
ESN390 interpretive=
execution architecture,
foundation for VM/ESA

by D. L. Osisek
K. M. Jackson
P. H. Gum

The interpretive-execution facility of Enterprise
Systems Architecture/390TM (ESA/390TM) provides
an instruction for the execution of virtual
machines. This instruction, called START
INTERPRETIVE EXECUTION (SIE), was initially
created for virtualizing either System/370m or
370-XA architectures and was used later for
virtualizing ESA/370' and ESA/390 architectures.
SIE has evolved to provide capabilities for a
number of specialized performance
environments. Most recently it provides for the
unique requirements of Enterprise Systems
Architecture/Extended Configuration (ESA/XC)
virtual-machine architecture. This comprehensive
set of capabilities in the architecture serves as
the platform for the ability of VM/ESAm to provide
functions in virtual machines for end users and
system servers. This paper describes the
evolution of SIE and outlines use of the various
capabilities in VM/ESA.

T he Virtual Machine/Enterprise Systems Ar-
chitectureTM (V M I E S A ~ ~) product uses the

ESA/39OTM interpretive-execution facility',* to es-
tablish the virtual-machine environment. In this
environment, the processor directly executes
most of the functions of the virtual machine.

The evolution of the interpretive-execution archi-
tecture, including the special facilities for high-
performance virtual machines provided with the
Processor Resource/Systems Manager" (P R / S M ~ ~)
feature, is reviewed. The purpose of each devel-
opment is discussed, and the VM Data Spaces ar-
chitecture is described. VM Data Spaces is the
architecture underlying the recently announced

34 OSISEK, JACKSON, AND GUM

Enterprise Systems Architecture/Extended Con-
figuration (ESA/XC) virtual-machine architecture.
Finally, this paper describes the procedures used
by the control program (CP) portion of VM/ESA4 to
manage interpretive execution and control virtu-
al-machine functions that are not provided by the
real machine, including the support of the ESA/xC
architecture.

Interpretive-execution architecture

Within this paper, the term guest refers to any
virtual, or "interpreted" machine. The control
program directly managing the real machine is
referred to as the host and is responsible for es-
tablishing the guest execution environment. The
machine is placed in the interpretive-execution
mode by the host, which issues a single instruc-

this mode, the machine provides the functions
of a selected architecture. This architecture
may also be available on a real machine, such
as System/370", 370-Extended Architecture
(370-XA), Enterprise Systems Architecture/370"
(ESA/370TM), or Enterprise Systems Architec-
ture/390" (ESA/390TM). Alternatively, the architec-
ture may be provided exclusively in the virtual-

OCopyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

tion, START INTERPRETIVE EXECUTION (SIE). In

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

machine environment, such as the ESA/XC
architecture. The functions provided include ex-
ecution of privileged and problem-program in-
structions, address translation, interruption han-
dling, and timing among other things, and I/O in
some cases. The machine is said to interpret the
functions that it executes in the context of the
virtual machine. Special-purpose hardware al-

Simulation attempts to “execute”
guest functions transparently.

lows interpretation to proceed at speeds compa-
rable to “native” execution. (Native denotes the
architecture outside the interpretive environ-
ment.) Similarly, many types of interruptions are
interpreted-presented directly to the guest by
the machine-without host intervention.

In the virtual-machine environment, the guest
program perceives the full complement of func-
tions defined for the designated architecture.
Most of the functions are provided in the form of
the interpretive-execution facility. The remaining
functions are provided by the underlying host
control program, called CP for VMESA, through a
process called simulation. Except for the proc-
essing time required, simulation attempts to “ex-
ecute” guest functions transparently, so that it is
indistinguishable to the guest program whether a
function is performed by the machine or the
host.

The operand of the SIE instruction, called the
state description, contains information relevant
to the current state of the guest. When execution
of SIE ends, information representing the state of
the guest, including the guest program status
word (PSW), is saved in the state description be-
fore control is returned to the host. This infor-
mation is used and modified by the host during
simulation and is used later to resume execution
of the guest. Other information in the state de-
scription determines the mode and other environ-
mental conditions in which the guest is to exe-
cute.

IBM SYSTEMS JOURNAL. VOL 30, NO 1, 1991

interpretation modes: System/370, ESA/390, or VM
Data Spaces mode. However, these three ma-
chine modes supply the functions needed for of-
fering five modes to guests. In addition to Sys-
tem/370 and ESA/390, 370-XA and ESN370 are
naturally provided, each as a subset of ESN390.
ESA/XC arises from the cooperation between the
machine in VM Data Spaces mode and software
support in VMIESA CP.

While in interpretive-execution mode, a virtual
machine is constrained to a portion of the real-
machine resources, as allocated by the host.

Guest storage is confined either to some portion
of host real storage or to host virtual address
spaces controlled by the host system.
Host enabled and disabled states are generally
undisturbed by execution of the guest.
Host timing facilities are also undisturbed; in-
stead a second set is provided for the guest.
One complete and logically separate set of con-
trol registers is maintained by the machine for
use by the host and another is maintained for
use by the guest. Other registers are shared be-
tween the host and guest.

This protection of the host from interference by
the guest permits the host to meet its primary
responsibility of efficiently parceling out the real
resources to multiple guests, and prevents one
guest from interfering with another.

When first introduced with 370-XA, SIE provided
two similar but distinct architectures for the vir-
tual machine. One was the System/370 architec-
ture. Because of earlier successes with several
assists for Virtual Machine/370 (VM/370), full ma-
chine interpretation of nearly all the privileged
operations was provided, with the notable excep-
tion of the I/O instructions. The second inter-
preted architecture was the new 370-XA architec-
ture itself. Offering both architectures side-by-
side in virtual machines provided a migration path
from the earlier architecture as well as a test envi-
ronment for the new architecture. As was the
case with the native architecture, interpretive-ex-
ecution architecture subsequently evolved to in-
corporate ESA/390 as a replacement for 370-XA and
ESA/370.

Representing guest absolute storage. Fundamental
to any architecture is the method for providing

OSISEK. JACKSON, AND GUM 35

access to storage. The method for representing
absolute6 storage is a key consideration for vir-
tual machines. Two basic storage modes are pro-
vided by the interpretive-execution architecture:
preferred-storage mode and pageable-storage
mode. In preferred-storage mode, a contiguous
block of host absolute storage is assigned to the
guest, whereas in pageable-storage mode, dy-
namic address translation (DAT)’ at the host level
is used to map guest main storage.

Preferred-storage mode. Existing batch systems
maintain relatively high 110 rates and are efficient
managers of real storage. For these guests, pre-
ferred-storage mode is a good means to provide
production levels of operation. In this mode, the
lower addresses of the machine storage are ded-
icated to the guest. However, this scheme limits
the number of guests operating with this level of
performance to one.

The I/O for these guests, or at least their channel
programs, is handled directly by the machine.
The interpretive-execution environment assures
that the host program is immune from errant guest
operations, including errant I/O operations. This
is an important characteristic: preferred-storage
mode assures the integrity of the overall system
while at the same time allowing the guest to op-
erate with a subset of the real-machine resources
at near-native performance levels.

