z/VM
7.4

Diagnosis Guide

.||I!

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
257.

This edition applies to version 7, release 4 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2025-07-16

© Copyright International Business Machines Corporation 1991, 2025.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

FiBUI S cuuiuiieiieiiiiiiiiiiiiiiiiiieiieiieitetentaetsesssstestastostossassassasssssssssessessassassassassssssnssns iX
L= 1 (= N Xi
About This DOCUMENT......ccciuiieiiiiiiiiiiiiiiiiiiiiiieiieiteteecsecsesssstestastassossasssssssssasses Xiii
INtENAEA AUIENCE....uiii ettt e e ete e et e e et e e s bee e sbeeesbaeesbaeesaseeesasaeesnsaeesnseeesnsaessnseeennes Xii
Where to FINd More INfOrmMation......c.ueiccieieiecceec ettt e e ve e e vre e e be e e e bae e s bae e sabaeesnraeennns Xii
Links to Other Documents and WEDSITES.c.c.uiiiciiieieeceeeecte et rar e e st e s aaeeeaaee s Xii

How to provide feedback to IBM........ccccuiiiiniiniiniiniieiieiieiieiiiiecieniesiesiescascsscssssnns XV
Summary of Changes for z/VM: Diagnosis GUide........cccociieiieiieiieiencenciecieninciennans Xvii
SC24-6301-74,Z/VM 7.4 (JULY 2025) ...eviiicieeeeieeccieeectee et e e teeeetteesstteeseateesesteesesteesstaesseassnseeesnssessnns XVii
SC24-6301-74, Z/VM 7.4 (JUNE 2025) ..oeiieiieeeieeeeieeeeieeeeiteeeeteeeeiteeesteeseteesstaesensaeesstesssstesssssesssssesanns XVii
GC24-6280-74, Z/VM 7.4 (JANUAIY 2025)....ciiicieeecieeeireeeiteeeeteeeeteeessaeesesteesesteessssessassesssssesssssesssseessnns XVii
GC24-6280-74, z/VM 7.4 (SEPLEMDBEr 2024).....uuiieeiieeeieeeeieeeetteeeteeee e e eteeestaeessaeseseeessaeesseeesnseeas XVii
GC24-6280-73, 2/VM 7.3 (OCLODEI 2023).cuuiiiieciiieeiieeecteeeiteeecteeerve e e saeeesbeeesreeeenba e e s baessabaessaraeennseas XVii
GC24-6280-73, z/VM 7.3 (SePtemMDBEr 2023)..cc.uuiieciieeeieeeeieeeeireeeteeeeieeeeveeesreeesbaeseseeasasaeesseeesnseeas Xviii
GC24-6280-73, Z/VM 7.3 (MAY 2023)..uiiicciieeeciieeecieeeciteeectteesetteeseteeesssteesesaeesesaessaseeesassessasasesaseessnsesennns Xviii
GC24-6280-73, z/VM 7.3 (SEPLEMDBEr 2022)..c..uviieeiieeeieeeeieeeeireeeteeeeteeeeveeesteeessaesssesassaeesseeesnseeas Xviii
Chapter 1. Introduction to Debugging......c.cccceiieiiniiiiniiniiiieiieiieiieiieicecececiesiesiens 1
HOW 10 Start DEDUGZING. ...oe ittt ettt e et e e e tee e s te e e s tee e e bae e sbaeessbaeesssaeessbaeesnsaeesnseeennsens 1
BT W o] o] (=T a o e d 1S A 1
IAentifying the ProblemMi ettt et e rre e e te e e s te e e s be e e s e e e s bae e eabeeeensaeeenees 2
ANalyzing the AVAILADLE DAta.......ccciiiicieeiciie ettt e sette e setr e e stt e e sebaeesebaee s saeessaaesaseeesnns 4
DeterMiNING the CAUSE....cciciiieciieeeiee et e et et e eete e s ete e e teessateeeeatee e stae e sseeesssaessssesaasseseansaeesnsesansseeans 8

Data You Need Before Calling IBM for ASSISTANCE......cccccuieieiiieieieeeeiee ettt ettt e e 8

How t0 Use z/VM FaCilitieS 10 DEDUG......uuiieiieeceie ettt ettt et tee e te e e abe e s eate e e naeeenes 11

A o T=Y o [T 11
(01 AN o =Y o T ST 12

CF Service Maching ADENA.........viiiieeciieeee ettt e et e e et e e te e e e beeesabeeeeasaeesasaeannsaeennseeas 13

(011 ST A o= 2 T FO USRS 13

SFS OF CRR SEIVEIN ADENA....cceeiieciiee ettt ettt e e e e ette e et e e s sate e e stee s saeessaeessteesnsseeessaesnsnenns 13

LCT ORI A o 1= o T ST USSRt 13

LIST Y S Y o T=1 o T PR 13

F TSR A o =Y oL TP 13
Virtual Machine Abend (Other than CMS).......ue ittt re e st e e erte e sentee s naaeeans 13
UNEXPECTEA RESULES....iiieiiieciiee ettt ettt ettt e e e et e e e te e e e te e e etaeesabaeeensaeeentaeeensaeesnsaeesnsaeesnsanennes 14

(o To] o 1= OO OO PP P TR 14
(01 BT EF- o] 1=Te [oo o SR 14
Virtual Maching DiSabled LOOP......uii ittt stre e et e e s e e e e aa e e e saeeesaeeesaeeensneean 15
Virtual Maching ENabLled LOOP.....cccuiiieciiieciieeeteeete ettt s e e sre e e te e e ae e s ae e e abe e e nsaesensaesnnsaeenenas 15

LA YRS =Y (T USSR 15
(01 BT o] 1=Te I 1L SR U 16

(00 =t F=Y oY T BT VRSP 16
Virtual Maching DiSabled Walit......c..eicee ettt et rtee e e e e e saae e s s e e esaeeenaeesnaeean 16
Virtual Maching ENabled Walit.........ueeciieeieeceeeeeeee ettt te e et e st e e aae e e nrae s naraeenneeas 17

[P T a Tl 000 o Vo L1 4T o F- TSRS 18

SYSTEIM HANES ...ttt ettt ettt e e e ettt e e s e bt e e e e s nbee e e e e nseteessanneeeee s nseeeeaaanseeaeeann 18

USBE HaANES ettt ettt ettt ettt et e sttt e e sttt e e e b et e e e e s et e e e e e nbt e e e e e ane e e e e e st teeeeeanreeeeeeenneeeeesanns 18
SSI ClUSTEr ProbLem DiagNOSiS. .icueeiereereieerriteriitesaieesateessseessseesssseesssseesssessssseessseesssseesssseesssseesssseesns 19
Use of Z/VM DebUZZINg COMMEANGS.....cciiiiiiiiieiiiieiiieesiiteseitee st e sseeesssteessaeeessseeesssseessssaesssseesssseesssseesas 19

Chapter 2. Debugging Interactively.......ccccccereiieiieiieiiniiniiniincciecnnnnneniesnesnscisncacenes 21

Commands That Display and DUmMp Maching Data.......ccccuvieeeieciiiieieciiee et ecrree e et e e e erae e e e 21
B a1 E= O U o LU SR 22
AL =TS O U o U SRR USRL 23

Commands That Set and Query System Features, Conditions, and Events........cccccceeeciieeeecccieeeecccneeennn. 24

Commands That MONITOr EVENTS.....cociiiiiiiieeeete ettt s e e s e e e s be e e sbaeesneeeas 25
Controlling the Trace INfOrMatioN......ciccie ittt see e s ae e s ste e s s aeesnaeeas 26
Restricting the Trace to an AdAress RANGE.......ccviviieiiiieiiiieeeteeete st sree e sree st e s sae e s sree s sbeessaveas 26
Y= =Yt AV 2SR 27
TraCing SUCCESSTUL EVENTS....iiiiiiiiiiieee ettt s st e st e e s be e s abeesssbaesnasaess 27
TraCing StOrage ALLEIatiON...ccuiiiiciei ettt et e st e s ste e s s te e s s abe e e sabeesssbeessareessaeaesnses 28
The TRACE CMD OPtiON.ciiiiiiciiieeeeeiiee s eecitee e secttee e s eettte e s s esaseeeesseasteeeesensaseeseansssessssssenessennsaesssenssenes 28
StOPPINE The TRACE. ... ettt e s ee e st e e s bee e s ate e sabeesssbaessseaesnssaesnnsnas 29
TrACING TraANSACTIONS. ccieteiieititieitteeeiteee st ee sttt e ettt e s see e stee e s saee e s bbe e s beeessseaessseessbaesnssaesnssaesnssaesnsseesnases 29

Commands That Alter the Contents Of STOraBE......iuciiiiviiiiiiiieie e sre e saae e 29
Altering Contents of Virtual Machine Storage (STORE Guest Command)......ccccevvveeceeneeecieeneesvennnes 29
Altering Contents of Host Storage (STORE Host COmMMaNd).......ccceeeervierieesieiieeneecieeseeeeeesveesnneens 30
Simulating the Hardware Store Status Facility (STORE STATUS)....ccceevirrierieereesteeceeeseeseeeseeeseeens 30

Commands to Collect and Analyze System INformation.......cccceeiecciiiei et 32

What t0 DO If YOUr ProSram LOOPS. ...ciicueiirietiiieeiiieesetesseiteessreesssseeessseesssseessseesssessssseesssseesssseesssseessnees 32

Debugging with CP after a Program CheCK.......uucuiiiiiiiiieiieeciee st s e ve e st essveeeas 33

Chapter 3. Using Traces to Debug.......ccccccvviiuiiiiiniiiiiiinienieiieiieiiniinincicnesiesiesceses 35

LOCALING The CP TraCe Table...uuii ittt ettt e st e e st e e s vt e e sbae e sbeeesbeeesseeesaraessan 35

LI Lol = 034 LTSRN 35
Limiting the Trace ENtrieS RECOTAEM.iii ittt sttt ettt re s saae e s saae e ssae e saaeesnnee s 36

Tracing I/O, Data Code Paths, and Virtual Machings.........cccceieviiiniiiiniie ittt 38
L7 O I - (oL T ot 1 o] o1 LTSS 38
Trace Table EXAMPLE. .. ettt e eet e e e e e e e e e be e e e e e e abeeeeseanbeeeeeenstaeeessnsenens 39
Data TraCe EXAMPLE L......eeiiiee ettt s ettt e e sttt e e e ettt e e e e e bae e e s e e nbeeeesensteeeesnssasesasasssnesessnssenessnnns 40
Data TraCe EXAMPLE 2... ..ttt ettt e e ettt e e e ettt e e e e ettt e e e e esbeeeesenbeeaeesenssaaeeesasstaessesnssnnessanns 40
Saving Trace Data on Tape OF DASD.........iiiiiiiiiiieeiteeriee ettt e st e s st e s st e s sbe e s sbeessbaessaseesssseessnseas 41
VIEeWING The TraCe TableS. ...ttt ettt et s e e s sae e s st e e s s be e ssseaessabaessaeaesaeas 42

Chapter 4. Creating @ DUMP....ccccciruireireiienieiiesiaiiaiscsecsessesresssssssssscascsecsessessessesces 45

TYPES OF DUMIS . .ettieiieciiiieeeeitie e e eectte e e e e rte e e e eeateeeeeestaeeeeessteeeeseasseeaeeaansesaeseasssnaeseasssanessanssenesssnnsseesennnnes 45
Setting Up the System fOr @ DUMP.... ittt et stte e sbe e e sbee s sbee e sseeesbeeesnnaesane 46
Dumping Real or Virtual Maching Data.......cccieirciieiiiieiiiieeeiieesciteesiteesitessteeesaeesseeesssnessssaessseessasaessane 46

Commands That Dump Real or Virtual Maching Data.......ccccueeeeeeciiiieicciieee ettt 47
StaNd-alonNe DUMP ULILITY.cei ettt e e e e e e te e e e e e ettte e s e e s abeeeessnbaeeesennssaeeasesssneesannns 47

Chapter 5. Debugging CP.....cccccciiuiieiieiiniiniinincresnesiesiesiasiscisssecsecsessessessassassascass 49

