
Sharing and Maintaining SLES 11 Linux
under z/VM using DCSSs and an NSS

Written by:
 Michael MacIsaac, Carlos Ordonez and Vic Cross of IBM
 March, 2010

© Copyright IBM 2010 1

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

Section 1: Introduction
This paper shows how to use Dis-contiguous Saved Segments (DCSSs) and a Named Saved System (NSS) with the concept
of a read-only root file system. The use of DCSSs offers the possibility of performance gains.

The Web site associated with this paper is:
http://www.vm.ibm.com/linux/dcss/

Also, see the z/VM® performance report entitled DCSS Above 2 GB, on the Web at:
http://www.vm.ibm.com/perf/reports/zvm/html/540dcss.html

The sections in this paper after this introduction are as follow:

1. Background on DCSSs and NSSs on page 3

2. Summary of virtual machines on page 6

3. Planning the Linux memory footprint on page 8

4. Creating a read-write cloning system on page 9

5. Creating a DCSS for swapping on page 23

6. Creating a read-only cloning system on page 36

7. Maintaining systems on page 54

8. z/VM source code on page 61

9. Linux source code on page 63

1.1 Prospective readers
This white paper is written for system administrators who want to implement the environment and techniques described
within, on the mainframe platform using z/VM Version 5 Release 4 (V5.4) and Novell® SUSE® Linux Enterprise Server 11
(SLES 11).

1.2 History
This paper follows from three previous papers:

1) The IBM Redpaper Sharing and maintaining Linux® under z/VM, largely based on input from architects and system
administrators from Nationwide Insurance. This paper introduced the concept of a read-only root file system. It was
published in February of 2008 on the Web at:

http://www.redbooks.ibm.com/abstracts/redp4322.html

2) Sharing and maintaining SLES 10 SP2 Linux under z/VM. Most of the input came from system administrators at Penn
State University. This paper upgraded the Linux distribution to SLES 10 SP2, and it elaborated on the maintenance system.
It was published in July of 2009 on the Web at:

http://linuxvm.org/present/ro-root-S10.pdf

3) Sharing and maintaining RHEL 5.3 Linux under z/VM. This paper took the work on Novell's SLES and adapted it for
Red Hat's RHEL 5.3. It was published in September of 2009 on the Web at:

http://linuxvm.org/present/ro-root-RH5.pdf

© Copyright IBM 2010 2

The differences from the previous papers are as follows:

• The Linux distribution described is SLES 11.

• A single DCSS swap space is used rather than VDISK and minidisk swap spaces.

• The read-write directory is /usr/local/, per the File system Hierarchy Specification (FHS), not /local/.

• It uses 100 as the IPL address, not 1B0

• It uses four read-only file systems: /, /boot/, /usr/share/ and /var/lib/rpm/ and one read-write: /usr/local/. Other
read-write directories and files are stored in /usr/local/ and later bind-mounted in place.

• It uses all Linux scripts, no longer any REXX EXECs

• The /etc/ file system is also read-only with only those files that need to be modified being bind-mounted read-write.

• Code from RHEL was adapted to use the readonlyroot boot parameter, the /etc/sysconfig/readonly-root and
/etc/rwtab configuration files. This enables commonality between SLES and RHEL.

1.3 Credits and feedback
This paper was written by Michael MacIsaac, Carlos Ordonez and Vic Cross of IBM.

Thanks go out to many people including Bill Bitner, Pam Christina, Bill Holder, David Jeffers, George Madl, Peter
Oberparleiter, Christian Paro, Denny Refsnider, Gonzalo Muelas Serrano, Steve Shultz, Jim Switzer, Nick Wang, Romney
White, Steve Wilkins, Eva Yan, Hongjie Yang and Wesley Yee, of IBM and also Andreas Gruenbacher and Mark Post of
Novell/SuSE.

If you have feedback or questions on this paper, you can e-mail it to mikemac at us.ibm.com.

Section 2: Background on DCSSs and NSSs
In z/VM, a segment is a portion of storage (system memory) 1MB in size. A saved segment refers to a segment (or collection
of segments) that has been stored in z/VM spool space. Sometimes, as with segments of type EN or SN, only a description of
the segment is saved in spool, with no data from memory saved. Once saved to the spool, a saved segment can be accessed by
either any virtual machine or by a restricted set of virtual machines on the z/VM system, either by loading the segment into its
virtual storage or by the segment being mapped into the addressable range of the virtual machine.

Segments can be marked "shared", which means they can be accessed by a number of virtual machines, or "exclusive" and
thereby accessible only by a single virtual machine. Segments can also be marked as "read-only" or "writable" (read-write).
These markings can be made in almost any combination: it is possible to have a shared writable segment (although there are
no common uses of this in Linux).

The most common combinations of segment markings are "shared read-only" and "exclusive writable". When a number of
virtual machines are mapped to a shared-read-only segment, every virtual machine sees exactly the same segment in z/VM's
real storage and none of them can modify it. With exclusive-writable, every virtual machine has its own copy of the segment--
but before making the copied segment accessible to the virtual machine, CP initializes it from the contents of the segment that
was originally saved.

In the context of Linux on System z, there are two types of saved segment provided by z/VM: the Discontiguous Saved
Segment and the Named Saved System1.

2.1 What is DCSS?
Discontiguous Saved Segment (DCSS) is a z/VM technology that allows a portion of the storage of a guest to be saved. This
saved storage can then be shared between a number of guests, which all see the same storage. DCSS is a powerful tool that

1The third type of segment, the segment space, is not directly supported by Linux at this time and will not be discussed in this
paper.

© Copyright IBM 2010 3

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

gives z/VM administrators a way to provide high levels of resource sharing between guests, combined with excellent
performance.

A DCSS can be created covering a continuous range of addresses, or a number of different sections of the guest's address
range (the ``DC'', for dis-contiguous, in the name). It can even have parts that are read-write, allowing each guest to have its
own copy of a portion of the shared segment that it can modify.

Linux can utilize DCSS technology to build file systems that reside in memory, allowing drastic reduction in file system I/O
for system files. Combined with eXecute-In-Place (XIP) capability, the amount of central storage required to host a group of
Linux systems running similar workloads is greatly reduced, and this leads to the ability to run larger numbers of virtual
Linux systems in a given system footprint.

DCSSs can either be shared or exclusive segments. A shared segment means the same memory is accessed by multiple
virtual machines. Any change to that memory made by one virtual machine is instantaneously seen by all virtual machines
accessing the segment. An exclusive segment means each virtual machine that accesses the segment has its own exclusive
copy of that segment. In this case, changes made by one virtual machine are not seen by other virtual machines accessing the
segment. Whether or not a particular portion of a DCSS is read-write does not determine whether it is exclusive or shared.

More detail on DCSS can be found in the z/VM Saved Segments Planning and Administration manual, on the Web at:
http://publibz.boulder.ibm.com/epubs/pdf/hcsg4b10.pdf

2.1.1 Linux support of DCSS
Linux makes use of a DCSS by presenting it as a block device, in the same way that DASDs are presented for use. The
dcssblk device driver is part of the Linux kernel and does the work of making a DCSS appear as a block device.

Even though a DCSS looks just like other block devices, the dcssblk driver does this in such a way that file systems that
support XIP recognize that the file system is memory-addressable. Current versions of the Linux second-extended (ext2) file
system support XIP using a mount option and a DCSS-backed ext2 file system can provide this capability.

2.1.2 Factors that limit DCSS use
Linux has had DCSS support for a long time, but little adoption of DCSS has taken place. There are a couple of reasons for
that.

2.1.2.1 DCSS size and location restrictions in z/VM
Prior to z/VM 5.4, no DCSS could reside above the 2GB bar. In addition, for 31-bit guests, the ceiling was actually lower
than 2GB due to system requirements, and by the time you allocated the central storage for Linux, there was usually little
space left for any DCSSs. Even in a 64-bit guest, where the guest's central storage could be relocated above the 2GB bar to
make more room for DCSSs, the maximum size restriction imposed by the 2GB bar posed a significant barrier to DCSS use.

2.1.2.2 Software maintenance and updates
Most procedures for building Linux file systems in a DCSS involved manually copying files from a standard Linux file
system to the DCSS (this was particularly apparent in some DCSS methods that worked around the size restrictions
described earlier). This was seen prone to error, requiring careful attention to package changes and providing little
opportunity to be automated. This paper shows a way to automate the process with the rw2ro.sh script.

2.1.3 z/VM 5.4 and DCSS
In the announcement letter for z/VM 5.4, IBM announced changes to the DCSS function. In particular, the 2GB bar has been

© Copyright IBM 2010 4

removed, meaning that a DCSS can reside almost anywhere in addressable storage1.

While a single DCSS cannot be larger than 2GB, the Linux dcssblk driver now allows DCSSs to be concatenated so that
multiple DCSSs can be made to appear to Linux as a single device. This will allow very large DCSS-backed file systems to be
built, eliminating the maintenance complexity of some of the previous DCSS configuration approaches.

2.1.4 Working with DCSSs
The z/VM DEFSEG and SAVESEG commands allow you to map pages of memory contents and store them in disk-backed
SPOOL space that can be made accessible to multiple virtual machines. The Linux DCSS block device driver, dcssblk, is
used to provide disk-like access to these saved segments. The Linux XIP technology allows you to treat code in a memory-
backed file system as if it were a part of the virtual memory space. Normally executables on disk have to first be loaded into
memory, however, executables that start in memory can be “executed in place”.

Together these tools allow multiple Linux guests to share one copy of commonly executed code, and reduce overall memory
use by Linux guests.

The IBM Linux on System z kernel developers have produced a manual explaining how DCSS is used in Linux. This
document contains a lot of background on dcssblk and its use.

• How to use Execute-in-Place Technology with Linux on z/VM on the Web at:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26dhe00.pdf

The following document is also recommended reading:

• Chapters 19 and 20 of Device Drivers, Features, and Commands on the Web at:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26ddd01.pdf

2.2 Named Saved Systems
Named Saved System (NSS) is a z/VM technology that allows a bootable operating system ``snapshot'' to be saved to the
z/VM spool. This system snapshot can be shared and started by many z/VM guests, all of which can boot it like an operating
system disk and run the system therein.

Usually, a NSS is created at a very early stage in the initialization of the operating system. This allows the OS in the NSS to
detect hardware and other features at the time it is started in each guest.

A NSS must be defined specifically for the operating system image it will contain. This is because different operating systems
have different memory locations which must be kept exclusive-writable or that can be shared. z/VM keeps track of these
mappings, ensuring that guests get their own copy of pages that are writable while giving shared access to read-only pages. In
addition, each operating system that creates an NSS must do so with an awareness of what areas to be saved must be read-
only and sharable or read-write and exclusive.

2.2.1 Previous Limitations
Initially, Linux had no explicit support for NSS. Since an NSS is effectively an IPLable snapshot of memory though, the fact
that Linux did not have its own support did not stop enthusiastic fans of Linux on z/VM from experimenting with booting
Linux from an NSS. The process was troublesome, however, as it required manual inspection of a built kernel to determine
which parts of the kernel address space could be shared and which had to be writable.

Another important limitation involves device configuration, particularly DASDs. Early Linux kernels were built with the
DASD driver in a monolithic fashion stored in the kernel (i.e. not built as a module). This meant that the only way that DASD
could be configured was on the Linux kernel command line. Because of this, when the kernel was saved to a NSS the DASD
configuration was too -- all guests that shared the NSS had to have identical DASD setup. This issue was partially mitigated
when Linux vendors started building the DASD drivers as modules, but more sophisticated boot processes have been required
to make a NSS truly sharable among guests with differing hardware configurations.

1In practical terms, a DCSS must reside within the first 512GB of guest storage.

© Copyright IBM 2010 5

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

2.2.2 Linux use of NSS
Linux now has built-in capability to define its own NSS mappings, simplifying the creation of a Linux-bootable NSS. Not
only that, when NSS support is included in the Linux kernel it is built in a way that structures read-only and writable sections
to maximize the amount of address space that can be marked read-only (in the same way that other operating systems that
can be stored in NSS, like CMS, do).

The Linux NSS support provides easy creation and saving of the NSS through a new kernel parameter which triggers the
saving of a NSS from the kernel being booted. This means that building a NSS is as simple as adding a single parameter to
the kernel command line and IPLing.

Section 3: Summary of virtual machines
Before building a read-only root system is described, a methodology for maintaining and cloning a conventional read-write
Linux system is addressed. The read-write system is created with a maintenance plan in mind.

Following is a block diagram of the system described in this paper. The conventional read-write setup is shown on the right
side of the diagram (in turquoise if you can see color in the figure) and the read-only components are shown on the left size
(in gold):

© Copyright IBM 2010 6

Following is a summary of the function of the virtual machines in the system.

3.0.0.1 CMSCLONE
This virtual machine runs CMS. It contains a 192 disk that will become each Linux user ID's read-only 191 disk. It is no
longer needed to run REXX EXECs as all the “heavy lifting” is now done with Linux scripts.

3.0.0.2 S11CLONE
This virtual machine is “the cloner”. It runs a Linux system that contains the tools used for cloning and to modify the golden
read-write Linux image on S11RWGLD into a read-only root Linux image that shares file systems using DCSSs and an NSS
onto S11ROGLD.

Following are the important files in /usr/local/sbin/ on this system:

clonero.sh A script to clone read-only Linux systems

clonerw.sh A script to clone read-write Linux systems

rw2ro.sh A script that copies read-write disks from S11RWGLD to S11ROGLD and modifies certain files

pri2bak.sh A backup script that copies the primary 100 disks to the backup 200 disks

bak2pri.sh A rollback script that copies the backup 200 disks to the primary 100 disks

This virtual machine will use a DCSS for a swap space, but it will not use DCSSs for file systems.

3.0.0.3 S11RWGLD
This is read-write “golden image” virtual machine. It contains four primary disks at 100-103 and four backup disks at 200-
203. Maintenance of the golden image is done on this virtual machine. It is normally shut down so it can be cloned from.

Following are the important files this system:

boot.findself A new script in /etc/init.d/, run at first boot to set the host name and IP of the new Linux guest

boot.rootfsck A modified boot script in /etc/init.d/ for read-only Linux guests.

cloneprep.sh A new script that removes extraneous files before cloning

setup-block.sh A modified script in /lib/mkinitrd/scripts/ to load the dcssblk driver in the initial RAMdisk

3.0.0.4 S11ROGLD
The read-only gold virtual machine. The golden image from S11RWGLD is copied to here and modified to become a read-
only root system. It contains a read-write 102 minidisk and a read-write 100 minidisk that will later be used to create an NSS.
The 101 and 103 disks are not necessary as the file systems will be stored in DCSSs. It is also normally shut down.

3.1 Minidisk and DCSS layout
Following are the minidisks, DCSSs and corresponding file systems used in this paper:

File system Cylinders/size vdev Type Notes

/boot/ 60/41 MB 100 ext2/xip Contains the files used to boot the system and create the NSS named
S11LNX1. Installed as ext2, but later made to be of type xip

/ 3338/2.2 GB 101 ext2/xip Saved as the DCSS named S11ROOT1. Mounted read-only.
Installed as ext2, but later made to be of type xip

/usr/local/ 1669/1.2 GB 102 ext3 Mounted read-write – contains copies of /root/, /srv/, /var/ and
certain files in /etc/ which get bind-mounted read-write.

/usr/share/ 1609/1.1 GB 103 ext2/xip Saved as the DCSS named S11SHAR1. Mounted read-only.

© Copyright IBM 2010 7

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

Installed as ext2, but later made to be of type xip

/var/lib/rpm/ N/A N/A ext2/xip Saved as the DCSS named S11RPM1.

A read-write system requires approximately two 3390-3s, or about 4.5GB. A read-only system requires 1669 cylinders, or
about 1.1GB.

Section 4: Planning the Linux memory footprint
The size the DCSS swap space and file systems must be chosen. DCSS ranges are expressed as the hexadecimal (base 16)
number of 4KB (2**12) pages. To do hexadecimal math, sometimes a cheat sheet is helpful:

Number of 4KB pages Size in powers of two Size in KB, MB, GB

1 2**12 4K

10 2**16 64K

100 2**20 1M

1000 2**24 16M

10000 2**28 256M

100000 2**32 4G

The following sizes for the DCSSs are chosen for this paper:

DCSS name Size Range in 4KB pages Description

SWAPPING 1G 80000-BFFFF DCSS for swapping

S11ROOT1 2047M C0000-13FEFF Largest possible single DCSS for the root file system

S11RPM1 64M 13FF00-142EFF Small DCSS for the RPM database in /var/lib/rpm/.

S11SHAR1 1G 142F00-181EFF DCSS for the /usr/share/ file system

The following figure shows the memory footprint for Linux main memory and DCSSs used in this paper. A default virtual
machine size of 256M is chosen for most Linux systems. “Headroom” is left to move the machine size up to 2GB. A 1GB
swap space is used for between 2 and 3 GB. Between 3 and just about 5 GB, the largest size DCSS is used for the root file
system. A small 64 MB DCSS is used for the /var/lib/rpm/ file system. Finally, a 1GB DCSS is used for /usr/share/.

© Copyright IBM 2010 8

Linux memory footprint

Section 5: Creating a read-write cloning system
The steps to create a read-write system that can be cloned are as follow:

1) Plan Linux disks

2) Plan page and spool space for z/VM

3) Create the first z/VM user IDs

4) Download the associated tar file

5) Populate the disks on CMSCLONE

6) Install SLES 11 onto S11RWGLD – the golden image

7) Install and customize SLES 11 onto S11CLONE – the “cloner”

8) Create a DCSS for a swap space

9) Customize Linux on the golden image

10) Backup the golden image

© Copyright IBM 2010 9

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

11) Clone Linux

5.1 Disk planning
One 3390-3 and three 3390-9s are initially used. Following is a diagram that shows the user IDs, mindisks and volsers:

Initial disk layout

5.2 Page and spool space planning
Because DCSSs are often backed by spool space, additional spool space will be needed. Also, adequate page space will be
needed, as usual. When z/VM is installed onto 3390-3s, one of the five volumes is for spool space and one is for page space.
This will not be enough space.

On the z/VM system used to write this paper, two spool volumes were added – a 3390-3 and a 3390-9. This provided a total
size of about 11GB of spool space. After setting up the system, 67% of it was being used:

© Copyright IBM 2010 10

==> q alloc spool
 EXTENT EXTENT TOTAL PAGES HIGH %
VOLID RDEV START END PAGES IN USE PAGE USED
------ ---- ---------- ---------- ------ ------ ------ ----
DV6153 6153 1 3338 600840 504831 562320 84%
DS61A0 61A0 0 10016 1761K 996K 1694K 56%
DS632F 632F 0 3338 601020 504068 530640 83%
 ------ ------ ----
SUMMARY 2934K 1981K 67%
USABLE 2934K 1981K 67%

A second 3390-3 volume was added for more page space. A total of 54% was being used when measured. In general, the
amount of page space should not go much over 50%, or adding more spool space should be considered.

==> q alloc page
 EXTENT EXTENT TOTAL PAGES HIGH %
VOLID RDEV START END PAGES IN USE PAGE USED
------ ---- ---------- ---------- ------ ------ ------ ----
DV6154 6154 1 3338 600840 319460 565362 53%
DP632E 632E 0 3338 601020 330539 601019 54%
 ------ ------ ----
SUMMARY 1174K 649999 54%
USABLE 1174K 649999 54%

5.3 Defining z/VM virtual machines
Note to implementors: If you're implementing this environment, you will probably have the urge to change minidisk sizes,
file system layouts, or other configurations. Please resist this urge :)) Some of the associated files rely on this specific setup
and changing settings is likely to prevent the read-only golden image from running. Get the system working once, then you
can throw it out, change settings and tailor it to your liking.

One user directory PROFILE, named LNXDFLT, is created to be used by all Linux systems. Each Linux system will get a
virtual NIC starting at virtual address 0600 that will attach to the virtual switch named VSW1:

PROFILE LNXDFLT
 CPU 00 BASE
 CPU 01
 IPL CMS
 MACHINE ESA 4
 CONSOLE 0009 3215 T
 NICDEF 0600 TYPE QDIO LAN SYSTEM VSW1
 SPOOL 000C 2540 READER *
 SPOOL 000D 2540 PUNCH A
 SPOOL 000E 1403 A
 LINK MAINT 0190 0190 RR
 LINK MAINT 019D 019D RR
 LINK MAINT 019E 019E RR
 LINK CMSCLONE 0192 0191 RR
 LINK TCPMAINT 0592 0592 RR

For reference, following is VSWITCH definition statement in the SYSTEM CONFIG file. It defines the VSWITCH named
VSW1 using OSA real devices starting at address 1004 (primary) and 1100 (for failover):

/* define a VSWITCH */
define vswitch vsw1 rdev 1004 1100

Four user IDs are defined.

© Copyright IBM 2010 11

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

1. The CMSCLONE 192 disk will become the Linux user ID's read-only 191 disk. Also the 192 disk will contain the
install files for SLES 11 (kernel, parameter file initial RAMdisk).

2. The S11CLONE user ID is given a single minidisk onto which Linux will be installed. Its main purpose is to run
shell scripts, so only a minimal installation is required. It needs B privilege class to invoke FLASHCOPY and E
privilege class to save DCSSs

3. The S11RWGLD user ID is the golden image. It is given four minidisks 100-103 for the primary golden image, and
three more, 200-203 for a backup copy.

4. The S11ROGLD user id is given a 100 minidisk for the /boot/ file system, and a 102 for /usr/local/, but it does not
require a 101 nor a 103 minidisk because the file systems will be stored in DCSSs. It needs E privilege class to
create an NSS.

Following are the directory entries:
USER CMSCLONE PASSWD 64M 128M G
 INCLUDE IBMDFLT
 IPL CMS
 MACHINE ESA 4
 OPTION APPLMON
 MDISK 0191 3390 0001 0030 DM6364 MR PASSWD PASSWD PASSWD
 MDISK 0192 3390 0031 0100 DM6364 MR ALL PASSWD PASSWD
*
USER S11CLONE PASSWD 256M 8G BEG
 INCLUDE LNXDFLT
 OPTION APPLMON LNKNOPAS
 MDISK 0100 3390 0131 3208 DM6364 MR PASSWD PASSWD PASSWD
*
USER S11RWGLD PASSWD 1G 2G G
 INCLUDE LNXDFLT
 OPTION APPLMON
 MDISK 0100 3390 0001 0060 DM63C9 MR PASSWD PASSWD PASSWD
 MDISK 0101 3390 0061 1609 DM63C9 MR PASSWD PASSWD PASSWD
 MDISK 0102 3390 1670 1669 DM63C9 MR PASSWD PASSWD PASSWD
 MDISK 0103 3390 3339 3338 DM63C9 MR PASSWD PASSWD PASSWD
 MDISK 0200 3390 6677 0060 DM63C9 MR PASSWD PASSWD PASSWD
 MDISK 0201 3390 6737 1609 DM63C9 MR PASSWD PASSWD PASSWD
 MDISK 0202 3390 8346 1669 DM63C9 MR PASSWD PASSWD PASSWD
 MDISK 0203 3390 0001 3338 DM63CA MR PASSWD PASSWD PASSWD
*
USER S11ROGLD PASSWD 256M 2G EG
 INCLUDE LNXDFLT
 OPTION APPLMON
 MDISK 0100 3390 3339 0060 DM63CA MR PASSWD PASSWD PASSWD
 MDISK 0102 3390 3399 1669 DM63CA MR PASSWD PASSWD PASSWD

For the new virtual machines to be able to access the VSWITCH, the following commands are added to the PROFILE
EXEC on AUTOLOG1:

'cp set vswitch vsw1 grant s11clone'
'cp set vswitch vsw1 grant s11rwgld'
'cp set vswitch vsw1 grant s11rogld'

These three commands are also run interactively to take effect for the current z/VM session.