With early releases of VM: the special preferred-
storage-mode guest paid a performance penalty
for the privilege of executing as a virtual machine.
This was due largely to the host-control-program
service of handling I/O instructions and returning
the interruptions. For VM/370, the Preferred Ma-
chine Assist (PMA) stepped into this breach. With
VM/XA, SIE Assist was introduced to provide ma-
chine execution of guest I/O instructions and route
110 interruptions directly to the guest. SIE Assist
performed the I/O for both System/370-mode and
370-XA-mode guests. SIE Assist also provided the
authorization checks needed to preserve integrity
for the host system and other guests.

Pageable-storage mode. Pageable-storage mode
is the second method provided by the interpre-
tive-execution architecture for representing guest
absolute storage. The host has the ability to scat-
ter the real storage of pageable-storage-mode
guests to usable frames anywhere in host real
storage by using the host DAT, and to page guest

36 OSISEK, JACKSON, AND GUM

data out to auxiliary storage. This method pro-
vides flexibility when allocating real-machine re-
sources while preserving the expected appear-
ance of a contiguous range of absolute storage for
the guest.

Guest dynamic address translation. A virtual-ma-
chine environment may call for application Of DAT
twice: first at the guest level, to translate a guest
virtual address through guest-managed transla-
tion tables into a guest real address, and then, for
a pageable guest, at the host level, to translate the
corresponding host virtual address to a host real
address.

In VM/370, the need to effect two levels of address
translation for pageable virtual machines with
guest DAT active was satisfied by means of
shadow translation tables, segment and page ta-
bles built by the host reflecting the combined re-
sults of the two mappings. The increased address-
ing capacity offered by 370-XA threatened to limit
the performance achievable through shadow
mechanisms, because of the possible sparseness
of address references over the much larger two-
gigabyte address range, and because of the larger
translation-table sizes. Another consideration
was the cost to maintain and ensure the integrity
of the shadow tables.

These concerns led IBM to forsake shadow tables
for general use in interpretive execution, in favor
of performing both levels of translation in the ma-
chine. As with the native architecture, transla-
tion-lookaside buffers are built into the machine
to retain the results of previous address transla-
tions, and so speed the resolution of addresses in
pages that are repeatedly referenced.

Controlling guest execution. In certain cases, the
host must intercede in operations normally dele-
gated to the machine. For this purpose, the state
description includes controls settable by the host
to “trap,” or intercept, specific conditions. In-
terception control bits request that the machine
return control to host simulation when particular
guest instructions are encountered. Intervention
controls capture the introduction of an enabled
state into the PSW, so that the host can present an
interruption which it holds pending for the guest.
Intervention controls may be set asynchronously
by the host on another real processor while in-
terpretation proceeds. The machine periodically
refetches the controls from storage, so that up-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

dated values will be recognized. Guest interrup-
tions can thereby be made pending without pre-
maturely disturbing interpretation.

Guest multiprocessing. In contrast with earlier vir-
tual-machine support, the interpretive-execution
architecture supported guest multiprocessing
from the beginning. As a consequence, a virtual
machine that employs multiprocessing receives a
substantial boost in capacity. Prefixing, or the
ability to assign the first 4K range of addresses to
a distinct 4K-byte block of absolute storage for
each virtual CPU, is an integral part of multiproc-
essing. Thus, with interpretive execution, prefix-
ing is standard.

Simulating guest instructions in a multiprocessing
virtual-machine environment requires special
consideration. Simulation is provided by the host
program following an interception from one of the
virtual CPUS. This simulation may require resolv-
ing a guest virtual address. This is typical when
the guest is Multiple Virtual Storage (MVS). How-
ever, if the result of the translation is held even
briefly in a host register or table, that register or
table constitutes a (virtual) translation-lookaside
buffer. What if another virtual CPU issues an IN-

during this brief period, in preparation for reas-
signing the guest real page frame? The IPTE might
invalidate the translation held by the host on be-
half of the first guest CPU. If the IPTE were allowed
to finish and the guest program to continue exe-
cuting, the guest would erroneously conclude that
all references to the target guest virtual address
using the old page-table entry (PTE) contents were
complete. An interlock bit is provided for dealing
with this situation. IPTE is required to test and set
the interlock bit by interlocked means. The host
agrees to set this interlock before simulating guest
DAT (in the course of simulating a guest instruc-
tion) and to leave it set until it has finished using
the results of that simulation (the "lookaside") to
access guest storage. If the page-table entry is
locked via the interlock bit when an IFTE instruc-
tion is interpreted, the IPTE instruction is inter-
cepted to permit host program resolution.

To maximize parallelism in a virtual multiproces-
sor, VM/ESA manages the word containing the
IPTE interlock bit as a shared/exclusive lockword.
Each simulation which performs the guest DAT
obtains a share of the lock; IPTE interpretation
and simulation obtain an exclusive hold. Thus

VALIDATE PAGE TABLE ENTRY (IPTE) instruction

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

multiple DAT simulations can occur simulta-
neously, and only a guest IPTE causes serializa-
tion.

Multiple high-performance guests. With achiev-
able performance for the preferred-storage-mode
guest near native performance, as described ear-
lier, attention turned to providing the same for
more than one guest. Multiple Domain Facility"

The interpretive-execution
architecture supported guest

multiprocessing from the
beginning.

(M D F ~ ~) was the first product to achieve concur-
rent execution of two or more operating systems
with high performance on a single shared central
computing complex. However, IBM was also
working in the same direction, leading to the Proc-
essor Resource/Systems Manager (PR/SM) fea-
ture. PWSM permits either flexible hardware par-
titioning or multiple high-performance guests
under VM. The value of this development, of
course, lies in the ability to reassign real re-
sources dynamically with minimal performance
penalty, for use under a variety of different ar-
chitectures or systems. Initially up to four high-
performance guests were supported, each run-
ning in a separate zone. This was subsequently
extended to six zones.

Zone relocation. The most important consider-
ation in extending support from one preferred-
storage-mode guest to multiple guests is the
means for translating addresses for I/O purposes.
With high-performance 1/0 devices, little time is
available to perform the translation; in many
cases page faults would result in loss of data. In
these circumstances a single-register-translation
mechanism serves very well.

Single-register relocation, or zone relocation,
uses two values to translate a guest absolute ad-
dress to a host absolute address. One value is an
upper limit, the maximum value in the zone. The

OSISEK, JACKSON, AND GUM 37

second value is a lower limit which is added to the
guest absolute address to produce a host absolute
address. The two values thus define a zone be-
tween a beginning and ending address within the
absolute storage available on the machine.

Region relocation and interpreted SZE. In the
original offering which permitted multiple high-
performance guests, the channel used zone relo-
cation while the CPU continued to use DAT to map

Steps have been taken in the
evolution of the architecture

to support CMS as well.

contiguously the same storage specified for the
zone. With this arrangement, all guest systems
except for the case when VMIESA (or VMIXA) is a
guest of itself could be provided at acceptable
production levels of performance.

