUTE config file (MPROUTE CONFIG)
�2� 10:23:48.869772 DTCMPR7883I

Processing interface from stack,
address 9.130.251.82, name ETH3, index 3, flags 00000463

10:23:48.871458 DTCMPR7883I Processing interface from stack,
address 9.130.48.70, name TRING, index 2, flags 00000463

10:23:48.872693 DTCMPR7883I Processing interface from stack,

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 203

|
|
|

||

||

||

||

||

||

|
|
|

||

||

||

||

|
|

|
|
|

|
|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

address 9.130.249.42, name VCTC12, index 1, flags 00000451
10:23:48.918116 DTCMPR8023I The RIP routing protocol is Enabled
10:23:48.919353 DTCMPR7937I The OSPF routing protocol is Enabled
10:23:48.921846 DTCMPR8050I Updating BSD Route Parms for link VCTC12, MTU 576,

metric 1, subnet 255.255.255.240, destination 9.130.48.134
�3� 10:23:48.924308 DTCMPR8057I Added network 9.130.249.32

to interface 9.130.249.42 on net 0 interface VCTC12
10:23:48.927261 DTCMPR7827I Adding stack route to 9.130.249.32, mask

255.255.255.240 via 0.0.0.0, link VCTC12, metric 1, type 1
10:23:48.930583 DTCMPR8057I Added network 9.130.48.134 to interface

9.130.249.42 on net 0 interface VCTC12
10:23:48.932970 DTCMPR7827I Adding stack route to 9.130.48.134, mask

255.255.255.255 via 0.0.0.0, link VCTC12, metric 1, type 129
10:23:48.935620 DTCMPR7879I Joining multicast group 224.0.0.9

on interface 9.130.249.42
10:23:48.939356 DTCMPR8050I Updating BSD Route Parms for link TRING, MTU 576,

metric 1, subnet 255.255.255.0, destination 0.0.0.0
10:23:48.942762 DTCMPR8057I Added network 9.130.48.0 to interface 9.130.48.70

on net 1 interface TRING
10:23:48.946045 DTCMPR7827I Adding stack route to 9.130.48.0, mask

255.255.255.0 via 0.0.0.0, link TRING, metric 1, type 1
10:23:48.950529 DTCMPR7879I Joining multicast group 224.0.0.9

on interface 9.130.48.70
10:23:48.953788 DTCMPR8050I Updating BSD Route Parms for link ETH3, MTU 576,

metric 2, subnet 255.255.255.248, destination 0.0.0.0
10:23:48.956562 DTCMPR8057I Added network 9.130.251.80 to interface

9.130.251.82 on net 2 interface ETH3
10:23:48.958185 DTCMPR7827I Adding stack route to 9.130.251.80, mask

255.255.255.248 via 0.0.0.0, link ETH3, metric 1, type 1
�4� 10:23:48.963273 DTCMPR7910I Sending multicast, type 1,

destination 224.0.0.5 net 2 interface ETH3
10:23:48.966241 DTCMPR7879I Joining multicast group 224.0.0.5

on interface 9.130.251.82
�5� DTCMPR7913I State change,

interface 9.130.251.82, new state 8, event 1
10:24:04.237526 DTCMPR7875I No default route defined
10:24:04.238927 DTCMPR7898I MPROUTE Initialization Complete
10:24:04.239913 DTCMPR7934I Originating LS advertisement:

typ 1 id 9.130.251.82 org 9.130.251.82
10:24:04.240368 DTCMPR8011I send request to address 9.130.48.134
10:24:04.240503 DTCMPR8015I sending packet to 9.130.48.134
10:24:04.252680 DTCMPR7910I Sending multicast, type 1,

destination 224.0.0.5 net 2 interface ETH3
�6� 10:24:04.259310 DTCMPR7908I Received packet type 1

from 9.130.251.81
�7� 10:24:04.259883 DTCMPR7919I State change,

neighbor 9.130.251.81, new state 4, event 1
�8� 10:24:04.260418 DTCMPR7919I State change,

neighbor 9.130.251.81, new state 8, event 3
10:24:04.263533 DTCMPR7879I Joining multicast group 224.0.0.6 on

interface 9.130.251.82
10:24:04.266711 DTCMPR7913I State change,

interface 9.130.251.82, new state 64, event 3
�9� 10:24:04.267213 DTCMPR7949I Dijkstra calculation

performed, on 1 area(s)
10:24:04.268470 DTCMPR8011I send request to address 224.0.0.9
10:24:04.268842 DTCMPR8015I sending packet to 224.0.0.9
10:24:04.271277 DTCMPR8004I response received from host 9.130.48.107
10:24:04.271903 DTCMPR8010I update route to net 10.0.0.0 at

metric 2 hops via router 9.130.48.107
10:24:04.272307 DTCMPR7827I Adding stack route to 10.0.0.0, mask

255.0.0.0 via 9.130.48.107, link TRING, metric 2, type 132
10:24:04.275695 DTCMPR8004I response received from host 9.130.48.71
10:24:04.276223 DTCMPR8010I update route to net 9.0.0.0 at metric

2 hops via router 9.130.48.71
10:24:04.276626 DTCMPR7827I Adding stack route to 9.0.0.0, mask

255.0.0.0 via 9.130.48.71, link TRING, metric 2, type 132

Diagnosing MPROUTE Problems

204 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

�10� 10:24:04.279341 DTCMPR8015I sending
packet to 9.130.48.134

10:24:04.282438 DTCMPR8021I sending RIP2 response to address 9.130.48.134
from 9.130.249.42 in 1 packets with 2 routes

10:24:04.285207 DTCMPR8015I sending packet to 224.0.0.9
10:24:04.288531 DTCMPR8021I sending RIP2 response to address 224.0.0.9

from 9.130.48.70 in 1 packets with 2 routes
10:24:04.288727 DTCMPR8015I sending packet to 224.0.0.9
10:24:27.321360 DTCMPR8021I sending RIP2 response to address 224.0.0.9

from 9.130.48.70 in 1 packets with 3 routes
10:24:27.322214 DTCMPR7910I Sending multicast, type 1, destination

224.0.0.5 net 2 interface ETH3
�11� 10:24:27.327888 DTCMPR7919I State change,

neighbor 9.130.251.81, new state 16, event 14
�12� 10:24:27.328475 DTCMPR7909I Sending unicast

type 2 dst 9.130.251.81 net 2 interface ETH3
10:24:27.332342 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:24:27.333001 DTCMPR8004I response received from host 9.130.48.107
10:24:27.339203 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:24:27.339795 DTCMPR8004I response received from host 9.130.48.71
10:24:27.348675 DTCMPR7908I Received packet type 1 from 9.130.251.81
�13� 10:24:27.358541 DTCMPR7908I Received packet type 2

from 9.130.251.81
�14� 10:24:27.359384 DTCMPR7919I State change,

neighbor 9.130.251.81, new state 32, event 5
�15� 10:24:27.360122 DTCMPR7909I Sending unicast type 3

dst 9.130.251.81 net 2 interface ETH3
�16� 10:24:27.363806 DTCMPR8019I Mismatch version 1

received from host 9.130.48.134
�17� 10:24:27.372827 DTCMPR7908I Received packet

type 4 from 9.130.251.81
�18� 10:24:27.373644 DTCMPR7928I from 9.130.251.81,

new LS advertisement:
typ 1 id 9.130.48.107 org 9.130.48.107

10:24:27.374521 DTCMPR7928I from 9.130.251.81, new LS advertisement:
typ 1 id 9.130.251.18 org 9.130.251.18

10:24:27.375245 DTCMPR7928I from 9.130.251.81, new LS advertisement:
typ 1 id 9.130.251.90 org 9.130.251.90

10:24:27.375837 DTCMPR7928I from 9.130.251.81, new LS advertisement:
typ 2 id 9.130.251.17 org 9.130.48.107

10:24:27.376072 DTCMPR7928I from 9.130.251.81, new LS advertisement:
typ 2 id 9.130.251.90 org 9.130.251.90

10:24:27.380022 DTCMPR7909I Sending unicast type 3 dst 9.130.251.81
net 2 interface ETH3

10:24:27.393823 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:24:27.394657 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 5 id 0.0.0.0 org 9.130.48.107
10:24:27.395259 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 5 id 9.130.48.134 org 9.130.251.18
10:24:27.395457 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 5 id 9.130.176.0 org 9.130.48.107
10:24:58.104215 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 5 id 9.130.248.112 org 9.130.48.107
10:24:58.105120 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 5 id 9.130.249.32 org 9.130.251.18
10:24:58.106964 DTCMPR7909I Sending unicast type 3 dst 9.130.251.81

net 2 interface ETH3
10:24:58.119069 DTCMPR7910I Sending multicast, type 5, destination

224.0.0.5 net 2 interface ETH3
10:24:58.126632 DTCMPR7910I Sending multicast, type 1, destination

224.0.0.5 net 2 interface ETH3
10:24:58.129468 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:24:58.130106 DTCMPR7949I Dijkstra calculation performed, on 1 area(s)
10:24:58.151811 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:24:58.152391 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:24:58.152817 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:24:58.153214 DTCMPR7908I Received packet type 4 from 9.130.251.81

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 205

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

10:24:58.153635 DTCMPR7928I from 9.130.251.81, new LS advertisement:
typ 5 id 9.130.176.0 org 9.130.48.107

10:24:58.154100 DTCMPR7928I from 9.130.251.81, new LS advertisement:
typ 5 id 9.130.248.112 org 9.130.48.107

10:24:58.154543 DTCMPR7928I from 9.130.251.81, new LS advertisement:
typ 5 id 0.0.0.0 org 9.130.48.107

10:24:58.155032 DTCMPR7928I from 9.130.251.81, new LS advertisement:
typ 5 id 10.0.0.13 org 9.130.251.18

10:24:58.155508 DTCMPR7928I from 9.130.251.81, new LS advertisement:
typ 5 id 10.0.0.255 org 9.130.251.18

10:24:58.155989 DTCMPR7909I Sending unicast type 2 dst 9.130.251.81
net 2 interface ETH3

10:24:58.159573 DTCMPR8004I response received from host 9.130.48.107
10:24:58.160196 DTCMPR8004I response received from host 9.130.48.71
10:24:58.160611 DTCMPR8019I Mismatch version 1

received from host 9.130.48.134
10:24:58.161006 DTCMPR8004I response received from host 9.130.48.107
10:24:58.168906 DTCMPR7908I Received packet type 3 from 9.130.251.81
�19� 10:24:58.169519 DTCMPR7909I Sending unicast

type 4 dst 9.130.251.81 net 2 interface ETH3
10:24:58.187659 DTCMPR7908I Received packet type 2 from 9.130.251.81
�20� 10:24:58.187916 DTCMPR7919I State change,

neighbor 9.130.251.81, new state 128, event 6
10:24:58.196998 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:24:58.197253 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 1 id 9.130.48.107 org 9.130.48.107
10:25:34.429596 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 2 id 9.130.251.81 org 9.130.48.107
�21� 10:25:34.461747 DTCMPR7895I Processing SMSG

command from TCPMNT12 - OSPF LIST INTERFACES
10:25:34.814409 DTCMPR7910I Sending multicast, type 5, destination

224.0.0.5 net 2 interface ETH3
10:25:34.819180 DTCMPR7910I Sending multicast, type 1, destination

224.0.0.5 net 2 interface ETH3
�22� 10:25:34.824804 DTCMPR7908I Received packet

type 5 from 9.130.251.81
10:25:34.825606 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:25:34.826427 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:25:34.827206 DTCMPR7939I Duplicate LS acknowledgment received from

neighbor 9.130.251.81
10:25:34.828454 DTCMPR7932I LS acknowledement sent directly to

neighbor 9.130.251.81
�23� 10:25:34.829320 DTCMPR7909I Sending unicast type 5

dst 9.130.251.81 net 2 interface ETH3
10:25:34.835392 DTCMPR7949I Dijkstra calculation performed, on 1 area(s)
10:25:34.836706 DTCMPR8004I response received from host 9.130.48.71
10:25:34.837435 DTCMPR8019I Mismatch version 1 received from

host 9.130.48.134
10:25:34.838416 DTCMPR8004I response received from host 9.130.48.107
10:25:34.843751 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:25:34.851369 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:25:34.852339 DTCMPR8004I response received from host 9.130.48.71
10:25:34.859248 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:25:34.859867 DTCMPR7932I LS acknowledement sent directly to

neighbor 9.130.251.81
10:25:34.860339 DTCMPR7909I Sending unicast type 5 dst 9.130.251.81

net 2 interface ETH3
10:25:35.450401 DTCMPR7934I Originating LS advertisement: typ 1 id

9.130.251.82 org 9.130.251.82
10:25:35.451056 DTCMPR7910I Sending multicast, type 4, destination

224.0.0.5 net 2 interface ETH3
10:25:35.510930 DTCMPR7908I Received packet type 5 from 9.130.251.81
10:25:36.454130 DTCMPR7949I Dijkstra calculation performed, on 1 area(s)
10:25:47.543958 DTCMPR7806I Changing stack route to 9.130.251.80,

mask 255.255.255.248 via 0.0.0.0, link ETH3,
metric 2, type 1

10:25:47.554484 DTCMPR7935I New MPROUTE route to destination Net

Diagnosing MPROUTE Problems

206 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

9.130.251.80, type SPF cost 2
10:25:47.555017 DTCMPR7935I New MPROUTE route to destination ASBR

9.130.48.107, type SPF cost 2
�24� 10:25:47.555423 DTCMPR7827I Adding stack

route to 9.130.240.96,
mask 255.255.255.224 via 9.130.251.81, link ETH3,
metric 12, type 130

10:25:47.559097 DTCMPR7935I New MPROUTE route to destination
Net 9.130.240.96, type SPF cost 12

10:25:47.559632 DTCMPR7827I Adding stack route to 9.130.248.96,
mask 255.255.255.240 via 9.130.251.81, link ETH3,
metric 3, type 130

10:25:47.564347 DTCMPR7935I New MPROUTE route to destination
Net 9.130.248.96, type SPF cost 3

10:25:47.564887 DTCMPR7827I Adding stack route to 9.130.248.144,
mask 255.255.255.240 via 9.130.251.81, link ETH3,
metric 8, type 130

10:25:47.569208 DTCMPR7935I New MPROUTE route to destination Net
9.130.248.144, type SPF cost 8

10:25:47.569757 DTCMPR7827I Adding stack route to 9.130.248.128,
mask 255.255.255.240 via 9.130.251.81, link ETH3,
metric 12, type 130

10:25:47.572648 DTCMPR7935I New MPROUTE route to destination Net
9.130.248.128, type SPF cost 12

10:25:47.573150 DTCMPR7827I Adding stack route to 9.130.251.24,
mask 255.255.255.248 via 9.130.251.81, link ETH3,
metric 1802, type130

10:25:47.575063 DTCMPR7935I New MPROUTE route to destination Net
9.130.251.24, type SPF cost 1802

10:25:47.575567 DTCMPR7827I Adding stack route to 9.130.48.107,
mask 255.255.255.255 via 9.130.251.81, link ETH3,
metric 2, type 129

10:25:47.577587 DTCMPR7935I New MPROUTE route to destination
Net 9.130.48.107, type SPF cost 2

10:25:47.577759 DTCMPR7935I New MPROUTE route to destination ASBR
9.130.251.18, type SPF cost 1802

10:25:47.577915 DTCMPR7827I Adding stack route to 9.130.251.16,
mask 255.255.255.248 via 9.130.251.81, link ETH3,
metric 1802, type 130

10:25:47.580378 DTCMPR7935I New MPROUTE route to destination Net
9.130.251.16, type SPF cost 1802

10:25:47.580590 DTCMPR7827I Adding stack route to 9.130.251.88,
mask 255.255.255.248 via 9.130.251.81, link ETH3,
metric 1802, type 130

10:25:47.582401 DTCMPR7935I New MPROUTE route to destination Net
9.130.251.88, type SPF cost 1802

10:25:47.582630 DTCMPR7910I Sending multicast, type 1, destination
224.0.0.5 net 2 interface ETH3

10:25:47.584646 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:25:50.615488 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:25:50.616079 DTCMPR8019I Mismatch version 1 received from

host 9.130.48.134
10:25:50.623248 DTCMPR7827I Adding stack route to 0.0.0.0,

mask 0.0.0.0 via 9.130.251.81, link ETH3,
metric 2, type 136

10:25:50.626231 DTCMPR7827I Adding stack route to 9.130.176.0,
mask 255.255.255.0 via 9.130.251.81, link ETH3,
metric 2, type 130

10:25:50.628565 DTCMPR7827I Adding stack route to 9.130.248.112,
mask 255.255.255.240 via 9.130.251.81, link ETH3,
metric 1, type 130

10:25:50.631036 DTCMPR7827I Adding stack route to 10.0.0.13,
mask 255.255.255.255 via 9.130.251.81, link ETH3,
metric 1, type 129

10:25:50.633331 DTCMPR7827I Adding stack route to 10.0.0.0,
mask 255.255.255.0 via 9.130.251.81, link ETH3,
metric 1, type 132

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 207

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

10:25:50.635497 DTCMPR7885I Route not added to stack routing table
- static route exists

10:25:50.636376 DTCMPR7934I Originating LS advertisement:
typ 5 id 9.130.249.32 org 9.130.251.82

10:25:50.637087 DTCMPR7934I Originating LS advertisement:
typ 5 id 9.0.0.0 org 9.130.251.82

10:25:50.637721 DTCMPR7934I Originating LS advertisement:
typ 5 id 9.130.48.134 org 9.130.251.82

10:25:50.638532 DTCMPR7934I Originating LS advertisement:
typ 5 id 9.130.48.0 org 9.130.251.82

10:25:50.639235 DTCMPR7934I Originating LS advertisement:
typ 5 id 10.0.0.0 org 9.130.251.82

10:25:50.639835 DTCMPR7910I Sending multicast, type 4,
destination 224.0.0.5 net 2 interface ETH3

10:25:51.513644 DTCMPR7908I Received packet type 5 from 9.130.251.81
10:25:56.533518 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:25:57.510318 DTCMPR8004I response received from host 9.130.48.107
10:25:57.511732 DTCMPR8010I update route to net 10.0.0.0 at metric

3 hops via router 9.130.48.107
10:25:57.512224 DTCMPR7806I Changing stack route to 10.0.0.0,

mask 255.0.0.0 via 9.130.48.107, link TRING,
metric 3, type 132

10:25:57.515413 DTCMPR8015I sending packet to 9.130.48.134
10:25:57.523139 DTCMPR8021I sending RIP2 response to address

9.130.48.134 from 9.130.249.42 in 1 packets
with 12 routes

10:26:48.893298 DTCMPR7919I State change, neighbor 9.130.251.81,
new state 1, event 12

10:26:48.895035 DTCMPR7910I Sending multicast, type 1, destination
224.0.0.5 net 2 interface ETH3

10:26:48.900328 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:26:48.901154 DTCMPR7913I State change, interface 9.130.251.82,

new state 128, event 4
10:26:48.901736 DTCMPR7934I Originating LS advertisement:

typ 1 id 9.130.251.82 org 9.130.251.82
10:26:48.901967 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:26:48.902125 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 4, event 1
10:26:48.906735 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 8, event 3
10:26:48.907524 DTCMPR8004I response received from host 9.130.48.71
10:26:48.910791 DTCMPR8004I response received from host 9.130.48.71
10:26:48.919435 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:26:48.924724 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:26:48.930054 DTCMPR8004I response received from host 9.130.48.107
10:26:48.955687 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:26:48.956264 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:26:48.956649 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:26:48.957029 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:26:48.957609 DTCMPR7919I State change, neighbor 9.130.251.81, new state 4,

event 10
10:26:48.958042 DTCMPR8004I response received from host 9.130.48.107
10:26:48.958428 DTCMPR7864I Deleting all stack routes to 10.0.0.0,

mask 255.0.0.0
10:26:48.962696 DTCMPR8009I network 10.0.0.0 now unreachable via router

9.130.48.107, deleted
10:26:48.963318 DTCMPR8004I response received from host 9.130.48.71
10:26:48.963618 DTCMPR8004I response received from host 9.130.48.71
10:26:48.963771 DTCMPR8004I response received from host 9.130.48.71
10:26:48.963958 DTCMPR8015I sending packet to 9.130.48.134
10:26:48.967598 DTCMPR8021I sending RIP2 response to address 9.130.48.134

from 9.130.249.42 in 1 packets with 1 routes
10:26:54.164931 DTCMPR8015I sending packet to 224.0.0.9
10:26:54.175180 DTCMPR8021I sending RIP2 response to address 224.0.0.9

from 9.130.48.70 in 1 packets with 1 routes
10:26:54.176056 DTCMPR7949I Dijkstra calculation performed, on 1 area(s)
10:26:54.176785 DTCMPR7943I Destination ASBR 9.130.48.107 now unreachable

Diagnosing MPROUTE Problems

208 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

10:26:54.177400 DTCMPR7943I Destination Net 9.130.240.96 now unreachable
10:26:54.178034 DTCMPR7864I Deleting all stack routes to 9.130.240.96,

mask 255.255.255.224
10:26:54.184100 DTCMPR7943I Destination Net 9.130.248.96 now unreachable
10:26:54.184991 DTCMPR7864I Deleting all stack routes to 9.130.248.96,

mask 255.255.255.240
10:26:54.188598 DTCMPR7943I Destination Net 9.130.248.144 now unreachable
10:26:54.189311 DTCMPR7864I Deleting all stack routes to 9.130.248.144,

mask 255.255.255.240
10:26:54.193187 DTCMPR7943I Destination Net 9.130.248.128 now unreachable
10:26:54.193691 DTCMPR7864I Deleting all stack routes to 9.130.248.128,

mask 255.255.255.240
10:26:54.197702 DTCMPR7943I Destination Net 9.130.251.24 now unreachable
10:26:54.198158 DTCMPR7864I Deleting all stack routes to 9.130.251.24,

mask 255.255.255.248
10:26:54.201476 DTCMPR7943I Destination Net 9.130.48.107 now unreachable
10:26:54.201926 DTCMPR7864I Deleting all stack routes to 9.130.48.107,

mask 255.255.255.255
10:26:54.205735 DTCMPR7943I Destination ASBR 9.130.251.18 now unreachable
10:26:54.206181 DTCMPR7943I Destination Net 9.130.251.16 now unreachable
10:26:54.206566 DTCMPR7864I Deleting all stack routes to 9.130.251.16,

mask 255.255.255.248
10:26:54.210465 DTCMPR7943I Destination Net 9.130.251.88 now unreachable
10:26:54.210918 DTCMPR7864I Deleting all stack routes to 9.130.251.88,

mask 255.255.255.248
10:26:54.214845 DTCMPR8004I response received from host 9.130.48.107
10:26:54.215057 DTCMPR8004I response received from host 9.130.48.71
10:26:54.215196 DTCMPR8004I response received from host 9.130.48.107
10:26:54.215334 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:27:21.867622 DTCMPR8015I sending packet to 9.130.48.134
10:27:21.883728 DTCMPR8021I sending RIP2 response to address 9.130.48.134 from

9.130.249.42 in 1 packets with 13 routes
10:27:21.884754 DTCMPR7895I Processing SMSG command from TCPMNT12

- OSPF LIST INTERFACES
10:27:22.239425 DTCMPR7864I Deleting all stack routes to 0.0.0.0, mask 0.0.0.0
10:27:22.254767 DTCMPR7864I Deleting all stack routes to 9.130.176.0,

mask 255.255.255.0
10:27:22.259340 DTCMPR7864I Deleting all stack routes to 9.130.248.112,

mask 255.255.255.240
10:27:22.265810 DTCMPR7864I Deleting all stack routes to 10.0.0.13,

mask 255.255.255.255
10:27:22.278879 DTCMPR7864I Deleting all stack routes to 10.0.0.0,

mask 255.255.255.0
10:27:22.285253 DTCMPR7910I Sending multicast, type 1, destination

224.0.0.5 net 2 interface ETH3
10:27:22.291528 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:27:22.293062 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:27:22.293938 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:27:22.294496 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 8, event 3
10:27:22.295352 DTCMPR8004I response received from host 9.130.48.71
10:27:22.295779 DTCMPR8004I response received from host 9.130.48.107
10:27:22.296169 DTCMPR8004I response received from host 9.130.48.71
10:27:22.296551 DTCMPR8004I response received from host 9.130.48.107
10:27:22.296957 DTCMPR8015I sending packet to 224.0.0.9
10:27:22.301825 DTCMPR8021I sending RIP2 response to address 224.0.0.9

from 9.130.48.70 in 1 packets with 13 routes
10:27:22.308715 DTCMPR8004I response received from host 9.130.48.107
10:27:22.309287 DTCMPR8010I update route to net 10.0.0.0 at metric 2 hops

via router 9.130.48.107
10:27:22.309604 DTCMPR7827I Adding stack route to 10.0.0.0, mask 255.0.0.0

via 9.130.48.107, link TRING, metric 2, type 132
10:27:22.313109 DTCMPR8015I sending packet to 9.130.48.134
10:27:22.316817 DTCMPR8021I sending RIP2 response to address 9.130.48.134

from 9.130.249.42 in 1 packets with 4 routes
�25� 10:27:52.722327 DTCMPR7895I Processing SMSG

command from TCPMNT12 - TRACE=2

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 209

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

10:27:52.984676 DTCMPR7919I State change, neighbor 9.130.251.81, new state 16,
event 14

10:27:52.985551 DTCMPR7910I Sending multicast, type 1, destination 224.0.0.5
net 2 interface ETH3

�26� 10:27:52.987142 DTCMPR7876I -- OSPF Packet Sent ------ Type: Hello
10:27:52.988112 DTCMPR7878I OSPF Version: 2 Packet Length: 48
10:27:52.988952 DTCMPR7878I Router ID: 9.130.251.82 Area: 0.0.0.0
10:27:52.990410 DTCMPR7878I Checksum: b80b Authentication Type: 0
10:27:52.992224 DTCMPR7878I Hello_Interval: 10 Network mask: 255.255.255.248
10:27:52.993416 DTCMPR7878I Options: E
10:27:52.994251 DTCMPR7878I Router_Priority: 1 Dead_Router_Interval: 40
10:27:52.994551 DTCMPR7878I Backup DR: 0.0.0.0 Designated Router: 9.130.251.82
10:27:52.994690 DTCMPR7878I Neighbor: 9.130.48.107
10:27:53.000810 DTCMPR7877I -- OSPF Packet Received -- Type: Database Description
10:27:53.001278 DTCMPR7878I OSPF Version: 2 Packet Length: 32
10:27:53.001668 DTCMPR7878I Router ID: 9.130.48.107 Area: 0.0.0.0
10:27:53.002070 DTCMPR7878I Checksum: 647a Authentication Type: 0
10:27:53.002450 DTCMPR7878I DD options: E DD flags: I M Master
10:27:53.002802 DTCMPR7878I DD sequence no: 1715222
10:27:53.003166 DTCMPR7908I Received packet type 2 from 9.130.251.81
10:27:53.003547 DTCMPR7877I -- OSPF Packet Received -- Type: Hello
10:27:53.003922 DTCMPR7878I OSPF Version: 2 Packet Length: 48
10:27:53.004801 DTCMPR7878I Router ID: 9.130.48.107 Area: 0.0.0.0
10:27:53.005092 DTCMPR7878I Checksum: af37 Authentication Type: 0
10:27:53.005247 DTCMPR7878I Hello_Interval: 10 Network mask: 255.255.255.248
10:27:53.005361 DTCMPR7878I Options: E
10:27:53.005490 DTCMPR7878I Router_Priority: 1 Dead_Router_Interval: 40
10:27:58.887508 DTCMPR7878I Backup DR: 9.130.251.81 Designated Router: 9.130.251.82
10:27:58.888695 DTCMPR7878I Neighbor: 9.130.251.82
10:27:58.889318 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:27:58.889941 DTCMPR7877I -- OSPF Packet Received -- Type: Hello
10:27:58.890909 DTCMPR7878I OSPF Version: 2 Packet Length: 48
10:27:58.892600 DTCMPR7878I Router ID: 9.130.48.107 Area: 0.0.0.0
10:27:58.893211 DTCMPR7878I Checksum: af37 Authentication Type: 0
10:27:58.893809 DTCMPR7878I Hello_Interval: 10 Network mask: 255.255.255.248
10:27:58.894365 DTCMPR7878I Options: E
10:27:58.894939 DTCMPR7878I Router_Priority: 1 Dead_Router_Interval: 40
10:27:58.895630 DTCMPR7878I Backup DR: 9.130.251.81 Designated Router: 9.130.251.82
10:27:58.896214 DTCMPR7878I Neighbor: 9.130.251.82
10:27:58.896783 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:27:58.897367 DTCMPR7877I -- OSPF Packet Received -- Type: Database Description
10:27:58.897947 DTCMPR7878I OSPF Version: 2 Packet Length: 32
10:27:58.899073 DTCMPR7878I Router ID: 9.130.48.107 Area: 0.0.0.0
10:27:58.899808 DTCMPR7878I Checksum: 647a Authentication Type: 0
10:27:58.900450 DTCMPR7878I DD options: E DD flags: I M Master
10:27:58.901156 DTCMPR7878I DD sequence no: 1715222
10:27:58.902065 DTCMPR7908I Received packet type 2 from 9.130.251.81
10:27:58.902705 DTCMPR7909I Sending unicast type 2 dst 9.130.251.81

net 2 interface ETH3
10:27:58.903185 DTCMPR7876I -- OSPF Packet Sent ------ Type: Database Description
10:27:58.903340 DTCMPR7878I OSPF Version: 2 Packet Length: 32
10:27:58.903490 DTCMPR7878I Router ID: 9.130.251.82 Area: 0.0.0.0
10:27:58.903622 DTCMPR7878I Checksum: 4632 Authentication Type: 0
10:28:01.519301 DTCMPR7878I DD options: E DD flags: I M Master
10:28:01.519762 DTCMPR7878I DD sequence no: 39c77708
10:28:01.531540 DTCMPR7877I -- OSPF Packet Received -- Type: Hello
10:28:01.532219 DTCMPR7878I OSPF Version: 2 Packet Length: 48
10:28:01.532384 DTCMPR7878I Router ID: 9.130.48.107 Area: 0.0.0.0
10:28:01.532518 DTCMPR7878I Checksum: af37 Authentication Type: 0
10:28:01.532664 DTCMPR7878I Hello_Interval: 10 Network mask: 255.255.255.248
10:28:01.541582 DTCMPR7878I Options: E
10:28:01.542374 DTCMPR7878I Router_Priority: 1 Dead_Router_Interval: 40
10:28:01.542783 DTCMPR7878I Backup DR: 9.130.251.81 Designated Router:9.130.251.82
10:28:01.543155 DTCMPR7878I Neighbor: 9.130.251.82
10:28:01.544709 DTCMPR7908I Received packet type 1 from 9.130.251.81
�27� 10:28:01.545296 -- RIP Packet Received -- Type: Response (V2)
10:28:01.545717 Destination_Addr: 10.0.0.0 metric: 16

Diagnosing MPROUTE Problems

210 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

10:28:01.546104 Subnet Mask: 0.0.0.0 Next Hop: 0.0.0.0
10:28:01.546469 DTCMPR8004I response received from host 9.130.48.71
10:28:01.546879 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:28:01.547281 -- RIP Packet Received -- Type: Response (V2)
10:28:01.547948 Destination_Addr: 9.130.176.0 metric: 1
10:28:01.548374 Subnet Mask: 0.0.0.0 Next Hop: 0.0.0.0
10:28:01.548873 Destination_Addr: 9.130.48.71 metric: 1
10:28:01.549198 Subnet Mask: 0.0.0.0 Next Hop: 0.0.0.0
10:28:01.549386 Destination_Addr: 10.0.0.0 metric: 16
10:28:01.549526 Subnet Mask: 0.0.0.0 Next Hop: 0.0.0.0
10:28:01.549644 DTCMPR8004I response received from host 9.130.48.71
10:28:13.719386 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:28:13.735502 DTCMPR7911I Retransmitting packet, type 2,

