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The interpretive-execution facility of  Enterprise 
Systems  Architecture/390TM  (ESA/390TM)  provides 
an instruction for  the  execution of virtual 
machines.  This instruction, called START 
INTERPRETIVE  EXECUTION (SIE), was initially 
created  for virtualizing either System/370m  or 
370-XA architectures  and was  used  later  for 
virtualizing ESA/370' and  ESA/390 architectures. 
SIE has evolved to provide capabilities  for  a 
number  of specialized  performance 
environments.  Most  recently it provides  for  the 
unique requirements  of  Enterprise  Systems 
Architecture/Extended  Configuration (ESA/XC) 
virtual-machine  architecture. This comprehensive 
set  of  capabilities in the  architecture  serves as 
the platform for  the ability of  VM/ESAm to provide 
functions in virtual machines  for  end  users  and 
system  servers.  This paper describes  the 
evolution of SIE and outlines use of the  various 
capabilities in VM/ESA. 

T he Virtual Machine/Enterprise  Systems Ar- 
chitectureTM ( V M I E S A ~ ~ )  product  uses  the 

ESA/39OTM interpretive-execution  facility',*  to  es- 
tablish  the  virtual-machine  environment.  In  this 
environment,  the  processor directly executes 
most of the  functions of the  virtual  machine. 

The  evolution of the  interpretive-execution archi- 
tecture, including the special facilities for high- 
performance  virtual  machines provided with the 
Processor Resource/Systems Manager" ( P R / S M ~ ~ )  
feature, is reviewed.  The  purpose of each  devel- 
opment is discussed,  and  the VM Data  Spaces  ar- 
chitecture is described. VM Data  Spaces is the 
architecture underlying the  recently  announced 
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Enterprise  Systems  Architecture/Extended  Con- 
figuration (ESA/XC) virtual-machine architecture. 
Finally, this paper  describes the  procedures  used 
by the  control program (CP) portion of VM/ESA4 to 
manage interpretive  execution  and  control virtu- 
al-machine functions  that are not provided by the 
real machine, including the  support of the ESA/xC 
architecture. 

Interpretive-execution  architecture 

Within this  paper,  the  term guest refers  to  any 
virtual, or "interpreted"  machine.  The  control 
program directly managing the  real machine is 
referred to  as  the host and is responsible  for  es- 
tablishing the  guest  execution  environment. The 
machine is placed in the interpretive-execution 
mode by the  host, which issues a single instruc- 

this mode,  the machine provides  the  functions 
of a selected  architecture.  This  architecture 
may also  be  available  on  a  real  machine,  such 
as System/370", 370-Extended Architecture 
(370-XA), Enterprise  Systems Architecture/370" 
(ESA/370TM), or  Enterprise  Systems  Architec- 
ture/390" (ESA/390TM). Alternatively,  the  architec- 
ture may be provided  exclusively in the virtual- 
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tion, START  INTERPRETIVE  EXECUTION  (SIE). In 
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machine  environment,  such as the ESA/XC 
architecture.  The  functions  provided include ex- 
ecution of privileged and problem-program in- 
structions,  address  translation,  interruption han- 
dling, and timing among  other things, and I/O in 
some  cases.  The machine is said to interpret the 
functions  that it executes in the  context of the 
virtual  machine.  Special-purpose  hardware al- 

Simulation attempts to “execute” 
guest  functions transparently. 

lows  interpretation  to  proceed  at  speeds  compa- 
rable  to  “native”  execution. (Native denotes  the 
architecture  outside  the  interpretive  environ- 
ment.) Similarly, many types of interruptions  are 
interpreted-presented directly to  the guest by 
the machine-without host  intervention. 

In  the virtual-machine environment, the guest 
program perceives  the full complement of func- 
tions defined for  the designated  architecture. 
Most of the functions are provided in the form of 
the interpretive-execution facility. The remaining 
functions are provided by the underlying host 
control  program, called CP for VMESA, through  a 
process called simulation. Except  for  the  proc- 
essing time required, simulation attempts  to  “ex- 
ecute” guest  functions  transparently, so that it is 
indistinguishable to  the  guest program whether a 
function is performed by the machine or  the 
host. 

The operand of the SIE instruction, called the 
state  description, contains information relevant 
to  the  current  state of the  guest. When execution 
of SIE ends, information representing  the  state of 
the  guest, including the guest program status 
word (PSW), is  saved in the  state  description be- 
fore  control is returned to  the  host. This infor- 
mation is used  and modified  by the host during 
simulation and is used later  to resume  execution 
of the  guest.  Other information in the  state  de- 
scription  determines  the  mode  and  other environ- 
mental  conditions in which the  guest is to  exe- 
cute. 
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interpretation  modes: System/370, ESA/390, or VM 
Data  Spaces  mode.  However,  these  three ma- 
chine modes supply the  functions  needed for of- 
fering five modes to  guests.  In addition to  Sys- 
tem/370 and ESA/390, 370-XA and ESN370 are 
naturally provided,  each as a subset of ESN390. 
ESA/XC arises from the  cooperation  between  the 
machine in VM Data  Spaces  mode  and  software 
support in VMIESA CP. 

While  in interpretive-execution  mode, a virtual 
machine is constrained  to a portion of the real- 
machine resources,  as  allocated by the  host. 

Guest  storage is confined either  to  some portion 
of host  real  storage or  to host  virtual  address 
spaces  controlled by the  host  system. 
Host  enabled  and disabled states  are generally 
undisturbed by execution of the  guest. 
Host timing facilities are also  undisturbed; in- 
stead a second  set is provided for the  guest. 
One complete  and logically separate  set of con- 
trol  registers is maintained by  the machine for 
use by the  host  and  another is maintained  for 
use by the  guest.  Other  registers are shared be- 
tween  the  host  and  guest. 

This protection of the  host  from  interference by 
the  guest  permits the host to meet  its primary 
responsibility of efficiently parceling out  the  real 
resources to multiple guests,  and  prevents  one 
guest from interfering with another. 

When first introduced with 370-XA, SIE provided 
two similar but distinct  architectures  for  the vir- 
tual machine. One was the System/370 architec- 
ture.  Because of earlier  successes with several 
assists  for Virtual Machine/370 (VM/370), full ma- 
chine interpretation of nearly all the privileged 
operations  was  provided, with the  notable  excep- 
tion of the I/O instructions.  The  second  inter- 
preted  architecture  was  the new 370-XA architec- 
ture itself. Offering both  architectures side-by- 
side in virtual machines  provided  a migration path 
from the  earlier  architecture as well as a test  envi- 
ronment for  the  new  architecture. As was the 
case with the  native  architecture,  interpretive-ex- 
ecution  architecture  subsequently  evolved  to in- 
corporate ESA/390 as a  replacement  for 370-XA and 
ESA/370. 

Representing  guest  absolute  storage. Fundamental 
to any architecture is the method  for providing 
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access  to storage.  The  method  for  representing 
absolute6  storage is a key consideration  for vir- 
tual  machines.  Two  basic  storage  modes are pro- 
vided by the  interpretive-execution  architecture: 
preferred-storage  mode  and pageable-storage 
mode.  In  preferred-storage  mode, a contiguous 
block of host  absolute  storage is assigned to  the 
guest,  whereas in pageable-storage  mode,  dy- 
namic address  translation (DAT)’ at  the host level 
is used to map  guest main storage. 