When VM/ESA is a guest of itself, there are three
levels of programs: VMIESA as the host, VMIESA as
the guest (called a first-level guest), and guests of
the VMIESA first-level guest. These second-level
guests might themselves operate with the DAT. In
this situation, address translation involves repet-
itive application of DAT, potentially requiring 27
storage references to translate an address into the
corresponding absolute machine location and ac-
cess the data. In addition, execution of second-
level guests requires handling two levels of inter-
pretive execution; software simulation of the
second level of interpretive execution brings ad-
ditional overhead. The costs of repeated transla-
tion and nested interpretive execution are clearly
limiting factors in the performance achievable for
VMIESA as a guest.

Two new machine functions, Region Relocation
and Interpreted SIE, were introduced to address
these problems. Region Relocation replaces the
lowest-level application of the DAT with zone re-
location, as is used in the channel; this reduces
the 27 storage references for DAT to the original
nine needed for a first-level guest, plus nine ad-
ditions. Interpreted SIE allows the machine to in-

38 OSISEK, JACKSON, AND GUM

stitute another instance of interpretive execution
when the machine is already in interpretive-exe-
cution mode; that is, the guest SIE instruction and
the second-level guest execution it requests can
be interpreted by the machine, rather than sim-
ulated by the host.

These capabilities together provide performance
levels for second-level guests that are comparable
to the levels provided for first-level guests. As a
result, one release of VM can run as a guest of
another VM system at acceptable performance
while migration to the new release occurs in stages.

Performance refinements for CMS guests. While
there has been heavy focus on high-performance
multiserver and batch guests, the Conversational
Monitor System (CMS) has not been neglected.
CMS is the personal-choice system to a large pop-
ulation of interactive users, and steps have been
taken in the evolution of the architecture to sup-
port CMS as well.

Expedited SIE subset. VMIESA uses the SIE in-
struction to specify a virtual machine for each
CMS user. Similar to the high-performance cases,
there are characteristics or uses of CMS that may
be classified as typical. By optimizing the real-
machine design for the most frequently encoun-
tered characteristics of a class of virtual ma-
chines, machine performance can be improved.
Expedited SIE subset provides such optimizations
for CMS guests. This development capitalizes on
the fact that certain aspects of the architecture are
used infrequently by CMS. For example, CMS
never turns on DAT. The overhead for initializing
these infrequently-used functions is therefore by-
passed. Instead, attempts to use uninitialized
functions are detected, and the cost to initialize
any of these functions is incurred only when nec-
essary.

SZE storage-key facility. The SIE storage-key fa-
cility is an enhancement to interpretive execution
which defines an architected location in host ta-
bles for the key values of nonresident storage.
This allows the machine to interpret guest instruc-
tions like SET STORAGE KEY for nonresident
pages, rather than passing control to host simu-
lation.

VM Data Spaces

VM Data Spaces is an extension to the interpre-
tive-execution architecture that allows a pageable

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

guest that does not otherwise use DAT to access
data in multiple host address spaces. The alter-
nate spaces could be “data spaces” created by
this or other virtual machines, or primary spaces
of other virtual machines. This memory-sharing
mechanism is more efficient than message-pass-
ing protocols for communicating among virtual
machines.

Access registers in ESAl370 and ESM390. The
ESN370 architecture introduced access registers.
These registers allow a problem-state program to
refer to data in multiple address spaces concur-
rently, without supervisor intervention. 9 ~ ’ 0 The
access registers offer an improved method to
move data between two address spaces. They
also allow the use of the complete instruction set
to operate on data in multiple address spaces.

In ESA/370 and ESAl390, as in System/370 and
370-XA, the base (B) field or register (R) field of an
instruction designates a general register. In the
access-register mode of ESA/370 and ESA/390, the
same-numbered access register is used during ac-
cess-register translation (ART) to determine the
address space of the operand.

Access-register translation uses an access-list-en-
try token (ALET) in an access register to derive the
segment-table designation (STD) to be used during
dynamic address translation (DAT). The STD cor-
responds to an address space.

Access registers are also available to a guest in
ESAl390 (or ESA/370) mode. The host is responsible
for loading the guest’s access-register values be-
fore starting interpretive execution, and for sav-
ing them (and restoring host values) afterward.
The guest operating system must build the guest
virtual address spaces and associated control
structures, just as it would natively. Pages in
these address spaces may be mapped to areas of
guest main storage or paged by the guest super-
visor to auxiliary storage.

Motivation for VM Data Spaces. On an operating
system like Multiple Virtual StorageIEnterprise
Systems Architecture (MVS/ESA”), the access
registers introduced with ESA/370 bring a powerful
new capability: the addressing of data in multiple
address spaces in a sequence of instructions, or
even in the same instruction, without control-pro-
gram intervention. MVS/ESA runs programs with
DAT enabled, so that the virtual addresses each

IBM SYSTEMS JOURNAL, VOL 30, NO 1. 1991

program references are translated through MVS-
maintained constructs into real addresses. Trans-
lation exceptions interrupt to MVS, which then
pages in the required data. In this environment,
access registers offer several benefits:

Programs can directly manipulate much larger
amounts of data.
Programs have unrestricted access beyond the
two-gigabyte primary address space. The full
instruction set can be used to operate on data in
any of the multiple spaces.
Individual programs can share data, as autho-
rized by the owning program. This is enforced
by the operating system.
Programs can segregate data more logically,
keeping similar or related data in the same
space, to facilitate controlled sharing.

The capabilities which access registers offer are
attractive. However, the structure of VM is sub-
stantially different from that of MVS. VM has al-
ways been a “two-tiered’’ system: The control
program (CP) component of VM creates a separate
virtual machine for each logged-on user. Appli-
cation programs run under the Conversational
Monitor System (CMS), a single-user “second-
level” operating system running within the user’s
virtual machine. A CMS virtual machine can sup-
port an interactive user, a system server like a
file-system manager or network spooler, or a pri-
vate server such as an advanced program-to-pro-
gram communication (APPC) peer.

CP manages system resources, establishes the vir-
tual-machine environment, and enforces isolation
among the simulated machines. CMS assumes the
responsibility for application services such as file
and program management, and for interacting
with the end user. CP applies authorization con-
trols to bound the user’s (virtual machine’s) ac-
tivities; CP uses architectural facilities like DAT
and guest extent checking, as described above, to
keep these boundaries secure. Conversely, CMS
enforces few controls over the application pro-
gram: Programs under CMS run in (virtual) super-
visor state. CMS makes some use of storage keys
to prevent inadvertent damage, but a “willful”
program can always circumvent CMS and assume
control of the virtual machine. According to tra-
ditional VM philosophy, each user’s machine is
the user’s own. CP ensures that the acts of an
errant or malicious program are confined to the
virtual machine in which the program is run.

OSISEK, JACKSON, AND GUM 39

Figure 1 Operand-address-translation processes for host primary-space addresses vs host AR-specified addresses

HOST PRIMARY-SPACE AWRESS’

AFPLY GUEST
PREFIXING

HOST PRIMARY-VIRTUAL ADDRESS 1
I APPLY

HOST DAT

, . , .