© Copyright IBM 2010 12

5.4 Downloading the associated tar file
The tar file associated with this paper is available at:

http://ibm.com/vm/linux/dcss/ror-s11.tgz

It is downloaded to a Linux or UNIX machine and untarred. The z/VM files are needed before the first Linux system is
installed. Later, the tar file is copied to the Linux worker system running on S11CLONE.

Download the tar file to the /tmp/ directory of any Linux or UNIX system. Untar and uncompress the tar file with the tar
command:

cd /tmp
tar xzvf ror-s11-S11.tgz
README.txt
sbin/
sbin/boot.rootfsck.S11
sbin/rwtab.S11
sbin/cloneprep.sh
sbin/clonerw.sh
sbin/rw2ro.sh
sbin/boot.findself
sbin/bak2pri.sh
sbin/pri2bak.sh
sbin/fstab.S11
sbin/rorfuncs.sh
sbin/readonly-root.S11
sbin/clonero.sh
vm/
vm/sles11.exec
vm/sample.parm-s11
vm/profile.exec
vm/profile.xedit

You should now have access to the files associated with this paper.

5.5 Populating the disks on CMSCLONE
Log on to the new CMSCLONE user ID. Format the 191 and 192 disks for CMS using the FORMAT command.

Copy the following files to the CMSCLONE 192 disk. These files will be available to each Linux virtual machine as its 191
or A disk. The first four files are in the tar file associated with this paper. The last two files are on the SLES 11 install media:

PROFILE EXEC An initialization file for each Linux to boot it from minidisk 100 or an NSS

PROFILE XEDIT An XEDIT initialization file similar to that on the MAINT 191 disk

SAMPLE PARM-S11 A sample SLES 11 parameter file

SLES11 EXEC An EXEC to invoke the SLES 11 installation program

SLES11 KERNEL The SLES 11 kernel - in the SLES 11 install media at /boot/s390x/vmrdr.ikr.

SLES11 INITRD The SLES 11 initial RAMdisk – in the SLES 11 install media at /boot/s390x/initrd.

Following is a sample FTP session shown moving the files from the associated tar file. In this example the IP address of the
z/VM system is 9.60.18.141:

cd /tmp/vm
ftp 9.60.18.141
...

© Copyright IBM 2010 13

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

Name (9.60.18.141:root): cmsclone
331 Send password please.
Password:
230 CMSCLONE logged in; working directory = CMSCLONE 191
Remote system type is z/VM.
ftp> cd cmsclone.192
...
ftp> mput *
mput profile.exec [anpqy?]? a
...
125 Storing file 'profile.exec'
...
125 Storing file 'profile.xedit'
...
125 Storing file 'sample.parm-s11'
...
125 Storing file 'sles11.exec'
...
ftp> quit

5.6 Installing SLES 11 onto S11RWGLD
Install a Linux system into the S11RWGLD virtual machine. This will become the Linux golden image.

Before starting the install process, set up an NFS install server. Mount the ISO image of DVD1 loopback over a directory
and export that directory. In this paper, the NFS server is running with the IP address of 9.60.18.133, the ISO image of SLES
11 is stored in /nfs/sles11/ and the exported directory is /nfs/sles11/dvd1

The SLES 11 kernel and initial RAMdisk are in the boot/ directory on the DVD. Use FTP to copy them to the CMSCLONE
192 disk as the files SLES11 KERNEL and SLES11 INITRD. Don't forget to transfer them in binary mode, with fixed-
record 80 byte blocks. This can usually be accomplished by the FTP sub-commands bin and site fix 80 (or quote site fix
80).

• Following is a sample FTP session of SLES 11 kernel and RAMdisk from the installation media to the
CMSCLONE 192 disk. In this example the IP address of the z/VM system is 9.60.18.141:
cd /nfs/sles11/dvd1/boot/s390x
ftp 9.60.18.141
Name (9.60.18.141:root): cmsclone
Password:
ftp> cd cmsclone.192
ftp> bin
200 Representation type is IMAGE.
ftp> site fix 80
200 Site command was accepted.
ftp> put vmrdr.ikr sles11.kernel
...
ftp> put initrd sles11.initrd
...
ftp> quit

• Start a 3270 session and log on as CMSCLONE. Copy the SAMPLE PARM-S11 file to S11RWGLD PARM-S11.
==> copy sample parm-s11 d s11rwgld = =

• Configure the new file with the correct IP and DNS information on the CMSCLONE 192 disk. Following is the
example used in this paper:
==> xedit s11rwgld parm-s11 d

© Copyright IBM 2010 14

ramdisk_size=65536 root=/dev/ram1 ro init=/linuxrc TERM=dumb
HostIP=9.60.18.222 Hostname=gpok222.endicott.ibm.com
Gateway=9.60.18.129 Netmask=255.255.255.128
Broadcast=9.60.18.255 Layer2=0
ReadChannel=0.0.0600 WriteChannel=0.0.0601 DataChannel=0.0.0602
Nameserver=9.0.2.11
portname=whatever
portno=0
Install=nfs://9.60.18.133/nfs/sles11/dvd1
UseVNC=1 VNCPassword=12345678
InstNetDev=osa OsaInterface=qdio OsaMedium=eth Manual=0

• Log on to the S11RWGLD virtual machine. Watch for error messages about minidisks or the VSWITCH. You should
see the PROFILE EXEC run that you copied to the CMSCLONE 192 disk:
00: NIC 0600 is created; devices 0600-0602 defined
00: z/VM Version 5 Release 4.0, Service Level 0801 (64-bit),
00: built on IBM Virtualization Technology
00: There is no logmsg data
00: FILES: 0003 RDR, NO PRT, NO PUN
00: LOGON AT 12:15:50 EST THURSDAY 11/05/09
z/VM V5.4.0 2008-10-22 15:36

DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
00: DASD 0100 3390 DM63C9 R/W 60 CYL ON DASD 63C9 SUBCHANNEL = 0000
Do you want to IPL Linux from 100? y/n
n

• Verify the machine size is 1GB. If it is not, set it to 1GB with the CP command DEF STOR 1G.
==> q stor
00: STORAGE = 1G

• Install a minimal SLES 11 system by starting the installation with the SLES11 EXEC.
==> sles11
00: 0000003 FILES PURGED
00: RDR FILE 0004 SENT FROM S11RWGLD PUN WAS 0004 RECS 085K CPY 001 A NOHOLD NO
KEEP
00: RDR FILE 0005 SENT FROM S11RWGLD PUN WAS 0005 RECS 0011 CPY 001 A NOHOLD NO
KEEP
00: RDR FILE 0006 SENT FROM S11RWGLD PUN WAS 0006 RECS 161K CPY 001 A NOHOLD NO
KEEP
00: 0000003 FILES CHANGED
00: 0000003 FILES CHANGED
Initializing cgroup subsys cpuset
Initializing cgroup subsys cpu
Linux version 2.6.27.19-5-default (geeko@buildhost) (gcc version 4.3.2 Ýgcc-4_3-
branch revision 141291¨ (SUSE Linux)) #1 SMP 2009-02-28 04:40:21 +0100
setup.1a06a7: Linux is running as a z/VM guest operating system in 64-bit mode
...

• Start a VNC client to the install program.

• Accept the license agreement.

• Activate and format eight disks, 100-103 and 200-203. The following figure shows the disks being formatted:

© Copyright IBM 2010 15

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

Activating and formatting eight minidisks

In the Installation Settings window, select Partitioning. Create the following partitions:

Minidisk File System File System type Disk

100 /boot/ ext2 /dev/dasda

101 /usr/share/ ext2 /dev/dasdb

102 /usr/local/ ext3 /dev/dasdc

103 / ext2 /dev/dasdd

Following is a summary of the Expert Partitioner screen:

© Copyright IBM 2010 16

Partitioning disks

Following is a summary of the software. All selections on the Graphical Environment package group are deselected. Most of
the Primary Functions and Development package groups are selected. This is so each of the clones will have a good array of
tools standard. The following figure shows the Software Selection choices:

© Copyright IBM 2010 17

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

Software selection

After the first half of the install completes, the new system is now automatically IPLed from 100 (with SLES 10 and earlier
distributions, this step was manual). Complete the second half of the install using the following notes:

• On the Host and Domain Name panel, deselect the box Change Hostname via DHCP.

• On the Network Configuration panel, set the Firewall to be disabled.

• On the Test Internet Connection panel, the box No, Skip This Test was selected due to firewalls.

• On the Installation Overview panel, turn off the OpenLDAP Server (Don't use LDAP).

• On the Installation Completed panel, deselect the check box Clone This System for Autoyast.

When the installation process completes, the “golden” Linux image should now be installed.

5.6.0.1 Analyzing the new system
Start an SSH session as root to the golden image. Query the file systems with the df -h command:

df -h
Filesystem Size Used Avail Use% Mounted on
/dev/dasda1 2.3G 1.7G 521M 77% /
udev 499M 132K 499M 1% /dev
/dev/dasdb1 40M 14M 24M 37% /boot
/dev/dasdd1 1.2G 34M 1.1G 4% /usr/local
/dev/dasdc1 1.1G 764M 289M 73% /usr/share

© Copyright IBM 2010 18

The read-write file systems /root/, /srv/ and /var/ will later be copied to /usr/local/ on the read-only root clones. Right now,
those file systems occupy only about 70MB of disk space:

du -sm /root /srv /var
1 /root
1 /srv
69 /var

This system will be the golden image and the basis for both the read-write and the read-only clones.

5.7 Installing and customizing SLES 11 onto S11CLONE
On the S11CLONE virtual machine, install a SLES 11 system onto a single minidisk at virtual device 100. To do this, perform
the following steps. The high level steps are listed here, but cookbook-style details are not:

• Create a parameter file, S11CLONE PARM-S11 on the CMSCLONE 192 disk.

• Set the IP address and host name.

• Give the virtual machine access to the VSWITCH.

• Set the virtual storage of the S11CLONE virtual machine to 1G (Important: Don't forget the DEF STOR 1G
command or the SLES 11 installation will most likely fail!)

• Start the install process with the SLES11 EXEC.

• Format just the 100 minidisk.

• Install a minimal system (Base System and Minimal System (Appliances)) with a single root file system.

Then make the following customizations (additional details follow):

• Upgrade the Linux kernel (Don't forget to run zipl afterwards)

• Copy and unwind the tar file associated with this paper.

• Set the cmm, vmcp and dcssblk modules to load at boot time.

• Pass parameters to the dcssblk module.

5.7.1 Upgrading the Linux kernel
The default SLES 11 kernel must be upgraded. There appears to be a bug in the default 2.6.27.19 kernel. One of the
manifestations of this bug is that the kernel can freeze the entire system when a disk is being deactivated with the chccwdev
-d command.

Check the default level of the kernel in SLES 11 with the rpm command:
rpm -qa | grep kernel
kernel-default-base-2.6.27.19-5.1
kernel-default-2.6.27.19-5.1

This shows the kernel is at the 2.6.27.19 level.

If you have access to the upgrade RPMs, the following five RPMs can be updated with the rpm -Uvh command:
kernel-default-2.6.27.29-0.1.1.s390x.rpm
kernel-default-base-2.6.27.29-0.1.1.s390x.rpm
kernel-default-man-2.6.27.29-0.1.1.s390x.rpm
module-init-tools-3.4-70.5_70.6.1.s390x.delta.rpm
module-init-tools-3.4-70.6.1.s390x.rpm

For this paper, the kernel was upgraded by adding an additional software repository through yast. This software repository is
maintained at the corporate level and includes the latest maintenance. You may choose another method of upgrading the
kernel.

© Copyright IBM 2010 19

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

• Invoke the yast command then choose Software => Software Repositories on the main screen.

• Use the Tab key to move to Add.

• Access the repository through FTP by selecting FTP... then Next.

• The software repository added in this example was on the server named ftp3.linux.ibm.com and the directory was
suse/catalogs/SLES11-Updates/sle-11-s390x. The repository was accessed through FTP and the credentials were
also included:

 Server and Directory
 ...
 Repository Name
 __
 (x) Edit Parts of the URL () Edit Complete URL
 ┌Protocol──┐
 │ (x) FTP () HTTP () HTTPS () SMB/CIFS │
 └──┘
 Server Name
 ftp3install.linux.ibm.com__
 Directory on Server
 suse/catalogs/SLES11-Updates/sle-11-s390x___________________________________
 ┌Authentication──┐
 │[] Anonymous │
 │User Name │
 │mikemac___│
 │Password │
 │******__│
 └──┘

• Tab to Next and the repository should be added.

• Select OK.

Now that the SLES 11 updated repository is being pointed at, yast can again be used to update the kernel:

• Choose Software => Software Management on the main screen.

• Enter a Search Phrase of kernel-default. Three items should be found.

• Press the space bar to select kernel-default, kernel-default-base and kernel-default-man.

• Reboot the system – mkinitrd and zipl are not needed :
 # shutdown -r now

Broadcast message from root (pts/0) (Fri Sep 11 15:16:22 2009):

The system is going down for reboot NOW!

• After the system comes back start an SSH session as root. Use the rpm command to show the updated kernel:
rpm -qa | grep kernel
kernel-default-man-2.6.27.42-0.1.1
kernel-default-2.6.27.42-0.1.1
kernel-default-base-2.6.27.42-0.1.1

© Copyright IBM 2010 20

5.7.2 Copying the files associated with this paper
Earlier you staged the tar file on another Linux or UNIX system to copy the z/VM files. Copy the tar file ror-s11.tgz to
/usr/local/ on the S11CLONE machine and untar it.

cd /usr/local
...Copy the tar file ...
tar xzvf ror-s11.tgz
README.txt
sbin/
sbin/boot.rootfsck.S11
sbin/rwtab.S11
sbin/cloneprep.sh
sbin/clonerw.sh
sbin/rw2ro.sh
sbin/boot.findself
sbin/bak2pri.sh
sbin/pri2bak.sh
sbin/fstab.S11
sbin/rorfuncs.sh
sbin/readonly-root.S11
sbin/clonero.sh
vm/
vm/sles11.exec
vm/sample.parm-s11
vm/profile.exec
vm/profile.xedit

The files in the sbin/ sub-directory will be used in the construction of the read-only root system.

The files staged on the initial Linux or UNIX system are no longer needed.

5.7.3 Setting kernel modules to be loaded
Two modules are set to be loaded at boot time:

1. The cmm module in conjunction with configuration changes on z/VM allows possible significant performance gains.

2. The vmcp module allows CP commands to be issued from Linux.

One module is set to be built into the initial RAMdisk: the dcssblk module allows System z Linux to utilize DCSSs for swap
spaces and file systems.

The modules are added to the file /etc/sysconfig/kernel:
cd /etc/sysconfig
vi kernel // modify two lines ...
Path: System/Kernel
Description:
Type: string
Command: /sbin/mkinitrd
#
This variable contains the list of modules to be added to the initial
ramdisk by calling the script "mkinitrd"
(like drivers for scsi-controllers, for lvm or reiserfs)
#
INITRD_MODULES="jbd ext3 dcssblk"

Type: string
Command: /sbin/mkinitrd

© Copyright IBM 2010 21

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

#
This variable contains the list of modules to be added to the initial
ramdisk that is created for unprivilegd Xen domains (domU); you may need
drivers for virtual block and network devices in addition to filesystem
and device-mapper modules.
#
DOMU_INITRD_MODULES="xennet xenblk"

Type: string
ServiceRestart: boot.loadmodules
#
This variable contains the list of modules to be loaded
once the main filesystem is active
You will find a few default modules for hardware which
can not be detected automatically.
#
MODULES_LOADED_ON_BOOT="cmm vmcp"
...

5.7.4 Setting the dcssblk module parameter
Add a line to /etc/modprobe.conf.local specifying the name of the parameters passed to the dcssblk driver. The DCSSs will
be named SWAPPING, S11ROOT1, S11RPM1 and S11SHAR1:

cd /etc
vi modprobe.conf.local
#
please add local extensions to this file
#
options dcssblk "segments=SWAPPING,S11ROOT1,S11RPM1,S11SHAR1"

Bring these changes online:
mkinitrd

Kernel image: /boot/image-2.6.27.29-0.1-default
Initrd image: /boot/initrd-2.6.27.29-0.1-default
Root device: /dev/disk/by-path/ccw-0.0.0100-part1 (/dev/dasda1) (mounted on / as ext3)
Kernel Modules: jbd mbcache ext3 dcssblk dasd_mod dasd_eckd_mod
Features: block dasd
14538 blocks
...
zipl
...

Shutdown the Linux system:
shutdown -h now
...

The Linux system running on the S11CLONE user ID should now be configured.

© Copyright IBM 2010 22

5.8 Creating a DCSS for swapping
DCSSs can provide a fast device for swapping when a guest is memory constrained but z/VM is not. It allows the reduction of
guest virtual memory size while maintaining acceptable performance for peak workloads (move overcommitment to guest
level). It can provide lower overhead than VDISKs as the data movement is all done by the guest without interaction with the
hypervisor. It also avoids the expense of building I/O programs since it is a memory-to-memory move. Because of these
efficiencies, a higher swap rate can be achieved with a DCSS swap device than a VDISK swap device.

The SLES install process does not recognize DCSS devices at install-time. Thus, these steps are done after the installation.

The dcssblk device driver now supports mixed EW/EN segments. EW means exclusive read/write access and EN means
exclusive read/write access, no data saved.

The overall steps to creating a DCSS swap space are as follows:

1) Define a DCSS name SWAPPING from CMS

2) Boot Linux to prepare loading the new DCSS

3) Reboot Linux to load the new DCSS

4) Create a swap space on the DCSS

5) Add the swap space to the system on S11CLONE

6) Prepare the golden image for the swap space

7) Reboot the golden image to load the swap space

© Copyright IBM 2010 23

Important - swap to VDISKs or DCSSs?

Other publications recommend using VDISK for swap spaces, for example, the Redbook z/VM and Linux on IBM
System z: The Virtualization Cookbook for SLES 10 SP2, on the Web at :

http://www.redbooks.ibm.com/abstracts/sg247493.html

DCSSs can offer better performance as just described, especially when significant swapping occurs (1000s per
second). However, there are potential downsides to swapping to DCSS, as doing so can:

• Increase the negative effect of Page Reorder. Processing can cause delays where the virtual machine
appears to not run for a period of time. This is a result of increasing the number of private pages associated
with the virtual machine that would potentially come into play with Reorder processing.

• Increase the negative effect of demand scan being handled in the Emergency Pass due to virtual machines
not going to the z/VM dormant list even when they have no real work to do. This increase is a result of
additional pages being associated with the virtual machine as opposed to being in a separate virtual address
space as a VDISK would be.

• Remove the ability from z/VM monitoring to determine how much memory is required for the virtual
machine, how much swapping space is actively being used, and swapping activity. In a VDISK
environment, one would see z/VM data that shows both the VDISK activity and the virtual machine
memory usage. In the DCSS case, only the virtual machine memory usage would be shown and you cannot
differentiate between the swap DCSS and the normal virtual machine memory.

As a result of these factors and others, VDISKs are recommended for swapping unless a small virtual machine, as
seen in the example, is acceptable and it is not running software that prohibits the virtual machine from going to the
dormant list, and there is no desire to view details of swapping from z/VM performance tools.

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

5.8.1 Defining a DCSS for swapping
To define a DCSS for a swap space, perform the following steps:

• Log on to S11CLONE. Do not IPL Linux. Set the storage to 3GB so the swap space DCSS can be addressed. Then
reIPL CMS:
==> def stor 3G
00: STORAGE = 3G
00: Storage cleared - system reset.
==> ipl cms
IPL CMS
z/VM V5.4.0 2008-10-22 15:36

DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
Do you want to IPL Linux from DASD 100? y/n
n

• Define a 1 GB DCSS named SWAPPING using the DEFSEG command:
==> defseg swapping 80000-80000 ew 80001-bffff en
00: HCPNSD440I Saved segment SWAPPING was successfully defined in fileid 0076.

The first page (80000) is writable so the swap signature can be written to it. The rest of the DCSS is used for the
swap data, so it never has to be saved.

• Save the segment with the SAVESEG command:
===> saveseg swapping
00: HCPNSS440I Saved segment SWAPPING was successfully saved in fileid 0176.

• Query the new DCSS:
==> q nss name swapping map
00: FILE FILENAME FILETYPE BEGPAG ENDPAG TYPE CL #USERS
00: 0176 SWAPPING DCSSG 0000000080000 0000000080000 EW A 00000
00: 0000000080001 00000000BFFFF EN

The DCSS for Linux swap spaces is now defined. Any Linux virtual machine will be able to use it.

5.8.2 Booting Linux to load the new DCSS
To boot Linux, perform the following steps:

• Reset the virtual machine size to 256M, then start Linux.
==> def stor 256m
00: STORAGE = 256M
00: Storage cleared - system reset.
==> ipl 100
...

• When the system comes up, start an SSH session as root. Query that the DCSS named SWAPPING was loaded:
ls /sys/devices/dcssblk
SWAPPING add remove uevent

You should see a file named SWAPPING. This shows that the swap space was loaded by the dcssblk driver. If not, then you
must determine what went wrong.

Note: When booting this system, it may take a number of minutes to load the DCSSs. The boot process may appear to freeze

© Copyright IBM 2010 24

at this point:
...
Freeing initrd memory: 2842k freed
audit: initializing netlink socket (disabled)
type=2000 audit(1265918190.194:1): initialized
HugeTLB registered 1 MB page size, pre-allocated 0 pages

5.8.3 Creating a swap space on the DCSS
It is recommended that you run the following commands from a 3270 emulator session as additional informational messages
are sent to the console.

• Create a swap space on the new DCSS using the mkswap command:
mkswap /dev/dcssblk0
Setting up swapspace version 1, size = 1048572 KiB
no label, UUID=6dc50623-2430-42fa-93b8-aa67625990e0

• Save the swap space. You should see messages on the console informing you of the DCSS file ID that is saved. In
this example it is 177:
echo 1 > /sys/devices/dcssblk/SWAPPING/save
00: HCPNSD440I Saved segment SWAPPING was successfully defined in fileid 0177.
00: HCPNSS440I Saved segment SWAPPING was successfully saved in fileid 0177.
dcssblk.9a4530: All DCSSs that map to device SWAPPING are saved

It is important to note that the mkswap command need only be performed once. The swap signature is written to the DCSS
and is then memory mapped to each Linux virtual machine that loads it using the dcssblk driver.

5.8.4 Adding the swap space to S11CLONE
Perform the following steps to add the swap space to the golden image:

• Backup the /etc/fstab file, then add a line to it to specify that a swap space is at /dev/dcssblk0 :
cd /etc
cp fstab fstab.orig
vi fstab
/dev/disk/by-path/ccw-0.0.0100-part1 / ext3 acl,user_xattr 1 1
/dev/dcssblk0 swap swap defaults 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

• Test the addition to /etc/fstab with the swapon command. The first swapon -s command shows that there is no swap
space. The swapon -a command turns all swap spaces on, so the /etc/fstab file is read. The second swapon -s
command shows that the DCSS swap space is now active.
swapon -s
Filename Type Size Used Priority
swapon -a
swapon -s
Filename Type Size Used Priority
/dev/dcssblk0 partition 2096120 0 -1

• Reboot the system to verify that the swap space is also loaded at boot time:
reboot
...