Preferred-storage  mode. Existing batch  systems 
maintain relatively high 110 rates  and  are efficient 
managers of real  storage. For  these  guests, pre- 
ferred-storage  mode is a good means  to  provide 
production  levels of operation.  In  this  mode,  the 
lower  addresses of the machine storage are ded- 
icated  to  the  guest.  However,  this  scheme limits 
the  number of guests  operating with this level of 
performance  to one. 

The I/O for  these  guests,  or  at  least  their  channel 
programs, is handled  directly by the machine. 
The interpretive-execution  environment  assures 
that  the  host  program is immune from  errant  guest 
operations, including errant I/O operations. This 
is an important  characteristic:  preferred-storage 
mode assures  the integrity of the  overall  system 
while at  the same time allowing the  guest to op- 
erate with a subset of the real-machine resources 
at  near-native  performance  levels. 

With early releases of VM: the special preferred- 
storage-mode  guest paid a  performance  penalty 
for  the privilege of executing as a virtual machine. 
This  was due largely to  the host-control-program 
service of handling I/O instructions  and  returning 
the  interruptions. For VM/370, the  Preferred Ma- 
chine  Assist (PMA) stepped  into  this  breach. With 
VM/XA, SIE Assist was introduced to provide ma- 
chine  execution of guest I/O instructions  and  route 
110 interruptions  directly to  the guest. SIE Assist 
performed the I/O for  both System/370-mode and 
370-XA-mode guests. SIE Assist  also provided the 
authorization  checks  needed to  preserve integrity 
for  the  host  system  and  other  guests. 

Pageable-storage mode. Pageable-storage mode 
is the second  method  provided by the  interpre- 
tive-execution  architecture  for  representing  guest 
absolute  storage.  The  host  has  the ability to scat- 
ter  the  real  storage of pageable-storage-mode 
guests  to  usable  frames  anywhere in host  real 
storage  by using the  host DAT, and  to page guest 
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data  out  to auxiliary storage.  This  method  pro- 
vides flexibility when allocating real-machine re- 
sources while preserving the  expected  appear- 
ance of a  contiguous  range of absolute  storage  for 
the  guest. 

Guest  dynamic  address  translation. A virtual-ma- 
chine environment may call for  application Of DAT 
twice: first at  the  guest  level,  to  translate a guest 
virtual address  through guest-managed transla- 
tion tables  into  a  guest  real  address,  and  then, for 
a pageable guest,  at  the host  level, to  translate  the 
corresponding  host  virtual  address to a host  real 
address. 

In VM/370, the need to effect two  levels of address 
translation  for pageable virtual  machines with 
guest DAT active  was satisfied by  means of 
shadow  translation  tables, segment and page ta- 
bles built by the  host reflecting the  combined re- 
sults of the  two mappings. The  increased  address- 
ing capacity offered by 370-XA threatened  to limit 
the performance  achievable  through  shadow 
mechanisms,  because of the  possible  sparseness 
of address  references  over  the  much  larger  two- 
gigabyte address  range,  and  because of the  larger 
translation-table  sizes.  Another  consideration 
was the  cost  to maintain and  ensure  the integrity 
of the  shadow  tables. 

These  concerns led IBM to forsake  shadow  tables 
for  general  use in interpretive  execution, in favor 
of performing both levels of translation in the ma- 
chine. As with the  native  architecture,  transla- 
tion-lookaside buffers are built into  the machine 
to retain the  results of previous  address  transla- 
tions,  and so speed  the  resolution of addresses in 
pages that  are repeatedly  referenced. 

Controlling  guest  execution. In  certain  cases,  the 
host must intercede in operations normally dele- 
gated to  the  machine. For this purpose,  the  state 
description  includes  controls  settable  by  the  host 
to  “trap,”  or intercept, specific conditions. In- 
terception  control bits  request  that  the  machine 
return  control to host simulation when  particular 
guest instructions are  encountered. Intervention 
controls capture  the  introduction of an enabled 
state  into  the PSW, so that  the  host  can  present  an 
interruption which it holds pending for  the  guest. 
Intervention  controls may be  set asynchronously 
by the  host  on  another  real  processor while in- 
terpretation  proceeds.  The machine periodically 
refetches  the  controls  from  storage, so that up- 
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dated  values will be  recognized.  Guest  interrup- 
tions  can  thereby  be made pending without  pre- 
maturely disturbing  interpretation. 

Guest multiprocessing. In  contrast with earlier vir- 
tual-machine support,  the  interpretive-execution 
architecture  supported  guest multiprocessing 
from the beginning. As a  consequence, a virtual 
machine that  employs  multiprocessing  receives a 
substantial  boost in capacity. Prefixing, or  the 
ability to assign the first 4K range of addresses  to 
a distinct  4K-byte block of absolute  storage  for 
each  virtual CPU, is an integral part of multiproc- 
essing. Thus, with interpretive  execution, prefix- 
ing is standard. 

Simulating guest  instructions in a multiprocessing 
virtual-machine  environment  requires special 
consideration. Simulation is provided by the  host 
program following an interception  from  one of the 
virtual CPUS. This simulation may require resolv- 
ing a  guest  virtual  address.  This is typical when 
the  guest is Multiple Virtual Storage (MVS). How- 
ever, if the  result of the translation  is held even 
briefly in a  host  register or  table,  that register or 
table  constitutes  a (virtual) translation-lookaside 
buffer. What if another virtual CPU issues  an IN- 

during this brief period, in preparation  for  reas- 
signing the guest  real page frame? The IPTE might 
invalidate the translation held by the  host on be- 
half  of the first guest CPU. If the IPTE were allowed 
to finish and  the  guest program to  continue  exe- 
cuting, the guest would erroneously  conclude  that 
all  references  to  the  target  guest virtual address 
using the old page-table entry (PTE) contents  were 
complete. An interlock bit is provided for dealing 
with this  situation. IPTE is required to  test and set 
the interlock bit by interlocked  means.  The  host 
agrees  to  set  this  interlock  before simulating guest 
DAT (in the  course of simulating a guest  instruc- 
tion) and  to leave it set until it has finished using 
the  results of that simulation (the "lookaside") to 
access  guest  storage. If the page-table entry is 
locked via the  interlock bit when an IFTE instruc- 
tion is interpreted,  the IPTE instruction is inter- 
cepted  to  permit  host program resolution. 

To maximize parallelism in a virtual multiproces- 
sor, VM/ESA manages the  word containing the 
IPTE interlock bit as a shared/exclusive  lockword. 
Each simulation which performs  the  guest DAT 
obtains  a  share of the  lock; IPTE interpretation 
and simulation obtain an exclusive hold. Thus 

VALIDATE PAGE TABLE ENTRY (IPTE) instruction 
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multiple DAT simulations can  occur simulta- 
neously,  and only a guest IPTE causes  serializa- 
tion. 

Multiple  high-performance guests. With achiev- 
able performance  for the preferred-storage-mode 
guest  near  native  performance, as described  ear- 
lier,  attention  turned to providing the  same  for 
more  than one  guest. Multiple Domain Facility" 

The  interpretive-execution 
architecture supported guest 

multiprocessing from the 
beginning. 