I
APPLY HOST
PREFIXING

ALET-ACCESS-LIST-ENTRY TOKEN

ART - ACCESS-REGISTER TRANSLATION
AR -ACCESS REGISTER

DAT -DYNAMIC ADDRESS TRANSLATION
STD - SEGMENT-TABLE DESIGNATION

’ UNDER VM DATA SPACES,
ALL INSTRUCTION AND
OPERAND ADDRESSES ARE
QUEST REAL ADDRESSES

APPLY GUEST

I ALET OFFSET

APPLY
m>ST A M

-
APPLY
HOST DAT

APPLY HOST
PREFlXlNO

Moreover, CMS manages only the linear storage of
a single virtual machine; that is, CMS runs without
enabling DAT and does not manage (page or swap)
virtual storage. These tasks are the domain of CP.

In short, the border between CP and CMS is the
boundary for both authority and virtual-storage
management. The VM Data Spaces facility is tai-
lored to VM’s unique two-tiered structure. It al-
lows CP, the arbiter of authorization, to build the
ART constructs which permit individual virtual
machines to access multiple host virtual (i.e.,
guest absolute) address spaces. CP can pass back
to the virtual machine an ALET designating the

access to a space, and the program in the virtual
machine (CMS or an application program) can then
use that ALET to address an alternate guest ab-
solute space. Since the ALETS used by the guest
are translated through the ART constructs of CP,
counterfeit ALETS have no adverse effect beyond
the authorized scope of the individual guest. In
ESA/390 real-machine architecture, ART is per-
formed first to identify the address space, and
then DAT is performed on that space’s tables to find
the real address of the data; likewise, in the VM Data
Spaces architecture, host ART identifies the host
virtual (guest absolute) space, and host DAT then
derives the host real address of the target.

40 OSISEK, JACKSON, AND GUM IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

In contrast to the use of access registers by an
ordinary ESN390 guest (e.g., MVS/ESA), this
scheme extends the scope of access to all address
spaces which CP manages, rather than just those
built by the virtual-machine supervisor. It thus
allows controlled memory sharing across virtual-
machine boundaries. The burden of authorization
rests within CP, which cannot be circumvented.
Finally, VM Data Spaces removes the limit of two
gigabytes of guest absolute (host-managed) stor-
age accessible to CMS.

PSW modes under VM Data Spaces. Under VM
Data Spaces, a guest may be in either primary-
space mode or access-register mode. Each mode
determines how guest operand addresses are
translated. In primary-space mode, guest oper-
and addresses are resolved in the host primary
address space. In access-register mode, guest op-
erand addresses are resolved in any of up to 16
different address spaces concurrently, according
to the values which the guest manages in the ac-
cess registers. In either mode, instructions are
fetched from the host primary address space. This
is consistent with the handling of instruction ad-
dresses in the other modes of interpretive execu-
tion.

Address translation in primary-space mode is
identical to address translation for a pageable-
mode guest in ESN390 mode with guest DAT off.
The contents of access registers are ignored, and
host access-register translation (host ART) is not
applied.

When a guest is in access-register mode, operand
addresses are called host access-register-speci-
fied (host AR-specified) addresses. A host AR-
specified address consists of an ALET in an access
register and an offset. The ALET designates an
address space, and the offset selects a location
within that space. Guest access-register transla-
tion and guest dynamic address translation are
not used. Instead, host AR-specified addresses are
translated through host access-register transla-
tion and host dynamic address translation to pro-
duce a host real address. Figure I contrasts the
address translation processes for host primary-
space addresses and host AR-specified addresses.

The contents of an access register designate the
host virtual address space. If the access register
contains zero, only guest prefixing, host DAT, and

IBM SYSTEMS JOURNAL, VOL 30. NO 1. 1991

host prefixing are applied; the address is in the
primary space.

Host access-register translation. When an access
register contains a value other than zero and the
guest is in access-register mode, the operand ad-
dress specified refers to data in a host AR-
specified address space. The contents of the base
register together with the displacement and the
index register, if applicable, are used to determine
the offset of the data within the address space.

To resolve the address space of the operand, host
access-register translation (host ART) is applied.
Host access-register translation is similar to
the access-register-translation process used in
ESA/~W mode. Host ART uses an access-list-entry
token in an access register to obtain the segment-
table designation (STD) to be used during host dy-
namic address translation. Figure 2 shows a flow
chart of the host ART process.

During host ART, the designated access register
contains an access-list-entry token. This token,
which is obtained using VM/ESA services, has an
access-list-entry number.

The origin of the primary address-space number
(ASN) second-table entry (primary ASTE)” is ob-
tained from a host control register. An ASTE is
associated with each address space and has the
same format in VM Data Spaces as in ESN390. The
primary ASTE contains the origin of the access list
used during host access-register translation (host
ART). An ASTE is also used later in the host ART
process. This use will be discussed later in this
section.

An access list contains entries which represent
the addressing capabilities of the guest. The ac-
cess-list-entry number in the access register to-
gether with the access-list origin in the primary
ASTE determine the access-list entry to be used
during host ART.

An access-list entry contains the address of an
ASN second-table entry (ASTE). When an ASTE is
located by an access-list entry, it is referred to as
an access-list-specified ASTE, to distinguish this
use of the ASTE from the primary ASTE described
earlier. The access-list-specified ASTE contains
the STD to be used during host DAT.

Private-space facility. ESAf370 introduced the
concept of a “private space,” a space that holds

OSISEK, J ACKSON, AND GUM 41

Figure 2 Host access-register translation (host ART)

ACCESS LIST

I
I

ACCESS-LIST-SPECIFIED ASTE

STD

I

ASN -ADDRESS-SPACE NUMBER 1
ASTE -ASN SECOND-TABLE ENTRY
DAT -DYNAMIC ADDRESS TRANSLATION

no contents in common with other spaces. This
was significant to MVS/ESA, which had previously
imbedded the prefix area and portions of the su-
pervisor into every address space it created, and
had marked those segments “common” to im-
prove lookaside efficiency. The ESA/370 private-
space facility allowed MVS/ESA to construct data

spaces devoid of these common segments, and to
omit the special protection mechanisms for the
low address range, which are needed for the pre-
fix area. The private-space facility allows equal
access to all addresses in a data space, without
interference from low-address protection and
fetch-protection override.

42 OSISEK, JACKSON, AND GUM IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

This private-space function is also useful to
VMIESA for the same reasons; indeed, VM Data
Spaces extends its scope. In a virtual-machine-
created data space, since the virtual machine’s
prefix area exists only in its host primary space,
it is inappropriate to apply prefix-related protec-
tion mechanisms to that data space. Moreover, it
is inappropriate to apply prefixing at all. If a data
space is shared among virtual CPUS in a virtual
multiprocessing configuration or among separate
user virtual machines, each sharer may have a
different prefix value. However, all sharing users
should be able to use the same address to reach
the same location in the data space. Therefore,
VM Data Spaces extends the effect of the private-
space attribute to suppress prefixing as well. Sim-
ilarly, the size of the virtual machine’s primary
space that is specified by the main-storage extent
in the state description has no bearing on the size
of other spaces it may access. Thus, the private-
space control in VM Data Spaces suppresses the
application of main-storage-extent checking. In
short, the private-space attribute gives each
sharer of a data space the same “view” of the
data.