Debugging CP in a Virtual MaChine.......uiiiiiiiecceceeesrt ettt ettt s ae e s e s 49
FAN =T Ve [LU T3 0T TSRS 49
REAING CP ADENT DUMPS...utiiiiieiiiieeiiee sttt e sete s sete s sette e ssaeessbteesseeesbeessabeesssseesssseessseessseessseessnsees 49
USING the ASSEIT FACILITY.ciiciiiiiiieiiieeiiee sttt ettt ste e st e st e e s te e s abeesssseessseesnseessnseesn 50
Reading the Dump with the VM DUMP TOOL....cciiiiiiiiiiiiieiieesiee sttt ssee e s e ssee e sseaesnee 50
Printing Dump Information from the VM DUMP TOOL...ccccuiiiriiiiiiiiiiniieeeite sttt sve e seee e 50
LOOKING at KEY CONTIOL BLOCKS...cicuviiieiieiiieieiieeeiteesit sttt s st ssbe e s s e e s sba e e sbaeessbaeesaseeesnseeean 51
HCPPFEXPG: The PrefiX Page. ..o uii ittt ettt e st e st e s te e s be e s s be e ssabeesssbeessaseesnssaesnans 51
HCPSYSCM: The System COMMON Al a...cccccuiieeeeeieiieeeeeciieeeeeeitteeeeseereeeesesseeessessseesssessesesssssssssesanns 52
HCPVMDBK: The Virtual Machine Descriptor BLOCK........ccccuuiieeeciiiieececiere et e e e e eevree e e 52

HCPRDEV: The Real Device CoNtrol BLOCK ... oottt e e e e e e e e e e eeeaaaaaaaas 54

HCPIORBK: The I/O Request and ReSponse BLOCK........coiiicuiiieiccciiieeceeee et 55
HCPVDEV: The Virtual DEVICE BLOCK........uuriiiiiiiieiiiiieeccirteeee et eeeeectrrteee e e e e e e e e e s essasssssaseeeseeeeesenan 56
HCPCPEBK: The CP EXECULION BLOCK.....uuttiiiiiiiiiiiiieiiciititteeeee e eeeectrrrreee e e e e e e e e s eeeassssaeeereeeeeesesennnns 57
HCPSAVBK and HCPSVGBK: The Save Area BLOCK......cccvuvveiiiieieiiieeeeiiieeeeeeee e eeeecinnreneee e e e e e e eenns 57
HCPFRMTE: The Frame Table ENTry .. ettt eteee e ttee e s e tre e e s e e nba e e s s e e ae e s e nneee s 58
VMDUMP Records: FOrmat and CONTENT......ccccuviiiiiiieeieec ettt eeeeecsrrrreeee e e e e s e eeesesnssrseaeeeees 58

Chapter 6. Debugging CF Service Machine Problems..........ccccceuiieeireirnirncineiieeenes. 59

Determining the Status of the CF Service Machine.......cuiiiiiiiriiiiiiececciee e 59
Steps to Follow When CF Service Maching Abend OCCUIS......ciiiiciiieeiecciieee e e e cvee e e 59
Finding the CF Service Maching DUMIP......c.uii ittt ettt sve e ste e s ee e s sate e ssaee e sssaeesssaeessnneas 59
Processing a CF Service Maching DUMP......iiiciiiiiiieiiiieniie ettt ssiteessiteesseeessaeesssteesseeessseessnsaess 60
Diagnosing Problems for CF SErvice MaChiNeS......cucuiivcieiiiiieiieesitee st sste e site s ssite e ssveeessveeessneesvneesans 60

Chapter 7. Debugging CMS.......cccciiiiiiirirenienteniaiiaiieiiscsecsessessessesssssassssssssssssessess O

DEDUZEING COMMANGS. ...iiiititiiiiiiriiteriie e et see e st e s st e s ste e s saee e s sbeessaeeesssbeessabeessssaessssaesssseesssseesssseessnsees 61
Using the SVCTRACE COMMANTG..cicuitiiiiiiiiiieiiiteseitessiee st e ssteessteessbeessabeessseesssaessssaesssseesssseessssees 62
Tracing Capabilities IN EXECS......iiviiiiriiiieiiieeiieesiie et e st e st e s eeesste e s sbeesssbeessssaessabeessssaessaseesnaseessnses 62
NN LU o (T E=R o =T N 1 = o TR 64
N oTe [0 TR oT- T I\ -1 o T USSRt 64
CMS ADENA PrOCESSING. . eeiicieiiiieeieieeieieessieesetteessteeseseeesebeeessseesssseeesseessaseessaseesssseesssseesssseesssseesssseessnsens 64
Finding the Reason for the CMS ADENG......coiiiiiieiieeete ettt ssba e s sraeeens 65
LS = O ISR (o T B 1= o TU = ORI 68
Setting Machines to Automatically Create DUMPS.....ccuiiiieiiieiriieerite et ssree st e s sree s e e s saee s beessaveas 69
Generating CMS ADENGA DUMPS..cccuiiiiiieiiiiterite sttt st e ssreessteesssreessbeesssbaesssseeessaeesssseesseessseesssseeens 69
REAdiNg CMS ADENT DUMPS....uiiiiciieiiiieieitiee ettt e sseeessteesstteesteeessseessssaeessaessseesssaesssseesssseessssaessssaeenns 70
Creating DUMPS iN Case Of MESSAZES. ...uuiriiiiriiiiriiieeriteesiieeessiteessaeessaeeessseeessaeesssseeesseesssseeesnsseesnnes 70
Printing @ CMS DUMIP Fill..uuiiiiiiiiiiiieiiee ettt sttt ettt s st s st e s te e s be e s s be e s sssaesssbaessnbeessasaess 70
Commands That Alter the Contents Of STOraBe......cuciiiiiiiiiiiiiciece et sre e saae e 71
Diagnosing SFS-Related AppPLiCation ErTOIS. ... iiiiciiiiiieiieeciee sttt ssee et ssaee e seaeeessaeeesans 71

Chapter 8. Debugging the SFS Server or CRR Recovery Server.........ccceeeeerencrnncenss. 75

Summary of Steps to Follow When a Server ADENA OCCUIS......uiiiiieciiieeececiiee et e e e e vee e e e evaee s 75
USING The CONSOLE LOE..ciiuiiiiiiiiiiiieieiieeeitiee ettt e setteesette e sette s stteesbtessbaeesbeeesabaeesssaeessaeesseessasaessaseessasnessnns 76
Using Server DUmMpS t0 Diagnose ProblemS......uui ittt ee s ssaee s s ssae e s 79
Creating @ SEIVET DUMP . i iii ittt sstee st e st e sttt e s s teessteessteessbeesssbeesssbaesssbaesassaeesssaeesssaesssseesnnsees 79
ProCESSING @ SEIVET DUMIP.ciiiciiiiiiiieiiieeseite st e sttt e sttt e sttt e sssteeseateesssteesasteessseeessssaesassaesnsseesnsseesssseesns 79
DiagnOoSING @ SEIVEE DUMP...uuiiiicieiiiieeiitteenitee sttt e siteesssteesssseesssseessseessseessseessseesssseesssseesssseesssseessases 79
Printing @ SEIVEN DUMIP...uiiiciie ittt ieiee ettt srte e sete e sete e s te e sbee e sbee s sbeeesbeeesbeeesaseeessseessnseesssensssees 80
Using System Trace Data to Diagnose ProblemS.....cccuii ittt ssiaeessieeessaeeessaeee s 80
SEtHING INTEINAL TrACING. 1eiictiiiicieiieieeerte ettt et s st e s ste e s st eeesssbeessbeesasteessseesssaessseesnssaesnnseenn 80
SEtHING EXTEINAL TraCING . et ieiiiiiiie ittt et st e s see s s aee e s saee e ssaee e ssbeaesbeeesseeesseessseessnsens 81

Chapter 9. Debugging GCS......cccccivirireiinirenieiienieiiaiiaciscsssesressessestessasssssssssscsessess 83

INtErNal TraCing FaCIlIiES. ..uiiciiieiieeicieeecte ettt ete e s bt esate e s ste e sssbeessaseessseesnseesnsaesan 83
Using the ITRACE Command and GTRACE MaCTO0......uiiicieiiiiiiiiiieeniieesiiieessitessseeesseeesssseeessssessssnessan 84
Formats of INternal TraCe ENTIES. ... ittt e s s e s s be e s e e e sans 84

EXtErNal TraCing FaCIilITiES. . .cuiiiiiiiieiiieiite ettt et e s e s st e s s e e e s e e s s e e s s bee s sbeeessbeessaseaesanens 104
Using the TRSOURCE COMMANT.....utiiiiiiiiiiieiiiieeeiieeeiteesieeesseeesreeesaeessseesssaesssaesssessssseessnseessnn 104
Using the TRSAVE COMMANTG...cccutiiiiiiiiiiiieiieieiteeeite e sttt e sseeeessseeesseeesseeesssaeessaeessseessssessseeesssseenn 106
USIiNg the CP TRACERED ULILiTY..cetereeierteeeeesteetes ettt sttt ettt sttt st see e 106
Using the QUERY TRFILES COMMAN...cciccutiiiiiiriiieiiiieniieessieessieessveessreessseessseesssneessseessseessnnes 106
General Trace INfOrMIAtiON....ci ittt st ssee e s te e s sate e s aeeessnteesseeesssteesaneeesans 107

Formatting and Displaying External TraCce RECOITS.......uiiriiiirciieieiieeeiteeeiteceieeseiee s svee s sree s sveesseeesenne 107
Examples of Formatted External Trace Table ENTHES. ... ciiieeiecciiee et eeevree e e evee e 108

D10 aa] o1 =38 ur= ol 1 Ul A =S PT 110

vi

The COMMON DUMP RECEIVETcii it iccetee ettt e e et e e e ctee e e e e etae e e s esnsteeeeeesteeeesssnsaneesasnssenassanes 110