( M D F ~ ~ )  was  the first product to achieve  concur- 
rent  execution of two  or more  operating  systems 
with high performance  on  a single shared  central 
computing complex.  However, IBM was  also 
working  in the same direction, leading to  the Proc- 
essor  Resource/Systems  Manager (PR/SM) fea- 
ture. PWSM permits  either flexible hardware  par- 
titioning or multiple high-performance guests 
under VM. The  value of this  development, of 
course, lies in the ability to reassign  real  re- 
sources dynamically with minimal performance 
penalty,  for  use  under  a  variety of different ar- 
chitectures or  systems. Initially up to four high- 
performance  guests  were  supported,  each  run- 
ning  in a  separate zone. This was  subsequently 
extended  to six zones. 

Zone relocation. The  most  important  consider- 
ation in extending  support  from  one  preferred- 
storage-mode  guest  to multiple guests is the 
means  for translating addresses  for I/O purposes. 
With high-performance 1/0 devices, little time is 
available to perform the  translation; in many 
cases page faults would result in loss of data.  In 
these  circumstances  a  single-register-translation 
mechanism serves  very well. 

Single-register relocation, or zone  relocation, 
uses  two  values  to  translate a guest  absolute  ad- 
dress  to a  host  absolute  address.  One value is  an 
upper limit, the maximum value in the  zone.  The 
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second  value is a  lower limit which is added to the 
guest  absolute  address  to  produce  a  host  absolute 
address.  The  two values thus define a zone be- 
tween  a beginning and ending address within the 
absolute  storage  available  on  the  machine. 

Region  relocation  and  interpreted SZE. In  the 
original offering which permitted multiple high- 
performance  guests, the channel used zone relo- 
cation while the CPU continued to use DAT to map 

Steps have  been  taken  in  the 
evolution of the architecture 

to support CMS as  well. 

contiguously  the  same  storage specified for  the 
zone. With this  arrangement, all guest  systems 
except  for  the  case when VMIESA (or VMIXA) is a 
guest of itself could be provided at acceptable 
production  levels of performance. 

When VM/ESA is a guest of itself,  there are three 
levels of programs: VMIESA as  the  host, VMIESA as 
the  guest (called a first-level guest),  and  guests of 
the VMIESA first-level guest.  These second-level 
guests might themselves  operate with the DAT. In 
this  situation,  address  translation involves repet- 
itive application of DAT, potentially requiring 27 
storage  references  to  translate an  address  into  the 
corresponding  absolute machine location and  ac- 
cess  the  data.  In addition,  execution of second- 
level guests  requires handling two  levels of inter- 
pretive  execution;  software simulation of the 
second level of interpretive  execution brings ad- 
ditional overhead.  The  costs of repeated  transla- 
tion and  nested  interpretive  execution are clearly 
limiting factors in the performance  achievable  for 
VMIESA as a guest. 

Two new machine  functions, Region Relocation 
and  Interpreted SIE, were  introduced to address 
these  problems. Region Relocation  replaces  the 
lowest-level  application of the DAT with zone  re- 
location,  as  is used in the  channel;  this  reduces 
the 27 storage  references  for DAT to the original 
nine needed for a first-level guest, plus nine ad- 
ditions.  Interpreted SIE allows the machine to in- 
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stitute  another  instance of interpretive  execution 
when the machine is already in interpretive-exe- 
cution  mode;  that  is,  the  guest SIE instruction  and 
the second-level guest  execution it requests  can 
be interpreted by the  machine,  rather  than sim- 
ulated by the  host. 

These capabilities together  provide  performance 
levels for second-level guests  that are comparable 
to the levels provided for first-level guests. As a 
result, one release of VM can  run  as a guest of 
another VM system at acceptable performance 
while  migration to  the new release occurs in stages. 

Performance  refinements  for CMS guests. While 
there  has  been  heavy  focus  on high-performance 
multiserver and  batch  guests,  the  Conversational 
Monitor System (CMS) has not been neglected. 
CMS is the  personal-choice  system to a large pop- 
ulation of interactive  users,  and  steps  have  been 
taken in the evolution of the  architecture  to  sup- 
port CMS as well. 

Expedited  SIE  subset. VMIESA uses  the SIE in- 
struction  to specify a virtual machine for  each 
CMS user. Similar to  the high-performance cases, 
there  are  characteristics or uses of CMS that may 
be classified as  typical. By optimizing the real- 
machine design for  the most frequently  encoun- 
tered  characteristics of a class of virtual ma- 
chines, machine performance can be improved. 
Expedited SIE subset  provides  such  optimizations 
for CMS guests.  This  development  capitalizes on 
the  fact  that  certain  aspects of the  architecture  are 
used infrequently by CMS. For example, CMS 
never  turns  on DAT. The overhead  for initializing 
these infrequently-used functions is therefore by- 
passed.  Instead,  attempts  to  use uninitialized 
functions are  detected,  and  the  cost  to initialize 
any of these  functions is incurred only when nec- 
essary. 

SZE storage-key  facility. The SIE storage-key  fa- 
cility is an enhancement  to  interpretive  execution 
which defines an architected  location in host  ta- 
bles for  the key values of nonresident  storage. 
This allows the machine to interpret  guest  instruc- 
tions like SET STORAGE KEY for  nonresident 
pages,  rather  than passing control  to  host simu- 
lation. 

VM Data Spaces 

VM Data  Spaces is an extension to  the interpre- 
tive-execution  architecture  that allows a pageable 
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guest  that  does not otherwise use DAT to  access 
data in multiple host  address  spaces.  The  alter- 
nate  spaces  could  be  “data  spaces”  created by 
this or  other virtual machines, or primary spaces 
of other virtual machines. This memory-sharing 
mechanism is  more efficient than message-pass- 
ing protocols for communicating among virtual 
machines. 

Access  registers in ESAl370 and ESM390. The 
ESN370 architecture  introduced  access  registers. 
These  registers allow a  problem-state program to 
refer to  data in multiple address  spaces  concur- 
rently,  without  supervisor  intervention. 9 ~ ’ 0  The 
access  registers offer an improved method to 
move data  between  two  address  spaces.  They 
also allow the  use of the  complete  instruction  set 
to  operate  on  data in multiple address  spaces. 

In ESA/370 and ESAl390, as in System/370 and 
370-XA, the  base (B) field or register (R) field  of an 
instruction  designates a general register. In the 
access-register mode of ESA/370 and ESA/390, the 
same-numbered  access  register is used during ac- 
cess-register  translation (ART) to determine  the 
address  space of the  operand. 

Access-register  translation  uses  an  access-list-en- 
try  token (ALET) in an  access  register  to  derive  the 
segment-table designation (STD) to be used during 
dynamic  address  translation (DAT). The STD cor- 
responds to  an  address  space. 

Access  registers are  also available to a guest in 
ESAl390 (or ESA/370) mode. The  host is responsible 
for loading the  guest’s  access-register values be- 
fore  starting  interpretive  execution,  and  for  sav- 
ing them (and restoring  host values) afterward. 
The guest  operating  system must build the  guest 
virtual address  spaces  and  associated  control 
structures,  just  as it would natively. Pages in 
these  address  spaces may be mapped to  areas of 
guest main storage or paged by the  guest  super- 
visor  to auxiliary storage. 