The inherited name “private space” is somewhat
a misnomer for VM/ESA. VM does not use archi-
tected common segments, and so does not need
that effect of the “private” attribute. Moreover,
in VMIESA, “private” is not an attribute of the
address space, but rather of the access. When a
user’s primary address space is shared with a sec-
ond virtual machine, the owner’s access is not
marked private, since prefix effects are appropri-
ate for the primary space. The sharer’s access
would be marked private, to suppress application
of the sharer’s prefix to the addresses in the for-
eign space.

Access-list-controlled protection. ESAl390 intro-
duced a new function into ART: the ability to grant
read-only access to an address space. With VM
Data Spaces, this allows some guests to have
readlwrite access to a space, and others read-only
access. This represents a significant enhancement
over the previous shared-memory capability in
VM. Earlier releases of VM allowed “saved seg-
ments” to be imbedded into the absolute address
spaces of multiple virtual machines, but the
shared data were writeable either by all sharing
users or by none of them. Control over an indi-
vidual virtual machine’s access allows a service
machine, such as that for the CMS Shared File

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

System, to load data securely into an address
space, from which user machines can fetch the
data directly.

Access-list-controlled protection is included in
native ESA/390 as well as VM Data Spaces. There-

The private space function is
also useful to VM/ESA.

fore, CP can use this mechanism, rather than ex-
plicit testing in software, to enforce protection
when simulating an operation for a guest.

Interestingly, the ability to grant read-only au-
thority to an address space was not provided in
ESN370 and is not exploited by MVSIESA. MVSIESA
can use storage keys to effect read-only access for
selected users. However, VM gives over the as-
signment of storage keys and PSW keys to the
guest in each virtual machine, making keys inad-
equate to enforce authority across virtual ma-
chines. Access-list-controlled protection ad-
dresses the unique needs of VM in this area.

Instruction execution in VM Data Spaces mode.
The operation of certain DAT-related instructions
is modified to permit their operation without DAT
when the guest is in the VM Data Spaces mode.
This allows an application program to use the
same problem-program instructions to control
host ART under VM Data Spaces as it uses to con-
trol native ART under ESA/390.

The INSERT ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL instructions are
changed to be usable without DAT. INSERT AD-
DRESS SPACE CONTROL is used to obtain the cur-
rent mode of the guest, either primary-space or

TROL is used to set either primary-space or ac-
cess-register mode.

The ESAIXC virtual-machine architecture. VM
Data Spaces is an architectural mode unique to
the virtual-machine environment. To take advan-
tage of the facilities provided by VM Data Spaces

access-register mode. SET ADDRESS SPACE CON-

OSISEK, JACKSON, AND GUM 43

requires software support in a host control pro-
gram, such as VMIESA CP. The specific virtual-
machine interface arising from the collaboration
between VM/ESA CP and the machine is termed the
Enterprise Systems ArchitecturelExtended Con-
figuration (ESA/XC) architecture. This name em-
phasizes the advance from traditional machine
configurations, containing a single span of abso-
lute storage, to an environment with multiple dis-
crete absolute address ranges.

The thrust of the VM Data Spaces architecture is
to keep knowledge of and responsibility for the
control structures “below the line,” in the host.
The manifestation of access-register function to
the guest should be more akin to an application-
program interface than to that in the ESA/390 real-
machine architecture. VM therefore defines a sec-
ond new architecture, ESA/XC, as the interface to
its virtual machines which exploit VM Data
Spaces. The VM Data Spaces architecture pre-
cisely defines the interface between host and real
machine; the ESA/XC architecture specifies the
somewhat different interface between CP and the
guest program (e.g., CMS or an application pro-
gram).

Some examples may serve to clarify.

VM Data Spaces defines the structure of an
ALET and the meaning of each field in it, and the
way it participates in the ART process. In con-
trast, an ESA/XC ALET is purely a token, a 32-bit
value constructed by the host and presented to
the guest. This abstraction allows future en-
hancements to change the format of the ALET
with no effect on the ESA/XC architecture or the
programs that use it.
Just as native ART translates an ALET into a
segment-table designation (STD), host ART of
VM Data Spaces translates an ALET into a host
STD, which is then used during host DAT. Con-
versely, host ART in ESA/XC is defined to map an
ALET into an address-space-identification token
(ASIT), which is the unique representation of a
host space in ESA/XC. The ESA/XC guest has no
knowledge of STDS or translation tables; it deals
only with the ASIT as the unique identifier for
the space and the ALET as a “handle” for access
to the space.
The host ART process may encounter various
specific exception conditions, which are re-
ported to the host to drive the proper handling.
Conversely, the exception conditions reported

44 OSISEK, JACKSON, AND GUM

to the ESNXC guest are fewer and more generic,
representing the problem in terms meaningful to
the ESA/XC application.

Throughout the definition of ESA/XC, the interface
is specified in the simple, clear form suitable for
an access-register application, and nuances of the
VM Data Spaces architecture which are not ap-
propriate to that environment are concealed.

Use of interpretive execution in VMlESA

Structure of virtual-machine simulation in CP.
Figure 3 depicts the flow of control through the
virtual-machine simulator in CP. Before actually
issuing the SIE instruction, the simulator must ac-
cept pending host interruptions, attend to sched-
uled simulation functions, ensure that machine
lookaside buffers are up-to-date, and load the
guest state. When SIE finishes, the simulator
saves the guest state and processes the condition
reported by the machine. Eslch of these steps is
explained in more detail below. Where particular
operations reflect the idiosyncrasies of CP, back-
ground on the structure of CP is included as well.

Host interruption handling. When the dispatcher
in CP passes control to the simulator to run a vir-
tual CPU, the simulator first opens a window for I/O
and external interruptions. That is, it issues in-
structions to enable and immediately thereafter to
disable these interruptions. This ensures that all
currently pending interruptions are processed be-
fore the simulator continues. Such interruptions
may represent higher-priority work to take pre-
cedence over simulation, or the release of a re-
source (such as an I/O device) for which the next
operation should be started, to maximize utiliza-
tion.

CP takes an unusual approach to asynchronous
interruptions, such as I/O or external interrup-
tions. (110 interruptions indicate completion of an
operation by the channel subsystem. External in-
terruptions indicate signals from other host CPUs,
expiration of a timeslice, or arrival at a desired
real-time value.) Most CP code runs disabled for
these interruptions. Logic throughout CP takes
advantage of this nonpreemptive dispatching
model to simplify interprocess serialization. CP’s
dispatcher and virtual-machine simulator open in-
terruption windows to accept pending interrup-
tions at points when a loss of control (the cessa-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

i
RUN THE VlRTUAL MACHINE

FOR
CHECK VALIDATE GUEST PSW

PENMNG
SIMULAWN

QUEUED GUEST INTERRUFTWS I .
-REFLECT IF ENABLED
-INTERCEPT ENABLEMENT
-DETECT GUEST WAIT STATE IF DISABLED I

1

~~

b

Figure 3 Virtual-machine simulation in CP

b

1

I

I

I

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 OSISEK, JACKSON, AND GUM 45

* I

"SABLE INTERRUPTIONS
-SAVE GUEST STATE EXCEPTION TO GUEST -PROCESS INTERAUPTDN

-SAVE GUEST STATE -SAVE GUEST STATE
-RESOLVE FAULT OR REFLECT -CHECK FOR PENDING INTERCEPTION 1

I A

DISPATCHER
(IF PENMNQ
INTERCEPTION
INDGATED) SIMULATE INSTRUCTION

PROGRAM INTERRUPTION SIMULATE PROGRAM INTERRUPTION

I/O OR EXTERNAL REQUEST TRANSLATE PROGRAM INTERRUPTION

GUEST WAIT STATE

I-
-REFLECT PER EVENT OR EXMENT MACHINE CHECK
-MARK GUEST ENOOP

tion of the executing task and the dispatching of
another) is tolerable; in addition, the simulator
allows interruptions during the time that the guest
runs in interpretive-execution mode.