© Copyright IBM 2010 25

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

• When the system comes back start an SSH session as root. The swapon -s command should show that the swap
space is active:
swapon -s
Filename Type Size Used Priority
/dev/dcssblk0 partition 2096120 0 -1

The Linux system on S11CLONE should now be customized with a DCSS swap space.

5.9 Customizing the golden image on S11RWGLD
The following configuration changes to the golden image on S11RWGLD are recommended:

• Upgrade the kernel

• Change the parameter line and menu delay in /etc/zipl.conf.

• Install the CMS file system (cmsfs) package.

• Set additional kernel modules to be loaded at boot time.

• Set the parameters to be passed to the dcssblk driver

• Set the system to halt when z/VM is shut down, and set the default run level to 3.

• Update /etc/fstab with a swap space and a /tmp/ file system of type tmpfs

• Copy some scripts used later for cloning and read-only root systems.

• Optionally, create mount points under /opt/ for the possibility of mounting middleware.

5.9.1 Upgrading the kernel
To upgrade the kernel, perform the following steps

• Start an SSH session to the golden image (S11RWGLD). Observe the kernel level:
uname -a
Linux gpok222 2.6.27.19-5-default #1 SMP 2009-02-28 04:40:21 +0100 s390x s390x s390x
GNU/Linux

• Upgrade the kernel as described in section 5.7.1, Upgrading the Linux kernel on page 19. In this example, it is
upgraded to 2.6.27.42. The commands mkinitrd and zipl should be automatically run as part of the RPM upgrade
so they don't have to be run separately. Reboot the system
reboot
...

• Start a new SSH session when the system comes back up. Verify the upgrade is complete with the uname -a
command:

uname -a
Linux gpok222 2.6.27.42-0.1-default #1 SMP 2010-01-06 16:07:25 +0100 s390x s390x
s390x GNU/Linux

• Verify that the zipl.conf file has been modified whereby the name associated with the boot kernel has changed to

© Copyright IBM 2010 26

Note to implementers: Again, please resist the urge to add or delete steps. Certain steps such as modifying zipl.conf,
adding the cmsfs package, loading the vmcp module, and copying boot.findself are required for the entire solution to work.

LinuxV1 (from Linux):
grep Linux /etc/zipl.conf
[LinuxV1]
 1 = LinuxV1

5.9.2 Modifying zipl.conf
Modify the file /etc/zipl.conf in two ways:

• In the [LinuxV1] section, add the parameter vmpoff=LOGOFF and vmhalt=LOGOFF so that VM user IDs are
logged off after Linux is shut down.

• In the :menu section, reduce the timeout from 10 seconds to 3 so Linux IPLs more quickly with no user input.

Back up the latest zipl.conf then make the following changes:
cd /etc
cp zipl.conf zipl.conf.orig
vi zipl.conf
Modified by YaST2. Last modification on Fri Feb 12 14:20:53 UTC 2010
[defaultboot]
defaultmenu = menu

###Don't change this comment - YaST2 identifier: Original name: linux###
[LinuxV1]
 image = /boot/image-2.6.27.42-0.1-default
 target = /boot/zipl
 ramdisk = /boot/initrd-2.6.27.42-0.1-default,0x2000000
 parameters = "vmpoff=LOGOFF vmhalt=LOGOFF root=/dev/disk/by-path/ccw-0.0.0103-part1
TERM=dumb"

:menu
 default = 1
 prompt = 1
 target = /boot/zipl
 timeout = 3
 1 = LinuxV1
 2 = ipl
...

The zipl command will be run later.

5.9.3 Installing the CMS file system package
Add the cmsfs RPM with the zypper install command. This RPM will be needed by the boot.findself script to obtain the
correct IP address and host name from the 191 (CMSCLONE 192) disk at first boot.

zypper install cmsfs
Loading repository data...
Reading installed packages...
Resolving package dependencies...

The following NEW package is going to be installed:
 cmsfs

© Copyright IBM 2010 27

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

Overall download size: 33.0 K. After the operation, additional 148.0 K will be used.
Continue? [YES/no]: yes
Retrieving package cmsfs-1.1.8-6.2.s390x (1/1), 33.0 K (148.0 K unpacked)
Installing: cmsfs-1.1.8-6.2 [done]

5.9.4 Setting additional kernel modules to be loaded
As with the S11CLONE virtual machine, three modules are set to be loaded at boot time:

1. dcssblk: this module allows DCSS swap spaces and file systems to be utilized

2. cmm: when the cmm module is loaded, in conjunction with configuration changes on z/VM, significant
performance gains are possible.

3. vmcp: the vmcp module allows CP commands to be issued from Linux.

Add these modules to the file /etc/sysconfig/kernel in the variables INITRD_MODULES (for the dcssblk driver) and
MODULES_LOADED_ON_BOOT:

cd /etc/sysconfig
cp kernel kernel.orig
vi kernel // modify two lines
INITRD_MODULES="dcssblk"

Type: string
Command: /sbin/mkinitrd
#
This variable contains the list of modules to be added to the initial
ramdisk that is created for unprivilegd Xen domains (domU); you may need
drivers for virtual block and network devices in addition to filesystem
and device-mapper modules.
#
DOMU_INITRD_MODULES="xennet xenblk"

Type: string
ServiceRestart: boot.loadmodules
#
This variable contains the list of modules to be loaded
once the main filesystem is active
You will find a few default modules for hardware which
can not be detected automatically.
#
MODULES_LOADED_ON_BOOT="cmm vmcp"
...

5.9.5 Passing parameters to the dcssblk module
Add a line to /etc/modprobe.conf.local specifying the name of the parameter passed to the dcssblk driver. Additionally the
DCSSs named S11ROOT1, S11RPM1 and S11SHAR1 are added, which will be used later.

cd /etc
vi modprobe.conf.local
#
please add local extensions to this file
#
options dcssblk "segments=SWAPPING,S11ROOT1,S11RPM1,S11SHAR1"

© Copyright IBM 2010 28

Make these and previous changes available to the /boot/ file system with the mkinitrd and zipl commands:
mkinitrd

Kernel image: /boot/image-2.6.27.42-0.1-default
Initrd image: /boot/initrd-2.6.27.42-0.1-default
Root device: /dev/disk/by-path/ccw-0.0.0103-part1 (/dev/dasda1) (mounted on / as ext2)
Kernel Modules: dcssblk mbcache ext2 dasd_mod dasd_eckd_mod
Features: block dasd
13980 blocks
zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Building menu 'menu'
Adding #1: IPL section 'LinuxV1' (default)
Adding #2: IPL section 'ipl'
Preparing boot device: dasdc (0100).
Done.

5.9.6 Modifying the /etc/inittab file
Make two changes to the /etc/inittab file. Change the default run level from 5 (graphical interface) to 3 (command line
interface). Rather than rebooting, (shutdown -r), set the system to halt (shutdown -h) when the shutdown signal is trapped as
a Ctrl-Alt-Del signal:

cd /etc
cp inittab inittab.orig
vi inittab // change shutdown -r to shutdown -h
...
The default runlevel is defined here
id:3:initdefault:
...
what to do when CTRL-ALT-DEL is pressed
ca::ctrlaltdel:/sbin/shutdown -h -t 4 now
...

5.9.7 Modifying /etc/fstab
Two lines are added to the /etc/fstab file

• The line to load the DCSS swap space.

• The /tmp/ file system need not be persistent across reboots, per the Filesystem Hierarchy Specificaiton (FHS).
Therefore it can be of type tmpfs which is an in-memory file system.

To accomplish this, add the following two lines to /etc/fstab:
cd /etc
cp fstab fstab.orig
vi fstab
/dev/disk/by-path/ccw-0.0.0103-part1 / ext2 acl,user_xattr 1 1
/dev/disk/by-path/ccw-0.0.0100-part1 /boot ext2 acl,user_xattr 1 2
/dev/disk/by-path/ccw-0.0.0102-part1 /usr/local ext3 acl,user_xattr 1 2
/dev/disk/by-path/ccw-0.0.0101-part1 /usr/share ext2 acl,user_xattr 1 2
/dev/dcssblk0 swap swap defaults 0 0
tmpfs /tmp tmpfs defaults 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0

© Copyright IBM 2010 29

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

debugfs /sys/kernel/debug debugfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

These changes will be effected after the next reboot.

5.9.8 Copying scripts to the golden image
The following scripts associated with this paper are copied to the golden image:

File Location Description

boot.findself /usr/local/sbin A new script run at first boot by /etc/init.d/boot.local to set the IP address
and host name

cloneprep.sh /usr/local/sbin/ A new script run before cloning to clean up unnecessary files

setup-block.sh /lib/mkinitrd/scripts/ A modified script that allows mkintrd to recognize the dcssblk module

boot.rootfsck /etc/init.d/ A modified script run at each boot allow for a read-only root file system

boot.local /etc/init.d/ A modified script to call boot.findself at first boot then rename it so it is
only run once

Copy the new shell scripts using the scp command from the cloner. In this example, the IP address of the Linux running on
S11CLONE is 9.60.18.226:

cd /usr/local/sbin
scp 9.60.18.226:/usr/local/sbin/cloneprep.sh .
The authenticity of host '9.60.18.225 (9.60.18.225)' can't be established.
RSA key fingerprint is e2:20:51:93:10:47:25:83:86:08:3a:92:d1:24:e9:9b.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '9.60.18.225' (RSA) to the list of known hosts.
Password:
cloneprep.sh 100% 2280 2.2KB/s 00:00
scp 9.60.18.226:/usr/local/sbin/boot.findself .
Password:
boot.findself 100% 6106 6.0KB/s 00:00
...

Copy the modified shell scripts using the scp command from the cloner.
cd /lib/mkinitrd/scripts
mv setup-block.sh setup-block.sh.orig
scp 9.60.18.226:/usr/local/sbin/setup-block.sh.S11 setup-block.sh
Password:
setup-block.sh.S11 100% 4480 4.4KB/s 00:00
diff setup-block.sh setup-block.sh.orig // observe only small differences
79,81d78
< dcss*)
< echo dcssblk
< ;;
cd /etc/init.d
mv boot.rootfsck boot.rootfsck.orig
scp 9.60.18.226:/usr/local/sbin/boot.rootfsck.S11 boot.rootfsck
Password:
boot.rootfsck.S11 100% 8745 8.5KB/s 00:00
diff boot.rootfsck boot.rootfsck.orig // observe substantial differences
...

© Copyright IBM 2010 30

mv boot.local boot.local.orig
scp 9.60.18.226:/usr/local/sbin/boot.local.S11 boot.local
Password:
boot.local.S11 100% 698 0.7KB/s 00:00
diff boot.local boot.local.orig // observe one addition
15,20c15
< if [-f /usr/local/sbin/boot.findself]; then # this is first boot
< /usr/local/sbin/boot.findself # run it to set IP@ & hostname
< if [$? = 0]; then # then success => rename
< /bin/mv /usr/local/sbin/boot.findself /usr/local/sbin/boot.findself.hasrun
< fi
< fi

>

The two new and the three modified scripts should now be copied. They are essential to the environment.

5.9.9 Creating empty mount points
Mounting middleware binaries read-only is beyond the scope of this paper. However, if there is a possibility that you may run
WebSphere® Application Server, DB2 UDB, or MQ Series, you may wish to create the following, or other, empty mount
points for other software:

• /opt/IBM/WebSphere/

• /opt/mqm/

• /opt/IBM/db2/

In this fashion, all cloned servers will have empty mount points for possibly mounting software.
cd /opt
mkdir mqm IBM
cd IBM
mkdir WebSphere db2

5.9.10 Testing the changes
The system can be rebooted and tested.

reboot
...

The system may take a number of minutes to reboot as the DCSSs are being loaded. When it is back, start an SSH session as
root and verify the changes made in this section.

View the file systems with the df -h command:
df -h
Filesystem Size Used Avail Use% Mounted on
/dev/dasda1 2.3G 1.7G 487M 78% /
udev 499M 148K 499M 1% /dev
/dev/dasdb1 40M 14M 24M 37% /boot
/dev/dasdd1 1.2G 34M 1.1G 4% /usr/local
/dev/dasdc1 1.1G 765M 288M 73% /usr/share
tmpfs 499M 0 499M 0% /tmp

View the change to the kernel parameters:
cat /proc/cmdline

© Copyright IBM 2010 31

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

vmpoff=LOGOFF vmhalt=LOGOFF root=/dev/disk/by-path/ccw-0.0.0103-part1 TERM=dumb
init=/linuxrc BOOT_IMAGE=0

Use the rpm -q command to show that the cmsfs package was added:
rpm -q cmsfs
cmsfs-1.1.8-6.2

Use the lsmod and egrep commands to show that the additional modules have been added:
lsmod | egrep "cmm|vmcp|dcssblk"
vmcp 5704 0
cmm 12184 0
smsgiucv 5408 1 cmm
dcssblk 16056 5

Use the swapon -s command to show that the DCSS swap space is being used:
swapon -s
Filename Type Size Used Priority
/dev/dcssblk0 partition 2096120 0 -1

5.9.11 Preparing the system for cloning
Now the cloneprep.sh script can be run to prepare the system for cloning. The output should be similar to the following:

cloneprep.sh
rm: cannot remove `/var/log/*.gz': No such file or directory
System should be ready for shutdown and cloning

5.10 Backing up the golden image
You should now backup the golden image. Shutdown the golden Linux running on S11RWGLD and log off so the system
can be copied.

shutdown -h now

Broadcast message from root (pts/0) (Thu Nov 5 15:49:05 2009):

The system is going down for system halt NOW!
...

To back up the golden image, perform the following steps:

• Start an SSH session as root on the Linux running on S11CLONE.

• Copy the primary minidisks at addresses 100-103 to the backup minidisks at addresses 200-203 with pri2bak.sh:
pri2bak.sh
Are you sure you want to back up disks 100-103 to 200-203? (y/n): y

Copying S11RWGLD 100 to S11RWGLD 200 ...
Command complete: FLASHCOPY 1100 0 59 TO 2200 0 59
FLASHCOPY succeeded
DASD 1100 DETACHED
DASD 2200 DETACHED

© Copyright IBM 2010 32

Copying S11RWGLD 101 to S11RWGLD 201 ...
Command complete: FLASHCOPY 1101 0 1608 TO 2201 0 1608
FLASHCOPY succeeded
DASD 1101 DETACHED
DASD 2201 DETACHED

Copying S11RWGLD 102 to S11RWGLD 202 ...
Command complete: FLASHCOPY 1102 0 1668 TO 2202 0 1668
FLASHCOPY succeeded
DASD 1102 DETACHED
DASD 2202 DETACHED

Copying S11RWGLD 103 to S11RWGLD 203 ...
Command complete: FLASHCOPY 1103 0 3337 TO 2203 0 3337
FLASHCOPY succeeded
DASD 1103 DETACHED
DASD 2203 DETACHED

A copy of the golden image is now on the backup disks. You may want to test making a change to the existing golden image,
restoring from the backup with the bak2pri.sh script and seeing that the change is gone because of the rollback.

5.11 Cloning a read-write Linux system
You should now be ready to clone a read-write system. The clonerw.sh script copies the necessary minidisks from
S11RWGLD system to a target user ID that must be specified.

To clone a read-write system, perform the following steps:

• Create a new target user ID

• Create a new parameter file

• Grant access to the VSWITCH

• Clone a new read-write system

5.11.1 Creating a new target user ID
Create a new user ID LNX227 with the same size minidisks as the golden image with the same virtual device addresses:

 USER LNX227 PASSWD 256M 1G G
 INCLUDE LNXDFLT
 OPTION APPLMON
 MDISK 0100 3390 5068 0060 DM63CA MR PASSWD PASSWD PASSWD
 MDISK 0101 3390 5128 1609 DM63CA MR PASSWD PASSWD PASSWD
 MDISK 0102 3390 6737 1669 DM63CA MR PASSWD PASSWD PASSWD
 MDISK 0103 3390 0001 3338 DM63CB MR PASSWD PASSWD PASSWD

Bring the directory changes online.

5.11.2 Creating a new parameter file
Create a parameter file on the CMSCLONE 192 disk (which will become the Linux user ID’s read-only 191 disk). By default
CMS accesses the 192 disk as D. The S11RWGLD parameter file on CMSCLONE’s D disk is copied as a template, and the
host name and IP address are modified:

===> copy s11rwgld parm-s11 d lnx227 = =
===> x lnx227 parm-s11 d
ramdisk_size=65536 root=/dev/ram1 ro init=/linuxrc TERM=dumb
HostIP=9.60.18.227 Hostname=gpok227.endicott.ibm.com

© Copyright IBM 2010 33

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

Gateway=9.60.18.129 Netmask=255.255.255.128
Broadcast=9.60.18.255 Layer2=0
ReadChannel=0.0.0600 WriteChannel=0.0.0601 DataChannel=0.0.0602
Nameserver=9.0.2.11
portname=whatever
portno=0
Install=nfs://9.60.18.133/nfs/sles11/dvd1
UseVNC=1 VNCPassword=12345678
InstNetDev=osa OsaInterface=qdio OsaMedium=eth Manual=0

By using the SLES 11 parameter file to maintain the IP address and host name, there is a side effect. If for some reason you
need to install Linux manually, or even use the install process as a rescue system, this file will be available and the same
IP/DNS information will be used.

5.11.3 Granting access to the VSWITCH
Grant the new user ID access to the VSWITCH. The following statement is put in AUTOLOG1’s PROFILE EXEC:

'cp set vswitch vsw1 grant lnx227'

This command is also run interactively from the command line for the current z/VM session.

5.11.4 Cloning a new read-write system
The read-write Linux system is cloned to the LNX227 user ID with the clonerw.sh shell script from the system running on
S11CLONE.

Run the clonerw.sh script specifying the target user ID:
clonerw.sh lnx227
Are you SURE you want to clone a read-write system to LNX227 (y/n): y

Copying S11RWGLD 100 to LNX227 100 ...
Command complete: FLASHCOPY 1100 0 59 TO 2100 0 59
FLASHCOPY succeeded
DASD 1100 DETACHED
DASD 2100 DETACHED

Copying S11RWGLD 101 to LNX227 101 ...
Command complete: FLASHCOPY 1101 0 1608 TO 2101 0 1608
FLASHCOPY succeeded
DASD 1101 DETACHED
DASD 2101 DETACHED

Copying S11RWGLD 102 to LNX227 102 ...
Command complete: FLASHCOPY 1102 0 1668 TO 2102 0 1668
FLASHCOPY succeeded
DASD 1102 DETACHED
DASD 2102 DETACHED

Copying S11RWGLD 103 to LNX227 103 ...
HCPLNS116I NOTE: Cylinders 0 through 3337 of minidisk 1103 are the
HCPLNS116I source for FlashCopy relationship 00000000.
Command complete: FLASHCOPY 1103 0 3337 TO 2103 0 3337
FLASHCOPY succeeded

© Copyright IBM 2010 34

DASD 1103 DETACHED
DASD 2103 DETACHED
Success! You should be able to IPL the read-write system on LNX227

You can ignore any HCPLNS116I messages you might get.

Log on to the newly created LNX227 and IPL from 100. At the initial log on, be sure there are no errors related to minidisks
nor VSWITCH access:

LOGON LNX227
00: NIC 0600 is created; devices 0600-0602 defined
00: z/VM Version 5 Release 4.0, Service Level 0801 (64-bit),
00: built on IBM Virtualization Technology
00: There is no logmsg data
00: FILES: NO RDR, NO PRT, NO PUN
00: LOGON AT 15:48:15 EST FRIDAY 11/06/09
z/VM V5.4.0 2008-10-22 15:36

DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
00: DASD 0100 3390 DM63CA R/W 60 CYL ON DASD 63CA SUBCHANNEL = 0000
Do you want to IPL Linux from 100? y/n
y
00: zIPL v1.8.0 interactive boot menu
00:
00: 0. default (LinuxV1)
00:
00: 1. LinuxV1
00: 2. ipl
00:
00: Note: VM users please use '#cp vi vmsg <number> <kernel-parameters>'
00:
00: Please choose (default will boot in 3 seconds):
00: Booting default (LinuxV1)...
...

A few screens later, you should see the modified /etc/init.d/boot.rootfsck issue a message that the READONLY variable is
not set for this server:

..doneROR: READONLY = no
Activating swap-devices in /etc/fstab...
..

The script /usr/local/sbin/boot.findself should be called by /etc/init.d/boot.local and access the 191 disk, read the parameter
file and set the TCP/IP address and host name. It does this by modifying the files /etc/hosts, /etc/HOSTNAME and
/etc/sysconfig/network/ifcfg-eth0. You should see informational messages similar to the following:

...
System Boot Control: Running /etc/init.d/boot.local

/usr/local/sbin/boot.findself: changing (escaped) gpok222\.endicott\.ibm\.com to
 gpok227.endicott.ibm.com in /etc/HOSTNAME
/usr/local/sbin/boot.findself: changing gpok222 to gpok227 and IP address in /et
c/hosts
/usr/local/sbin/boot.findself: changing (escaped) 9\.60\.18\.222 to 9.60.18.227
in /etc/sysconfig/network/ifcfg-eth0
...

These messages show that the boot.findself script ran and modified the IP address and host name. You should now be able to
start an SSH session with the cloned system at the correct IP address.

At the end of the boot messages, you should see sshd creating new SSH keys (they were deleted by boot.findself):

© Copyright IBM 2010 35

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

...
Generating /etc/ssh/ssh_host_rsa_key.
Generating public/private rsa key pair.
Your identification has been saved in /etc/ssh/ssh_host_rsa_key.
Your public key has been saved in /etc/ssh/ssh_host_rsa_key.pub.
The key fingerprint is:
c1:25:5d:68:30:d5:d0:1c:42:cb:03:19:49:19:37:da root@gpok227
The key's randomart image is:
+--Ý RSA 1024¨----+
| .O@OBo. |
| .+X+++ |
| +.E |
| . . |
| S |
| |
| |
| |
| |
+-----------------+
Starting SSH daemon..done
Starting CRON daemon..done
Starting INET services. (xinetd)..done
Master Resource Control: runlevel 3 has been reached
Skipped services in runlevel 3: Ý80C Ý30Dsmbfs nfs smartd splash

Welcome to SUSE Linux Enterprise Server 11 (s390x) - Kernel 2.6.27.29-0.1-defaul
t (ttyS0).

gpok227 login:

You can view the file systems with the df -h command (the Used sizes should be approximately the same):
df -h
Filesystem Size Used Avail Use% Mounted on
/dev/dasda1 2.3G 1.7G 492M 78% /
udev 122M 140K 122M 1% /dev
/dev/dasdb1 40M 14M 24M 37% /boot
/dev/dasdd1 1.2G 34M 1.1G 4% /usr/local
/dev/dasdc1 1.1G 765M 288M 73% /usr/share
tmpfs 122M 0 122M 0% /tmp

This shows the file system layout of a cloned read-write Linux system. You have now cloned a read-write Linux system.

Section 6: Creating a read-only cloning system
You should now have a read-write Linux system with tools to maintain copies of Linux for test, maintenance and cloning. It
is now time to create a read-only root system. The first three DCSSs are created for file systems. This only has to be done
once.

In section 6.2 on page 38, the steps to manually create a read-only reference system on S11ROGLD are described. This
section will enable you to more fully understand the process of converting a read-write to a read-only root system.

In section 6.4 on page 50, a script named rw2ro.sh is described that will automate the process of moving from the golden
image to the read-only root system. This will allow you to more quickly and reliably implement the process.

