
March 2011

Linux on IBM System z
Large Discontiguous Saved
Segments (DCSS) Under Linux

Linux end to end Performance Team:
Dr. Juergen Doelle, David C. Sadler

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 1

Table of Contents
About this publication ...3

Acknowledgments...3
Introduction ...3
Objectives ...5
Summary ...7
Test system environment and configuration...8

Hardware configuration...8
Workload generating clients..9

Software configuration... 9
Test environment ...9

Network environment ...10
DCSS and test environment setup..10

Planning a DCSS...11
Prerequisites for defining a DCSS...12
Defining a DCSS..13

DCSS type: SN versus SR ...14
Defining a DCSS for measuring DCSS load times..14

Creating a DCSS of type SN..15
Creating a DCSS of type SR..17

Defining a DCSS for swapping ...19
On a CMS user ID..19
On the Linux guest...20

Defining a VDISK for swapping...20
Defining a VDISK using the SWAPGEN exec..21

Running a WebSphere Application Server and a DB2 database from a shared DCSS23
Defining a DCSS for WebSphere and DB2...23
Updating a DCSS for WebSphere and DB2 ...23
Setting up a WebSphere Application Server to use a DCSS..24
Setting up a DB2 server to use a DCSS..25

Workload description ..26
Swingbench...26
DayTrader..26
Bookstore ..27

Results...27
DCSS access and load times ...27

DCSS of type SN..27
DCSS of type SR..29
Summary..36

Using a DCSS as swap space ..37
Throughput ..37
CPU cost..39
Page management activity ..40

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 2

Scaling the number of servers...41
Summary..43

Determining the memory saving using a DCSS..43
Throughput comparison and transactions per IFL..44
Paging statistics...46
Location of the DCSS pages ...50
Summary..52

Sharing read-only data using DCSS ...53
Appendix. The CP DEFSEG and SAVESEG commands ..56

DEFSEG...56
SAVESEG ..57
Examples...58

Bibliography..60
Glossary ..61

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 3

About this publication
This document provides results for tests run using large Discontiguous Saved Segments under
Linux®. A DCSS is a z/VM technology used to share memory between a number of guests.
This paper focuses on three areas of application for a large DCSS: sharing code, sharing read-
only data, and using a DCSS as a swap device.

Acknowledgments
Special Thanks Xenia Tkatschow and Bill Bitner for their support and guidance with DCSS
and z/VM related questions.

Introduction
When analyzing z/VM® system performance as it relates to the use of DCSS, it is important to
understand some basic terms and concepts.

When Linux runs under z/VM, each Linux instance loads its own copies of programs, and
manages its own storage. When multiple copies of Linux are running on the same z/VM
system, there is an opportunity to use functions unique to z/VM and IBM System z® to share
memory pages between the multiple Linux guests.

A saved segment is a special feature of z/VM that provides a range of virtual storage pages,
which are defined to hold data or reentrant code (programs). The administrator can save
code or data in saved segments, assign them a name, and dynamically attach or detach them
from multiple virtual machines. There are two types of segments, whose names are derived
from the command operands used to define them:

SN
Implements shared read/write access, no data saved.

SR
Implements shared read-only access.

A Discontiguous Saved Segment (DCSS) is a z/VM technology used to save a portion of the
storage of a guest. This storage can then be shared between a number of guests, which all see
the same storage. DCSS is a powerful tool that gives z/VM administrators a way to provide
high levels of resource sharing between guests, combined with excellent performance. A
DCSS occupies one or more memory segments (1 MB portions of real storage).

A DCSS can be created covering a contiguous range of addresses, or a discontiguous range,
that is a number of different sections of the guest's address range. A DCSS can even have
parts that are read/write, where each guest has its own copy of a portion of the shared

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 4

segment that the guest can modify. Linux can use DCSS technology to build file systems that
reside in memory, drastically reducing file system I/O time for system files.

The Linux eXecute-In-Place (XIP) technology is used to treat code in a memory-backed file
system as if it were a part of the virtual memory space. Instead of being loaded into Linux
guest memory, executables residing in a DCSS can be executed directly from the DCSS
memory. This reduces the amount of central storage required to host a group of Linux
systems running similar workloads. Therefore, larger numbers of virtual Linux systems can
run in a given system footprint.

A DCSS can consist of shared or exclusive segments:
 A shared segment is memory accessed by multiple virtual machines. Any change to that

memory made by one virtual machine is instantaneously seen by all virtual machines
accessing the segment.

 An exclusive segment is memory where each virtual machine has its own exclusive copy.
In this case, changes made by one virtual machine are not seen by other virtual machines
accessing the segment.

Whether a particular portion of a DCSS is read/write does not determine whether it is
exclusive or shared.

Linux makes use of a DCSS by presenting it as a block device, in the same way that DASDs
are presented for use. The dcssblk device driver is part of the Linux kernel and makes a DCSS
appear as a block device. Even though a DCSS looks just like other block devices, dcssblk
enables XIP supporting file systems to recognize that the DCSS is memory-addressable.

Current versions of the Linux second-extended (ext2) file system support XIP using a mount
option. A DCSS-backed ext2 file system can provide this capability.

With z/VM 5.4, IBM announced the large DCSS. A DCSS can now include pages up to 512
GB in size, which exceeds the previous limitation of 2 GB. A large DCSS can reside almost
anywhere in addressable storage. The Linux dcssblk device driver concatenates DCSSs of 2
GB, so that multiple DCSSs appear to Linux as a single device. This feature enables Linux to
build very large DCSS-backed file systems, and eliminates the maintenance complexity of
some of the earlier DCSS configuration approaches.

Linux kernel level 2.6.26 (shipped in SUSE Linux Enterprise Server (SLES) 11 from Novell)
contains the updated dcssblk driver needed to handle large DCSSs. We recommend in any
case the use of SLES11 SP1 and, due to some testing problems, the maintenance kernel
update to 2.6.32.19 or higher, which is also for Red Hat Enterprise Linux 6.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 5

The remainder of this paper refers only to large DCSSs, so the term 'DCSS' is used to mean a
large DCSS.

The z/VM DEFSEG and SAVESEG commands are used to map pages of memory contents,
and to store them in disk-backed spool space that can be made accessible to multiple virtual
machines. These dcssblks provide disk-like access to the saved segments.

These features enable multiple Linux guests to share one copy of commonly run code, and
reduce overall memory use by Linux guests.

In a virtual server farm with similar Linux instances, there is often a considerable amount of
data that is required by all instances. Use of a DCSS enables z/VM to load such data into a
designated segment of physical memory, and enables all Linux instances that need the data to
share this memory segment.

For more information on DCSS, see
z/VM Saved Segments Planning and Administration

For particular information on the types of saved segments, see

 Glossary

 z/VM Saved Segments Planning and Administration, Types of Saved Segments

For more information on DCSS, dcssblk and its use, see
Managing Linux on System z: Using device drivers, features, and commands

Objectives
This paper focuses on three areas of application for a large DCSS: sharing code, sharing read-
only data, and using a DCSS as a swap device.

Defining frequently used data and code such as licensed programs, as saved segments has
several advantages:

 Because several users can access the same physical storage, real storage use is minimized.

 Using saved segments decreases the I/O rate and DASD paging space requirements,
thereby improving virtual machine performance.

 Saved segments attached to a virtual machine can reside beyond the range of the virtual
machine's defined virtual storage. Therefore, the virtual machine can use its defined
storage for other purposes.

http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/zvm/v5r4/index.jsp?topic=/com.ibm.zvm.v54.hcpg4/hcsg4b3007.htm
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaab/concepts/lcon_Managing_Linux_on_System_z.htm

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 6

 Reentrant programs residing within the page ranges of a saved segment can be shared by
concurrently operating virtual machines. Rarely used code can be placed in a saved
segment and loaded into a virtual machine when needed.

This paper focuses on three areas of application for a large DCSS:

Sharing code
 Sharing code saves memory and shortens startup times, because the binaries are executed

directly from the DCSS using the execute-in-place technology. The test results presented
in this paper quantify the savings.

 The previous limitation of a DCSS to a maximum of 2 GB in size required much effort to
determine the libraries suitable for sharing, and to maintain the consistency of the
installation during updates.

The large DCSS makes it possible to place the whole installation directory of a product in the
DCSS, and place only the directories or files of the local instance (containing files that are
updated at runtime) in local file system (if supported). Alternatively, a soft link might be used
to connect to the local directory and the DCSS. The use of soft links works in both directions,
because Linux resolves soft links using file names. This approach simplifies the whole
administration significantly, and eliminates the dependency of the local instance from the
version of the software package.

Sharing read-only data
A database workload with read-only data is used to compare the throughput using a large
DCSS with the throughput using disk devices.

Use as swap device
A guest can use a DCSS in exclusive write access as swap device. This has the advantage that
the guest stays in the Start Interpretive Execution (SIE) instruction when swapping to the
DCSS.

A performance comparison of a VDISK, a DCSS, or a DASD as swap device with single guests
will help when planning system setup.

This paper shows the impact on performance of the total system using the scenarios described
above, with or without a DCSS. These results include the consideration of how many guests
are needed to provide a benefit in total memory consumption.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 7

Summary
Two types of DCSS (SN and SR) are described. Their differences are discussed in detail.

When initially saving a new DCSS from a CMS user, the two types (SN and SR) behave very
differently. These are the key differences:

 While the DCSS of type SN is saved almost immediately, the DCSS of type SR takes a
considerable amount of time, depending on its size (approximately 12 seconds plus 81
seconds for each GB of memory).