Motivation for VM Data  Spaces. On an operating 
system like Multiple Virtual StorageIEnterprise 
Systems  Architecture  (MVS/ESA”),  the  access 
registers  introduced with ESA/370 bring a powerful 
new capability:  the  addressing of data in multiple 
address  spaces in a  sequence of instructions, or 
even in the  same  instruction, without control-pro- 
gram intervention. MVS/ESA runs programs with 
DAT enabled, so that  the virtual addresses  each 
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program references are translated through MVS- 
maintained constructs  into real addresses.  Trans- 
lation exceptions  interrupt to MVS, which then 
pages in the required data.  In this  environment, 
access  registers offer several benefits: 

Programs can  directly manipulate much larger 
amounts of data. 
Programs have  unrestricted  access beyond the 
two-gigabyte primary address  space.  The full 
instruction  set  can be used to  operate  on  data in 
any of the multiple spaces. 
Individual programs can  share  data,  as  autho- 
rized by the owning program.  This is enforced 
by the  operating  system. 
Programs can  segregate  data  more logically, 
keeping similar or related  data in the  same 
space,  to facilitate controlled  sharing. 

The capabilities which access  registers offer are 
attractive.  However,  the  structure of VM is sub- 
stantially different from  that of  MVS. VM has al- 
ways been a “two-tiered’’  system:  The  control 
program (CP) component of VM creates a separate 
virtual machine for  each logged-on user. Appli- 
cation  programs  run  under  the  Conversational 
Monitor System (CMS), a single-user “second- 
level” operating  system running within the  user’s 
virtual machine.  A CMS virtual machine can  sup- 
port  an  interactive  user,  a  system  server like a 
file-system manager or network  spooler,  or a pri- 
vate  server such as an  advanced program-to-pro- 
gram communication (APPC) peer. 

CP manages system  resources,  establishes  the vir- 
tual-machine environment,  and  enforces isolation 
among the simulated machines. CMS assumes  the 
responsibility for application services  such as file 
and program management,  and  for  interacting 
with the  end  user. CP applies  authorization  con- 
trols to bound the user’s (virtual machine’s) ac- 
tivities; CP uses  architectural facilities like DAT 
and guest  extent  checking,  as  described  above,  to 
keep  these  boundaries  secure.  Conversely, CMS 
enforces few controls  over  the  application  pro- 
gram: Programs under CMS run in (virtual)  super- 
visor state. CMS makes  some  use of storage keys 
to  prevent  inadvertent  damage,  but a “willful” 
program can  always  circumvent CMS and  assume 
control of the virtual machine. According to tra- 
ditional VM philosophy,  each  user’s machine is 
the  user’s  own. CP ensures  that  the  acts of an 
errant  or malicious program are confined to  the 
virtual machine in which the program is run. 
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Figure 1 Operand-address-translation  processes  for host primary-space  addresses vs host AR-specified  addresses 
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Moreover, CMS manages only the linear  storage of 
a single virtual  machine;  that is, CMS runs without 
enabling DAT and  does  not manage (page or swap) 
virtual  storage.  These  tasks are  the domain of CP. 

In  short,  the border  between CP and CMS is the 
boundary  for  both  authority  and  virtual-storage 
management.  The VM Data  Spaces facility is tai- 
lored to VM’s unique  two-tiered  structure. It al- 
lows CP, the  arbiter of authorization, to build the 
ART constructs which permit individual virtual 
machines to  access multiple host virtual (i.e., 
guest  absolute)  address  spaces. CP can  pass  back 
to  the virtual machine an ALET designating the 

access  to  a  space,  and  the  program in the  virtual 
machine (CMS or an  application  program)  can  then 
use that ALET to  address  an  alternate guest  ab- 
solute  space.  Since the ALETS used  by the guest 
are translated  through the ART constructs of CP, 
counterfeit ALETS have no adverse effect beyond 
the  authorized  scope of the individual guest.  In 
ESA/390 real-machine architecture, ART is per- 
formed first to identify the  address  space,  and 
then DAT is performed on  that space’s tables to find 
the real address of the  data; likewise, in the VM Data 
Spaces architecture, host ART identifies the host 
virtual (guest absolute) space,  and  host DAT then 
derives the host real address of the target. 
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In  contrast  to  the  use of access registers by an 
ordinary ESN390 guest  (e.g., MVS/ESA), this 
scheme  extends the scope of access  to all address 
spaces which CP manages, rather  than  just  those 
built by the virtual-machine supervisor. It thus 
allows controlled memory sharing across virtual- 
machine boundaries.  The burden of authorization 
rests within CP, which cannot be circumvented. 
Finally, VM Data  Spaces  removes  the limit of two 
gigabytes of guest absolute (host-managed) stor- 
age accessible to CMS. 

PSW modes  under VM Data  Spaces. Under VM 
Data  Spaces,  a guest may  be  in either primary- 
space mode or access-register  mode.  Each mode 
determines how guest  operand  addresses  are 
translated. In primary-space mode, guest oper- 
and  addresses  are resolved in the host primary 
address  space.  In  access-register  mode, guest op- 
erand  addresses  are resolved in any of up to 16 
different address  spaces  concurrently, according 
to the values which the guest manages in the  ac- 
cess  registers. In either  mode,  instructions  are 
fetched from the host primary address  space. This 
is consistent with the handling of instruction ad- 
dresses in the  other modes of interpretive  execu- 
tion. 

Address translation in primary-space mode is 
identical to address  translation  for  a pageable- 
mode guest in ESN390 mode with guest DAT off. 
The  contents of access registers are ignored, and 
host  access-register translation (host ART) is not 
applied. 

When a  guest is in access-register  mode, operand 
addresses are called host access-register-speci- 
fied (host AR-specified) addresses. A host AR- 
specified  address consists of an ALET in an access 
register and an offset. The ALET designates an 
address  space, and the offset selects  a location 
within that  space.  Guest  access-register transla- 
tion and guest dynamic address translation are 
not  used.  Instead,  host AR-specified addresses  are 
translated through host  access-register transla- 
tion and host dynamic address translation to pro- 
duce  a  host  real  address.  Figure I contrasts  the 
address  translation  processes  for host primary- 
space  addresses  and  host AR-specified addresses. 

The  contents of an  access register designate the 
host virtual address  space. If the  access register 
contains  zero, only guest prefixing, host DAT, and 
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host prefixing are  applied;  the  address is in the 
primary space. 

Host access-register  translation. When an  access 
register contains  a value other  than  zero  and  the 
guest is  in access-register  mode,  the  operand ad- 
dress specified refers to  data in a  host AR- 
specified address  space.  The  contents of the  base 
register together with the displacement and  the 
index register, if applicable, are  used to determine 
the offset of the  data within the  address  space. 

To resolve the  address  space of the  operand,  host 
access-register  translation  (host ART) is applied. 
Host  access-register  translation is similar to 
the access-register-translation process used in 
ESA/~W mode.  Host ART uses  an  access-list-entry 
token in an  access register to obtain  the segment- 
table designation (STD) to be  used during host dy- 
namic address  translation.  Figure 2 shows  a flow 
chart of the  host ART process. 

During host ART, the designated access  register 
contains  an  access-list-entry  token.  This  token, 
which is obtained using VM/ESA services,  has  an 
access-list-entry number. 