© Copyright IBM 2010 36

With either of these two approaches, you must first create the three DCSSs manually. But this has to be done only once.

6.1 Creating DCSSs for read-only file systems
The root file system, the /var/lib/rpm/ and /usr/share/ directories will be stored in DCSSs The /boot/ file system will
become a Named Saved System (NSS).

6.1.1 Creating the DCSSs
The DCSSs are created on the S11CLONE virtual machine. Shutdown the Linux system on S11CLONE and define storage to
8G:

halt

Broadcast message from root (ttyS0) (Mon Sep 28 12:40:22 2009):

The system is going down for system halt NOW!
INIT: Switching to runlevel: 0
 ...
 00: HCPGSP2629I The virtual machine is placed in CP mode due to a SIGP stop from
 CPU 00.

==> def stor 8G
00: STORAGE = 8G
00: Storage cleared - system reset.

==> ipl cms
z/VM V5.4.0 2008-10-22 15:36

DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
Do you want to IPL Linux from 100? y/n
n
...

Define and save a DCSS of type SR with the name S11ROOT1 . The SAVESEG command saves the DCSS. The SR
parameter means the DCSS will have shared read-only access. The LOADNSHR parameter indicates that any user may load
a non-shared copy of the saved segment.

==> defseg s11root1 C0000-13FEFF sr loadnshr
00: HCPNSD440I Saved segment S11ROOT1 was successfully defined in fileid 0178.
==> saveseg s11root1
00: HCPNSS440I Saved segment S11ROOT1 was successfully saved in fileid 0178.

Note: Tthe SAVESEG command can take a few minutes to complete.

Define and save a DCSS with the name S11RPM1 :
==> defseg s11rpm1 13FF00-142EFF sr loadnshr
00: HCPNSD440I Saved segment S11RPM1 was successfully defined in fileid 0179.
==> saveseg s11rpm1
00: HCPNSS440I Saved segment S11RPM1 was successfully saved in fileid 0179.

Define and save a DCSS with the name S11SHAR1 :
==> defseg s11shar1 142F00-181EFF sr loadnshr
00: HCPNSD440I Saved segment S11SHAR1 was successfully defined in fileid 0180.
==> saveseg s11shar1

© Copyright IBM 2010 37

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

00: HCPNSS440I Saved segment S11SHAR1 was successfully saved in fileid 0180.

Note: This SAVESEG command can also take a few minutes to complete.

Observe the new DCSSs:
==> q nss
00: OWNERID FILE TYPE CL RECS DATE TIME FILENAME FILETYPE ORIGINID
…
00: *NSS 0177 NSS A 0003 11/05 14:37:01 SWAPPING DCSSG S11CLONE
00: *NSS 0178 NSS A 524K 11/06 15:57:03 S11ROOT1 DCSSG S11CLONE
00: *NSS 0179 NSS A 012K 11/06 16:04:31 S11RPM1 DCSSG S11CLONE
00: *NSS 0180 NSS A 258K 11/06 16:05:47 S11SHAR1 DCSSG S11CLONE

Now that the DCSSs are defined, the Linux system running on S11CLONE can use them. Set the storage back to 256MB
and boot Linux:

==> def stor 256m
00: STORAGE = 256M
00: Storage cleared - system reset.
==> ipl 100
00: zIPL v1.8.0 interactive boot menu
...

The DCSSs for the read-only file systems have now been created.

6.2 Manually creating a read-only root system
This section describes the steps to move from a read-write system on S11RWGLD to a read-only root system on
S11ROGLD. Later this can be done with the rw2ro.sh script because there are a large number of steps.

The main steps are as follows:

1. Set up the basic environment.

2. Enable the source disks.

3. Enable the target DCSSs.

4. Enable the target file systems.

5. Copy the root file system to the target.

6. Mount the remaining source file systems.

7. Format and mount the remaining target file systems.

8. Copy the remaining file systems from source to target.

9. Modify the target system to be read-only.

10. Clean up - unmount file systems, disable and detach devices.

11. Save the three DCSSs.

12. Create an NSS.

6.2.1 Setting up basic environment
Perform the following steps to set up the basic environment:

© Copyright IBM 2010 38

• Shutdown and log off the source and target systems, S11RWGLD and S11ROGLD. The work is done from the
“cloner”, S11CLONE.

• Verify that the new DCSSs have been loaded:
ls /sys/devices/dcssblk
S11ROOT1 S11RPM1 S11SHAR1 SWAPPING add remove uevent

• Create a mount point below the /mnt/ directory for the source (src/) and the target (tgt/) systems. Create a third
mount point for the target DCSS, S11RPM1, that will contain the /var/lib/rpm/ directory. No attempt is made to
mount over /mnt/tgt/var/lib/rpm/ because this would add complexity, and this directory need not be mounted to
“chroot” into the target environment. Create three mount points: /mnt/src/, /mnt/tgt/, and /mnt/rpm/:
cd /mnt
mkdir src tgt rpm

6.2.2 Enabling the source disks
Perform the following steps to enable the source disks on S11RWGLD:

• Link to the four source disks read-only using the CP LINK command, using virtual device addresses with a prefix of
1:
vmcp link s11rwgld 100 1100 rr
vmcp link s11rwgld 101 1101 rr
vmcp link s11rwgld 102 1102 rr
vmcp link s11rwgld 103 1103 rr

• Enable the four disks using the chccwdev command:
chccwdev -e 1100
Setting device 0.0.1100 online
Done
chccwdev -e 1101
Setting device 0.0.1101 online
Done
chccwdev -e 1102
Setting device 0.0.1102 online
Done
chccwdev -e 1103
Setting device 0.0.1103 online
Done

You should see messages on the console that the disks are enabled.

6.2.3 Enabling the target DCSSs
Perform the following steps to enable the three target DCSSs:

• Enable each of the DCSSs for read-write access by echoing a 0 to the file shared in the /sys/ file system. This sets
the DCSSs to “not shared” which means they can be written to:
echo 0 > /sys/devices/dcssblk/S11ROOT1/shared
echo 0 > /sys/devices/dcssblk/S11RPM1/shared
echo 0 > /sys/devices/dcssblk/S11SHAR1/shared

Important: Because some of the DCSS are large, these steps may take some number of minutes. This will also
probably have the effect of freezing the z/VM system. The entire z/VM system is not really frozen. Rather, while
saving or loading is in progress, NSS commands, DCSS commands, or diagnose functions for NSS and DCSS that
are issued from any guest operating system of the same z/VM will be delayed.

© Copyright IBM 2010 39

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

• Make an ext2 file system of the three DCSSs:

mke2fs /dev/dcssblk1
mke2fs 1.41.1 (01-Sep-2008)
...
mke2fs /dev/dcssblk2
mke2fs 1.41.1 (01-Sep-2008)
...
mke2fs /dev/dcssblk3
mke2fs 1.41.1 (01-Sep-2008)
...

• Mount the root file system DCSS over /mnt/tgt/:
mount /dev/dcssblk1 /mnt/tgt

6.2.4 Enabling the target file systems
Perform the following steps to enable the target file systems:

• Link the target mindisks 100 (/boot/) and 102 (/usr/local/) file systems read-write using virtual device addresses
with a prefix of 2:
vmcp link s11rogld 100 2100 mr
vmcp link s11rogld 102 2102 mr

• Enable the target disks:
chccwdev -e 2100
Setting device 0.0.2100 online
Done
chccwdev -e 2102
Setting device 0.0.2102 online
Done

6.2.5 Copying the root file system
Perform the following steps to copy the root file system:

• The device number of the source root file system is 1103 and this should map to /dev/dasde1. Verify this with the
lsdasd command, then mount it over /mnt/src/ with the read-only option (-o ro) so there will be no attempt to write
to the file system journal:
lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.0100 active dasda 94:0 ECKD 4096 2255MB 577440
0.0.1100 active dasdb 94:4 ECKD 4096 42MB 10800
0.0.1101 active dasdc 94:8 ECKD 4096 1131MB 289620
0.0.1102 active dasdd 94:12 ECKD 4096 1173MB 300420
0.0.1103 active dasde 94:16 ECKD 4096 2347MB 600840
0.0.2100 active dasdf 94:20 ECKD 4096 42MB 10800
0.0.2102 active dasdg 94:24 ECKD 4096 1173MB 300420

mount -o ro /dev/dasde1 /mnt/src

• Recursively copy /mnt/src/ to /mnt/tgt/. This copies the golden image's root file system to the DCSS named
S11ROOT1. This may take a few minutes as there is a fair amount of data to copy:
cp -a /mnt/src/* /mnt/tgt

© Copyright IBM 2010 40

This step will take a few minutes.

6.2.6 Mounting the remaining source file systems
Perform the following steps to mount the remaining source file systems:

• Issue the lsdasd command and observe that the target /boot/ and /usr/local/ file systems are active:
lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.0100 active dasda 94:0 ECKD 4096 2255MB 577440
0.0.1100 active dasdb 94:4 ECKD 4096 42MB 10800
0.0.1101 active dasdc 94:8 ECKD 4096 1131MB 289620
0.0.1102 active dasdd 94:12 ECKD 4096 1173MB 300420
0.0.1103 active dasde 94:16 ECKD 4096 2347MB 600840
0.0.2100 active dasdf 94:20 ECKD 4096 42MB 10800
0.0.2102 active dasdg 94:24 ECKD 4096 1173MB 300420

• Mount the remaining source file systems as type ext2: /dev/dasdb1 (/boot/), /dev/dasdc1 (/usr/share) and
/dev/dasdd1 (/usr/local/) :
mount -o ro /dev/dasdb1 /mnt/src/boot
mount -o ro /dev/dasdc1 /mnt/src/usr/share
mount -o ro /dev/dasdd1 /mnt/src/usr/local

You should now have the golden image mounted over /mnt/src/.

6.2.7 Formatting and mounting the remaining target file systems
Perform the following steps to format and mount the remaining target file systems:

• Mount the remaining target DCSSs: /dev/dcssblk2 (/var/lib/rpm/) and /dev/dcssblk3 (/usr/share/):
mount /dev/dcssblk2 /mnt/rpm
mount /dev/dcssblk3 /mnt/tgt/usr/share

• Format, create a single partition and make an ext2 file system on the target disk /dev/dasdf (/boot/):
dasdfmt -b 4096 -y -f /dev/dasdf
...
fdasd -a /dev/dasdf
...
mke2fs /dev/dasdf1
...

• Format, create a single partition and make an ext3 file system on the target disk /dev/dasdg (/usr/local/):
dasdfmt -b 4096 -y -f /dev/dasdg
...
fdasd -a /dev/dasdg
...
mke2fs -j /dev/dasdg1
...

• Mount the newly formatted target file systems:
mount /dev/dasdf1 /mnt/tgt/boot/
mount /dev/dasdg1 /mnt/tgt/usr/local

You should now have all target file systems prepared for copying.

© Copyright IBM 2010 41

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

6.2.8 Copying remaining file systems
Perform the following steps to copy the remaining file systems:

• Recursively copy /mnt/src/var/lib/rpm to /mnt/rpm/. This copies the golden image's RPM database to the DCSS
named S11RPM1:
cp -a /mnt/src/var/lib/rpm/* /mnt/rpm

• Recursively copy the source /boot/, /usr/share/ and /usr/local/ file systems:
cp -a /mnt/src/boot/* /mnt/tgt/boot
cp -a /mnt/src/usr/share/* /mnt/tgt/usr/share
cp -a /mnt/src/usr/local/* /mnt/tgt/usr/local

You should now have a copy of the Linux golden image mounted over /mnt/tgt/. The following figure is a block diagram of
the mounted file system and DCSS hierarchy.

File system and DCSS hierarchy

© Copyright IBM 2010 42

6.2.9 Making the gold image read-only
In this section the target root file system DCSS is modified so it can be mounted read-only.

Certain files are bind-mounted read-write from /usr/local/ over the read-only /etc/ file system so they can be modified:

• /etc/lvm/.cache – Contains the LVM cache if logical volumes are used

• /etc/hosts - Contains the clone's host name

• /etc/HOSTNAME – Contains the clone's host name

• /etc/sysconfig/network/ifcfg-eth0 – Contains the clone's IP address

• /etc/sysconfig/network/routes – Contains the default gateway

These files and other directories are listed in the file that will be copied to /etc/rwtab. For reference, view it in the
/usr/local/sbin/ directory:

cat /usr/local/sbin/rwtab
dirs /root
dirs /srv
dirs /var
dirs /etc/ssh
files /etc/fstab
files /etc/resolv.conf
files /etc/lvm/.cache
files /etc/hosts
files /etc/HOSTNAME
files /etc/sysconfig/network/ifcfg-eth0
files /etc/sysconfig/network/routes

In addition to copying these files, the /etc/mtab file becomes a symbolic link to /proc/mounts. This is not an ideal solution as
it affects the output of the df and mount commands. But it is better than trying to bind-mount a read-write /etc/mtab file as
the mount command tries to write a temporary file to /etc/. When it cannot write to /etc/ the mount fails (To Linux
developers: a better solution would be to modify the mount command so that it writes temporary files to /tmp/ rather than
/etc/.)

To modify the target root file system, perform the following steps:

• Back up and copy the modified /etc/fstab file so the DCSSs are mounted and not the minidisks. The changes to the
file are in bold:
cp /mnt/tgt/etc/fstab /mnt/tgt/etc/fstab.orig
cp /usr/local/sbin/fstab.S11 /mnt/tgt/etc/fstab
cat /mnt/tgt/etc/fstab
/dev/dcssblk1 / ext2 ro,xip,noatime,nodiratime,acl,user_xattr 1 1
/dev/disk/by-path/ccw-0.0.0102-part1 /usr/local ext3 acl,user_xattr 0 0
/dev/dcssblk2 /var/lib/rpm ext2 ro,xip,noatime,nodiratime,acl,user_xattr 0 0
/dev/dcssblk3 /usr/share ext2 ro,xip,noatime,nodiratime,acl,user_xattr 0 0
tmpfs /tmp tmpfs defaults 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

• Back up and modify the /etc/zipl.conf file so the root file system is the DCSS, not a disk
cp /mnt/tgt/etc/zipl.conf /mnt/tgt/etc/zipl.conf.orig
vi /mnt/tgt/etc/zipl.conf
Modified by YaST2. Last modification on Fri Feb 12 14:20:53 UTC 2010
[defaultboot]
defaultmenu = menu

###Don't change this comment - YaST2 identifier: Original name: linux###
[LinuxV1]

© Copyright IBM 2010 43

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

 image = /boot/image-2.6.27.42-0.1-default
 target = /boot/zipl
 ramdisk = /boot/initrd-2.6.27.42-0.1-default,0x2000000
 parameters = "vmpoff=LOGOFF vmhalt=LOGOFF root=/dev/dcssblk1 TERM=dumb"

• Copy the new /etc/rwtab file. This is the file that specifies the directories and files to bind-mount read-write over
the read-only root file system:
cp /usr/local/sbin/rwtab /mnt/tgt/etc

• Copy the new /etc/sysconfig/readonly-root file. This is the configuration file for read-only root processing. Note
that the variable READONLY is set to yes:
cp /usr/local/sbin/readonly-root /mnt/tgt/etc/sysconfig
grep READONLY /mnt/tgt/etc/sysconfig/readonly-root
READONLY=yes
or on the block device labeled RW_LABEL. Implied by READONLY

• Delete the /etc/mtab file and replace it with a symbolic link to /proc/mounts, as discussed previously:
cd /mnt/tgt/etc
rm mtab
ln -s /proc/mounts mtab

• Mount the /dev/, /proc/ and /sys/ file systems, then use the chroot command to change root into the target
environment:
mount --bind /dev /mnt/tgt/dev
mount -t proc none /mnt/tgt/proc
mount --bind /sys /mnt/tgt/sys
chroot /mnt/tgt

• In the target environment, recursively copy the source directories /root/, /srv/ and /var/ to /usr/local/. These
directories will later be bind-mounted read-write over their respective locations:
cd /usr/local
cp -a /root /srv /var .
ls
bin include lib64 man sbin src var
games lib lost+found root share srv

• Copy the files in /etc/ that will need to be bind-mounted:
mkdir /usr/local/etc/
cd /etc
cp HOSTNAME hosts fstab resolv.conf /usr/local/etc
cp -a ssh /usr/local/etc

• Make a directory under /usr/local/ then copy two files in /etc/sysconfig/network/:
mkdir -p /usr/local/etc/sysconfig/network
cd /etc/sysconfig/network
cp ifcfg-eth0 routes /usr/local/etc/sysconfig/network

• Make a directory under /usr/local/ then copy one file in /etc/lvm/:
mkdir /usr/local/etc/lvm
cp /etc/lvm/.cache /usr/local/etc/lvm

• Make a directory under /usr/local/ then copy the /var/lib/rpm/ directory:
mkdir -p /usr/local/etc/var/lib
cp -a /var/lib/rpm /usr/local/etc/var/lib

© Copyright IBM 2010 44

• Under the chroot'ed /mnt/tgt/ environment, delete the contents of /root/, /srv/ and /var/ because these directories
will later be “over-mounted”. This will save some space.
rm -r /root/* /srv/* /var/*

• Run zipl in the chroot'ed environment to write the boot record to /boot/
zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Building menu 'menu'
Adding #1: IPL section 'LinuxV1' (default)
Adding #2: IPL section 'ipl'
Preparing boot device: dasdf (2100).
Done.

6.2.10 Cleaning up
Exit the chroot'd environment, sync the file system, change directory to root's home and unmount the mounted file systems:

exit
sync
cd
umount /mnt/tgt/usr/local
umount /mnt/tgt/usr/share
umount /mnt/tgt/boot
umount /mnt/tgt/dev
umount /mnt/tgt/proc
umount /mnt/tgt/sys
umount /mnt/tgt
umount /mnt/src/usr/share
umount /mnt/src/usr/local
umount /mnt/src/boot
umount /mnt/src
umount /mnt/rpm

• Disable and detach the linked target disks:
chccwdev -d 2100
Setting device 0.0.2100 offline
Done
chccwdev -d 2102
Setting device 0.0.2102 offline
Done
vmcp det 2100
DASD 2100 DETACHED
vmcp det 2102
DASD 2102 DETACHED

• Disable and detach the linked source disks:
chccwdev -d 1100
Setting device 0.0.1100 offline
Done
chccwdev -d 1101
Setting device 0.0.1101 offline
Done
chccwdev -d 1102
Setting device 0.0.1102 offline
Done
chccwdev -d 1103
Setting device 0.0.1103 offline
Done
vmcp det 1100

© Copyright IBM 2010 45

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

DASD 1100 DETACHED
vmcp det 1101
DASD 1101 DETACHED
vmcp det 1102
DASD 1102 DETACHED
vmcp det 1103
DASD 1103 DETACHED

6.2.11 Saving the DCSSs
To save the DCSSs, perform the following commands:

echo 1 > /sys/devices/dcssblk/S11ROOT1/save
echo 1 > /sys/devices/dcssblk/S11RPM1/save
echo 1 > /sys/devices/dcssblk/S11SHAR1/save

Important: You may lose your SSH session on one or more of the above commands. This may have the
appearance of freezing the z/VM system. The entire z/VM system is not really frozen. Rather, while saving or
loading is in progress, NSS commands, DCSS commands, or diagnose functions for NSS and DCSS that are issued
from any guest operating system of the same z/VM will be delayed. Internally to z/VM development, PITS
2U02367 exists with an analysis of this issue.

The modified read-only golden image, now on two minidisks and three DCSSs, should now be ready to boot from
S11ROGLD.

6.2.12 Making an NSS
The files in the boot file system are now used to create a Named Saved System (NSS). Then the read-only golden Linux
image can be booted by referring to a name, such as S11LNX1, rather than a virtual device address, such as 100.

To accomplish this, perform the following steps.

• Start a 3270 session to the S11ROGLD user ID.

• IPL the 100 disk with the SAVESYS=S11LNX1 parameter. You should see informational messages showing that
the NSS has been saved:
==> ipl 100 parm savesys=s11lnx1
00: zIPL v1.8.0 interactive boot menu
00:
00: 0. default (LinuxV1)
00:
00: 1. LinuxV1
00: 2. ipl
00:
00: Note: VM users please use '#cp vi vmsg <number> <kernel-parameters>'
00:
00: Please choose (default will boot in 3 seconds):
00: Booting default (LinuxV1)...
00: HCPNSD440I The Named Saved System (NSS) S11LNX1 was successfully defined in
fileid 0184.
00: HCPNSS440I Named Saved System (NSS) S11LNX1 was successfully saved in fileid
 0184.
...

• Login as root, shut down the system again, then IPL from the newly created NSS to test it:
login: root
Password:

© Copyright IBM 2010 46

shutdown -h now
...
==> ipl S11LNX1
Initializing cgroup subsys cpuset
Initializing cgroup subsys cpu
Linux version 2.6.27.29-0.1-default (geeko@buildhost) (gcc version 4.3.2 Ýgcc-4_
3-branch revision 141291¨ (SUSE Linux)) #1 SMP 2009-08-15 17:53:59 +0200
setup.1a06a7: Linux is running as a z/VM guest operating system in 64-bit mode
Zone PFN ranges:
 DMA 0x00000000 -> 0x00080000
 Normal 0x00080000 -> 0x00080000
...

6.2.12.1 Debugging the reference read-only root system
There are many manual steps in the previous section and thus a high possibility for errors. To help in debugging two helper
scripts are provided:

mounttgt.sh A script to link, activate and mount the target disks

cleantgt.sh A script to umount, deactivate and detach the target disks and DCSSs

If the rw2ro.sh script fails, a useful command to immediately issue is:
echo $?

which prints the return code. There are almost no error messages, however, there are unique return codes. Look at the failing
return code and you will be able to quickly find where the process is stopping. The file systems are left mounted so you can
interrogate the status of the source and target systems. If you want to run the rw2ro.sh script again, first clean up with the
cleantgt.sh script. Alternatively, you may want to manually mount the target environment to interrogate specific files or
directories. This is made easier with the mounttgt.sh script.

6.3 Cloning a read-only Linux
Now that you have a reference read-only system running on S11ROGLD, you can now clone your first read-only Linux. The
high level steps are as follows. Details are only given for using the clonero.sh script, and logging onto the new clone:

• Shutdown the read-only golden image on S11ROGLD.

• Define a new virtual machine with just a 102 disk for /usr/local/. Following is the example that will be used:
USER LNX231 PASSWD 256M 1G G
 INCLUDE LNXDFLT
 OPTION APPLMON
 MDISK 0102 3390 3339 1669 DM63CB MR PASSWD PASSWD PASSWD

• Create a corresponding parameter file on the CMSCLONE 192 disk.

• Allow the new virtual machine access to the VSWITCH.