 The DCSS of type SN does not save any data to the disk. All data written to the DCSS are
lost when the last Linux user removes the DCSS, or when there is a system restart.

 The data of a DCSS of type SR are persistent, because this DCSS is saved to the spool
area. A disk setup with a high disk I/O bandwidth is strongly recommended for the spool
area. An example is multiple dedicated disks from several ranks, see:
http://public.dhe.ibm.com/software/dw/linux390/perf/disk_performance_optimizing.pdf

 This observation is the same for all operations such as loading, saving, or writing from a
Linux guest. Because there are always disk transfers involved, these types of operations
with a DCSS of type SR are generally slower than with a DCSS of type SN. Fortunately,
saving or loading are typically done rarely, and loading is faster than saving (approximately
12 seconds plus 63 seconds per GB of memory). The time to fill the whole DCSS of type
SR with data is much faster than the time needed for loading it (approximately 12 seconds
plus 11 seconds per GB of memory).

The shorter access time and the lack of persistence of a DCSS of type SN makes it useful for
temporary data, such as a swap device. As a swap device, the DCSS use is exclusive to each
guest. Comparing VDISK and DCSS, as memory-based devices, with a physical DASD device
in configurations where Linux is swapping, shows that using the DCSS of type SN provides
better application performance than VDISK. The use of a VDISK cannot be recommended,
especially with many guests.

The test results indicate that the best performance is obtained when the memory is used to
increase the guest size instead of the DCSS size. This result is due to reduced requirements
from Linux to swap memory, and therefore reduced effort for memory management. This
configuration (guest size is increased by the size of the DCSS) seems to be a better use of the
memory than using it for a fast swapping device.

The use of the VDISK or DCSS might provide an advantage when used as a hot standby swap
resource, which is used only for short workload peaks. With the use of the hot standby, the
memory is most of the time not allocated from z/VM or main memory. The additional
memory of a guest is used most of the time, especially when doing file I/O. For the case of

http://public.dhe.ibm.com/software/dw/linux390/perf/disk_performance_optimizing.pdf

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 8

permanent Linux swapping activity (not a short workload peak), increasing the guest size is a
better way to improve the performance.

When trying to determine the memory savings using a DCSS, it was found that only 400 MB
from the 6 GB memory of the DCSS is loaded into real memory. Only the pages used are
loaded, not the whole DCSS. The pages needed at runtime (and therefore needed to stay in
real memory) total most of the time approximately 10 MB in size, which is relatively small.

The transfer rates between DCSS and XSTOR show that the pages that are most often needed
stay in real memory. To identify the impact of the memory savings using a DCSS, a
comparison was done without DCSS and with increased guests size to compensate for the
additional memory needed for the WebSphere® binaries. Adding 10 MB, as used from the
DCSS in the test before, to each guest produces a suboptimal result. This is due of the
increase in memory pressure inside z/VM (caused by the loss of the memory given to the
guests).

Adding only 5 MB to each guest results in the best performance without the DCSS, but this
scenario is still slower than the throughput achieved with the DCSS. The conclusion is that
with five or more WebSphere Application Server guests that include DB2®, running the
binaries with the execute-in-place option from the DCSS is recommended. The memory
savings is a minimum of approximately 10 MB per guest, which would result in a total savings
of approximately 1 GB for 100 guests.

A really great advantage of the DCSS is seen when using it to share read-only data, which is
highly recommended. Using a correspondingly sized minidisk cache improves the throughput
by 15% compared to minidisk without the cache. Placing the data into a DCSS improves the
throughput dramatically, by almost a factor of 10.

Test system environment and configuration
The test system for DCSS performance testing was an IBM System z10® with necessary
software components, and other systems to generate the workload.

Hardware configuration
The hardware configuration consists of an IBM System z10 using LPAR, and Linux servers to
generate the workload.

The host hardware is listed in Table 1.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 9

Table 1. Hardware configuration of the host
 System Operating

System
Number
of
systems

Number of
processors

Memory in
GB

XSTOR Network Architecture

z/VM 5.4 1 10

Between
3326 MB and
25 GB

2 GB
One OSA (1
Gb)

z10™ LPAR
z/VM
LPAR
Linux
Servers

SLES 11 1 - 10 1 or 2
650 MB or
768 MB

 Shared OSA z/VM guest

Workload generating clients
The workload generating clients are two 4-way systems running Linux:

 One for creating the DayTrader workload

 One for creating the Swingbench or Bookstore workload

Software configuration
The software for the DCSS performance analysis consists of: z/VM, Linux, WebSphere, DB2,
and three workload programs.

The software configuration is described in Table 2.

Table 2. Software configuration

Product Version and Release Comments

DayTrader 2.0 ee5, r343 Use with normal database

Bookstore n/a Use with read-only database

7.1 (31-bit version)

 Latest fix pack

 The 31-bit version is used because a
system with less than 2 GB of memory does
not require 64-bit

WebSphere

DB2 for Linux 9.7 Latest fix pack

z/VM 5.4 RSU 0902 Order number UM97540

Novell SUSE SLES 11 Latest update

Swingbench 2.3.0.422 Use with read-only database

Test environment
The test environment for the DCSS performance analysis consisted of several guests running
WebSphere Application Server and DB2. These guests received work from two workload
generator systems, running thee workload applications.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 10

The test environment is illustrated in Figure 1.

 Figure 1:

Network environment
The network environment consists of:

 An external interface, a 1 Gb Ethernet card
 Internal connectivity provided by use of a VSWITCH

DCSS and test environment setup
The test environment for the DCSS performance analysis was modeled after several existing
configurations.

guest 1
-WAS
-DB2

guest 2
-WAS
-DB2

guest n
-WAS
-DB2

Workload
Generator

Workload
Generator

Performance Network

z/VM LPAR

OSA Express

VSWITCH

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 11

The following references were used to set up the test environments:
 How to use Execute-in-Place Technology with Linux on z/VM
 How to - Share a WebSphere Application Server V7 installation among many Linux for

IBM System z systems

Planning a DCSS
When planning for DCSS creation, the DCSS size and address ranges must be chosen
carefully.

Table 3 shows the sizes of the DCSSs used in this paper:

Table 3. DCSS configuration: Allocated address ranges
DCSS name Total size Segment addresses Description

ORADB1-5 10 GB 22FC00 - 4AF6FF Read-only database

DCSSOPT1-3 6 GB 4AF700 - 62F3FF Shared binaries

SWAPPING 1 GB 62F400 - 66F3FF Swapping space

DCSS1G 1 GB 20000 - 5FFFF
Used for measuring DCSS load
times

DCSS2G 2 GB 20000 - 9FEFF
Used for measuring DCSS load
times

DCSS4G1-2 4 GB 20000 - 11FDFF
Used for measuring DCSS load
times

DCSS8G1-4 8 GB 20000 - 21FBFF
Used for measuring DCSS load
times

DCSS16G1-8 16 GB 20000 - 41F7FF
Used for measuring DCSS load
times

Figure 2 illustrates the memory allocation for the Linux system, and how some memory
segments use a DCSS.

http://public.dhe.ibm.com/software/dw/linux390/docu/l26dhe00.pdf

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 12

 Figure 2. Linux memory footprint

Prerequisites for defining a DCSS
Before defining a DCSS, it is necessary to ensure that users and system space are set up
properly.

A DCSS must be defined in a contiguous address range. Make sure that the CMS user storage
size is large enough to map the address range of the DCSS, and that this storage remains in a
contiguous block.

To create a DCSS, complete these steps:
1. Make sure that the CMS user ID is defined with Class E privileges, by doing one of these

two tasks:

– Issue this command from the user ID maint:

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 13

– SET PRIVCLASS userid +E
– Add class E to the CLASS string in the CMS user ID's directory

Example:
CLASS z16axcb25ge

This string specifies that the user ID can enter commands with privilege classes Z, 1, 6,
A, X, C, B, 2, 5, G and E.

2 For a DCSS of type SR, ensure that there is sufficient spool space on the z/VM system to
contain any DCSSs that are created. A recommendation is to add to the normal size of the
spool space, twice the total size of the DCSSs to be created.

3 Ensure that the CMS user ID has sufficient defined storage to map the DCSS (CP def stor
command). For example, if the DCSS is 1 GB in size, then the user must define storage at
least 1 GB greater than the starting address of the DCSS (DCSS starting segment address
plus X'60000' for a DCSS of 1 GB in size).

4 Ensure that the CMS user ID has sufficient storage to save the DCSS. This means that the
user must have storage that maps the highest address specified in the DEFSEG command
plus the size of the DCSS.

For more information about DEFSEG and SAVESEG, see:
z/VM: CP Commands and Utilities Reference

Defining a DCSS
To define a DCSS, the CP DEFSEG and SAVESEG commands are invoked from a CMS user
ID. Both these commands are Class E CP commands.

To define a DCSS, on the CMS user ID:

1. Define the DCSS using the DEFSEG command:

This example is for a 1 GB DCSS of type SN starting at the 512 MB boundary
defseg DCSS1G 20000-5FFFF sn

A skeleton (class S) system data file for the saved segment is created.

For more information, see Appendix. The CP DEFSEG and SAVESEG commands.

2. Save the segment with the SAVESEG command:
saveseg DCSS1G

http://publib.boulder.ibm.com/infocenter/zvm/v5r3/index.jsp?topic=/com.ibm.zvm.v53.hcpa0/hcsf8b22124.htm

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 14

This command produces a response from z/VM indicating that the DCSS was saved to
the spool, similar to this message:

00:HCPNSS440I Saved segment DCSS1G was successfully saved in
file ID 0400.

Now the saved segment can be accessed. The SAVESEG command changes a skeleton
file to an active (class A or R) file.