9.130.251.82 -> 9.130.251.81
10:28:13.736044 DTCMPR7876I -- OSPF Packet Sent ------ Type: Database Description
10:28:13.736431 DTCMPR7878I OSPF Version: 2 Packet Length: 32
10:28:13.736820 DTCMPR7878I Router ID: 9.130.251.82 Area: 0.0.0.0
10:28:13.737191 DTCMPR7878I Checksum: 4632 Authentication Type: 0
10:28:13.737570 DTCMPR7878I DD options: E DD flags: I M Master
10:28:13.737920 DTCMPR7878I DD sequence no: 39c77708
10:28:13.745122 DTCMPR7910I Sending multicast, type 1, destination

224.0.0.5 net 2 interface ETH3
10:28:13.745689 DTCMPR7876I -- OSPF Packet Sent ------ Type: Hello
10:28:13.746076 DTCMPR7878I OSPF Version: 2 Packet Length: 48
10:28:13.746472 DTCMPR7878I Router ID: 9.130.251.82 Area: 0.0.0.0
10:28:13.746848 DTCMPR7878I Checksum: b337 Authentication Type: 0
10:28:13.747238 DTCMPR7878I Hello_Interval: 10 Network mask: 255.255.255.248
10:28:13.747600 DTCMPR7878I Options: E
10:28:13.747970 DTCMPR7878I Router_Priority: 1 Dead_Router_Interval: 40
10:28:13.748370 DTCMPR7878I Backup DR: 9.130.251.81 Designated Router:9.130.251.82
10:28:13.748746 DTCMPR7878I Neighbor: 9.130.48.107
10:28:13.753529 DTCMPR7877I -- OSPF Packet Received -- Type: Hello
10:28:13.754063 DTCMPR7878I OSPF Version: 2 Packet Length: 48
10:28:13.754462 DTCMPR7878I Router ID: 9.130.48.107 Area: 0.0.0.0
10:28:13.754747 DTCMPR7878I Checksum: af37 Authentication Type: 0
10:28:13.754902 DTCMPR7878I Hello_Interval: 10 Network mask: 255.255.255.248
10:28:13.755017 DTCMPR7878I Options: E
10:28:13.755193 DTCMPR7878I Router_Priority: 1 Dead_Router_Interval: 40
10:28:23.464602 DTCMPR7878I Backup DR: 9.130.251.81 Designated Router: 9.130.251.82
10:28:23.465576 DTCMPR7878I Neighbor: 9.130.251.82
10:28:23.465998 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:28:23.466415 DTCMPR7877I -- OSPF Packet Received -- Type: Database Description
10:28:23.466818 DTCMPR7878I OSPF Version: 2 Packet Length: 412
10:28:23.467314 DTCMPR7878I Router ID: 9.130.48.107 Area: 0.0.0.0
10:28:23.468095 DTCMPR7878I Checksum: 9a8c Authentication Type: 0
10:28:23.470658 DTCMPR7878I DD options: E DD flags: Slave
10:28:23.471315 DTCMPR7878I DD sequence no: 39c77708
10:28:23.473243 DTCMPR7878I LS age: 94 LS options: E DC
10:28:23.473709 DTCMPR7878I LS type: Router LS ID: 9.130.48.107
10:28:23.474236 DTCMPR7878I LS orig: 9.130.48.107 LS sequence no: 800000b3
10:28:23.474667 DTCMPR7878I LS checksum: b2bd LS length: 144
10:28:23.475050 DTCMPR7878I LS age: 616 LS options: E DC
10:28:23.475741 DTCMPR7878I LS type: Router LS ID: 9.130.251.18
10:28:23.476220 DTCMPR7878I LS orig: 9.130.251.18 LS sequence no: 80000004
10:28:23.476742 DTCMPR7878I LS checksum: 5077 LS length: 36
10:28:23.477171 DTCMPR7878I LS age: 148 LS options: E DC
10:28:23.477630 DTCMPR7878I LS type: Router LS ID: 9.130.251.82
10:28:23.478165 DTCMPR7878I LS orig: 9.130.251.82 LS sequence no: 80000002
10:28:23.479286 DTCMPR7878I LS checksum: 5672 LS length: 36
10:28:23.480235 DTCMPR7878I LS age: 1514 LS options: E DC
10:28:23.480397 DTCMPR7878I LS type: Router LS ID: 9.130.251.90
10:28:23.480543 DTCMPR7878I LS orig: 9.130.251.90 LS sequence no: 8000003d
10:28:23.480674 DTCMPR7878I LS checksum: 244a LS length: 36
10:29:01.701219 DTCMPR7878I LS age: 674 LS options: E DC
10:29:01.701966 DTCMPR7878I LS type: Network LS ID: 9.130.251.17
10:29:01.702576 DTCMPR7878I LS orig: 9.130.48.107 LS sequence no: 80000003
10:29:01.703192 DTCMPR7878I LS checksum: 6951 LS length: 32

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 211

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

10:29:01.703585 DTCMPR7878I LS age: 1514 LS options: E DC
10:29:01.703969 DTCMPR7878I LS type: Network LS ID: 9.130.251.90
10:29:01.704358 DTCMPR7878I LS orig: 9.130.251.90 LS sequence no: 80000007
10:29:01.704762 DTCMPR7878I LS checksum: 9dd0 LS length: 32
10:29:01.705143 DTCMPR7878I LS age: 196 LS options: E DC
10:29:01.705520 DTCMPR7878I LS type: AS External LS ID: 0.0.0.0
10:29:01.705915 DTCMPR7878I LS orig: 9.130.48.107 LS sequence no: 80000036
10:29:01.706293 DTCMPR7878I LS checksum: 6fe4 LS length: 36
10:29:01.706671 DTCMPR7878I LS age: 119 LS options: E DC
10:29:01.707060 DTCMPR7878I LS type: AS External LS ID: 9.0.0.0
10:29:01.707451 DTCMPR7878I LS orig: 9.130.48.107 LS sequence no: 80000001
10:29:01.707827 DTCMPR7878I LS checksum: 641c LS length: 36
10:29:01.708110 DTCMPR7878I LS age: 132 LS options: E DC
10:29:01.708258 DTCMPR7878I LS type: AS External LS ID: 9.0.0.0
10:29:01.708403 DTCMPR7878I LS orig: 9.130.251.82 LS sequence no: 80000001
10:29:01.708536 DTCMPR7878I LS checksum: 6865 LS length: 36
10:29:01.719671 DTCMPR7878I LS age: 132 LS options: E DC
10:29:01.720216 DTCMPR7878I LS type: AS External LS ID: 9.130.48.0
10:29:01.720383 DTCMPR7878I LS orig: 9.130.251.82 LS sequence no: 80000001
10:29:01.720516 DTCMPR7878I LS checksum: 2eed LS length: 36
10:29:01.720654 DTCMPR7878I LS age: 614 LS options: E DC
10:29:04.405515 DTCMPR7878I LS type: AS External LS ID: 9.130.48.134
10:29:04.406478 DTCMPR7878I LS orig: 9.130.251.18 LS sequence no: 80000003
10:29:04.407136 DTCMPR7878I LS checksum: 6a69 LS length: 36
10:29:04.407748 DTCMPR7878I LS age: 132 LS options: E DC
10:29:04.408366 DTCMPR7878I LS type: AS External LS ID: 9.130.48.134
10:29:04.408973 DTCMPR7878I LS orig: 9.130.251.82 LS sequence no: 80000001
10:29:04.409625 DTCMPR7878I LS checksum: eca8 LS length: 36
10:29:04.410106 DTCMPR7878I LS age: 196 LS options: E DC
10:29:04.410493 DTCMPR7878I LS type: AS External LS ID: 9.130.176.0
10:29:04.410892 DTCMPR7878I LS orig: 9.130.48.107 LS sequence no: 80000036
10:29:04.411274 DTCMPR7878I LS checksum: 44d3 LS length: 36
10:29:04.411652 DTCMPR7878I LS age: 196 LS options: E DC
10:29:04.412073 DTCMPR7878I LS type: AS External LS ID: 9.130.248.112
10:29:04.412478 DTCMPR7878I LS orig: 9.130.48.107 LS sequence no: 80000036
10:29:04.412862 DTCMPR7878I LS checksum: 600f LS length: 36
10:29:04.413244 DTCMPR7878I LS age: 614 LS options: E DC
10:29:04.413629 DTCMPR7878I LS type: AS External LS ID: 9.130.249.32
10:29:04.414021 DTCMPR7878I LS orig: 9.130.251.18 LS sequence no: 80000003
10:29:04.414431 DTCMPR7878I LS checksum: 641b LS length: 36
10:29:04.414816 DTCMPR7878I LS age: 132 LS options: E DC
10:29:04.415199 DTCMPR7878I LS type: AS External LS ID: 9.130.249.32
10:29:04.415501 DTCMPR7878I LS orig: 9.130.251.82 LS sequence no: 80000001
10:29:04.415641 DTCMPR7878I LS checksum: e65a LS length: 36
10:29:04.415780 DTCMPR7878I LS age: 132 LS options: E DC
10:29:04.415918 DTCMPR7878I LS type: AS External LS ID: 10.0.0.0
10:29:06.450867 DTCMPR7878I LS orig: 9.130.251.82 LS sequence no: 80000001
10:29:06.451496 DTCMPR7878I LS checksum: 5b71 LS length: 36
10:29:06.451975 DTCMPR7878I LS age: 614 LS options: E DC
10:29:06.452366 DTCMPR7878I LS type: AS External LS ID: 10.0.0.13
10:29:06.452759 DTCMPR7878I LS orig: 9.130.251.18 LS sequence no: 80000003
10:29:06.453142 DTCMPR7878I LS checksum: 4cb2 LS length: 36
10:29:06.453529 DTCMPR7878I LS age: 614 LS options: E DC
10:29:06.453950 DTCMPR7878I LS type: AS External LS ID: 10.0.0.255
10:29:06.454251 DTCMPR7878I LS orig: 9.130.251.18 LS sequence no: 80000003
10:29:06.454394 DTCMPR7878I LS checksum: ce3d LS length: 36
10:29:06.454561 DTCMPR7908I Received packet type 2 from 9.130.251.81
10:29:06.454770 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 32, event 5
10:29:06.461168 DTCMPR7909I Sending unicast type 3 dst 9.130.251.81

net 2 interface ETH3
10:29:06.461779 DTCMPR7876I -- OSPF Packet Sent ------ Type: Link State Request
10:29:06.462200 DTCMPR7878I OSPF Version: 2 Packet Length: 48
10:29:06.462627 DTCMPR7878I Router ID: 9.130.251.82 Area: 0.0.0.0
10:29:06.463011 DTCMPR7878I Checksum: 422a Authentication Type: 0
10:29:06.463377 DTCMPR7878I LS type: 1
10:29:06.463778 DTCMPR7878I LS ID: 9.130.48.107 LS orig: 9.130.48.107

Diagnosing MPROUTE Problems

212 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

10:29:06.464164 DTCMPR7878I LS type: 5
10:29:06.464557 DTCMPR7878I LS ID: 9.0.0.0 LS orig: 9.130.48.107
�28� 10:29:06.484189 DTCMPR7895I Processing SMSG command from TCPMNT12 - TRACE=1
10:29:09.129573 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:29:09.130350 DTCMPR7910I Sending multicast, type 1, destination

224.0.0.5 net 2 interface ETH3
10:29:09.146333 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:29:09.155222 DTCMPR7908I Received packet type 2 from 9.130.251.81
10:29:09.155939 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 8, event 7
10:29:09.156352 DTCMPR8004I response received from host 9.130.48.107
10:29:09.168466 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:29:09.169791 DTCMPR8004I response received from host 9.130.48.71
10:29:09.180147 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:29:09.200170 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:29:09.202252 DTCMPR7908I Received packet type 2 from 9.130.251.81
10:29:09.203041 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:29:09.208393 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 16, event 14
10:29:09.208909 DTCMPR7909I Sending unicast type 2 dst 9.130.251.81 net 2 interface ETH3
10:29:09.214439 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:29:09.215062 DTCMPR8004I response received from host 9.130.48.107
10:29:09.241555 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:29:09.242362 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:29:09.242907 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 4, event 10
10:29:09.243497 DTCMPR8004I response received from host 9.130.48.71
10:29:09.252179 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:29:09.256617 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:29:09.275331 DTCMPR7908I Received packet type 2 from 9.130.251.81
10:29:09.276171 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 8, event 3
10:29:09.276703 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 16, event 14
10:29:09.276894 DTCMPR7909I Sending unicast type 2 dst 9.130.251.81

net 2 interface ETH3
10:29:09.280565 DTCMPR8004I response received from host 9.130.48.107
10:29:10.894256 DTCMPR7908I Received packet type 2 from 9.130.251.81
10:29:10.901888 DTCMPR8004I response received from host 9.130.48.71
10:29:10.916350 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:29:10.925170 DTCMPR8004I response received from host 9.130.48.107
10:29:10.934491 DTCMPR8004I response received from host 9.130.48.71
10:29:10.944098 DTCMPR8019I Mismatch version 1 received from host 9.130.48.134
10:29:14.910804 DTCMPR7911I Retransmitting packet, type 2, 9.130.251.82 -> 9.130.251.81
10:29:14.929241 DTCMPR7908I Received packet type 2 from 9.130.251.81
10:29:14.932698 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 32, event 5
10:29:14.933988 DTCMPR7909I Sending unicast type 3 dst 9.130.251.81

net 2 interface ETH3
10:29:14.953815 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:29:14.959537 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 1 id 9.130.48.107 org 9.130.48.107
10:29:14.961200 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 5 id 9.0.0.0 org 9.130.48.107
10:29:14.962011 DTCMPR7909I Sending unicast type 2 dst 9.130.251.81

net 2 interface ETH3
10:29:14.978328 DTCMPR7908I Received packet type 3 from 9.130.251.81
10:29:14.980400 DTCMPR7909I Sending unicast type 4 dst 9.130.251.81

net 2 interface ETH3
10:29:14.998352 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:29:15.001213 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 2 id 9.130.251.81 org 9.130.48.107
10:29:15.012526 DTCMPR7908I Received packet type 2 from 9.130.251.81
10:29:15.017431 DTCMPR7919I State change, neighbor 9.130.251.81,

new state 128, event 6
10:29:15.022555 DTCMPR7934I Originating LS advertisement: typ 1 id

9.130.251.82 org 9.130.251.82

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 213

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

10:29:15.025219 DTCMPR7934I Originating LS advertisement: typ 2 id
9.130.251.82 org 9.130.251.82

10:29:15.025783 DTCMPR7910I Sending multicast, type 4, destination
224.0.0.5 net 2 interface ETH3

10:29:15.037198 DTCMPR7908I Received packet type 4 from 9.130.251.81
10:29:15.037536 DTCMPR7928I from 9.130.251.81, new LS advertisement:

typ 1 id 9.130.48.107 org 9.130.48.107
10:29:18.186670 DTCMPR7910I Sending multicast, type 5, destination

224.0.0.5 net 2 interface ETH3
10:29:18.192005 DTCMPR7908I Received packet type 5 from 9.130.251.81
10:29:18.193123 DTCMPR7908I Received packet type 1 from 9.130.251.81
10:29:18.193680 DTCMPR7929I from 9.130.251.81, Old acknowledgement

for advertisement: typ 1 id 9.130.251.82 org 9.130.251.82
10:29:18.194140 DTCMPR7933I Flushing advertisement: typ 2 id 9.130.251.81

org 9.130.48.107
10:29:18.194606 DTCMPR7949I Dijkstra calculation performed, on 1 area(s)
10:29:18.195050 DTCMPR7935I New MPROUTE route to destination ASBR

9.130.48.107, type SPF cost 2
10:29:18.195461 DTCMPR7827I Adding stack route to 9.130.240.96,

mask 255.255.255.224 via 9.130.251.81, link ETH3,
metric 12, type 130

10:29:18.198358 DTCMPR7935I New MPROUTE route to destination Net
9.130.240.96, type SPF cost 12

10:29:18.198904 DTCMPR7827I Adding stack route to 9.130.248.96,
mask 255.255.255.240 via 9.130.251.81, link ETH3,
metric 3, type 130

10:29:18.201833 DTCMPR7935I New MPROUTE route to destination Net
9.130.248.96, type SPF cost 3

10:29:18.202440 DTCMPR7827I Adding stack route to 9.130.248.144,
mask 255.255.255.240 via 9.130.251.81, link ETH3,
metric 8, type 130

10:29:18.205121 DTCMPR7935I New MPROUTE route to destination Net
9.130.248.144, type SPF cost 8

10:29:18.205517 DTCMPR7827I Adding stack route to 9.130.248.128,
mask 255.255.255.240 via 9.130.251.81, link ETH3,
metric 12, type 130

10:29:18.207985 DTCMPR7935I New MPROUTE route to destination Net
9.130.248.128, type SPF cost 12

10:29:18.208257 DTCMPR7827I Adding stack route to 9.130.251.24,
mask 255.255.255.248 via 9.130.251.81, link ETH3,
metric 1802, type 130

10:29:18.211328 DTCMPR7935I New MPROUTE route to destination Net
9.130.251.24, type SPF cost 1802

10:29:18.211914 DTCMPR7827I Adding stack route to 9.130.48.107,
mask 255.255.255.255 via 9.130.251.81, link ETH3,
metric 2, type 129

10:29:18.214474 DTCMPR7885I Route not added to stack routing table
- static route exists

10:29:18.214645 DTCMPR7935I New MPROUTE route to destination Net
9.130.48.107, type SPF cost 2

10:29:18.214773 DTCMPR7935I New MPROUTE route to destination ASBR
9.130.251.18, type SPF cost 1802

10:29:18.214929 DTCMPR7827I Adding stack route to 9.130.251.16,
mask 255.255.255.248 via 9.130.251.81, link ETH3,
metric 1802, type 130

10:29:18.217506 DTCMPR7935I New MPROUTE route to destination Net
9.130.251.16, type SPF cost 1802

10:29:27.095295 DTCMPR7827I Adding stack route to 9.130.251.88,
mask 255.255.255.248 via 9.130.251.81, link ETH3,
metric 1802, type 130

10:29:27.106326 DTCMPR7935I New MPROUTE route to destination Net
9.130.251.88, type SPF cost 1802

Following are brief explanations of numbered items in the trace:

�1� MPROUTE initializing (trace level 1 was specified at startup)

Diagnosing MPROUTE Problems

214 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||

�2� MPROUTE learns of TCP/IP stack interfaces

�3� Direct routes are added for each TCP/IP stack interface

�4� OSPF Hello packet sent out OSPF interface

�5� OSPF Interface transitions to state ″point-to-point″

�6� OSPF Hello packet received from OSPF neighbor

�7� OSPF neighbor transitions to state ″Init″

�8� OSPF neighbor transitions to state ″2-Way″

�9� OSPF Dijkstra calculation is performed

�10� RIP Requests Responses begin being sent out RIP interface

�11� OSPF neighbor transitions to state ″ExStart″

�12� OSPF Database Description packet sent out OSPF interface

�13� OSPF Database Description received from OSPF neighbor

�14� OSPF neighbor transitions to state ″Exchange″

�15� OSPF Link State Request packet sent out OSPF interface

�16� MPROUTE configured for RIP V2 only ignores RIP V1

�17� OSPF Link State Update packet received from OSPF neighbor

�18� Link State Advertisements from received Update packet are processed

�19� OSPF Link State Update packet sent out OSPF interface

�20� OSPF neighbor transitions to state ″Full″

�21� Request received to display OSPF Interface configuration information

�22� OSPF Link State Acknowledgment packet received from OSPF neighbor

�23� OSPF Link State Acknowledgement packet sent out OSPF interface

�24� Learned route is added to TCP/IP stack route table

�25� Request received to change tracing level to 2 (adds formatted packets)

�26� Formatted OSPF packet

�27� Formatted RIP packet

�28� Request received to change tracing level back to 1

Diagnosing MPROUTE Problems

Chapter 12. Diagnosing MPROUTE Problems 215

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Diagnosing MPROUTE Problems

216 z/VM: TCP/IP Diagnosis Guide

Chapter 13. SSL Server Diagnosis

This chapter describes some of the debugging facilities for the Secure Socket Layer
(SSL) server. SSL trace facilities exist that can be useful in identifying the cause of
SSL server problems. This section discusses these trace requests and how they can
be started and stopped. Included are descriptions of traces as well as examples of
how these traces are invoked.

The Secure Socket Layer (SSL) server provides the processing that allows secure
(encrypted) communication between a remote client and a VM TCP/IP server (in
this context known as the application server). The application server must be
listening on a port identified as secure by the installation, and the remote client
must support the SSL protocol. Transport Layer Security (TLS) is the Internet
Standards protocol based on SSL and is described in RFC 2246.

Figure 87 expresses the viewpoint of the client and the server that there is a
connection between them.

The reality is that the client has a connection with the SSL server and the SSL
server has a connection with the server as illustrated in Figure 88 on page 218:

Server

Socket

Socket

Security Server

Client

Stack

Figure 87. SSL Client and Server Environment

© Copyright IBM Corp. 1987, 2001 217

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

SSL component Flow
The following diagram illustrates how the SSL server and stack work together to
provide SSL processing on behalf of a secure server:

An SSL session consists of the following general processing steps:

�1�Connect

The SSL session is maintained as two separate connections: the connection from the
remote client to the SSL server, and the connection from the SSL server to the
application server. The intervention of the SSL server is transparent to the client
and the application server; to them, it seems that they are communicating directly
with each other.

Server

Socket Socket Socket

Socket

Security Server

Client

Stack

Figure 88. TCP/IP Stack View of connection

Client Security Server Secure Server

1

2

3

4

Connect
(secure port)

Accept
Connect

Accept
Client Hello

Server Hello
Certificate
Hello Done

Key Exchange
Change Cipher Spec
Finished

Change Cipher Spec
Finished

Send
Send

Send
Send

Close
Close

Close
Close

encrypted data
decrypted data

unencrypted data
encrypted data

Figure 89. SSL processing flow

SSL Diagnosis

218 z/VM: TCP/IP Diagnosis Guide

|
|

|
|
|

|

|

|
|
|
|
|

|

|
|
|

|

|
|
|

�2�Client Hello

After its connect request is accepted, the client initiates a handshake protocol to
produce the cryptographic parameters for the session. The SSL server (representing
the application server) responds to the handshake and sends the application
server’s certificate to the client. The client and the SSL server agree on a protocol
version, select cryptographic algorithms (known as cipher suites), and use
asymmetric (public-key) encryption techniques to generate shared secrets. From the
shared secrets, the SSL server and the client generate the symmetric (private) keys
to be used for the encryption and decryption of data sent on the connection.

�3�Send

When the handshake completes, the client sends encrypted data over the network.
The SSL server receives the encrypted data from the client, decrypts it, and sends it
to the application server. The application server responds by sending unencrypted
data to the SSL server. The SSL server receives the unencrypted data from the
application server, encrypts it, and sends it to the client.

�4�Close

When a close is received from either the client or the application server, the SSL
server sends a close to the other party and cleans up the connection.

Invoking Trace Activity on the SSL Server
The type of activity that can be traced on the SSL Server consists of the following:
v TRACE NORMAL
v TRACE CONNECTIONS
v TRACE FLOW

Note: Traces can be refined and limited by specifying the connection number, IP
address or port.

There are two methods for initiating trace facilities. One is to begin tracing SSL
server activities when the server starts, the other is to start or stop trace activity
after the server has been initialized and is running.

To begin tracing SSL server activities when the server starts, you need to use the
TRACE operand on the VMSSL command. This command can be entered either at
the console upon start up, or, can be invoked upon start up by specifying the
TRACE parameter in the DTCPARMS file.

When the SSL server is started, the initialization program searches the DTCPARMS
files for configuration definitions that apply to this server. Tags that affect the SSL
server are:

:nick.SSLSERV :type.server :class.ssl

:nick.ssl :type.class
:name.SSL daemon
:command.VMSSL
:diskwarn.YES
:parms.maxusers 50 TRACE

If the SSL entry in the DTCPARMS is unaltered, then default operands for the
command are used. If you want to override the default VMSSL command

SSL Diagnosis

Chapter 13. SSL Server Diagnosis 219

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

|

|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

operands, you should modify the DTCPARMS file for the SSL server and specify
the operands you want on the :parms tag.

The format of the VMSSL and SSLADMIN commands along with the debug trace
operands are described below:

VMSSL Command

SSLADMIN TRACE/NOTRACE Command

As mentioned earlier, the alternate method of starting and stopping trace activity
on the SSL server is with the SSLADMIN command. Use the SSLADMIN
TRACE/NOTRACE command to dynamically start or stop tracing SSL server
activities while the server is running.

Operands:

TRACE
specifies that tracing is to be performed.

NORMAL
specifies that a trace entry is recorded to indicate a successful connection. This
is the default if TRACE is specified.

CONNECTIONS
specifies that a trace entry is recorded for connection state changes and
handshake results.

�� VMSSL
NOTRACE

NORMAL ALL
TRACE

NODATA ip_address
CONNECTIONS :port

DATA ip_address:port
FLOW

��

�� SSLadmin �

�
NORMal ALL

TRACE
NODATA ip_address

CONNections :port
DATA ip_address:port

FLOW connection_number
NOTRACE

��

SSL Diagnosis

220 z/VM: TCP/IP Diagnosis Guide

|
|

|
|

|

|

|

|
|
|
|

|

|

|
|

|
|
|

|
|
|

|

||

|
|
|

|

|||||
|

|
||

|
|
|

NODATA
specifies that no data is displayed for send and receive trace entries. This is the
default if CONNECTIONS is specified.

DATA
specifies that the first 20 bytes of data are displayed for send and receive trace
entries.

FLOW
specifies that flow of control and system activity are traced.

ALL
specifies that tracing is done for all connections. This is the default if TRACE is
specified.

ip_address
specifies that tracing is done only for activity associated with this IP address.

port
specifies that tracing is done only for activity associated with this port.

connection_number
specifies that tracing is done only for activity associated with this connection
number. The connection number can be obtained by issuing NETSTAT CONN.
This operand is supported only on SSLADMIN.

NOTRACE
specifies that all tracing is turned off. This is the default on VMSSL.

Diagnosing Problems
The following provides information about problems that you might encounter with
the SSL server and suggestions for diagnosing the problem.

Symptom - The SSL server could not be started

Documentation
The following documentation should be available for initial diagnosis:
v TCPIP DATA information
v Messages from the SSL server console
v DTCPARMS information
v Trace output

Analysis
If the server could not connect to the TCP/IP virtual machine:
1. Verify that the TCP/IP server ID specified in the start up message DTCSSL080I

has the correct user ID for your stack. If not, correct the TCPIPUSERID entry in
TCPIP DATA.

2. Verify that the TCP/IP server is started.
3. Check the messages from the TCP/IP server console for indications of

problems. Refer to theTCP/IP Messages and Codes and follow the directions for
the system programmer response for the particular message.

4. Use Trace Normal or Trace Flow to gather further debug information. Update
the parms tag in DTCPARMS for the SSL server with Trace Normal or Trace
Flow and start the server. This will provide debug information during the
server start up.

SSL Diagnosis

Chapter 13. SSL Server Diagnosis 221

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|
|

|
|
|

|

|
|
|

|
|
|
|

Symptom - The SSL server is restarted by the stack at regular
intervals

The most common cause of this condition is that the server is in the AUTOLOG
list and also has a PORT statement reserving a TCP port but does not have a
listening connection.

Documentation
The following documentation should be available for initial diagnosis:
v PROFILE TCPIP
v ETC SERVICES
v SSL trace output from the TCP/IP server

Analysis
1. Verify that the port number for the SSL server in PROFILE TCPIP matches the

port number for SSLADMIN in the ETC SERVICES file. The SSL server gets the
port number from ETC SERVICES and the stack monitors the port listed in
PROFILE TCPIP.

2. Trace the SSL process in the TCP/IP server to determine if there were errors on
socket calls from the SSL server.

3. Determine if the SSLADMIN port in the ETC SERVICES was or was not passed
to the SSL server. See which VMSSL parms do not get applied from the
DTCPARMS file.

Symptom - The correct parameters are not being passed to
the SSL server

Documentation
The following documentation should be available for initial diagnosis:
v SSLADMIN QUERY STATUS output
v DTCPARMS information
v Messages from the SSL server console

Analysis
1. Issue SSLADMIN QUERY STATUS to determine what options are in effect.
2. Check that the parameters are correctly specified on the parms tag of the

DTCPARMS for the SSL server entry.
3. Check the VMSSL start up message DTCSSL080I for a list of the DTCPARMS

arguments used at start up time.
4. Check for other messages from the SSL server console giving information about

the parameters.

Symptom - The inability to connect to an application server
listening on a secure port

Documentation
The following documentation should be available for initial diagnosis:
v NETSTAT CONNECTIONS output
v SSLADMIN QUERY SESSIONS output
v Messages from the SSL server console
v Trace output from the SSL server
v Trace output from the TCP/IP server

SSL Diagnosis

222 z/VM: TCP/IP Diagnosis Guide

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|

|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

|

|
|
|
|
|
|
|

Analysis
1. Issue NETSTAT CONNECTIONS to verify that both the application server and

the SSL server are listening. Start the servers if necessary.
2. Issue SSLADMIN QUERY STATUS to determine the number of active sessions

and the maximum number of sessions allowed.
When the maximum is reached, the TCP/IP server rejects any further
connections for the SSL server until the number of active sessions is less than
the maximum. The number of maximum sessions can be specified with
MAXUSERS on the DTCPARMS parms tag for the SSL server.

3. Check the messages from the SSL server console for indications of problems.
4. Issue SSLADMIN TRACE CONNECTION and try the connection again.
5. Trace the SSL process and the TCPUP process in the TCP/IP server in order to

gather more debug information.

Symptom - Connections close due to errors

Documentation
The following documentation should be available for initial diagnosis:
v TCPIP PROFILE
v SSLADMIN QUERY CERTIFICATE * output
v Messages from the SSL server console
v Trace output from the SSL server

Analysis
1. Verify that the label specified on the PORT statement is correct and issue

SSLADMIN QUERY CERT label to ensure that it exists in the certificate
database. Note that the SSL server must be restarted to activate new certificates.

2. Check the messages from the SSL server console for indications of problems.
3. Issue SSLADMIN TRACE CONNECTIONS and try the connection again.

Trace connections will display messages that will indicate what happened to
the connections it receives. You may want to consider limiting the trace to an ip
address or port.

Symptom - Incorrect input or output

Documentation
The following documentation should be available for initial diagnosis:
v SSLADMIN QUERY SESSIONS
v Messages from the SSL server console
v Trace connections data output from the SSL server

Analysis
1. Verify that your connection has been established.
2. Verify that the data is flowing correctly through the SSL server.
3. Check the messages from the SSL server for indications of problems.
4. Issue SSLADMIN TRACE CONNECTIONS DATA and try the connection again.

Trace Connections Data will display messages that will indicate what might
have happened with the connections it receives and their data. You may want
to consider limiting the trace to an ip address or port.