• Use the clonero.sh script from S11CLONE. Following is an example of cloning a read-only system to the LNX231
virtual machine:
clonero.sh lnx231
Are you SURE you want to clone a read-only system to LNX231 (y/n): y

Copying S11ROGLD 102 to LNX231 102 ...
Command complete: FLASHCOPY 1102 0 END TO 2102 0 END
FLASHCOPY succeeded
DASD 1102 DETACHED
DASD 2102 DETACHED

• Log on to the new virtual machine.
LOGON LNX231
00: NIC 0600 is created; devices 0600-0602 defined

© Copyright IBM 2010 47

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

00: z/VM Version 5 Release 4.0, Service Level 0801 (64-bit),
00: built on IBM Virtualization Technology
00: There is no logmsg data
00: FILES: NO RDR, NO PRT, NO PUN
00: LOGON AT 10:41:38 EST FRIDAY 12/04/09
z/VM V5.4.0 2008-10-22 15:36

DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
00: HCPQVD040E Device 0100 does not exist
Do you want to IPL Linux from S11LNX1? y/n
y
Initializing cgroup subsys cpuset
Initializing cgroup subsys cpu
Linux version 2.6.27.29-0.1-default (geeko@buildhost) (gcc version 4.3.2 Ýgcc-4_
3-branch revision 141291¨ (SUSE Linux)) #1 SMP 2009-08-15 17:53:59 +0200
setup.1a06a7: Linux is running as a z/VM guest operating system in 64-bit mode
Zone PFN ranges:
 DMA 0x00000000 -> 0x00080000
 Normal 0x00080000 -> 0x00080000
Movable zone start PFN for each node
early_node_mapÝ2¨ active PFN ranges
 0: 0x00000000 -> 0x00000100
 0: 0x00000600 -> 0x00010000
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 63232
Kernel command line: vmpoff=LOGOFF vmhalt=LOGOFF ro root=/dev/dcssblk1 TERM=dumb
 init=/linuxrc BOOT_IMAGE=0
Initializing cgroup subsys memory
Initializing cgroup subsys devices
Initializing cgroup subsys freezer
cpu.33a262: 2 configured CPUs, 0 standby CPUs
...

• The boot process will stop here for a while as the DCSSs are loaded.
doing fast boot
extmem.aa62ff: DCSS SWAPPING of range 0000000080000000 to 00000000bfffffff and t
ype EW/EN-MIXED loaded in shared access mode
dcssblk.f259b2: Loaded SWAPPING with total size 1073741824 bytes and capacity 20
97152 sectors
extmem.aa62ff: DCSS S11ROOT1 of range 00000000c0000000 to 000000013fefffff and
ype SR loaded in shared access mode
dcssblk.f259b2: Loaded S11ROOT1 with total size 2146435072 bytes and capacity 41
92256 sectors
extmem.aa62ff: DCSS S11RPM1 of range 000000013ff00000 to 0000000142efffff and ty
pe SR loaded in shared access mode
dcssblk.f259b2: Loaded S11RPM1 with total size 50331648 bytes and capacity 98304
 sectors
extmem.aa62ff: DCSS S11SHAR1 of range 0000000142f00000 to 0000000181efffff and t
ype SR loaded in shared access mode
dcssblk.f259b2: Loaded S11SHAR1 with total size 1056964608 bytes and capacity 20
64384 sectors
Creating device nodes with udev
…
..doneROR: In modified /etc/init.d/boot.rootfsck
ROR: READONLY = yes
Activating swap-devices in /etc/fstab...
..doneROR: Checking /usr/local file system...
fsck 1.41.1 (01-Sep-2008)
Ý/sbin/fsck.ext3 (1) -- /usr/local¨ fsck.ext3 -a /dev/disk/by-path/ccw-0.0.0102-
part1
/dev/disk/by-path/ccw-0.0.0102-part1: clean, 2111/75200 files, 39869/300396 bloc
ks
..doneROR: mounting dirs/files from /usr/local ...
ROR: processing bind-mount file /etc/rwtab

© Copyright IBM 2010 48

Mounting dir /usr/local/root over /root
Mounting dir /usr/local/srv over /srv
Mounting dir /usr/local/var over /var
Mounting dir /usr/local/etc/ssh over /etc/ssh
Mounting file /usr/local/etc/fstab over /etc/fstab
Mounting file /usr/local/etc/resolv.conf over /etc/resolv.conf
Mounting file /usr/local/etc/lvm/.cache over /etc/lvm/.cache
Mounting file /usr/local/etc/hosts over /etc/hosts
Mounting file /usr/local/etc/HOSTNAME over /etc/HOSTNAME
Mounting file /usr/local/etc/sysconfig/network/ifcfg-eth0 over /etc/sysconfig/ne
twork/ifcfg-eth0
Mounting file /usr/local/etc/sysconfig/network/routes over /etc/sysconfig/networ
k/routes
Setting up the system clockSetting up timezone data/usr/sbin/zic: Can't link fro
m /usr/share/zoneinfo/America/New_York to /etc/localtime: No such file or direct
ory
..failed
..done
Activating device mapper...
...

• There will be some error messages that are expected because of the read-only root file system:
Checking all file systems.
..donerm: cannot remove `/etc/nologin': Read-only file system
rm: cannot remove `/nologin': Read-only file system
rm: cannot remove `/fastboot': Read-only file system
rm: cannot remove `/forcefsck': Read-only file system
rm: cannot remove `/success': Read-only file system
..failed
Mounting local file systems...
mount: according to mtab, /proc is already mounted on /proc

mount: according to mtab, sysfs is already mounted on /sys

mount: according to mtab, debugfs is already mounted on /sys/kernel/debug

mount: according to mtab, udev is already mounted on /dev

mount: according to mtab, devpts is already mounted on /dev/pts

mount: /dev/disk/by-path/ccw-0.0.0102-part1 already mounted on /usr/local
/dev/dcssblk2 on /var/lib/rpm type ext2 (ro,noatime,nodiratime,xip,acl,user_xat
r)
/dev/dcssblk3 on /usr/share type ext2 (ro,noatime,nodiratime,xip,acl,user_xattr)

tmpfs on /tmp type tmpfs (rw)
..failedLoading fuse module ..done
Mounting fuse control filesystem..done
Activating remaining swap-devices in /etc/fstab...
..doneSetting current sysctl status from /etc/sysctl.conf..done
Enabling syn flood protection..done
Disabling IP forwarding..done
Disabling IPv6 forwarding..done
Disabling IPv6 privacy..done
..done
Turning quota on
Checking quotas. This may take some time.
..done
dasd(eckd): 0.0.0191: 3390/0A(CU:3990/01) Cyl:100 Head:15 Sec:224
dasd(eckd): 0.0.0191: (4kB blks): 72000kB at 48kB/trk linux disk layout
 dasdb:CMS1/ CMS192: dasdb1
Creating /var/log/boot.msg
..donerm: cannot remove `/var/lib/rpm/__db*': Read-only file system
mktemp: failed to create file via template `/etc/resolv.conf.nYz9kG': Read-only
file system
mktemp: failed to create file via template `/etc/yp.conf.psSTgU': Read-only file
 system

© Copyright IBM 2010 49

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

chmod: invalid argument: `'
/etc/netconfig.d//nis: line 148: : No such file or directory
Setting up hostname 'gpok222'..done
Setting up loopback interface lo
 lo IP address: 127.0.0.1/8
 IP address: 127.0.0.2/8
..done
System Boot Control: The system has been set up
System Boot Control: Running /etc/init.d/boot.local

/usr/local/sbin/boot.findself: changing (escaped) gpok222\.endicott\.ibm\.com to
 gpok231.endicott.ibm.com in /etc/HOSTNAME
/usr/local/sbin/boot.findself: changing gpok222 to gpok231 and IP address in /et
c/hosts
/usr/local/sbin/boot.findself: changing (escaped) 9\.60\.18\.222 to 9.60.18.231
in /etc/sysconfig/network/ifcfg-eth0
..done INIT: Entering runlevel: 3
...

Welcome to SUSE Linux Enterprise Server 11 (s390x) - Kernel 2.6.27.29-0.1-defaul
t (ttyS0).

gpok231 login:
...

6.4 Automatically creating a read-only root Linux system
Now that you have manually created a read-only system, the script rw2ro.sh and some additional files have been made
available to help facilitate creating a read-only root system from a conventional read-write Linux system.

The script is run from the worker Linux system running on S11CLONE. The global variables and functions calls are at the
bottom of the script. Here is the first set of global variables:

Global variables specifying user IDs, DCSS and NSS names
srcID="RWGLD" # source read-write golden image minus the prefix
tgtID="ROGLD" # target read-only golden image minus the prefix
DCSS1="ROOT" # root file system DCSS minus prefix and suffix
DCSS2="RPM" # /var/lib/rpm/ DCSS minus prefix and suffix
DCSS3="SHAR" # /usr/share/ DCSS minus prefix and suffix
NSS="LNX" # name of the NSS minus prefix and suffix

Following are additional descriptions:

• srcID: The source user ID of the read-write golden image. A three character prefix is added in the parseArgs()
function. The default is S11, thus the default source ID is S11RWGLD.

• tgtID: The target user ID of the golden image modified for read-only root and DCSSs. Again a three character
prefix is added.

• DCSS1: The root file system DCSS. A three character prefix and a one character suffix are added. The defaults are
S11 and 1, thus the default DCSS1 is S11ROOT1.

• DCSS2: The DCSS for the RPM database - /var/lib/rpm/.

• DCSS3: The DCSS for the /usr/share/ file system

• NSS: Proposed name of the NSS. The script does not create it, but issues a message with the command to do so.

Here is the second set of global variables:
Global variables specifying files that must exist in /usr/local/sbin
rootfsckFile="/usr/local/sbin/boot.rootfsck.S11" # modified from /etc/init.d

© Copyright IBM 2010 50

mkinitrdFile="/usr/local/sbin/72-block.sh.S11" # mod'd from /lib/mkinitrd/setup
fstabFile="/usr/local/sbin/fstab.S11" # modified from /etc
rwtabFile="/usr/local/sbin/rwtab" # new /etc/ file
readonlyrootFile="/usr/local/sbin/readonly-root" # new /etc/sysconfig file

The function calls are as follow:
. rorfuncs.sh # "source" the common functions
parseArgs $@ # parse arguments
checkIDs # verify source and target IDs exist & are logged off
setUpEnv # verify DCSSs, create mount points
enableSourceEnv # enable and mount the source root file system
enableTargetDCSSs # enable the target DCSSs
enableTargetFSs # enable the target file systems
copyRootFileSystem # copy source root file system to target
mountRemaining # mount remaining file systems
copyRemaining # copy remaining file systems from source to target
modifySystem # modify target system to be read-only
cleanUp # unmount FSs, disable and detach devices
saveDCSSs # save DCSS1, DCSS2 and DCSS3

See The rw2ro.sh script on page 79 for a complete listing of script. Here is a high level description of the functions.

• The first line loads the common functions in the rorfuncs.sh file.

• parseArgs() parses the arguments: a -p flag for the distribution prefix and a -s flag for a counter suffix

• checkIDs() verifies that the source and target user IDs exist and are logged off.

• setUpEnv() sets up the environment by creating mount points under /mnt/ if necessary

• enableSourceEnv() links the S11RWGLD 100-103 disks read-only and enables them

• enableTargetDCSSs() sets the three DCSSs to not shared and makes file systems out of them

• enableTargetFSs() links the S11ROGLD 100 and 102 disks read-write and enables them

• copyRootFileSystem() copies the source root file system (/mnt/src/) to the target. (/mnt/tgt/).

• mountRemaining() mounts the remaining source and target file systems once the root has been copied.

• copyRemaining() copies the remaining file systems:

◦ /boot/

◦ /usr/share/

◦ /usr/local/

◦ /var/lib/rpm/

• modifySystem() backs up and modifies the configuration files described previously. Also the file /etc/rwtab is
processed to bind-mount all directories and files listed from /usr/local/ over the corresponding location in the root
file system.

• cleanUp() unmounts file systems then disables and detaches devices that were linked to previously.

• saveDCSSs() saves the changes to the three target DCSSs that will become file systems

6.4.1 Running the rw2ro.sh script
Start an SSH session to S11CLONE as root. It is recommended that you leave your 3270 session up as messages from the
DCSS block driver are often sent to the console. However, you may have to clear the screen many times.

Run the rw2ro.sh script. This performs all the steps automatically that were described in section 6.2 , Manually creating a
read-only root system on page 38.

© Copyright IBM 2010 51

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

time rw2ro.sh
The DCSSs will be S11ROOT2, S11RPM2 and S11SHAR2
The NSS should be named S11LNX2
The source and target user IDs are S11RWGLD and S11ROGLD

Checking source ID ...
HCPCQU045E S11RWGLD not logged on
Error: non-zero CP response for command 'QUERY S11RWGLD': #45
Checking target ID ...
HCPCQU045E S11ROGLD not logged on
Error: non-zero CP response for command 'QUERY S11ROGLD': #45

Setting up environment ...

Linking source disks ...

Enabling source disks ...
Setting device 0.0.1100 online
Done
Setting device 0.0.1101 online
Done
Setting device 0.0.1102 online
Done
Setting device 0.0.1103 online
Done

Setting DCSSs to not shared ...

Making ext2 file systems on the DCSSs ...
mke2fs 1.41.1 (01-Sep-2008)
mke2fs 1.41.1 (01-Sep-2008)
mke2fs 1.41.1 (01-Sep-2008)

Linking target disks ...

Enabling target disks ...
Setting device 0.0.2100 online
Done
Setting device 0.0.2102 online
Done

Copying the root file system (this might take a few minutes) ...

Mounting remaining source file systems ...

Formatting and mounting remaining target file systems ...

Formatting and mounting /dev/dasdf1 over /mnt/tgt/boot ...
mke2fs 1.41.1 (01-Sep-2008)
mke2fs 1.41.1 (01-Sep-2008)

Formatting and mounting /dev/dasdg1 over /mnt/tgt/usr/local ...
mke2fs 1.41.1 (01-Sep-2008)
mke2fs 1.41.1 (01-Sep-2008)

Copying /boot ...

© Copyright IBM 2010 52

Copying /usr/share (this might take a few minutes) ...

Copying /usr/local ...

Copying /var/lib/rpm ...

Copying modified boot.rootfsck script ...

Backing up and copying modified /etc/fstab file ...

Backing up and copying modified /etc/zipl.conf file ...

Backing up and copying /lib/mkinitrd/setup/72-block.sh file ...

Backing up and modifying /etc/modprobe.conf.local file ...

Copying /etc/rwtab file ...

Copying /etc/sysconfig/readonly-root file ...

Making /etc/mtab a symbolic link to /proc/mounts ...
/usr/local/sbin

Running zipl in target environment ...

Kernel image: /boot/image-2.6.27.29-0.1-default
Initrd image: /boot/initrd-2.6.27.29-0.1-default
Root device: /dev/dcssblk1 (mounted on / as ext2)
Kernel Modules: dcssblk mbcache ext2
Features: block
13248 blocks
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Building menu 'menu'
Adding #1: IPL section 'LinuxV1' (default)
Adding #2: IPL section 'ipl'
Preparing boot device: dasdf (2100).
Done.

Copying files and directories in /etc/rwtab ...
Copying dir /mnt/tgt/root/* to /mnt/tgt/usr/local/root ...
Created directory /mnt/tgt/usr/local/root
Copying dir /mnt/tgt/srv/* to /mnt/tgt/usr/local/srv ...
Created directory /mnt/tgt/usr/local/srv
Copying dir /mnt/tgt/var/* to /mnt/tgt/usr/local/var ...
Created directory /mnt/tgt/usr/local/var
Copying dir /mnt/tgt/etc/ssh/* to /mnt/tgt/usr/local/etc/ssh ...
Created directory /mnt/tgt/usr/local/etc/ssh
Copying file /mnt/tgt/etc/fstab to /mnt/tgt/usr/local/etc/fstab ...
Copying file /mnt/tgt/etc/resolv.conf to /mnt/tgt/usr/local/etc/resolv.conf ...
Copying file /mnt/tgt/etc/lvm/.cache to /mnt/tgt/usr/local/etc/lvm/.cache ...
Created directory /mnt/tgt/usr/local/etc/lvm
Copying file /mnt/tgt/etc/hosts to /mnt/tgt/usr/local/etc/hosts ...
Copying file /mnt/tgt/etc/HOSTNAME to /mnt/tgt/usr/local/etc/HOSTNAME ...
Copying file /mnt/tgt/etc/sysconfig/network/ifcfg-eth0 to
/mnt/tgt/usr/local/etc/sysconfig/network/ifcfg-eth0 ...
Created directory /mnt/tgt/usr/local/etc/sysconfig/network
Copying file /mnt/tgt/etc/sysconfig/network/routes to
/mnt/tgt/usr/local/etc/sysconfig/network/routes ...

© Copyright IBM 2010 53

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

Cleaning up target disks ...

Disabling target disks ...
Setting device 0.0.2100 offline
Done
Setting device 0.0.2102 offline
Done

DETACHing target disks ...
DASD 2100 DETACHED
DASD 2102 DETACHED

Cleaning up source disks ...

Disabling source disks ...
Setting device 0.0.1100 offline
Done
Setting device 0.0.1101 offline
Done
Setting device 0.0.1102 offline
Done
Setting device 0.0.1103 offline
Done

DETACHing source disks ...
DASD 1100 DETACHED
DASD 1101 DETACHED
DASD 1102 DETACHED
DASD 1103 DETACHED

Saving S11ROOT2 (this takes some time) ...

Saving S11RPM2 ...

Saving S11SHAR2 (this takes some time) ...
To create an NSS, logon to S11ROGLD and: ipl 100 parm savesys=S11LNX2

real 19m12.441s
user 0m18.897s
sys 0m32.819s

The system on S11ROGLD should now have a “hybrid” read-only system utilizing DCSSs and it should be ready to write an
NSS. You can again clone a read-only server. The results should be identical, or at least very similar to the results of running
through the manual steps.

Section 7: Maintaining systems
There is a simple model for maintaining read-write Linux systems: those systems cloned after a modification to the golden
image will pick up the change. Systems cloned previous to the change will have to be modified manually. There is nothing
new here.

There is something new with the addition of DCSSs – they add an approach to maintaining read-only root systems. After the
golden image is changed, the DCSSs can be updated with the rw2ro.sh script. Running that script will immediately change
the contents of the DCSSs (S11ROOT1, S11SHAR1 and/or S11RPM1 in this example). However, the read-only root Linux
“clones” will not immediately pick up the changes. Rather they will continue to use their memory-mapped copy of the

© Copyright IBM 2010 54

DCSSs until they are rebooted. This model should simplify maintenance – to pick up changes, the read-only clones should
only have to be recycled.

However, you may wish to have a new set of DCSSs while still maintaining the old set. This will be more complex but may be
necessary if multiple versions of Linux distributions must be concurrently supported, for example, SLES11 and SLES11 SP1.

The simple approach to maintenance is described in section 7.1 , Modifying systems without creating new DCSSs
immediately following. The approach using multiple sets of DCSSs is described in section 7.2 , Modifying systems by
creating new DCSSs on page 57.

7.1 Modifying systems without creating new DCSSs
As an example of applying some maintenance, a simple modification is made: some services that are configured to be started
are turned off.

1. Boot the golden image on S11RWGLD.

2. Use the chkconfig command to show which services start in run level 3:
chkconfig --list | grep 3:on
cron 0:off 1:off 2:on 3:on 4:off 5:on 6:off
cups 0:off 1:off 2:on 3:on 4:off 5:on 6:off
dbus 0:off 1:off 2:on 3:on 4:off 5:on 6:off
earlysyslog 0:off 1:off 2:on 3:on 4:off 5:on 6:off
fbset 0:off 1:on 2:on 3:on 4:off 5:on 6:off
haldaemon 0:off 1:off 2:on 3:on 4:off 5:on 6:off
irq_balancer 0:off 1:on 2:on 3:on 4:off 5:on 6:off
network 0:off 1:off 2:on 3:on 4:off 5:on 6:off
network-remotefs 0:off 1:off 2:on 3:on 4:off 5:on 6:off
nfs 0:off 1:off 2:off 3:on 4:off 5:on 6:off
nscd 0:off 1:off 2:off 3:on 4:off 5:on 6:off
postfix 0:off 1:off 2:off 3:on 4:off 5:on 6:off
random 0:off 1:off 2:on 3:on 4:off 5:on 6:off
rpcbind 0:off 1:off 2:off 3:on 4:off 5:on 6:off
smartd 0:off 1:off 2:on 3:on 4:off 5:on 6:off
smbfs 0:off 1:off 2:off 3:on 4:off 5:on 6:off
splash 0:off 1:on 2:on 3:on 4:off 5:on 6:off S:on
splash_early 0:off 1:off 2:on 3:on 4:off 5:on 6:off
sshd 0:off 1:off 2:off 3:on 4:off 5:on 6:off
syslog 0:off 1:off 2:on 3:on 4:off 5:on 6:off
xinetd 0:off 1:off 2:off 3:on 4:off 5:on 6:off

The output shows that 21 services are set to start in run level 3.

3. It is decided that the services cups, postfix, smbfs and xinetd should not be started. Use the following for loop to
turn these services off:

for service in cups postfix smbfs xinetd
> do
> chkconfig $service off
> done

Shut down the golden image:
shutdown -h now
...

The system should shut down and the user ID be logged off automatically. The golden image has now been updated to run
fewer services in run level 3.

© Copyright IBM 2010 55

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

7.1.1 Creating a new read-write clone
From S11CLONE, create a new read-write clone with the clonerw.sh script. In this example, the existing LNX227 user ID is
cloned over:

clonerw.sh lnx227
...

Log on to LNX227 and IPL Linux. When the system comes up you should see that these four services are off:
chkconfig --list | grep 3:on
cron 0:off 1:off 2:on 3:on 4:off 5:on 6:off
dbus 0:off 1:off 2:on 3:on 4:off 5:on 6:off
earlysyslog 0:off 1:off 2:on 3:on 4:off 5:on 6:off
fbset 0:off 1:on 2:on 3:on 4:off 5:on 6:off
haldaemon 0:off 1:off 2:on 3:on 4:off 5:on 6:off
irq_balancer 0:off 1:on 2:on 3:on 4:off 5:on 6:off
network 0:off 1:off 2:on 3:on 4:off 5:on 6:off
network-remotefs 0:off 1:off 2:on 3:on 4:off 5:on 6:off
nfs 0:off 1:off 2:off 3:on 4:off 5:on 6:off
nscd 0:off 1:off 2:off 3:on 4:off 5:on 6:off
random 0:off 1:off 2:on 3:on 4:off 5:on 6:off
rpcbind 0:off 1:off 2:off 3:on 4:off 5:on 6:off
smartd 0:off 1:off 2:on 3:on 4:off 5:on 6:off
splash 0:off 1:on 2:on 3:on 4:off 5:on 6:off S:on
splash_early 0:off 1:off 2:on 3:on 4:off 5:on 6:off
sshd 0:off 1:off 2:off 3:on 4:off 5:on 6:off
syslog 0:off 1:off 2:on 3:on 4:off 5:on 6:off

More simply, the output of the previous command can be piped to the wc command, word count, to see that there are now 17
services that will start in run level 3:

chkconfig --list | grep 3:on | wc -l
 17

This shows that a newly-cloned read-write Linux server picked up the change to the golden image.

7.1.2 Updating the read-only golden image
Update the read-only golden image on S11ROGLD and the DCSSs from the read-write image on S11RWGLD. This is done
from the cloner on S11CLONE using the rw2ro.sh script:

rw2ro.sh
...

This will copy the change from the golden image on S11RWGLD to the two disks on S11ROGLD and the read-only DCSSs,
S11ROOT1, S11SHAR1 and S11RPM1.

7.1.3 Creating a new read-only clone
Create a new read-write clone with the clonerw.sh script. In this example, a new user ID, LNX232 is defined. It has a
directory entry copied from LNX231. It is given access to the VSWITCH and a SLES 11 parameter file is created with the
correct IP address and host name:

clonero.sh lnx232
...

Log on to LNX232 and IPL Linux from the S11LNX1 NSS. When the system comes up you should see that these four

© Copyright IBM 2010 56

services are off:
chkconfig --list | grep 3:on | wc -l
 17

This shows that a newly-cloned read-only Linux server picked up the change to the modifed read-only golden image.