3. Issue this command to check the results of the SAVEDCSS exec:

q nss name map dcssname

DCSS type: SN versus SR
There are two types of shared segment for Linux use. They are SN (shared read/write access)
and SR (shared read-only access).

Table 4 lists some trade-offs for DCSS type SN versus SR.

Table 4. Comparison of DCSS types SN and SR
DCSS type

Consideration SN: Shared R/W SR: Shared R/O

Initial elapsed time to populate the
DCSS with the files to be shared

Faster because no DASD
I/O is necessary

Slower because DASD I/O
is required

File system loaded into DCSS is
written to z/VM spool

No Yes

Spool processing for DCSS can delay
other spool activity

No Yes

Persistent after system restart No Yes

Defining a DCSS for measuring DCSS load times
Two types of DCSS, SN and SR were created, each having these sizes: 1 GB, 2 GB, 4 GB, 8
GB, and 16 GB.

For a DCSS larger than 2 GB, several 2 GB DCSS segments were created and concatenated
together on the Linux system to create a single DCSS of the desired size. See Examples for
the commands used for these DCSS definitions.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 15

Creating a DCSS of type SN
These steps are used to create a DCSS of type SN. Commands must be issued on both the
z/VM and Linux systems.

On a CMS user ID

1. Ensure that the user has sufficient storage to save the DCSS. This means that the user
must have storage that maps the highest address specified in the DEFSEG command, plus
the DCSS size.

2. Define a 1 GB, 2 GB, 4 GB, 8 GB, or 16 GB DCSS with the DEFSEG command

This example is for a 4 GB DCSS:

defseg DCSS4G1 20000-6FFFF sn
defseg DCSS4G2 70000-BFFFF sn

3. Save the segment with the SAVESEG command

This example is for a 4 GB DCSS:

saveseg DCSS4G1
saveseg DCSS4G2

The system produces a response indicating that the DCSS was saved to the spool for each
DCSS segment, similar to this message:

00: HCPNSS440I Saved segment DCSS1G1 was successfully saved
in
 file ID 0400.

4. Check the results of the SAVESEG command by issuing this command:

q nss name map dcssname
See Appendix. The CP DEFSEG and SAVESEG commands for a list of the DEFSEG
commands used.

On the Linux guest

1. Allocate 512 MB of storage by issuing this command:
def stor 512M

2. Restart Linux

3. If the mem parameter in file /etc/zipl.conf has not already been adjusted, complete these
steps:

a. Set the mem parameter to the size of the guest memory, that is 512 MB plus the size
of the DCSS.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 16

As an example, for a 1 GB DCSS, add mem=1536M to the parameters line.

b. Issue the zipl command.

c. Restart Linux.

4. Load the DCSS block device driver, by issuing this command:
modprobe dcssblk

5. Identify the major device number for the dcssblk device and create a device node for
one or more DCSS devices, by issuing this command:

6. cat /proc/devices
 mknod /dev/dcssblk0 b 252 0
This example used minor number 0 because the dcsblk0 device did not exist. However, the
minor number chosen must be unique.

7. Load the DCSS:

echo "DCSS1G" > /sys/devices/dcssblk/add

Loading a DCSS creates a subdirectory with the name of the DCSS within the
/sys/devices/dcssblk directory. This subdirectory contains three attributes and a symbolic link
named block. The symbolic link points to the block device that corresponds to the DCSS.

This ls command illustrates the symbolic link:

lnx001:~ # ls -l /sys/devices/dcssblk/DCSS1G
total 0
drwxr-xr-x 3 root root 0 Aug 5 10:15 block
-rw------- 1 root root 4096 Aug 5 10:18 save
-r-------- 1 root root 4096 Aug 5 10:18 seglist
-rw------- 1 root root 4096 Aug 5 10:18 shared
-rw-r--r-- 1 root root 4096 Aug 5 10:18 uevent

lnx001:~ # ls /sys/devices/dcssblk/DCSS1G/block/dcssblk0
bdi dev holders removable size stat uevent
capability device range ro slaves subsystem

The larger DCSSs were defined with this command sequence:

echo "DCSS2G" > /sys/devices/dcssblk/add
echo DCSS4G1:DCSS4G2 > /sys/devices/dcssblk/add
echo DCSS8G1:DCSS8G2:DCS8G3:DCS8G4 > /sys/devices/dcssblk/add
echo DCSS16G1:DCSS16G2:DCS16G3:DCS16G4:
 DCSS16G5:DCSS16G6:DCS16G7:DCS16G8 > /sys/devices/dcssblk/add

8. Create an ext2 file system on the DCSS, by issuing this command:

mke2fs -b 4096 /dev/dcssblk0

9. Mount the DCSS by issuing this command:

 mount -t ext2 -o xip /dev/dcssblk0 /mnt

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 17

Creating a DCSS of type SR
These steps are used to create a DCSS of type SR. Commands must be issued on both the
z/VM and Linux systems.

On a CMS user ID
Perform the same steps as described in Creating a DCSS of type SN, except issue the
DEFSEG command with type SR and option LOADNSHR.

On the Linux guest

1. Allocate 512 MB of storage by issuing this command:
def stor 512M

2. Restart Linux

3. Edit the file /etc/zipl.conf (do this only once) and make this change:

 For a 1 GB DCSS, add "mem=1536M" to the parameters line. For a larger DCSS,
the mem= parameter must be increased. It is set to the size of the guest memory (512
MB plus the size of the DCSS)

4. Issue the zipl command.

5. Restart Linux

6. Issue this command to load the DCSS block device driver:
modprobe dcssblk

7. Issue this command to get the major device number for the dcssblk device:
cat /proc/devices

8. Issue this command to create a device node for one or more DCSS devices:
mknod /dev/dcssblk0 b 252 0

This example uses minor number 0 because the dcsblk0 device did not exist.
However, the minor number chosen must be unique.

9. Issue this command to load the DCSS:

echo "DCSS1G" > /sys/devices/dcssblk/add

Loading a DCSS creates a subdirectory with the name of the DCSS within the
/sys/devices/dcssblk directory. This subdirectory contains three attributes and a
symbolic link, named block. The symbolic link points to the block device that corresponds to
the DCSS.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 18

This ls command illustrates the symbolic link:

lnx001:~ # ls -l /sys/devices/dcssblk/DCSS1G
total 0
drwxr-xr-x 3 root root 0 Aug 5 10:15 block
-rw------- 1 root root 4096 Aug 5 10:18 save
-r-------- 1 root root 4096 Aug 5 10:18 seglist
-rw------- 1 root root 4096 Aug 5 10:18 shared
-rw-r--r-- 1 root root 4096 Aug 5 10:18 uevent
lnx001:~ # ls /sys/devices/dcssblk/DCSS1G/block/dcssblk0
bdi dev holders removable size stat uevent
capability device range ro slaves subsystem
lnx001:~ #

The larger DCSSs were defined with this command sequence:

echo "DCSS2G" > /sys/devices/dcssblk/add
echo DCSS4G1:DCSS4G2 > /sys/devices/dcssblk/add
echo DCSS8G1:DCSS8G2:DCS8G3:DCS8G4 > /sys/devices/dcssblk/add
echo DCSS16G1:DCSS16G2:DCS16G3:DCS16G4:

DCSS16G5:DCSS16G6:DCS16G7:DCS16G8 > /sys/devices/dcssblk/add

10. Make the DCSS writable by setting the shared value to exclusive use. Because this DCSS
is type SR, it is initially attached by the Linux kernel as read-only.

11. echo 0 > /sys/devices/dcssblk/DCSS1G/shared
12. echo 0 > /sys/devices/dcssblk/DCSS2G/shared
13. echo 0 > /sys/devices/dcssblk/DCSS4G1/shared
14. echo 0 > /sys/devices/dcssblk/DCSS8G1/shared

echo 0 > /sys/devices/dcssblk/DCSS16G1/shared

15. Make an ext2 file system on the DCSS by issuing this command:
mke2fs -b 4096 /dev/dcssblk0

16. Mount the DCSS by issuing this command:
mount -t ext2 -o xip /dev/dcssblk0 /mnt

17. Copy data to the DCSS.

18. Save the DCSS. The DCSS is changed only in memory. To move the changes into the
DCSS residing on the spool file, issue these commands:

19. echo 1 > /sys/devices/dcssblk/DCSS1G/save
20. echo 1 > /sys/devices/dcssblk/DCSS2G/save
21. echo 1 > /sys/devices/dcssblk/DCSS4G1/save
22. echo 1 > /sys/devices/dcssblk/DCSS8G1/save

echo 1 > /sys/devices/dcssblk/DCSS16G1/save

23. Unmount the DCSS by issuing this command:
umount /mnt

24. Remove the DCSS to cause the newly saved DCSS to become active in the spool, by
issuing these commands:

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 19

25. echo "DCSS1G" > /sys/devices/dcssblk/remove
26. echo "DCSS2G" > /sys/devices/dcssblk/remove
27. echo "DCSS4G1" > /sys/devices/dcssblk/remove
28. echo "DCSS8G1" > /sys/devices/dcssblk/remove

echo "DCSS16G1" > /sys/devices/dcssblk/remove

Defining a DCSS for swapping
These steps are used to define a DCSS to be used as a swapping device. This DCSS has a size
of 1 GB.

On a CMS user ID

1. Make sure that the user ID creating the DCSS has the correct privilege class (example: set
privclass lnx00090 +e) and sufficient storage.

2. Define a 1 GB DCSS named SWAPPING using this DEFSEG command:
defseg swapping 62f400-62f400 ew 62f401-66f3ff en

The first page (62F400) is writable so that the swap signature can be written to it. The rest
of the DCSS is used for the swap data, so it never has to be saved.