RULES OF AUTNOTIZATION...ci ittt st s st e st e st e e s s sbeessateesssbeessssaesanseesnnsaess 110
Interactive DEDUZEING SUPPOIT....ciiiiiiiiieeiiieerciee sttt e st e s ste e ssaeessare e s steesssaeesssseesssseessssaessnseessnsaesas 110
Using Authorized Control Program (CP) COMMANGS....c.cueicuierieeiieenieeieeseeeieesieeeeeeseeesneeesseessseseeas 110
ANALYZING DUMIPS..tttiittiiiiiieiiiteeeiee st e ssteesste e s sttt e sssteesssteesasseesaseeessseesassaesasseesassaesssseesssseesssseesnsseenns 110
DUMPINE VSAM INTOIMAtiON..ciiiiiiiiiiiiiiee ittt st et e s see e s aee e seaee e ssateeseneeeseseaeseneeesnsaesnseaesane 111
Creating GCS DUMIPS. ..ciiectitiiiiiteeitteeiteesitteeesteesssaeessseeessseeessseeessssaesssseesssssesssseesssseesssseesssseessseesssseessssees 111
The GDUMP COMMANG...ciiiiiiiiiiieiiiieiiieeseiee st e st e ssteesseeeseteesssteessseeessssesssssaessssesssssessssseessssassanes 112
THE SDUMP MACKO0.cccutttieiieieiteeeiteseitte s sttt estte e s bteesbeessbaesssseessseessssaeesasaeessteessaeesssseesseeesnseeesseeenn 112
THE SDUMPX MACT0...ccttiiiciitieiieeeiiteessitee sttt e stteesstteesbteesseeesaseeessaessseesssaesssaesssseessnseesssseessnsaeennns 112
The ABEND DUMP MACKO....uciiiticieeeieeiteeseesiteesteesteesseesssessseesssesssessseessessssesssesssssasessssssnsesssessnsesssees 112
The SYSTEM RESTART COMMANT..ciitiiiiiiiiiriitieiieeeiteeesiteessieeessseeessaeessaeessseesssseesssseesssesesssseesssseens 112
The VMDUMP COMMEANG....utitiiitiiiiiieiiiieieiieeesieeesreesseeesseeesseeessseeesssseesssseessssesssssesssssnessssessssenssnsens 113
Preserving COMMON STOMQEE. . .ciiiitiriieirite ittt estte s st e s st e s st e s steessteessateessaeeesssteesnseeesnseeesnseassnsens 113
How to Find the GCS Virtual Machine That Created a DUMP.....coooccciieeiecciieee e eeveee e 113
USING the GCS TraCe FACIlitiES...ciuiuriirciiieiiiieeiieeeie ettt ettt s et s e e s saae e s sbe e s sabee s abaeenaseesnans 113
1A PSR 113
Locating the GCS Internal TraCe Table. ... ittt e sevee e srae e sane 114
USING the Trace Table. ittt ettt eiee e s ebee e sbee e sbee e sbteesabaeesseeesseeesans 115
1 O TSR 116
L I Y O SR 117
PrOCESSING ADENUS. .. .eiiieiieeeieeett sttt ee e st e e s be e s abe e e s abe e s abe e e abaesnabeeensraeesabaeenareas 117
LA AN = aTe R o QY =T TP 117
PrOZIam CRECKS. .. .uviiieiie ittt sttt ste e s saee e s saee e s eaee e sbee e sbeeesbeeessseeesaseeesnneessnsens 118
Processing GCS Dumps with the Dump VIiewing FaCility......ccccervieiniiiiniienniecneecece e 118
Information Used by the Dump VieWing FaCility.....cccceirviiiniieiiiieiniieceiee et 118
VL0 N = Vo o S S 120
Virtual Maching CoNtrol BLOCK.......uivcuiiieiiiieiieieite ettt sttt s e e ste e e s aa e e sbaeesbaeesabaessnseaean 120
How to Determine the User ID That Created a Trace ENtry......ccocccveeeiccciiee et 120
How to Locate the GCS COMMON LOCK....ciiciiiiciiiiiiieiriiee ettt eitessrte e eiee s st e e seeeesteessvaessraeessaeesnne 121
TASK MANAZEMENT.....iiiiciieieiiee ittt ettt ettt e e st e e s bt e e s bteesabeeesbaeesabeeesbaeessaeesnsaeesseessasaessnseessnsenesns 121
TASK BLOCK. ¢ ttttittei ettt ettt sttt ettt ettt e e st e e s bt e e s bt e e s bee e s bee e s bt e e sbeeesbeeesbeeesnaeesaraaesane 121
Y £= L= =1L T OO PTRRN 121
WAIT COUNT Field in @ State BLOCK.....ciiuiiiiiiiiieiite ettt sttt te st s s s va e s e e ens 122
1L =] Lo ! RS S 123
SVC BLOCK 1 tutttietteeeitee ettt e sttt ette e sttt e srtee e sttt e st e e sbeeesabaeesbeeesbeeesabaeesabaeesasaeesabaeesasaesssaeesnsaeesnsaeesnn 123
AsyNchronous EXit BLOCK (AEB)......cccuiiiiiiieeiieeeieeeeteeeeitee et e eete e e teeeeteeeesseeessaeasaseseensaeasnsasasnsees 123
The DISPAtCh QUEBUE..... .. ettt ctee e e ree e s e et te e e e ee bt e e e e eenseeeesesnstaeeeesnseeeeaennssanasanns 124
How t0 FINd the Task ID Table. ..ttt ettt et e s e e sssae e saaeesanae s 125
How to Find Which Task IS RUNNING......ccoiiiiiiiiiiiieiiieesiiee st essiee st e st e s sbeessaeessveessaneessanas 125
Tracing Task and Program ManagemeEnt.......cuiiviiiriieeiiieenrieesieeesseeessiee e ssee e s seeessaeeessaeeessseeesssseas 126
Program ManagemMENT.o ettt ettt e ettt e e e sttt e e s ne et e e s e b et e e s b ete e e e snaeeeeesnneeeeean 126
TASK LOAM LiST.iiiictieiritieiiiieieitieieitieeeiite e ettt s stte e st e e steeesbe e s staeesbaeesaseessnsaessnsaeesnsaessnsaeessaeesssaessnsaeenns 127
Virtual Maching LOAM LiST....cicuiiieiiiieiieeeiieeeie sttt sire st sae e s saae e ssiae e ssabeessaseessssaesnaeaessaseas 128
How to Find Where a Program IS LOQdEd.......ccceivciiiiiieiiiieiiieecteesiee s ste s siee s siee s svee s svee s s vee s 129
LC 083 WoT=Ta Il =1 o o] SR ST 130
TUGCV ettt ettt et e et e et e et e e et e e s ae e st e e seesate e seessseanseesaseeaseesnseanseeesseanseeaneeeateeaseeenseenreeereane 130
DEbUZEING APPLICATIONS. ..ciiciiiiiiiee ittt ettt ete st e e st e e sbte e s bt e e sebeeesbaeesbeeessaeessaessasaeesane 131
TFACING TUCV ..ttt ittt ettt ettt e s ate e s st e e s e ate e s ate e s seeessateesassaessssaessssaesassaesassaesnsseesnns 131
The IUCV Anchor BLOCK (TUCBK).....ciciieciiieeeeieeseeeieesteesteesteesteesteessaesseesseessseessaesnseessessssesnsessssenns 131
The USer ID BLOCKS (TUCID)...cccutiiieecieeiteeeieeiteeetessteesseesseesseesseesseesnsesssessnsssssessnsesssessseessesssessnsesnses 132
The Path ID Table (TUCPT)...uii e cieeeie et esteeete et e etessveeste e teesreesteesseesnse e seesnseensaesseesnsessseesnsesses 132
How to Find Information about @ Path.......c.ccoeiiiiiiiiiiicteeteeteeee et sva e 133
STOrage MaANQGEMENT ..o eeeiiie ettt et et e ettt e e s e b et e e e e s bt e e e e s nste e e e e nneeee e e st eee e e nreeeeeeanneaeas 134
StOrage ANCROI BLOCKS.viiiiiiiieiieieiteee ettt ettt s e e st e e sbte e sbee e sbbeessaeeesstaesnssaesnneans 134
Description of the Storage Anchor Control BLOCKS (SACBS).....c.uevierviieneesieeneeeteesreeseeeveeseeeeeeees 135
Important Fields in Major SACBS....ou ettt e e e e ete e e s et e e s st ee e e s e nraeeeeesnsaneeeean 135
IMportant Fields iN MiNOT SACBS......uuii it ccitee ettt e e e eeree e e e s rttee e e s e nbre e e e esbaeeeeessaeeeeeesnseasesennsenns 135

Checking for Storage Fragmentation......cceiciieieiiiinieeiriee et e esiee s e s sre e s e e s sre e ssbe e ssbaessbaesssseesns 136

Scanning the Major aNd MINOT SACBS........iiiiiiiiiecrt ettt e e s st e s s e e s sbeeesraessbaessbaeessseens 136
Checking Free Storage on ANY GIVEN Page.......coociiiriiieriiiiniieesiieeesieesseeessieeessieeessaeeesssseessseeessneeas 136
Finding the Key fOr @ GIVEN PaBE......ccccuiiiiiiiiiiieiiee ettt ssite e see e siee s siee e sree s sbee e sseessneessaneas 137
Control Blocks Describing the Storage Owned by @ TasK........cccevvcieiiiieiiciieniiieencieesceee e 137
How to Find the Storage Belonging to a Given TasK......ccecieirriieriieeirieesriee e ssiee e ssee e seee s 139
How to Check What Subpools Belong to a GIiveNn TasSK......cccvceeiriieeiniieeinieeenieessieeeseee e e sseee e 139
System-Wide DesCription Of STOTaZE......uiiviiiiciiiiiiee ittt see e s sbe e s e e s sbee s sans 140
System-Wide Description of TSHBS and GSBBS.........uuiiiiiiciieieccceee et ecveee e e eveee e e 140
Common Storage Management ProblemS. ...ttt ree s sre e sbee e 141
Tracing Storage ManagemMeENT.......cuccuiiiriieeiiiie ittt srieesete e st e sseeessrteesesteessseeessseeessseeessseeesaseeesaneessnn 142
(1Y T=T =1 N O TSR 142
TOSAVE.... ettt ettt ettt st e bt et e s bt et e s at e bt s at e e bt et e she e bt eat e be et e e bt et e eht e be et e nbeeatesaeetenaes 143
The Subchannel ID Table (SIDTABLE)......iiciiiieeceeeieeeeseesteesteeete e reesaeesseesaseesreesneesseesnsesnseesnnean 144
The General I/O Table (GIOTB) uueiiiieieeieeeeeeeeeeeeeeeeeeeseseesssssareereseeesssssssssssssssseesessesssssessssssssseseees 145
SO I N3N (=T a Ut o) o F=Ya T T o = OSSPSR 146
B =Y U] o) A O] a1 (o B =] Lo Yo 2SS 146
How to Find What Pages Are Locked by PGLOCK.......ccciiiiiiiriieinieecniee et esvee e ssee e s see e s 147
Finding Pages Not Paged in After a Page Faull.......ccoviiiiiiiiiniieiiee et 147
How to Find the CharacteristiCs 0f @ DEVICE......ccuuiiriiiiiiieiiieceite sttt aae s 148
I/O DEDUGEING. ... etiiiiieeieitteecie sttt e st e st e st e st te e s bte e s sbeesseeessteesasteesastaesasseesssaesassaesnseesnnsaesansaenas 148
TrACE TADLE ENTIIES. cuuiiiieiieiciee ittt ettt e st e st e e sbee e ssate e seseee s seaesntaesneaesaneeesanseesane 149
Recreating the Problemi... .. ettt ettt e st e st e s saae e s e 149
(0fe]nalaaF-Tale IE=TaTe Mo] aT-To] (=T U1 o] o o] o SRS 149
LOADCMD COMMANTG...iiiittiiiiiiieiieieiiieesirteeeitteessreeessteesssteesssseesssseessseesssssesssssessssssesssseesssssesssseesssseens 149
N TUL (0] K g} o] ¢ aaF= L Ao PSPPSR 150
L= 10} o150 T LT] o OSSPSR 150
CIMDBUF ...ttt ettt ettt et h et s a et sat e s bt et e s b e s be s bt et e eut e b e s abe bt e b e eaeeabesatenbeeatenbeeaeens 152
WOE GNA ORE.... ittt ettt ettt ettt ettt st e s bt et e sat e besate s bt et e sae et e satebeeatesbeeneesaeeatas 153
VSAM ettt ettt a ettt b et s h et e a ekt et e bt et e ehe et e eat e bt e at e bt et e eh e e bt eat e bt et e eheeteshe e beeaeenbeeaee 153
Data COMPIESSION SEIVICES. ..ciiiiicuiiiieieiiiieeeeeitteeeeeeteeeesessteeeeseasreeesseasseseeseassessesessenessssnsseesssnnsssees 154
NUCON CRangES. .. uvtiieiiiieiieieiteesittessittesssetessteessteessseeesssteesseeesssseessssessasseessssesssssnesssnesssessssenssnsees 155
RVZAY D Kl (o] g aT= 1 o o PO OSSR 155
BOUNAArY BOX USQEE.....iiiiiiiiiiiiiiiieesitessite e siteesitessaeesstee s sabtesssbeessbaessaseessssaessaseessnseessnsaessseesnnses 156
VTAM/VSAM WOTK ATBAS.cuuututtneeeeeeeeeeeeeeeeeeeeeee ettt e taaaaaa e e s aesseeseeeasessseereeeesssssssarasaaaaanannnsssssess 156
Helpful Hints fOr VSAM debUZEING......cociiiiiiiiiriieiiieeeiteseie e ee st ssit e st e s ae e s s e e s s e e s sbaeesnaeens 157
Debugging Data COMPIreSSION ErTOIS....uiiiciiiicieiiiieeeiieeseteeseteesstesssieesssree s sieessreessreessabeessaseessasens 157
An Example of Control and Data FLOW iN GCS.......oeiieciiiiee ettt eeiree e e s ectre e e eevree e s e naaee e e nnes 158

Chapter 10. Debugging TSAF.......ccccceiuiieiininecrecreniesrestestassasssssecsessessessessessassasssss 161