7.1.4 Updating an existing read-only clone
The system running on LNX231 still has a copy of the original root file system, that starts 21 services.

chkconfig --list | grep 3:on | wc -l
21

To pick up the modified DCSS, simply shut the virtual machine down:
shutdown -h now

The system should be automatically logged off. Log back on to LNX231 and IPL Linux from the S11LNX1 NSS. The four
services should now be off:

chkconfig --list | grep 3:on | wc -l
 17

This shows that the original DCSSs were in memory and still being used, then when the system was recycled the modified
DCSSs were loaded.

It should be noted that significant changes to the system could be such that the read-write directories and files no longer work
properly with the read-only system. However, since there are relatively few read-write components that interact with the
system (/var/ and a handful of /etc/ files), this possibility should be minimized. Of course adequate testing is required before
rolling out any changes.

7.2 Modifying systems by creating new DCSSs
In the above scenario, it is basically a one way trip from the golden image that starts 21 services to the one that starts 17 (you
could restore the original system from the S11RWGLD 20x disks, and re-run the rw2ro.sh script as an effective rollback).

But perhaps you would like to keep some servers at the current golden image, but move others forward. A second maintenance
example is used: certain servers need the nmap RPM, but others do not, due to security reasons. Existing read-only clones
can be left running the S11xxxx1 DCSSs, but the servers to get the nmap package would require a new set of DCSSs.

First let's look at the available spool space:
==> q alloc spool
 EXTENT EXTENT TOTAL PAGES HIGH %
VOLID RDEV START END PAGES IN USE PAGE USED
------ ---- ---------- ---------- ------ ------ ------ ----
DV6153 6153 1 3338 600840 288643 600840 48%
DS61A0 61A0 0 10016 1761K 958084 1244K 53%
DS632F 632F 0 3338 601020 433830 598471 72%
 ------ ------ ----
SUMMARY 2934K 1641K 55%
USABLE 2934K 1641K 55%

It is 55% used and there should be enough space to add a second set of DCSSs.

Perform the following steps to add the nmap DCSS:

• Boot the golden image from S11RWGLD

© Copyright IBM 2010 57

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

• Query the number of RPMs on the golden image with the rpm and wc commands:
rpm -qa | wc -l
 883

This shows that there are 883 RPMs (your value may vary).

• Add the nmap RPM with the zypper command:
zypper install nmap
Loading repository data...
Reading installed packages...
Resolving package dependencies...

The following NEW packages are going to be installed:
 libdnet1 liblua5_1 nmap

Overall download size: 1.1 M. After the operation, additional 4.8 M will be used.
Continue? [YES/no]:
Retrieving package liblua5_1-5.1.4-1.15.s390x (1/3), 79.0 K (217.0 K unpacked)
Installing: liblua5_1-5.1.4-1.15 [done]
Retrieving package libdnet1-1.11-87.17.s390x (2/3), 23.0 K (68.0 K unpacked)
Installing: libdnet1-1.11-87.17 [done]
Retrieving package nmap-4.75-1.26.s390x (3/3), 1.0 M (4.5 M unpacked)
Installing: nmap-4.75-1.26 [done]

• Note that zypper installed two co-requisite RPMs. Again query the number of RPMs on the system:
rpm -qa | wc -l
 886
halt
...

There are now 886.

• Shut the system down:
halt
...

7.2.1 Creating new DCSSs
Create three new DCSSs on the S11CLONE virtual machine.

• Start a 3270 emulator session, shutdown the Linux system on S11CLONE,

• Define storage to 8G and IPL CMS:
==> def stor 8G
00: STORAGE = 8G
00: Storage cleared - system reset.

==> ipl cms
z/VM V5.4.0 2008-10-22 15:36

DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
Do you want to IPL Linux from 100? y/n
n
...

• Define and save a DCSS of type SR with the name S11ROOT2 . The SAVESEG command saves the DCSS:

© Copyright IBM 2010 58

==> defseg s11root2 C0000-13FEFF sr loadnshr
00: HCPNSD440I Saved segment S11ROOT2 was successfully defined in fileid 0303.
==> saveseg s11root2
00: HCPNSS440I Saved segment S11ROOT2 was successfully saved in fileid 0303.

• Define and save a DCSS with the name S11RPM2 :
==> defseg s11rpm2 13FF00-142EFF sr loadnshr
00: HCPNSD440I Saved segment S11RPM2 was successfully defined in fileid 0304.
==> saveseg s11rpm2
00: HCPNSS440I Saved segment S11RPM2 was successfully saved in fileid 0304.

• Define and save a DCSS with the name S11SHAR2 :
==> defseg s11shar2 142F00-181EFF sr loadnshr
00: HCPNSD440I Saved segment S11SHAR2 was successfully defined in fileid 0305.
==> saveseg s11shar2
00: HCPNSS440I Saved segment S11SHAR2 was successfully saved in fileid 0305.

• Observe the new DCSSs:
==> q nss
...
*NSS 0300 NSS A 524K 11/30 14:20:41 S11ROOT1 DCSSG S11CLONE
*NSS 0301 NSS A 012K 11/30 14:27:58 S11RPM1 DCSSG S11CLONE
*NSS 0302 NSS A 258K 11/30 14:28:09 S11SHAR1 DCSSG S11CLONE
*NSS 0303 NSS A 524K 11/30 16:24:26 S11ROOT2 DCSSG S11CLONE
*NSS 0304 NSS A 012K 11/30 16:32:03 S11RPM2 DCSSG S11CLONE
*NSS 0305 NSS A 258K 11/30 16:32:39 S11SHAR2 DCSSG S11CLONE

• Set the memory size back to 256 MB.
==> def stor 256m
STORAGE = 256M
Storage cleared - system reset.

• IPL Linux on S11CLONE.
==> ipl 100
00: zIPL v1.8.0 interactive boot menu
...

• Start an SSH session as root to S11CLONE.

• The new DCSSs must be loaded. Modify the /etc/modprobe.conf.local file to specify the new DCSSs :
cd /etc
vi modprobe.conf.local
#
please add local extensions to this file
#
options dcssblk "segments=SWAPPING,S11ROOT2,S11RPM2,S11SHAR2"

• Run the mkinitrd and zipl commands to write the changes to the /boot/ directory:
mkinitrd

Kernel image: /boot/image-2.6.27.42-0.1-default
Initrd image: /boot/initrd-2.6.27.42-0.1-default
Root device: /dev/disk/by-path/ccw-0.0.0100-part1 (/dev/dasda1) (mounted on / as
ext3)
Kernel Modules: jbd mbcache ext3 dcssblk dasd_mod dasd_eckd_mod
Features: block dasd
14515 blocks
zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Building menu 'menu'

© Copyright IBM 2010 59

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

Adding #1: IPL section 'LinuxV1' (default)
Adding #2: IPL section 'ipl'
Preparing boot device: dasda (0100).
Done.

• Reboot the system:
reboot
...

• When the system comes back up, verify that the new DCSSs that are loaded:
ls /sys/devices/dcssblk/
S11ROOT2 S11RPM2 S11SHAR2 SWAPPING add remove uevent

This shows that the new DCSSs can be loaded.

• Use the rw2ro.sh script with the -s flag to specify DCSS suffix of 2. Note the new DCSS names are echoed in the
first line of output:
rw2ro.sh -s 2
The DCSSs will be S11ROOT2, S11RPM2 and S11SHAR2
The NSS should be named S11LNX2
The source and target user IDs are S11RWGLD and S11ROGLD

Checking source ID ...
...
Saving S11ROOT2 (this takes some time) ...

Saving S11RPM2 ...

Saving S11SHAR2 (this takes some time) ...
To create an NSS, logon to S11ROGLD and: ipl 100 parm savesys=S11LNX2

• Look at the spool space:
==> q alloc spool
 EXTENT EXTENT TOTAL PAGES HIGH %
VOLID RDEV START END PAGES IN USE PAGE USED
------ ---- ---------- ---------- ------ ------ ------ ----
DV6153 6153 1 3338 600840 600840 600840 100%
DS61A0 61A0 0 10016 1761K 1233K 1245K 70%
DS632F 632F 0 3338 601020 601020 601020 100%
 ------ ------ ----
SUMMARY 2934K 2407K 82%
USABLE 2934K 2407K 82%

In this example, the spool space is 82% used. There would probably have to be more added in order to go beyond
two sets of DCSSs

• Log on to S11ROGLD and create a new NSS names S11LNX2:
==> ipl 100 parm savesys=S11LNX2
00: zIPL v1.8.0 interactive boot menu
00:
00: 0. default (LinuxV1)
00:
00: 1. LinuxV1
00: 2. ipl
00:
00: Note: VM users please use '#cp vi vmsg <number> <kernel-parameters>'

© Copyright IBM 2010 60

00:
00: Please choose (default will boot in 3 seconds):
00: Booting default (LinuxV1)...
00: HCPNSD440I The Named Saved System (NSS) S11LNX2 was successfully defined in
fileid 0309.
00: HCPNSS440I Named Saved System (NSS) S11LNX2 was successfully saved in fileid
 0309.
Initializing cgroup subsys cpuset
...

• Shutdown Linux running on S11ROGLD.

• Start a 3270 session on LNX231 and IPL the updated system with the command IPL S11LNX2:
LOGON LNX231
00: NIC 0600 is created; devices 0600-0602 defined
00: z/VM Version 5 Release 4.0, Service Level 0903 (64-bit),
00: built on IBM Virtualization Technology
00: There is no logmsg data
00: FILES: NO RDR, NO PRT, NO PUN
00: LOGON AT 14:22:36 EST FRIDAY 02/19/10
z/VM V5.4.0 2009-12-17 10:13

DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
00: HCPQVD040E Device 0100 does not exist
Do you want to IPL Linux from S11LNX1? y/n
n
==> ipl s11lnx2
...

• The system should boot relatively cleanly. Start an SSH session and use the rpm -qa command to verify there are
now three more RPMs and that the nmap command works:
rpm -qa | wc -l
 886
nmap -v -A scanme.nmap.org

Starting Nmap 4.75 (http://nmap.org) at 2009-12-01 20:54 UTC
Initiating Ping Scan at 20:54
Scanning 64.13.134.52 [2 ports]
Completed Ping Scan at 20:54, 0.06s elapsed (1 total hosts)
...

You should now have two systems that can be IPLed by NSS name:

NSS name Number of services started Number of RPMs

S11LNX1 17 883

S11LNX2 21 886

This section has shown how to maintain multiple golden images in DCSSs with a very simple example.

In the remaining sections that follow, all source code and configuration files used in this environment are listed.

Section 8: z/VM source code
This section contains listings of the following z/VM source code files included with the associated tar file

• SLES11.EXEC

© Copyright IBM 2010 61

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

• SAMPLE.PARM-S11

• PROFILE.XEDIT

• PROFILE.EXEC

8.1 The SLES11 EXEC
Following is the EXEC to start a SLES 11 installation, SLES11.EXEC:

/* EXEC to punch SLES-11 install system to reader and IPL from it */
Address 'COMMAND'
'CP SPOOL PUN *'
'CP CLOSE RDR'
'CP PURGE RDR ALL'
'PUNCH SLES11 KERNEL * (NOHEADER'
'PUNCH' Userid() 'PARM-S11 * (NOHEADER'
'PUNCH SLES11 INITRD * (NOHEADER'
'CP CHANGE RDR ALL KEEP'
'CP IPL 00C CLEAR'

8.2 The file SAMPLE.PARM-S11
Following is the sample SLES 11 parameter file, SAMPLE.PARM-S11:

ramdisk_size=65536 root=/dev/ram1 ro init=/linuxrc TERM=dumb
HostIP=9.60.18.222 Hostname=gpok222.endicott.ibm.com
Gateway=9.60.18.129 Netmask=255.255.255.128
Broadcast=9.60.18.255 Layer2=0
ReadChannel=0.0.0600 WriteChannel=0.0.0601 DataChannel=0.0.0602
Nameserver=9.0.2.11
portname=whatever
portno=0
Install=nfs://9.60.18.133/nfs/sles11/dvd1
UseVNC=1 VNCPassword=12345678
InstNetDev=osa OsaInterface=qdio OsaMedium=eth Manual=0

8.3 The PROFILE EXEC
Following is the PROFILE EXEC to be used by Linux virtual machines:

/* PROFILE EXEC for Linux virtual servers */
Address 'COMMAND'
'CP SET RUN ON'
'CP SET PF11 RETRIEVE FORWARD'
'CP SET PF12 RETRIEVE'
'ACCESS 592 C'
'PIPE CP QUERY' Userid() '| VAR USER'
Parse Value user With id . dsc .
iplDisk = 100 /* /boot/ is on minidisk 100 */
iplNSS = S11LNX1 /* or it is an NSS */
'CP QUERY VIRTUAL' iplDisk /* does this ID have an IPL disk */
If (rc = 0) Then /* IPL disk exists */
 iplDevice = iplDisk
Else /* assume NSS is IPL device */

© Copyright IBM 2010 62

 iplDevice = iplNSS
If (dsc = 'DSC') Then /* user is disconnected */
 'CP IPL' iplDevice
Else Do /* user is interactive -> prompt */
 Say 'Do you want to IPL Linux from' iplDevice'? y/n'
 Parse Upper Pull answer .
 If (answer = 'Y') Then
 'CP IPL' iplDevice
 End
Exit

8.4 The XEDIT PROFILE
Following is an XEDIT profile to be used on the CMSCLONE virtual machine.

********** THIS IS THE REAL THING ***********
SET NUM ON
SET NULLS ON
SET CASE M I
SET SERIAL OFF
SET PF3 QUIT
SET PF7 BACK
SET PF8 FORWARD
SET PF9 SPLTJOIN
SET PF10 RIGHT 10
SET PF11 LEFT 10
SET PF12 ?
SET PF23 SPLTJOIN
SET CMDLINE BOTTOM
SET CURLINE ON 3
SET SCALE OFF
SET STAY ON

Section 9: Linux source code
This section contains listings of the Linux source code which are all bash shell scripts:

• bak2pri.sh Script to rollback the backup golden image to the primary

• boot.findself Script to set the IP address and host name at first boot - see page 64.

• boot.local Modified script to invoke boot.findself at first boot – see page 67

• boot.rootfsck Modified SLES 11 script to set up either a read-write or read-only root Linux system - see page 67

• cloneprep.sh Script to prepare system before cloning - see page 72

• clonero.sh Script to clone a read-only Linux - see page 72

• clonerw.sh Script to clone a read-write Linux - see page 73

• pri2bak.sh Script to back up the primary golden image - see page 74

• rorfuncs.sh Common functions used by other scripts - see page 75

• rw2ro.sh Script to create R/W golden image on S11RWGLD to R/O system on S11ROGLD - see page 79

• 72-block.sh Modified script so initrd will recognize the dcssblk driver – see

© Copyright IBM 2010 63

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

9.1 The bak2pri.sh script
Following is bak2pri.sh script.

#!/bin/bash
. rorfuncs.sh # load the common functions
userID="S11RWGLD" # set the source and target user ID

verify that the user ID is logged off
checkID $userID
if [$? != 0]; then exit 1; fi # not logged off => exit

copy the three backup 20x minidisks to the primary 10x minidisks
copyDisk $userID 200 to $userID 100
copyDisk $userID 201 to $userID 101
copyDisk $userID 202 to $userID 102

9.2 The boot.findself script
Following is boot.findself script.

#!/bin/bash
#
/etc/init.d/boot.findself
#
BEGIN INIT INFO
Provides: boot.findself
Required-Start: boot.localfs
Required-Start:
Required-Stop:
Default-Start: B
Default-Stop:
Description: upon first boot find/modify IP@ + hostname, gen SSH keys
END INIT INFO
#
This script requires two SLES 11 parameter files to exist on the user ID's
191 disk: (1) the file S11RWGLD PARM-S11 and (2) $userid PARM-S11 where
$userid is the ID of the user that is running the script. It then modifies
the IP address, Host name and fully qualified domain name in three
configuration files that contain this info. It also regenerates SSH keys.
The script then turns itself off via "chkconfig" so it only runs once.
#
IBM DOES NOT WARRANT OR REPRESENT THAT THE CODE PROVIDED IS COMPLETE
OR UP-TO-DATE. IBM DOES NOT WARRANT, REPRESENT OR IMPLY RELIABILITY,
SERVICEABILITY OR FUNCTION OF THE CODE. IBM IS UNDER NO OBLIGATION TO
UPDATE CONTENT NOR PROVIDE FURTHER SUPPORT.
ALL CODE IS PROVIDED "AS IS," WITH NO WARRANTIES OR GUARANTEES WHATSOEVER.
IBM EXPRESSLY DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW ALL EXPRESS,
IMPLIED, STATUTORY AND OTHER WARRANTIES, GUARANTEES, OR REPRESENTATIONS,
INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY AND INTELLECTUAL
PROPERTY RIGHTS. YOU UNDERSTAND AND AGREE THAT YOU USE THESE MATERIALS,
INFORMATION, PRODUCTS, SOFTWARE, PROGRAMS, AND SERVICES, AT YOUR OWN
DISCRETION AND RISK AND THAT YOU WILL BE SOLELY RESPONSIBLE FOR ANY DAMAGES

© Copyright IBM 2010 64

THAT MAY RESULT, INCLUDING LOSS OF DATA OR DAMAGE TO YOUR COMPUTER SYSTEM.
IN NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES OF ANY TYPE
WHATSOEVER RELATED TO OR ARISING FROM USE OF THE CODE FOUND HEREIN, WITHOUT
LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, LOST SAVINGS, LOSS OF
PROGRAMS OR OTHER DATA, EVEN IF IBM IS EXPRESSLY ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. THIS EXCLUSION AND WAIVER OF LIABILITY APPLIES TO ALL
CAUSES OF ACTION, WHETHER BASED ON CONTRACT, WARRANTY, TORT OR ANY OTHER
LEGAL THEORIES.
#
#+--+
function findID()
Get my VM user ID - don't find self on S11ROGLD or S11RWGLD
#+--+
 {
 myID=$(cat /proc/sysinfo | grep "VM00 Name" | awk '{print $3}')
 if [$myID = "S11RWGLD"] || [$myID = "S11ROGLD"]; then # do nothing
 exit 1
 fi
 }

#+--+
function enableAdisk()
Enable my 191 (A) disk
#+--+
 {
 /sbin/chccwdev -e 191 > /dev/null 2>&1
 rc=$?
 if [$rc != 0]; then # unable to enable 191 disk
 echo "$0: Unable to enable 191, rc from chccwdev = $rc"
 exit 1
 fi
 sleep 1 # wait a sec to be sure disk is ready
 Adisk=/dev/$(egrep '^0.0.0191' /proc/dasd/devices | awk '{print $7}')
 }

#+--+
function findSourceIP()
Get the source IP address and hostName
#+--+
 {
 sourceParm="$sourceID.$parmType"
 /usr/bin/cmsfslst -d $Adisk | grep $sourceID | grep $parmType > /dev/null
 rc=$?
 if [$rc != 0]; then
 echo "$0: $sourceParm not found on 191 minidisk. Exiting"
 exit 2
 fi
 export local $(/usr/bin/cmsfscat -a -d $Adisk $sourceParm)
 # set global variable names escaping any dots (.) in the strings
 sourceName=$(echo "$Hostname" | sed -e 's:\.:\\\.:g')
 sourceHost=${Hostname%%.*} # Chop domain name off to leave host name
 sourceIP=$(echo "$HostIP" | sed -e 's:\.:\\\.:g')
 sourceOSA=$(echo "$ReadChannel " | sed -e 's:\.:\\\.:g')
 }

#+--+
function findTargetIP()
Get my new IP address and hostname

© Copyright IBM 2010 65

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

#+--+
 {
 targetParm="$myID.$parmType"
 /usr/bin/cmsfslst -d $Adisk | grep $myID | grep $parmType > /dev/null
 rc=$?
 if [$rc != 0]; then
 echo "$0: $targetParm not found on 191 minidisk. Exiting"
 exit 3
 fi
 export local $(/usr/bin/cmsfscat -a -d $Adisk $targetParm)
 targetName=$Hostname
 targetHost=${Hostname%%.*} # Chop domain name off to leave host name
 targetIP=$HostIP
 }

#+--+
function modifyIP()
Modify IP address and host name in /etc/HOSTNAME, /etc/hosts and
/etc/sysconfig/network/ifcfg-qeth-bus-ccw-$ReadChannel
#+--+
 {
 # TODO: this function should also modify, DNS, Gateway, broadcast, etc.
 eth0file="/etc/sysconfig/network/ifcfg-eth0"
 echo ""
 echo "$0: changing (escaped) $sourceName to $targetName in /etc/HOSTNAME"
 /usr/bin/sed -e "s/$sourceName/$targetName/g" /etc/HOSTNAME > /usr/local/HOSTNAME
 /bin/cp /usr/local/HOSTNAME /etc
 /bin/rm /usr/local/HOSTNAME
 echo "$0: changing $sourceHost to $targetHost and IP address in /etc/hosts"
 /usr/bin/sed -e "s/$sourceHost/$targetHost/g" \
 -e "s/$sourceIP/$targetIP/g" /etc/hosts > /usr/local/hosts
 /bin/cp /usr/local/hosts /etc
 /bin/rm /usr/local/hosts
 echo "$0: changing (escaped) $sourceIP to $targetIP in $eth0file"
 /usr/bin/sed -e "s/$sourceIP/$targetIP/g" $eth0file > /usr/local/ifcfg-eth0
 /bin/cp /usr/local/ifcfg-eth0 /etc/sysconfig/network
 /bin/rm /usr/local/ifcfg-eth0
 /bin/hostname $targetHost
 }

main()
global variables
sourceID="S11RWGLD" # VM user ID where first Linux was installed
parmType="PARM-S11" # File type of parameter file on 191 disk

function calls
findID
enableAdisk
findSourceIP
findTargetIP
modifyIP
rm /etc/ssh/ssh_host_* # Delete SSH keys so sshd will recreate new ones

© Copyright IBM 2010 66

9.3 The boot.local script
Following is the modified /etc/init.d/boot.local script.

#! /bin/sh
#
Copyright (c) 2002 SuSE Linux AG Nuernberg, Germany. All rights reserved.
#
Author: Werner Fink <werner@suse.de>, 1996
Burchard Steinbild, 1996
#
/etc/init.d/boot.local
#
script with local commands to be executed from init on system startup
#
Here you should add things, that should happen directly after booting
before we're going to the first run level.
#
if [-f /usr/local/sbin/boot.findself]; then # this is first boot
 /usr/local/sbin/boot.findself # run it to set IP@ & hostname
 if [$? = 0]; then # then success => rename
 /bin/mv /usr/local/sbin/boot.findself /usr/local/sbin/boot.findself.hasrun
 fi
fi

9.4 The boot.rootfsck script
Following is the modified /etc/init.d/boot.rootfsck script.

 #! /bin/sh
#
Copyright (c) 2001-2002 SuSE Linux AG, Nuernberg, Germany.
All rights reserved.
#
/etc/init.d/boot.rootfsck
#
BEGIN INIT INFO
Provides: boot.rootfsck
Required-Start: boot.udev
Required-Stop: $null
Default-Start: B
Default-Stop:
Short-Description: check and mount root filesystem
Description: check and mount root filesystem
END INIT INFO