3. In this test, a DCSS of type SN was also defined for swapping:
defseg swapping 62f400-66f3ff sn

Note: Even though the DCSS is of type shared, it is used here as a private DCSS for one
guest.

4. Save the segment by issuing this SAVESEG command:
saveseg swapping

The system issues a response indicating that the DCSS was saved to the spool, similar to this
message:

00: HCPNSS440I Saved segment SWAPPING was successfully saved
 in fileid 0398.

5. Query the new DCSS by issuing the command: q nss name swapping map

This is the output for the DCSS of type EW/EN:

00: FILE FILENAME FILETYPE BEGPAG ENDPAG TYPE CL #USERS
00: 0398 SWAPPING DCSSG 000000062F400 000000062F400 EW A 00000
00: 000000062F401 000000066F3FF EN

This is the output for the DCSS of type SN:

00: FILE FILENAME FILETYPE BEGPAG ENDPAG TYPE CL #USERS
00: 0398 SWAPPING DCSSG 000000062F400 000000066F3FF SN A 00000

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 20

The DCSS for the Linux swap spaces is now defined. Any Linux virtual machine can use it.

On the Linux guest

1. Attach and configure the DCSS to use the swap space by issuing these commands:

2. modprobe dcssblk
3. mknod /dev/dcssblk0 b 252 0
4. echo SWAPPING > /sys/devices/dcssblk/add
5. mkswap /dev/dcssblk0

swapon /dev/dcssblk0

6. To list the swap devices, issue this command:
swapon -s

The output is similar to this message:

 Filename Type Size Used
Priority

 /dev/dcssblk0 partition 1048568 0 -1

To set off other swap devices, issue the swapoff command.

Defining a VDISK for swapping
These steps are used to define a VDISK as a swapping device for the Linux guest.

Note: The SET VDISK command controls the maximum amount of host real storage that is
available for allocation as virtual disks in storage. Using virtual disks in storage increases the
load on system paging, so limits should be chosen in proportion to the availability of paging
space.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 21

1. Set the total resource available for allocating virtual disks in storage on the system, by
issuing this command:
CP set vdisk syslim 1g

2. Set the maximum resource available for virtual disks in storage created by a single user
who issues the DEFINE command:
CP set vdisk userlim infinite

3. Define the VDISK (in 512 byte blocks) by issuing these commands:

4. def vfb-512 2000 2097152
5. DASD 2000 DEFINED
6. Ready; T=0.01/0.01 12:01:43
7.
8. def 2000 29f
9. DASD 029F DEFINED
10. Ready; T=0.01/0.01 12:02:00
11.
12. q v 29f
13. DASD 029F 9336 (VDSK) R/W 2097152 BLK ON DASD VDSK SUBCHANNEL

= 001F
Ready; T=0.01/0.01 12:02:15

14. Issue the mkswap command to set up the VDISK as swap space:

15. lnx001:~ # mkswap /dev/dasdw1
16. Setting up swapspace version 1, size = 1048568 KiB

no label, UUID=78381348-4148-42be-83f4-8363eeef6234

17. Issue the swapon command to set the VDISK as the only swap device on the system:
18. lnx001:~ # swapon /dev/dasdw1
19. lnx001:~ # swapon -s
20. Filename Type Size Used Priority
21. /dev/dasda2 partition 1130392 231380 -1
22. /dev/dasdw1 partition 1048564 0 -2
23. lnx001:~ # swapoff /dev/dasda2
24. lnx001:~ # swapon -s
25. Filename Type Size Used Priority

/dev/dasdw1 partition 1048564 277128 -1

An alternative is to update the fstab entries as required.

Defining a VDISK using the SWAPGEN exec
An alternative to Steps 1 - 4 of the previous procedure is to define the VDISK swap space by
using the SWAPGEN exec.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 22

The exec syntax is:
SWAPGEN vdev #blocks <(<options> <)> >

where:
vdev

Is a virtual device address
#blocks

Is a decimal number of 512-byte blocks. The minimum is 24 (for FBA option) or 32 (for
DIAG option).

Options are:
DIAG

Use DIAG I/O (requires Linux DIAG driver). This is the default.
FBA

Use FBA driver instead of DIAG. This option requires the RXDASD package, which can be
downloaded from the IBM VM download page at:
http://www.vm.ibm.com/download/packages

REUSE
Use existing device at vdev. WARNING: Using this option will destroy any data on device
vdev.

An example is:
ex SWAPGEN 300 2097152 ,

http://www.vm.ibm.com/download/packages

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 23

Running a WebSphere Application Server and a DB2 database from a shared DCSS
These steps set up a WebSphere Application Server (WAS) and DB2 database so that they
can use a shared DCSS.

Defining a DCSS for WebSphere and DB2
To define a DCSS that holds the binaries of WebSphere and DB2 (or of another typical
database of 6 GB in size) consisting of three 2 GB segments, complete these steps:

1. Install the software product on a normal disk.

2. Copy the required installed directories to the DCSS.

3. Mount the DCSS in execute-in-place (XIP) mode.

4. On each Linux guest, establish symbolic links that point to the directories of the software
products loaded in the DCSS.

5. On each Linux guest, store or generate instance-specific information.

In a production environment, there is a need to install patches and fix packs on software that
resides in the DCSS. Other than for cloned Linux systems that automatically pick up changes,
a DCSS must be updated explicitly with patches or fixes, or a new DCSS must be created,
which enables different systems to operate at different software levels.

Updating a DCSS for WebSphere and DB2
To update a DCSS, complete these steps:
On a CMS user ID

1. Define a 6 GB DCSS with the DEFDCSS exec
DEFDCSS DCSSOPT 4AF700 3 2047 SR

2. Save the segment with the SAVEDCSS exec
SAVEDCSS DCSSOPT 3

On the Linux guest
1. Install the software packages on the DASD.

2. Copy the required installed directories to the DCSS.

3. Save the DCSS

4. On each Linux guest, establish symbolic links from the original installation directories in
/opt, which point to the directories of the software products loaded in the DCSS.

5. To create the file system and copy data into it, the DCSS must be in exclusive writable
mode.

6. Attach the DCSS by issuing these commands:

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 24

7. modprobe dcssblk
8. mknod /dev/dcssblk0 b 252 0
9. echo DCSSOPT1:DCSSOPT2:DCSSOPT3 > /sys/devices/dcssblk/add
10. echo 0 > /sys/devices/dcssblk/DCSSOPT1/shared
11. mke2fs -b 4096 /dev/dcssblk0

mount /dev/dcssblk0 /optdcss/

12. Copy the required files for WebSphere and DB2 to the DCSS, as explained in Setting up
a WebSphere Application Server to use a DCSS and Setting up a DB2 server to use a
DCSS.

13. Save the DCSS by issuing this command. This command schedules the current storage
copy of the DCSS to be written to the z/VM spool.
echo 1 > /sys/devices/dcssblk/DCSSOPT1/saved

The changes to the DCSS are now saved in the z/VM spool with a class of "P" for
Pending.

When the last z/VM guest stops accessing the old version of the DCSS, the old version in
memory is discarded. Each guest that opens the DCSS accesses the updated copy.

14. To release the DCSS from the Linux guest, unmount the DCSS and then remove it:
echo DCSSOPT1 > /sys/devices/dcssblk/remove

The z/VM system updates the spool files, deletes the old spool file of class "A", updates
the new spool file of class "P", and changes its class to "A" for Active. The next access of
the DCSS sees the changed version.

For more information about how to set up the Linux system for using a DCSS to hold read-
only copies of software binaries, see:

 Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS

 How to - Share a WebSphere Application Server V7 installation among many Linux for
IBM System z systems

Setting up a WebSphere Application Server to use a DCSS
These steps are used to configure a WebSphere Application Server (WAS) so that it can use a
DCSS for the WebSphere executable code.

1. Install WebSphere according to the installation instructions with one exception: Skip the
profile creation step and create the profile in a separate directory structure before the
WebSphere binaries are copied to the DCSS.

2. Mount the DCSS by issuing these commands:

3. modprobe dcssblk
4. mknod /dev/dcssblk0 b 252 0

http://www.vm.ibm.com/linux/dcss/ror-s11.pdf
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/zsw03055usen/ZSW03055USEN.PDF
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/zsw03055usen/ZSW03055USEN.PDF

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 25

5. echo DCSSOPT1:DCSSOPT2:DCSSOPT3 > /sys/devices/dcssblk/add
mount -t ext2 -o xip /dev/dcssblk0 /optdcss/

6. Place the WebSphere installation in directory /opt/IBM/WebSphere/AppServer.

7. Copy the files from directory /opt/IBM/WebSphere/AppServer to the DCSS in
/optdcss/WebSphere/AppServer/.

8. Link the directory /opt/IBM/WebSphere/AppServer to
/optdcss/WebSphere/AppServer/.

This ls command output illustrates the contents of directory
/optdcss/WebSphere/AppServer/:

ls /optdcss/WebSphere/AppServer/
Scheduler features logs systemApps
UDDIReg firststeps lost+found temp
bin installableApps optionalLibraries uninstall
cimrepos installedConnectors plugins universalDriver
configuration instutils profileTemplates util
deploytool java properties web
derby lafiles runtimes
dev lib sar2war_tool
etc links scriptLibraries

9. Create the WebSphere profiles on DASD at /opt/wasprofile/ following the
instructions on creating WebSphere profiles from:

How to - Share a WebSphere Application Server V7 installation among many Linux for
IBM System z systems

Setting up a DB2 server to use a DCSS
These steps are used to set up DB2 so that a DCSS can be used for the DB2 executable code.