CP’S interruption handlers generally do not
resume execution at the point of interruption, as
do those in most operating systems. Rather, con-
trol is returned to the dispatcher, which then
passes control to a routine which has been sched-
uled for execution. For example, following an in-
terruption in the simulator, the dispatcher will
eventually return control to the front end of the
simulator, causing any logic before the point of
interruption to be re-executed. The dispatcher
and simulator are structured such that, if an in-
terruption occurs during their window, re-entry
from the beginning is not harmful. In fact, in cer-
tain cases, it is essential that the front-end code be
re-executed, because the task dispatched on an
interruption may modify data on which the inter-
rupted task depends.

When the guest’s state is loaded and the machine
is enabled in preparation for interpretive execu-
tion, an indicator is set. Interruption handlers will
recognize this indicator and save the guest state
before proceeding. Control will later come
through the front end of the simulator, past pre-
liminary tests, to the point at which the guest’s
state is reloaded and its execution is resumed.

Pending interruptions processed during interrup-
tion windows need not save the state of the in-
terrupted task, since control will not be returned
to the point of interruption. This reduces the cost
of handling interruptions.

Verifying guest endop. When the dispatcher is
entered and finds no higher-priority C P work for a
given virtual machine, it ordinarily passes control
to the simulator. Therefore, the simulator may be
re-entered at any loss of control, such as a page
fault during simulation of an instruction. The sim-
ulator recognizes this re-entry and terminates
processing, signaling the dispatcher that it should
not re-enter the simulator for this virtual CPU.
This prevents performing another simulation op-
eration or starting interpretive execution while
the previous operation is in progress.

If the simulator finds no indication of work in
progress, it declares the virtual machine to be at
endop, i.e., at the end of a guest unit of operation.

46 OSISEK, JACKSON, AND GUM

(As defined in Reference 9, a unit of operation is
the execution of either a single ordinary instruc-
tion or a portion of an interruptible instruction.
Interruptions may occur only between units of
operation.)

Pending simulation work. Once the simulator has
opened and closed its initial interruption window,
it checks for specific work requests. Certain func-
tions may be scheduled either by a simulated
guest operation or asynchronously, and must be
performed before guest execution can be re-
sumed. Examples of such operations are:
checking a new guest program status word (PSW)
introduced by simulation, scanning for virtual in-
terruptions to be reflected, and entering “con-
sole-function mode.”

Each of these is described in more detail below.

Checking the guest PS W-Simulation of guest in-
terruptions and certain instructions introduces
new information into the guest PSW. In these
cases, C P must check the validity of the PSW be-
fore resuming guest execution. This ensures that
program interruption conditions due to PSW for-
mat errors are recognized at the proper priority
level.

Scanning for guest interruptions-CP queues all
I/O interruptions for ordinary (not high-perfor-
mance) guests and simulated external interrup-
tions for VM communication functions until the
guest reaches a point at which they can be re-
flected. When an interruption is queued, an “in-
terruption scan” is scheduled, and is performed at
the next “guest endop,” i.e., the end of the guest
instruction (whether executed by the machine or
simulated by CP). The structure of the simulator
ensures that control reaches this point only at
guest endop.

At that time, if the enablement masks in the guest
PSW and control register permit the interruption,
it is dequeued and presented; if not, intervention
or interception controls are set in the state de-
scription, so that an interception will occur when
the guest changes the relevant mask in the PSW or
control register. On such an interception, a new
interruption scan is scheduled and performed to
try again to present the interruption.

If no interruptions are reflected, the scan ends by
checking for a guest PSW specifying wait state. A

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

wait-state guest is generally not permitted to enter
interpretive execution. Rather, simulation of the
guest is suspended until a guest interruption ar-
rives and is reflected, introducing a run-state PSW.

Entering console-function mode-console-func-
tion mode (CFM) is the environment in which CP

VM/ESA uses two means
of purging lookaside buffers.

console commands are processed. Since many
commands inspect or alter the virtual-machine
state, they must not be allowed to execute con-
currently with simulation work. If a request to
switch to CFM arrives and the virtual machine is
not at endop, a CFM entry is scheduled for the
next guest endop.

Purging machine lookaside buffers. Interpreting
a pageable guest implicitly invokes host DAT, and
interpreting VM Data Spaces mode guest addition-
ally invokes host ART. These machine processes
can internally buffer information from the host
translation tables and use the buffered informa-
tion to avoid refetching from host tables. The
term translation-lookaside buffer (TLB) refers to
the internal copies of DAT-table entries, and ART-
lookaside buffer (ALB) refers to internal copies of
ART-table entries. When CP changes its transla-
tion tables, it must instruct the machine to purge
its lookaside buffers in order to prevent obsolete
information from being used in subsequent trans-
lations.

VM/ESA uses two means of purging lookaside buff-
ers: an INVALIDATE PAGE TABLE ENTRY (IPTE) in-
struction, which broadcasts the order to all

structions, which purge a single processor’s buff-
ers. To reduce overhead, CP often chooses to in-
validate batches of PTES directly (without IPTE)
when an immediate broadcast is not required. In
these cases, CP keeps a record, in the form of
timestamps, of the need to purge the lookaside
buffers before running a guest which might access
the affected virtual storage. For each processor,

processors, and PURGE TLB and PURGE ALB in-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

CP keeps the time of the last purge on that proc-
essor. (CP always purges the TLB and ALB in tan-
dem.) For each virtual machine, CP keeps the time
of the last change to a translation-table entry
which necessitated a purge.

Before starting interpretive execution, the simu-
lator compares the virtual machine’s purge-re-
quired timestamp with that of the most recent ac-
tual purge on the current processor. If the
processor has been purged recently enough (e.g.,
in preparing to run a different virtual machine),
then it does not need to be purged again. Since
this check is made prior to every SIE instruction,
as the virtual machine is dispatched successively
on different processors, each processor’s buffer
will be purged when and only when necessary.

This timestamp checking is one of the operations
which must be re-executed following every loss of
control, because a new purge-required timestamp
may be set during the loss of control. (CP’S storage
management will not take any action which de-
mands a purge while this virtual machine is ac-
tually dispatched, but may do so when it loses
control.) Re-entering the simulator at the begin-
ning following a loss of control ensures that the
check will be repeated.