Summary of Steps to Follow When a TSAF ADENd OCCUIS......uuiiiiicciiieeeectitee et e et e e eevee e e e 161
USING The CONSOLE LOZ..iiiuiiiiiiiiiiiiieiiiteeiiee st ssit e st e st e st e s st e e s s beessabaesssbaeesasaeesabaessaseesssseessnseesssens 161
Using TSAF DUMPS t0 Diagnose ProblemS......c.uiiiiiiiiiieiiieesiee sttt st e st e st e ssaeeeseseeessneeesneeesans 162
Creating the TSAF Map ...ttt ettt ettt s e s st e s st e s st e e e st e e e s bt e esabaeessseeessbeeesnsaeessseeens 162
Creating @ TSAF DUMP it ciiiiiieeeiite sttt st e st e st essiteessbeessabaesssbaesssbaesssbeesssbaesssseeessseesssseessseesssees 163
ProCesSIiNG @ TSAF DUMIP..ciiiiitiiiitieiitieiieeeittesitte e sttt e ssste e st e e staeesbteesbaeessaeessseesssneesssaesseeesnsseenn 163
DiagnOoSiNG @ TSAF DUMP.iitiiiiieieiiieiriteeeitee e sttt e sireeessteessseeessaesssseeesssaeessseesssseessssesssssesssssesssssaessnne 163
Using System Trace Data to Diagnose ProblemS.......cuiiiiiiiiiiiiiieiiteesitessiee st st sve e bee e s 164
SEtHING EXTEINAL TraCING .. iiieiieieiieieiee ettt sttt et e s te e s ste e s sateesssbeesssteessssaesssseesnssaesassaesnns 164
ViIEeWING TSAF TraCe ENTIES. . iiiiiiiiiieeeiee ettt s st e st e s e s st e s s e e s s be e s s e e s sabaessbeeessseeesnsens 165
INTEIrACTIVE SEIVICE QUEBIIES. . uuuuurriiieiieieeeeieeeeiiiteree e e ettt eeeeesiaraareeeeeeeeeeesssssssssasssaeeeeeeesesssssssrsrsersseeeesennns 166

Chapter 11. Debugging AVS........ccccceieiiniinininineirecresiessestssssssassscsscsessessessessesseses 107

Using AVS DUMPS t0 DIiagnoSe ProbLEmMIS. ...ccccuiiiiiiiiiiiei sttt ste s siee s siee s svee s ste e s s aeessseessaseessaneas 167
Obtaining the GCS LOAA MaP...ciciiiiiiiiiiieiiieessieeseite st e st e ssteessteesssbeessaseesssteessssaessssaesssseessseesas 167
Creating an AVS DUMIP .. i i iiieeetteeste st sst e s st e s st e s s sbae s s beessbaeesbeeesbteessseeesseeessseeesnseeesnssessnsees 167
ProCesSing AN AVS DUMIP...ciccuieiiiieeiiiteiiieesiteessieessiteesssteesssseesssseessseeesssseessssessssseesssseesssseesssseessssees 168

vii

viii

DiagnoSiNg aN AVS DUMP.iicuieiicieeiiieeiiteesiteeseteesssteeseseeesasteesaseessaseessasseessseessaseessaseesssseesssseessaeessan 168

Using System Trace Data to Diagnose ProblemS.......cuiiiiiiiiiieiiienritessie st e s vee s s 169
SEttiNG INTEINAL TrACING . ciiicviiiiciieieiieeete ettt ettt et e st e e st e e sbe e s sbee s sabeeesabeessabeessseeesnsseesnnsaesnnees 169
SEtHING EXTEINAL TraCiNG .. iiieiieieiieieiee ettt ettt e s see e s sate e s ssteesssbeessseeessstaesssseessssaesnnsassnns 169
VIEWING AVS TraCe ENTIIES..cuiiiiieieiiieeciee ettt ettt ettt e s ate e sbte e ssate e ssaaeessaaeessaaessnseesnsaean 170

INTEIrACTIVE SEIVICE QUEBIIES. . uuuuurriiieiieieeeeieeeciiiteree e e ettt eeesesssraaeeeeeeeeeeeeesasssssssesreeeeeesesesssssssssrsesereeesssennn 171

Summary of Steps to Follow When an AVS AbeNd OCCUIS.......uuiiiiicciiieeeeciieee et e eetree e e aree e e 171

Appendix A. Problem-Specific Checklists......c.cccceceriuriierieiniieciceniaceceneececceneeness 173

(0N 01T o I O 3 =Tt 4 1= SR 173
(01 IR Y o 1= g o IO =T od {3 S 173
CT O Y 01T a T IO =Tk {11 RN 173
S O o 1= o o IO T=Tod =3 OSSR 173
CP Walit STate ChECKLIST...uuiiiieeiiiee ettt e et e e s et e e e e e tte e e e e e are e e e sensaaeesesnsseeeeesnnseneanan 174
Virtual Machine Wait State CheCKLIST........uuiii it e e e e e e s eabr e e e s e eabaeeeeens 174
RSCS Walit State CheCKLIST...cciuviiiei ettt ettt e e e e cte e e e s eree e e e e arae e e e eesteeeeeenseeeeeennsenneas 174
Application Program checklist for Unexpected OUIPUL........eiieiiiiiieiiiiieiieccrec et eseeee e 174
Checklists for Performance ProblemMS........ ettt eetree et e e e e e e s e v e e e e e e neae e e e ennees 175
FN I RN TR (=T o Yo o T 4 o SR 175
An Infinite LOoOP in @ Virtual MaChiNe.......ooi ittt e e et e e s e eaaaee e e 175
AN INFINItE LOOP IN RSCS.... ettt e e et e e e e et e e e e e be e e e s e e sbeeeseensteeeesanstaeesesnnseneasssnnes 175
L Fo Lo Y Ul =Y L] TSR 175
Inadequate SYSTEM ParameEterS. ciiee ettt e e e e cree e e e e bee e e s e beee e s e steeeseeenseeeessnnnenns 175

Appendix B. GCS Control BLOCKS.......ccccetuieierinieniaceieniecantecsecestecscessecessessscassecsces 177

NUCON — GCS NUCLEUS CONSEANT AFB@....eiiiiiieiiiieiiiieiiieessiee st e st e ssteesssteesssseesssseesssseesssseesssseessnseens 177
STE — NUGCON EXTENSION.c..utiiiiieeiiieeieieesetee st e sstesseieesssieeesseessseesssseessaseesssseesssseesssseesssseesssseessssees 182
I =T N - 1] 1 =] (o To! O OO PRSP 186
S =]] =1 £ 2] Fo od TR 188
SMAB — Storage ManagemeNt. ueeiiiieiiiee ettt ettt ettt e e st e e e et e e s e snre e e e e s nneee e s e nreeeeeennee 192
ANCH — Storage ANCHOE BLOCK.....cuiiiiiiiiiieeeiee ettt ettt e s ree e ssaee e ssaeeesneas 194
EXTWA — External Interrupt Handler WOrk Ar€a.........ueeecccieeeeieciieeeeecieee e eeveee e sevtne e e e veee e e e 195
SVCWA — SVC Interrupt Handler WOrK Ar€a.......ccuveeeeeecieeeeeecieieeeeeitie e e e ecvte e e e sevteee s senreeeesesnnnneeeean 195
PGMWA — Program INterrupt WOrK AFBa......ccccueeiecieeieiieiniieieiteeeieeseieessieesseeessseessveesssaesssaesnnne 196
VMCB — Virtual Maching Control BLOCK........cccuiiiciiiiiieirieenee ettt ssvee s e svee s 196

Appendix C. Trace Table Codes.....cccceicieiiuiiieireieienieceniecaccensecansecscessesssessscssecsss 199
Trace Table Codes fOr 32-byte ENTIES. ... ittt e e st e e e ree e e s ra e e e e e nnraeas 201
Trace Table Codes fOr 64-byte ENTIES. ..o ittt et e e st e e e rae e e s e eaae e s e e nnraeas 232

[\ 0] { o =Y - TR - ¥

L= e LT T= T TR 258
Terms and Conditions for Product DOCUMENTAION.......uuuuueieceeeeeeee et 258
IBM ONliNg Privacy Stat@mMENt....cc ettt ectte et e e etee e e e e ette e e s e enee e e e s nsaaeesesnsaneeeesnnseeeasan 259

(=11 FT0 Y= - ¥] 1)7 - X |

Where 10 Get Z/VM INTOrmMation. ..o oot e e et e e e e e e e e e e et e e e e e aas b sesseeeeeeaanes 261
Z/VM BASE LIDIAIY .. ueiiiiiiicciiiee ettt ettt e e sttt e e e s ettt e e e e e taeeeeesasteeeeesnbaeeeeenseeaeeeansstaeeeanstaeesennsenes 261
Z/VM FaCilities A0 FQATUIES....ccoiiiiiieeieeeeeee ettt e e e e e e e ettt e s sssseseeeeaaesseeseeeresssssssnes 262
PrErEQUISITE PrOQUCTS. . uiiiiiciiiie e ettt sttt e e e e cte e e e e e te e e e sesteeeeeeeasteeeeeenssaeeeeenssasesaannsaeeessasseneesannes 264
RELIATEA PrOQUCTS.c.iiiiiii ittt eeee e e e e e e e et e e se e sbabbaaeeeeeeeeeseeeasssssrsesneeeeeeessennnnnes 264

L =) . . 1.

Figures

1. Problem INQUIrY DAta SNEET.....ccuiii ittt te e e te e e eree e sate e e ate e e aaeeenaeeennes 11
2. Trace Table Pages fOr EACh PrOCESSON.....iuiiiiiciiiiciieeciteectee st e st e st e st e ssre e s saeessaseessnseesssseesnsseesnnseeas 35
3. Format of @ 32—yt TraCe ENtrY..ucc ettt te e e te e e te e e te e e e te e s ate e e enseeseneaeentaeennes 36
4. Sample Trace Entry in @ CP ADENA DUMP.....uiiiiiiciieec ettt e e e et e e e s eareee e s e brae e s e s snaeeeeennaeeeean 36
5. Tracing Events for Specific and NONSPECIfIC USEIS.......ccccuiiieiiiiciiieeiieeciee ettt e etee e te e tee e seae e 38
6. Using a Radix Tree t0 Locate an RDEV BLOCK.......cciiciiiiiieiiieicte ettt svee e vee s sve e s seve e e 54
7. Server Console Log (Operation EXCeption OCCUITE).....cuuiiiciieeiiieeiee ettt e vee e e aee e 77
8. Server Console Log (Protection EXCeption OCCUITE).....uieiieiieeciiecieeieeeeete et e steeve e see e e re e e e saee s 78
9. Server Console Log (File Pool Server System Error OCCUITed)......ccecuiieeiieeeiieeeiieeecieeeecieeeceeeeveeeesveee s 78
10. The Task ID Table (TIDTB)...ccceccueeceerieesieeieeeteesteesteesteesseeeseesseesseesseesseessessssesssessssssssessssssssesssessnsennes 125
11. TSHB and GSBB CONTrOl BLOCKS.......cecuiiuteiieieierieiteteete sttt ettt ettt see e s see s nne s 138
L2, COW MAPPING..uttiiiciiieieiieeeeieeeeteesetteesetteesesteesasteesseeesaseessaseeesaseessaseesssseessaseessaseessaseesssseesssseessasseessseessns 152
13, SAMPLE GCS GrOUP.ceicvieeeiieeeiteeeeiteeeeitteeeiteeeeiteeeesteeeestaeessaeessaeessaeeasaeeassasaassasesssasaassaeessessssseeesssesensses 158
14, SAMPLE TSAF CONSOLE LOG..ciiitiiiiiieieiiiieiteeeiteesitee s ssteeesteeesteessteeesaeessaeeesssseeesssaessssaesnsseessnsessssseesnnses 162
15. Format of a 32-byte CP Trace Table ENTry......c ittt ettt et e e e s 199
16. Format of a 64-byte CP Trace Table ENTry.... ettt tree e e e trre e e e nrae e e e enns 200

Tables

B4 AV I o] o] (=T o o T Y o1 SRS 3
2. NON-Z/ArchiteCTUIrE MOAE BUEST....ciiciii e ittt ettt eree e st e e sbe e e s bt e e sbe e e sbeeesseessaseessnseessnsens 31
3. Z/ArChItECTUIrE MOTE GUEST....eei et e e e e e e te e e et a e e e bee e s beeeesbeeeensaeeenseeeenseeesnsens 31
4. Approximate Number of Trace Entries per Cylinder or per 2000 BLOCKS.......cccccvvereeecrieeeeecrieeeeeecreeeeenns 42
5. Contents of the GCS Nucleus Constant Area (NUCON).....cc.cevuerirreneenenietetesieeee ettt 177
6. Contents of the NUCON EXTENSION (SIE)...uuiiiiiiiiiiiiiiiiieiteeeeeeeeeeeeessireeeeteeeesesssessssssssssesesesesssssssssssssnsssnes 182
7. CoNtENS OF TASK BLOCKS.....couiiiieteiteeee ettt sttt st sre e s 186
8. CoNteNtS Of STATE BLOCKS. .. .iiiiiiiieiieetteeee ettt sttt st st et e st et e st e s beesneesareesneesnneeans 188
9. Contents of StOrage ManNa@EMENT.....ccccuiii ettt ettt et e e te e e ete e s eae e e rte e seateeesstaeeenseeenseeeennees 192
10. Contents of Storage ANChOr BLOCKS......ciiciiiiciiiiciee ettt see e see s ree e s svee e svee s sbee e ssbee e sbeeesaneas 194
11. Contents of the External Interrupt Handler Work Area (EXTWA)......oiiciieecieeecieeccvee e evee e 195
12. Contents of the SVC Interrupt Handler Work Area (SVCWA)......oocueeeeieeeceeeeereeeeteeeeteeeereeeevee e vee e 195
13. Contents of the Program Interrupt Work Area (PGMWA).....ccuiiieiiieccieecctee ettt ecvee e evee e svneesvae e 196
14. Contents of the Virtual Machine Control BLOCK (WVMCB).......ccueeieiiiieeiiiieeeeeiiiieeeeeeeeeeeesesesssssssseseseeeesss 196
15. Trace COAes fOr 32-DYtE BNIIIES....uiiiiiecciieccee ettt e s st e e be e e e ab e e e e abee e s asae e nseeesnseas 203
16. Trace codes for 64-byte entries (FOrMAL 2)......cccceeiieieeeiee et eeee e eeree e e reeeeeree e e ereeeereeeenns 234

xi

About This Document

This document provides diagnostic guidance information to help IBM customers identify, report, solve,
and collect information about problems in the z/VM operating system.