1. Install the DB2 server on DASD following the normal installation instructions, however
skip the DB2 instance creation.

2. Copy the files located in directory /opt/ibm/db2 to the DCSS directory
/optdcss/db2.

3. Symbolically link /opt/db2 to /optdcss/db2.

4. Set up and mount the DCSS.

5. Create the DB2 instance named db2inst1 using the DB2 command-line functions.

This ls command illustrated the contents of the /optdcss/db2/V9.7/ directory:

ls /optdcss/db2/V9.7/

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/zsw03055usen/ZSW03055USEN.PDF

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 26

.metadata bnd desktop include java map security32
 Readme cfg doc infopop lib32 misc
security64
 adm conv function install lib64 msg
tivready
 adsm das gskit instance license properties tools
 bin dasfcn ha itma logs samples

Workload description
The workload used to test large DCSS configurations used three applications, named
Swingbench, DayTrader, and Bookstore.

Swingbench
Swingbench is a Java™-based application that generates a workload used to run stress tests on
a relational database. Swingbench comes with several predefined benchmarks, but also has
the capability for the user to define their own customized benchmarks.

Swingbench has these components:
 The load generator
 The coordinator
 The cluster overview

The test scenarios described in this paper used Swingbench to generate a workload and
record statistics for later analysis. In the test scenarios, the Swingbench data base was used for
read-only transactions.

For more information about Swingbench, see:
http://dominicgiles.com/swingbench.html

DayTrader
DayTrader is a benchmark application that simulates an online stock trading system.

DayTrader was originally developed by IBM with the name 'Trade Performance Benchmark
Sample'. In 2005, DayTrader was donated by IBM to the Apache Geronimo community. A
typical user of DayTrader performs these tasks:

 Log in the DayTrader user interface.
 View the user's stock portfolio.
 Find current stock prices.
 Buy or sell shares of stock.
 Log off the DayTrader user interface.

http://dominicgiles.com/swingbench.html

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 27

With the aid of a Web-based load driver such as Mercury LoadRunner, Rational®
Performance Tester, or Apache JMeter, the real-world workload provided by DayTrader can
be used to measure and compare the performance of Java Platform, Enterprise Edition (Java
EE) application servers offered by various vendors. In addition to the full workload,
DayTrader also contains a set of primitives used for functional and performance testing of
various Java EE components and common design patterns.

DayTrader requires a read/write data base, and was used to provide a transactional workload
on WebSphere and DB2.

For more information about DayTrader, see:
https://cwiki.apache.org/GMOxDOC20/daytrader.html

Bookstore
Bookstore is an IBM internally developed application used to simulate an online bookstore.

Bookstore is used to search for books by title and author, add books to a shopping cart,
purchase the contents of a shopping cart, get the status on a previously placed order, and
other functions. The database supporting the Bookstore application contains information
about titles, authors, stores, customers, and orders.

The test scenarios described in this paper used only the search features of the Bookstore
application.

Results
Tests were run altering DCSS setup and tuning parameters to see how system performance is
affected. Different DCSS sizes were used.

DCSS access and load times
This test case measures the time to load a DCSS into z/VM memory, by writing data to it.
DCSS types SN and SR, with sizes of 1 GB, 2 GB, 4 GB, 8 GB, and 16 GB were tested.

For a description of the setup steps, see Creating a DCSS of type SN and Creating a DCSS of
type SR.

DCSS of type SN
The time to fill a DCSS of type SN with random data is measured and analyzed.

https://cwiki.apache.org/GMOxDOC20/daytrader.html

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 28

This Linux command was used to create a 256 MB file of random data:
dd if=/dev/urandom of=/mnt2/testcase0-data bs=268435456 count=1

Then this data was copied to the DCSS device repetitively, until the device was full.

The Linux time command was used to record the time taken by the copy operation.

A DCSS of type SN is not saved by z/VM to the spool space. The data copied into the DCSS
remain there until the last Linux guest releases and removes the DCSS. Then, when no guests
are accessing the DCSS, the data in the DCSS is removed.

The save time on CP and the initial access time from Linux are negligible, because this type
of DCSS does not write the data into the spool file.

Figure 3 shows the times to copy data into a DCSS for various DCSS sizes.

 Figure 3. Time to fill a DCSS of type SN

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 29

Observations
The time to fill a DCSS of type SN is a linear function of the DCSS size.

Most of the time for this operation is used for the system in kernel mode. The real time,
which is the elapsed time to run this operation, is slightly higher than the sum of user and
system time. This difference reflects the time that the command is processed on z/VM.

Conclusions
The DCSS of type SN has little overhead on CP to create and save date. The initial access of
the DCSS on Linux is very fast, even for a 16 GB DCSS.

However, this type of DCSS does not save data in the spool, and data written to the DCSS are
lost when the last Linux user removes the DCSS.

DCSS of type SR
The time to fill, save, and reload a DCSS of type SR is recorded and analyzed.

This Linux command was used to create a 256 MB file of random data:
dd if=/dev/urandom of=/mnt2/testcase0-data bs=268435456 count=1

Then this data was copied to the DCSS device repetitively, until the device was full.

When a DCSS of type SR is saved, its content is written to the spool space. When pages are
loaded from a DCSS of type SR, the required pages are read from the spool space.

The times for all intermediate steps, from creating the DCSS until finally accessing the filled
and saved DCSS, was measured and recorded.

The time is recorded for these specific steps:

 Time to initially save the DCSS from the CMS user

 Time to initially access the DCSS from the Linux guest

 Time to copy data to the DCSS until it was full

 Time to save the populated DCSS in the z/VM spool space

 Time to re-access the DCSS

The Linux time command was used to record the time of each of the above steps.

Time to save the DCSS in CP

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 30

The system time returned in the CP command response is used to measure the amount of
time that it takes for the SAVESEG command to complete for a DCSS of type SR and various
different sizes.

Figure 4 shows the time that it takes for the SAVESEG command to complete for various
DCSS sizes.

 Figure 4. Time for the SAVESEG command to complete, for a DCSS of type SR

Observation
The time to complete the SAVESEG command is a linear function of the DCSS size. All
DCSS pages are written to the spool file, even when they are empty.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 31

Conclusions
The save times reflect the fact that the DCSS pages are written to the spool space on DASD.
For a large DCSS, this can become a significant amount of time (23 minutes for a 16 GB
DCSS).

When using a DCSS of type SR, consider using devices with the best possible I/O bandwidth
for the spool area.

Time to access the DCSS on Linux
The time for the first Linux user to access a DCSS of type SR is measures for various DCSS
sizes using the command: echo DCSS name > /sys/devices/dcssblk/add.

Figure 5 shows the time to complete the DCSS add function for various DCSS sizes.

 Figure 5. Time to complete the Linux DCSS driver add function for a DCSS of type SR

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 32

Observation
The time for initial access of the DCSS is a linear function of the DCSS size. The times are
recorded as real elapsed times with no user time and almost no system time, because the add
function issues a CP diag instruction to perform the operation. CP has to read the DCSS
pages from the spool file located on DASD into memory.

Conclusions
Adding the DCSS of type SR to the Linux address space has significantly larger overhead
than adding a DCSS of type SN. This difference reflects the fact that one Linux command
makes z/VM read the whole DCSS of type SR from the spool file into memory. The number
of pages read per unit time is independent of the DCSS size, therefore the time scales with
the size. However, the load time is almost 17 minutes shorter than the time needed to save
the DCSS.

Note that the measured time is only for the first Linux guest accessing the DCSS. A second
Linux guest accesses the DCSS much faster, because the DCSS pages already reside in
memory, and do not need to be fetched from spool space.

Time to copy data into the DCSS

The time to fill a DCSS of type SR is measured for various DCSS sizes.

Figure 6 shows the time to copy data into the DCSS until it is full, for various DCSS sizes.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 33

 Figure 6. Time to fill a DCSS of type SR

Observations
The time to copy data into the DCSS is a linear function of the DCSS size. There is a large
gap between real (elapsed) time, and the system (Linux kernel mode) and user times. This
behavior is different from that observed for a DCSS of type SN. The time to complete the
copy operation is also longer for the DCSS of type SR.

Conclusions
Compare this graph (Figure 6) with Figure 3. The user and system part is comparable. The
real time is much larger for DCSS type SR, indicating that it causes more processing in z/VM
than a DCSS of type SN, when updating the contents of the storage.

When considering the times for a DCSS of type SR, take into account that a DCSS of type SR
is set up only once, because it is persistent.

Time to complete the Linux save function

The time to save a DCSS of type SR is recorded, for various DCSS sizes.

Figure 7 shows the time for the DCSS save function for various DCSS sizes.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 34

Figure 7. Time to save DCSS of type SR with the DCSS device driver save function

Observations
The save time is almost a linear function of the DCSS size. The save function issues a CP
diag command, which writes the DCSS pages to the spool file. Because the save function
is performed by CP, almost no Linux system or user time is recorded. The save function
performed by the Linux DCSS device driver is significantly faster than the save operation
performed under CP during the initial DCSS setup.

Conclusion
The save function writes the DCSS pages from memory to the spool file. This operation,
which updates all pages in the DCSS, takes a little more time than the initial save operation
performed by CP.

Time to re-access the DCSS after it was saved

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 35

The time to re-access a DCSS of type SR and various sizes, is recorded and analyzed. This
was done by removing the DCSS (echo DCSS name >
/sys/devices/dcssblk/remove) first, and measuring the time needed to add it again
(echo DCSS name > /sys/devices/dcssblk/add).