SSL Diagnosis

Chapter 13. SSL Server Diagnosis 223

|
|
|

|
|

|
|
|
|

|

|

|
|

|

|
|
|
|
|
|

|
|
|
|

|

|

|
|
|

|

|
|
|
|
|

|
|

|

|

|

|
|
|

Trace Output
The following trace examples show output received from an SSL server when
tracing normal, connections, data, and flow specified on the SSLADMIN
command. It may be beneficial to refer to the processing flow in Figure 89 on
page 218, when studying the following trace examples.

Trace Normal

Administrative Console
ssladmin trace
DTCSSL047I Trace established
Ready; T=0.03/0.03 13:35:39

SSL Server Console
DTCSSL003I SSLADMIN received: TRACE NORMAL ALL
DTCSSL047I Trace established
�1�
Client 9.130.57.56:1159 Port 9997 Label SNIFCERT

Cipher RC4_128_MD5 Connection established

Explanation
�1� This is the client that has connected to the SSL server. It includes its IP

address and port as well as the server’s port. Label is the name of the
certificate used and Cipher is the name of the Cipher Suite. This entry gets
displayed after the handshake.

Trace Connections NODATA

Administrative Console
ssladmin trace connections
DTCSSL047I Trace established
Ready; T=0.03/0.03 13:36:07

SSL Server Console
DTCSSL003I SSLADMIN received: TRACE CONNECTIONS NODATA ALL
DTCSSL047I Trace established

�1�
DTCSSL019I Connection received from
Thread Client_Socket_Address Connection Label

1 9.130.57.56:1174
1006 SNIFCERT

�2�
DTCSSL020I Connection accepted by
Thread Server_Socket_Address
1 9.130.249.34:9997

�3�
DTCSSL021I Handshake successful
Thread Client_Socket_Address Server_Socket_Address Connection Cipher
1 9.130.57.56:1174 9.130.249.34:9997 1006 RC4_128_MD5

�4�
DTCSSL023I Connection closed
Thread Client_Socket_Address Server_Socket_Address Connection
1 9.130.57.56:1174 9.130.249.34:9997 1006

Explanation
�1� Displays the Thread number and Connection number. This event occurs

after the client has been accepted.

SSL Diagnosis

224 z/VM: TCP/IP Diagnosis Guide

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

||
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||
|

�2� Displays the Application server IP address and Port number, together with
the thread number. This event occurs after the SSL server has connected to
the application server.

�3� After the Handshake completes, either a status of handshake successful or
handshake unsuccessful is displayed. The agreed upon Cipher Suite is
displayed as well.

�4� Upon the closing of connections, Connection closed for this particular
client-server connection is indicated.

Trace Connections DATA

Administrative Console
ssladmin trace connections data
DTCSSL047I Trace established
Ready; T=0.03/0.03 13:36:38

SSL Server Console

�1�
DTCSSL003I SSLADMIN received: TRACE CONNECTIONS DATA ALL
DTCSSL047I Trace established
DTCSSL019I Connection received from
Thread Client_Socket_Address Connection Label
2 9.130.57.56:1175 1015 SNIFCERT
DTCSSL020I Connection accepted by
Thread Server_Socket_Address
2 9.130.249.34:9997
DTCSSL021I Handshake successful
Thread Client_Socket_Address Server_Socket_Address Connection Cipher
2 9.130.57.56:1175 9.130.249.34:9997 1015 RC4_128_MD5
DTCSSL025I Data received
Thread Client_Socket_Address Server_Socket_Address Connection Bytes
2 9.130.57.56:1175 9.130.249.34:9997 1015 388
Data: GET /devpages/roden/
DTCSSL024I Data sent
Thread Client_Socket_Address Server_Socket_Address Connection Bytes
2 9.130.57.56:1175 9.130.249.34:9997 1015 136
Data: HTTP/1.0 304 Not Mod
DTCSSL023I Connection closed
Thread Client_Socket_Address Server_Socket_Address Connection
2 9.130.57.56:1175 9.130.249.34:9997 1015

Explanation
�1� Same as Trace Connections NODATA with Data Byte count along with the

first 20 bytes of data in clear text. Also shown is the direction in which
data flows. Data Received is data received from the client and sent to the
server. Data Sent is data sent to the client after coming from the server.
Bytes represents the data count and is a count of the unencrypted bytes.

Trace FLOW

Administrative Console
DTCSSL003I SSLADMIN received: TRACE FLOW ALL
DTCSSL047I Trace established
Ready; T=0.03/0.03 13:36:39

SSL Diagnosis

Chapter 13. SSL Server Diagnosis 225

||
|
|

||
|
|

||
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||
|
|
|
|

|

|
|
|
|

SSL Server Console

13:37:07 Admin updateThread() ended
13:37:07 SSL updateThread() ended
13:37:07 0 updateThread() ended
13:37:07 1 updateThread() ended
13:37:07 2 updateThread() ended
13:37:07 Admin updateThreads() ended
13:37:07 Admin handleAdmin(handleTrace) Done t:0
13:37:07 Admin handleAdmin() ended rc: 0
13:37:07 Admin adminMain(close)Stop:0 rc2:0 errno:4 sock:7
�1�
13:37:13 SSL mainSSL(accept) NS: 7 errno: 4
�2�
13:37:13 SSL displaySockSSL() started
�3�
13:37:13 SSL displaySockSSL(mainSSL() after accept)
13:37:13 SSL fromIP: 9.130.57.56:1176 len:13:37:13 SSL

toIP: 9.130.249.34:9997 fam: tcb:93976544 lab:SNIFCERT
�4�
13:37:13 SSL displaySockSSL() ended
13:37:13 SSL placeInToDoList() started
13:37:13 SSL placeInToDoList() ended
13:37:13 SSL setupToDo started
13:37:13 SSL setupToDo ended
13:37:13 SSL signalWorker() started
13:37:13 0 getFirstToDo() started
13:37:13 0 getFirstToDo() ended
13:37:13 0 updateThread() started ThB 4c94b0
13:37:13 0 updateThread() ended
13:37:13 0 workerThread(1): myToDo: 482560
13:37:13 0 workerThread(before gsk__open): client: 7
13:37:13 0 workerThread(gsk__open) rc: 0 envH: 4202a8 sslH: 7f5ffcc0
13:37:13 0 workerThread(GSK_OK) GSK_OK: 0
13:37:13 0 workerThread(gsk__set_n) client: 7 rc: 0
13:37:13 0 workerThread(gsk__set_b, label) rc: 0
13:37:13 0 workerThread(gsk__set_b, userData) rc: 0

13:37:13 0 workerThread(1) rc: 0: errno: 4
13:37:13 0 connectServer() started
13:37:13 SSL signalWorker() ended
13:37:13 SSL mainSSL(): newToDo: 42d1b8 pClientA: 42d1c4 cLen: 36
13:37:13 SSL displaySockSSL() started
13:37:13 0 connectServer() socket() s = 8: errno: 4
13:37:13 SSL displaySockSSL(mainSSL() before accept)
13:37:13 SSL fromIP: 0.0.0.0:0 len:13:37:13 0

connectServer(setsockopt) rc: 0: errno: 4
13:37:13 0 displaySockSSL() started
13:37:13 0 displaySockSSL(mainSSL() before connect)
13:37:13 0 fromIP: 9.130.57.56:1176 len:13:37:13 0

toIP: 9.130.249.34:9997
fam: tcb:93976544 lab:SNIFCERT

13:37:13 0 displaySockSSL() ended
13:37:13 SSL toIP: 0.0.0.0:0 fam: tcb:0 lab:13:37:13

SSL displaySockSSL() ended
13:37:13 SSL mainSSL before accept s:6 pC:42d1c4 cLen:36
13:37:13 0 connectServer(connect) rc = 0: errno: 4
13:37:13 0 displaySockSSL() started
13:37:13 0 displaySockSSL(mainSSL() after connect)
13:37:13 0 fromIP: 9.130.57.56:1176 len:13:37:13 0

toIP: 9.130.249.34:9997
fam: tcb:93976544 lab:SNIFCERT

13:37:13 0 displaySockSSL() ended
13:37:13 0 connectServer() ended s: 8
13:37:13 0 workerThread(rtn from connServer)
13:37:13 0 workerThread(before gsk_soc_init) sslHdl: 4bac18

SSL Diagnosis

226 z/VM: TCP/IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

vmsslRead(recv) fd: 7 rc: 5 errno: 4
vmsslRead(recv) fd: 7 rc: 93 errno: 4
vmsslWrite(send) fd: 7 rc: 79 errno: 4
vmsslWrite(send) fd: 7 rc: 6 errno: 4
vmsslWrite(send) fd: 7 rc: 61 errno: 4
vmsslRead(recv) fd: 7 rc: 5 errno: 4
vmsslRead(recv) fd: 7 rc: 1 errno: 4
vmsslRead(recv) fd: 7 rc: 5 errno: 4
vmsslRead(recv) fd: 7 rc: 56 errno: 4
13:37:13 0 workerThread(gsk_soc_init) rc: 0
13:37:13 0 UpdateSSLKitMs() started
13:37:13 0 GetCipherType() started Cipher: 04
13:37:13 0 GetCipherType() ended CipherType: 0
13:37:13 0 UpdateSSLKitMs() ended RC: 0
13:37:13 0 workerThread(select) rc2: 1: errno: 4
13:37:13 0 workerThread() client: 7 server: 8
13:37:13 0 clientSocket input
13:37:13 0 clientToServer() started client: 7 server: 8
vmsslRead(recv) fd: 7 rc: 5 errno: 4
vmsslRead(recv) fd: 7 rc: 404 errno: 4
13:37:13 0 clientToServer(recv1) rc: 0 lenRd: 388
13:37:13 0 clientToServer(send) rc:388 errno:4 len:388
13:37:13 0 clientToServer() ended stopMe: 0
13:37:14 0 workerThread(select) rc2: 1: errno: 4
13:37:14 0 workerThread() client: 7 server: 8
13:37:14 0 serverSocket input
13:37:14 0 serverToClient() started
13:37:14 0 serverToClient(recv) rc: 136 errno: 4
vmsslWrite(send) fd: 7 rc: 157 errno: 4
13:37:14 0 serverToClient(send) rc: 0 lenWri: 136
13:37:14 0 serverToClient() ended stopMe: 0
13:37:14 0 workerThread(select) rc2: 1: errno: 4
13:37:14 0 workerThread() client: 7 server: 8
13:37:14 0 serverSocket input
13:37:14 0 serverToClient() started
13:37:14 0 serverToClient(recv) rc: 0 errno: 4
13:37:14 0 serverToClient() ended stopMe: 2
13:37:14 0 closeToDo() started pToDo: 482560
13:37:14 0 workerThread(): client socket: 7 closed rc: 0
13:37:14 0 workerThread(): server socket: 8 closed rc: 0
13:37:14 0 closeToDo() ended
13:37:14 0 updateThread() started ThB 4c94b0
13:37:14 0 updateThread() ended
13:37:14 0 workerThread(gsk to soc_close) sslH: 7f5ffcc0
13:37:14 0 workerThread(): GSK client socket closed rc: 0
13:37:14 0 getFirstToDo() started
13:37:14 0 getFirstToDo() ended
13:37:14 0 workerThread(0): myToDo: 0
13:37:14 0 workerThread(): locking myToDo: 0

Explanation
The following can be used as a general guideline when interpreting Trace Flow
output:
v The first word is a time stamp in hh:mm:ss format
v The second word is the thread ID specifying one of the following:

Admin Administrative thread

SSL The main SSL Thread

Number The Worker thread
v The third word is the routine that is running. Parenthesis may contain unique

information that can be used as a reference point. The rest of the entry contains
other relevant data.

SSL Diagnosis

Chapter 13. SSL Server Diagnosis 227

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

||

||

||

|
|
|

�1� Shows an SSL thread with routine name of mainSSL running during accept
processing. Also indicates NS (new socket) number and errno: 4. Errno is
only valid if NS is negative.

�2� Indicates displaySocketSSL routine has started. Note that any subsequent
routine that is called is displayed with a two space indentation. Upon
completion of the routine, the indentation in the entry is removed.

�3� Displays relevant data.

�4� Indicates ″end of routine″.

Displaying Local Host Information
There are times when it may be helpful to use the the NETSTAT command to
display information about active TCP/IP host connections. Below is an example of
output displayed upon invoking the NETSTAT command.
netstat conn
VM TCP/IP Netstat Level 3A0

Active Transmission Blocks
User Id Conn Local Socket Foreign Socket State
---- -- ---- ----- ------ ------- ------ -----
INTCLIEN 1000 *..TELNET *..* Listen
INTCLIEN 1006 *..423 *..* Listen
�1�
INTCLIEN 1001 GDLVMK1-4..423 9.130.58.177..1208 Established
ROUTED4 UDP *..520 *..* UDP

SSLSERV 1002 127.0.0.0..9999 *..* Listen
SSLSERV 1004 *..1024 *..* Listen
�2�
SSLSERV 1003 GDLVMK1-4..1024 9.130.58.177..1208 Established

1005
�3�
SSLSERV 1005 GDLVMK1-4..1025 GDLVMK1-4..423 Established

1003
Ready; T=0.02/0.04 19:57:41

Explanation
�1� This line shows the connection from the telnet server to the real client.

Both the client and application server share this view.

�2� The lines represented by �2� and �3�, respectively, show the further
breakdown of the primary connection into two connections: the line
represented by �2� being the connection from the SSL server to the real
client, and the line represented by �3� as being the connection from the
SSL server to the application server.

SSL Diagnosis

228 z/VM: TCP/IP Diagnosis Guide

||
|
|

||
|
|

||

||

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||
|

||
|
|
|
|

Chapter 14. Network File System

This chapter describes debugging facilities for NFS. Included are descriptions of
traces as well as the different procedures implemented for TCP/IP VM.

VM NFS Client Support

Activating Traces for NFS Client
Debugging the NFS client is activated by the OPENVM DEBUG command. For
more information on the OPENVM DEBUG command, see the z/VM:
OpenExtensions Command Reference.

VM NFS Server Support

NFS Protocol
The VM NFS server supports NFS protocol, program 100003, at the Version 2 and
Version 3 levels. These are described by RFCs 1094 and 1813.

Mount Protocol
The VM NFS server supports MOUNT protocol, program 100005, at the Version 1
and Version 3 levels. These are also described by RFCs 1094 and 1813.

In addition to procedures 0-5 described in the RFCs, VM defines Mount protocol
procedure 6 for MOUNTPW.

PCNFSD Protocol
The VM NFS server supports PCNFS protocol, program 150001, at the Version 1
and Version 2 levels. Only procedures PCNFSD_NULL (0) and PCNFSD_AUTH
(Version 1 – 2, Version 2 – 13) are supported.

General NFS Debugging Features
NFS has several features for debugging. Here is a general list of some of the
debugging features.
1. Several levels of trace information are available. You can ask to write trace

information to the VM NFS server machine console. Use the M start up
parameter or the SMSG MASK command to set the mask and write trace
information to the server machine console. Several mask values result in
console information:

500 Displays information about processing to decode names,
particularly the name translation that takes place for SFS and
minidisk files when the names=trans option is used on mount.

501 Shows NFS requests (e.g., nfsread or lookup) received by the
VM NFS server, and the responses to those requests. This
shows the high level flow of requests between NFS client and
server.

502 Displays information related to mount requests, including
PCNFSD and translation table processing.

© Copyright IBM Corp. 1987, 2001 229

|

|

|

|
|
|

503 Displays information about initialization and SMSG REFRESH
CONFIG processing.

504 Displays error messages describing the errors received by the
VM NFS server when processing SFS and BFS files and
directories. These are the error codes given on routines such as
DMSOPEN for SFS files, and the open() function call for BFS
files.

505 Displays information related to internal tasks being dispatched.

506 Displays information related to NFS requests, but with more
details than the M 501 trace.

507 Causes the VM NFS server to call VMDUMP and write
information to the console for all SFS and BFS errors except 'file
not found'. In addition to the 507 mask value, the VMNFS
DUMP_REQ file must contain the correct value. See note 6 on
page 231.

508 Displays information related to sockets used in the VM NFS
server.

509 Displays file I/O related information.

510 Displays buffers related to sockets used in the VM NFS server.

999 Includes all of the above except mask value 510.

The M parameter may be used multiple times on the start up command. For
example, you can specify the following in the DTCPARMS file:

:parms.M 501 M 504

You may specify only one mask value at a time on a MASK command
delivered via CP SMSG, but the settings are cumulative. Specifying ’SMSG
VMNFS M MASK 0’ clears all previously set mask values.

2. VMNFS maintains information and usage data about client mounts. You can
see this information using the SMSG VMNFS M QUERY command. 'SMSG
VMNFS M QUERY' shows you summary counts for the entire VM NFS server.
Use the DETAILS option on the 'SMSG VMNFS M QUERY RESOURCE'
command to see usage counts for individual mount points.
Note that sometimes the display can contain misleading information. The
counts are reset if the VM NFS server is restarted. A negative mount count
could be seen if an UNMOUNT is done following a server restart. Also, in
response to a person’s request to MOUNT, or for any other service, the NFS
client may send several requests to the server. (Duplicate requests may be sent
depending on network speed, for example.)

3. The VM NFS server maintains a limited amount of host error information for
SFS and BFS directories. This can assist in determining the real reason for an
NFSERR_IO return code (for example) given to an NFS client. See the SMSG
VMNFS M ERROR command in the TCP/IP User’s Guide or more information.

4. Console messages about invalid calls to program number 200006 are
suppressed, unless the mask controlling internal tracing (M 505) is active. These
calls are emitted by AIX® Version 3 clients.

5. The SIGERROR function will automatically write the internal trace table to disk
(file name SIGERROR.TRACEV) if the trace mask is non-zero. A save-area
traceback will also be written to the console when the trace mask is non-zero,
or when the call to SIGERROR is other than the normal termination of the VM
NFS server by an external interrupt.

Network File System (NFS)

230 z/VM: TCP/IP Diagnosis Guide

6. In the event of a programming logic error in the NFS server machine, facilities
exist to enable a virtual machine dump (in VMDUMP format) to be taken.
During abnormal termination or other error events, the default handling is for
no storage dumps to be taken. To enable the taking of a dump, simply create
and place a file with the following file name and file type on the A-disk of the
NFS server virtual machine.
VMNFS DUMP_REQ

The first line of this file should contain the mask value of X'FFFFFFFF'. This
will enable dumps for all classes of errors within the NFS server machine. If
you are experiencing problems with NFS and have called the IBM Software
Support Center for assistance, it is likely that you may be requested to produce
a storage dump in the above mentioned manner to help aid with problem
isolation. Comments may be added to the VMNFS DUMP_REQ file to keep as
a history log. Comments may be in any form, as long as the first line contains
the mask value.

Activating Traces for NFS Server
In the NFS server virtual machine, tracing is activated by specifying either the G
or g option on the :parms tag for VMNFS in the DTCPARMS file.

:parms.G

The following demonstrates the use of the trace option when used with the
VMNFS command:

�� VMNFS G ��

�� VMNFS g ��

Note that the trace option is not delimited from the command by a left parenthesis.

The trace output is written to the VMNFS LOG file (on the server’s A disk). The
log file contains the calls and responses processed by VMNFS. Each entry written
to the log file consists of the following two records:
v a header record specifying the client address and message length
v a record containing the actual message.

The log file is normally not closed until the server has been terminated. Once
started, VMNFS waits for client requests, but the program may be terminated
manually by an external interrupt created by the CP command EXTERNAL. It is
possible to close the log file without terminating the VM NFS server by using a
CMS command sent by an authorized user to the VMNFS virtual machine with
SMSG:

SMSG VMNFS M CMS FINIS * * A

Network File System (NFS)

Chapter 14. Network File System 231

The VMNFS module also supports the use of a D or d option. The tracing
provided by d is a superset of that provided by g, therefore, there is no
requirement to specify both. This option causes various debugging messages to be
written to the server’s spooled console, and generates the same log file on disk as
the g option. These messages indicate the results of activities performed by the
NFS server, such as task dispatching operations. There can be many messages
during normal operation of the VM NFS server, which can make it tedious to
locate more interesting messages among the mass of debug messages. The D
option is therefore most useful in circumstances where it is necessary to learn
whether any client requests are received by the server, because this option causes
console output for each such request.

The VMNFS LOG file generated by running with tracing activated contains binary
data. A utility program, PRINTLOG, is provided to format the VMNFS LOG file
into a VMNFS PRINT file, suitable for examination. A sample of formatted output
is shown in Figure 90 on page 235.

Additional Trace Options
Additional trace options for the NFS server are described in the following sections.

Trace Tables
An internal trace facility is called from various places in the code to record
information about the details of processing client requests. Data is written to a
table in storage, with enough descriptive information included to make it possible
to extract and format useful information without many dependencies on the actual
storage address at which the program is loaded or on the particular order or
location of the routines that are combined to produce the executable file.

There are actually two internal trace tables. The original one contains fixed-length
entries and is located from pointers that have the external name TRACEPTR. The
newer facility is more versatile, and uses variable-length entries. These features
gave rise to the name TRACEV. The external name TRACEVAD identifies a pointer
to a structure defining the newer trace table.

The original trace routine is still called, but from fewer locations because many of
the original calls to ″trace″ were changed to call ″tracev″ in later releases. Both of
the internal trace tables share the characteristic that they wrap: new information is
written over old data when the capacity of the table is exceeded.

In order to make better use of the available space in the tracev table, calls are
assigned to various classes and a mask is used to select which classes of call will
result in trace data actually recorded in the table. Calls to tracev that specify
classes that have zero mask bits return immediately and no data is saved as a
result of those calls. This mask is a 32-bit field that has the external name
TRACEV@M (the internal name is tracev_m). The mask is zero by default, in order
to eliminate most of the trace overhead in the majority of times when no one is
interested in the data.

The command TWRITE may be sent by CP SMSG to the VMNFS virtual machine
to request it to write the current contents of the trace tables to a disk file or SFS
directory. The default fileid for this file is TRACEV FILE A1, but another name
may be specified in the TWRITE command. For example:

CP SMSG VMNFS M T DARK TDATA G

Network File System (NFS)

232 z/VM: TCP/IP Diagnosis Guide

|

will write the file DARK TDATA G1. If a disk file with the specified (or default)
name exists when the TWRITE command is issued, the old file is erased before the
new data is written to disk. The TVPRINT Utility can be used to decode some of
this file’s data into a readable format.

There are several ways to set the tracev mask field. The command line option M
may be used, or the mask field may be dynamically set during operation of the
VM NFS server by use of a MASK command delivered using CP SMSG. The mask
value 0xFFFFFFFF enables all tracing. See file TRACEV.H for trace classes and
related information.

The default mask value may be changed by re-compiling the TRACEV.C file and
rebuilding the VMNFS executable file. For example:

CC TRACEV C (DEFINE TMASK(0XFFFFFFFF)

will enable all tracing by default.

The trace data file (for example, TRACEV DATA) contains binary information.
Care must be taken when transmitting it so that no data transformations are
performed by code-sensitive programs such as mail processing agents.

Trace Output
The VMNFS PRINT file provides complete information about messages that have
been sent and received. This information includes the name of the programs and
procedures called and the associated versions, IP addresses, and ports used. The
file includes authentication information (passwords) used by clients to identify
themselves to the NFS server, and therefore may be subject to local security
controls pertaining to such information.

Figure 90 on page 235 shows a sample of an NFS trace of a mount request that is
rejected because of invalid authentication data. When the NFS server starts, a series
of 8 messages are exchanged with the Portmapper. These messages are written to
the log file in a somewhat different format than transactions with NFS clients, but
the PRINTLOG program understands this. There are two messages sent to
Portmap to unregister the NFS and MOUNT programs (in case VMNFS is
restarting), then two messages to register these programs. Each call message is
followed by its reply message. Only the last of these 4 interactions (messages 7 and
8) are shown in this sample.

Some of the message fields are described below to assist the reader in
understanding the format of the VMNFS PRINT file. For a complete description of
the NFS message formats, consult RFC 1057 and RFC 1094 (see “Chapter 10. RPC
Programs” on page 155).
v For message 9:

Offset Field Description

X'0000' XID, X'290D3D97'

X'0004' X'00000000' This is a call message.

X'0008' RPC version 2.

X'000C' Program number, X'186A5'=100005 (MOUNT).

X'0010' Program version 1.

Network File System (NFS)

Chapter 14. Network File System 233

X'0014' Procedure number 6 (a procedure added to the MOUNT
program so that VMNFS can service the mountpw request from
a client).

X'0018' Credential authentication type is 0 (null).

X'001C' Length of authentication data is zero.

X'0020' Verifier authentication type is 0 (null).

X'0024' Length of authentication data is zero.

X'0028' Counted string argument length is 19 characters.

X'002C' Start of string data.
v For message 10:

Offset Field Description

X'0000' XID

X'0004' This is a reply message.

X'0008' Reply status = accepted message.

X'000C' RPC accepted message status = executed successfully.

X'0010' Verifier authentication type 0 (null).

X'0014' Authentication length is zero.

X'0018' Value of the called procedure is zero, indicating successful
execution.

v For message 11:

Offset Field Description

X'0014' Procedure number 1 (add mount)

X'0018' Credential authentication type is 1 (Unix).

X'001C' Length of authentication data is 32 bytes.

X'0040' Verifier authentication type is 0 (null).

X'0044' Length of authentication data is zero.

X'0048' Counted string argument length is 14 characters.

X'004C' Start of string data.
v For message 12:

Offset Field Description

X'0018' Value of the called procedure is 13, NFSERR_ACCES (access
denied).

Network File System (NFS)

234 z/VM: TCP/IP Diagnosis Guide

Sent to 014.000.000.000 port 111 length 56 time 811
Message number 7
0000 00000004 00000000 00000002 000186A0 E..............f.E
A................A
0010 00000002 00000001 00000000 00000000 E................E
A................A
0020 00000000 00000000 000186A3 00000002 E..........ft....E
A................A
0030 00000011 00000801 E........ E
A........ A

234881024 111 28 811
Message number 8
0000 00000004 00000001 00000000 00000000 E................E
A................A
0010 00000000 00000000 00000001 E............ E
A............ A

Received from 129.034.138.022 port 2298 length 64 time 973
XID 290D3D97 program 100005 procedure 6

Message number 9
0000 290D3D97 00000000 00000002 000186A5 E...p..........fvE
A).=.............A
0010 00000001 00000006 00000000 00000000 E................E
A................A
0020 00000000 00000000 00000013 72657865 E................E
A............rexeA
0030 63642E31 39312C70 3D726561 64697400 E.........../....E
Acd.191,p=readit.A

Sent to 129.034.138.022 port 2298 length 28 time 973
XID 290D3D97 reply_stat 0 accept_stat 0 NFS stat 0

Message number 10
0000 290D3D97 00000001 00000000 00000000 E...p............E
A).=.............A
0010 00000000 00000000 00000000 E............ E
A............ A

Received from 129.034.138.022 port 813 length 92 time 4
XID 290223BE program 100005 procedure 1

Message number 11
0000 290223BE 00000000 00000002 000186A5 E..............fvE
A).#.............A
0010 00000001 00000001 00000001 00000020 E................E
A............... A
0020 290C2594 00000006 6E667372 696F0000 E...m.........?..E
A).%.....nfsrio..A
0030 00000000 00000000 00000001 00000000 E................E
A................A
0040 00000000 00000000 0000000E 72657865 E................E
A............rexeA
0050 63642E31 39312C72 3D6E0000 E................E
Acd.191,r=n.. A

Sent to 129.034.138.022 port 813 length 28 time 4
XID 290223BE reply_stat 0 accept_stat 0 NFS stat 13

Message number 12
0000 290223BE 00000001 00000000 00000000 E................E
A).#.............A
0010 00000000 00000000 0000000D E............ E
A............ A

Figure 90. A Sample of an NFS Trace of a Bad Mount

Chapter 14. Network File System 235

236 z/VM: TCP/IP Diagnosis Guide

Chapter 15. Remote Printing Traces

The following sections describe the tracing capabilities available in the client and
server functions provided with the Remote Printing implementation in TCP/IP for
VM.

Remote Printing Client Traces
The client interface to Remote Printing is through the following series of
commands:
v LPR – Route a specific file to a designated, possibly remote, printer.
v LPQ – Interrogate the print queue on the designated printer.
v LPRM – Remove a job from the print queue on the designated printer.

Activating Remote Printing Client Traces
In the client virtual machine, tracing is activated by specifying the TRACE
parameter in addition to the usual processing parameters on command invocation.
The following demonstrates the use of the TRACE parameter for each of the client
Remote Printing commands:

�� LPR fn ft
fm print_options

TRACE ��

�� LPQ
jobid printer_info

TRACE ��

�� LPRM
jobid printer_info

TRACE ��

Note that the above examples are meant only to highlight the specification of the
TRACE parameter. They are not meant to be all inclusive examples of the
parameters available for use. Refer to the TCP/IP User’s Guide for information on
the full parameter set available for the commands.

Remote Printing Client Trace Output
The output from the client traces shows the sequence of interactions with the
Remote Printing server. Transferred data is not traced.

© Copyright IBM Corp. 1987, 2001 237

Figure 91 shows an example of output received from a client trace of the LPR
command. Trace output from the other client commands is similar. In the trace, the
output has been artificially separated to highlight the various processing sections
involved during command execution.

---------- Section 1 ----------
lpr doit exec a (trace
Printer name from global variable PRINTER = "FSC3820"
Host name from global variable PRTHOST = "VM1"
lpr to printer "FSC3820" at host "VM1"
Requesting TCP/IP service at 06/04/97 on 13:34:26
Granted TCP/IP service at 06/04/97 on 13:34:27
---------- Section 2 ----------
Resolving VM1 at 06/04/97 on 13:34:27
Host VM1 name resolved to 9.67.58.225 at 06/04/97 on 13:34:27
TCP/IP turned on.
Host "VM1" Domain "TCP.ENDICOTT.IBM.COM" TCPIP Service Machine TCPIP
Trying to open with local port 721 at 06/04/91 on 13:34:27
Connection open from local port 721 to foreign port 515 at 06/04/97 on 13:34:27
Control file name is cfA164VM1
Data file name is dfA164VM1
---------- Section 3 ----------
Sending command 2 argument: "FSC3820"
Command successfully sent
Receiving ACK

Notification: Data delivered
ConnState: Open

ReceiveACK: TRUE for byte value 00
Byte size check starts on 06/04/97 at 13:34:27
Byte size check ends on 06/04/97 at 13:34:27
Send command starts on 06/04/97 at 13:34:27
Sending command 3 argument: "405 dfA164VM1"
Command successfully sent
Receiving ACK

Notification: Data delivered
ConnState: Open

ReceiveACK: TRUE for byte value 00
Send command ends on 06/04/97 at 13:34:27
---------- Section 4 ----------
Send data starts on 06/04/97 at 13:34:27
Send data ends on 06/04/97 at 13:34:27
Send ACK starts on 06/04/97 at 13:34:27
Sending ACK
ACK successfully sent
Send ACK ends on 06/04/97 at 13:34:27
Receiving ACK

Notification: Data delivered
ConnState: Open

ReceiveACK: TRUE for byte value 00
Data file sent.

Figure 91. A Sample of an LPR Client Trace (Part 1 of 2)

Remote Printing Traces

238 z/VM: TCP/IP Diagnosis Guide

The following provides a brief description of each of the sections identified in the
above sample output:

Section 1

The LPR command is issued to print the file “DOIT EXEC A”.
Since the invocation parameters did not include the target printer, printer and
host names are resolved through GLOBALV calls.
The LPR module establishes a connection with the TCP/IP virtual machine,
requesting TCP/IP services.