. /etc/rc.status

to get max number of parallel fsck processes
. /etc/sysconfig/boot

export FSCK_MAX_INST

rc_reset

case "$1" in
 start)
 # ROR: add read-only root processing

© Copyright IBM 2010 67

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

 if [-f /etc/sysconfig/readonly-root]; then
 . /etc/sysconfig/readonly-root
 else # no config file, assume no
 READONLY=no
 fi
 cat /proc/cmdline | grep "readonlyroot" >/dev/null
 if [$? = 0]; then
 READONLY=yes
 fi
 if [-z "$RW_MOUNT"]; then # string is empty => set it
 RW_MOUNT=/usr/local
 fi
 cat /proc/cmdline | grep "noreadonlyroot" >/dev/null
 if [$? = 0]; then # "noreadonlyroot" parm trumps "readonlyroot"
 READONLY=no
 fi
 if ["$READONLY" = "yes"]; then

 echo "ROR: In modified $0"
 ROOTFS_FSCK="" # don't bypass fsck
 fi
 echo "ROR: READONLY = $READONLY"
 # ROR: end block

#
fsck may need a huge amount of memory, so make sure, it is there.
#
echo "Activating swap-devices in /etc/fstab..."
swapon -ae &> /dev/null
rc_status -v1 -r

#
do fsck and start sulogin, if it fails.
#
FSCK_RETURN=0
MAY_FSCK=1

we may get ROOTFS_BLKDEV passed from initrd, skip extra actions
if [-n "$ROOTFS_BLKDEV"] ; then
 if [-n "$ROOTFS_REALDEV"] ; then

ROOTFS_BLKDEV=$ROOTFS_REALDEV
 fi
else
 # if not booted via initrd, /dev is empty.
 # use private devnode with proper permissions
 ROOTFS_BLKDEV="/dev/shm/root"
 rootcpio=`echo / | /bin/cpio --quiet -o -H newc`
 rootmajor=0x${rootcpio:62:8}
 rootminor=0x${rootcpio:70:8}
 if [$((rootmajor)) -ne 0] ; then
 echo /bin/mknod -m600 $ROOTFS_BLKDEV b $((rootmajor)) $((rootminor))
 /bin/mknod -m600 $ROOTFS_BLKDEV b $((rootmajor)) $((rootminor))
 fi

 fi
common options for file system check
FSCK_OPTS="-a"
if test -f /forcefsck -o "$DO_FORCEFSCK" = "yes" ; then
 # force file system check if forced is specified
 FSCK_OPTS="$FSCK_OPTS -f"

© Copyright IBM 2010 68

 ROOTFS_FSCK=""
 fi

if test "$ROOTFS_FSCK" = "0" ; then
 # already checked and ok, skip the rest

 MAY_FSCK=0
 else

 ROOTFS_TYPE=`stat -f -c "%T" /`
 case $ROOTFS_TYPE in

aufs|tmpfs|afs|cifs|nfs|novell|smb|UNKNOWN*) MAY_FSCK=0 ;;
*)
 if test -x /usr/bin/on_ac_power ; then

skip fsck if running on battery
/usr/bin/on_ac_power -q || MAY_FSCK=0

 fi
;;

 esac
 fi

if test ! -f /fastboot -a -z "$DO_FASTBOOT" -a $MAY_FSCK -eq 1 ; then
 # If we use a serial console, don't use the fsck progress bar
 if test "$REDIRECT" = "/dev/tty1" ; then

 FSCK_OPTS="$FSCK_OPTS -C"
 else

 FSCK_OPTS="$FSCK_OPTS -V"
 fi
 # on an umsdos root fs this mount will fail,
 # so direct error messages to /dev/null.
 # this seems to be ugly, but should not really be a problem.
 mount -n -o remount,ro / 2> /dev/null
 if test $? = 0; then

if test -n "$ROOTFS_FSCK" ; then
 FSCK_RETURN=$ROOTFS_FSCK
else

 # ROR: in readonly root env, fsck just /usr/local
 if ["$READONLY" = "yes"]; then

 echo "ROR: Checking $RW_MOUNT file system..."
 fsck $FSCK_OPTS $RW_MOUNT

 else
 echo "Checking root file system..."
 fsck $FSCK_OPTS $ROOTFS_BLKDEV

 fi
 # ROR: end block

 # A return code of 1 indicates that file system errors
 # were corrected, but that the boot may proceed.
 # A return code of 2 or larger indicates failure.
 FSCK_RETURN=$?
fi
test $FSCK_RETURN -lt 4
rc_status -v1 -r
if test $FSCK_RETURN -gt 1 -a $FSCK_RETURN -lt 4 ; then
 # if appropriate, switch bootsplash to verbose
 # mode to make text messages visible.
 test -f /proc/splash && echo "verbose" > /proc/splash
 echo
 echo "fsck succeed, but reboot is required."
 echo
 sleep 1
 sync
 reboot -f

© Copyright IBM 2010 69

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

elif test $FSCK_RETURN -gt 3; then
 # if appropriate, switch bootsplash to verbose
 # mode to make text messages visible.
 test -f /proc/splash && echo "verbose" > /proc/splash
 # Stop blogd since we reboot after sulogin
 test -x /sbin/blogd && killproc -QUIT /sbin/blogd
 if test -x /etc/init.d/kbd ; then

/etc/init.d/kbd start
 fi

 echo
 echo "fsck failed. Please repair manually and reboot. The root"
 echo "file system is currently mounted read-only. To remount it"
 echo "read-write do:"
 echo
 echo " bash# mount -n -o remount,rw /"
 echo
 echo "Attention: Only CONTROL-D will reboot the system in this"
 echo "maintanance mode. shutdown or reboot will not work."
 echo
 PS1="(repair filesystem) # "
 export PS1
 /sbin/sulogin /dev/console

 # if the user has mounted something rw, this should be umounted
 echo "Unmounting file systems (ignore error messages)"
 umount -avn

 # on umsdos fs this would lead to an error message.
 # so direct errors to /dev/null

 mount -no remount,ro / 2> /dev/null

 sync
 reboot -f
 fi
 sync

 # ROR: process /etc/rwtab file
 if ["$READONLY" = "yes"]; then
 echo "ROR: mounting dirs/files from $RW_MOUNT ..."
 /bin/mount -n $RW_MOUNT
 if [$? != 0]; then # can't mount
 echo "ROR: Error, can't mount $RW_MOUNT"
 else
 for file in /etc/rwtab /etc/rwtab.d/* ; do
 if [-f $file]; then # this is a file
 echo "ROR: processing bind-mount file $file"
 cat $file | while read type path
 do
 case "$type" in
 empty) # clear out the dir first? Hmm - dangerous
 # /bin/rm -fr "RW_MOUNTpath"
 /bin/mount -n --bind "RW_MOUNTpath" $path
 ;;
 files) # bind mount the file
 /bin/mount -n --bind "RW_MOUNTpath" $path
 ;;
 dirs) # bind mount the directory
 /bin/mount -n --bind "RW_MOUNTpath" $path

© Copyright IBM 2010 70

 ;;
 *) # no-op for every other value
 ;;
 esac
 done
 fi # if this is a file
 done # looping through all files
 fi # else mount of R/W disk was successful
 else # READONLY is not set to "yes"

 mount -n -o remount,rw /
 fi
 #ROR: end block

test $FSCK_RETURN -gt 0 && > /fsck_corrected_errors
 else

echo
 # ROR: chg 1
 if ["$READONLY" = "yes"]; then

 echo '*** ERROR! Cannot fsck because $RW_MOUNT is not read-only!'
 else

 echo '*** ERROR! Cannot fsck because root is not read-only!'
 fi

echo
 fi
else
 if test "$ROOTFS_FSCK" != "0" ; then

 # ROR: don't check RW_MOUNT file system
 if ["$READONLY" = "yes"]; then

echo "ROR: $RW_MOUNT file system is NOT being checked."
 else

echo "root file system (/) is NOT being checked."
 fi
 # ROR: end block

 fi
fi

 # start with a clean mtab and enter root fs entry
 # ROR: del 3 - don't delete /etc/mtab, don't mount /
 if ["$READONLY" = "no"]; then

 rm -f /etc/mtab*
 > /etc/mtab
 mount -f /

 fi
 # ROR: end block

;;
 stop)

;;
 restart)

rc_failed 3
rc_status -v
;;

 status)
rc_failed 4
rc_status -v
;;

 *)
echo "Usage: $0 {start|stop|status|restart}"
exit 1
;;

esac

© Copyright IBM 2010 71

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

rc_exit

9.5 The cloneprep.sh script
Following is the cloneprep.sh script that prepares the golden image to be cloned.

#!/bin/bash
#
... disclaimer ...
#
Script to clean up files before cloning
#+--+
function cleanFile()
delete file, create empty file and set permission mode
arg 1: file to delete and create
arg 2: mode to set empty file to
#+--+
 {
 if [-f $1]; then
 rm $1
 fi
 touch $1
 chmod $2 $1
 }

main()
clean up certain files in /var/log
rm /var/log/YaST2/y2log-*
rm /var/log/*.gz
cleanFile /var/log/authlog 600
cleanFile /var/log/faillog 600
cleanFile /var/log/lastlog 644
cleanFile /var/log/secure 600
cleanFile /var/log/secure 600
cleanFile /root/.bash_history 600

echo "System should be ready for shutdown and cloning"

9.6 The clonero.sh script
Following is the clonero.sh script that clones a read-only Linux system.

#!/bin/bash
. rorfuncs.sh
srcID="S11ROGLD"

Verify that there is one argument
if [$# != 1]; then #
 echo "Error: target user ID is missing"
 echo "Usage: $0 targetID"
 echo " where targetID is the user ID that $srcID will be cloned to"
 exit 1
fi

© Copyright IBM 2010 72

tgtID=`echo $1 | tr '[a-z]' '[A-Z]'` # fold target user ID to upper case

echo -n "Are you SURE you want to clone a read-only system to $tgtID (y/n): "
read ans
if [$ans != "y"]; then
 exit 2
fi

Verify the source and target user IDs are logged off
checkID $srcID
if [$? != 0]; then exit 1; fi # not logged off => exit
checkID $tgtID
if [$? != 0]; then exit 2; fi # not logged off => exit

copyDisk $srcID 102 to $tgtID 102
rc=$?
if [$rc = 0]; then
 echo "Success! You should be able to IPL the read-only system on $tgtID"
else
 echo "Error: copyDisk $srcID 102 to $tgtID 102 failed with $rc"
fi

9.7 The clonerw.sh script
Following is the clonerw.sh script that clones a read-write Linux system.

#!/bin/bash
. rorfuncs.sh
srcID="S11RWGLD"

Verify that there is one argument
if [$# != 1]; then #
 echo "Error: target user ID is missing"
 echo "Usage: $0 targetID"
 echo " where targetID is the user ID that $srcID will be cloned to"
 exit 1
fi
tgtID=`echo $1 | tr '[a-z]' '[A-Z]'` # fold target user ID to upper case

Verify the source and target user IDs are logged off
checkID $srcID
if [$? != 0]; then exit 1; fi # not logged off => exit
checkID $tgtID
if [$? != 0]; then exit 2; fi # not logged off => exit

echo -n "Are you SURE you want to clone a read-write system to $tgtID (y/n): "
read ans
if [$ans != "y"]; then
 exit 2
fi

copy four disks
copyDisk $srcID 100 to $tgtID 100
rc=$?
if [$rc != 0]; then
 echo "Error: copyDisk $srcID 100 to $tgtID 100 failed with $rc"
 exit $rc
fi

© Copyright IBM 2010 73

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

copyDisk $srcID 101 to $tgtID 101
rc=$?
if [$rc != 0]; then
 echo "Error: copyDisk $srcID 101 to $tgtID 101 failed with $rc"
 exit $rc
fi
copyDisk $srcID 102 to $tgtID 102
rc=$?
if [$rc != 0]; then
 echo "Error: copyDisk $srcID 102 to $tgtID 102 failed with $rc"
 exit $rc
fi
copyDisk $srcID 103 to $tgtID 103
rc=$?
if [$rc = 0]; then
 echo "Success! You should be able to IPL the read-write system on $tgtID"
else
 echo "Error: copyDisk $srcID 103 to $tgtID 103 failed with $rc"
fi

9.8 The pri2bak.sh script
Following is the bak2pri.sh script that backs up the golden image.

#!/bin/bash
. rorfuncs.sh # load the common functions
userID="S11RWGLD" # set the source and target user IDs

verify that the user ID is logged off
checkID $userID
if [$? != 0]; then exit 1; fi # not logged off => exit

copy the three primary 10x minidisks to the backup 20x minidisks
echo -n "Are you sure you want to back up disks 100-103 to 200-203? (y/n): "
read ans
if [$ans != "y"]; then
 exit 2
fi
copyDisk $userID 100 to $userID 200
rc=$?
if [$rc != 0]; then
 echo "Error: copyDisk $userID 100 to $userID 200 failed with $rc"
 exit $rc
fi
copyDisk $userID 101 to $userID 201
rc=$?
if [$rc != 0]; then
 echo "Error: copyDisk $userID 101 to $userID 201 failed with $rc"
 exit $rc
fi
copyDisk $userID 102 to $userID 202
rc=$?
if [$rc != 0]; then
 echo "Error: copyDisk $userID 102 to $userID 202 failed with $rc"
 exit $rc
fi

© Copyright IBM 2010 74

copyDisk $userID 103 to $userID 203
rc=$?
if [$rc != 0]; then
 echo "Error: copyDisk $userID 103 to $userID 203 failed with $rc"
 exit $rc
fi

9.9 The rorfuncs.sh source file
Following is the rorfuncs.sh source file that contains functions common to many other scripts.

#!/bin/sh
rorfuncs.sh - functions for the SLES 11 ROR paper
Functions:
CPcmd() Issue a CP command
checkID() Verify that a user ID exists and is logged off
copyDisk() Copy a minidisk using FLASHCOPY or dasdfmt/dd
cleanUp() Unmount file systems, disable and detach devices
#
#+--+
function CPcmd()
Run a CP command and invoke it via the vmcp module/command
Arg1-n: the command to issue
Return: the command's return code
#+--+
 {
 if ["$verbose" = 2]; then // echo extra output
 echo "Invoking CP command: $@"
 fi
parse output to get return code: awk -F# splits line at '#' with rc at end
 output=$(vmcp $@ 2>&1)
 if [${#output} != 0 -a "$verbose" != 0]; then # echo the output
 echo "$output"
 fi
 retVal=0
 retVal=$(echo $output | grep "Error: non-zero CP" | awk -F# '{print $2}')
 return $retVal
 }

#+--+
function checkID()
Verify user ID exists and is logged off
Arg 1: user ID to check
#+--+
 {
 userID=$1
 verbose=0
 CPcmd QUERY $userID
 rc=$?
 case $rc in
 0) # user ID is logged on or disconnected
 echo "Error: $userID is logged on"
 return 1
 ;;
 3) # user ID does not exist
 echo "Error: $userID does not exist"
 return 2

© Copyright IBM 2010 75

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

 ;;
 45) # user ID is logged off - this is correct
 ;;
 *) # unexpected
 echo "Error: unexpected rc from CP QUERY $userID - $rc"
 return 3
 esac
 verbose=1
 return 0
 } # checkID()

#+--+
function copyDisk()
Try to use z/VM FLASHCOPY to copy one disk to another. If that fails then use
dasdfmt and dd
Arguments:
Arg 1: Source user ID
Arg 2: Source virtual address
Arg 3: the word "to"
Arg 4: Target user ID
Arg 5: Target virtual address
Return codes
0: success
1: user ID is not logged off
2: user ID does not exist
3: unexpected rc from QUERY user ID
4: LINK source disk failed
5: chccwdev -e source disk failed
6: LINK target disk failed
7: chccwdev -e source disk failed
8: can't find source disk in /dev/dasd/devices
9: can't find target disk in /dev/dasd/devices
10: dasdfmt failed
11: dd failed
#+--+
 {
 srcUserID=$1
 srcVdev1=$2
 tgtUserID=$4
 tgtVdev1=$5

 echo ""
 echo "Copying $srcUserID $srcVdev1 to $tgtUserID $tgtVdev1 ..."

 # link to the source disk in read mode as virtual address vaddr+1000
 let srcVdev2=srcVdev1+1000
 CPcmd LINK $srcUserID $srcVdev1 $srcVdev2 RR
 rc=$?
 if [$rc != 0]; then # LINK failed
 echo "Error: CP LINK $srcUserID $srcVdev1 $srcVdev2 RR failed with $rc"
 return 4
 fi

 # link to the target disk in read-write mode as virtual address vaddr+2000
 let tgtVdev2=tgtVdev1+2000
 CPcmd LINK $tgtUserID $tgtVdev1 $tgtVdev2 MR
 rc=$?

© Copyright IBM 2010 76

 if [$rc != 0]; then # LINK failed
 echo "Error: CP LINK $tgtUserID $tgtVdev1 $tgtVdev2 MR failed with $rc"
 return 6
 fi

 # try to copy the disk using FLASHCOPY
 sync # be sure all buffers are written to disk
 udevadm settle # be sure all events in the udev event queue are handled
 CPcmd FLASHCOPY $srcVdev2 0 END $tgtVdev2 0 END
 rc=$?
 if [$rc = 0]; then # FLASHCOPY succeeded
 echo "FLASHCOPY succeeded"
 CPcmd DETACH $srcVdev2
 CPcmd DETACH $tgtVdev2
 return 0
 fi

 # if we fall through, then FLASHCOPY failed
 echo "FLASHCOPY $srcVdev2 0 END $tgtVdev2 0 END failed with $rc"
 echo "Using dasdfmt and dd"

 # enable the source and target disks
 chccwdev -e $srcVdev2
 rc=$?
 if [$rc != 0]; then # chccwdev failed
 echo "Error: chccwdev -e $srcVdev2 failed with $rc"
 return 5
 fi
 chccwdev -e $tgtVdev2
 rc=$?
 if [$rc != 0]; then # chccwdev failed
 echo "Error: chccwdev -e $tgtVdev2 failed with $rc"
 return 7
 fi
 udevadm settle

get device name of source disk
 srcDev=`cat /proc/dasd/devices | grep "$srcVdev2(ECKD)" | awk '{ print $7 }'`
 if [${#srcDev} = 0]; then # error
 echo "Error: can't find source $src in /proc/dasd/devices"
 cat /proc/dasd/devices
 # clean up
 chccwdev -d $srcVdev2
 CPcmd DETACH $srcVdev2
 chccwdev -d $tgtVdev2
 CPcmd DETACH $tgtVdev2
 return 8
 fi

get device name of target disk
 tgtDev=`cat /proc/dasd/devices | grep "$tgtVdev2(ECKD)" | awk '{ print $7 }'`
 if [${#tgtDev} = 0]; then # error
 echo "Error: can't find $tgtVdev2(ECKD) in /proc/dasd/devices"
 cat /proc/dasd/devices
 # clean up
 chccwdev -d $srcVdev2
 CPcmd DETACH $srcVdev2
 chccwdev -d $tgtVdev2
 CPcmd DETACH $tgtVdev2

© Copyright IBM 2010 77

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

 return 9
 fi

dasdfmt target disk
 echo "Invoking command: dasdfmt -b 4096 -y -f /dev/$tgtDev"
 dasdfmt -b 4096 -y -f /dev/$tgtDev
 udevadm settle
 rc=$?
 if [$rc != 0]; then # dasdfmt failed
 echo "Error: dasdfmt -b 4096 -y -f /dev/$tgtDev failed with $rc"
 # clean up
 chccwdev -d $srcDev
 CPcmd DETACH $srcVdev2
 chccwdev -d $tgtDev
 CPcmd DETACH $tgtVdev2
 return 10
 fi

copy source disk to target disk with dd
 echo "Invoking command: dd bs=1M if=/dev/$srcDev of=/dev/$tgtDev"
 dd bs=1M if=/dev/$srcDev of=/dev/$tgtDev
 rc=$?
 if [$rc != 0]; then # dd failed
 echo "Error: dd bs=4096 if=/dev/$srcDev of=/dev/$tgtDev failed with $rc"
 # clean up
 chccwdev -d $srcVdev2
 CPcmd DETACH $srcVdev2
 chccwdev -d $tgtVdev2
 CPcmd DETACH $tgtVdev2
 return 11
 fi
 sync # sync disks
 chccwdev -d $srcVdev2
 CPcmd DETACH $srcVdev2
 chccwdev -d $tgtVdev2
 CPcmd DETACH $tgtVdev2
 echo "Copying disk via dasdfmt and dd succeeded ..."
 return 0
 } # copyDisk()

#+--+
function cleanUp()
Unmount source and target file systems and detach minidisks
#+--+
 {
 echo ""
 echo "Cleaning up target disks ..."
 umount /mnt/tgt/usr/local
 umount /mnt/tgt/usr/share
 umount /mnt/tgt/boot
 umount /mnt/tgt/proc
 umount /mnt/tgt/sys
 umount /mnt/tgt/dev
 umount /mnt/rpm
 umount /mnt/tgt
 echo ""
 echo "Disabling target disks ..."

© Copyright IBM 2010 78

 chccwdev -d 2100
 chccwdev -d 2102
 echo ""
 echo "DETACHing target disks ..."
 vmcp det 2100
 vmcp det 2102
 echo ""
 echo "Cleaning up source disks ..."
 umount /mnt/src/usr/local
 umount /mnt/src/usr/share
 umount /mnt/src/boot
 umount /mnt/src
 echo ""
 echo "Disabling source disks ..."
 chccwdev -d 1100
 chccwdev -d 1101
 chccwdev -d 1102
 chccwdev -d 1103
 echo ""
 echo "DETACHing source disks ..."
 vmcp det 1100
 vmcp det 1101
 vmcp det 1102
 vmcp det 1103
 }

9.10 The rw2ro.sh script
Following is the rw2ro.sh script that converts the read-write golden image on S11RWGLD to a read-only root system on
S11ROGLD:

#!/bin/sh
rw2ro.sh - script to create a read-only root system on target user ID
Hard-coded virtual device addresses - the first five will become read-only:
100 - /boot
101 - /usr/share
102 - /usr/local
103 - /
#
Source disks are linked as 110x
Target disks are linked as 210x
#
IBM DOES NOT WARRANT OR REPRESENT THAT THE CODE PROVIDED IS COMPLETE
OR UP-TO-DATE. IBM DOES NOT WARRANT, REPRESENT OR IMPLY RELIABILITY,
SERVICEABILITY OR FUNCTION OF THE CODE. IBM IS UNDER NO OBLIGATION TO
UPDATE CONTENT NOR PROVIDE FURTHER SUPPORT.
ALL CODE IS PROVIDED "AS IS," WITH NO WARRANTIES OR GUARANTEES WHATSOEVER.
IBM EXPRESSLY DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW ALL EXPRESS,
IMPLIED, STATUTORY AND OTHER WARRANTIES, GUARANTEES, OR REPRESENTATIONS,
INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY AND INTELLECTUAL
PROPERTY RIGHTS. YOU UNDERSTAND AND AGREE THAT YOU USE THESE MATERIALS,
INFORMATION, PRODUCTS, SOFTWARE, PROGRAMS, AND SERVICES, AT YOUR OWN
DISCRETION AND RISK AND THAT YOU WILL BE SOLELY RESPONSIBLE FOR ANY DAMAGES
THAT MAY RESULT, INCLUDING LOSS OF DATA OR DAMAGE TO YOUR COMPUTER SYSTEM.
IN NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES OF ANY TYPE

© Copyright IBM 2010 79

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

WHATSOEVER RELATED TO OR ARISING FROM USE OF THE CODE FOUND HEREIN, WITHOUT
LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, LOST SAVINGS, LOSS OF
PROGRAMS OR OTHER DATA, EVEN IF IBM IS EXPRESSLY ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. THIS EXCLUSION AND WAIVER OF LIABILITY APPLIES TO ALL
CAUSES OF ACTION, WHETHER BASED ON CONTRACT, WARRANTY, TORT OR ANY OTHER
LEGAL THEORIES.