Figure 8 shows the time to re-access the DCSS on Linux using the add function of the DCSS
device driver for various DCSS sizes.

 Figure 8. Time to re-access a DCSS of type SR

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 36

Observations
The time to re-access the DCSS is a linear function of the DCSS size. The second access of
the DCSS by the Linux device driver add function is faster than the first one. Again, there is
almost no observed Linux kernel time, because the device driver issues a CP diag
instruction to perform the operation.

Conclusion
The second access of the DCSS is twice as fast as the first access. This implies that z/VM is
able to reuse some of the DCSS pages, and does not have to reload them from the spool file.

Summary
Handling a DCSS of type SN is significantly faster than handling a DCSS of type SR, because
a DCSS of type SN does not move data to a spool file. In fact, a DCSS of type SN does not
save any kind of data, after there are no longer any guests attached to it.

As the size of a DCSS of type SR increases, the time to copy data into it increases linearly,
and most the time is spent in z/VM.

The DCSS of type SR requires more steps, because it is saved to the spool file and can be
reloaded.

Table 5 summarizes the time needed for the various steps, for an 8 GB and a 16 GB DCSS.

Table 5. Execution times of some tasks for an 8 GB and a 16 GB DCSS
Time to complete task, in minutes

Task 8 GB DCSS 16 GB DCSS

CMS save 11 22

First Linux add 8 16

Linux save 12 28

Second Linux add 4 8

A DCSS of type SR has the advantage of being persistent across z/VM restarts. A DCSS of
type SR saves time if the construction of the DCSS and the data required to be stored in it is
time-consuming. When creating a DCSS of type SR, the most time is used in the save
operation, which writes the full DCSS back to the spool. Especially for a DCSS of 16 GB, this
write takes a considerable amount of time.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 37

Using a DCSS as swap space
This test case measures the behavior of a DCSS used as swap device. The throughput, CPU
cost, and paging operations are analyzed.

The test uses a single guest with a WebSphere Application Server and one database with two
WebSphere Application Server workloads. The workloads are DayTrader, which performs
read and write operation to a DB2 database, and Bookstore, which performs only read
operations. The guest storage is set to 750 MB, a value that causes swapping to occur.

The performance when Linux is swapping to various types of swap device is measured and
analyzed. These swap devices are compared:

 A z/VM VDISK of size 1039860 KB

 A DCSS of size 183500 KB

 A DASD device attached to the z/VM guest, swap size 1130392 KB

The scenarios with VDISK and DCSS require additional z/VM memory. Therefore, a fourth
test was added:

 Increase the guest memory size by the size of the DCSS, which means from 1024 MB to
2048 MB.

The number of servers was scaled as follows: one, two, four, and eight.

This test case is designed to determine:
 Which type of paging device provides the best performance

 Whether allocating memory for a fast paging device provides an advantage, compared to
using this memory to increase the guest size.

Throughput
The throughput is measured when using the DCSS as a swap space.

Figure 9 shows the throughput observed for running both the DayTrader and Bookstore
workload on a single guest.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 38

 Figure 9. Workload throughput for varying the Linux swap device

Observations
Highest throughput is seen when the memory is used as main memory instead of a memory-
based swap device. In fact, the additional memory for this scenario causes Linux not to swap
at all. When the memory is used for a swap device, DCSS has the highest throughput, and the
physical disk has the lowest throughput. The DCSS type SN has a slightly higher throughput
value than the DCSS EW/EN type, and this type was used in the scaling tests.

Conclusion
From the throughput perspective, the use of memory for a fast swapping device should be
considered seriously. Using this memory for main memory increases the chance that Linux
has no need to swap, which provides the best performance.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 39

CPU cost
The CPU cost is measured when using the DCSS as a swap space.

Figure 10 shows the CPU cost in terms of the total amount of CPU from the LPAR (guest
load and z/VM) spent to drive a certain amount of throughput, for the DayTrader workload
running on a single guest.

Figure 10. CPU resources spent to drive a certain amount of throughput when
varying the Linux swap device

Observations
The smallest amount of CPU to drive the throughput is in the scenario that uses the memory
as guest memory, instead of for a swapping device. When using a memory-based swap device,
the DCSS has the lowest cost, and the VDISK the highest.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 40

Conclusions
The CPU effort to drive the VDISK seems to be relatively high. The scenario that uses the
memory as main memory has the lowest cost, because the effort for the Linux memory
management is significantly lower (see Figure 11), especially because there is no need to
spend CPU time to identify pages suitable for swapping and move them to the swap device.

The test results show a clear order for the performance of different devices used for swapping.
The fastest device is the DCSS, followed by VDISK, and the slowest is the physical disk.
However, using the memory to increase the guest size provides the highest throughput.

Page management activity
The paging activity is measured and analyzed when using the DCSS as a swap space.

Figure 11 shows the paging operations when varying the swapping device. Five different
paging activities are analyzed for the four types of swap device (disk, DCSS EN, DCSS SN,
and VDISK), as well as no swapping at all.

 Figure 11. Memory management effort when varying the Linux swap device

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 41

Observations
The two most important indicators for the memory activity are major page faults (majflt) and
direct scans for pages (pgscand). Major page faults are significant because they must be
resolved with disk I/O. Direct scans for pages are significant because, when they take place,
an application is waiting for pages. Lower values for these operations mean less effort for the
operating system to provide the required memory pages, and fewer interruptions and waits for
the application because of missing pages. This means overall higher application throughput
at lower CPU cost.

The environment that uses the memory for guest memory, instead of for a fast paging device,
has the lowest values. Using a disk or a VDISK behaves comparable in regard to memory
management effort. The environment with the DCSS has very high values here.

Conclusions
High values for major page faults and direct page scans indicate waiting processes, which
cause lower throughput. In general, this also means a higher effort for the memory
management and high CPU cost, which is consistent with the result in Figure 10. It is clear
that from the memory management perspective, VDISK or disk behave similar because how
the swapping device is implemented is transparent to Linux. One reason for the high cost
when using a DCSS is the use of a dedicated driver in Linux.

Scaling the number of servers
This test compares throughput by swap device type as the number of WebSphere servers are
scaled. The results are shown for one, two, four, and eight WebSphere servers.

Figure 12 shows the relative throughput when scaling the number of guests: one, two, four,
and eight. The data is measured for no swapping, and swapping devices of DCSS of type SN,
disk, and VDISK.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 42

Figure 12. Workload throughput for varying the Linux swap device and scaling
the number of guests

Observations
Throughput increases for all swap device types from one to two servers. At four guests, the
VDISK swap device does not show a throughput increase. The no swap case has the highest
scaling factor, followed by DCSS, and then DISK. While, DCSS throughput did increase fairly
linearly from four to eight servers, the increase was less than from one to two and then four.
The non-swapping case shows a consistent scaling pattern.

Conclusions
The best swap device was the DCSS of type SN, even though the increase in throughput
diminishes with eight servers. Be aware that each guest has its own DCSS. There is no
contention for CPU or memory in z/VM for that scenario.

For this environment, using VDISK devices for swapping does not scale. The reason that
VDISK has a problem with many guests is related to lock contention.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 43

If swap space is needed in a multiserver environment, then it should be either assigned to
DISK or DCSS, but the best result was obtained when the memory is used to increase the
guest instead of a memory-based swap device.

Summary
The use of a DCSS used as swapping device is summarized.

VDISK and DCSS are memory-based devices, therefore it is expected that they are faster than
a physical DASD device. The DCSS is faster than the VDISK. However, increasing the guest
memory size provided the best performance improvement, because it reduced the
requirement from Linux to swap memory. The increase of the guest size also reduced the
effort used for memory management. The use of the memory for increased guest size is a
better trade-off than using this memory for a fast swapping device.

The use of the VDISK or DCSS provides an advantage when used as hot standby swap
resource, which is used only for short peak time periods. In this situation, the memory is most
of the time not allocated from z/VM or in main memory. The surplus memory of a guest is
mostly used, especially when it is doing file I/O.

The recommendation is, in case of permanent swapping activity, increasing the guest size is
the better way to improve the performance. In a system that is mostly not swapping, a
memory-based swap device to cover load peaks performs better than a disk. When using a
memory-based swap device, the DCSS was the better choice for the tested workloads.

Note: All these devices used as swap devices are exclusive and cannot be shared between the
guests.

Determining the memory saving using a DCSS
This test compared the performance achieved for five WebSphere Linux guests driven by the
DayTrader workload, when the WebSphere executable was in a DCSS or on minidisk.

The z/VM LPAR memory was set to a value to cause z/VM memory pressure. Then, the tests
were run either with the WebSphere executable mounted from a DCSS using the execute-in-
place option, or from a shared minidisk. Without the DCSS, the system has more memory
available, which is used to increase the guest size in 5 MB increments.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 44

Table 6 describes the different test environments.

Table 6. Test environment details
WebSphere executable location Linux guest memory size

DCSS 768 MB

Shared minidisk 768 MB

Shared minidisk 773 MB

Shared minidisk 778 MB

Shared minidisk 783 MB

Throughput comparison and transactions per IFL
The DayTrader workload is analyzed using the DCSS to hold the WebSphere executable, and
without the DCSS but with five different Linux guest sizes. Without the DCSS, the
WebSphere executable is located on disk.

For all of these graphs, the word 'Disk' is used to indicate that the WebSphere executable is
located on disk, not on a DCSS. The sizes that are listed after the word 'Disk' refer to the
Linux guest sizes, not disk sizes.

Figure 13 shows the normalized throughput using the DayTrader workload, with a DCSS
holding the WebSphere executable, and without the DCSS but with five different Linux guest
sizes.