The origin of the primary address-space number 
(ASN) second-table  entry (primary ASTE)” is ob- 
tained from a  host  control  register. An ASTE is 
associated with each  address  space and has  the 
same format in VM Data  Spaces as in ESN390. The 
primary ASTE contains  the origin of the  access list 
used during host access-register translation (host 
ART). An ASTE is also used later in the  host ART 
process.  This  use will be  discussed  later in this 
section. 

An access list contains  entries which represent 
the addressing capabilities of the  guest.  The  ac- 
cess-list-entry number in the  access register to- 
gether with the access-list origin in the primary 
ASTE determine the access-list entry  to  be used 
during host ART. 

An access-list entry  contains  the  address of an 
ASN second-table  entry (ASTE). When an ASTE is 
located by an  access-list  entry, it is referred to  as 
an access-list-specified ASTE,  to distinguish this 
use of the ASTE from the primary ASTE described 
earlier. The access-list-specified ASTE contains 
the STD to be used during host DAT. 

Private-space  facility. ESAf370 introduced  the 
concept of a  “private space,” a  space  that holds 
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Figure 2 Host  access-register  translation (host ART) 
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no  contents in common with other  spaces. This 
was significant to MVS/ESA, which had previously 
imbedded the prefix area and portions of the su- 
pervisor  into  every  address  space it created, and 
had marked those segments “common” to im- 
prove lookaside efficiency. The ESA/370 private- 
space facility allowed MVS/ESA to  construct  data 

spaces devoid of these common segments, and to 
omit the special protection mechanisms for  the 
low address range, which are  needed  for  the  pre- 
fix area.  The  private-space facility allows equal 
access  to all addresses in a  data  space, without 
interference from low-address  protection  and 
fetch-protection  override. 
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This  private-space  function is also useful to 
VMIESA for  the  same  reasons;  indeed, VM Data 
Spaces  extends its scope.  In a virtual-machine- 
created  data  space,  since  the virtual machine’s 
prefix area  exists only in its host  primary  space, 
it is inappropriate  to apply prefix-related protec- 
tion mechanisms to  that  data  space.  Moreover, it 
is inappropriate  to apply prefixing at all. If a  data 
space  is  shared  among virtual CPUS in a virtual 
multiprocessing configuration or among separate 
user  virtual  machines,  each  sharer may have  a 
different prefix value. However, all sharing users 
should be  able  to  use  the  same  address  to  reach 
the  same location in the  data  space.  Therefore, 
VM Data  Spaces  extends  the effect of the  private- 
space  attribute  to  suppress prefixing as well. Sim- 
ilarly, the size of the virtual machine’s primary 
space  that is specified by the main-storage extent 
in the  state  description  has  no bearing on the size 
of other  spaces it may access.  Thus,  the  private- 
space  control in VM Data  Spaces  suppresses  the 
application of main-storage-extent checking. In 
short,  the private-space  attribute gives each 
sharer of a data  space  the  same  “view” of the 
data. 

The inherited name “private  space” is somewhat 
a misnomer for VM/ESA. VM does  not  use  archi- 
tected  common  segments, and so does not need 
that effect of the  “private”  attribute.  Moreover, 
in VMIESA, “private” is not an  attribute of the 
address  space,  but  rather of the  access. When a 
user’s  primary  address  space  is  shared with a  sec- 
ond  virtual  machine,  the  owner’s  access is not 
marked  private,  since prefix effects are appropri- 
ate  for  the primary space.  The  sharer’s  access 
would be  marked  private, to  suppress application 
of the  sharer’s prefix to the  addresses in the  for- 
eign space. 

Access-list-controlled  protection. ESAl390 intro- 
duced  a new function  into ART: the ability to grant 
read-only access  to  an  address  space. With VM 
Data  Spaces, this allows some guests  to  have 
readlwrite  access to a space,  and  others read-only 
access.  This  represents a significant enhancement 
over  the  previous  shared-memory capability in 
VM. Earlier  releases of VM allowed “saved seg- 
ments”  to  be imbedded  into  the  absolute  address 
spaces of multiple virtual machines, but the 
shared data were  writeable  either by all sharing 
users  or by none of them.  Control  over an indi- 
vidual virtual machine’s access allows a  service 
machine,  such as that  for  the CMS Shared File 

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 

System,  to load data securely  into an  address 
space, from which user  machines  can  fetch  the 
data  directly. 

Access-list-controlled protection is included in 
native ESA/390 as well as VM Data  Spaces.  There- 

The private space function is 
also  useful to VM/ESA. 

fore, CP can  use  this  mechanism,  rather  than  ex- 
plicit testing in software, to  enforce protection 
when simulating an  operation  for a guest. 

Interestingly,  the ability to  grant  read-only  au- 
thority to  an  address  space was  not  provided in 
ESN370  and is not exploited by MVSIESA. MVSIESA 
can use storage  keys  to effect read-only access  for 
selected  users.  However, VM gives  over the as- 
signment of storage  keys  and PSW keys  to the 
guest in each  virtual  machine, making keys  inad- 
equate to enforce  authority  across  virtual ma- 
chines. Access-list-controlled protection  ad- 
dresses  the unique needs of VM in this  area. 

Instruction  execution  in VM Data  Spaces  mode. 
The  operation of certain DAT-related instructions 
is  modified to permit their  operation  without DAT 
when the  guest is in the VM Data  Spaces  mode. 
This allows an application program to use  the 
same  problem-program  instructions to control 
host ART under VM Data  Spaces  as it uses to con- 
trol native ART under ESA/390. 

The INSERT ADDRESS SPACE CONTROL and SET 
ADDRESS SPACE CONTROL instructions are 
changed to  be  usable without DAT. INSERT AD- 
DRESS SPACE CONTROL is used to obtain  the  cur- 
rent mode of the  guest,  either  primary-space  or 

TROL is used to  set  either  primary-space or ac- 
cess-register  mode. 

The ESAIXC virtual-machine  architecture. VM 
Data  Spaces is an architectural  mode  unique to 
the virtual-machine environment. To take  advan- 
tage of the facilities provided  by VM Data  Spaces 

access-register  mode. SET ADDRESS SPACE CON- 
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requires  software  support in a  host  control pro- 
gram,  such as VMIESA CP. The specific virtual- 
machine interface arising from the collaboration 
between VM/ESA CP and the machine is termed the 
Enterprise  Systems  ArchitecturelExtended  Con- 
figuration (ESA/XC) architecture. This name em- 
phasizes  the  advance  from traditional machine 
configurations, containing a single span of abso- 
lute  storage, to  an  environment with multiple dis- 
crete  absolute  address  ranges. 

The  thrust of the VM Data  Spaces  architecture is 
to keep knowledge of and responsibility for  the 
control  structures  “below  the  line,” in the  host. 
The manifestation of access-register function to 
the  guest should be more akin to an application- 
program interface  than to that in the ESA/390 real- 
machine architecture. VM therefore defines a sec- 
ond new architecture, ESA/XC, as  the  interface to 
its virtual machines which exploit VM Data 
Spaces.  The VM Data  Spaces  architecture  pre- 
cisely defines the  interface  between host and real 
machine;  the ESA/XC architecture specifies the 
somewhat different interface  between CP and the 
guest program (e.g., CMS or an application pro- 
gram). 

Some examples may serve to clarify. 