Intended Audience

This information is intended for system programmers, system analysts, users who will do diagnosis of
z/VM, and users collecting data for diagnosis.

This document assumes that you understand the hardware controls and features of your installation. It
also assumes that you can use assembler language and have experience with programming concepts and
techniques.

Where to Find More Information

You can find more information about VM and diagnosis in the publications listed in the “Bibliography” on
page 261.

Links to Other Documents and Websites

The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

© Copyright IBM Corp. 1991, 2025 xiii

xiv z/VM: 7.4 Diagnosis Guide

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1991, 2025 XV

https://www.ibm.com/docs/zvm/7.4?topic=how-send-feedback

xvi z/VM: 7.4 Diagnosis Guide

Summary of Changes for z/VM: Diagnosis Guide

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (]) to the
left of the change.

SC24-6301-74, z/VM 7.4 (July 2025)

This edition includes changes to support product changes that are provided or announced after the
general availability of z/VM 7.4,

The following topic is updated:
- “[7.4VM66824, 7.3 VM66823] z/VM support for the IBM z17 family” on page xvii

SC24-6301-74, z/VM 7.4 (June 2025)

This edition includes changes to support product changes that are provided or announced after the
general availability of z/VM 7.4.

[7.4 VM66824, 7.3 VM66823] z/VM support for the IBM z17 family

With the PTFs for APARs VM66824 and VM66854 (7.4 CP), VM66858 (7.4 RACF), VM66823 and
VM66853 (7.3 CP), and VM66857 (7.3 RACF), z/VM 7.4 and 7.3 provide support for the IBM z17 family.
For more information, see z/VM support for the IBM z17 family in the z/VM: Migration Guide.

Trace codes 1740-1748 are added to the Appendix C, “Trace Table Codes,” on page 199 topic.

GC24-6280-74, z/VM 7.4 (January 2025)

This edition includes terminology, maintenance, and editorial changes.

GC24-6280-74, z/VM 7.4 (September 2024)

This edition supports the general availability of z/VM 7.4. Note that the publication number suffix (-74)
indicates the z/VM release to which this edition applies.

Miscellaneous updates for September 2024
The following trace table codes are new:

« Stack Urgent CPEBK - X'3300". See “Trace Table Codes for 32-byte Entries” on page 201.
« Stack Return CPEBK - X'3300". See “Trace Table Codes for 32-byte Entries” on page 201.

The following trace table codes are updated:

 Stack IORBK/TRQBK - X'3000". See “Trace Table Codes for 32-byte Entries” on page 201.
« Stack CPEBK - X'3300". See “Trace Table Codes for 32-byte Entries” on page 201.
 Stack Work Bits - X'3700'". See “Trace Table Codes for 32-byte Entries” on page 201.

GC24-6280-73, z/VM 7.3 (October 2023)

This edition includes terminology, maintenance, and editorial changes.

© Copyright IBM Corp. 1991, 2025 xvii

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpf2_v7r4.pdf#nameddest=2q25_metis
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpf2_v7r4.pdf#nameddest=hcpf2_v7r4

GC24-6280-73, z/VM 7.3 (September 2023)

This edition includes changes to support product changes that are provided or announced after the
general availability of z/VM 7.3.

[VM66678, VM66709] Warning Track Interruption Facility

With the PTFs for APARs VM66678 (CP) and VM66709 (Performance Toolkit), z/VM 7.3 exploits a feature
of Processor Resource/Systems Manager (PR/SM) called the warning-track-interruption facility. z/\VV\M's
exploitation of this facility helps improve guest response time and overall performance of workloads that
are run on vertical-low or vertical-medium logical processors.

The following trace table codes are new:

« Warning-Track-Interruption through TPEI - X'3601". See “Trace Table Codes for 64-byte Entries” on
page 232.

« Resumption After Warning-Track-Interruption Suspension - X'3602". See “Trace Table Codes for 64-
byte Entries” on page 232.

The following trace table code is updated:
« Exit to the Dispatcher - X'3600'". See “Trace Table Codes for 32-byte Entries” on page 201.

The following trace table code can be used to debug warning-track support:
« External Interruption (z/Arch) - X'8100". See “Trace Table Codes for 64-byte Entries” on page 232.

GC24-6280-73, z/VM 7.3 (May 2023)

This edition includes terminology, maintenance, and editorial changes.

GC24-6280-73, z/VM 7.3 (September 2022)

This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

NVMe emulated device (EDEVICE) support

NVMe devices that are connected through PCI Express (PCle) adapters can be defined and managed as
Fixed-Block Architecture (FBA) EDEVICEs. As such, all host and guest FBA functions are supported except
for those functions that require stand-alone support such as warm start and checkpoint. Linux guests

that exploit EDEVICEs that are defined on NVMe adapters are not eligible for live guest relocation. NVMe
adapters are only available on LinuxONE servers. For more information, see Defining and Managing NVMe
Devices in z/VM: CP Planning and Administration.

The following 64-byte trace table entries are added:

« Host PCI Load - X'1220'

« Host PCI Store - X'1221"

« NVMe I/O - X'1222'

See Appendix C, “Trace Table Codes,” on page 199.

xviii z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=nvme
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=nvme
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4

Introduction to Debugging

Chapter 1. Introduction to Debugging

z/VM manages the resources of a single computer such that multiple computing systems appear to exist.
Each "virtual computing system", or virtual machine, is the functional equivalent of a real processor.
Therefore, the person trying to determine the cause of a z/VM software problem must consider these
separate areas:

« The Control Program (CP), which controls the resources of the real machine

« The virtual machine operating system running under the control of CP, such as CMS (Conversational
Monitor System) or GCS (Group Control System)

« The problem program that was running under control of the virtual machine operating system when the
problem occurred.

See:

« Chapter 2, “Debugging Interactively,” on page 21 for information on how to debug problems within a
virtual machine

« Chapter 5, “Debugging CP,” on page 49 for information on CP

« Chapter 6, “Debugging CF Service Machine Problems,” on page 59 for information on CF service
machines

« Chapter 7, “Debugging CMS,” on page 61 for information on CMS

« Chapter 8, “Debugging the SFS Server or CRR Recovery Server,” on page 75 for information on the SFS
and CRR server machines

« Chapter 9, “Debugging GCS,” on page 83 for information on GCS
« Chapter 10, “Debugging TSAF,” on page 161 for information on TSAF
« Chapter 11, “Debugging AVS,” on page 167 for information on AVS.

This guide contains information about using the Dump Viewing Facility and VM Dump Tool for debugging.
For complete information explaining how to use the Dump Viewing Facility, see z/VM: Dump Viewing
Facility. For complete information explaining how to use the VM Dump Tool, see z/VM: VM Dump Tool.

If a problem is caused by a guest operating system, see the document pertaining to that operating system
for specific information.

If it becomes necessary to apply a Program Temporary Fix (PTF) to a component of z/VM, see z/VM:
Service Guide for information on applying PTFs.

How to Start Debugging

A good approach to debugging is to:

1. Recognize that a problem exists
2. Identify the problem type and the area affected

3. Analyze the data you have available, collect more data if you need it, then isolate the data that pertains
to your problem

4. Determine the cause of the problem and correct it, or report it to the appropriate IBM Support Center.

Does a Problem Exist?
The most common problems occurring on your z/VM system or virtual machine are:

« Abnormal end (abend)
« Unexpected or incorrect result
« Infinite loop

© Copyright IBM Corp. 1991, 2025 1

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa4_v7r4.pdf#nameddest=hcpa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa4_v7r4.pdf#nameddest=hcpa4_v7r4

Introduction to Debugging

« Wait state
« Hang condition
 Slow performance.

Abnormal End

The most obvious indication of a problem is the abnormal end (abend) of a program. An abend occurs
when an error condition that cannot be resolved by the system causes a program to end prematurely.
Whenever a program abnormally ends, a message is issued. This message provides information that can
help you isolate the problem. A dump often accompanies an abnormal end. See “Abends” on page 11 for
a description of the various types of abends and their possible causes.

Unexpected or Incorrect Result

Another obvious indication of a problem is unexpected or incorrect output or result. If your output is
missing, incorrect, or in a different format than expected, a problem exists. For more information, see
“Unexpected Results” on page 14.

Infinite Loop

A loop is a set of instructions that are run repeatedly as long as one or more conditions are present.
However, when the condition that is supposed to be satisfied in the loop is never reached, an infinite
loop occurs. If your program takes longer to run than anticipated, or if your output is repeated more
than expected, your program may be in an infinite loop. For a description of different types of loops, see
“Loops” on page 14.

Wait State

A z/VM system or virtual machine is in a wait state between the time the system asks for data and begins
to receive it. No other processing can occur in a system or virtual machine that is in a wait state. When
the system or virtual machine is in a disabled wait state, it accepts no incoming data. When the system
or virtual machine is in an enabled wait state, it continues to accept incoming data. Enabled wait states
occur frequently and are quite easily resolved or resolve themselves. Disabled wait states are not easily
resolved and almost always signal a serious problem, but often a message is issued alerting you to a
disabled wait. If your program is taking longer than expected to run, the virtual machine may be in a wait
state. See “Wait States” on page 15 for a closer look at the common types of wait states.

Hang Condition

A hang condition occurs when either CP cannot continue processing or a virtual machine cannot be
dispatched. As a result, z/VM halts processing. For more information, see “Hang Conditions” on page 18.

Slow Performance

Your system is not limited to the problems listed above. Other problems that are not easily determined
may appear to slow the system's performance or cause unproductive processing time. These can be
caused by poor system tuning or problems with your hardware. See z/VM: Performance for information
about system tuning and performance.

Identifying the Problem

Identifying problems is not always easy. An abnormal end is indicated by an error message. Unexpected
results become apparent after the output is examined. Loops, wait state conditions, and hang conditions
may not be as easy to identify as an abend or unexpected results.

Table 1 on page 3 summarizes problem types and the areas where they may occur.

2 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=hcpb8_v7r4

Introduction to Debugging

Table 1. z/VM Problem Types

Problem Type Where Problem Occurs Distinguishing Characteristics
Abend cp For a complete discussion of reasons for abends

CF service machine and system programmer's actions, see the FZMS,

cMS i I CP, GCS, TSAF, and AVS abend code charts in the

GCS appropriate component of the messages and codes

TSAF documents.

AVS

Virtual machine abend When z/0S°® or VSE abnormally ends on a virtual

(other than CMS) machine, the messages issued and the dumps
taken are the same as they would be if z/OS or VSE
abnormally ended on a real machine.

CP may stop a virtual machine if an irrecoverable
machine check occurs in that virtual machine.
The system operator receives a message at the
processor console. Also, the virtual machine user
is notified that his virtual machine was terminated.
Unexpected Results CP If an operating system runs properly on a real
machine, but not properly with CP, a problem
exists. Inaccurate data in files, such as spool files,
is an error.