Issuing HE. Once these preliminaries are han-
dled, the simulator can turn to the business at
hand: starting interpretive execution of the guest.
The simulator loads the guest state into the ap-
propriate registers, enables host interruptions,
and issues START INTERPRETIVE EXECUTION (SIE)
to turn over guest execution to the machine. The
machine remains in interpretive-execution mode,
executing guest instructions and interruptions,
until either a host interruption occurs or the ma-
chine intercepts a guest event which requires host
attention.

If a synchronous host interruption such as a host
page fault occurs, then the guest state is saved
and the condition handled. Faults are usually han-
dled by paging in the needed data, updating trans-
lation-table entries, and re-entering the simulator
to resume guest execution. Certain host program
interruptions indicate improper guest operations;
these are turned into the appropriate guest pro-
gram interruptions. For example, a fault arising
from a reference to a location not in the guest’s
addressable range is rendered as a guest address-
ing exception.

If an asynchronous host interruption such as an
I/O or external interruption occurs, the guest state
is saved. CP then checks for a pending intercep-
tion. This might occur if the machine detected and
presented an interception and completed the SIE
instruction, but a host interruption then occurred
before CP could disable interruptions. CP recog-
nizes that an interception was reported in the
state description and schedules handling of the
interception at higher priority than normal re-en-
try to the simulator. At this point, the guest’s
state has been saved and CP’S interruption handler
can process the interruption. Eventually the in-
terruption handler will exit to the dispatcher.

If an ordinary interception (without host inter-
ruption) occurs, the machine resumes execution
of the simulator immediately after the SIE instruc-
tion. The simulator disables interruptions, saves
the guest state, and goes on to process the inter-
ception.

Interception processing. When an interception
occurs, the machine stores into the state descrip-
tion a code identifying the type of condition which
occurred and additional information depending
on the condition, such as the text of an inter-
cepted instruction or the parameters associated
with an intercepted guest interruption. The sim-
ulator then acts on the condition.

Instruction interception-If an instruction is in-
tercepted, the proper simulation routine receives
control, according to the operation code. Excep-
tion conditions are detected and presented in the
form of guest program interruptions. Otherwise,
the simulation is completed and guest endop is
declared.

CP sometimes requests interception of instruc-
tions which the machine is capable of interpret-
ing. In these cases, the simulation routine may
include special handling for the case for which
interception was requested. For example, when
the interruption scan finds a guest I/O interruption
which must be held pending because the corre-
sponding interruption subclass is disabled in the
guest control register, it requests interception of
LOAD CONTROL (LCTL) instructions which alter
that control register. The LCTL simulation routine
schedules a fresh interruption scan, so that the
interruption can be presented if it is enabled ac-
cording to the new control-register value.

48 OSISEK, JACKSON, AND GUM

In addition, simulation may encounter host prob-
lems, such as logic errors or loss of guest data on
auxiliary storage. These problems may have cor-
rupted the guest state or the execution of the
guest program. Such conditions are reported to
the guest as exigent machine checks. For exam-
ple, loss of a page of host virtual storage is ef-
fectively loss of data in guest absolute storage,
and is reported to the guest as an uncorrected
storage error. The guest program then has the
opportunity to recover from that condition.

The architecture requires that these PER events
and exigent machine checks occur synchronously
with the end of the unit of operation. Therefore,
CP’S simulator ensures that these events are pre-
sented before guest endop is declared. (Only after
endop is declared can further simulation, such as
presentation of an asynchronous interruption or
execution of another guest instruction, proceed.)

Of course, in the vast majority of cases, there is
no PER event or machine check to present, and
endop is declared immediately. After endop is de-
clared, control is returned to the top of the sim-
ulator, which performs any scheduled simulation
work (such as an interruption scan) or resumes
guest execution.

Virtual SIE. An interesting perspective on inter-
pretive execution is the simulation of the SIE in-
struction itself, when that instruction is issued by
a guest.

As mentioned above, some machine models can
interpret a “second-level” SIE instruction issued
by a high-performance guest. Such a function is a
tremendous boon to migration, allowing an or-
derly, cautious upgrade from one release of VM to
the next. However, the ability to run a second-
level VM system as an ordinary guest for testing
and debugging, without dedicating real resources
as high-performance guests demand, has always
been an important feature Of VM. Customers have
come to depend on this for first-shift VM systems
programming, testing of software fixes, and so
forth. Moreover, not all models support Region
Relocation and Interpreted SIE. For these cases,
CP’s simulation software must fill the gap, in a
function known as interpretive-execution simu-
lation or more simply “virtual SIE” (VSIE).

When the machine does not interpret a second-
level SIE, the guest SIE instruction yields an in-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

struction interception. CP passes control to an in-
struction simulation routine as for any other
instruction interception. However, simulating the
entire execution of the guest SIE, including exe-
cution of all the second-level guest’s instructions

CP enlists the machine’s
aid, by using SIE itself

to simulate SIE.

and interruptions, is not practical. VM would have
to pay a huge, continuing cost to maintain simu-
lation routines for every instruction in the archi-
tecture, and such simulation would perform
abominably. Rather, CP enlists the machine’s aid,
by using SIE itself to simulate SIE.

The approach taken is to use a SIE instruction at
the host level to cause the machine to interpre-
tively execute the second-level guest. However,
CP must make adjustments to accommodate the
additional “level” of functions. As described ear-
lier, SIE recognizes two levels of program, host
and guest; it can perform two levels of address
translation, manage two levels of timing facilities,
and so on. In the most complex case, VSIE must
effect three levels of address translation and sup-
port three sets of timers-for the host, the first-
level guest (called the “real guest” or RGuest),
and the second-level guest (the “virtual guest” or
VGuest). In order to have the machine interpret
the VGuest, these three levels must be collapsed
into two. As depicted in Figure 4, CP lets the ma-
chine see the VGuest as “the guest,” and presents
an image of “the host” which merges CP’S actual
host view with the RGuest’s view.

In using SIE to simulate SIE, VM/ESA resorts to the
time-honored virtualization technique of shadow-
ing. First, the state description itself must be
shadowed. CP’S vSIE support copies the state de-
scription specified as the operand of the RGuest
SIE instruction and edits it to represent the host’s
view of the VGuest, for example, by translating
RGuest real addresses of control structures into
the host real addresses expected by the machine.
Then, vSIE must create shadow translation tables

OSISEK, JACKSON, AND GUM 49

Figure 4 Mapping of host and guest levels under vSlE

RGUEST

"_" r
-VGUEST STATE DESCRIPTION
-TRANSLATION TABLES
-TIMERS

HOST

- RGUEST STATE DESCRIPTION //

-TRANSLATION TABLES /I

-TIMERS //

/' /'

(TIMESLICE.SCHEWLE ,'
"

to apply the composition of RGuest and host ad-
dress translation. These tables will be presented
to the machine as host translation tables, so that
they will apply after VGuest DAT and prefixing (if
any).

Once the shadow structures are built, CP issues
SIE against the shadow state description. Most
interception conditions can be reflected directly
as interceptions on the RGuest SIE instruction;
some require special processing in CP. Whenever
an interception or interruption is to be presented
to the RGuest, the contents of the shadow state
description, representing the current VGuest
state, must be transcribed into the state descrip-
tion in RGuest storage.