VM Data  Spaces defines the  structure of an 
ALET and the meaning of each field  in it, and the 
way it participates in the ART process.  In  con- 
trast, an ESA/XC ALET is purely a  token,  a 32-bit 
value constructed by the  host and presented  to 
the  guest.  This  abstraction allows future  en- 
hancements to change the  format of the ALET 
with  no effect on  the ESA/XC architecture  or  the 
programs that  use  it. 
Just  as native ART translates  an ALET into  a 
segment-table designation (STD), host ART of 
VM Data  Spaces  translates  an ALET into  a host 
STD, which is then used during host DAT. Con- 
versely,  host ART in ESA/XC is defined to map an 
ALET into  an address-space-identification token 
(ASIT), which is the unique representation of a 
host  space in ESA/XC. The ESA/XC guest has no 
knowledge of STDS or translation  tables; it deals 
only with  the ASIT as  the unique identifier for 
the  space and the ALET as a  “handle”  for  access 
to  the  space. 
The  host ART process may encounter various 
specific exception  conditions, which are re- 
ported  to  the  host to drive  the  proper handling. 
Conversely,  the  exception conditions reported 
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to  the ESNXC guest are  fewer  and  more  generic, 
representing the problem in terms meaningful to 
the ESA/XC application. 

Throughout the definition of ESA/XC, the  interface 
is specified in the simple, clear  form  suitable  for 
an access-register  application, and nuances of the 
VM Data  Spaces  architecture which are  not  ap- 
propriate to that  environment  are  concealed. 

Use of interpretive  execution  in VMlESA 

Structure of virtual-machine  simulation  in CP. 
Figure 3  depicts  the flow  of control through the 
virtual-machine simulator in CP. Before actually 
issuing the SIE instruction,  the  simulator must ac- 
cept pending host  interruptions,  attend to sched- 
uled simulation functions,  ensure  that machine 
lookaside buffers are up-to-date,  and load the 
guest  state. When SIE finishes, the simulator 
saves  the guest state  and  processes  the condition 
reported by the machine. Eslch  of these  steps is 
explained in more detail below. Where  particular 
operations reflect the  idiosyncrasies of CP, back- 
ground on  the  structure of CP is included as well. 

Host  interruption  handling. When the  dispatcher 
in CP passes  control to  the simulator to run a vir- 
tual CPU, the simulator first opens  a window for I/O 
and external  interruptions.  That  is, it issues in- 
structions to enable  and immediately thereafter to 
disable these  interruptions.  This  ensures  that all 
currently pending interruptions  are  processed be- 
fore the simulator continues.  Such  interruptions 
may represent higher-priority work to take  pre- 
cedence  over simulation, or  the release of a  re- 
source  (such as  an I/O device)  for which the  next 
operation should be  started,  to maximize utiliza- 
tion. 

CP takes an unusual approach to asynchronous 
interruptions,  such as I/O or external  interrup- 
tions. (110 interruptions indicate  completion of an 
operation by the  channel  subsystem. External in- 
terruptions indicate signals from other  host CPUs, 
expiration of a timeslice, or arrival at a desired 
real-time value.) Most CP code  runs disabled for 
these  interruptions. Logic throughout CP takes 
advantage of this nonpreemptive dispatching 
model to simplify interprocess  serialization. CP’s 
dispatcher  and virtual-machine simulator  open in- 
terruption windows to  accept pending interrup- 
tions at points when a loss of control (the  cessa- 
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tion of the  executing  task  and  the dispatching of 
another) is tolerable; in addition,  the simulator 
allows interruptions during the time that  the  guest 
runs in interpretive-execution  mode. 

CP’S interruption  handlers generally do not 
resume  execution  at  the point of interruption,  as 
do  those in most operating  systems.  Rather,  con- 
trol is returned to  the  dispatcher, which then 
passes  control to a  routine which has been  sched- 
uled for  execution.  For  example, following an in- 
terruption in the  simulator,  the  dispatcher will 
eventually  return  control  to  the front end of the 
simulator,  causing  any logic before  the point of 
interruption to  be re-executed.  The  dispatcher 
and  simulator are  structured such  that, if an in- 
terruption  occurs during their window, re-entry 
from  the beginning is not harmful. In  fact, in cer- 
tain cases, it is essential  that  the  front-end  code be 
re-executed,  because  the  task  dispatched  on  an 
interruption may modify data  on which the inter- 
rupted  task  depends. 

When the  guest’s  state is loaded  and  the machine 
is enabled in preparation  for  interpretive  execu- 
tion,  an  indicator  is  set.  Interruption  handlers will 
recognize this  indicator  and  save  the  guest  state 
before  proceeding.  Control will later  come 
through  the  front  end of the  simulator,  past  pre- 
liminary tests,  to  the point at which the  guest’s 
state is reloaded  and  its  execution is resumed. 

Pending interruptions  processed during interrup- 
tion windows need not save  the  state of the in- 
terrupted  task,  since  control will not be returned 
to  the point of interruption.  This  reduces  the  cost 
of handling interruptions. 

Verifying  guest  endop. When the  dispatcher is 
entered  and finds no higher-priority C P  work  for  a 
given virtual machine, it ordinarily passes  control 
to  the simulator.  Therefore,  the simulator may  be 
re-entered at  any loss of control,  such  as  a page 
fault during simulation of an  instruction.  The sim- 
ulator  recognizes  this  re-entry  and  terminates 
processing, signaling the  dispatcher  that it should 
not  re-enter  the  simulator  for this virtual CPU. 
This  prevents performing another simulation op- 
eration  or starting  interpretive  execution while 
the previous  operation is in progress. 

If the  simulator finds no indication of work in 
progress, it declares  the virtual machine to be at 
endop, i.e.,  at  the end of a  guest unit of operation. 

46 OSISEK, JACKSON,  AND GUM 

(As defined in Reference 9, a unit of operation is 
the  execution of either a single ordinary  instruc- 
tion or a portion of an interruptible  instruction. 
Interruptions may occur only between units of 
operation.) 

Pending  simulation  work. Once  the simulator has 
opened  and closed its initial interruption window, 
it checks  for specific work  requests.  Certain  func- 
tions may be scheduled  either by a simulated 
guest operation or  asynchronously,  and must be 
performed before guest  execution  can be re- 
sumed.  Examples of such  operations  are: 
checking a new guest  program status word (PSW) 
introduced by simulation, scanning for virtual in- 
terruptions  to be reflected,  and  entering  “con- 
sole-function mode.” 

Each of these is described in more  detail below. 

Checking  the  guest PS W-Simulation  of guest in- 
terruptions  and  certain  instructions  introduces 
new information into the guest PSW. In these 
cases, C P  must check  the validity of the PSW be- 
fore resuming guest  execution.  This  ensures  that 
program interruption  conditions due  to PSW for- 
mat errors  are recognized at  the  proper priority 
level. 

Scanning for guest interruptions-CP queues all 
I/O interruptions  for  ordinary  (not high-perfor- 
mance) guests  and simulated external  interrup- 
tions  for VM communication  functions until the 
guest reaches a point at which they  can be re- 
flected. When an  interruption is queued,  an “in- 
terruption  scan” is scheduled,  and is performed at 
the next “guest endop,”  i.e.,  the end of the  guest 
instruction  (whether  executed by the machine or 
simulated by CP). The  structure of the simulator 
ensures  that  control  reaches  this  point only at 
guest  endop. 