 Figure 13. Normalized throughput

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 45

Figure 14 shows the number of transactions processed per Integrated Facility for Linux (IFL)
using the DayTrader workload, with a DCSS holding the WebSphere executable, and without
the DCSS but with five different Linux guest sizes.

Figure 14. Transactions per IFL

Observations
The throughput of the DCSS environment is higher than any of the 'Disk' environments.
When increasing the Linux guest memory size by 5 MB increments, the throughput increases
in the first scaling step and decreases with any further memory increase.

Looking at the quantity of transactions driven per IFL shows that the DCSS environment
(WebSphere executable located in the DCSS) gets the most out of the used CPUs. When the
WebSphere executable is located on disk, the Linux guest with a value of an additional 5 MB
has the best efficiency, but this value is still less than the value obtained when using a shared
DCSS.

Conclusions
The DCSS uses a certain number of pages that the guests do not provide. This quantity of
pages is a constant, depending only on the application used and the workload, but not
depending on the number of guests.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 46

Without the DCSS used for the WebSphere executable, there are two competing processes:

 When the size of the guest increases, the workload in Linux has less memory pressure and
runs better.

 When the size of the guest increases, the memory pressure in z/VM increases and causes
paging, which degrades the performance.

The result from these considerations is that the increase of 5 MB per guest increases the
throughput, but an increase of more than 5 MB causes the z/VM effort for swapping to lead to
performance degradation. The paging state is shown in Paging statistics.

Paging statistics
Paging statistics are presented for the DayTrader workload when using the DCSS to hold the
WebSphere exectuables, and without the DCSS but with four different Linux guest sizes.
Without the DCSS, the WebSphere executable is located on disk.

For all of these graphs, the word 'Disk' is used to indicate that the WebSphere executable is
located on disk, not on a DCSS. The sizes that are listed after the word 'Disk' refer to the
Linux guest sizes, not disk sizes.

Figure 15 show the average number of pages in XSTOR when using the DCSS to hold the
WebSphere executable, and four different Linux guest sizes when the WebSphere executable
is located on disk.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 47

Figure 15. Average pages in XSTOR

Figure 16 shows the average number of pages migrated from main storage to XSTOR using
the DCSS to hold the WebSphere executable, and four different Linux guest sizes when the
WebSphere executable is located on disk.

 Figure 16. Average page migration: Main storage to XSTOR

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 48

Figure 17 shows the average number of pages migrated from XSTOR to main storage when
using the DCSS to hold the WebSphere executable, and four different Linux guest sizes when
the WebSphere executable is located on disk.

Figure 17. Average page migration: XSTOR to main storage

Observations
When the WebSphere executable is located in the DCSS, there is a large number of pages in
XSTOR, but in average a significant reduction in the page migration activities during the test
on z/VM (either to or from XSTOR). Without the DCSS, the number of pages in XSTOR is
smaller, but this amount increases when increasing the z/VM guest size. In the last scaling
step, the number of pages in XSTOR decreases again.

The page migration rates to or from XSTOR are at the highest level when the DCSS is just
removed. The migration rate decreases with the increase in guest size, until the last scaling
step where it approaches the level where the guest size is the same as with a DCSS.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 49

Conclusions
The paging statistics confirm the assumption that with the increasing guest size the number
of pages in the paging space increases. The effort for page migration decreases in the
beginning, but then it increases again. Keep in mind that the last scaling step already has
reduced memory pressure because of the reduced throughput.

Location of the DCSS pages
Regarding memory savings, the important questions are: how many pages of the 6 GB DCSS
are loaded at any time, how many stay resident in main memory, and how many are moved to
the paging area.

Figure 18 shows where the pages of a DCSS reside.

Figure 18. Locations where the pages of the DCSS reside during the test

Observations
From the 6 GB DCSS size, only 400 MB are loaded, and only a small portion stay in main
memory. There are no pages on DASD.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 50

Figure 19 shows the amount of page in main memory in detail.

Figure 19. Amount of DCSS pages in main memory (resident) during the test

Figure 20 shows the corresponding transfer rates between the DCSS and XSTOR.

Figure 20. Migration rates in MB per second between DCSS and XSTOR

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 51

Observations
Most of the time, 10 MB of the DCSS in main memory is sufficient to drive the test. A peak
value is 50 MB of DCSS storage located in main memory. With that setup there is a higher
throughput than with any other memory configuration without the DCSS. Also, the migration
rates between the DCSS in main memory and XSTOR are very low, there is a peak in resident
pages at time 03:40. But even the highest value here, of approximately 25 MB per second is a
very moderate value.

Conclusions
Only 400 MB from the 6 GB space of the DCSS is loaded, and it seems that there is some
kind of selection of the most needed pages. The number of pages that are needed at runtime
and therefore needed in real memory is 10 MB, a low value. Also, the low transfer rates
between DCSS and XSTOR indicate that the right pages stay in real memory.

With regards to the memory savings, it is observed that most of the time approximately 10
MB from the DCSS is required. These pages are shared by each guest. To identify the impact
of the memory savings using a DCSS, the throughput results are compared with a scenario
without a DCSS with the same guest size and with an increased guests size to compensate for
the additional memory needed for the WebSphere binaries. Adding 10 MB of memory, as
used from the DCSS in the test before, to each guest produces a suboptimal result because of
the increase in memory pressure inside z/VM due to the memory being taken from z/VM to
give to the guests.

Adding only 5 MB per guest results in the best performance without the DCSS, but this
configuration performs still worse than with the DCSS being used to hold the WebSphere
executable. The conclusion is that, with only five WebSphere Application Server guests that
also include a DB2, it can be recommended to run the WebSphere binaries with the execute-
in-place option from the DCSS. The memory saving is at a minimum approximately 10 MB
per guest, which would result in a total of 1 GB for 100 guests.

Summary
The DCSS uses a certain number of pages that the guests do not need to provide. Under
memory pressure these pages are moved to expanded storage. They are not moved to the
paging DASDs because they could be read from spool. Finally, approximately 10 MB stays
resident in memory. Even that number is a small value, this number of pages is a constant,
depending only on the application used and the workload, but not depending on the number
of guests. With regards to the guests, with only five guests a higher throughput and a lower
CPU load and memory pressure inside z/VM is observed when the DCSS is used. Comparable
values were not be obtained by increasing the guest size. Also, this advantage of the DCSS
increases with the number of guests sharing the DCSS.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 52

Sharing read-only data using DCSS
In this test case, five guests are used with a read-only database. The performance of the
Swingbench workload when the read-only database is in a DCSS is compared to when the
read-only database is on a shared minidisk.

After the database was built, it was copied to a DCSS and the DCSS was mounted in read-
only mode.

Table 7 shows the observed results.

Table 7. Comparison of using the DCSS to share read-only data versus database on disk
Database location Normalized throughput

Shared minidisk, no minidisk cache 100%

Shared minidisk with minidisk cache 119%

DCSS 991%

Turning on minidisk caching results in a 19% improvement compared to the case without
minidisk caching. With the database in a DCSS, there is an 890% improvement compared to
the minidisk case.

Figure 21 shows the CPU cost for the five guests when the shared database is on a DCSS
versus a minidisk with and without minidisk caching.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 53

Figure 21. z/VM CPU utilization: Comparing DCSS versus disk for read-only data

The z/VM CPU utilization for the three cases shows that with the database in a DCSS there is
significantly more CPU utilization. The cases where the database reside on a shared minidisk
has approximately 1/8 the CPU utilization with 1/10 of the throughput.

Figure 22 shows the average of the Linux CPU data for the five guests with the shared
database located on the DCSS versus on a minidisk, and with and without minidisk caching.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 54

Figure 22. Average of the Linux CPU data

Observation
The use of a DCSS for holding the read-only database shows a major advantage compared to
hosting the database on shared minidisks, with almost a factor of 10 improvement in
throughput. The database on a shared minidisk is spending half of the time in an IOWAIT
state.

Conclusion
The use of a DCSS for holding a shared read-only database has a major advantage compared
to shared minidisk, and is highly recommended. Also, minidisk caching has a performance
advantage compared to the non-caching case.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 55

Appendix. The CP DEFSEG and SAVESEG commands
Details about the CP DEFSEG and SAVESEG commands, relative to DCSS definition, are
provided.

DEFSEG
The DEFSEG command is used to define a skeleton system data file (class S, SDF) for a saved
segment. The skeleton file consists of a descriptor page containing all information necessary
to preserve the saved segment with the SAVESEG command. A saved segment cannot be
accessed until it has been saved.

The DEFSEG command has the following syntax:

DEFSEG dcssname hexpage1-hexpage2 type options

where
dcssname
The name of the saved segment to be defined.

hexpage1, hexpage2
A range of pages to be saved.

type
Refers to the page descriptor code of the page range in the saved segment. It indicates the
type of virtual machine access permitted to pages in the range.

options
One or more keyword options, such as LOADNSHR and RSTD.

The following types of DCSS segments can be defined (page descriptors):

EW
Exclusive read/write access

EN
Exclusive read/write access, no data saved

ER
Exclusive read-only access

SW
Shared read/write access

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 56

SN
Shared read/write access, no data saved

SR
Shared read-only access

SC
CP writable pages, shared read-only access by virtual machine, no data saved. Please note
that the SC page descriptor code cannot be used with the LOADNSHR option.