Section 2

The host name “VM1” is resolved to its IP address.
A connection to the Remote Printing server virtual machine (LPSERVE) is
established. This server had previously performed a passive open on port 515.
The source port will be in the range 721 to 731, inclusive.
Unique names for the control and data files to be shipped to the server are
generated. These names will conform to a specific format as follows:
– will begin with “cfA” (control file) or “dfA” (data file)
– followed by a unique three digit number in range 000 - 999 (to be used as

the job number for the print request)
– followed by the host name of the system which constructs the files.

Section 3

---------- Section 5 ----------
Queuing control line "HVM1"
Queuing control line "PTCPMAINT"
Queuing control line "JDOIT.EXEC"
Queuing control line "CVM1"
Queuing control line "LTCPMAINT"
Queuing control line "fdfA164VM1"
Queuing control line "UdfA164VM1"
Queuing control line "NDOIT.EXEC"
Sending command 2 argument: "74 cfA164VM1"
Command successfully sent
Receiving ACK

Notification: Data delivered
ConnState: Open

ReceiveACK: TRUE for byte value 00
---------- Section 6 ----------
Control file sent
Sending ACK
ACK successfully sent
Receiving ACK

Notification: Data delivered
ConnState: Open

ReceiveACK: TRUE for byte value 00
Control file sent.
---------- Section 7 ----------
Sending ACK
ACK successfully sent
Receiving ACK

Notification: Connection state changed
NewState: Receiving only

ReceiveACK: TRUE for byte value 00
Connection closed.

Figure 91. A Sample of an LPR Client Trace (Part 2 of 2)

Remote Printing Traces

Chapter 15. Remote Printing Traces 239

A “Receive a printer job” command (command code 2) is sent to the server,
specifying the printer name “FSC3820”.
After successfully sending the command, the client waits for, and receives, the
server’s (positive) acknowledgement.
The client computes the size of the file to be printed (in octets) and sends a
“Receive data file” subcommand (command code 3) to the server, specifying file
size (405) and data file name (dfA164VM1).
After successfully sending the command, the client waits for, and receives, the
server’s (positive) acknowledgement.

Section 4

The client processes the entire data file, sending 405 octets to the server across
the established connection.
When all data has been sent, an octet of binary zeros is sent as an ACK
(indication) that the file being sent is complete.
After successfully sending the ACK, the client waits for, and receives, the
server’s (positive) acknowledgement.

Section 5

The client constructs a control file according to the standard format, computes
its size in octets, and sends a “Receive control file” subcommand (command
code 2) to the server, specifying file size (74) and control file name
(cfA164VM1).
After successfully sending the command, the client waits for, and receives, the
server’s (positive) acknowledgement.

Section 6

The client processes the entire control file, sending 74 octets to the server across
the established connection. Note that the trace line Control file sent (without
a trailing period) is written out when the transfer of the control data is
complete.
When all data has been sent, a byte (octet) of binary zeros is sent as an ACK
(indication) that the file being sent is complete.
After successfully sending the ACK, the client waits for, and receives, the
server’s (positive) acknowledgement.
Completion of control file processing is signified by the trace line Control file
sent. (with a trailing period).

Section 7

After transferring all of the data and control information, an octet of binary
zeros is sent as a final ACK (indication) that the processing is complete.
After successfully sending the ACK, the client waits for, and receives, the
server’s (positive) acknowledgement.
The connection state changes from “Open” to “Receiving only” after the final
ACK.
The connection with the server is subsequently closed, and the file transfer is
considered complete.

Remote Printing Server Traces
The Remote Printing server is activated during processing performed in the
LPSERVE virtual machine when its PROFILE EXEC executes the LPD command.

Remote Printing Traces

240 z/VM: TCP/IP Diagnosis Guide

Activating Remote Printing Server Traces
In the server virtual machine, tracing is activated by one of the following
mechanisms:
v specifying TRACE as a parameter on the LPD command invocation,
v including the DEBUG statement in the LPD CONFIG file, or
v by means of the TRACE ON command of the SMSG interface to the Remote

Printing server.

Remote Printing Server Trace Output
The output from the server traces shows the sequence of interactions with the
clients as well as server-specific processing. Transferred data is not traced.

Figure 92 shows an abridged example of output received from a server trace. In the
trace, the output has been artificially separated to highlight the various processing
sections involved during command execution. The first section deals with trace
output pertaining to initialization processing. The remaining sections of the trace
depict the server processing associated with the the corresponding LPR Client trace
described previously.

---------- Section 1 ----------
IBM LPD Version V2R4 on 06/04/97 at 13:31:09

LPD starting with port 515
Starting TCP/IP service connection
TCP/IP turned on.
Host "VM1" Domain "TCP.ENDICOTT.IBM.COM" TCPIP Service Machine TCPIP
Host VM1 name resolved to 9.67.58.225
RSCS name is RSCS.

LOCAL added with address 191
FSC3820 added with address 191
FSD3820 added with address 191
FSE3820 added with address 191
lp added with address 191

Host "RIOS" resolved to 9.67.30.50. Printer name is "lp".
PUNCH added with address 191
...End of Printer chain...

Passive open on port 515
06/04/97 13:31:10 Ready

Figure 92. A Sample of a Remote Printing Server Trace (Part 1 of 3)

Remote Printing Traces

Chapter 15. Remote Printing Traces 241

---------- Section 2 ----------
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Connection state changed
New connection state Trying to open on connection 1 with reason OK.
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Connection state changed
New connection state Open on connection 1 with reason OK.
Passive open on port 515
Connection open. Reading command.
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Data delivered
Timer cleared for connection 1
New command 2 data "FSC3820".
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification FSend response
---------- Section 3 ----------
Reading additional data on 1
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Data delivered
Timer cleared for connection 1
New subcommand 3 operands "405 dfA164VM1".
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification FSend response
Reading additional data on 1
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Data delivered
Timer cleared for connection 1
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Data delivered
Timer cleared for connection 1
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification FSend response
---------- Section 4 ----------
Reading additional data on 1
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Data delivered
Timer cleared for connection 1
New subcommand 2 operands "74 cfA164VM1".
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification FSend response
Reading additional data on 1
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Data delivered
Timer cleared for connection 1

: : : : : : :

GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Data delivered
Timer cleared for connection 1
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification FSend response
---------- Section 5 ----------
Reading additional data on 1
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Data delivered
Timer cleared for connection 1
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Connection state changed
New connection state Sending only on connection 1 with reason OK.
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification FSend response
Closing connection 1

Figure 92. A Sample of a Remote Printing Server Trace (Part 2 of 3)

Remote Printing Traces

242 z/VM: TCP/IP Diagnosis Guide

The following provides a brief description of each of the phases identified in the
above sample output:

GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Connection state changed
New connection state Connection closing on connection 1 with reason OK.
GetNextNote with ShouldWait of TRUE
GetNextNote returns. Connection 1 Notification Connection state changed
New connection state Nonexistent on connection 1 with reason OK.
End Connection 1 for OK.
---------- Section 6 ----------
06/04/91 13:34:42 Job 164 received FSC3820 9.67.58.225
Job 164 added to work queue
06/04/91 13:34:42 Job 164 scheduled FSC3820 9.67.58.225
Released storage at 00351000
ProcessWork starting on job queue

Work Queue start
164 JOBstartPRINTING

Work Queue end
Job 164 for FSC3820 dispatched in state JOBstartPRINTING

06/04/91 13:34:42 Job 164 printing FSC3820 9.67.58.225
PRINTER 020 defined
Spooling 020 this way " TO TCPUSR5".
Tagging 020 with "BTP311S6 N23R1 ".
ProcessWork end with queue

Work Queue start
164 JOBcontinuePRINTING

Work Queue end
---------- Section 7 ----------
GetNextNote with ShouldWait of FALSE
ProcessWork starting on job queue

Work Queue start
164 JOBcontinuePRINTING

Work Queue end
Job 164 for FSC3820 dispatched in state JOBcontinuePRINTING

flpNewBlock: State build IsAtEof FALSE
flpNewBlock: State check last IsAtEof FALSE
flpNewBlock: State call IsAtEof FALSE

: : : : :

flpNewBlock: State build IsAtEof FALSE
flpNewBlock: State check last IsAtEof TRUE
flpNewBlock: State call IsAtEof TRUE
06/04/91 13:34:47 Job 164 sent FSC3820 9.67.58.225
ProcessWork end with queue

Work Queue start
164 JOBfinishPRINTING

Work Queue end
GetNextNote with ShouldWait of FALSE
---------- Section 8 ----------
ProcessWork starting on job queue

Work Queue start
164 JOBfinishPRINTING

Work Queue end
Job 164 for FSC3820 dispatched in state JOBfinishPRINTING

Job 164 removed from work queue
06/04/91 13:34:47 Job 164 purged FSC3820 9.67.58.225
ProcessWork end with queue

Work Queue start
Work Queue end

GetNextNote with ShouldWait of TRUE

Figure 92. A Sample of a Remote Printing Server Trace (Part 3 of 3)

Remote Printing Traces

Chapter 15. Remote Printing Traces 243

Section 1

The Remote Printing server announces the start of initialization activities.
The server establishes a connection with the TCP/IP virtual machine,
requesting TCP/IP services.
The host name “VM1” is resolved to its IP address.
The configuration file is processed to build the control tables representing the
supported printers (and possibly punches). Note that system names are
resolved to their respective IP addresses at initialization time.
The server records the date and time that it completes initialization plus the
port it is listening on in the console log.

Section 2

The server establishes a connection with the client requesting remote printing
services.
A “Receive a printer job” command (command code 2) is received from the
client with a specified printer name of “FSC3820”.
The server validates the printer name and its availability and sends an
acknowledgement to the client.

Section 3

A “Receive data file” subcommand (command code 3) is received from the
client with a specified file size of 405 octets and a data file name of
“dfA164VM1”.
The server acknowledges the receipt of this subcommand from the client.
The 405 octets of data are received, followed by the receipt of an octet of binary
zeros signifying the end of file transfer.
The server acknowledges the receipt of the “end of file” indicator from the
client.

Section 4

A “Receive control file” subcommand (command code 2) is received from the
client with a specified file size of 74 octets and a control file name of
“cfA164VM1”.
The server acknowledges the receipt of this subcommand from the client.
The 74 octets of data are received, followed by the receipt of an octet of binary
zeros signifying the end of file transfer.
The server acknowledges the receipt of the “end of file” indicator from the
client.

Section 5

A “final” octet of binary zeros is received from the client to signify the end of
all data transmission.
The connection state is modified from an “Open” to a “Sending only” status.
The server acknowledges the receipt of the “end of transmission” indicator
from the client.
The connection state is marked “Nonexistent” and the connection with the
client is terminated, marking the completion of the “file transfer” portion of the
operation.

Section 6

Remote Printing Traces

244 z/VM: TCP/IP Diagnosis Guide

The received print job is placed onto the queue for the designated printer. The
printer name was passed as an argument on the “Receive a printer job”
command (FSC3820). The “job id” is taken from the arguments passed to the
server on the “Receive data file” and “Receive control file” subcommands. The
IP address of the system on which the printer is located was determined (and
saved) during server initialization.
The placement of an entry on the printer queue triggers the ProcessWork
routine to receive control.
The status of the job is modified from “scheduled” to “JOBstartPRINTING”.
A virtual printer is defined and initialized according to the parameters either
passed with the print request or extracted from the configuration file entry for
the target printer.

Section 7

The actual “printing” of the job is initiated and its status is modified from
“JOBstartPRINTING” to “JOBcontinuePRINTING”.
The file to be printed is processed on a block-by-block basis. Note that the
example shows an abridged version of the tracing for this phase of the
operation.
When an end-of-file condition is encountered, the status is is modified from
“JOBcontinuePRINTING” to “JOBfinishPRINTING”.

Section 8

The “JOBfinishPRINTING” status causes the job to be removed from the work
queue and purged.
The virtual printer defined for processing the print request is detached.
A final interrogation of the work queue indicates that there is no more work to
be performed.
The print server returns to a passive wait state, awaiting the next print request.

For additional information on the command codes and the format of the control
file lines, see RFC 1179, Line Printer Daemon Protocol.

Remote Printing Traces

Chapter 15. Remote Printing Traces 245

246 z/VM: TCP/IP Diagnosis Guide

Chapter 16. Remote Execution Protocol Traces

The following sections describe the tracing capabilities available in the client and
server functions provided with the Remote Execution Protocol implementation in
TCP/IP for VM.

Remote Execution Protocol Client Traces
The client interface to the Remote Execution Protocol is through the REXEC
command. This command provides the capability to execute a specified command
on a foreign host and receive the results on the local host.

Activating Remote Execution Protocol Client Traces
In the client virtual machine, tracing is activated by specifying the -d parameter in
addition to the usual processing parameters on command invocation. The
following demonstrates the use of the -d parameter for the REXEC command:

�� REXEC
-? -d -t timeout -n -l userid

�

�
-p password

-s512

-s port
foreignhost command ��

Specification of the -d parameter will cause the trace output to be written to the
client’s console. Note that the trace processing does not suppress passwords
supplied with the command or extracted from a NETRC DATA file, so the
resultant trace output file should be treated as “company confidential” material.

The above example is intended only to highlight the specification of the parameter
necessary to activate tracing. Refer to the TCP/IP User’s Guide for information on
the usage of the other parameters.

Remote Execution Protocol Client Trace Output
Figure 93 shows an example of the output received from a client trace of the
REXEC command, specifying a “q n” (Query Names) command to be executed on
the remote host. The entered command and the response are highlighted in order
to differentiate that data from the trace information.

© Copyright IBM Corp. 1987, 2001 247

Remote Execution Protocol Server Traces
The Remote Execution Protocol server (REXECD) is activated during processing
performed in the server virtual machine when its PROFILE EXEC executes the
REXECD command.

Activating Remote Execution Protocol Server Traces
In the server virtual machine, tracing is activated by specifying the -d parameter in
addition to the usual processing parameters on command invocation. The
following demonstrates the use of the -d parameter for the REXECD command:

rexec -d -l guest -p guest vm1 q n
parms is -d -l guest -p guest vm1 q n
Variables have the following assignments:
fhost : vm1
userid : guest
passwd : guest
command : q n
calling GetHostResol with vm1
Connecting to vm1 , port REXEC (512)

Figure 93. A Sample of a Remote Execution Client Trace (Part 1 of 2)

Passive Conn - OK on local port 601
passive open complete on port 0
Active Conn - OK on local port 601
active open complete on port 1
rexec invoked
sending: 601 guest guest q n
D2 len 20
getnextnote until DD
Connection state changed
Trying to open
Connection state changed
Open
Data delivered
Bytes in 1
Data delivered
Bytes in 374
OPERATOR - 601, NETVPPI - DSC, GCS5 - DSC, GCS4 - DSC
GCS3 - DSC, GCS2 - DSC, GCS - DSC, SQLDBA - DSC
X25IPI - DSC, TCPMAINT - 602, LPSERVE - DSC, ADM_SERV - DSC
VMKERB - DSC, VMNFS - DSC, NAMESRV - DSC, PORTMAP - DSC
SMTP - DSC, FTPSERVE - DSC, REXECD - DSC, SNMPD - DSC
SNMPQE - DSC, TCPIP - DSC, RXAGENT1 - DSC
VSM - TCPIP
Connection state changed
Sending only
returning from REXEC_UTIL
rexec complete

Figure 93. A Sample of a Remote Execution Client Trace (Part 2 of 2)

Remote Execution Protocol Traces

248 z/VM: TCP/IP Diagnosis Guide

�� REXECD
-? -d -r

�

-s agent_id
�

�
-t 240

-t timeout

-e 512

-e port

-h 514

-h port
��

Specification of the -d parameter will cause the trace output to be written to the
server’s console.

The above example is intended only to highlight the specification of the parameter
necessary to activate tracing. Refer to the TCP/IP Planning and Customization for
information on the usage of the other parameters.

Remote Execution Protocol Server Trace Output
Figure 94 shows an abridged example of the output received from a server trace.
The section of the trace shown depicts the server processing which transpired
when the “q n” command was issued from the client and correlates with the trace
information from the client trace shown previously.

Remote Execution Protocol Traces

Chapter 16. Remote Execution Protocol Traces 249

.

.
Connection: 0
Notification: Connection state changed

New state: Trying to open
Reason: OK

Connection: 0
Notification: Connection state changed

New state: Open
Reason: OK

Tcp passive open for rexec conn 2
Connection: 0
Notification: Data delivered

Bytes delivered: 20
Push flag: 1

active connection: 3using first free agent agent RXAGENT1 is free
cmd - MSG RXAGENT1 q n

len - 16
Notification: IUCV interrupt

IUCV interrupt incountered at 160600
received IUCV interrupt - from user RXAGENT1
iucv type is - pending connectionNotification: IUCV interrupt

IUCV interrupt incountered at 160600
received IUCV interrupt - from user
iucv type is - pending (priority) msgclearing actconn 3

Notification: IUCV interrupt
IUCV interrupt incountered at 160600

received IUCV interrupt - from user
iucv type is - sever connectionclose conn = 0close actconn 3

RXAGENT1 to fpool
clearing actconn 3
Connection: 0

Notification: Connection state changed
New state: Receiving only
Reason: OK

Connection: 3
Notification: Connection state changed

New state: Receiving only
Reason: OK

Connection: 0
Notification: Connection state changed

New state: Nonexistent
Reason: Foreign host aborted the connection

bye to conn = 0
destroy actconn 3
Connection: 3
Notification: Connection state changed

New state: Nonexistent
Reason: Foreign host aborted the connection

bye to conn = 3
.
.

Figure 94. A Sample of a Remote Execution Protocol Server Trace

250 z/VM: TCP/IP Diagnosis Guide

Chapter 17. TFTP Client Traces

TCP/IP for VM implements a Trivial File Transfer Protocol (TFTP) client function.
The client interface is through the TFTP command. This command provides a
simple method to get files from, and send files to, a foreign host. TFTP cannot list
directories and has no provision for user authentication. The following sections
describe how to activate and interpret TFTP client traces.

Activating Traces
In the client virtual machine, tracing is activated (and deactivated) by means of the
TRACE subcommand once a TFTP session has been established. The subcommand
acts as a toggle switch to enable or disable the tracing of TFTP packets. When
tracing is enabled, information is displayed about each TFTP packet that is sent or
received.

Trace Output
Figure 95 shows an example of a TFTP session that includes the output obtained
from executing the TFTP TRACE subcommand. An explanation of the trace data
format follows the example.

All trace entries for TFTP have the same general format:

tftp elmer
Command:
trace
Packet tracing is enabled.
Command:
get config.sys config.sys
Sending: (22) <RRQ> config.sys NETASCII
Received: (516) <DATA> Block Number = 1
Sending: (4) <ACK> Block Number = 1
Received: (516) <DATA> Block Number = 2
Sending: (4) <ACK> Block Number = 2
Received: (516) <DATA> Block Number = 3
Sending: (4) <ACK> Block Number = 3
Received: (111) <DATA> Block Number = 4
Sending: (4) <ACK> Block Number = 4
1643 bytes transferred in 4.825 seconds. Transfer rate 0.341 Kbytes/sec.
Command:
get startup.cmd startup.cmd
Sending: (23) <RRQ> startup.cmd NETASCII
Received: (36) <DATA> Block Number = 1
Sending: (4) <ACK> Block Number = 1
32 bytes transferred in 3.399 seconds. Transfer rate 0.009 Kbytes/sec.
Command:
get autoexec.bat autoexec.bat
Sending: (24) <RRQ> autoexec.old NETASCII
Received: (140) <DATA> Block Number = 1
Sending: (4) <ACK> Block Number = 1
136 bytes transferred in 4.475 seconds. Transfer rate 0.030 Kbytes/sec.
Command:
quit
Ready; T=0.14/0.36 17:54:57

Figure 95. A Sample of a TFTP Client Trace

© Copyright IBM Corp. 1987, 2001 251

direction (size) kind per-packet-information

where:

Field Description

direction Is either Sending or Received.

(size) Is the number of bytes in the packet.

kind Is the type of TFTP packet. The TFTP packet types
are:

RRQ Read request

WRQ Write request

Data Data packet

ACK Acknowledgement packet

Error Error packet.

per-packet-information Is other data contained in the packet. The type of
information displayed about each packet is:

RRQ Foreign filename, transfer mode

WRQ Foreign filename, transfer mode

Data Block number

ACK Block number

Error Error number, error text (if any).

TFTP Client Traces

252 z/VM: TCP/IP Diagnosis Guide

Chapter 18. TFTPD Traces

TCP/IP for VM implements a Trivial File Transfer Protocol Daemon (TFTPD)
function. The daemon interface is through the TFTPD command. The following
sections describe how to activate and interpret TFTPD traces.

Activating Traces
In the daemon virtual machine, tracing is activated (and deactivated) by means of
the TRACE subcommand once a TFTPD session has been established. The
subcommand acts as a toggle switch to enable or disable the tracing of TFTPD
operations. When tracing is enabled, information is displayed about major
operation checkpoints. For example, trace output is created when read requests are
received and complete or when errors are detected.

You can also use the TRACE operand on the TFTPD command to enable the
tracing of TFTPD operations.

Trace Output
Figure 96 shows an example of a TFTPD session that includes the output obtained
from executing the TFTPD TRACE subcommand. An explanation of the trace data
format follows the example.

© Copyright IBM Corp. 1987, 2001 253

Formats of TFTPD Trace Records
TFTPD trace entries identify 5 basic events and TCP/IP errors:
v Acceptance of a read or write request
v Resending of packets due to a timeout
v Dropping of a client due to resend limit being exceeded
v Sending or reception of error packets
v Socket related errors.

The first line of the trace entry contains:
v A 4 digit trace code
v A description of the trace code
v Time and date stamp and

TRACE
TFTPD Ready;
1000 9.100.20.99 1685 (........) 05/15/97 09:27:50 READ REQUEST ACCEPT SENT

O M 8192 /QIBM/ProdData/NetworkStation/kernel
1000 9.100.20.43 1065 (........) 05/15/97 09:28:11 READ REQUEST ACCEPT SENT

O H 8192 /QIBM/ProdData/NetworkStation/kernel
1500 9.100.20.99 1685 (........) 05/15/97 09:28:12 READ COMPLETED

PKTS=252 FILE SIZE=2044868
1000 9.100.20.99 1662 (........) 05/15/97 09:28:20 READ REQUEST ACCEPT SENT

O M 8192 /QIBM/ProdData/NetworkStation/StationConfig/standard.nsm
1000 9.100.20.99 1663 (........) 05/15/97 09:28:20 READ REQUEST ACCEPT SENT

O M 8192 /QIBM/ProdData/NetworkStation/StationConfig/required.nsm
1500 9.100.20.99 1663 (........) 05/15/97 09:28:21 READ COMPLETED

PKTS=3 FILE SIZE=1916
1000 9.100.20.99 1664 (........) 05/15/97 09:28:21 READ REQUEST ACCEPT SENT

O M 8192 /QIBM/ProdData/NetworkStation/StationConfig/control.nsm
1000 9.100.20.99 1665 (........) 05/15/97 09:28:21 READ REQUEST ACCEPT SENT

O M 8192 /QIBM/ProdData/NetworkStation/SysDefaults/ibmwall.xbm
1500 9.100.20.99 1665 (........) 05/15/97 09:28:21 READ COMPLETED

PKTS=3 FILE SIZE=3041
1000 9.100.20.99 1666 (........) 05/15/97 09:28:21 READ REQUEST ACCEPT SENT

O M 8192 /QIBM/ProdData/NetworkStation/SysDefaults/ibmwall.xbm
1500 9.100.20.99 1666 (........) 05/15/97 09:28:21 READ COMPLETED

PKTS=3 FILE SIZE=3041
1500 9.100.20.99 1664 (........) 05/15/97 09:28:21 READ COMPLETED

PKTS=3 FILE SIZE=1042
4000 9.100.20.99 1667 (........) 05/15/97 09:28:21 FILE NOT VALID RESPONSE

/QIBM/ProdData/NetworkStation/StationConfig/hosts.nsm
1500 9.100.20.99 1662 (........) 05/15/97 09:28:21 READ COMPLETED

PKTS=3 FILE SIZE=174
1000 9.100.20.99 1678 (........) 05/15/97 09:28:26 READ REQUEST ACCEPT SENT

O M 8192 /QIBM/ProdData/NetworkStation/mods/libxm.nws
1500 9.100.20.43 1065 (........) 05/15/97 09:28:36 READ COMPLETED

PKTS=252 FILE SIZE=2044868
1500 9.100.20.99 1678 (........) 05/15/97 09:28:36 READ COMPLETED

PKTS=155 FILE SIZE=1252482
1000 9.100.20.99 1680 (........) 05/15/97 09:28:36 READ REQUEST ACCEPT SENT

O M 8192 /QIBM/ProdData/NetworkStation/mods/actlogin.nws
1000 9.100.20.99 1681 (........) 05/15/97 09:28:37 READ REQUEST ACCEPT SENT

O M 8192 /QIBM/ProdData/NetworkStation/mods/export.nws
1500 9.100.20.99 1681 (........) 05/15/97 09:28:37 READ COMPLETED

PKTS=7 FILE SIZE=36671
5100 9.100.20.99 1680 (........) 05/15/97 09:28:38 ERROR DATAGRAM RECEIVED

ERROR=0 File read terminated by client

Figure 96. A Sample of a TFTPD Client Trace

TFTPD Traces

254 z/VM: TCP/IP Diagnosis Guide

v Client identification information (when the entry relates to a client). This can
include:
– IP address of the client
– Port number used by the client
– User ID associated with the client.

Depending upon the trace entry, additional lines of information may be displayed;
such lines are indented under the first line.

The following example shows the format of the first line of a client related trace
entry.
code xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss description of trace code

where:
code

is a 4 digit trace code.
xxx.xxx.xxx.xxx

is the IP address of the client in dotted decimal notation.
port

is the port that the client is using.
userid

is the user ID associated with the IP address; This association is determined by
the TFTPD USERLIST file. If the client IP address is not listed in this file, then
“........” is displayed.

mm/dd/yy
is the date portion of the timestamp, where mm is the month, dd is the day and
yy is the year.

hh:mm:ss
is the time portion of the timestamp, where hh is the hour (in 24 hour format),
mm is the minutes and ss is the seconds.

description of trace code
is a 25 character description of the trace code

TFTPD Trace Codes:
The trace codes are:
1000 A read request was accepted.
1500 A read operation has completed.
2000 A write request was accepted.
2500 A write operation has completed.
3000 Timeout; a response was resent.
3500 Timeout; the timeout limit was reached, and the client dropped.
4000 A file not valid response was sent.
4100 A missing BLKSIZE response was sent.
4200 An Access Violation response was sent.
4300 A Bad XFER (transfer) Mode response was sent.
5000 A spurious ACK was received and has been ignored.
5100 An error datagram was received.
5200 An unknown datagram was received.
6100 An unexpected RECVFROM error occurred.
6200 An unexpected SENDTO error occurred.
6300 An unexpected SOCKINIT error occurred.
6301 An unexpected SOCKET error occurred.
6302 An unexpected IOCTL error occurred.
6303 An unexpected BIND error occurred.
6304 An unexpected SELECT error occurred.

TFTPD Traces

Chapter 18. TFTPD Traces 255

6305 An unexpected CANCEL error occurred.

TFTPD Trace Entry: 1000
This trace code is the result of accepting a READ request.
1000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss READ ACCEPTED DATA SENT

x c blksize pathname

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
x indicates the transfer mode, “N” for NETASCII and “O” for OCTET mode.
c is a hit or miss indicator, indicating whether the file was in cache when

requested (a hit) or whether it had to be loaded (a miss). ″H″ indicates that the
file was in cache. ″M″ indicates that the file was not in cache.

Note: A miss would be indicated for a file in cache that is marked for a drop
by the DROPFILE subcommand. Subsequent read requests would
require a new copy of the file to be obtained.

blksize
is the blocksize being used for the transfer.

pathname
is the name of the file being transferred.

TFTPD Trace Entry: 1500
This trace code is the result of receiving an ACK associated with a client read
operation. The ACK indicates the client received the last packet of a transmitted
file.
1500 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss READ COMPLETED

PKTS=pkts FILE SIZE=filesize

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
pkts

number of packets sent.
filesize

size of the file in bytes.

TFTPD Trace Entry: 2000
This trace code is the result of accepting a WRITE request.
2000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss WRITE ACCEPTED DATA SENT

x blksize pathname

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
x indicates the transfer mode, “N” for NETASCII and “O” for OCTET mode.
blksize

is the blocksize being used for the transfer.
pathname

is the name of the file that is being transferred.

TFTPD Trace Entry: 2500
This trace code is the result of receiving the DATA packet on a client write request.

TFTPD Traces

256 z/VM: TCP/IP Diagnosis Guide

2500 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss WRITE COMPLETED
PKTS=pkts FILE SIZE=filesize

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
pkts

number of packets sent.
filesize

size of the file, in bytes.

TFTPD Trace Entry: 3000
This trace code is the result of determining that time has expired for a client to
send or receive a packet so that the response must be resent.
3000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss TIMEOUT - RESPONSE RESENT

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254.

TFTPD Trace Entry: 3500
This trace code is the result of the TFTPD daemon determining that a timeout
occurred, but that the maximum number of resends was reached so the client was
dropped.
3500 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss TIMEOUT - CLIENT DROPPED

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254.

TFTPD Trace Entry: 4000
This trace code is the result of the TFTPD daemon determining that the file to be
sent to the client was not valid.
4000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss FILE NOT VALID RESPONSE

pathname

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
pathname

is the name of the file that was not valid.

TFTPD Trace Entry: 4100
This trace code is the result of the TFTPD daemon receiving a request which
contained the BLKSIZE parameter, but no value for that parameter.
4100 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss MISSING BLKSIZE RESPONSE

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254.

TFTPD Trace Entry: 4200
This trace code is the result of the TFTPD daemon receiving a read request for a
file that the client was not permitted to access.
4200 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss ACCESS VIOLATION RESPONSE

TFTPD Traces

Chapter 18. TFTPD Traces 257

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254 .

TFTPD Trace Entry: 4300
This trace code is the result of the TFTPD daemon receiving a READ or WRITE
request with the transfer mode parameter specified, but not valid.
4300 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss BAD XFER MODE RESPONSE

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254.

TFTPD Trace Entry: 5000
This trace code is the result of the TFTPD daemon receiving an unexpected ACK
which it ignored.
5000 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss SPURIOUS ACK IGNORED

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254.

TFTPD Trace Entry: 5100
This trace code is the result of the TFTPD daemon receiving an error datagram
from a client.
5100 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss ERROR DATAGRAM RECEIVED

ERROR=errnum errdesc

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
errnum

is the error number received from the client.
errdesc

is the error description sent by the client in the error datagram.

TFTPD Trace Entry: 5200
This trace code is the result of the TFTPD daemon receiving an unknown
datagram.
5200 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss UNKNOWN DATAGRAM RECEIVED

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254.

TFTPD Trace Entry: 6100
This trace code is the result of the TFTPD daemon encountering an unexpected
error on a SOCKET RECVFROM operation.
6100 mm/dd/yy hh:mm:ss BAD RECVFROM ERROR

RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
rc is the return code set by the RECVFROM function.

TFTPD Traces

258 z/VM: TCP/IP Diagnosis Guide

errno
is the error number set by the RECVFROM function.

TFTPD Trace Entry: 6200
This trace code is the result of the TFTPD daemon encountering an unexpected
error on a SOCKET SENDTO operation.
6200 xxx.xxx.xxx.xxx port (userid) mm/dd/yy hh:mm:ss BAD SENDTO ERROR

RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
rc is the return code set by the SENDTO function.
errno

is the error number set by the SENDTO function.