Virtual machine If a program runs properly under the control of a
particular operating system on a real machine, but
does not run correctly under the same operating
system with CP, a problem exists.

Wait CP For a complete discussion of CP and loader wait
state codes, see z/VM: CP Messages and Codes.

Loop CP disabled loop The processor console wait light is off. The problem
state bit of the real PSW is off. No I/O interrupts are
accepted.

Virtual machine disabled The program is taking longer to run than

loop anticipated. Signaling attention from the disabled
loop terminal does not cause an interrupt in
the virtual machine. The virtual machine operator
cannot communicate with the virtual machine's
operating system by signaling attention.

Virtual machine enabled Excessive processing time is often an indication of

loop a loop. Use the CP QUERY TIME command to check
the elapsed processing time. If time has elapsed,
periodically display the virtual PSW and check the
instruction address. If the same instruction, or
series of instructions, continues to appear in the
PSW, a loop probably exists.

Performance System hang z/VM cannot complete any tasks. No I/O interrupts
are accepted.

User hang The program is taking longer to run than
anticipated. No I/O interrupts are accepted.

Immediate signs of problems within a user's virtual machine are:

Chapter 1. Introduction to Debugging 3

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw0_v7r4.pdf#nameddest=hcpw0_v7r4

Introduction to Debugging

« Return codes
« Error messages.

Return Codes

A return code is a number generated by the software associated with a computer program. This
return code indicates to your program the condition that arose when your machine tried to carry out
the program. Based on this condition, the return code influences your program in determining how
subsequent processing of your overall task should proceed.

You must design your program to respond to specific return codes in specific ways. Your z/VM system—its
system programming—is no different. Depending upon the return code received from a program in its
system software (or, for that matter, in an application program that you are running on z/VM), your system
is programmed to react in a certain way.

Return codes differ in severity. Some conditions are handled more smoothly than others.

For an explanation of the meaning of individual return codes, see the appropriate component of the
messages and codes documents.

Messages

A message is a sentence or phrase transmitted by z/VM that describes a situation or problem the system
encountered while processing an instruction or command. Like a return code, it describes a situation

and influences a reaction to it. Unlike a return code, which is generated for the benefit of a running
computer program, a message is issued for the benefit of the person who wrote the program or issued the
command.

z/VM has many messages and is programmed to generate a particular one when a given situation or
problem occurs.

Messages consist of a message identifier (for example, DMSACCO17E) and message text. The identifier
distinguishes one message from another. The text is a phrase or sentence which either describes a
condition that has occurred, or requests a response from the user.

For an explanation of individual messages, see the appropriate component of the messages and codes
documents.

Analyzing the Available Data
Sources that are available to help identify and correct a problem include but are not limited to:
« Adump

A nucleus load map (NUCMAP)

- Registers

« The program status word (PSW)

The console log
« Atrace

The symptom record.

You may need to use one or more of the above sources, or others, to find exactly where a problem
occurred. For an explanation of individual abend codes, see the appropriate component of the messages
and codes documents.

Dump
A dump is a record of the contents of your machine's storage at a given moment.

For more information on dumps and how to use them, see Chapter 4, “Creating a Dump,” on page 45 and
Chapter 5, “Debugging CP,” on page 49.

4 z/VM: 7.4 Diagnosis Guide

Introduction to Debugging

Nucleus Load Map
A nucleus load map (NUCMAP or load map) is a file that contains the following information:

« Alist of the storage addresses of all control sections (CSECTSs). A control section is the part of a program
that the programmer defines as a relocatable unit. It is a block of code that can function properly in any
part of storage. All elements of a CSECT are loaded into adjoining locations in storage.

« The storage addresses of all modules loaded into the CP nucleus, CMS nucleus, or GCS nucleus. The CP
nucleus contains that portion of CP resident in host storage. Similarly, the CMS or GCS nucleus is that
portion of CMS or GCS present in virtual storage.

« Alist of all modifications performed on the modules in the nuclei. This includes all the maintenance that
IBM has performed on the modules and all the modifications your organization has made to them.

One load map exists for CP, another for CMS, and another for GCS. z/VM creates a load map each time
CP or CMS is built—that is, when your system is first installed or after it is repaired or modified. 1 In this
manner the load maps are kept up to date.

Load maps are useful particularly when you are dealing with an infinite loop. Load maps also complement
the information found in a dump. When you use one, you should have the other handy.

Load maps can be found in the following locations:

« The CPNUC MAP file, on the MAINT virtual machine's disk at virtual address 194, contains the CP
NUCMAP.

« The CMSNUC MAP file, on MAINT's disk at virtual address 193, contains the CMS NUCMAP.

Registers

A register is an area of storage specially set aside in your processor. Your machine is equipped with
a prefix register, 16 general purpose registers, 16 control registers, 16 access registers, and 16 floating-
point registers.

General purpose registers contain information being manipulated by the user program currently running.
Floating-point registers hold numeric values associated with some exponent. These are usually very small
or very large numbers—for example, 45.6 x 1012, While general and floating-point registers contain data
directly related to the processing of a user application program, control registers are used to calculate
and keep track of certain values pertaining to the operation and management of the z/VM system. Access
registers can designate any address space, including the current instruction space.

Your program uses a register to store a piece of data that it is currently using. A register can contain a
numeric or alphabetic value, an address, or an instruction that the computer is currently using to do some
small step in your overall task.

A register holds a piece of data only as long as it is needed. The traffic in and out of any given register
can be quite heavy. A great deal can be learned by examining the contents of your system's registers if a
problem occurs.

The contents of your system's registers are included in any dump. It is also possible to examine the
contents of your registers by issuing various commands and during a trace.

Program Status Word

The PSW (program status word) indicates your system's general status. There are six different types of
system PSWs that provide diagnostic information. Each one has an old and new value. The PSWs are as
follows:

» Restart

« External (EXT)

1 These activities are performed by the system programmer or system operator using the MAINT virtual
machine. This is the virtual machine you use to install, service, and maintain your z/VM system. The z/VM:
Installation Guide and z/VM: Service Guide explain these activities.

Chapter 1. Introduction to Debugging 5

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa2_v7r4.pdf#nameddest=hcpa2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa2_v7r4.pdf#nameddest=hcpa2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa4_v7r4.pdf#nameddest=hcpa4_v7r4

Introduction to Debugging

Supervisor call (SVC)
Program (PGM)
Machine-check (MCH)
Input/output (I/0).

The PSW format is described in detail in the ESA/390 Principles of Operation or z/Architecture Principles
of Operation. The state of your system, whether it is waiting or processing, whether it can receive I/0
interrupts or not, and the address of the next instruction to be executed are reflected in these parts of the
PSW:

Bit 6
Indicates whether your system accepts (or is enabled for) input/output (I/0) interrupts. If this bit

is set to 0, your machine is not enabled for I/0O. If this bit is set to 1, your machine accepts I/O
interrupts.

Bit 12
Indicates the architecture mode. It is 1 when in ESA/390 mode and 0 when in z/Architecture® mode.

Bit 14
Indicates whether your z/VM system is in a wait state. If this bit is set to 0, your system is not in the
wait state, and processing can proceed normally. If this bit is set to 1, your system is in a wait state.

If bit 14 is set to 1, the setting of bit 6 usually? indicates whether the wait state is enabled (1) or
disabled (0).

Bits 64-127 (for z/Architecture mode) or 33-63 (for ESA/390 mode)
Contain the address of the next instruction your machine is set to process.

Examining the current PSW periodically may help you identify a loop. If the PSW instruction address
always has the same value, or if the instruction address has a series of repeating values, the program
probably is looping.

You can see the contents of the PSW by using the CP DISPLAY command with the PSWG option for
z/Architecture (64-bit) mode or the PSW option for ESA/390 (31-bit) mode. You can also determine the
PSW by looking at a dump.

Console Log

A console log is a record of everything that has appeared on a certain virtual machine's console. This
includes all commands, messages, return codes, and results.

When problems arise in the system, you are generally interested in the console log for the system
operator's console. The log includes all:

« Messages and return codes that have been sent to the operator
« Commands and instructions entered at the operator's console
« Responses that the operator has made to requests for action by the system.

The console log can describe the sequence of events that lead to a malfunction, error, or problem from
the system's point of view.

It is not always just the system operator's console log that might help you. For example, if you are having
a problem with RSCS, the console log for the RSCS virtual machine might help.

At the system operator's console, the recording of the console log is automatic and takes place at all
times. To get a console log at other consoles you must enter the command:

cp spool console start

2 Bit 6 can be set to 0 and bit 14 set to 1 without the CPU being in a disabled wait state. For example, this
could occur if bit 7 is on and the program is waiting for an external interrupt.

6 z/VM: 7.4 Diagnosis Guide

Introduction to Debugging

to begin the recording. The best place for this command for CMS users is in the PROFILE EXEC for the
virtual machine in question, or in the PROFILE GCS for GCS users. That way, you know a console log is
always being recorded. You can also enter the command from the command line and have it in effect
temporarily.

Issue
cp spool console close

to create a console log of the information recorded up to this point and put the file in your virtual printer.
Recording continues until you log off the system or explicitly stop it with the CP SPOOL CONSOLE STOP
command.

To close and purge the spool file of an existing log, issue:

cp spool console purge

Traces

A trace is a chronological record of every major event that has taken place within your z/VM system or
within a virtual machine running there. A major event corresponds to a program or set of instructions that
your system or virtual machine has run, representing a major accomplishment in an overall task. The trace
shows how each event affected virtual storage, registers, the PSW, and other aspects of your system.

A trace is invaluable when trying to track down a problem, particularly in the case of wait states, infinite
loops, and unexpected output. Often, traces themselves suggest solutions to the problem. In a trace, you
see the overall effect of every event that occurred before and after the problem arose.

When CP tracing is active in z/VM, system events are recorded as trace table entries in real storage.

The number of trace table pages available to a processor is determined by the TRACE portion of the
STORAGE statement in the system configuration file. You can override the effect of the TRACE portion of
the STORAGE statement by using the CP SET TRACEFRAMES command. The trace table is described in
the section titled “Trace Entries” on page 35.

An internal trace table is maintained for GCS. Consult “Internal Tracing Facilities” on page 83 for more
information.

z/VM and GCS provide several commands you can enter to generate a trace of your own. Each has certain
characteristics that appeal to certain needs, as explained below.

TRACE
A CP command that monitors events in a virtual machine. The TRACE command monitors such events
as instruction processing, I/0 activity, successful branching, or a change in a register or storage
location. This command records trace data in a trace entry that you can send to a virtual console, a
virtual printer, or both. For more information, see z/VM: CP Commands and Utilities Reference. Also,
review the section of this document titled “Commands That Monitor Events” on page 25.

TRSAVE
A CP command that saves trace data. You can save CP trace table data in system trace files or on
tape. You can save trace data defined by the TRSOURCE command in system trace files only. For
more information, see Chapter 3, “Using Traces to Debug,” on page 35 and z/VM: CP Commands and
Utilities Reference.

TRSOURCE
A CP command that defines a trace as an I/O trace (I0), a data trace (DATA), or a guest trace (GT).
TRSOURCE also activates or deactivates a trace, displays the status of a trace, and removes trace IDs
from CP. For more information, see Chapter 3, “Using Traces to Debug,” on page 35 and z/VM: CP
Commands and Utilities Reference.

ETRACE
A GCS command that initiates the recording of events. The ETRACE command works with the
TRSOURCE command. For more information, see Chapter 9, “Debugging GCS,” on page 83 and z/VM:
Group Control System.

Chapter 1. Introduction to Debugging 7

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Introduction to Debugging

ITRACE
A GCS command that enables or disables the recording of events in the GCS internal trace table.
Rather than record events taking place in the system as a whole, the GCS internal trace table records
events within a virtual machine or virtual machine group. For more information, see “Using the ITRACE
Command and GTRACE Macro” on page 84 and z/VM: Group Control System.

There are even more tracing tools for those interested in the Systems Network Architecture (SNA). VTAM®
and NCP provide SNA users with several types of traces. These traces can record events that take place
at several points in a network as data travels from a virtual machine, through VTAM and NCP, to an SNA
device. Among those items you can trace in an SNA environment are:

- Buffer contents

« Input/output events

« Line activity

DFSMS/VM buffer use
Transmission group activity
Internal VSCS and VTAM events.