At that  time, if the  enablement  masks in the  guest 
PSW and  control  register permit the  interruption, 
it  is dequeued  and  presented; if not,  intervention 
or interception  controls are  set in the  state  de- 
scription, so that  an  interception will occur when 
the  guest  changes  the  relevant mask in the PSW or 
control  register. On such an interception,  a new 
interruption  scan is scheduled  and performed to 
try again to present  the  interruption. 

If no interruptions  are  reflected, the  scan  ends by 
checking for a guest PSW specifying wait state. A 
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wait-state  guest is generally not permitted to  enter 
interpretive  execution.  Rather, simulation of the 
guest is suspended until a guest  interruption  ar- 
rives  and is reflected, introducing a  run-state PSW. 

Entering console-function mode-console-func- 
tion mode (CFM) is the  environment in which CP 

VM/ESA uses two means 
of purging  lookaside buffers. 

console  commands are  processed.  Since many 
commands  inspect or  alter  the virtual-machine 
state, they  must  not be allowed to  execute con- 
currently with simulation work. If a request to 
switch to CFM arrives  and  the virtual machine is 
not  at  endop,  a CFM entry is scheduled  for  the 
next  guest  endop. 

Purging  machine  lookaside buffers. Interpreting 
a pageable guest implicitly invokes  host DAT, and 
interpreting VM Data  Spaces mode guest addition- 
ally invokes  host ART. These machine processes 
can  internally buffer information from  the  host 
translation  tables  and  use  the buffered informa- 
tion to avoid refetching from host  tables.  The 
term  translation-lookaside buffer (TLB) refers  to 
the  internal  copies of  DAT-table entries, and ART- 
lookaside buffer (ALB) refers  to  internal copies of 
ART-table entries. When CP changes  its  transla- 
tion tables, it must instruct  the machine to purge 
its lookaside buffers in order  to  prevent  obsolete 
information from being used in subsequent  trans- 
lations. 

VM/ESA uses  two  means of purging lookaside buff- 
ers:  an INVALIDATE PAGE TABLE ENTRY (IPTE) in- 
struction, which broadcasts  the  order  to all 

structions, which purge a single processor’s buff- 
ers.  To reduce  overhead, CP often  chooses  to in- 
validate  batches of PTES directly (without IPTE) 
when an immediate broadcast is not  required.  In 
these  cases, CP keeps  a  record, in the form of 
timestamps, of the need to purge the lookaside 
buffers before running a guest which might access 
the affected virtual storage. For  each  processor, 

processors,  and PURGE TLB and PURGE ALB in- 
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CP keeps  the time of the  last purge on that  proc- 
essor. (CP always purges the TLB and ALB in tan- 
dem.)  For  each virtual machine, CP keeps the time 
of the  last  change to a  translation-table  entry 
which necessitated  a  purge. 

Before starting  interpretive  execution,  the simu- 
lator  compares  the virtual machine’s purge-re- 
quired timestamp with that of the  most  recent  ac- 
tual purge on  the  current  processor. If the 
processor  has  been purged recently enough (e.g., 
in preparing to run  a different virtual  machine), 
then it does not need to  be purged again. Since 
this  check is made prior to  every SIE instruction, 
as  the virtual machine is dispatched  successively 
on different processors,  each  processor’s buffer 
will be purged when and only when necessary. 

This timestamp checking is one of the  operations 
which must be re-executed following every loss of 
control,  because  a new purge-required timestamp 
may  be set during the loss of control. (CP’S storage 
management will not take  any  action which de- 
mands a purge while this virtual machine is ac- 
tually dispatched,  but may do so when it loses 
control.) Re-entering the  simulator at the begin- 
ning following a loss of control  ensures  that  the 
check will be repeated. 

Issuing HE. Once  these preliminaries are han- 
dled,  the simulator can  turn to  the business at 
hand: starting  interpretive  execution of the  guest. 
The simulator loads the  guest  state  into  the  ap- 
propriate  registers,  enables  host  interruptions, 
and issues START INTERPRETIVE EXECUTION (SIE) 
to  turn  over guest execution to  the machine.  The 
machine remains in interpretive-execution  mode, 
executing  guest  instructions  and  interruptions, 
until either  a host interruption  occurs  or the ma- 
chine  intercepts  a  guest  event which requires  host 
attention. 

If a synchronous  host  interruption  such as a host 
page fault  occurs,  then  the  guest  state is saved 
and  the  condition  handled.  Faults are usually han- 
dled by  paging  in the needed data, updating trans- 
lation-table entries,  and  re-entering  the simulator 
to  resume  guest  execution.  Certain  host program 
interruptions indicate improper  guest  operations; 
these  are  turned  into  the  appropriate  guest  pro- 
gram interruptions. For example,  a  fault arising 
from a  reference to a location not in the guest’s 
addressable range is rendered as a guest  address- 
ing exception. 



If an  asynchronous  host  interruption  such  as an 
I/O or external  interruption  occurs,  the  guest  state 
is saved. CP then  checks  for a pending  intercep- 
tion.  This might occur if the machine detected  and 
presented  an  interception  and  completed  the SIE 
instruction,  but a host  interruption  then  occurred 
before CP could disable  interruptions. CP recog- 
nizes that  an  interception  was  reported in the 
state  description  and  schedules handling of the 
interception  at higher priority  than normal re-en- 
try  to  the  simulator.  At  this  point,  the guest’s 
state  has  been  saved  and CP’S interruption  handler 
can  process  the  interruption.  Eventually  the in- 
terruption  handler will exit to  the  dispatcher. 

If an ordinary  interception (without host  inter- 
ruption)  occurs,  the machine resumes  execution 
of the simulator immediately after the SIE instruc- 
tion.  The  simulator  disables  interruptions,  saves 
the  guest state,  and goes  on to  process the  inter- 
ception. 

Interception  processing. When an interception 
occurs,  the machine stores  into  the  state  descrip- 
tion a code identifying the  type of condition which 
occurred  and  additional information depending 
on  the  condition,  such as  the  text of an  inter- 
cepted  instruction or  the parameters  associated 
with an intercepted  guest  interruption.  The sim- 
ulator  then  acts on  the condition. 

Instruction interception-If an instruction is in- 
tercepted,  the  proper simulation routine  receives 
control,  according  to the operation  code.  Excep- 
tion conditions are  detected  and  presented in the 
form of guest program interruptions.  Otherwise, 
the simulation is completed  and  guest  endop is 
declared. 

CP sometimes  requests  interception of instruc- 
tions which the machine is capable of interpret- 
ing. In  these  cases,  the simulation routine may 
include  special handling for  the  case  for which 
interception  was  requested. For example, when 
the  interruption  scan finds a  guest I/O interruption 
which must  be held pending because  the  corre- 
sponding interruption  subclass is disabled in the 
guest  control  register, it requests  interception of 
LOAD CONTROL (LCTL) instructions which alter 
that  control  register.  The LCTL simulation routine 
schedules  a  fresh  interruption scan, so that  the 
interruption  can  be  presented if it is enabled  ac- 
cording to  the new  control-register value. 
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In  addition, simulation may encounter  host  prob- 
lems,  such  as logic errors  or loss of guest data  on 
auxiliary storage.  These  problems may have  cor- 
rupted  the  guest  state or  the execution of the 
guest  program.  Such  conditions are reported  to 
the  guest as exigent machine checks. For exam- 
ple, loss of a page of host virtual storage is ef- 
fectively loss of data in guest  absolute  storage, 
and is reported  to  the  guest as  an uncorrected 
storage error.  The guest  program  then  has  the 
opportunity to recover from that  condition. 