The test systems used in this paper defined DCSS page segments of type SN and SR. When
defining a DCSS of type SR, the LOADNSHR option was also used. The LOADNSHR option
indicates that any user can load a nonshared copy of the saved segment. No NAMESAVE
directory authorization is required. If any member saved segment is defined with LOADNSHR,
a nonshared copy of the space itself or any member can be loaded by any user. The
LOADNSHR option cannot be used with the RSTD (restricted saved segment) option. The
LOADNSHR option also cannot be used with the SC page range descriptor code.

SAVESEG
The SAVESEG command is the final step of a saved segment build process. This command
saves the page range areas previously specified by a DEFSEG command. The areas contain
the appropriate objects, such as code or data, that were loaded into these defined areas by an
installation procedure.

The SAVESEG command has the following syntax:

SAVESEG dcssname

where

dcssname
The name of the segment to be saved. This is the file name of the file previously defined with
the DEFSEG command.

For more information about DEFSEG and SAVESEG, see

z/VM: CP Commands and Utilities Reference
http://publib.boulder.ibm.com/infocenter/zvm/v5r3/index.jsp?topic=/com.ibm.zvm.v53.hcpa
0/hcsf8b22124.htm

http://publib.boulder.ibm.com/infocenter/zvm/v5r3/index.jsp?topic=/com.ibm.zvm.v53.hcpa0/hcsf8b22124.htm
http://publib.boulder.ibm.com/infocenter/zvm/v5r3/index.jsp?topic=/com.ibm.zvm.v53.hcpa0/hcsf8b22124.htm
http://publib.boulder.ibm.com/infocenter/zvm/v5r3/index.jsp?topic=/com.ibm.zvm.v53.hcpa0/hcsf8b22124.htm

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 57

Examples
These example DEFSEG commands are used to define the various sizes of DCSS used in this
paper.

Note: The DCSS names used in the DEFSEG command must be unique.

For a 1 GB DCSS of type SN:
cp defseg dcss1g 20000-5FFFF sn

For a 1 GB DCSS of type SR:
cp defseg dcss1g 20000-5FFFF sr loadnshr

For a 2 GB DCSS of type SN:
cp defseg dcss2g 20000-9FEFF sn

For a 2 GB DCSS of type SR:
cp defseg dcss2g 20000-9FEFF sr loadnshr

For a 4 GB DCSS of type SN:
cp defseg dcss4g1 20000-9FEFF sn
cp defseg dcss4g2 9FF00-11FDFF sn

For a 4 GB DCSS of type SR:
cp defseg dcss4g1 20000-9FEFF sr loadnshr
cp defseg dcss4g2 9FF00-11FDFF sr loadnshr
For an 8 GB DCSS of type SN:
cp defseg dcss8g1 20000-9FEFF sn
cp defseg dcss8g2 9FF00-11FDFF sn
cp defseg dcss8g3 11FE00-19FCFF sn
cp defseg dcss8g4 19FD00-21FBFF sn

For an 8 GB DCSS of type SR:
cp defseg dcss8g1 20000-9FEFF sr loadnshr
cp defseg dcss8g2 9FF00-11FDFF sr loadnshr
cp defseg dcss8g3 11FE00-19FCFF sr loadnshr
cp defseg dcss8g4 19FD00-21FBFF sr loadnshr

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 58

For a 16 GB DCSS of type SN:
cp defseg dcss16g1 20000-9FEFF sn
cp defseg dcss16g2 9FF00-11FDFF sn
cp defseg dcss16g3 11FE00-19FCFF sn
cp defseg dcss16g4 19FD00-21FBFF sn
cp defseg dcss16g5 21FC00-29FAFF sn
cp defseg dcss16g6 29FB00-31F9FF sn
cp defseg dcss16g7 31FA00-39F8FF sn
cp defseg dcss16g8 39F900-41F7FF sn

For a 16 GB DCSS of type SR:
cp defseg dcss16g1 20000-9FEFF sr loadnshr
cp defseg dcss16g2 9FF00-11FDFF sr loadnshr
cp defseg dcss16g3 11FE00-19FCFF sr loadnshr
cp defseg dcss16g4 19FD00-21FBFF sr loadnshr
cp defseg dcss16g5 21FC00-29FAFF sr loadnshr
cp defseg dcss16g6 29FB00-31F9FF sr loadnshr
cp defseg dcss16g7 31FA00-39F8FF sr loadnshr
cp defseg dcss16g8 39F900-41F7FF sr loadnshr

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 59

Bibliography
Sharing a WebSphere Application Server V7 installation among many Linux for IBM
System z systems
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/zsw03055usen/ZSW03055USEN.PDF

Or
http://ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101817

How to use Execute-in-Place Technology with Linux on z/VM
http://public.dhe.ibm.com/software/dw/linux390/docu/l26dhe00.pdf

Managing Linux on System z: Using device drivers, features, and commands, SC33-8411
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaab/concepts/lc
on_Managing_Linux_on_System_z.htm

Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS
http://www.vm.ibm.com/linux/dcss/ror-s11.pdf

Using Discontiguous Shared Segments and XIP2 Filesystems With Oracle Database 10g on
Linux for IBM System z http://www.redbooks.ibm.com/redbooks/pdfs/sg247285.pdf

z/VM: CP Commands and Utilities Reference, SC24-6081
http://publib.boulder.ibm.com/infocenter/zvm/v5r3/index.jsp?topic=/com.ibm.zvm.v53.hcpa
0/hcsf8b22124.htm or http://publibz.boulder.ibm.com/epubs/pdf/hcse4b31.pdf

z/VM Saved Segments Planning and Administration, SC24-6116-02
http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp or
http://publibz.boulder.ibm.com/epubs/pdf/hcsg4b10.pdf

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/zsw03055usen/ZSW03055USEN.PDF
http://ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101817
http://public.dhe.ibm.com/software/dw/linux390/docu/l26dhe00.pdf
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaab/concepts/lcon_Managing_Linux_on_System_z.htm
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaab/concepts/lcon_Managing_Linux_on_System_z.htm
http://www.vm.ibm.com/linux/dcss/ror-s11.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247285.pdf
http://publib.boulder.ibm.com/infocenter/zvm/v5r3/index.jsp?topic=/com.ibm.zvm.v53.hcpa0/hcsf8b22124.htm
http://publib.boulder.ibm.com/infocenter/zvm/v5r3/index.jsp?topic=/com.ibm.zvm.v53.hcpa0/hcsf8b22124.htm
http://publibz.boulder.ibm.com/epubs/pdf/hcse4b31.pdf
http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://publibz.boulder.ibm.com/epubs/pdf/hcsg4b10.pdf

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 60

Glossary
Architected segment
A 1 MB portion of real storage defined by ESA/390, ESA/XC, and z/Architecture®.

Discontiguous saved segment (DCSS)
A discontiguous saved segment (DCSS) is a saved segment that can be embedded above the
virtual machine's defined storage size. A DCSS occupies one or more architected segments,
and is accessed by name. Although individual address ranges are specified on page
boundaries anywhere within an architected segment, a DCSS begins and ends on a 1 MB
boundary.

eXecute-In-Place (XIP)
The Linux XIP technology is used to treat code in a memory-backed file system as if it were a
part of the virtual memory space. Instead of being loaded into Linux guest memory,
executables residing in a DCSS are run directly from the DCSS memory.

Member saved segment
A member saved segment is a special type of DCSS that belongs to up to 64 segment spaces.
A member saved segment begins and ends on a page boundary and is accessed either by its
own name or by a segment space name. When a virtual machine loads any member of a
segment space, the virtual machine has access to all members of the space. However, the
virtual machine should load the other members before trying to use them.

Named Saved System (NSS)
A z/VM technology used to save a bootable operating system snapshot to the z/VM spool.
This system snapshot can be shared and started by many z/VM guests, all of which can boot it
like an operating system disk and run the system therein.

Usually, an NSS is created at a very early stage in the initialization of the operating system.
This enables the operating system in the NSS to detect hardware and other features at the
time it is started in each guest.

An NSS must be defined specifically for the operating system image that it will contain. This
is because different operating systems have different memory locations which either must be
kept exclusive-writable or that can be shared. z/VM keeps track of these mappings, ensuring
that guests get their own copy of pages that are writable while giving shared access to read-
only pages. In addition, each operating system that creates an NSS must do so with an
awareness of what areas to be saved must be read-only and sharable or read/write and
exclusive.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Page 61

While both a DCSS and an NSS are saved as spool files and use the DEFSEG and SAVESEG
command, they have different functions and an NSS must have operating system support to
function correctly

Saved segment
An area of virtual storage that is assigned a name and saved. Segment spaces, member saved
segments, and discontiguous saved segments are defined by CP and saved in system data files.
Logical saved segments are defined by CMS. A saved segment can be dynamically attached to
and detached from a virtual machine and can be shared by many virtual machines. A z/VM
saved segment is a range of pages of virtual storage consisting of a number of memory
segments that can hold data or reentrant code (programs).

Segment
A 1 MB portion of real storage as defined by the ESA/390 architecture.

Segment space
A segment space is a special type of DCSS that is composed of up to 64 member saved
segments referred to by a single name. A segment space occupies one or more architected
segments. Although individual address ranges are specified on page boundaries anywhere
within an architected segment, a segment space begins and ends on a 1 MB boundary. A user
with access to a segment space has access to all its members.

Linux on IBM System z Large Discontiguous Saved Segments (DCSS) under Linux

Copyright IBM Corporation 2011
IBM Systems and Technology Group
Route 100
Somers, New York 10589
U.S.A.
Produced in the United States of America,
03/2011
All Rights Reserved

IBM, IBM logo, DB2, System z, System z10, WebSphere, z10, z/Architecture and z/VM are trademarks or
registered trademarks of the International Business Machines Corporation.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

All statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

 ZSW03186-USEN-00