Detailed information is available in the VTAM Diagnosis Guide and the VTAM Diagnosis Reference.

Symptom Records

A symptom record is a collection of data conveying basic information about the z/VM software problem.
Use the Dump Viewing Facility and the VM Dump Tool to display this data. See z/VM: Dump Viewing
Facility and z/VM: VM Dump Tool.

Determining the Cause

After you identify the type of problem, you must determine its cause. There are recommended procedures
to follow. These procedures are helpful, but do not identify the cause of the problem in every case. Be
resourceful. Use whatever data you have available. If you do not find the cause of the problem after
following the recommended debugging procedures, you may need to perform desk-checking.

The section “How to Use z/VM Facilities to Debug” on page 11 describes procedures to follow in
determining the cause of various problems that can occur in CP or in the virtual machine. See “Commands
That Monitor Events” on page 25 for information on using the CP TRACE command to debug a problem
program.

Table 1 on page 3 summarizes the types of problems you may encounter in z/VM.

Data You Need Before Calling IBM for Assistance

If you need to call IBM software support for assistance, it is very important for you to have the following
information:

« A problem inquiry data sheet

A list of all applied maintenance for the module(s) involved
- The operator's console log

Verification that all known errors against the recommended service upgrade (RSU) tape have been
applied

The load map for the failing system.

Problem Inquiry Data Sheet

The problem inquiry data sheet (see Figure 1 on page 11) identifies information that should be available
to ensure that you get the correct solution from IBM. It might be a good idea to make copies of the sheet,
to have blank sheets available in case you have to call IBM.

8 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Introduction to Debugging

System Information

When completing the problem inquiry data sheet, you should use the QUERY CPLEVEL command to help
you determine these facts about your system:

« The version, release and modification level
« The service level.

For example, if you were on a z/VM system and you entered
query cplevel
you would get:

z/VM VERSION v RELEASE r.m, SERVICE LEVEL yynn (64-bit)
GENERATED AT mm/dd/yy hh:mm:ss timezone
IPL AT mm/dd/yy hh:mm:ss timezone

v
identifies the software version level.

rm
identifies the software release level and the release modification level.

SERVICE LEVEL yynn
identifies the software service level number. The number indicates the most recent RSU service tape
that has been applied. yy is the last 2 digits of the year and nn is the sequential number of the
RSU tape for that year. It cannot indicate which individual updates have been incorporated into CP.
The system programmer can find out what individual updates have been incorporated by using the
VMSES/E tool. For more information, see z/VM: Service Guide.

GENERATED AT mm/dd/yy hh:mm:ss timezone

GENERATED AT mm/dd/yyyy hh:mm:ss timezone

GENERATED AT yyyy-mm-dd hh:mm:ss timezone
indicates the date and time (translated to the current active time zone) that the CP system software
was written to DASD. One of the above responses is generated depending on the date format specified
on the user's default date format.

IPL mm/dd/yy hh:mm:ss timezone

IPL mm/dd/yyyy hh:mm:ss timezone

IPL yyyy-mm-dd hh:mm:ss timezone
indicates the date and time the CP system software was last started. One of the above responses is
generated depending on the date format specified on the user's default date format.

Record this information on the problem inquiry data sheet.

CPU Information

The QUERY CPUID command should be used to help you to determine what to enter for the CPU serial on
the problem inquiry data sheet.

If you entered
query cpuid
you get:
CPUID = FF12069A20848000

This is the 16-digit processor identification associated with the real machine. Ignore the FF, which refers
to a second level system. The 10 digits that follow the FF are the CPU serial:

 The first six digits are the processor identification number
« The next four digits are the processor model number.

Ignore the last four digits of this 16-digit field.

Chapter 1. Introduction to Debugging 9

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa4_v7r4.pdf#nameddest=hcpa4_v7r4

Introduction to Debugging

Note: You can also obtain the system release level, service level, and CPU serial number through the
Dump Viewing Facility or VM Dump Tool if a dump was created for the problem. See the description of the
SYMPTOM subcommand in z/VM: Dump Viewing Facility and z/VM: VM Dump Tool for more information.

Problem Inquiry Data Sheet Fields
The problem inquiry data sheet consists of the following fields:
Customer

Enter the name of your business.

Date
Enter today's date.

Problem #
Enter the problem number that IBM assigns to you when you call.

Access Code
Enter the customer number that the IBM marketing representative gives to you.

CPU Serial
Enter the 10-digit number from using the QUERY CPUID command, as described above.

Severity
Enter 1, 2, 3, or 4. The severity codes mean:
1
You are unable to use the program, resulting in a critical impact on your operations.
2
You are able to use the program, but you are severely restricted.
3
You are able to use the program with limited functions that are not critical to overall operations.
4

You have found a way to circumvent the problem.

Operating System, Service Level, and Release Level
Enter the system information exactly as displayed in the first line of output from the QUERY CPLEVEL
command.

Failing Component
Enter the name of the component that you suspect is causing the problem (for example, CP, CMS,
TSAF). Include service level, release level, and other information as appropriate.

Problem/Inquiry Description
Enter the reason for calling IBM software support.

Keywords
Indicate words that best describe the problem, using the provided checklist.

Documentation Available
Indicate the available documentation, using the provided checklist.

Problem Tracking
Enter a log of your activity on the problem, including dates, names, and activity.

Resolution APAR #
Enter the APAR number assigned to the problem (if defect-related).

RSU Tape PTF #
Enter the RSU tape number on which the PTF for the resolution APAR resides.

Other
Enter any other information pertinent to this problem.

10 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Introduction to Debugging

Shaoaot 1 of
Cushomes: Datn: Problem &
Acpess Code CPU Sarial Savarity.
Cutput from DUERY CFLEVEL command:
Failirg Gopmponent:
Froblemyinguiry Desonption:
Kaywards:
Aleperd: Fodila: Wail State Coder
Label _ Labal; ——— Labal: _
Lo Loo: Lo S
Loop Addrosses:
Incoemact Dutpul (INCDSARDOUT):
Paricemance;
Diocumontation Availabie:
Exorage Dump User's Aouting Consclo Log ——
Frogram Listng Systom Log —— RSULmEl
Eworago Map Diagrostic Oulput Service Lovel —
Fast Dala _ TP COMFIG Liskis)—— WMILDAD List ——
Froblem Tracking:
Daln Narme: ACtivity
Rosolution REU Tapa
APAR ¥ PFTF & Othiar

Figure 1. Problem Inquiry Data Sheet

How to Use z/VM Facilities to Debug

After you have identified the problem and the area where it occurred, you can gather the information
needed to determine the cause of the problem. The type of information you want to look at varies with
the type of problem. The tools used to gather the information vary depending upon the area in which the
problem occurs. For example, if the problem is a loop condition, you will want to examine the PSW. For a
CP loop, an authorized user's console must be used to display the PSW, but for a virtual machine loop you
can display the PSW by using the CP DISPLAY command.

If a procedure tells you to dump storage using the CP DUMP command, you should see Chapter 4,
“Creating a Dump,” on page 45.

Abends

The following types of abnormal terminations (abends) can occur in z/VM:
- CP

 CF service machine

« CMS

« SFS or CRR Server

« GCS

- TSAF

- AVS

« Virtual machine.

Whenever a program abnormally terminates, a message is issued. This message provides information that
can help you correct the problem. The following descriptions provide guidelines for debugging each type
of abend.

Chapter 1. Introduction to Debugging 11

Introduction to Debugging

CP Abend

z/VM abnormally terminates when system integrity may be jeopardized. When this happens, a dump is
taken. Internal checks on control block fields often determine whether CP issues an abend.

An abend dump includes two primary sources of diagnostic information:

- An abend code
« Symptom record information.

The abend code tells what module has issued the dump and what actions CP is taking or has taken. The
format of a CP abend code is:

mmm##H#

where:

mmm
identifies which module issued the abend. The complete module name is prefaced by HCP (for
example, HCPmmm).

Hitt
is the code number.

For example, abend FREOOL means that CP module HCPFRE issued the abend and 001 is the code
number.

When the system terminates abnormally, you receive an error message. For an explanation of error
messages and abend codes, see z/VM: CP Messages and Codes. The explanation for the abend code gives
you a start in performing diagnosis.

z/VM issues two types of abends—hard and soft.

Hard Abend

z/VM issues a hard abend when it cannot isolate the error to a single virtual machine. CP dumps all CP
and free storage to a dump device. You can set the dump device either at initialization or with the CP
SET DUMP command. See z/VM: CP Commands and Utilities Reference for a description of the SET DUMP
command.

Soft Abend

z/VM issues a soft abend when CP can isolate the error to a virtual machine or when system integrity is
not jeopardized by the error. A soft abend dump results, giving only selected CP pages.

Reasons for the CP Abend

CP will stop and take an abnormal end dump under three conditions:
1. Program check in CP

Examine the program old PSW and the program interrupt code fields in the prefix page (or page 0) to
determine the failing module.

2. Module issuing the HCPABEND macro

Examine the SVC old PSW and abend code fields in the prefix page (PFXABEND) of the dump to
determine the module that issued the abend (SVC 4 for a soft abend) and the reason it was issued.

3. Operator forcing a CP system restart on the processor console

Examine the restart old PSW field in the prefix page to find the location of the instruction that was
processing when the operator forced a CP system restart. The operator forces a CP system restart
when CP is in a disabled wait state or loop. See your processor manual for the appropriate method to
force a CP system restart.

Use the dump to determine why CP terminated and then determine how to correct the condition.

12 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw0_v7r4.pdf#nameddest=hcpw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Introduction to Debugging

The DUMPLOAD utility lets you load the dump file from a spooled reader file. The VMDUMPTL command
can be used to display information from a CP dump. See z/VM: CP Commands and Utilities Reference for
more information on the DUMPLOAD utility. See z/VM: VM Dump Tool for information on the VMDUMPTL
command and its subcommands and macros.

CF Service Machine Abend

For information on CF service machine abends, see Chapter 6, “Debugging CF Service Machine Problems,”

on page 59.

CMS Abend
For information on CMS abends, see Chapter 7, “Debugging CMS,” on page 61.

SFS or CRR Server Abend

For information on SFS or CRR recovery server abends, see Chapter 8, “Debugging the SFS Server or CRR
Recovery Server,” on page 75.

GCS Abend
For information on GCS abends, see Chapter 9, “Debugging GCS,” on page 83.

TSAF Abend
For information on TSAF abends, see Chapter 10, “Debugging TSAF,” on page 161.

AVS Abend
For information on AVS abends, see Chapter 11, “Debugging AVS,” on page 167.

Virtual Machine Abend (Other than CMS)

The abnormal termination of an operating system (such as z/0S or VSE) running under CP appears the
same as termination of the operating system on a real machine. See the documents for that operating
system for debugging information. However, all of the CP debugging facilities may be used to help you
gather the information you need.

The CP VMDUMP command dumps virtual storage to a specified virtual machine's reader spool file. You
can use the DUMPLOAD utility described in the z/VM: CP Commands and Utilities Reference to process the
file created by the VMDUMP command.

If you choose to run a stand-alone dump program to dump the storage in your virtual machine, be sure

to specify the NOCLEAR option (which is the default) when you enter the CP IPL command. Although CP's
IPL simulator program is loaded into a 4 KB page of the virtual machine's virtual storage, CP restores the
page to its pre-IPL contents.

If the problem can be reproduced, it may be helpful to trace the processing using the CP TRACE
commands. Also, you can display and alter registers, control words (such as the PSW), and data areas.
The CP TRACE commands can be very helpful in debugging because you can gather information at various
stages in processing. A dump is static and represents the system at only one particular time. Debugging
on a virtual machine can often be more flexible than debugging on a real machine.

z/VM may stop a virtual machine if an irrecoverable machine check occurs in that virtual machine.
Hardware errors usually cause this type of virtual machine termination. Such errors place the virtual
machine into console function mode where it can be made to continue processing on the main processor
if you enter the CP BEGIN command. In some cases a check-stopped virtual machine may be indicative
of a more pervasive error. A damaged page in an NSS might affect many logged on users. Each user trying
to use the NSS could be check-stopped in turn. In another example, a product, such as VTAM running in a
check-stopped Service Virtual Machine (SVM) could cause an outage for each and all of its users.