The  architecture  requires  that  these PER events 
and exigent machine checks  occur  synchronously 
with the  end of the  unit of operation.  Therefore, 
CP’S simulator  ensures  that  these  events  are  pre- 
sented  before  guest  endop is declared. (Only after 
endop is declared  can  further  simulation,  such  as 
presentation of an  asynchronous  interruption  or 
execution of another  guest  instruction,  proceed.) 

Of course, in the  vast majority of cases, there is 
no PER event or machine check to  present, and 
endop is declared immediately. After  endop is de- 
clared,  control is returned  to  the  top of the sim- 
ulator, which performs  any  scheduled simulation 
work  (such as  an interruption  scan) or resumes 
guest  execution. 

Virtual SIE. An interesting  perspective on inter- 
pretive  execution is the simulation of the SIE in- 
struction  itself, when that  instruction is issued by 
a guest. 

As mentioned above,  some machine models can 
interpret a “second-level” SIE instruction issued 
by a high-performance guest.  Such  a  function is a 
tremendous  boon  to  migration, allowing an or- 
derly,  cautious  upgrade from one  release of VM to 
the  next.  However,  the ability to  run a second- 
level VM system  as an ordinary  guest  for testing 
and debugging, without dedicating real  resources 
as high-performance guests  demand,  has  always 
been  an  important  feature Of VM. Customers  have 
come  to depend on this  for first-shift VM systems 
programming, testing of software fixes, and so 
forth.  Moreover, not all models support Region 
Relocation and  Interpreted SIE. For  these  cases, 
CP’s simulation software must fill the  gap, in a 
function  known as interpretive-execution simu- 
lation or more simply “virtual SIE” (VSIE). 

When the machine does  not  interpret  a  second- 
level SIE, the guest SIE instruction yields an in- 
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struction  interception. CP passes  control  to  an in- 
struction simulation routine as  for  any  other 
instruction  interception.  However, simulating the 
entire  execution of the  guest SIE, including exe- 
cution of all the  second-level  guest’s  instructions 

CP enlists  the machine’s 
aid, by using SIE itself 

to simulate SIE. 

and interruptions, is not practical. VM would have 
to pay a  huge, continuing cost  to maintain simu- 
lation routines  for  every  instruction in the  archi- 
tecture,  and  such simulation would perform 
abominably.  Rather, CP enlists the machine’s  aid, 
by using SIE itself to  simulate SIE. 

The  approach  taken is to  use a SIE instruction  at 
the  host level to  cause  the  machine  to  interpre- 
tively execute  the  second-level  guest.  However, 
CP must make adjustments to accommodate  the 
additional “level” of functions. As described  ear- 
lier, SIE recognizes  two levels of program,  host 
and guest; it can perform two  levels of address 
translation, manage two levels of timing facilities, 
and so on.  In  the most complex case, VSIE must 
effect three levels of address  translation  and  sup- 
port three  sets of  timers-for the  host,  the first- 
level guest (called the  “real  guest”  or  RGuest), 
and  the  second-level  guest  (the  “virtual  guest” or 
VGuest). In  order  to have  the machine interpret 
the  VGuest,  these  three levels must  be  collapsed 
into  two. As depicted in Figure 4, CP lets  the ma- 
chine see  the VGuest as  “the  guest,”  and  presents 
an image of “the  host” which merges CP’S actual 
host view with the  RGuest’s  view. 

In using SIE to  simulate SIE, VM/ESA resorts  to  the 
time-honored virtualization technique of shadow- 
ing. First,  the  state  description itself must  be 
shadowed. CP’S vSIE support  copies  the  state  de- 
scription specified as  the  operand of the RGuest 
SIE instruction  and  edits it to  represent  the  host’s 
view of the  VGuest,  for  example,  by  translating 
RGuest  real  addresses of control  structures  into 
the  host  real  addresses  expected by the  machine. 
Then, vSIE must  create  shadow  translation  tables 
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Figure 4 Mapping of host and guest levels under vSlE 
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to apply the composition of RGuest  and  host ad- 
dress  translation.  These  tables will be presented 
to  the machine as host  translation  tables, so that 
they will apply after  VGuest DAT and prefixing (if 
any). 

Once  the  shadow  structures are built, CP issues 
SIE against the shadow  state  description. Most 
interception  conditions  can  be reflected directly 
as interceptions on the  RGuest SIE instruction; 
some  require  special  processing in CP. Whenever 
an interception or interruption is to  be presented 
to  the  RGuest,  the  contents of the  shadow  state 
description,  representing the  current VGuest 
state, must  be  transcribed  into  the  state  descrip- 
tion in RGuest  storage. 

During VGuest  execution,  the machine may 
present  translation  exceptions  to  the  host  as it 
encounters  entries  marked invalid in the  shadow 
translation  tables.  The  host  must  then  use  the 
contents of RGuest  tables along with the  results 
of translation at  the host level to update  the 
shadow  tables.  In the  process, it may be neces- 
sary  to page in RGuest  storage or to reflect to  the 
RGuest  an  exception  detected in its  tables. 

RGuest timing facilities must  also  be simulated 
through  host  timers,  since the machine  can  sup- 
port only two levels of timing, the  VGuest's  and 
the  host's. Before issuing SIE on  the shadow  state 
description, CP sets  the  host CPU timer (which 
ordinarily holds the dispatching timeslice) to  the 
minimum  of the timeslice and  the  time remaining 
until the  next  RGuest CPu-timer or clock-com- 
parator  interruption is due. When the host  inter- 
ruption  occurs, the CP will either recognize 
timeslice end or  present  the interruption to  the 
RGuest,  as  appropriate. 

Concluding remarks 

Although interpretive-execution  architecture  be- 
gan as a  test  and migration aid for  native  archi- 
tecture  developments, it has  become a platform 
for  extending  the utility of virtual  machines. 
Some of the  developments in the  evolution of this 
architecture  have  been  described in this  paper, 
including the ability to run  concurrent  produc- 
tion-level virtual  machines.  These  developments 
primarily dealt with the  interpretation of a  native 
architecture. The  latest  development, VM Data 
Spaces, which has  been  described in detail, 
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breaks some of the otherwise close  ties  to  real 
components. VM Data Spaces establishes the  in- 
terpretive-execution architecture as a platform 
for innovations  unique to the virtual-machine 
environment as well as those common to native 
architecture developments. 

Effective  use of interpretive execution  requires 
close cooperation between the machine  and a 
host  program  like VM/ESA CP. CP fills the gaps  in 
interpretive execution, so that the guest  sees a 
complete, architecturally consistent machine  in- 
terface. Interpretive execution provides a flexible 
structure whereby  both  hardware  and  software 
can be  brought to bear on a problem,  and each can 
contribute its own strengths to the solution. 

Enterprise Systems Architecture/390, ESA/390, System/370, 
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chitecture, Processor Resource/Systems Manager, PR/SM, 
Enterprise Systems Architecture/370, and  MVS/ESA are 
trademarks of International Business Machines Corporation. 
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