TFTPD Trace Entry: 6300
This trace code is the result of the TFTPD daemon encountering an unexpected
error on a SOCKET initialization operation.
6300 mm/dd/yy hh:mm:ss BAD SOCKINIT ERROR

RC=rc REASON=reason SOCKETS=socket

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
rc is the return code set by the Socket Initialize function.
reason

is the reason code set by the Socket Initialize function.
socket

is the socket number (if any) returned by the Socket Initialize function.

TFTPD Trace Entry: 6301
This trace code is the result of the TFTPD daemon encountering an unexpected
error on a SOCKET SOCKET operation.
6301 mm/dd/yy hh:mm:ss BAD SOCKET ERROR

SOCKET=socket ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
socket

is the socket number.
errno

is the error number set by the SOCKET function.

TFTPD Trace Entry: 6302
This trace code is the result of the TFTPD daemon encountering an unexpected
error on a SOCKET IOCTL operation.
6302 mm/dd/yy hh:mm:ss BAD IOCTL ERROR

RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
rc is the return code set by the IOCTL function.

TFTPD Traces

Chapter 18. TFTPD Traces 259

errno
is the error number set by the IOCTL function.

TFTPD Trace Entry: 6303
This trace code is the result of the TFTPD daemon encountering an unexpected
error on a SOCKET BIND operation.
6303 mm/dd/yy hh:mm:ss BAD BIND ERROR

RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
rc is the return code set by the BIND function.
errno

is the error number set by the BIND function.

TFTPD Trace Entry: 6304
This trace code is the result of the TFTPD daemon encountering an unexpected
error on a SOCKET SELECT operation.
6304 mm/dd/yy hh:mm:ss BAD SELECT ERROR

RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
rc is the return code set by the SELECT function.
errno

is the error number set by the SELECT function.

TFTPD Trace Entry: 6305
This trace code is the result of the TFTPD daemon encountering an unexpected
error on a SOCKET CANCEL operation.
6305 mm/dd/yy hh:mm:ss BAD CANCEL ERROR

RC=rc ERRNO=errno

The first line of the entry was explained in “Formats of TFTPD Trace Records” on
page 254. The additional lines consist of:
rc is the return code set by the CANCEL function.
errno

is the error number set by the CANCEL function.

TFTPD Traces

260 z/VM: TCP/IP Diagnosis Guide

Chapter 19. BOOT Protocol Daemon (BOOTPD) Traces

TCP/IP for VM implements the BOOTP daemon to respond to client requests for
boot information using information contained in a BOOTP machine file. The
daemon interface is through the BOOTPD command. The following sections
describe how to activate and interpret BOOTPD traces.

Activating Traces
In the daemon virtual machine, tracing is activated (and deactivated) by means of
the TRACE command once the BOOTP daemon has been installed and a BOOTPD
session has been established. The subcommand acts as a toggle switch to enable or
disable tracing of BOOTPD operations. When tracing is enabled, information is
displayed about each BOOTPD packet that is sent or received.

You can also use the TRACE operand on the BOOTPD command to enable tracing
of BOOTPD operations.

Trace Output
Figure 97 on page 262 shows an example of a BOOTPD session that includes the
output obtained from executing the BOOTPD TRACE subcommand. An
explanation of the trace data format follows the example.

© Copyright IBM Corp. 1987, 2001 261

BOOTPD Trace Records
BOOTPD trace entries identify 5 basic events:
v Time at which BootPD began processing a set of requests
v Reception of a datagram from a client or gateway
v Declining to respond to a client or gateway due to some error or limit
v Forwarding of a request to another BootP daemon
v The attempt to respond to a client or gateway.

BOOTPD Trace Record Format
The first line of trace entry consists of a trace code followed by a description of the
event along with other pertinent information. Additional lines of information may
be displayed, indented under the first line.

BOOTPD Trace Codes
The trace codes are:
1000 Received a request sent by a client

TRACE
BOOTPD Ready;
9000 Time: 09:18:36.744586 ON 19970515
1100 FORWARDED REQUEST RECEIVED FROM 67 AT 9.100.20.110 THRU 9.100.30.75:

OP = 1 CIADDR = 0.0.0.0
HTYPE = 6 YIADDR = 0.0.0.0
HLEN = 6 SIADDR = 0.0.0.0
HOPS = 1 GIADDR = 9.100.20.110
XID = 000001BE CHADDR = 0000E5E82CFF
SNAME =
FILE =

OPTIONS = 638253632B0E49424D414354205620312E302E30FF00000000200011FFFA81440
00090000000000000000000FFFB367E0000000081007DE8CC000000FF

3100 REPLYING TO GATEWAY BY 67 AT 9.100.20.110 THRU 9.100.30.75
OP = 2 CIADDR = 0.0.0.0
HTYPE = 6 YIADDR = 9.100.20.43
HLEN = 6 SIADDR = 9.100.30.75
HOPS = 1 GIADDR = 9.100.20.110
XID = 000001BE CHADDR = 0000E5E82CFF
SNAME =
FILE = /QIBM/ProdData/NetworkStation/kernel

OPTIONS = 638253630104FFFFFF000204FFFFB9B00304096414FD04040964144B050409641
9FC0604096414FC0F10656E6469636F74742E69626D2E636F6D11012FFF

9000 Time: 09:21:27.423501 ON 19970515
1100 FORWARDED REQUEST RECEIVED FROM 67 AT 9.100.20.110 THRU 9.100.30.75:

OP = 1 CIADDR = 0.0.0.0
HTYPE = 6 YIADDR = 0.0.0.0
HLEN = 6 SIADDR = 0.0.0.0
HOPS = 1 GIADDR = 9.100.20.110
XID = 000001BD CHADDR = 0000E5E8DC61
SNAME =
FILE =

OPTIONS = 638253632B0E49424D414354205620312E302E30FF00000000200011FFF8F3380
00090000000000000000000FFFB367E0000000081007DE8CC000000FF

3100 REPLYING TO GATEWAY BY 67 AT 9.100.20.110 THRU 9.100.30.75
OP = 2 CIADDR = 0.0.0.0
HTYPE = 6 YIADDR = 9.100.20.99
HLEN = 6 SIADDR = 9.100.30.75
HOPS = 1 GIADDR = 9.100.20.110
XID = 000001BD CHADDR = 0000E5E8DC61
SNAME =
FILE = /QIBM/ProdData/NetworkStation/kernel

OPTIONS = 638253630104FFFFFF000204FFFFB9B00304096414FD04040964144B050409641
9FC0604096414FC0F10656E6469636F74742E69626D2E636F6D11012FFF

Figure 97. A Sample of a BOOTPD Client Trace

BOOTPD Traces

262 z/VM: TCP/IP Diagnosis Guide

1100 Received a request which was forwarded by a BootP daemon
1900 Unrecognized request was received; the opcode was neither request or

reply.
3000 A BootP reply was sent to a client
3100 A BootP reply was sent to another BootP daemon, to be passed to a client.
32xx Request is being forwarded to another BootP daemon. The xx subcodes

indicate the reasons for forwarding:
01 Forwarding was specified, but no entry exists in the machine table.
02 Always forward was specified.
03 Client specified a server to which to forward the request.
00 Reason for forwarding was not known.

40xx The BootP daemon is declining to respond to a request. The xx subcodes
that follow indicate the reasons for declining to respond:
01 Entry was not found in the machine table.
02 Request received on an adapter that was partially excluded, for

which the entry matches the exclusion criteria.
03 Unrecognized packet opcode was received
04 Could not forward because the hop count expired.
05 Could not determine the client IP address.
06 Could not determine the bootfile pathname.
07 Target server is on the same cable.
08 Unable to determine the adapter over which to reply.
00 Reason for declining is not known.

9000 Time Stamp, including the time and date in standard format.

Trace events which relate to the transmission of BOOT requests or replies, include
information about the packet.

OP = opcode CIADDR = ipaddr
HTYPE = htype YIADDR = ipaddr
HLEN = hlen SIADDR = ipaddr
HOPS = hops GIADDR = ipaddr
XID = xid CHADDR = chaddr
SNAME = servname
FILE = bootfile
VEND = venddata

where
OP = opcode

indicates the operation code: 1 for a request or 2 for a reply.
CIADDR = ipaddr

indicates the client IP address, if specified by the client.
HTYPE = htype

indicates the network hardware type.
YIADDR = ipaddr

indicates the IP address of the client.
HLEN = hlen

indicates the length of the hardware address.
SIADDR = ipaddr

indicates the Server IP address.
HOPS = hops

indicates the current hops count.
GIADDR = ipaddr

indicates the gateway IP address.
XID = xid

indicates the current transaction ID specified by the client.

BOOTPD Traces

Chapter 19. BOOT Protocol Daemon (BOOTPD) Traces 263

CHADDR = chaddr
indicates the client hardware address. This field may be a maximum of 16
bytes long.

SNAME = servname
indicates the Server Host Name. This field may be a maximum of 64 bytes
long.

FILE = bootfile
indicates the boot file name. This field may be a maximum of 128 bytes long.

VEND = venddata
indicates the current contents of the vendor-specific area. This field may be a
maximum of 64 bytes long.

BOOTPD Traces

264 z/VM: TCP/IP Diagnosis Guide

Chapter 20. Dynamic Host Configuration Protocol Daemon
(DHCPD) Traces

TCP/IP for VM implements the DHCP daemon to respond to client requests for
boot information using information contained in a DHCP machine file. The
daemon interface is through the DHCPD command and DHCPD subcommands.
The following sections describe how to activate and interpret DHCPD traces.

Activating Traces
In the daemon virtual machine, tracing is activated (and deactivated) by means of
the TRACE subcommand once the DHCPD daemon has been installed and a
DHCPD session has been established. The TRACE subcommand acts as a toggle
switch to enable or disable tracing of DHCPD operations. When tracing is enabled,
information is displayed about each DHCPD packet that is sent or received.

You can also use the TRACE operand on the DHCPD command to enable tracing
of DHCPD operations.

Trace Output
Figure 98 shows an example of a DHCPD session that includes the output obtained
from executing the DHCPD TRACE subcommand. An explanation of the trace data
format follows the example.

9000 TIME: 13:58:46.115502 ON 19970819
1100 FORWARDED REQUEST RECEIVED FROM 67 AT 9.100.20.88 THRU 9.100.30.75:

OP = 1 CIADDR = 9.100.20.126 DHCPTYPE = DHCPDISCOVER
HTYPE = 6 YIADDR = 0.0.0.0
HLEN = 6 SIADDR = 0.0.0.0
HOPS = 1 GIADDR = 9.100.20.88
SECS = 100 FLAGS = 0
XID = 00000A56 CHADDR = 0000E5E83CC0
SNAME =
FILE =

OPTIONS = 63825363350101390202404D0C49424D4E534D20312E302E303C1349424D204E6
574776F726B2053746174696F6EFF

5300 ICMP ECHO REQUEST TO 9.100.20.126 THRU 9.100.30.75
9000 TIME: 13:58:51.669942 ON 19970819
5000 ICMP TIMER EXPIRED
3100 REPLYING TO GATEWAY BY 67 AT 9.100.20.88 THRU 9.100.30.75

OP = 2 CIADDR = 0.0.0.0 DHCPTYPE = DHCPOFFER
HTYPE = 6 YIADDR = 9.100.20.126
HLEN = 6 SIADDR = 9.100.30.75
HOPS = 0 GIADDR = 9.100.20.88
SECS = 0 FLAGS = 0
XID = 00000A56 CHADDR = 0000E5E83CC0
SNAME =
FILE =

OPTIONS = 6382536335010233040000012C360409641E4B0104FFFFFF000204FFFFC7C0030
4096414FD040C09641E4B09010A0D098203030504098219FC0604098219FC0C05
4144414D470F10656E6469636F74742E69626D2E636F6D3A04000000963B04000
000FF420747444C564D4B3443242F5149424D2F50726F64446174612F4E657477
6F726B53746174696F6E2F6B65726E656CFF

Figure 98. A Sample of a DHCPD Client Trace

© Copyright IBM Corp. 1987, 2001 265

DHCPD Trace Records
DHCPD trace entries identify 6 basic events:
v Time at which DHCPD began processing a set of requests
v Reception of a datagram from a client or gateway
v Declining to respond to a client or gateway due to some error or limit
v Forwarding of a request to another DHCP/BootP daemon
v The attempt to respond to a client or gateway.
v Timer expiration and related activities

DHCPD Trace Record Format
The first line of trace entry consists of a trace code followed by a description of the
event along with other pertinent information. Additional lines of information may
be displayed, indented under the first line.

DHCPD Trace Codes
The DHCPD trace codes are:
1000 Received a request sent by a client
1100 Received a request that was forwarded by a BootP daemon
1900 Unrecognized request was received; the opcode was neither request or

reply
3000 A BootP/DHCP reply was sent to a client
3100 A BootP/DHCP reply was sent to another BootP/DHCP daemon, to be

passed to a client
32xx Request is being forwarded to another BootP/DHCP daemon. The xx

subcodes that follow indicate the reasons for forwarding:
01 Forwarding was specified, but no entry exists in the machine table
02 Always forward was specified
03 Client specified a server to which to forward the request
00 Reason for forwarding was not known

40xx The DHCP daemon is declining to respond to a request. The xx subcodes
that follow indicate the reasons for declining to respond:
01 Entry was not found in the machine table
02 Request received on an adapter that was partially excluded, for

which the entry matches the exclusion criteria
03 Unrecognized packet opcode was received
04 Could not forward because the hop count expired
05 Could not determine the client IP address
06 Could not determine the bootfile pathname
07 Target server is on the same cable
08 Unable to determine the adapter over which to reply
09 SupportBootP is NO
10 Client is on a different subnet than the requested address
11 Requested address is restricted
12 Requested address is in use by another client
13 Internal error
14 Requested address is differs from machine table entry
15 No address is available
16 SupportUnlistedClients is NO
17 Client is not recognized
18 Client is not in a valid state
19 Request is not correctly formatted
20 Not selected as the server
21 Ignore any DHCPOffer messages
22 Address is being declined
23 Address is being released
24 Ignore any DHCPAck messages

DHCPD Traces

266 z/VM: TCP/IP Diagnosis Guide

25 Ignore any DHCPNack messages
26 Nothing possible for DHCPInform
27 Client statement specified: NONE
28 Waiting for ICMP Echo to complete
29 No address available
30 Client is on a subnet that is not supported
31 Unrecognized DHCP message type
00 Reason for declining is not known

5000 ICMP Timer expired with a response reply due
5100 Received an ICMP Echo reply
5300 Sending an ICMP Echo request
5500 Lease expired for an address
9000 Time Stamp, including the time and date in standard format
9900 Indicates the time when DHCPD concluded a particular unit of work
9950 The start time when a packet is attempted to be sent (in the SendPacket

routine)
9951 The time when a packet send completes

Trace events which relate to the transmission of BOOT requests or replies, include
information about the packet.

OP = opcode CIADDR = ipaddr DHCPTYPE = msgtype
HTYPE = htype YIADDR = ipaddr
HLEN = hlen SIADDR = ipaddr
HOPS = hops GIADDR = ipaddr
XID = xid CHADDR = chaddr
SNAME = servname
FILE = bootfile

OPTIONS = optiondata

where
OP = opcode

indicates the operation code: 1 for a request or 2 for a reply.
CIADDR = ipaddr

indicates the client IP address, if specified by the client.
DHCPTYPE = msgtype

indicates the type of DHCP message. This parameter is shown only for DHCP
protocol requests and replies.

HTYPE = htype
indicates the network hardware type.

YIADDR = ipaddr
indicates the IP address of the client.

HLEN = hlen
indicates the length of the hardware address.

SIADDR = ipaddr
indicates the Server IP address.

HOPS = hops
indicates the current hop count.

GIADDR = ipaddr
indicates the gateway IP address.

XID = xid
indicates the current transaction ID specified by the client.

CHADDR = chaddr
indicates the client hardware address. This field may be a maximum of 16
bytes long.

SNAME = servname
indicates the Server Host Name. This field may be a maximum of 64 bytes
long. When “SNAME” is followed by “(O)”, the field contains configuration

DHCPD Traces

Chapter 20. Dynamic Host Configuration Protocol Daemon (DHCPD) Traces 267

options instead of only SNAME data. The data shown is a hexadecimal
representation of the contents of the field.

FILE = bootfile
indicates the boot file name. This field may be a maximum of 128 bytes long.
When “FILE” is followed by “(O)”, the field contains configuration options
instead of only FILE data. The data shown is a hexadecimal representation of
the contents of the field.

OPTIONS = optiondata
indicates the current contents of the option area. This field may be a maximum
of 64 bytes long.

DHCPD Traces

268 z/VM: TCP/IP Diagnosis Guide

Chapter 21. Hardware Trace Functions

This chapter describes PCCA and CETI devices. These devices support Local Area
Networks (LANs).

You can trace LAN events in two ways: sniffer traces and CCW traces. Sniffer
traces are attached directly to LANs, and are not dependent on the operating
system. This chapter describes the CCW traces, which are the most common I/O
traces implemented on IBM/370-based LANs.

PCCA Devices
The following sections describe the PCCA block structure, control messages, LAN
messages, token-ring frames, and 802.2 LLC frames.

PCCA Block Structure
You should understand the PCCA block structure to interpret CCW traces. The
PCCA block is a series of messages. Figure 99 shows the PCCA block structure. The
first two bytes of each message is an integer value that determines the offset in the
block of the next message. The last offset value, X'0000', designates the end of the
message. The first two bytes of each data packet indicate the LAN and adapter
numbers.

The PCCA block can be divided into two modes. Figure 100 shows a sample of a
PCCA block with a series of messages. All highlighted halfwords in Figure 100 are
offset fields in the block and denote the beginning of the new message. The last
offset is X'0000'.

Message #1 Message #2 Message #N
�──────────────────� �──────────────────� �──────────────────�
┌────────┬───────────┬────────┬───────────┐ ┌────────┬───────────┬────────┐
│ Offset │ Data Pckt │ Offset │ Data Pckt │...│ Offset │ Data Pckt │ 0000 │
└────────┴───────────┴────────┴───────────┘ └────────┴───────────┴────────┘
�──────�
2 bytes

Figure 99. PCCA Block Structure

© Copyright IBM Corp. 1987, 2001 269

Control Messages
Control messages perform functions, such as starting the LAN and obtaining the
hardware addresses of the LAN adapters. Figure 101 shows the structure of a
PCCA control message, which has three fields.

The following are descriptions of the fields shown in Figure 101.
v Net Type (1 byte); X'00' for control messages

This field helps to determine whether the packet is used for control or LAN
operations.

v Adapter Number (1 byte); X'00', ignored for control messages
v Control field

– Control command (1 byte)
- X'00' Control Timing (sent by PCCA)
- X'01' Start LAN
- X'02' Stop LAN
- X'04' LAN Stats
- X'08' Shutdown

– Control flags (1 byte)
- X'00' From host
- X'01' From PCCA

– Control sequence (1 halfword)
– Return code (1 halfword)
– Net type_2 (1 byte)

This is the net type of the adapter referred to by the control packet.
– Adapter number_2 (1 byte)

This is the number of the adapter referred to by the control packet.
– Count (1 halfword)

This occurs at startup. It is used for block size or a count of items in the data
field (general control packet has 56 bytes, X'38').

– Control reserved
– Ignored (1 halfword)
– Hardware address (6 bytes).

3C TRAPID ENTRY **MP** 3C080000 01000000 E3C3D740 40404040 CP
TRAPID = TCP, TRAPSET = IOSET, IODATA = 500
TRAPTYPE = IO, USER = TCPIP, I/O OLD PSW = 0FC318
DEVICE ADDRESS = 561, CSW = E05590C0 0C000000,

-> CCW(1) = 01559028 240000AA, CCW ADDRESS = 5590B8, ** IDA **
-> IDAW(1) = 14A020,

DATA = 001C0000 01000000 00030100 00380000 *................*
0003D3C3 E2F100D7 C6B800D7 00380000 *..LCS1.PF..P....*
04000000 00030100 00380000 0003D3C3 *..............LC*
E2F100D7 C6B800D7 00540000 01000000 *S1.PF..P........*
00030200 00380000 0003D3C3 E2F100D7 *..........LCS1.P*
C6B800D7 00700000 04000000 00030200 *F..P............*
00380000 0003D3C3 E2F100D7 C6B800D7 *......LCS1.PF..P*
008C0000 01000000 00030201 00380000 *................*
0003D3C3 E2F100D7 C6B800D7 00A80000 *..LCS1.PF..P.y..*
04000000 00030201 00380000 0003D3C3 *..............LC*
E2F100D7 C6B800D7 0000 *S1.PF..P.. *

20 TOD STAMP **MP** 20000000 00000000 A298CC1A 19EA1000 CP

Figure 100. A Sample of a PCCA Control Message Block

Hardware Trace Functions

270 z/VM: TCP/IP Diagnosis Guide

LAN Messages
LAN messages are used to send and receive LAN information or data to and from
other LANs. PCCA LAN messages have three fields.
v Net Type (1 byte)

– X'01' for Ethernet and 802.3
– X'02' for token-ring
– X'07' for FDDI networks

v Adapter Number (1 byte), X'00' or X'01'
v Data for the adapter.

Figure 102 shows a sample of a trace started by a CPTRAP IO command issued on
a VM/SP6 system.

PCCA token-ring packets conform to the canonical 802 standards if they are
specified in a PROFILE TCPIP file. If the PCCA packet is sent to a token-ring, use
the 802.x or Ethernet layout.

Token-Ring Frames
Figure 103 shows the most common layout for token-ring packets. The components
of the token-ring packet are:
v SD - Starting delimiter (1 byte)
v AC - Access control (1 byte)
v FD - Frame control (1 byte)
v DA - Destination address (6 bytes)
v SA - Source address (6 bytes)
v Data - Data field, including LLC frame (variable length)
v ED - End of frame (6 bytes).

Trace output does not include the starting delimiter or the end of frame.

CCW traces provide all fields from AC to Data fields for token-ring frames.

Note: When the first bytes of the source address are ORed with X'80', the frame
contains routing information.

┌──────┬──────┬────────────────────────┐
│ X'00'│ X'00'│ Control information │
└──────┴──────┴────────────────────────┘

Figure 101. PCCA Control Message Structure

┌─────────┬─────────┬───────────────────────┐
│ LAN No. │ ADP No. │ Data to send on a LAN │
└─────────┴─────────┴───────────────────────┘

Figure 102. PCCA LAN Messages Structure

┌────┬────┬────┬────┬────┬──────┬────┐
│ │ │ │ │ │ │ │
│ SD │ AC │ FD │ DA │ SA │ data │ ED │
│ │ │ │ │ │ │ │
└────┴────┴────┴────┴────┴──────┴────┘

]]
└────Trace Information─────┘

Figure 103. Common Layout of a Token-Ring Packet

Hardware Trace Functions

Chapter 21. Hardware Trace Functions 271

802.2 LLC Frame
An 802.2 LLC frame incorporates token-ring and 802.3 packets. This frame is a
SNAP fashion frame for internet protocols and has the following layout:
1. DSAP and SSAP (2 bytes) X'AAAA' designates a SNAP frame
2. Control field (1 byte)
3. Origin/Port (1 byte)
4. Ether type, which has the values:

v X'0800' IP protocol
v X'0806' ARP protocol
v X'8035' RARP protocol.

The data fields for the upper protocol follow the LLC frame.

CCW
There are three main sections of CCW trace output:
v CSW/CCW
v Hexadecimal representation of data
v EBCDIC character representation of data.

Table 23 lists the functions of the PCCA CCW codes.

Table 23. PCCA CCW Codes
Code Function

X'01' Write PCCA.
X'02' Read PCCA.
X'03' Nop PCCA.
X'04' Sense PCCA.
X'C3' Set X mode PCCA.
X'E4' Sense ID PCCA.

The length of the CCW data field is usually X'5000' for runtime operations, and the
CSW count cannot be zero.

Samples of CCW Traces
Figure 104 and Figure 105 show samples of traces started by a CPTRAP IO
command issued on a VM/SP6 system. The data output, which is in hexadecimal
format, is displayed in four columns. X'3C' entries represent the CCW and data.
X'20' entries are the Time Of Day clock stamp associated with the CCW. For more
information on CPTRAP, see the CP System Commands Guide.

Figure 104 is a sample of a VM CCW trace for I/O 560-561. The layout for this
trace is:

Offset Field Description

X'0038' PCCA offset

X'02' PCCA, network type (token-ring)

X'00' PCCA, adapter number

X'6040' Token-ring, AC and FD

X'FFFFFFFFFFFF' Token-ring, destination address (broadcast)

X'90005A6BB806' Token-ring, source address (ORed with 8000)

X'8220' Token-ring, routing information

Hardware Trace Functions

272 z/VM: TCP/IP Diagnosis Guide

X'AAAA' 802.2 DSAP and SSAP (snap mode)

X'03' 802.2 control field

X'000000' 802.2 Prot/Org code

X'0806' 802.2 ether type (ARP type)

X'0006' Beginning of ARP packet

X'0000' Last offset, PCCA packet end delimiter.

Figure 105 shows a sample trace of an IP/ICMP packet on a PCCA token-ring. The
layout for this trace is:

Offset Field Description

X'0068' PCCA offset

X'02' PCCA, network type

X'00' PCCA, adapter number

X'6040' Token-ring, AC and FD

X'10005A250858' Token-ring, destination address

X'000000000000' Token-ring, source address

X'AAAA03000000' 802.2 frame

X'0800' 802.2 ether type (IP)

X'45' Beginning of IP packet (version and IP header
length)

X'00' IP type of service

X'004D' IP total length

X'002B' IP datagram identification

X'0000' IP flags and fragment offset

X'3C' Time to live

X'11' IP protocol (ICMP)

X'05A3' Header checksum

X'09433AE9' Source IP address

X'09432B64' Destination IP address

X'0000' Last offset, PCCA packet end delimiter.

3C TRAPID ENTRY **MP** 3C080000 00900000 E3C3D740 40404040 CP
TRAPID = TCP, TRAPSET = IOSET, IODATA = 500
TRAPTYPE = IO, USER = TCPIP, I/O OLD PSW = 0F5C40
DEVICE ADDRESS = 561, CSW = E05590C0 0C000000,

-> CCW(1) = 01559028 2400003A, CCW ADDRESS = 5590B8, ** IDA **
-> IDAW(1) = 14A020,

DATA = 00380200 6040FFFF FFFFFFFF 90005A6B *....-!,*
B8068220 AAAA0300 00000806 00060800 *..b.............*
06040001 10005A6B B8060943 3AE9C534 *......!,.....ZE.*
00D7C530 09433AEA 0000 *.PE....... *

20 TOD STAMP **MP** 20000000 00000000 A298CC1D B04DE000 CP

Figure 104. A Sample of an ARP Frame on a PCCA Token-Ring

Hardware Trace Functions

Chapter 21. Hardware Trace Functions 273

Figure 106 on page 275 shows a sample of PCCA block encapsulating an IP/TCP
packet on an Ethernet LAN. The trace was run on a VM/SP5 system. The data
output, which is in hexadecimal format, is displayed in three columns. In SP4-5
CCW traces, ignore the first three words. The following is a description of the
highlighted fields that mark the beginning of blocks or packets:

Field Description

X'00F6' Next message offset

X'45' Starting of IP packet

X'0616' Starting of TCP packet

X'0000' Last offset, PCCA packet end delimiter.

3C TRAPID ENTRY **MP** 3C080000 00C00000 E3C3D740 40404040 CP
TRAPID = TCP, TRAPSET = IOSET, IODATA = 500
TRAPTYPE = IO, USER = TCPIP, I/O OLD PSW = 0F5C40
DEVICE ADDRESS = 561, CSW = E05590C0 0C000000,

-> CCW(1) = 01559028 2400006A, CCW ADDRESS = 5590B8, ** IDA **
-> IDAW(1) = 14A020,

DATA = 00680200 60401000 5A250858 00000000 *....- ..!.......*
0000AAAA 03000000 08004500 004D002B *.............(..*
00003C11 05A30943 3AE90943 2B640400 *.....t...Z......*
00350039 ED000001 01000001 00000000 *................*
00000652 414C564D 4D085443 50495044 *.....<.((...&;&;*
45560752 414C4549 47480349 424D0343 *.....<.......(..*
4F4D0000 010001C3 0000 *|(.....C.. *

20 TOD STAMP **MP** 20000000 00000000 A298CC1E 01BE0000 CP

Figure 105. A Sample of an IP/ICMP Packet on a PCCA Token-Ring

Hardware Trace Functions

274 z/VM: TCP/IP Diagnosis Guide

Figure 107 shows the IP header format. For more information about IP headers, see
RFC 791, which is represented with 32-bit words. This sample trace has the same
IP header shown in Figure 106.

I/O CUU =0AE0 CSW = E0930DC0 0C004F08 PSW ADDR = 20D694
17:19:41/378927

CCW = 0291D928 24005000 (930DB8)
C9C4C1E6 0091B920 00000000 *IDAW.J......*
00F60100 00DD0102 33C102CF *.6.......A..*
1F600887 08004500 00E437B3 *...G.....U..*
00004006 397C2C4A 01102C4A *..*
01180616 00C80000 02212F4D *.....H......*
E9995018 111C1D4F 0000084C *ZR..........*
00000100 00003C00 00000250 *............*
0000BC00 00004442 53000000 *............*
69777331 34007361 30303130 *............*
00000000 00000000 54532053 *............*
43490000 0200FFFF FFFF0100 *............*
00007800 00002F75 73722F74 *............*
6573742F 30313233 34353637 *............*
000034AD 0A0020AD 0A002CFC *............*
F70014FC F70034FC F7007A9E *7...7...7...*
02004AFF F7000100 73613031 *....7.......*
20707264 000044AD 0A0038FC *............*
F70038FC F70040FC F700906D *7...7. .7...*
02002900 00000100 00000000 *............*
00000200 00000000 00000000 *............*
00000000 0000B601 00000000 *............*
00000000 F7000000 00000000 *....7.......*

Figure 106. A Sample of a VM/SP4-5 CCW Trace

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

4 5 0 0 0 0 E 4
0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0
|Version| IHL |Type of Service| Total Length |
+-+

3 7 B 3 0 0 0 0
0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| Identification |Flags| Fragment Offset |
+-+

4 0 0 6 3 9 7 C
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0
| Time to Live | Protocol | Header Checksum |
+-+

44.74.1.16
2 C 4 A 0 1 1 0

0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
| Source Address |
+-+

44.74.1.24
2 C 4 A 0 1 1 8

0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
| Destination Address |
+-+
| Options | Padding |
+-+

Figure 107. IP Header Format

Hardware Trace Functions

Chapter 21. Hardware Trace Functions 275

Figure 108 shows the TCP header format.

CETI Devices
CETI devices are Ethernet, token-ring, and X.25 internal adapters for the
IBM/9370.

CETI traces provide the data that is transferred on CETI devices in the trace
output. Table 24 lists the functions of the CCW command codes for CETI devices.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

0 6 1 6 0 0 C 8
0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0
| Source Port | Destination Port |
+-+

0 0 0 0 0 2 2 1
0 1 0 0 0 1 0 0 0 0 1
| Sequence Number |
+-+

2 F 4 D E 9 9 9
0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1
| Acknowledgment Number |
+-+

5 0 1 8 1 1 C 1
0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+

1 D 4 F 0 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| Checksum | Urgent Pointer |
+-+

| Options | Padding |
+-+

L
0 8 4 C 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| data |
+-+

Figure 108. TCP Header Format

Hardware Trace Functions

276 z/VM: TCP/IP Diagnosis Guide

Table 24. CCW Command Codes for CETI Devices
Code Functions

X'00' TestIO.
X'03' Nop.
X'04' Sense adapter state.
X'08' Transfer in channel.
X'C1' Write data buffer.
X'C2' Read data buffer.
X'C4' Sense adapter state.
X'C5' Write control block.
X'C6' Read control block.
X'C7' Data synchronization.
X'C9' Write data parameters.
X'CB' Set CETI mode on.
X'CD' Interrupt write parameters.
X'E4' Sense ID.