#+--+
function giveHelp()
give help
#+--+
 {
 script=`basename $0`
 echo ""
 echo "Usage: $script [-p prefix] [-s suffix]"
 echo ""
 echo "Synopsis:"
 echo " Convert R/W golden image on source ID to R/O on DCSSs and target ID"
 echo ""
 echo "Optional arguments:"
 echo " -p prefix: optional 3 character DCSS prefix, default is 'S11'"
 echo " -s suffix: optional 1 character DCSS suffix, default is '1'"
 echo ""
 echo "Example: $script -s 2"
 echo " write to target ID S11ROGLD, and DCSSs S11ROOT2, S11SHAR2 and S11RPM2"
 exit 1
 } # giveHelp()

#+--+
function parseArgs()
Parse any arguments
Args: All arguments passed to this script
Arguments parsed: only one optional 1 character DCSS suffix
#+--+
 {
 prefix=S11
 suffix=1
 while [-n "$1"]; do
 case $1 in
 -p) # prefix follows
 shift
 prefix=$1
 let prelen=${#prefix}
 if [$prelen -lt 1 -o $prelen -gt 3]; then # error
 echo "Error: prefix must be one, two or three characters"
 giveHelp
 fi
 shift
 ;;
 -s) # suffix follows
 shift
 suffix=$1
 let suflen=${#suffix}
 if [$suflen != 1]; then # error
 echo "Error: suffix must be one character"
 giveHelp
 fi

© Copyright IBM 2010 80

 shift
 ;;
 *) # unrecognized arg
 giveHelp
 ;;
 esac
 done
 DCSS1="$prefix$DCSS1$suffix"
 DCSS2="$prefix$DCSS2$suffix"
 DCSS3="$prefix$DCSS3$suffix"
 NSS="$prefix$NSS$suffix"
 srcID="$prefix$srcID"
 tgtID="$prefix$tgtID"
 echo "The DCSSs will be $DCSS1, $DCSS2 and $DCSS3"
 echo "The NSS should be named $NSS"
 echo "The source and target user IDs are $srcID and $tgtID"
 } # parseArgs()

#+--+
function checkIDs()
Parse any arguments
Args: All arguments passed to this script
Arguments parsed: only one optional 1 character DCSS suffix
#+--+
 {
 echo ""
 echo "Checking source ID ..."
 checkID $srcID # verify source ID exists and is logged off
 rc=$?
 if [$rc != 0]; then # error - exit
 exit $rc
 fi
 echo "Checking target ID ..."
 checkID $tgtID # verify target ID exists and is logged off
 rc=$?
 if [$rc != 0]; then # error - exit
 exit $rc
 fi
 } # checkIDs()

#+--+
function setUpEnv()
Verify the three DCSSs are loaded and create mount points if necessary
101 = /
Args: none
#+--+
 {
 echo ""
 echo "Setting up environment ..."
 if [! -d /sys/devices/dcssblk/$DCSS1]; then
 echo "Error: /sys/devices/dcssblk/$DCSS1 not found"
 exit 20
 fi
 if [! -d /sys/devices/dcssblk/$DCSS2]; then
 echo "Error: /sys/devices/dcssblk/$DCSS2 not found"
 exit 21
 fi
 if [! -d /sys/devices/dcssblk/$DCSS3]; then
 echo "Error: /sys/devices/dcssblk/$DCSS3 not found"

© Copyright IBM 2010 81

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

 exit 22
 fi

 # make 3 mount points if necessary: /mnt/src/, /mnt/tgt/ and /mnt/rpm/
 if [! -d /mnt/src]; then # create it
 mkdir /mnt/src
 if [$? != 0]; then exit 23; fi
 fi
 if [! -d /mnt/tgt]; then # create it
 mkdir /mnt/tgt
 if [$? != 0]; then exit 24; fi
 fi
 # cutting a corner here - but difficult to mount /mnt/tgt/var/lib/rpm
 if [! -d /mnt/rpm]; then # create it
 mkdir /mnt/rpm
 if [$? != 0]; then exit 25; fi
 fi
 } # setUpEnv()

#+--+
function enableSourceEnv()
Link read-only and enable source file systems
101 = /
Args: none
#+--+
 {
 echo ""
 echo "Linking source disks ..."
 CPcmd link $srcID 100 1100 rr
 if [$? != 0]; then exit 26; fi
 CPcmd link $srcID 101 1101 rr
 if [$? != 0]; then exit 27; fi
 CPcmd link $srcID 102 1102 rr
 if [$? != 0]; then exit 28; fi
 CPcmd link $srcID 103 1103 rr
 if [$? != 0]; then exit 29; fi

 echo ""
 echo "Enabling source disks ..."
 chccwdev -e 1100
 if [$? != 0]; then exit 30; fi
 chccwdev -e 1101
 if [$? != 0]; then exit 31; fi
 chccwdev -e 1102
 if [$? != 0]; then exit 32; fi
 chccwdev -e 1103
 if [$? != 0]; then exit 33; fi
 udevadm settle

 # get source device names
 dev1100=/dev/$(egrep '^0.0.1100' /proc/dasd/devices | awk '{ print $7 }')1
 if [${#dev1100} -lt 7]; then exit 34; fi
 dev1101=/dev/$(egrep '^0.0.1101' /proc/dasd/devices | awk '{ print $7 }')1
 if [${#dev1101} -lt 7]; then exit 35; fi
 dev1102=/dev/$(egrep '^0.0.1102' /proc/dasd/devices | awk '{ print $7 }')1
 if [${#dev1102} -lt 7]; then exit 36; fi
 dev1103=/dev/$(egrep '^0.0.1103' /proc/dasd/devices | awk '{ print $7 }')1

© Copyright IBM 2010 82

 if [${#dev1103} -lt 7]; then exit 37; fi
 } # enableSourceEnv()

#+--+
function enableTargetDCSSs()
Enable the target DCSSs
S11ROOT1: DCSS to store the root file system
S11RPM1: DCSS to store the RPM database: /var/lib/rpm/
S11SHAR1: DCSS to store /usr/share/
Args: none
#+--+
 {
 echo ""
 echo "Setting DCSSs to not shared ..."
 shared1=`cat /sys/devices/dcssblk/$DCSS1/shared`
 if ["shared1" != 0]; then # set shared to 0
 echo 0 > /sys/devices/dcssblk/$DCSS1/shared
 if [$? != 0]; then exit 38; fi
 fi
 shared2=`cat /sys/devices/dcssblk/$DCSS2/shared`
 if ["shared2" != 0]; then # set shared to 0
 echo 0 > /sys/devices/dcssblk/$DCSS2/shared
 if [$? != 0]; then exit 39; fi
 fi
 shared3=`cat /sys/devices/dcssblk/$DCSS3/shared`
 if ["shared3" != 0]; then # set shared to 0
 echo 0 > /sys/devices/dcssblk/$DCSS3/shared
 if [$? != 0]; then exit 40; fi
 fi

 echo ""
 echo "Making ext2 file systems on the DCSSs ..."
 mke2fs /dev/dcssblk1 > /dev/null
 if [$? != 0]; then exit 41; fi
 mke2fs /dev/dcssblk2 > /dev/null
 if [$? != 0]; then exit 42; fi
 mke2fs /dev/dcssblk3 > /dev/null
 if [$? != 0]; then exit 43; fi

 } # enableTargetDCSSs()

#+--+
function enableTargetFSs()
Enable the target file systems on S11ROGLD:
100 - /boot/
102 - /usr/local/
Args: none
#+--+
 {
 echo ""
 echo "Linking target disks ..."
 CPcmd link $tgtID 100 2100 mr
 if [$? != 0]; then exit 45; fi
 CPcmd link $tgtID 102 2102 mr
 if [$? != 0]; then exit 46; fi

 echo ""
 echo "Enabling target disks ..."
 chccwdev -e 2100

© Copyright IBM 2010 83

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

 if [$? != 0]; then exit 47; fi
 chccwdev -e 2102
 if [$? != 0]; then exit 48; fi
 udevadm settle

 # get target device names
 dev2100=/dev/$(egrep '^0.0.2100' /proc/dasd/devices | awk '{ print $7 }')1
 if [${#dev2100} -lt 7]; then exit 49; fi
 dev2102=/dev/$(egrep '^0.0.2102' /proc/dasd/devices | awk '{ print $7 }')1
 if [${#dev2102} -lt 7]; then exit 50; fi
 } # enableTargetEnv()

#+--+
function copyRootFileSystem()
Copy the root file system
Args: none
#+--+
 {
 echo ""
 echo "Copying the root file system (this might take a few minutes) ..."
 mount $dev1103 /mnt/src
 if [$? != 0]; then exit 51; fi
 mount /dev/dcssblk1 /mnt/tgt
 if [$? != 0]; then exit 52; fi
 udevadm settle
 cp -a /mnt/src/* /mnt/tgt
 if [$? != 0]; then exit 53; fi
 } # copyRootFileSystem()

#+--+
function mountTargetDisk
Try to mke2fs and mount a disk. It has probably been dasdfmt'd. If it doesn't
mke2fs, dasdfmt it and try again
Arg 1: device name
Arg 2: mount point
Arg 3: mke2fs flag (-j = ext3, null = ext2)
#+--+
 {
 devName=$1
 mntPoint=$2
 mke2fsFlag=$3
 echo ""
 echo "Formatting and mounting $devName over $mntPoint ..."
 mke2fs $mke2fsFlag $devName > /dev/null
 rc=$?
 if [rc != 0]; then # failed - try dasdfmt'ing the disk
 dasdfmt -b 4096 -y -f ${devName%%1} > /dev/null # chop off trailing 1
 if [$? != 0]; then exit 54; fi
 fdasd -a ${devName%%1} > /dev/null # chop off trailing 1
 if [$? != 0]; then exit 55; fi
 sync
 udevadm settle
 mke2fs $mke2fsFlag $devName > /dev/null
 if [$? != 0]; then exit 56; fi
 sync
 udevadm settle
 fi

© Copyright IBM 2010 84

 mount $devName $mntPoint
 if [$? != 0]; then exit 57; fi
 } # mountTargetDisk()

#+--+
function mountRemaining()
Mount the remaining file systems now that root is copied
Args: none
#+--+
 {
 sync
 udevadm settle
 echo ""
 echo "Mounting remaining source file systems ..."
 mount $dev1100 /mnt/src/boot
 if [$? != 0]; then exit 58; fi
 mount $dev1101 /mnt/src/usr/share
 if [$? != 0]; then exit 59; fi
 mount $dev1102 /mnt/src/usr/local
 if [$? != 0]; then exit 60; fi
 echo ""
 echo "Formatting and mounting remaining target file systems ..."
 mount /dev/dcssblk2 /mnt/rpm
 if [$? != 0]; then exit 61; fi
 udevadm settle
 mount /dev/dcssblk3 /mnt/tgt/usr/share
 if [$? != 0]; then exit 62; fi
 mountTargetDisk $dev2100 /mnt/tgt/boot # no arg3 = ext2 file system
 mountTargetDisk $dev2102 /mnt/tgt/usr/local -j # -j arg = ext3 file system
 } # mountRemaining()

#+--+
function copyRemaining()
Copy the remaining file systems
Args: none
#+--+
 {
 echo ""
 echo "Copying /boot ..."
 cp -a /mnt/src/boot/* /mnt/tgt/boot
 if [$? != 0]; then exit 63; fi
 echo ""
 echo "Copying /usr/share (this might take a few minutes) ..."
 cp -a /mnt/src/usr/share/* /mnt/tgt/usr/share
 if [$? != 0]; then exit 64; fi
 echo ""
 echo "Copying /usr/local ..."
 cp -a /mnt/src/usr/local/* /mnt/tgt/usr/local
 if [$? != 0]; then exit 65; fi
 echo ""
 echo "Copying /var/lib/rpm ..."
 cp -a /mnt/src/var/lib/rpm/* /mnt/rpm
 if [$? != 0]; then exit 66; fi
 } # copyRemaining()

#+--+
function modifySystem()
0) mount target system over /mnt/tgt
1) Copy modified /etc/init.d/boot, /etc/init.d/boot.rootfsck and /etc/fstab

© Copyright IBM 2010 85

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

2) Copy source /etc/ and /root/ directories to target /local/
3) Move /etc/init.d under /sbin/ and create symlink to point back
#+--+
 {
 # copy boot.rootfsck, fstab, zipl.conf, rwtab and readonly-root files
 echo ""
 echo "Copying modified boot.rootfsck script ..."
 cp /mnt/tgt/etc/init.d/boot.rootfsck /mnt/tgt/etc/init.d/boot.rootfsck.orig
 if ["$?" != 0]; then exit 67; fi
 cp $rootfsckFile /mnt/tgt/etc/init.d/boot.rootfsck
 if ["$?" != 0]; then exit 68; fi
 echo ""
 echo "Backing up and copying modified /etc/fstab file ..."
 cp /mnt/tgt/etc/fstab /mnt/tgt/etc/fstab.orig
 if ["$?" != 0]; then exit 69; fi
 cp $fstabFile /mnt/tgt/etc/fstab
 if ["$?" != 0]; then exit 70; fi
 echo ""
 echo "Backing up and copying modified /etc/zipl.conf file ..."
 cp /mnt/tgt/etc/zipl.conf /mnt/tgt/etc/zipl.conf.orig
 if ["$?" != 0]; then exit 71; fi
 sed -i 's:/dev/disk/by-path/ccw-0.0.0103-part1:/dev/dcssblk1:g' /mnt/tgt/etc/zipl.conf
 if ["$?" != 0]; then exit 72; fi
 echo ""
 echo "Backing up and copying /lib/mkinitrd/scripts/setup-block.sh file ..."
 setupDir="/mnt/tgt/lib/mkinitrd/scripts"
 cp $setupDir/setup-block.sh $setupDir/setup-block.sh.orig
 if ["$?" != 0]; then exit 74; fi
 cp $mkinitrdFile $setupDir/setup-block.sh
 if ["$?" != 0]; then exit 75; fi
 echo ""
 echo "Backing up and modifying /etc/modprobe.conf.local file ..."
 modpLine="options dcssblk \"segments=SWAPPING,$DCSS1,$DCSS2,$DCSS3\""
 modpFile="/mnt/tgt/etc/modprobe.conf.local"
 cp $modpFile $modpFile.orig
 if ["$?" != 0]; then exit 76; fi
 cat $modpFile.orig | sed -e '/dcssblk/d' > $modpFile # del line with dcssblk
 echo $modpLine >> $modpFile
 if ["$?" != 0]; then exit 77; fi
 echo ""
 echo "Copying /etc/rwtab file ..."
 cp $rwtabFile /mnt/tgt/etc
 if ["$?" != 0]; then exit 78; fi
 echo ""
 echo "Copying /etc/sysconfig/readonly-root file ..."
 cp $readonlyrootFile /mnt/tgt/etc/sysconfig
 if ["$?" != 0]; then exit 79; fi
 echo ""
 echo "Making /etc/mtab a symbolic link to /proc/mounts ..."
 cd /mnt/tgt/etc
 rm mtab
 ln -s /proc/mounts mtab
 cd -

 echo ""
 echo "Running zipl in target environment ..."
 mount --bind /dev /mnt/tgt/dev

© Copyright IBM 2010 86

 if ["$?" != 0]; then exit 80; fi
 mount -t proc none /mnt/tgt/proc
 if ["$?" != 0]; then exit 81; fi
 mount --bind /sys /mnt/tgt/sys
 if ["$?" != 0]; then exit 82; fi
 chroot /mnt/tgt mkinitrd
 if ["$?" != 0]; then exit 83; fi
 chroot /mnt/tgt zipl
 if ["$?" != 0]; then exit 84; fi

 echo ""
 echo "Copying files and directories in /etc/rwtab ..."
 cat $rwtabFile | while read type path
 do
 case "$type" in
 empty) # TODO: there is not test for this case
 if [! -d /mnt/tgt$path]; then
 mkdir /mnt/tgt$path
 if ["$?" != 0]; then exit 85; fi
 fi
 ;;
 files) # bind mount the file
 echo "Copying file /mnt/tgt$path to /mnt/tgt/usr/local$path ..."
 if [! -d /mnt/tgt/usr/local${path%/*}]; then
 mkdir -p /mnt/tgt/usr/local${path%/*}
 if ["$?" != 0]; then exit 86; fi
 echo "Created directory /mnt/tgt/usr/local${path%/*}"
 fi
 cp /mnt/tgt/$path /mnt/tgt/usr/local/$path
 if ["$?" != 0]; then exit 87; fi
 ;;
 dirs) # bind mount the directory
 echo "Copying dir /mnt/tgt$path/* to /mnt/tgt/usr/local$path ..."
 if [! -d /mnt/tgt/usr/local$path]; then
 mkdir -p /mnt/tgt/usr/local$path
 if ["$?" != 0]; then exit 88; fi
 echo "Created directory /mnt/tgt/usr/local$path"
 fi
 cp -a /mnt/tgt$path/* /mnt/tgt/usr/local$path
 if ["$?" != 0]; then exit 89; fi
 ;;
 *) # no-op for every other value
 ;;
 esac
 done
 } # modifySystem()

#+--+
function saveDCSSs()
Save the DCSS
Args: None
#+--+
 {
 echo ""
 echo "Saving $DCSS1 (this takes some time) ..."
 echo 1 > /sys/devices/dcssblk/$DCSS1/save
 if [$? != 0]; then exit 90; fi
 echo ""
 echo "Saving $DCSS2 ..."

© Copyright IBM 2010 87

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

 echo 1 > /sys/devices/dcssblk/$DCSS2/save
 if [$? != 0]; then exit 91; fi
 echo ""
 echo "Saving $DCSS3 (this takes some time) ..."
 echo 1 > /sys/devices/dcssblk/$DCSS3/save
 if [$? != 0]; then exit 92; fi

 # Creating the NSS must be done manually
 echo "To create an NSS, logon to $tgtID and: ipl 100 parm savesys=$NSS"
 } # saveDCSSs()

main()
Global variables specifying user IDs, DCSS and NSS names
srcID="RWGLD" # source read-write golden image minus the prefix
tgtID="ROGLD" # target read-only golden image minus the prefix
DCSS1="ROOT" # root file system DCSS minus prefix and suffix
DCSS2="RPM" # /var/lib/rpm/ DCSS minus prefix and suffix
DCSS3="SHAR" # /usr/share/ DCSS minus prefix and suffix
NSS="LNX" # name of the NSS minus prefix and suffix

Global variables specifying files that must exist in /usr/local/sbin
rootfsckFile="/usr/local/sbin/boot.rootfsck.S11" # modified from /etc/init.d
mkinitrdFile="/usr/local/sbin/setup-block.sh.S11" # modified initrd file
fstabFile="/usr/local/sbin/fstab.S11" # modified from /etc file
rwtabFile="/usr/local/sbin/rwtab" # new /etc/ file
readonlyrootFile="/usr/local/sbin/readonly-root" # new /etc/sysconfig file

function calls
. rorfuncs.sh # "source" the common functions
parseArgs $@ # parse arguments
checkIDs # verify source and target IDs exist & are logged off
setUpEnv # verify DCSSs, create mount points
enableSourceEnv # enable and mount the source root file system
enableTargetDCSSs # enable the target DCSSs
enableTargetFSs # enable the target file systems
copyRootFileSystem # copy source root file system to target
mountRemaining # mount remaining file systems
copyRemaining # copy remaining file systems from source to target
modifySystem # modify target system to be read-only
cleanUp # unmount FSs, disable and detach devices
saveDCSSs # save DCSS1, DCSS2 and DCSS3

9.11 The modified script 72-block.sh
The default SLES 11 script /lib/mkinitrd/setup/72-block.sh does not recognize the dcssblk driver. A modified script is
included. Following are just the differences:

diff setup-block.sh.orig setup-block.sh
78a79,81
> dcss*)
> echo dcssblk
> ;;

© Copyright IBM 2010 88

Section 10: Linux configuration files
This section contains the following Linux configuration files:

• fstab.S11 Modifed /etc/fstab file

• readonly-root.S11 Configuration file that goes in /etc/sysconfig for read-only root

• rwtab Configuration file that goes in /etc/ for list of read-write files and directories

• zipl.conf.S11 Modified /etc/zipl.conf file

10.1 The modified fstab.S11 file
Following is a modified /etc/fstab file that is copied to S11ROGLD.

/dev/dcssblk1 / ext2 noatime,nodiratime,acl,user_xattr 1 1
/dev/disk/by-path/ccw-0.0.0102-part1 /usr/local ext3 acl,user_xattr 1 2
/dev/dcssblk2 /var/lib/rpm ext2 ro,noatime,nodiratime,acl,user_xattr 0 0
/dev/dcssblk3 /usr/share ext2 ro,noatime,nodiratime,acl,user_xattr 0 0
/dev/dcssblk0 swap swap defaults 0 0
tmpfs /tmp tmpfs defaults 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

10.2 The readonly-root.S11 configuration file
Following is the file readonly-root that is copied to /etc/sysconfig/ on S11ROGLD.

Set to 'yes' to mount the system filesystems read-only.
READONLY=yes
Set to 'yes' to mount various temporary state as either tmpfs
or on the block device labelled RW_LABEL. Implied by READONLY
TEMPORARY_STATE=no
Place to put a tmpfs for temporary scratch writable space
RW_MOUNT=/usr/local
Label on local filesystem which can be used for temporary scratch space
RW_LABEL=stateless-rw
Label for partition with persistent data
STATE_LABEL=stateless-state
Where to mount to the persistent data
STATE_MOUNT=/.snapshot

10.3 The rwtab.S11 configuration file
Following is the file rwtab that is copied to /etc/ on S11ROGLD.

dirs /root
dirs /srv
dirs /var
dirs /etc/ssh
files /etc/resolv.conf
files /etc/lvm/.cache
files /etc/hosts
files /etc/HOSTNAME

© Copyright IBM 2010 89

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

files /etc/sysconfig/network/ifcfg-eth0
files /etc/sysconfig/network/routes

10.4 The modified zipl.conf .S11file
Following is the modified /etc/zipl.conf file that is copied to S11ROGLD:

Modified by YaST2. Last modification on Fri Oct 23 09:53:21 EDT 2009
[defaultboot]
defaultmenu = menu

###Don't change this comment - YaST2 identifier: Original name: linux###
[LinuxV1]
 image = /boot/image-2.6.27.29-0.1-default
 target = /boot/zipl
 ramdisk = /boot/initrd-2.6.27.29-0.1-default,0x2000000
 parameters = "dasd=100-10f,200-20f,300-31f vmpoff=LOGOFF vmhalt=LOGOFF ro
root=/dev/dcssblk1 TERM=dumb init=/linuxrc"

:menu
 default = 1
 prompt = 1
 target = /boot/zipl
 timeout = 3
 1 = LinuxV1
 2 = ipl

###Don't change this comment - YaST2 identifier: Original name: ipl###
[ipl]
 image = /boot/image
 target = /boot/zipl
 ramdisk = /boot/initrd,0x2000000
 parameters = "root=/dev/disk/by-path/ccw-0.0.0101-part1 TERM=dumb"

© Copyright IBM 2010 90