During VGuest execution, the machine may
present translation exceptions to the host as it
encounters entries marked invalid in the shadow
translation tables. The host must then use the
contents of RGuest tables along with the results
of translation at the host level to update the
shadow tables. In the process, it may be neces-
sary to page in RGuest storage or to reflect to the
RGuest an exception detected in its tables.

RGuest timing facilities must also be simulated
through host timers, since the machine can sup-
port only two levels of timing, the VGuest's and
the host's. Before issuing SIE on the shadow state
description, CP sets the host CPU timer (which
ordinarily holds the dispatching timeslice) to the
minimum of the timeslice and the time remaining
until the next RGuest CPu-timer or clock-com-
parator interruption is due. When the host inter-
ruption occurs, the CP will either recognize
timeslice end or present the interruption to the
RGuest, as appropriate.

Concluding remarks

Although interpretive-execution architecture be-
gan as a test and migration aid for native archi-
tecture developments, it has become a platform
for extending the utility of virtual machines.
Some of the developments in the evolution of this
architecture have been described in this paper,
including the ability to run concurrent produc-
tion-level virtual machines. These developments
primarily dealt with the interpretation of a native
architecture. The latest development, VM Data
Spaces, which has been described in detail,

50 OSISEK, JACKSON, AND GUM IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

breaks some of the otherwise close ties to real
components. VM Data Spaces establishes the in-
terpretive-execution architecture as a platform
for innovations unique to the virtual-machine
environment as well as those common to native
architecture developments.

Effective use of interpretive execution requires
close cooperation between the machine and a
host program like VM/ESA CP. CP fills the gaps in
interpretive execution, so that the guest sees a
complete, architecturally consistent machine in-
terface. Interpretive execution provides a flexible
structure whereby both hardware and software
can be brought to bear on a problem, and each can
contribute its own strengths to the solution.

Enterprise Systems Architecture/390, ESA/390, System/370,
ESN370, VM/ESA, Virtual Machine/Enterprise Systems Ar-
chitecture, Processor Resource/Systems Manager, PR/SM,
Enterprise Systems Architecture/370, and MVS/ESA are
trademarks of International Business Machines Corporation.

Multiple Domain Facility and MDF are trademarks of the
Amdahl Corporation.

Cited references and notes
1. P. H. Gum, “System/370 Extended Architecture: Facil-

ities for Virtual Machines,” IBM Journal ofResearch and
Development 27, No. 6, 530-543 (1983).

2. IBM Systemi370 Extended Architecture: Interpretive Ex-
ecution, SA22-7095, IBM Corporation; available through
IBM branch offices.

3. J. M. Gdaniec and J . P. Hennessy, “VM Data Spaces and
ESA/XC Facilities,” IBM Systems Journal 30, No. 1,
1433 (1991, this issue).

4. The information in this paper pertains only to the ESA
feature of VM/ESA Release 1 .O and to VM/ESA Release
1.1. Since the interpretive-execution facility does not ex-
ist in Systed370 architecture, the 370 feature of VMIESA
Release 1.0 cannot make use of it.

5 . In common VM parlance, “guest” refers specifically to a
second-level System Control Program, such as MVSIESA
or VM/ESA, as opposed to a CMS virtual machine. The
interpretive-execution architecture extends the term to
apply to any program running in a virtual machine.

6. ESN390 defines three levels of storage address: Dynamic
address translation transforms a virtual address into a real
address. Prefixing is performed on a real address to yield
an absolute address, which designates a location in phys-
ical storage. Prefixing uses the contents of the CPU’s pre-
fix register to “swap” addresses 0-4095 with another ad-
dress range, so that each CPU can have access to different
low storage for interruption parameters, save areas, and
processor-specific data.

7. Dynamic address translation (DAT) converts a virtual ad-
dress to a real address by means of a selected entry in the
segment table, and a selected entry in the page table des-
ignated by that segment-table entry. The result is the real
address of the storage frame corresponding to the virtual
address.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

8. T. L. Borden, J. P. Hennessy, and J . W. Rymarczyk,
“Multiple Operating Systems on One Processor Com-
plex,” IBM Systems Journal 28, No. 1, 104-123 (1989).

9. IBM Enterprise Systems ArchitectureN70: Principles of
Operation, SA22-7200, IBM Corporation; available
through IBM branch offices.

10. K. E. Plambeck, “Concepts of Enterprise Systems Ar-
chitecturel370,” IBM Systems Journal 28, No. 1, 39-61
(1989).

11. Although ESM390’s address-space numbers (ASNs) and
the ASN translation structures (ASN first tables and ASN
second tables) do not exist in VM Data Spaces mode, VM
Data Spaces retains the ASN-second-table entry (ASTE)
as the control structure that defines an address space.

12. P. H. Tallman, Instruction Processing in Higher Level
Virtual Machines by a Real Machine, U.S. Patent No.
4,792,895.

Damian L. Osisek IBM Data Systems Division, P .O. Box 6 ,
Endicott, New York 13760. Mr. Osisek is an advisory pro-
grammer in VMIESA design at the IBM Endicott Program-
ming Laboratory. He joined IBM in 1983 as a programmer in
VM/XA development and worked in the areas of virtual-CPU
simulation and real-CPU management. He has designed and
developed portions of VMIXA’s support for the 3090 vector
facility and PR/SM and VMIESA’s simulation of the VM Data
Spaces facility in virtual SIE. Mr. Osisek earned a patent for
“Passive Serialization in a Multitasking Environment.” He
received a B.A. degree in computer science and classics from
Xutgers University in 1981 and an M.S. degree in computer
science from Rensselaer Polytechnic Institute in 1987.

Kathryn M. Jackson IBM Data Systems Division, P.O. Box
950, Poughkeepsie, New York 12602. Ms. Jackson is a staff
programmer in the Enterprise Systems Central Architecture
department in IBM’s Poughkeepsie Development Labora-
tory. She received a B.S. degree in computer science and
mathematics from Hofstra University in 1982 and joined IBM
as a programmer in the Data Systems Assurance organization.
In 1988, she joined Enterprise Systems Central Architecture
where she participated in the design of several extensions tc?
the interpretive-execution architecture, including the VM
Data Spaces facility.

Peter H. Gum IBM Data Systems Division, P.O. Box 950,
Poughkeepsie, New York 12602. Mr. Gum is a Senior Tech-
nical St& Member and a member of the Enterprise Systems
Central Architecture department. He joined IBM in 1964 in
Poughkeepsie as a system programmer working on the oper-
ating system for the IBM Systeml360, and subsequently par-
ticipated in the design of several versions of the control pro-
gram. In 1973 he joined the architecture department, where he
participated in the design of extensions to the architecture of
the IBM Systemi370. He received a B.A. from Oberlin Col-
lege, Oberlin, Ohio, in 1958 and an M.A. from the American
University, Washington, D.C., in 1962, both in mathematics.
Mr. Gum is a member of the Association for Computing Ma-
chinery.

Reprint Order No. (3321-5422.

OSISEK, JACKSON, AND GUM 51