Matching CCW Traces and TCP/IP Traces
TCPIP and CCW traces can be matched in numerous ways by using the following:
v The CCW address, which is provided in PCCA and CETI traces
v The device address and first command (CCW code)
v The IP packets ID (IP traces)
v All fields identified by decimal integers in TCPIP internal traces can be

converted to hexadecimal values and matched with the values in the CCW trace
or text output if it is provided by the trace.

Hardware Trace Functions

Chapter 21. Hardware Trace Functions 277

278 z/VM: TCP/IP Diagnosis Guide

Appendix A. Return Codes

This appendix describes return codes sent by TCP/IP to the local client and return
codes for User Datagram Protocol (UDP).

TCP/IP Return Codes
Table 25 describes the return codes sent by TCP/IP to servers and clients through
the Virtual Machine Communication Facility (VMCF).

Table 25. TCP/IP Return Codes Sent to Servers and Clients

Return Message Value Description

OK 0

ABNORMALcondition −1 This indicates a VMCF error that is
not fatal.

ALREADYclosing −2 Connection is closing.

BADlengthARGUMENT −3 Length parameter is invalid.

CANNOTsendDATA −4

CLIENTrestart −5

CONNECTIONalreadyEXISTS −6

DESTINATIONunreachable −7 Returned from the remote site or
gateway.

ERRORinPROFILE −8

FATALerror −9 This is a fatal VMCF error.

HASnoPASSWORD −10 Errors ...

INCORRECTpassword −11 ...in opening

INVALIDrequest −12

INVALIDuserID −13 ...file

INVALIDvirtualADDRESS −14 ...used

KILLEDbyCLIENT −15

LOCALportNOTavailable −16

MINIDISKinUSE −17 ...by

MINIDISKnotAVAILABLE −18 ...MonCommand

NObufferSPACE −19

NOmoreINCOMINGdata −20

NONlocalADDRESS −21

NOoutstandingNOTIFICATIONS −22

NOsuchCONNECTION −23

NOtcpIPservice −24

NOTyetBEGUN −25 Client has not called BeginTcpIp.

NOTyetOPEN −26 Client has not called TcpOpen.

OPENrejected −27

PARAMlocalADDRESS −28 Invalid...

© Copyright IBM Corp. 1987, 2001 279

Table 25. TCP/IP Return Codes Sent to Servers and Clients (continued)

Return Message Value Description

PARAMstate −29 ...values...

PARAMtimeout −30 ...specified...

PARAMunspecADDRESS −31 ...in connection

PARAMunspecPORT −32 ...information record

PROFILEnotFOUND −33

RECEIVEstillPENDING −34

REMOTEclose −35 Foreign client is closing.

REMOTEreset −36

SOFTWAREerror −37 This is a WISCNET software error.

TCPipSHUTDOWN −38

TIMEOUTconnection −39

TIMEOUTopen −40

TOOmanyOPENS −41

UNAUTHORIZEDuser −43

UNEXPECTEDsyn −44

UNIMPLEMENTEDrequest −45

UNKNOWNhost −46 There is a lack of information in
the tables.

UNREACHABLEnetwork −47

UNSPECIFIEDconnection −48

VIRTUALmemoryTOOsmall −49

WRONGsecORprc −50 The request does not have the
necessary security or priority.

X25tooCongested −51 No virtual circuits are available.

YOURend −55

ZEROresources −56

UDP Error Return Codes
Table 26 describes errors that are specific to UDP.

Table 26. UDP Error Return Codes

Return Message Value Description

UDPlocalADDRESS −57 Invalid local address.

UDPunspecADDRESS −59 Unspecified local address.

UDPunspecPORT −60 Unspecified local port.

UDPzeroRESOURCES −61 No space available to continue.

FSENDstillPENDING −62 TcpFSend is still outstanding.

Return Codes

280 z/VM: TCP/IP Diagnosis Guide

Appendix B. Related Protocol Specifications

IBM is committed to industry standards. The internet protocol suite is still evolving
through Requests for Comments (RFC). New protocols are being designed and
implemented by researchers, and are brought to the attention of the internet
community in the form of RFCs. Some of these are so useful that they become a
recommended protocol. That is, all future implementations for TCP/IP are
recommended to implement this particular function or protocol. These become the
de facto standards, on which the TCP/IP protocol suite is built.

Many features of TCP/IP for VM are based on the following RFCs:

RFC Title Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol: or Converting Network Protocol Addresses
to 48.Bit Ethernet Address for Transmission on Ethernet Hardware

D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

877 Standard for the Transmission of IP Datagrams over Public Data Networks J.T. Korb

885 Telnet End of Record Option J.B. Postel

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C.
Mogul, M. Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl,
E.J. Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun Microsystems
Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell, J.S.
Quarterman

1032 Domain Administrators Guide M.K. Stahl

© Copyright IBM Corp. 1987, 2001 281

RFC Title Author

1033 Domain Administrators Operations Guide M. Lottor

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks J.B. Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol Specification K. Hardwick, J.
Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L. Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun Microsystems
Incorporated

1058 Routing Information Protocol C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems
Incorporated

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts-Communication Layers R.T. Braden

1123 Requirements for Internet Hosts-Application and Support R.T. Braden

1155 Structure and Identification of Management Information for TCP/IP-Based
Internets

M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-based
Internets

K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP), J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1179 Line Printer Daemon Protocol The Wollongong Group, L.
McLaughlin III

1180 TCP/IP Tutorial, T. J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions (Updates RFC 1034, RFC 1035) C.F. Everhart, L.A.
Mamakos, R. Ullmann, P.V.
Mockapetris,

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie,
J.R. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI Networks D. Katz

1198 FYI on the X Window System R.W. Scheifler

1207 FYI on Questions and Answers: Answers to Commonly Asked Experienced
Internet User Questions

G.S. Malkin, A.N. Marine,
J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based
Internets: MIB-II,

K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program
Interface

G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB IEEE 802 4 Token Bus MIB K. McCloghrie, R. Fox

1231 IEEE 802.5 Token Ring MIB IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E.
Decker

RFCs

282 z/VM: TCP/IP Diagnosis Guide

|||

RFC Title Author

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version 3) S. Willis, J. Burruss

1293 Inverse Address Resolution Protocol T. Bradley, C. Brown

1270 SNMP Communications Services F. Kastenholz, ed.

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D.
Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked New Internet
User Questions

G.S. Malkin, A.N. Marine

1350 TFTP Protocol K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K.
McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J.
Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K. McCloghrie, J. Davin, J.
Galvin

1354 IP Forwarding Table MIB F. Baker

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D. Robinson, R.
Ullmann

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

1389 RIP Version 2 MIB Extension G. Malkin

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol

D. Haskin

1398 Definitions of Managed Objects for the Ethernet-like Interface Types F. Kastenholz

1440 SIFT/UFT:Sender-Initiated/Unsolicited File Transfer R. Troth

1483 Multiprotocol Encapsulation over ATM Adaptation Layer 5 J. Heinanen

1540 IAB Official Protocol Standards J.B. Postel

1583 OSPF Version 2 J.Moy

1647 TN3270 Enhancements B. Kelly

1700 Assigned Numbers J.K. Reynolds, J.B. Postel

1723 RIP Version 2 — Carrying Additional Information G. Malkin

1813 NFS Version 3 Protocol Specification B. Callaghan, B.
Pawlowski, P. Stauback,
Sun Microsystems
Incorporated

2225 Classical IP and ARP over ATM M. Laubach, J. Halpern

These documents can be obtained from:

RFCs

Appendix B. Related Protocol Specifications 283

|||

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or on a subscription basis. Online copies are available
using FTP from the NIC at nic.ddn.mil. Use FTP to download the files, using the
following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

Where:
nnnn Is the RFC number.
TXT Is the text format.
PS Is the PostScript format.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil. Information is also available
through http://www.internic.net.

RFCs

284 z/VM: TCP/IP Diagnosis Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes to the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1987, 2001 285

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Corporation
Mail Station P300,
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A.
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities on non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to IBM’s application programming interfaces.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

286 z/VM: TCP/IP Diagnosis Guide

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX AS/400
BookManager Common User Access
C/370 DB2
ES/9000 Enterprise System/9000
ES/9370 ESCON
GDDM IBM
NetView Office Vision/VM
SP OpenExtensions
OS/2 PC Network
PROFS RACF
S/390 z/VM

NetView is a registered trademark in the United States and other countries licensed
exclusively through Tivoli.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 287

288 z/VM: TCP/IP Diagnosis Guide

Glossary

This glossary describes the most common terms
associated with TCP/IP communication in an
internet environment, as used in this book.

If you do not find the term you are looking for,
see the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

For abbreviations, the definition usually consists
only of the words represented by the letters; for
complete definitions, see the entries for the
words.

Numerics
3172. IBM Interconnect Controller.

3174. IBM Establishment Controller.

3270. Refers to a series of IBM display devices; for
example, the IBM 3275, 3276 Controller Display Station,
3277, 3278, and 3279 Display Stations, the 3290
Information Panel, and the 3287 and 3286 printers. A
specific device type is used only when a distinction is
required between device types. Information about
display terminal usage also refers to the IBM 3138,
3148, and 3158 Display Consoles when used in display
mode, unless otherwise noted.

37xx Communication Controller. A network interface
used to connect a TCP/IP for VM or MVS network that
supports X.25 connections. NCP with X.25 NPSI must
be running in the controller, and VTAM must be
running on the host.

6611. IBM Network Processor.

8232. IBM LAN Station.

9370. Refers to a series of processors, namely the IBM
9373 Model 20, the IBM 9375 Models 40 and 60, and
the IBM 9377 Model 90 and other models.

A
abend. The abnormal termination of a program or
task.

abstract syntax. A description of a data structure that
is independent of machine-oriented structures and
encodings.

Abstract Syntax Notation One (ASN.1). The OSI
language for describing abstract syntax.

active gateway. A gateway that is treated like a
network interface in that it is expected to exchange
routing information, and if it does not do so for a
period of time, the route associated with the gateway is
deleted.

active open. The state of a connection that is actively
seeking a service. Contrast with passive open.

adapter. A piece of hardware that connects a computer
and an external device. An auxiliary device or unit
used to extend the operation of another system.

address. The unique code assigned to each device or
workstation connected to a network. A standard
internet address uses a two-part, 32-bit address field.
The first part of the address field contains the network
address; the second part contains the local address.

address mask. A bit mask used to select bits from an
Internet address for subnet addressing. The mask is 32
bits long and selects the network portion of the Internet
address and one or more bits of the local portion. It is
sometimes called a subnet mask.

address resolution. A means for mapping network
layer addresses onto media-specific addresses. See ARP.

Address Resolution Protocol (ARP). A protocol used
to dynamically bind an internet address to a hardware
address. ARP is implemented on a single physical
network and is limited to networks that support
broadcast addressing.

address space. A collection of bytes that are allocated,
and in many ways managed, as a single entity by CP.
Each byte within an address space is identified by a
unique address. An address space represents an extent
of storage available to a program. Address spaces
allocated by VM range in size from 64KB to 2GB.

Advanced Interactive Executive (AIX). IBM’s licensed
version of the UNIX operating system.

Advanced Program-to-Program Communications
(APPC). The interprogram communication service
within SNA LU 6.2 on which the APPC/VM interface
is based.

Advanced Research Projects Agency (ARPA). Now
called DARPA, its the U.S. Government agency that
funded the ARPANET.

Advanced Research Projects Agency Network
(ARPANET). A packet switched network developed in
the early 1970’s that is the forerunner of today’s
Internet. It was decommissioned in June 1990.

© Copyright IBM Corp. 1987, 2001 289

agent. As defined in the SNMP architecture, an agent,
or an SNMP server is responsible for performing the
network management functions requested by the
network management stations.

AIX. Advanced Interactive Executive.

American National Standard Code for Information
Interchange (ASCII). The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), used for information
interchange among data processing systems, data
communication systems, and associated equipment. The
ASCII set consists of control characters and graphic
characters. The default file transfer type for FTP, used
to transfer files that contain ASCII text characters.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.
ANSI is sponsored by the Computer and Business
Equipment Manufacturer Association and is responsible
for establishing voluntary industry standards.

ANSI. American National Standards Institute.

API. Application Program Interface.

APPC. Advanced Program-to-Program
Communications.

application. The use to which an information
processing system is put, for example, a payroll
application, an airline reservation application, a
network application.

application layer. The seventh layer of the OSI (Open
Systems Interconnection) model for data
communication. It defines protocols for user or
application programs.

Application Program Interface (API). The formally
defined programming-language interface between an
IBM system control program or licensed program and
its user. APIs allow programmers to write application
programs that use the TCP, UDP, and IP layers of the
TCP/IP protocol suite.

argument. A parameter passed between a calling
program and a called program.

ARP. Address Resolution Protocol.

ARPA. Advanced Research Projects Agency.

ARPANET. Advanced Research Projects Agency
Network.

ASCII. American National Standard Code for
Information Interchange. The default file transfer type
for FTP, used to transfer files that contain ASCII text
characters.

ASN.1. Abstract Syntax Notation One.

ASYNC. Asynchronous.

asynchronous (ASYNC). Without regular time
relationship; unexpected or unpredictable with respect
to the execution of program instruction. See
synchronous.

asynchronous communication. A method of
communication supported by the operating system that
allows an exchange of data with remote device, using
either a start-stop line or an X.25 line. Asynchronous
communications include the file transfer and the
interactive terminal facility support.

Athena Widgets. The X Window widget set developed
by MIT for Project Athena.

Attachment Unit Interface (AUI). Connector used
with thick Ethernet that often includes a drop cable.

AUI. Attachment Unit Interface.

attention key. A function key on terminals that, when
pressed, causes an I/O interruption in the processing
unit.

authentication server. The service that reads a
Kerberos database to verify that a client making a
request for access to an end-service is the client named
in the request. The authentication server provides an
authenticated client ticket as permission to access the
ticket-granting server.

authenticator. Information encrypted by a Kerberos
authentication server that a client presents along with a
ticket to an end-server as permission to access the
service.

authorization. The right granted to a user to
communicate with, or to make use of, a computer
system or service.

B
backbone. In a local area network multiple-bridge
ring configuration, a high-speed link to which rings are
connected by means of bridges. A backbone can be
configured as a bus or as a ring. In a wide area
network, a high-speed link to which nodes or data
switching exchanges (DSES) are connected.

background task. A task with which the user is not
currently interacting, but continues to run.

baseband. Characteristic of any network technology
that uses a single carrier frequency and requires all
stations attached to the network to participate in every
transmission. See broadband.

Basic Encoding Rules (BER). Standard rules for
encoding data units described in ASN.1. Sometimes

290 z/VM: TCP/IP Diagnosis Guide

incorrectly grouped under the term ASN.1, which
correctly refers only to the abstract description
language, not the encoding technique.

Basic Input/Output System (BIOS). A set of routines
that permanently resides in read-only memory (ROM)
in a PC. The BIOS performs the most basic tasks, such
as sending a character to the printer, booting the
computer, and reading the keyboard.

batch. An accumulation of data to be processed. A
group of records or data processing jobs brought
together for processing or transmission. Pertaining to
activity involving little or no user action. See interactive

Bayonet Neill-Concelman (BNC). A standardized
connector used with Thinnet and coaxial cable.

Because It’s Time NETwork (BITNET). A network of
hosts that use the Network Job Entry (NJE) protocol to
communicate. The network is primarily composed of
universities, nonprofit organizations, and research
centers. BITNET has recently merged with the
Computer and Science Network (CSNET) to form the
Corporation for Research and Educational Networking
(CSNET). See CSNET.

BER. Basic Encoding Rules.

Berkeley Software Distribution (BSD). Term used
when describing different versions of the Berkeley
UNIX software, as in “4.3BSD UNIX”.

BFS. Byte File System.

big-endian. A format for storage or transmission of
binary data in which the most significant bit (or byte)
comes first. The reverse convention is little-endian.

BIOS. Basic Input/Output System.

BITNET. Because It’s Time NETwork.

block. A string of data elements recorded, processed,
or transmitted as a unit. The elements can be
characters, words, or physical records.

blocking mode. If the execution of the program
cannot continue until some event occurs, the operating
system suspends the program until that event occurs.

BNC. Bayonet Neill-Concelman.

BOOTPD. Bootstrap Protocol Daemon.

Bootstrap Protocol Daemon (BOOTPD). The BOOTP
daemon responds to client requests for boot
information using information contained in a BOOTP
machine file.

bridge. A router that connects two or more networks
and forwards packets among them. The operations
carried out by a bridge are done at the physical layer
and are transparent to TCP/IP and TCP/IP routing. A

functional unit that connects two local area networks
(LANs) that use the same logical link control (LLC)
procedures but may use different medium access
control (MAC) procedures.

broadband. Characteristic of any network that
multiplexes multiple, independent network carriers
onto a single cable. This is usually done using
frequency division multiplexing. Broadband technology
allows several networks to coexist on one single cable;
traffic from one network does not interfere with traffic
from another, because the “conversations” happen on
different frequencies in the ether, similar to a
commercial radio system.

broadcast. The simultaneous transmission of data
packets to all nodes on a network or subnetwork.

broadcast address. An address that is common to all
nodes on a network.

BSD. Berkeley Software Distribution.

bus topology. A network configuration in which only
one path is maintained between stations. Any data
transmitted by a station is concurrently available to all
other stations on the link.

byte-ordering. The method of sorting bytes under
specific machine architectures. Of the two common
methods, little endian byte ordering places the least
significant byte first. This method is used in Intel**
microprocessors. In the second method, big endian byte
ordering, the most significant byte is placed first. This
method is used in Motorola microprocessors.

Byte File System (BFS). A file system in which a file
consists of an ordered sequence of bytes rather than
records. BFS files can be organized into hierarchical
directories. Byte file systems are enrolled as file spaces
in CMS file pools.

C
Carrier Sense Multiple Access with Collision
Detection (CSMA/CD). The access method used by
local area networking technologies such as Ethernet.

case-sensitive. A condition in which entries for an
entry field must conform to a specific lowercase,
uppercase, or mixed-case format to be valid.

CCITT. Comite Consultatif International
Telegraphique et Telephonique.

channel. A path in a system that connects a processor
and main storage with an I/O device.

channel-attached. pertaining to attachment of devices
directly by data channels (I/O channels)to a computer.
Pertaining to devices attached to a controlling unit by
cables, rather than by telecommunication lines.
Synonymous with local, locally attached.

Glossary 291

checksum. The sum of a group of data associated with
the group and used for checking purposes.

CICS. Customer Information Control System.

Class A network. An internet network in which the
high-order bit of the address is 0. The host number
occupies the three, low-order octets.

Class B network. An internet network in which the
high-order bit of the address is 1, and the next
high-order bit is 0. The host number occupies the two
low-order octets.

Class C network. An internet network in which the
two high-order bits of the address are 1 and the next
high-order bit is 0. The host number occupies the
low-order octet.

CLAW. Common Link Access to Workstation.

client. A function that requests services from a server,
and makes them available to the user. In MVS, an
address space that is using TCP/IP services.

client-server model. A common way to describe
network services and the model user processes
(programs) of those services. Examples include the
name server and resolver paradigm of the DNS and file
server/file client relationships such as NFS and diskless
hosts.

client-server relationship. Any device that provides
resources or services to other devices on a network is a
server. Any device that employs the resources provided
by a server is a client. A machine can run client and
server processes at the same time.

CLIST. Command List.

CLPA. Create Link Pack Area.

CMS. Conversational Monitor System.

Comite Consultatif International Telegraphicque et
Telephonique (CCITT). The International Telegraph
and Telephone Consultative Committee. A unit of the
International Telecommunications Union (ITU) of the
United Nations. CCITT produces technical standards,
known as “recommendations,” for all internationally
controlled aspects of analog and digital communication.

command. The name and any parameters associated
with an action that can be performed by a program.
The command is entered by the user; the computer
performs the action requested by the command name.

Command List (CLIST). A list of commands and
statements designed to perform a specific function for
the user.

command prompt. A displayed symbol, such as [C:\]
that requests input from a user.

Common Link Access to Workstation (CLAW). A
continuously executing duplex channel program
designed to minimize host interrupts while maximizing
channel utilization.

communications adapter. A hardware feature that
enables a computer or device to become a part of a
data network.

community name. A password used by hosts running
Simple Network Management Protocol (SNMP) agents
to access remote network management stations.

compile. To translate a program written in a
high-level language into a machine language program.
The computer actions required to transform a source
file into an executable object file.

compiler. A program that translates a source program
into an executable program (an object program).

Computer and Science Network (CSNET). A large
computer network, mostly in the U.S. but with
international connections. CSNET sites include
universities, research labs, and some commercial
companies. It is now merged with BITNET to form
CREN. See BITNET.

connection. An association established between
functional units for conveying information. The path
between two protocol modules that provides reliable
stream delivery service. In an internet, a connection
extends from a TCP module on one machine to a TCP
module on the other.

Control Program (CP). The VM operating system that
manages the real processor’s resources and is
responsible for simulating System/370s or 390s for
individual users.

conversational monitor system (CMS). A virtual
machine operating system that provides general
interactive time sharing, problem solving, and program
development capabilities, and operates only under
control of the VM//ESA control program.

Corporation for Research and Educational
Networking (CREN). A large computer network
formed from the merging of BITNET and CSNET. See
BITNET and CSNET.

CP. Control Program.

Create Link Pack Area (CLPA). A parameter specified
at startup, which says to create the link pack area.

CREN. Corporation for Research and Educational
Networking.

CSMA/CD. Carrier Sense Multiple Access with
Collision Detection.

CSNET. Computer and Science Network.

292 z/VM: TCP/IP Diagnosis Guide

Customer Information Control System (CICS). An
IBM-licensed program that enables transactions entered
at remote terminals to be processed concurrently by
user written application programs. It includes facilities
for building, using, and maintaining databases.

D
daemon. A background process usually started at
system initialization that runs continuously and
performs a function required by other processes. Some
daemons are triggered automatically to perform their
task; others operate periodically.

DASD. Direct Access Storage Device.

DARPA. Defense Advanced Research Projects Agency.

DATABASE 2 (DB2). An IBM relational database
management system for the MVS operating system.

database administrator (DBA). An individual or
group responsible for the rules by which data is
accessed and stored. The DBA is usually responsible for
database integrity, security, performance and recovery.

datagram. A basic unit of information that is passed
across the internet, it consists of one or more data
packets.

data link layer. Layer 2 of the OSI (Open Systems
Interconnection) model; it defines protocols governing
data packetizing and transmission into and out of each
node.

data set. The major unit of data storage and retrieval
in MVS, consisting of a collection of data in one of
several prescribed arrangements and described by
control information to which the system has access.
Synonymous with file in VM and OS/2.

DB2. DATABASE 2.

DBA. Database administrator.

DBCS. Double Byte Character Set.

DDN. Defense Data Network.

decryption. The unscrambling of data using an
algorithm that works under the control of a key. The
key allows data to be protected even when the
algorithm is unknown. Data is unscrambled after
transmission.

default. A value, attribute, or option that is assumed
when none is explicitly specified.

Defense Advanced Research Projects Agency
(DARPA). The U.S. government agency that funded
the ARPANET.

Defense Data Network (DDN). Comprises the
MILNET and several other Department of Defense
networks.

destination node. The node to which a request or data
is sent.

DHCPD. Dynamic Host Configuration Protocol
Daemon.

Direct Access Storage Device (DASD). A device in
which access to data is independent of where data
resides on the device.

directory. A named grouping of files in a file system.

Disk Operating System (DOS). An operating system
for computer systems that use disks and diskettes for
auxiliary storage of programs and data.

display terminal. An input/output unit by which a
user communicates with a data-processing system or
sub-system. Usually includes a keyboard and always
provides a visual presentation of data; for example, an
IBM 3179 display.

Distributed Program Interface (DPI). A programming
interface that provides an extension to the function
provided by the SNMP agents.

DLL. Dynamic Link Library.

DNS. Domain Name System.

domain. In an internet, a part of the naming hierarchy.
Syntactically, a domain name consists of a sequence of
names (labels) separated by periods (dots).

Domain Name System (DNS). A system in which a
resolver queries name servers for resource records
about a host.

domain naming. A hierarchical system for naming
network resources.

DOS. Disk Operating System.

dotted-decimal notation. The syntactic representation
for a 32-bit integer that consists of four 8-bit numbers,
written in base 10 and separated by periods (dots).
Many internet application programs accept dotted
decimal notations in place of destination machine
names.

double-byte character set (DBCS). A set of characters
in which each character is represented by two bytes.
Languages such as Japanese, Chinese, Korean, which
contain more symbols than can be represented by 256
code points, require double-byte character sets. Because
each character requires 2 bytes, the typing, display, and
printing of DBCS characters requires hardware and
programs that support DBCS.

Glossary 293

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and is
capable of being addressed as a unit.

DPI. Distributed Program Interface.

Dynamic Host Configuration Protocol Daemon
(DHCPD). The DHCP daemon (DHCPD server)
responds to client requests for boot information using
information contained in a DHCP machine file. This
information includes the IP address of the client, the IP
address of the TFTP daemon, and information about
the files to request from the TFTP daemon.

dynamic resource allocation. An allocation technique
in which the resources assigned for execution of
computer programs are determined by criteria applied
at the moment of need.

dynamic link library (DLL). A module containing
dynamic link routines that is linked at load or run time.

E
EBCDIC. Extended binary-coded decimal interchange
code.

EGP. Exterior Gateway Protocol.

encapsulation. A process used by layered protocols in
which a lower-level protocol accepts a message from a
higher-level protocol and places it in the data portion
of the low-level frame. As an example, in Internet
terminology, a packet would contain a header from the
physical layer, followed by a header from the network
layer (IP), followed by a header from the transport
layer (TCP), followed by the application protocol data.

encryption. The scrambling or encoding of data using
an algorithm that works under the control of a key. The
key allows data to be protected even when the
algorithm is unknown. Data is scrambled prior to
transmission.

ES/9370 Integrated Adapters. An adapter you can use
in TCP/IP for VM to connect into Token-Ring networks
and Ethernet networks, as well as TCP/IP networks
that support X.25 connections.

Ethernet. The name given to a local area
packet-switched network technology invented in the
early 1970s by Xerox**, Incorporated. Ethernet uses a
Carrier Sense Multiple Access/Collision Detection
(CSMA/CD) mechanism to send packets.

EXEC. In a VM operating system, a user-written
command file that contains CMS commands, other
user-written commands, and execution control
statements, such as branches.

extended binary-coded decimal interchange code
(EBCDIC). A coded character set consisting of 8-bit
coded characters.

extended character. A character other than a 7-bit
ASCII character. An extended character can be a 1-bit
code point with the 8th bit set (ordinal 128-255) or a
2-bit code point (ordinal 256 and greater).

Exterior Gateway Protocol (EGP). A reachability
routing protocol used by gateways in a two-level
internet.

eXternal Data Representation (XDR). A standard
developed by Sun Microsystems, Incorporated for
representing data in machine-independent format.

F
FAT. File Allocation Table.

FDDI. Fiber Distributed Data Interface. Also used to
abbreviate Fiber Optic Distributed Data Interface.

Fiber Distributed Data Interface (FDDI). The ANSI
standard for high-speed transmission over fiber optic
cable.

Fiber Optic Network. A network based on the
technology and standards that define data transmission
using cables of glass or plastic fibers carrying visible
light. Fiber optic network advantages are: higher
transmission speeds, greater carrying capacity, and
lighter, more compact cable.

file. In VM and OS/2, a named set of records stored
or processed as a unit. Synonymous with data set in
MVS.

File Allocation Table (FAT). A table used to allocate
space on a disk for a file.

File Transfer Access and Management (FTAM). An
application service element that enables user
application processes to manage and access a file
system, which may be distributed.

File Transfer Protocol (FTP). A TCP/IP protocol used
for transferring files to and from foreign hosts. FTP also
provides the capability to access directories. Password
protection is provided as part of the protocol.

foreign host. Any machine on a network that can be
interconnected.

foreign network. In an internet, any other network
interconnected to the local network by one or more
intermediate gateways or routers.

foreign node. See foreign host.

frame. The portion of a tape on a line perpendicular
to the reference edge, on which binary characters can
be written or read simultaneously.

FTAM. File Transfer Access and Management.

294 z/VM: TCP/IP Diagnosis Guide

FTP. File Transfer Protocol.

fullword. A computer word. In System/370, 32 bits or
4 bytes.

G
gadget. A windowless graphical object that looks like
its equivalent like-named widget but does not support
the translations, actions, or pop-up widget children
supplied by that widget.

gateway. A functional unit that interconnects a local
data network with another network having different
protocols. A host that connects a TCP/IP network to a
non-TCP/IP network at the application layer. See also
router.

gather and scatter data. Two related operations.
During the gather operation, data is taken from
multiple buffers and transmitted. In the scatter
operation, data is received and stored in multiple
buffers.

GC. Graphics Context.

GContext. See Graphics Context.

GCS. Group Control System.

GDDM. Graphical Data Display Manager.

GDDMXD. Graphical Data Display Manager interface
for X Window System. A graphical interface that
formats and displays alphanumeric, data, graphics, and
images on workstation display devices that support the
X Window System.

GDF. Graphics data file.

Graphical Display Data Manager (GDDM). A group
of routines that allows pictures to be defined and
displayed procedurally through function routines that
correspond to graphic primitives.

Graphics Context (GC). The storage area for graphics
output. Also known as GC and GContext. Used only
with graphics that have the same root and depth as the
graphics content.

Group Control System (GCS) . A component of
VM/ESA, consisting of a shared segment that you can
Initial Program Load (IPL) and run in a virtual
machine. It provides simulated MVS services and
unique supervisor services to help support a native
SNA network.

H
handle. A temporary data representation that
identifies a file.

halfword. A contiguous sequence of bits or characters
that constitutes half a fullword and can be addressed as
a unit.

HASP. Houston automatic spooling priority system.

HDLC. High-level Data Link Control.

header file. A file that contains constant declarations,
type declarations, and variable declarations and
assignments. Header files are supplied with all
programming interfaces.

High-level Data Link Control (HDLC). An ISO
protocol for X.25 international communication.

High Performance File System (HPFS). An OS/2 file
management system that supports high-speed buffer
storage, long file names, and extended attributes.

hop count. The number of gateways or routers
through which a packet passes on its way to its
destination.

host. A computer connected to a network, which
provides an access method to that network. A host
provides end-user services and can be a client, a server,
or a client and server simultaneously.

Houston automatic spooling priority system (HASP).
A computer program that provides supplementary job
management, data management, and task management
functions such as control of job flow, ordering of tasks,
and spooling.

HPFS. High Performance File System.

HYPERchannel Adapter. A network interface used to
connect a TCP/IP for VM or MVS host into an existing
TCP/IP HYPERchannel network, or to connect TCP/IP
hosts together to create a TCP/IP HYPERchannel
network.

I
IAB. Internet Activities Board.

ICMP. Internet Control Message Protocol.

IEEE. Institute of Electrical and Electronic Engineers.

IETF. Internet Engineering Task Force.

IGMP. Internet Group Management Protocol (IGMP).

IGP. Interior Gateway Protocol.

include file. A file that contains preprocessor text,
which is called by a program, using a standard
programming call. Synonymous with header file.

IMS. Information Management System.

Glossary 295

Information Management System (IMS). A
database/data communication (DB/DC) system that
can manage complex databases and networks.

initial program load (IPL). The initialization
procedure that causes an operating system to
commence operation.

instance. Indicates a label that is used to distinguish
among the variations of the principal name. An instance
allows for the possibility that the same client or service
can exist in several forms that require distinct
authentication.

Institute of Electrical and Electronic Engineers
(IEEE). An electronics industry organization.

Integrated Services Digital Network (ISDN). A
digital, end-to-end telecommunication network that
supports multiple services including, but not limited to,
voice and data.

interactive. Pertaining to a program or a system that
alternately accepts input and then responds. An
interactive system is conversational; that is, a
continuous dialog exists between user and system. See
batch.

Interior Gateway Protocol (IGP). The protocol used to
exchange routing information between collaborating
routers in the Internet. RIP is an example of an IGP.

Internet. The largest internet in the world consisting
of large national backbone nets (such as MILNET,
NSFNET, and CREN) and a myriad of regional and
local campus networks all over the world. The Internet
uses the Internet protocol suite. To be on the Internet,
you must have IP connectivity (be able to TELNET to,
or PING, other systems). Networks with only electronic
mail connectivity are not actually classified as being on
the Internet.

Internet Activities Board (IAB). The technical body
that oversees the development of the Internet suite of
protocols (commonly referred to as TCP/IP). It has two
task forces (the IRTF and the IETF) each charged with
investigating a particular area.

Internet address. A 32-bit address assigned to hosts
using TCP/IP. An internet address consists of a
network number and a local address. Internet addresses
are represented in a dotted-decimal notation and are
used to route packets through the network.

Internet Engineering Task Force (IETF). One of the
task forces of the IAB. The IETF is responsible for
solving short-term engineering needs of the Internet.

International Organization for Standardization (ISO).
An organization of national standards bodies from
various countries established to promote development
of standards to facilitate international exchange of

goods and services, and develop cooperation in
intellectual, scientific, technological, and economic
activity.

internet or internetwork. A collection of packet
switching networks interconnected by gateways,
routers, bridges, and hosts to function as a single,
coordinated, virtual network.

internet address. The unique 32-bit address
identifying each node in an internet. See also address.

Internet Control Message Protocol (ICMP). The part
of the Internet Protocol layer that handles error
messages and control messages.

Internet Group Management Protocol (IGMP). IGMP
is used by IP hosts to report their host group
memberships to multicast routers.

Internet Protocol (IP). The TCP/IP layer between the
higher level host-to-host protocol and the local network
protocols. IP uses local area network protocols to carry
packets, in the form of datagrams, to the next gateway,
router, or destination host.

interoperability. The capability of different hardware
and software by different vendors to effectively
communicate together.

Inter-user communication vehicle (IUCV). A VM
facility for passing data between virtual machines and
VM components.

intrinsics X-Toolkit. A set management mechanism
that provides for constructing and interfacing between
composite X Window widgets, their children, and other
clients. Also, intrinsics provide the ability to organize a
collection of widgets into an application.

IP. Internet Protocol.

IP datagram. The fundamental unit of information
passed across the Internet. An IP datagram contains
source and destination addresses along with data and a
number of fields that define such things as the length
of the datagram, the header checksum, and flags to say
whether the datagram can be (or has been) fragmented.

IPL. Initial Program Load.

ISDN. Integrated Services Digital Network.

ISO. International Organization for Standardization.

IUCV. Inter-User Communication Vehicle.

J
JCL. Job Control Language.

JES. Job Entry Subsystem.

296 z/VM: TCP/IP Diagnosis Guide

JIS. Japanese Institute of Standards.

Job Control Language (JCL). A problem-oriented
language designed to express statements in a job that
are used to identify the job or describe its requirements
to an operating system.

Job Entry Subsystem (JES). An IBM System/370
licensed program that receives jobs into the system and
processes all output data produced by the jobs.

JUNET. The Japanese Academic and Research
Network that connects various UNIX operating
systems.

K
Kanji. A graphic character set consisting of symbols
used in Japanese ideographic alphabets. Each character
is represented by 2 bytes.

katakana. A character set of symbols used on one of
the two common Japanese phonetic alphabets, which is
used primarily to write foreign words phonetically. See
also kanji.

Kerberos. A system that provides authentication
service to users in a network environment.

Kerberos Authentication System. An authentication
mechanism used to check authorization at the user
level.

L
LaMail. The client that communicates with the OS/2
Presentation Manager to manage mail on the network.

LAN. Local area network.

Line Printer Client (LPR). A client command that
allows the local host to submit a file to be printed on a
remote print server.

Line Printer Daemon (LPD). The remote printer
server that allows other hosts to print on a printer local
to your host.

little-endian. A format for storage or transmission of
binary data in which the least significant bit (or byte)
comes first. The reverse convention is big-endian.

local area network (LAN). A data network located on
the user’s premises in which serial transmission is used
for direct data communication among data stations.

local host. In an internet, the computer to which a
user’s terminal is directly connected without using the
internet.

local network. The portion of a network that is
physically connected to the host without intermediate
gateways or routers.

logical character delete symbol. A special editing
symbol, usually the at (@) sign, which causes CP to
delete it and the immediately preceding character from
the input line. If many delete symbols are consecutively
entered, the same number of preceding characters are
deleted from the input line.

Logical Unit (LU). An entity addressable within an
SNA-defined network. LUs are categorized by the types
of communication they support.

LPD. Line Printer Daemon.

LPR. Line Printer Client.

LU. Logical Unit.

LU-LU session. In SNA, a session between two logical
units (LUs). It provides communication between two
end users, or between an end user and an LU services
component.

LU type. In SNA, the classification of an LU-LU
session in terms of the specific subset of SNA protocols
and options supported by the logical units (LUs) for
that session.

M
MAC. Media Access Control.

mail gateway. A machine that connects two or more
electronic mail systems (often different mail systems on
different networks) and transfers messages between
them.

Management Information Base (MIB). A standard
used to define SNMP objects, such as packet counts
and routing tables, that are in a TCP/IP environment.

mapping. The process of relating internet addresses to
physical addresses in the network.

mask. A pattern of characters used to control retention
or elimination of portions of another pattern of
characters. To use a pattern of characters to control
retention or elimination of another pattern of
characters. A pattern of characters that controls the
keeping, deleting, or testing of portions of another
pattern of characters.

Maximum Transmission Unit (MTU). The largest
possible unit of data that can be sent on a given
physical medium.

media access control (MAC). The method used by
network adapters to determine which adapter has
access to the physical network at a given time.

Glossary 297

Message Handling System (MHS). The system of
message user agents, message transfer agents, message
stores, and access units that together provide OSI
electronic mail.

MHS. Message Handling System.

MIB. Management Information Base.

microcode. A code, representing the instructions of an
instruction set, which is implemented in a part of
storage that is not program-addressable.

MILNET. Military Network.

Military Network (MILNET). Originally part of the
ARPANET, MILNET was partitioned in 1984 to make it
possible for military installations to have reliable
network service, while the ARPANET continued to be
used for research. See DDN.

minidisk. Logical divisions of a physical direct access
storage device.

modem (modulator/demodulator). A device that
converts digital data from a computer to an analog
signal that can be transmitted on a telecommunication
line, and converts the analog signal received to data for
the computer.

Motif. see OSF/Motif.

mouse. An input device that is used to move a pointer
on the screen and select items.

MPROUTE. Multi-Path Routing. Implements the
OSPF protocol described in RFC 1583, 1058, and 1723.

MTU. Maximum Transmission Unit.

multicast. The simultaneous transmission of data
packets to a group of selected nodes on a network or
subnetwork.

multiconnection server. A server that is capable of
accepting simultaneous, multiple connections.

Multiple Virtual Storage (MVS). Implies MVS/370,
the MVS/XA product, and the MVS/ESA product.

multitasking. A mode of operation that provides for
the concurrent performance execution of two or more
tasks.

MVS. Multiple Virtual Storage.

N
name server. The server that stores resource records
about hosts.

National Science Foundation (NSF). Sponsor of the
NSFNET.

National Science Foundation Network (NSFNET). A
collection of local, regional, and mid-level networks in
the U.S. tied together by a high-speed backbone.
NSFNET provides scientists access to a number of
supercomputers across the country.

NCP. Network Control Program.

NDB. Network Database.

NDIS. Network Driver Interface Specification.

Netman. This device keyword specifies that this
device is a 3172 LAN Channel Station that supports
IBM Enterprise-Specific SNMP Management
Information Base (MIB) variables for 3172. TCP/IP for
VM supports SNMP GET and SNMP GETNEXT
operations to request and retrieve 3172
Enterprise-Specific MIB variables. These requests are
answered only by those 3172 devices with the
NETMAN option in the PROFILE TCPIP file.

NetView. A system 390-based, IBM-licensed program
used to monitor, manage, and diagnose the problems of
a network.

network. An arrangement of nodes and connecting
branches. Connections are made between data stations.
Physical network refers to the hardware that makes up
a network. Logical network refers to the abstract
organization overlaid on one or more physical
networks. An internet is an example of a logical
network.

network adapter. A physical device, and its associated
software, that enables a processor or controller to be
connected to a network.

network administrator. The person responsible for the
installation, management, control, and configuration of
a network.

Network Control Program (NCP). An IBM-licensed
program that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability.

network database (NDB). An IBM-licensed program
that provides communication controller support for
single-domain, multiple-domain, and interconnected
network capability. NDB allows interoperability among
different database systems, and uses RPC protocol with
a client/server type of relationship. NDB is used for
data conversion, security, I/O buffer management, and
transaction management.

Network Driver Interface Specification (NDIS). An
industry-standard specification used by applications as
an interface with network adapter device drivers.

network elements. As defined in the SNMP
architecture, network elements are gateways, routers,
and hosts that contain management agents responsible

298 z/VM: TCP/IP Diagnosis Guide

for performing the network management functions
requested by the network management stations.

network file system (NFS). The NFS protocol, which
was developed by Sun Microsystems, Incorporated,
allows computers in a network to access each other’s
file systems. Once accessed, the file system appears to
reside on the local host.

Network Information Center (NIC). Originally there
was only one, located at SRI International and tasked to
serve the ARPANET (and later DDN) community.
Today, there are many NICs operated by local, regional,
and national networks all over the world. Such centers
provide user assistance, document service, training, and
more.

Network Job Entry (NJE). In object distribution, an
entry in the network job table that specifies the system
action required for incoming network jobs sent by a
particular user or group of users. Each entry is
identified by the user ID of the originating user or
group.

network layer. Layer 3 of the Open Systems
Interconnection (OSI) model; it defines protocols
governing data routing.

network management stations. As defined in the
SNMP architecture, network management stations, or
SNMP clients, execute management applications that
monitor and control network elements.

NFS. Network file system.

NIC. Network Information Center.

NJE. Network Job Entry.

node. In a network, a point at which one or more
functional units connect channels or data circuits. In a
network topology, the point at an end of a branch.

nonblocking mode. If the execution of the program
cannot continue until some event occurs, the operating
system does not suspend the program until that event
occurs. Instead, the operating system returns an error
message to the program.

NPSI. X.25 NCP Packet Switching Interface.

NSF. National Science Foundation.

NSFNET. National Science Foundation Network.

O
octet. A byte composed of eight binary elements.

Offload host. Any device that is handling the TCP/IP
processing for the MVS host where TCP/IP for MVS is
installed. Currently, the only supported Offload host is
the 3172-3.

Offload system. Represents both the MVS host where
TCP/IP for MVS is installed and the Offload host that
is handling the TCP/IP Offload processing.

open system. A system with specified standards and
that therefore can be readily connected to other systems
that comply with the same standards.

Open Systems Interconnection (OSI). The
interconnection of open systems in accordance with
specific ISO standards. The use of standardized
procedures to enable the interconnection of data
processing systems.

Operating System/2 (OS/2). Pertaining to the IBM
licensed program that can be used as the operating
system for personal computers. The OS/2 licensed
program can perform multiple tasks at the same time.

OS/2. Operating System/2.

OSF/Motif. OSF/Motif is an X Window System toolkit
defined by Open Software Foundation, Inc. (OSF),
which enables the application programmer to include
standard graphic elements that have a 3-D appearance.
Performance of the graphic elements is increased with
gadgets and windowless widgets.

OSI. Open Systems Interconnection.

OSPF. Open Shortest Path First. An Interior Gateway
Protocol that distributes routing information within a
single Autonomous System.

out-of-band data. Data that is placed in a secondary
channel for transmission. Primary and secondary
communication channels are created physically by
modulation on a different frequency, or logically by
specifying a different logical channel. A primary
channel can have a greater capacity than a secondary
one.

OV. OfficeVision.

P
packet. A sequence of binary digits, including data
and control signals, that is transmitted and switched as
a composite whole.

Packet Switching Data Network (PSDN). A network
that uses packet switching as a means of transmitting
data.

parameter. A variable that is given a constant value
for a specified application.

parse. To analyze the operands entered with a
command.

passive open. The state of a connection that is
prepared to provide a service on demand. Contrast
with active open.

Glossary 299

Partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data.

PC. Personal computer.

PCA. Personal Channel Attach.

PC Network. A low-cost, broadband network that
allows attached IBM personal computers, such as IBM
5150 Personal Computers, IBM Computer ATs, IBM
PC/XTs, and IBM Portable Personal Computers to
communicate and to share resources.

PDS. Partitioned data set.

PDN. Public Data Network.

PDU. Protocol data unit.

peer-to-peer. In network architecture, any functional
unit that resides in the same layer as another entity.

Personal Channel Attach (PCA). see Personal System
Channel Attach.

Personal Computer (PC). A microcomputer primarily
intended for stand-alone use by an individual.

Personal System Channel Attach (PSCA). An adapter
card to connect a micro-channel based personal
computer (or processor) to a System/370 parallel
channel.

physical layer. Layer 1 of the Open Systems
Interconnection (OSI) model; it details protocols
governing transmission media and signals.

physical unit (PU). In SNA, the component that
manages and monitors the resources, such as attached
links and adjacent link stations, associated with a node,
as requested by an SSPC via an SSPC-PU session. An
SSPC activates a session with the physical unit in order
to indirectly manage, through the PU, resources of the
node such as attached links.

PING. The command that sends an ICMP Echo
Request packet to a host, gateway, or router with the
expectation of receiving a reply.

PM. Presentation Manager.

PMANT. In OS/2, the 3270 client terminal emulation
program that is invoked by the PMANT command.

polling. On a multipoint connection or a
point-to-point connection, the process whereby data
stations are invited one at a time to transmit.
Interrogation of devices for such purposes as to avoid
contention, to determine operational status, or to
determine readiness to send or receive data.

POP. Post Office Protocol.

port. An endpoint for communication between
devices, generally referring to a logical connection. A
16-bit number identifying a particular Transmission
Control Protocol or User Datagram Protocol resource
within a given TCP/IP node.

PORTMAP. Synonymous with Portmapper.

Portmapper. A program that maps client programs to
the port numbers of server programs. Portmapper is
used with Remote Procedure Call (RPC) programs.

Post Office Protocol (POP). A protocol used for
exchanging network mail.

presentation layer. Layer 6 of the Open Systems
Interconnections (OSI) model; it defines protocols
governing data formats and conversions.

Presentation Manager (PM). A component of OS/2
that provides a complete graphics-based user interface,
with pull-down windows, action bars, and layered
menus.

principal name. Specifies the unique name of a user
(client) or service.

PostScript. A standard that defines how text and
graphics are presented on printers and display devices.

process. A unique, finite course of events defined by
its purpose or by its effect, achieved under defined
conditions. Any operation or combination of operations
on data. A function being performed or waiting to be
performed. A program in operation; for example, a
daemon is a system process that is always running on
the system.

Professional Office Systems (PROFS). IBM’s
proprietary, integrated office management system used
for sending, receiving, and filing electronic mail, and a
variety of other office tasks. PROFS has been replaced
by OfficeVision. See OfficeVision.

PROFS. Professional Office Systems.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in achieving
communication. Protocols can determine low-level
details of machine-to-machine interfaces, such as the
order in which bits from a byte are sent; they can also
determine high-level exchanges between application
programs, such as file transfer.

Protocol data unit (PDU). A set of commands used by
the SNMP agent to request management station data.

protocol suite. A set of protocols that cooperate to
handle the transmission tasks for a data communication
system.

PSCA. Personal System Channel Attach.

PSDN. Packet Switching Data Network.

300 z/VM: TCP/IP Diagnosis Guide

PU. Physical unit.

Public Data Network (PDN). A network established
and operated by a telecommunication administration or
by a Recognized Private Operating Agency (RPOA) for
the specific purpose of providing circuit-switched,
packet-switched, and leased-circuit services to the
public.

Q
QDIO. Queued Direct I/O.

queue. A line or list formed by items in a system
waiting for service; for example, tasks to be performed
or messages to be transmitted. To arrange in, or form, a
queue.

R
RACF. Resource access control facility.

RARP. Reverse Address Resolution Protocol.

read-only access. An access mode associated with a
virtual disk directory that lets a user read, but not write
or update, any file on the disk directory.

read/write access. An access mode associated with a
virtual disk directory that lets a user read and write
any file on the disk directory (if write authorized).

realm. One of the three parts of a Kerberos name. The
realm specifies the network address of the principal
name or instance. This address must be expressed as a
fully qualified domain name, not as a “dot numeric”
internet address.

recursion. A process involving numerous steps, in
which the output of each step is used for the successive
step.

reduced instruction-set computer (RISC). A computer
that uses a small, simplified set of frequently used
instructions for rapid execution.

reentrant. The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

Remote Execution Protocol (REXEC). A protocol that
allows the execution of a command or program on a
foreign host. The local host receives the results of the
command execution. This protocol uses the REXEC
command.

remote host. A machine on a network that requires a
physical link to interconnect with the network.

remote logon. The process by which a terminal user
establishes a terminal session with a remote host.

Remote Procedure Call (RPC). A facility that a client
uses to request the execution of a procedure call from a
server. This facility includes a library of procedures and
an eXternal data representation.

Remote Spooling Communications Subsystem
(RSCS). An IBM-licensed program that transfers spool
files, commands, and messages between VM users,
remote stations, and remote and local batch systems,
through HASP-compatible telecommunication facilities.

Request For Comments (RFC). A series of documents
that covers a broad range of topics affecting
internetwork communication. Some RFCs are
established as internet standards.

resolver. A program or subroutine that obtains
information from a name server or local table for use
by the calling program.

resource access control facility (RACF). An
IBM-licensed program that provides for access control
by identifying and by verifying the users to the system,
authorizing access to protected resources, logging the
detected unauthorized attempts to enter the system,
and logging the detected accesses to protected
resources.

resource records. Individual records of data used by
the Domain Name System. Examples of resource
records include the following: a host’s Internet Protocol
addresses, preferred mail addresses, and aliases.

response unit (RU). In SNA, a message unit that
acknowledges a request unit. It may contain prefix
information received in a request unit. If positive, the
response unit may contain additional information such
as session parameters in response to BIND SESSION. If
negative, it contains sense data defining the exception
condition.

Restructured Extended Executor (REXX) language. A
general purpose programming language, particularly
suitable for EXEC procedures, XEDIT macros, or
programs for personal computing. Procedures, XEDIT
macros, and programs written in this language can be
interpreted by the Procedures Language VM/REXX
interpreter.

return code. A code used to influence the execution of
succeeding instructions. A value returned to a program
to indicate the results of an operation requested by that
program.

Reverse Address Resolution Protocol (RARP). A
protocol that maintains a database of mappings
between physical hardware addresses and IP addresses.

REXEC. Remote Execution Protocol.

REXX. Restructured Extended Executor language.

RFC. Request For Comments.

Glossary 301

RIP. Routing Information Protocol.

RISC. Reduced instruction-set computer.

router. A device that connects networks at the ISO
Network Layer. A router is protocol-dependent and
connects only networks operating the same protocol.
Routers do more than transmit data; they also select the
best transmission paths and optimum sizes for packets.
In TCP/IP, routers operate at the Internetwork layer.
See also gateway.

Routing Information Protocol (RIP). The protocol that
maintains routing table entries for gateways, routers,
and hosts.

routing table. A list of network numbers and the
information needed to route packets to each.

RPC. Remote Procedure Call.

RSCS. Remote Spooling Communications Subsystem.

RU. Response unit.

S
SAA. Systems Application Architecture.

SBCS. Single Byte Character Set.

SDLC. Synchronous data link control.

Sendmail. The OS/2 mail server that uses Simple
Mail Transfer Protocol to route mail from one host to
another host on the network.

serial line. A network media that is a de facto
standard, not an international standard, commonly
used for point-to-point TCP/IP connections. Generally,
a serial line consists of an RS-232 connection into a
modem and over a telephone line.

semantics. The relationships of characters or groups of
characters to their meanings, independent of the
manner of their interpretation and use. The
relationships between symbols and their meanings.

server. A function that provides services for users. A
machine can run client and server processes at the
same time.

SFS. Shared File System.

Shared File System (SFS). A part of CMS that lets
users organize their files into groups known as
directories and selectively share those files and
directories with other users.

Simple Mail Transfer Protocol (SMTP). A TCP/IP
application protocol used to transfer mail between

users on different systems. SMTP specifies how mail
systems interact and the format of control messages
they use to transfer mail.

Simple Network Management Protocol (SNMP). A
protocol that allows network management by elements,
such as gateways, routers, and hosts. This protocol
provides a means of communication between network
elements regarding network resources.

simultaneous peripheral operations online (SPOOL).
(Noun) An area of auxiliary storage defined to
temporarily hold data during its transfer between
peripheral equipment and the processor. (Verb) To use
auxiliary storage as a buffer storage to reduce
processing delays when transferring data between
peripheral equipment and the processing storage of a
computer.

single-byte character set (SBCS). A character set in
which each character is represented by a one-byte code.
Contrast with double-byte character set.

SMI. Structure for Management Information.

SMTP. Simple Mail Transfer Protocol.

SNA. Systems Network Architecture.

SNALINK. SNA Network Link.

SNA Network Link. An SNA network link function of
TCP/IP for VM and MVS hosts running TCP/IP to
communicate through an existing SNA backbone.

SNMP. Simple Network Management Protocol.

SOA. Start of authority record.

socket. An endpoint for communication between
processes or applications. A pair consisting of TCP port
and IP address, or UDP port and IP address.

socket address. An address that results when the port
identification number is combined with an internet
address.

socket interface. An application interface that allows
users to write their own applications to supplement
those supplied by TCP/IP.

SPOOL. Simultaneous peripheral operations online.

spooling. The processing of files created by or
intended for virtual readers, punches, and printers. The
spool files can be sent from one virtual device to
another, from one virtual machine to another, and to
read devices.

SQL. Structured Query Language.

SQL/DS. Structured Query Language/Data System.

302 z/VM: TCP/IP Diagnosis Guide

SSL. Secure Sockets Layer. Provides the secure
(encrypted) communication between a remote client
and a TCP/IP server.

start of authority record (SOA). In the Domain Name
System, the resource record that defines a zone.

stream. A continuous sequence of data elements being
transmitted, or intended for transmission, in character
or binary-digit form, using a defined format.

Structured Query Language (SQL). Fourth generation
English-like programming language used to perform
queries on relational databases.

Structured Query Language/Data System (SQL/DS).
An IBM relational database management system for the
VM and VSE operating systems.

Structure for Management Information (SMI). The
rules used to define the objects that can be accessed
through a network management protocol. See also MIB.

subagent. In the SNMP architecture, a subagent
provides an extension to the utility provided by the
SNMP agent.

subdirectory. A directory contained within another
directory in a file system hierarchy.

subnet. A networking scheme that divides a single
logical network into smaller physical networks to
simplify routing.

subnet address. The portion of the host address that
identifies a subnetwork.

subnet mask. A mask used in the IP protocol layer to
separate the subnet address from the host portion of
the address.

subnetwork. Synonymous with subnet.

subsystem. A secondary or subordinate system,
usually capable of operating independent of, or
asynchronously with, a controlling system.

SYNC. Synchronous.

synchronous (SYNC). Pertaining to two or more
processes that depend on the occurrences of a specific
event such as common timing signal. Occurring with a
regular or predictable time relationship. See
asynchronous.

synchronous data link control (SDLC). A data link
over which communication is conducted using the
synchronous data protocol.

Systems Application Architecture (SAA). A formal
set of rules that enables applications to be run without
modification in different computer environments.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T
TALK. An interactive messaging system that sends
messages between the local host and a foreign host.

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telnet. The Terminal Emulation Protocol, a TCP/IP
application protocol for remote connection service.
Telnet allows a user at one site to gain access to a
foreign host as if the user’s terminal were connected
directly to that foreign host.

terminal emulator. A program that imitates the
function of a particular kind of terminal.

Terminate and Stay Resident (TSR) program. A TSR
is a program that installs part of itself as an extension
of DOS when it is executed.

TFTPD. Trivial File Transfer Protocol Daemon.

ticket. Encrypted information obtained from a
Kerberos authentication server or a ticket-granting
server. A ticket authenticates a user and, in conjunction
with an authenticator, serves as permission to access a
service when presented by the authenticated user.

ticket-granting server. Grants Kerberos tickets to
authenticated users as permission to access an
end-service.

Time Sharing Option (TSO). An operating system
option; for System/370 system, the option provides
interactive time sharing from remote terminals

time stamp. To apply the current system time. The
value on an object that is an indication of the system
time at some critical point in the history of the object.
In query, the identification of the day and time when a
query report was created that query automatically
provides on each report.

TN3270. An informally defined protocol for
transmitting 3270 data streams over Telnet.

token. In a local network, the symbol of authority
passed among data stations to indicate the station
temporarily in control of the transmission medium.

token-bus. See bus topology.

token ring. As defined in IEEE 802.5, a
communication method that uses a token to control

Glossary 303

access to the LAN. The difference between a token bus
and a token ring is that a token-ring LAN does not use
a master controller to control the token. Instead, each
computer knows the address of the computer that
should receive the token next. When a computer with
the token has nothing to transmit, it passes the token to
the next computer in line.

token-ring network. A ring network that allows
unidirectional data transmission between data stations
by a token-passing procedure over one transmission
medium, so that the transmitted data returns to the
transmitting station.

Transmission Control Protocol (TCP). The TCP/IP
layer that provides reliable, process-to-process data
stream delivery between nodes in interconnected
computer networks. TCP assumes that IP (Internet
Protocol) is the underlying protocol.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A suite of protocols designed to allow
communication between networks regardless of the
technologies implemented in each network.

transport layer. Layer 4 of the Open Systems
Interconnection (OSI) model; it defines protocols
governing message structure and some error checking.

TRAP. An unsolicited message that is sent by an
SNMP agent to an SNMP network management station.

Trivial File Transfer Protocol Daemon (TFTPD). The
TFTP daemon (TFTPD server) transfers files between
the Byte File System (BFS) and TFTP clients. TFTPD
supports access to files maintained in a BFS directory
structure that is mounted.

TSO. Time Sharing Option.

TSR. Terminate and stay resident. TSR usually refers
to a terminate-and-stay-resident program.

U
UDP. User Datagram Protocol.

user. A function that uses the services provided by a
server. A host can be a user and a server at the same
time. See client.

User Datagram Protocol (UDP). A datagram level
protocol built directly on the IP layer. UDP is used for
application-to-application programs between TCP/IP
hosts.

user exit. A point in an IBM-supplied program at
which a user routine may be given control.

user profile. A description of a user, including user
ID, user name, defaults, password, access authorization,
and attributes.

V
virtual address. The address of a location in virtual
storage. A virtual address must be translated into a real
address to process the data in processor storage.

Virtual Machine (VM). Licensed software whose full
name is Virtual Machine/Enterprise Systems
Architecture (VM/ESA) It is a software operating
system that manages the resources of a real processor
to provide virtual machines to end users. It includes
time-sharing system control program (CP), the
conversational monitor system (CMS), the group
control system (GCS), and the dump viewing facility
(DVF).

Virtual Machine Communication Facility (VMCF). A
connectionless mechanism for communication between
address spaces.

Virtual Machine/System Product (VM/SP). An
IBM-licensed program that manages the resources of a
single computer so that multiple computing systems
appear to exist. Each virtual machine is the functional
equivalent of a real machine.

virtual storage. Storage space that can be regarded as
addressable main storage by the user of a computer
system in which virtual addresses are mapped into real
addresses. The size of virtual storage is limited by the
addressing scheme of the computing system and by the
amount of auxiliary storage available, not by the actual
number of main storage locations.

Virtual Telecommunications Access Method (VTAM).
An IBM-licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VM. Virtual Machine.

VMCF. Virtual Machine Communication Facility.

VM/ESA. Virtual Machine/Enterprise System
Architecture

VMSES/E. Virtual Machine Serviceability
Enhancements Staged/Extended.

VTAM. Virtual Telecommunications Access Method.

W
WAN. Wide area network.

well-known port. A port number that has been
preassigned for specific use by a specific protocol or
application. Clients and servers using the same protocol
communicate over the same well-known port.

304 z/VM: TCP/IP Diagnosis Guide

wide area network (WAN). A network that provides
communication services to a geographic area larger
than that served by a local area network.

widget. The basic data type of the X Window System
Toolkit. Every widget belongs to a widget class that
contains the allowed operations for that corresponding
class.

window. An area of the screen with visible boundaries
through which a panel or portion of a panel is
displayed.

working directory. The directory in which an
application program is found. The working directory
becomes the current directory when the application is
started.

X
X Client. An application program which uses the X
protocol to communicate windowing and graphics
requests to an X Server.

XDR. eXternal Data Representation.

XEDIT. The CMS facility, containing the XEDIT
command and XEDIT subcommands and macros, that
lets a user create, change, and manipulate CMS files.

X Server. A program which interprets the X protocol
and controls one or more screens, a pointing device, a
keyboard, and various resources associated with the X
Window System, such as Graphics Contexts, Pixmaps,
and color tables.

X Window System. The X Window System is a
protocol designed to support network transparent
windowing and graphics. TCP/IP for VM and MVS
provides client support for the X Window System
application program interface.

X Window System API. An application program
interface designed as a distributed,
network-transparent, device-independent, windowing
and graphics system.

X Window System Toolkit. Functions for developing
application environments.

X.25. A CCITT communication protocol that defines
the interface between data terminal equipment and
packet switching networks.

X.25 NCP Packet Switching Interface (X.25 NPSI). An
IBM-licensed program that allows users to
communicate over packet switched data networks that
have interfaces complying with Recommendation X.25
(Geneva** 1980) of the CCITT. It allows SNA programs
to communicate with SNA equipment or with non-SNA
equipment over such networks.

Z
ZAP. To modify or dump an individual text file/data
set using the ZAP command or the ZAPTEXT EXEC.

ZAP disk. The virtual disk in the VM operating
system that contains the user-written modifications to
VTAM code.

zone. In the Domain Name System, a zone is a logical
grouping of domain names that is assigned to a
particular organization. Once an organization controls
its own zone, it can change the data in the zone, add
new tree sections connected to the zone, delete existing
nodes, or delegate new subzones under its zone.

Glossary 305

306 z/VM: TCP/IP Diagnosis Guide

Bibliography

This bibliography lists the publications that
provide information about your z/VM system.
The z/VM library includes z/VM base
publications, publications for additional facilities
included with z/VM, and publications for z/VM
optional features. For abstracts of z/VM
publications and information about current
editions and available publication formats, see
z/VM: General Information.

z/VM Base Publications

Evaluation
v z/VM: Licensed Program Specifications, GC24-5943
v z/VM: General Information, GC24-5944

Installation and Service
v z/VM: Installation Guide, GC24-5945
v z/VM: Service Guide, GC24-5946
v z/VM: VMSES/E Introduction and Reference,

GC24-5947

Planning and Administration
v z/VM: Planning and Administration, SC24-5948
v z/VM: CMS File Pool Planning, Administration,

and Operation, SC24-5949
v z/VM: Migration Guide, GC24-5928
v VM/ESA: REXX/EXEC Migration Tool for

VM/ESA, GC24-5752
v z/VM: Running Guest Operating Systems,

SC24-5950
v VM/ESA: Connectivity Planning, Administration,

and Operation, SC24-5756
v z/VM: Group Control System, SC24-5951
v z/VM: Performance, SC24-5952

Customization
v z/VM: CP Exit Customization, SC24-5953

Operation
v z/VM: System Operation, SC24-5954
v z/VM: Virtual Machine Operation, SC24-5955

Application Programming
v z/VM: CP Programming Services, SC24-5956
v z/VM: CMS Application Development Guide,

SC24-5957
v z/VM: CMS Application Development Guide for

Assembler, SC24-5958
v z/VM: CMS Callable Services Reference, SC24-5959
v z/VM: CMS Macros and Functions Reference,

SC24-5960
v z/VM: CMS Application Multitasking, SC24-5961
v VM/ESA: REXX/VM Primer, SC24-5598
v z/VM: REXX/VM User’s Guide, SC24-5962
v z/VM: REXX/VM Reference, SC24-5963
v z/VM: OpenExtensions POSIX Conformance

Document, GC24-5976
v z/VM: OpenExtensions User’s Guide, SC24-5977
v z/VM: OpenExtensions Command Reference,

SC24-5978
v z/VM: OpenExtensions Advanced Application

Programming Tools, SC24-5979
v z/VM: OpenExtensions Callable Services Reference,

SC24-5980
v z/VM: Reusable Server Kernel Programmer’s Guide

and Reference, SC24-5964
v z/VM: Enterprise Systems Architecture/Extended

Configuration Principles of Operation, SC24-5965
v C for VM/ESA: Library Reference, SC23-3908
v OS/390: DFSMS Program Management,

SC27-0806
v z/VM: Program Management Binder for CMS,

SC24-5934
v Debug Tool User’s Guide and Reference, SC09-2137
v External Security Interface (RACROUTE) Macro

Reference for MVS and VM, GC28-1366
v VM/ESA: Programmer’s Guide to the

Server-Requester Programming Interface for VM,
SC24-5455

v VM/ESA: CPI Communications User’s Guide,
SC24-5595

v Common Programming Interface Communications
Reference, SC26-4399

v Common Programming Interface Resource Recovery
Reference, SC31-6821

© Copyright IBM Corp. 1987, 2001 307

End Use
v z/VM: CP Command and Utility Reference,

SC24-5967
v VM/ESA: CMS Primer, SC24-5458
v z/VM: CMS User’s Guide, SC24-5968
v z/VM: CMS Command Reference, SC24-5969
v z/VM: CMS Pipelines User’s Guide, SC24-5970
v z/VM: CMS Pipelines Reference, SC24-5971
v CMS/TSO Pipelines: Author’s Edition, SL26-0018
v z/VM: XEDIT User’s Guide, SC24-5972
v z/VM: XEDIT Command and Macro Reference,

SC24-5973
v z/VM: Quick Reference, SC24-5986

Diagnosis
v z/VM: System Messages and Codes, GC24-5974
v z/VM: Diagnosis Guide, GC24-5975
v z/VM: VM Dump Tool, GC24-5887
v z/VM: Dump Viewing Facility, GC24-5966

Publications for Additional
Facilities

DFSMS/VM®

v VM/ESA: DFSMS/VM Function Level 221
Planning Guide, GC35-0121

v VM/ESA: DFSMS/VM Function Level 221
Installation and Customization, SC26-4704

v VM/ESA: DFSMS/VM Function Level 221 Storage
Administration Guide and Reference, SH35-0111

v VM/ESA: DFSMS/VM Function Level 221
Removable Media Services User’s Guide and
Reference, SC35-0141

v VM/ESA: DFSMS/VM Function Level 221
Messages and Codes, SC26-4707

v VM/ESA: DFSMS/VM Function Level 221
Diagnosis Guide, LY27-9589

OSA/SF
v S/390: Planning for the S/390 Open Systems

Adapter (OSA-1, OSA-2) Feature, GC23-3870
v VM/ESA: Open Systems Adapter Support Facility

User’s Guide for OSA-2, SC28-1992
v S/390: Open Systems Adapter-Express Customer’s

Guide and Reference, SA22-7403

Language Environment®

v Language Environment for OS/390 & VM:
Concepts Guide, GC28-1945

v Language Environment for OS/390 & VM:
Migration Guide, SC28-1944

v Language Environment for OS/390 & VM:
Programming Guide, SC28-1939

v Language Environment for OS/390 & VM:
Programming Reference, SC28-1940

v Language Environment for OS/390 & VM: Writing
Interlanguage Communication Applications,
SC28-1943

v Language Environment for OS/390 & VM:
Debugging Guide and Run-Time Messages,
SC28-1942

Publications for Optional
Features

CMS Utilities Feature
v VM/ESA: CMS Utilities Feature, SC24-5535

TCP/IP Feature for z/VM
v z/VM: TCP/IP Level 3A0 Planning and

Customization, SC24-5981
v z/VM: TCP/IP Level 3A0 User’s Guide, SC24-5982
v z/VM: TCP/IP Level 3A0 Programmer’s Reference,

SC24-5983
v z/VM: TCP/IP Level 3A0 Messages and Codes,

GC24-5984
v z/VM: TCP/IP Level 3A0 Diagnosis Guide,

GC24-5985

OpenEdition® DCE Feature for
VM/ESA®

v OpenEdition DCE for VM/ESA: Introducing the
OpenEdition Distributed Computing Environment,
SC24-5735

v OpenEdition DCE for VM/ESA: Planning,
SC24-5737

v OpenEdition DCE for VM/ESA: Configuring and
Getting Started, SC24-5734

v OpenEdition DCE for VM/ESA: Administration
Guide, SC24-5730

v OpenEdition DCE for VM/ESA: Administration
Reference, SC24-5731

v OpenEdition DCE for VM/ESA: Application
Development Guide, SC24-5732

308 z/VM: TCP/IP Diagnosis Guide

v OpenEdition DCE for VM/ESA: Application
Development Reference, SC24-5733

v OpenEdition DCE for VM/ESA: User’s Guide,
SC24-5738

v OpenEdition DCE for VM/ESA: Messages and
Codes, SC24-5736

LANRES/VM
v LAN Resource Extension and Services/VM:

Licensed Program Specifications, GC24-5617
v LAN Resource Extension and Services/VM: General

Information, GC24-5618
v LAN Resource Extension and Services/VM: Guide

and Reference, SC24-5622

CD-ROM
The following CD-ROM contains all the IBM
libraries that are available in IBM BookManager®

format for current VM system products and
current IBM licensed programs that run on VM. It
also contains PDF versions of z/VM publications
and publications for some related IBM licensed
programs.
v Online Library Omnibus Edition: VM Collection,

SK2T-2067

Note: Only unlicensed publications are included.

Other TCP/IP Related
Publications
This section lists other publications, outside the
z/VM 3.1.0 library, that you may find helpful.
v TCP/IP Tutorial and Technical Overview,

GG24-3376
v TCP/IP Illustrated, Volume 1: The Protocols,

SR28-5586
v Internetworking with TCP/IP Volume I: Principles,

Protocols, and Architecture, SC31-6144
v Internetworking With TCP/IP Volume II:

Implementation and Internals, SC31-6145
v Internetworking With TCP/IP Volume III:

Client-Server Programming and Applications,
SC31-6146

v DNS and BIND in a Nutshell, SR28-4970
v "MIB II Extends SNMP Interoperability," C.

Vanderberg, Data Communications, October 1990.
v "Network Management and the Design of SNMP,"

J.D. Case, J.R. Davin, M.S. Fedor, M.L.
Schoffstall.

v "Network Management of TCP/IP Networks:
Present and Future," A. Ben-Artzi, A. Chandna,
V. Warrier.

v "Special Issue: Network Management and
Network Security,"ConneXions-The
Interoperability Report, Volume 4, No. 8, August
1990.

v The Art of Distributed Application: Programming
Techniques for Remote Procedure Calls, John R.
Corbin, Springer-Verlog, 1991.

v The Simple Book: An Introduction to Management
of TCP/IP-based Internets, Marshall T Rose,
Prentice Hall, Englewood Cliffs, New Jersey,
1991.

Bibliography 309

310 z/VM: TCP/IP Diagnosis Guide

Index

Numerics
802.2 LLC frame 272
9370 internal adapter 40, 113

A
abend

described 6
problem category 6

abends
MPROUTE 172

activating traces
directing output

to a file 53
to the screen 53

first-level trace 51
second-level trace 52

ALL process 113
applications, functions, and protocols

BOOTPD 261
DHCPD 265, 269
FTP 137
NFS 157
Remote Printing 237, 245
REXEC 247, 249
RouteD 159, 171
RPC 155, 159
SMTP 147, 155
Telnet 137
TFTP 251, 253
TFTPD 261

ARP
frame 273
process 33, 54, 58

B
BOOTPD

client traces
trace output 261, 265

C
CCS

process 58
role in VM structure 17

CCW
general information 272
matching traces with TCP/IP

traces 277
samples of CCW traces 272, 276

CETI
devices 276
driver 40, 41
process 113, 116

CLAW trace process 58
commands

DUMP 11
PORT 137
VMDUMP 11

commands (continued)
VMFPLC2 11

commonly used trace options 125
congestion process 64, 125
CONNECT request 43
Connection States

as know by Pascal/VMCF
applications 134

as know by socket applications 135
as know by TCP 131

CONSISTENCYCHECKER process 33,
65

CTCP 49

D
Data Transfer Process (DTP) 137
DDN1822 process 33
DEBUG,

FTP subcommand 138
NFS subcommand 231

debugging
in VM

executing traces 51
diagnostic task

Step 1. Does the problem originate
from TCP/IP 2

Step 2. Try to fix the problem 3
Step 3. Describe the problem using

categories
abend 6
documentation 10
incorrect output 8
loop 7
message 6
performance 9
wait state 8

Step 4. Reporting the problem to
Service Support 3

Step 5. Implement the solution 3
directing output

to a file 53
to the screen 53

documentation problems 10
Dump Viewing Facility 11

E
ELANS process 67, 113
EREP 47, 48, 49
error return codes

UDP 280
EXTERNALHANDLER process 116

F
FILE DEBUGTRA file 144
FILE statement 53
first-level trace 51
frame

802.2 LLC 272

frame (continued)
ARP 273
IP 275
TCP 276
token-ring 271

FROM1822 process 33
FTP

client traces
activating traces 138
trace output 139

connection 137
DEBUG subcommand 138
DTP 137
model 137
PI 137
PORT command 137
server traces

activating traces 143
trace output 144

FTPSERVE LOG file 143

G
GATEWAY statement 46

use with MPROUTE 171
group processes

ALL 113
CETI 113, 116
HANDLERS 116
HCH 117
IUCV 117, 120
PCCA 120, 125
RAWIP 125
TCP 125
TCPIP 125
UDP 125

H
HANDLERS process 116
HCH process 117
header

IP 275
TCP 276

HYPERchannel
driver

described 41, 42
failure 47, 48
packet-blocking 42
SLS/720 datagram 42

I
I/O

CETI driver 40, 41
HYPERchannel driver 41, 42
IUCV links

PVM IUCV 42
SNA IUCV 43, 48

IBM 8232 41
ICMP process 67, 117

© Copyright IBM Corp. 1987, 2001 311

IGMP process 68, 69
ILANS process 69, 113
incorrect output problems 8
INITIALIZE process 70, 73
internal

activities 36, 40
procedures 33, 35
queues 35, 36

internal tracing statements
FILE 53
in TCPIP.PROFILE.TCPIP 51
LESSTRACE 53, 54, 113
MORETRACE 52, 54, 113
NOTRACE 52, 54, 113
SCREEN 53
TRACE 51, 54, 113

Internet
protocols, ICMP 117

IOHANDLER process 116
IP

frame 275
header 275

IPDOWN process 33, 73, 125
IPREQUEST process 125
IPUP process 33, 73, 125
IUCV

links
PVM 42
SNA 43, 48

process 117, 120
role in VM structure 17
trace output 117

IUCVHANDLER process 116

L
LAN

messages 271
support devices for 269

LDSF
role in VM structure 17

LESSTRACE statement 53, 54, 113
LLC 113, 272
loop problems 7

M
machine readable documentation

guidelines 11
message problems 6
MONITOR process 33, 74, 76
MORETRACE statement 52, 54, 113
MPROUTE

abends 172
client cannot reach destination 172
connection problems 172
overview 171

MULTICAST process 76, 77

N
netstat command

MPROUTE problem diagnosis 172
NetView 47, 48, 49
NFS

activating traces 231
function 157

NFS (continued)
trace output 233

NOPROCESS process 77
NOTIFY process 33, 77, 79, 125
NOTRACE statement 52, 54, 113

O
OBEYFILE 51, 79
open shortest path first (OSPF) 171
OSPF (open shortest path first) 171
output,

directing to a file 53
directing to the screen 53
problem category 8

P
PARSE-TCP process 79
Pascal 33, 35
PCCA

CCW
general information 272
matching traces with TCP/IP

traces 277
samples of CCW traces 272, 276

devices 269, 276
PCCA block structure

802.2 LLC frame 272
control messages 270
general information 269
information about token-ring

frames 271
LAN messages 271

process 120, 125
performance problems 9
PING command 46
PING process 33, 46, 117
PORT command 137
Portmapper 158
problem categories

abend 6
documentation 10
incorrect output 8
loop 7
message 6
performance 9
wait state 8

processes
group

ALL 113
CETI 113, 116
HANDLERS 116
HCH 117
IUCV 117, 120
PCCA 120, 125
RAWIP 125
TCP 125
TCPIP 125
UDP 125

single
ARP 33, 54, 58
CCS 58
CONGESTION 64, 125
CONSISTENCYCHECKER 33, 65
DDN1822 33
ELANS 67, 113

processes (continued)
single (continued)

EXTERNALHANDLER 116
FROM1822 33
ICMP 67, 117
IGMP 68, 69
ILANS 69, 113
INITIALIZE 70, 73
IOHANDLER 116
IPDOWN 33, 73, 125
IPREQUEST 125
IPUP 33, 73, 125
IUCVHANDLER 116
MONITOR 33, 74, 76
MULTICAST 76, 77
NOPROCESS 77
NOTIFY 33, 77, 79, 125
PARSE-TCP 79
PING 33, 80, 117
RAWIPREQUEST 33, 125
RAWIPUP 125
RETRANSMIT 125
REXMIT 125
ROUNDTRIP 81, 125
SCHEDULER 33, 82, 85
SHUTDOWN 33, 85
SNMPDPI 86
SOCKET 86
STATUSOUT 33
TCPDOWN 33, 88, 90, 125
TCPREQUEST 33, 94, 99, 125
TCPUP 33, 90, 94, 125
TELNET 99, 108
TIMER 33, 108
TO1822 33
TOIUCV 33
TOX25ICA 113
UDPREQUEST 33, 110, 125
UDPUP 112, 125

PROFILE TCPIP 51, 79
Protocol Interpreter (PI) 137
Pseudo-state, connection

CONNECTIONclosing 135
LISTENING 134
NONEXISTENT 135
OPEN 134
RECEIVINGonly 134
SENDINGonly 134
TRYINGtoOPEN 134

PVM
CONNECT request 43
local 43
remote 43

Q
queues 35, 36

R
RAWIP process 125
RAWIPREQUEST process 33, 125
RAWIPUP process 125
related protocols 281
remote printing

client traces
activating traces 237

312 z/VM: TCP/IP Diagnosis Guide

remote printing (continued)
trace output 237

server traces
activating traces 241
trace output 241

RETRANSMIT process 125
return codes

TCP/IP 279
UDP Error 280

REXEC
activating traces 247
trace output 247

REXECD
activating traces 248
trace output 249

REXMIT process 125
RIP (routing information protocol)

MPROUTE implementation 171
ROUNDTRIP process 81, 125
RouteD

diagnosing problems 161
trace output 167
traces and debug information 164

routing information protocol (RIP)
MPROUTE implementation 171

RPC programs
call messages 155
function 155
Portmapper 158
reply messages

accepted 156
rejected 157

support 158

S
SCHEDULER process 33, 82, 85
SCREEN statement 53
second-level trace 52
SHUTDOWN process 33, 85
SMSG command

with MPROUTE 173
SMTP

client traces
activating traces 147
querying SMTP queues 147

server traces
activating traces 148
commands 148

SNA
CONNECT request 43
IUCV failure 48, 51

SNMPDPI process 86
SOCKET process 86
SSL

Diagnosing problems 217
trace output 224

SSLADMIN TRACE/NOTRACE
command 220

state, connection
CLOSE-WAIT 133
CLOSED 134
CLOSING 133
ESTABLISHED 132
FIN-WAIT-1 132
FIN-WAIT-2 133
LAST-ACK 133

state, connection (continued)
LISTEN 132
SYN-RECEIVED 132
SYN-SENT 132
TIME-WAIT 133

statements
FILE 53
GATEWAY 46
LESSTRACE 53, 54, 113
MORETRACE 52, 54, 113
NOTRACE 52, 54, 113
SCREEN 53
TRACE 49, 54, 113

STATUSOUT process 33

T
TCP

frame 276
header 276
process 125

TCP/IP
internal

activities 36, 40
procedures 33, 35
queues 35, 36

matching traces with CCW
traces 277

nodes, failure to connect 45, 47
return codes 279

TCPDOWN process 33, 88, 90, 125
TCPIP

process 125
TCPIPX25 49
TCPREQUEST process 33, 94, 99, 125
TCPUP process 33, 90, 94, 125
TCTOA22 41
TCTOPC3 41
Telnet

failure to connect 45, 47
process 99, 108

TFTP
client traces

trace output 251
TFTPD

client traces
activating traces 251, 253, 261,

265
TIMER process 33, 108
TO1822 process 33
TOIUCV process 33
token-ring 271
TOX25ICA process 113
trace

DHCPD 265, 269
first-level 51
FTP

client 138, 143
server 143

IUCV 117
remote printing 237, 245
REXEC 247, 248
REXECD 248, 249
RouteD 159, 171
second-level 52
SMTP

client 147, 148
server 148, 155

trace (continued)
TCPIP 125
Telnet 99
TFTP 251, 253
TFTPD 261

TRACE statement 49, 51, 54, 113
TRACERTE command 135

U
UDP

error return codes 280
UDPREQUEST process 33, 110, 125
UDPUP process 112, 125

V
VIPA (virtual IP address) 171
virtual IP address (VIPA) 171
virtual machines 15
VM

debugging
executing traces 51

structure
CCS and LDSF 17
IUCV 17
virtual machines 15
VMCF 16

VMCF
role in VM structure 16

VMSSL command
Command Format 220

W
wait state problems 8
worksheet for reporting problems 14

X
X.25 NPSI

configuration 48, 49
GATE 49

Index 313

314 z/VM: TCP/IP Diagnosis Guide

Readers’ Comments — We’d Like to Hear from You

z/VM
TCP/IP Level 3A0
Diagnosis Guide
Version 3 Release 1.0

Publication No. GC24-5985-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GC24-5985-00

GC24-5985-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G60G
1701 North Street
Endicott, New York
13760-5553

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File Number: S370/4300/30XX-50
Program Number: 5654-A17

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC24-5985-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

V
M

T
C

P
/I

P
D

ia
gn

os
is

G
ui

de
Ve

rs
io

n
3

R
el

ea
se

1.
0

	Contents
	Preface
	Programming Interface Information
	Who Should Read This Book
	How To Use This Book
	How This Book is Organized
	How Numbers Are Used in This Book
	Where to Find More Information
	How the Term “internet” Is Used in This Book

	Understanding Syntax Diagrams
	How to Send Your Comments to IBM

	Summary of Changes
	First Edition for z/VM (February 2001)
	IP Multicasting
	Diagnosing MPROUTE Problems
	Diagnosing SSL Problems

	First Edition for VM/ESA® (July 1999)
	RouteD Diagnosis
	Miscellaneous

	Chapter 1. Diagnosis Overview
	Chapter 2. Problem Identification
	Categories that Help Identify the Problem
	Abend
	Gather the Information
	Document the Problem

	Message
	Gather the Information
	Document the Problem

	Loop
	Gather the Information
	Document the Problem

	Wait State
	Gather the Information
	Document the Problem

	Incorrect Output
	Gather the Information
	Document the Problem

	Performance
	Gather the Information
	Document the Problem

	Documentation
	Gather the Information
	Document the Problem

	Guidelines for Machine Readable Documentation
	Necessary Documentation
	Additional Documentation
	Problem Resolution
	Severe Problem Resolution

	Customer Worksheet
	Problem Category
	Background Information
	Additional Information

	Chapter 3. TCP/IP VM Structures and InternetworkingOverview
	VM Structure
	Virtual Machines
	Virtual Machine Communication Facility
	Inter-User Communication Vehicle
	*CCS and Logical Device Service Facility
	Overview of Internetworking
	Bridges
	Maximum Transmission Unit (MTU)
	Token Ring IEEE 802.5
	IEEE 802.3
	Ethernet - DIX V2
	Sub-Network Access Protocol (SNAP)
	IP Routing
	Internet Addressing
	Direct Routing
	Indirect Routing
	Simplified IP Datagram Routing Algorithm
	Subnetting
	Simplified IP Datagram Routing Algorithm with Subnets
	Static Routing
	Dynamic Routing
	Dynamic Routing Tables
	Example of Network Connectivity

	Chapter 4. Server Initialization
	CMS Servers
	Diagnosis Method 1
	Diagnosis Method 2

	GCS Servers

	Chapter 5. TCP/IP Procedures
	TCP/IP Internals
	Internal Procedures
	Queues
	Internal Activities

	Input/Output
	CETI Driver
	HYPERchannel Driver
	IUCV Links
	PVM IUCV
	SNA IUCV

	Chapter 6. Diagnosing the Problem
	Unable to Connect to TCP/IP Node
	Description of the Problem
	Symptom
	Problem Determination
	PING—Sending an Echo Request to a Foreign Host
	PING Command

	Resolving the PING Command Problems

	Failure of the HYPERchannel Interface
	Description of the Problem
	Symptom
	Problem Determination
	Recovery

	Failure of an SNA IUCV Connection
	Description of the Problem
	Symptom
	Problem Determination
	Session Error
	Hardware Failure

	Recovery

	Chapter 7. TCP/IP Traces
	Debugging in VM
	Executing Traces
	Activating Traces
	First-Level Trace
	Second-Level Trace
	Directing Output
	Output Directed to a File
	Output Directed to the Screen

	Process Names
	Single Process Names
	ARP
	CCS
	CLAW Trace Information
	Congestion
	CONSISTENCYCHECKER or CONSISTENCY_CHECKER
	ELANS
	ICMP
	IGMP
	ILANS
	INITIALIZE
	IPDOWN or IP-DOWN
	IPUP or IP-UP
	MONITOR
	MULTICAST
	NOPROCESS or NO-PROCESS or NONE
	NOTIFY
	PARSE-TCP
	PING
	ROUNDTRIP or ROUND-TRIP
	SCHEDULER
	SHUTDOWN or SHUT-DOWN
	SNMPDPI
	SOCKET
	SSL
	TCPDOWN or TCP-DOWN
	TCPUP or TCP-UP
	TCPREQUEST or TCP-REQUEST
	TELNET
	TIMER
	UDPREQUEST
	UDPUP

	Group Process Names
	ALL
	CETI
	HANDLERS
	HCH
	IUCV
	PCCA
	RAWIP
	TCP
	TCPIP or TCP-IP
	UDP

	Commonly Used Trace Options
	Connection State
	Connection State As Known by TCP
	Connection State As Known by Pascal or VMCF Applications
	Connection State As Known by Socket Applications

	Traceroute Function (TRACERTE)

	Chapter 8. FTP Traces
	FTP Connection
	FTP Client Traces
	Activating Traces
	Trace Output

	FTP Server Traces
	Activating Traces
	Trace Output

	Chapter 9. Simple Mail Transfer Protocol Traces
	SMTP Client Traces
	Activating Traces
	Obtaining Queue Information

	SMTP Server Traces
	Activating Traces
	SMTP Commands
	Sample Debug Trace
	Sample LOG Information
	Sample Resolver Trace
	Sample Notification Trace
	Sample Connection Activity Trace

	Chapter 10. RPC Programs
	General Information about RPC
	RPC Call Messages
	RPC Reply Messages
	Accepted Reply Messages
	Rejected Reply Messages

	RPC Support
	Portmapper
	Portmapper Procedures

	Chapter 11. RouteD Diagnosis
	Incoming Datagram RouteD Processing
	Outgoing Datagram RouteD Generation
	RouteD Route Table and Interface List

	Diagnosing Problems
	Connection Problems
	Documentation
	Analysis

	PING Failures
	Documentation
	Analysis

	Incorrect Output
	Documentation
	Analysis

	Session Outages
	Documentation
	Analysis

	Activating RouteD Trace and Debug
	RouteD Trace and Debug Commands
	Purpose
	Operands
	Usage Notes
	RouteD Trace and Debug SMSG Commands
	Purpose
	Operands
	Usage Notes
	Examples

	Trace Output

	Chapter 12. Diagnosing MPROUTE Problems
	Diagnosing MPROUTE Problems
	Abends
	MPROUTE Connection Problems
	Routing Failures
	Documenting Routing Failures
	Analyzing Routing Failures

	Using Privileged MPROUTE SMSG Commands
	All OSPF Configuration Information
	Configured OSPF Areas and Ranges
	Configured OSPF Interfaces
	Configured OSPF Non-broadcast, Multi-access Networks
	Configured OSPF Virtual Links
	Configured OSPF Neighbors
	OSPF Link State Advertisement
	OSPF Area Statistics and Parameters
	OSPF External Advertisements
	OSPF Area Link State Database
	OSPF Interface Statistics and Parameters
	OSPF Neighbor Statistics and Parameters
	OSPF Router Routes
	OSPF Link State Database Statistics
	OSPF Routing Protocol Statistics
	MPROUTE Routing Table
	Route Expansion Information
	RIP Configuration Information
	Configured RIP Interfaces
	RIP Routes to Be Accepted
	RIP Interface Statistics and Parameters

	MPROUTE Traces and Debug Information
	Starting MPROUTE Tracing and Debugging from the VMConsole
	Starting MPROUTE Tracing and Debugging using the SMSGCommand
	Destination of MPROUTE Trace and Debug Output

	Sample MPROUTE Trace Output

	Chapter 13. SSL Server Diagnosis
	SSL component Flow
	Invoking Trace Activity on the SSL Server
	VMSSL Command
	SSLADMIN TRACE/NOTRACE Command

	Diagnosing Problems
	Symptom - The SSL server could not be started
	Documentation
	Analysis

	Symptom - The SSL server is restarted by the stack at regularintervals
	Documentation
	Analysis

	Symptom - The correct parameters are not being passed tothe SSL server
	Documentation
	Analysis

	Symptom - The inability to connect to an application serverlistening on a secure port
	Documentation
	Analysis

	Symptom - Connections close due to errors
	Documentation
	Analysis

	Symptom - Incorrect input or output
	Documentation
	Analysis

	Trace Output
	Trace Normal
	Administrative Console
	SSL Server Console
	Explanation

	Trace Connections NODATA
	Administrative Console
	SSL Server Console
	Explanation

	Trace Connections DATA
	Administrative Console
	SSL Server Console
	Explanation

	Trace FLOW
	Administrative Console
	SSL Server Console
	Explanation

	Displaying Local Host Information
	Explanation

	Chapter 14. Network File System
	VM NFS Client Support
	Activating Traces for NFS Client

	VM NFS Server Support
	NFS Protocol
	Mount Protocol
	PCNFSD Protocol
	General NFS Debugging Features
	Activating Traces for NFS Server
	Additional Trace Options
	Trace Tables
	Trace Output

	Chapter 15. Remote Printing Traces
	Remote Printing Client Traces
	Activating Remote Printing Client Traces
	Remote Printing Client Trace Output
	Remote Printing Server Traces
	Activating Remote Printing Server Traces
	Remote Printing Server Trace Output

	Chapter 16. Remote Execution Protocol Traces
	Remote Execution Protocol Client Traces
	Activating Remote Execution Protocol Client Traces
	Remote Execution Protocol Client Trace Output
	Remote Execution Protocol Server Traces
	Activating Remote Execution Protocol Server Traces
	Remote Execution Protocol Server Trace Output

	Chapter 17. TFTP Client Traces
	Activating Traces
	Trace Output

	Chapter 18. TFTPD Traces
	Activating Traces
	Trace Output
	Formats of TFTPD Trace Records
	TFTPD Trace Codes:

	TFTPD Trace Entry: 1000
	TFTPD Trace Entry: 1500
	TFTPD Trace Entry: 2000
	TFTPD Trace Entry: 2500
	TFTPD Trace Entry: 3000
	TFTPD Trace Entry: 3500
	TFTPD Trace Entry: 4000
	TFTPD Trace Entry: 4100
	TFTPD Trace Entry: 4200
	TFTPD Trace Entry: 4300
	TFTPD Trace Entry: 5000
	TFTPD Trace Entry: 5100
	TFTPD Trace Entry: 5200
	TFTPD Trace Entry: 6100
	TFTPD Trace Entry: 6200
	TFTPD Trace Entry: 6300
	TFTPD Trace Entry: 6301
	TFTPD Trace Entry: 6302
	TFTPD Trace Entry: 6303
	TFTPD Trace Entry: 6304
	TFTPD Trace Entry: 6305

	Chapter 19. BOOT Protocol Daemon (BOOTPD) Traces
	Activating Traces
	Trace Output
	BOOTPD Trace Records
	BOOTPD Trace Record Format
	BOOTPD Trace Codes

	Chapter 20. Dynamic Host Configuration Protocol Daemon(DHCPD) Traces
	Activating Traces
	Trace Output
	DHCPD Trace Records
	DHCPD Trace Record Format
	DHCPD Trace Codes

	Chapter 21. Hardware Trace Functions
	PCCA Devices
	PCCA Block Structure
	Control Messages
	LAN Messages
	Token-Ring Frames
	802.2 LLC Frame

	CCW
	Samples of CCW Traces

	CETI Devices
	Matching CCW Traces and TCP/IP Traces

	Appendix A. Return Codes
	TCP/IP Return Codes
	UDP Error Return Codes

	Appendix B. Related Protocol Specifications
	Notices
	Trademarks

	Glossary
	Bibliography
	z/VM Base Publications
	Evaluation
	Installation and Service
	Planning and Administration
	Customization
	Operation
	Application Programming
	End Use
	Diagnosis

	Publications for AdditionalFacilities
	DFSMS/VM®
	OSA/SF
	Language Environment®

	Publications for OptionalFeatures
	CMS Utilities Feature
	TCP/IP Feature for z/VM
	OpenEdition® DCE Feature forVM/ESA®
	LANRES/VM

	CD-ROM
	Other TCP/IP RelatedPublications

	Index
	Readers’ Comments — We'd Like to Hear from You