Chapter 1. Introduction to Debugging 13

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Introduction to Debugging

Unexpected Results

The type of errors classified as unexpected results can range from operating systems improperly
functioning under CP to printed output in the wrong format.

If an operating system runs properly on a real machine but does not run properly with CP, a problem
exists. Also, if a program runs correctly under control of a particular operating system on a real machine
but does not run correctly under the same operating system with CP, a problem exists.

First, there are conditions (such as time-dependent programs) that CP does not support. Be sure that one
of these conditions is not causing the unexpected results in CP. See z/VM: CP Planning and Administration
for a list of the restrictions.

Next, be sure that the program and operating system running on the virtual machine are the same as
those that ran on the real machine. Check for the same:

« Job stream
« Copy of the operating system (and program)
« System libraries.

If you still cannot find the problem, look for an I/O problem. Try to reproduce the problem while tracing
all virtual I/O instructions and interrupts with the CP TRACE command. Compare the trace entries. A
discrepancy may indicate that one of the CP restrictions was violated, or that an error occurred in CP.
Remember, however, that some virtual machines may produce test subchannel (TSCH) or test I/O (TIO)
loops while waiting for I/O to complete. This is often an usual occurrence and does not necessarily signify
an endless loop.

If unexpected results occur (such as TEXT records interspersed in printed output), you may wish to
examine the contents of the system or user files. Non-CMS users may run any of the utilities included in
the operating system they are using to examine and rearrange files. See the utilities publication for the
operating system running in the virtual machine for information on how to use the utilities.

CMS users should use the DASD Dump/Restore (DDR) utility to print or move the data stored on direct
access devices. See z/VM: CP Commands and Utilities Reference for more information on the DDR utility.

Loops

A loop occurs primarily when an instruction sets or branches on a condition incorrectly. You can usually
recognize the existence of a loop when productive processing ceases and the program continually repeats
the same series of PSW instruction addresses. If I/O operations are involved and the loop is very large, it
may be extremely difficult to define, and may even include nested loops. The problem in loop analysis is
finding either the instruction that should open the loop or the instruction that passes control to the set of
looping instructions. To help you find the problem in a loop, you may want to spool your console to record
the instructions or trace the instructions to the printer.

CP Disabled Loop

The processor operator should perform the following sequence when gathering information to find the
cause of a disabled loop:

1. Trace the instructions currently running in the processor.
2. Force a CP system restart to cause an abend dump to be taken.
3. Save the information collected for the system programmer or system support personnel.

After the processor operator has collected the information, the system programmer or system support
personnel should examine it:

1. Use the instructions traced by the operator and the load map to determine the modules that may be
involved in the loop.

2. If the cause of the loop is not apparent, examine the CP internal trace table in the dump to determine
the modules that may be involved in the loop.

14 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Introduction to Debugging

3. Other information in the dump can be used to determine the condition that caused the loop, such as:

- PSW

« General purpose registers
« Control registers

 Access registers

- Prefix page(s) of each CPU.

Virtual Machine Disabled Loop

When a disabled loop in a virtual machine exists, the virtual machine operator cannot communicate with
the virtual machine's operating system. This means that signalling attention does not cause an interrupt.

The virtual machine operator should perform the following sequence when trying to find the cause of a
disabled loop:

1. Enter the CP console function mode.
2. Use the CP TRACE command to trace the entire loop.

3. USE the CP DISPLAY command to display general purpose and control registers as appropriate
depending on when and how they are used.

4. Use the CP DUMP or CP VMDUMP command to dump your virtual storage. If VYMDUMP was used, use
the DUMPLOAD utility to put the dump onto a disk. For a dump of a ESA/390 Architecture guest,
you can use the Dump Viewing Facility or the VM Dump Tool to analyze the dump. For a dump of
z/Architecture guest, you must use the VM Dump Tool. For details, see z/VM: Dump Viewing Facility or
z/VM: VM Dump Tool.

5. Examine the source code, if available.

Use the information just gathered, along with listings, to try to find the entry into the loop.

If the operating system in the virtual machine itself manages virtual storage, it is usually better to use
that operating system's dump program. CP does not retrieve pages that exist only on the virtual machine's
paging device.

Virtual Machine Enabled Loop

The virtual machine operator should perform the following sequence when trying to find the cause of an
enabled loop:

1. Use the CP TRACE command to trace the entire loop. Display the PSW and the general purpose and
control registers.

2. Use the CP DUMP or CP VMDUMP command to dump your virtual storage. If VYMDUMP was used, use
the DUMPLOAD utility to put the dump onto a disk. For a dump of a ESA/390 Architecture guest,
you can use the Dump Viewing Facility or the VM Dump Tool to analyze the dump. For a dump of
z/Architecture guest, you must use the VM Dump Tool. For details, see z/VM: Dump Viewing Facility or
z/VM: VM Dump Tool.

3. Consult the source code to search for the faulty instructions, examining previously ran modules if
necessary. Begin by scanning for instructions that set the condition code or branch on it.

4. If the manner of loop entry is still undetermined, assume that a wild branch has occurred and begin a
search for its origin.

Wait States

No processing occurs in the virtual machine when it is in a wait state. When the wait state is an enabled
one, an I/0O interrupt causes processing to resume. Likewise, when CP is in a wait state, its processing
ceases.

To help identify a wait state in your virtual machine, you can periodically enter the command:

Chapter 1. Introduction to Debugging 15

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Introduction to Debugging

{#icp indicate user

to display the resources used by the program. Compare the following resources:

« IO, which is the total number of nonspooled I/0 requests issued
« READS, which is the total number of page reads that have occurred
« WRITES, which is the total number of pages written.

When these resources don't change, the wait state probably exists.

CP Disabled Wait

CP enters a disabled wait state when system operation ends because of an error or when system
shutdown is complete. When CP or one of its service programs enters a disabled wait state, it loads a
wait state code into the program status word (PSW). This PSW appears on your console at the end of the
wait state message you receive. For a description of the disabled wait state code and suggested actions
to take, see the message that has the same number as the wait state code. For example: if the wait state
code was 1010, you would look up message HCP1010 in z/VM: CP Messages and Codes.

A disabled wait state usually results from a hardware malfunction. Most disabled wait states occur

during the initial program load (IPL) process. Many can be attributed to normally correctable hardware
errors that may cause a wait state because the operating system error recovery procedures are not yet
accessible. Other frequent disabled wait states during IPL involve the system resident device (SYSRES),
which may have been formatted improperly, defined with the wrong device type, or may have experienced
an I/0 error.

Disabled wait code 1010 is often found when installing a z/VM system for the first time. This code
indicates that no console was available; typical reasons are:

« No definition for a console on the OPERATOR_CONSOLES statement in the system configuration file or
the console was defined incorrectly

« If running in virtual mode, the CP TERMINAL CONMODE 3270 command was not entered or a CP
DEFINE CONSOLE command was entered incorrectly.

Codes 961, 964, and 9025 are common and can occur after the system is shut down.

A severe machine check during post-IPL processing can also cause a CP disabled wait state.

CP Enabled Wait

If you determine that CP is in an enabled wait state, but that no I/O interrupts are occurring, either there
may be an error in CP or CP may be failing to get an interrupt from a hardware device. Force a CP system

restart at the operator's console to cause an abend dump to be taken. Use the abend dump to determine
the cause of the enabled (and noninterrupted) wait state. After the dump is taken, IPL the system.

Using the dump, examine the:

« Virtual machine definition blocks (VMDSCAN)
« Real device block (RDEVBK).

See “Reading CP Abend Dumps” on page 49 for specific information on how to analyze a CP dump.

Virtual Machine Disabled Wait

CP does not allow the virtual machine to enter a disabled wait state or certain interrupt loops. Instead, CP
notifies the virtual machine operator of the condition with one of the following messages:

HCPGIR450W CP entered; disabled wait PSW psw
HCPVIX4521I CP entered; external interrupt loop
HCPGIR453W CP entered; program interrupt loop

and enters the console function mode.

16 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw0_v7r4.pdf#nameddest=hcpw0_v7r4

Introduction to Debugging

An explanatory message from the operating system running in your virtual machine may precede the
HCPGIR450W message. If you did not receive an explanation, examine the PSW portion of the message.
To interpret the wait state code in the PSW, see the section on wait states of the corresponding manual for
the system you were running in your virtual machine. Take the specified corrective action, then re-IPL the
virtual system.

An Example of a Virtual Machine Disabled Wait

You were running CMS and received the message:

HCPGIR450W CP entered; disabled wait PSW OOOAOO00 0OEOOE70O

This means that CMS received a virtual machine check. Re-IPL CMS and try again.

For message HCPVIX4521, determine why the external interrupt new PSW is enabled for an interrupt
condition that does not clear upon acceptance (that is, the timer is not expected to contain a negative
value).

To determine the reason for message HCPGIR453W, examine the program check information in page zero
of your virtual storage. If this error occurred immediately after the IPL command, the problem may be that
you are trying to run a System/390° guest in an XC virtual machine, or the reverse. To correct this error,
enter:

1. The CP QUERY SET command to find out the current MACHINE setting.
2. The CP SET MACHINE command to select the proper virtual machine.

If the virtual machine was running disconnected when the loop occurred, the system logs it off. If this
happens, you may need to reproduce the interrupt loop with the virtual machine running connected to a
console. To continue, IPL the virtual system again.

To examine the contents of storage locations, registers, and control words on a terminal, use the CP
DISPLAY command. Some of the data you can see includes:

« The program status words

« The general-purpose registers

« The control registers

- The storage contents of your virtual machine.

Then use the CP DUMP or CP VMDUMP command to dump your virtual storage. If VYMDUMP was used, use
the DUMPLOAD utility to put the dump onto a disk. For a dump of a ESA/390 Architecture guest, you can
use the Dump Viewing Facility or the VM Dump Tool to analyze the dump. For a dump of z/Architecture
guest, you must use the VM Dump Tool. For details, see z/VM: Dump Viewing Facility or z/VM: VM Dump
Tool.

If you cannot find the cause of the wait or loop from the information just gathered, try to reproduce the
problem, this time tracing the processing with the CP TRACE command.

If CMS is running in the virtual machine, you may also use the CMS debugging facilities to display
information or trace the processing. See “Using CMS to Debug” on page 68 for more information.

Virtual Machine Enabled Wait

If the virtual machine is in an enabled wait state, try to find out why no I/0 or external interrupts have
occurred to allow processing to resume.

CP treats one case of an enabled wait in a virtual machine the same as a disabled wait. If the virtual
machine does not have the "real timer" option, CP issues the message:

HCPGIR450W CP entered; disabled wait PSW psw

Because the virtual timer is not decreased while the virtual machine is in a wait state, it cannot cause
the external interrupt. The "real timer" runs in both the problem state and wait state and can cause an

Chapter 1. Introduction to Debugging 17

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Introduction to Debugging

external interrupt that allows processing to resume. The clock comparator can also cause an external
interrupt.

Hang Conditions

A hang condition occurs when either CP cannot continue processing or a virtual machine cannot be
dispatched. As a result, z/VM halts processing.

When gathering data about hang conditions, keep in mind that a delay may occur between the time the
error-causing request is issued and the time the system hangs. The module running when the hang occurs
may not be the module responsible for the hang. As a result, some tools may provide no useful diagnostic
data. For example, CP continuously creates trace entries in a trace table for each active processor in your
configuration. Later trace entries may be written over the trace entry describing the event that caused the
hang.

There are two types of hangs:

« System
« User

System Hangs
System hangs occur when z/VM cannot perform any tasks to completion.

The best way to handle a system hang is for the hung system's operator to restart z/VM from the
operator's console. At that point, CP issues an SVC002 abend dump and attempts a restart.

Diagnosing the cause of a system hang can be difficult. The following actions are starting points:

« Locate the active virtual machine descriptor block (VMDBK) to determine which user was running at the
time of the dump. By looking at the scheduling controls (VMDSLIST and VMDSTATE) in that VMDBK, you
can determine if this was the active VMDBK and what the user was doing.

You can use the VMDUMPTL command of the VM Dump Tool for this. See z/VM: VM Dump Tool for more
information about the VMDUMPTL command.

« Check the restart old PSW. It points to the last instruction before the restart.

« Examine any trace entries available.

User Hangs

A user hang occurs when a virtual machine is no longer dispatched by CP. You need to determine if the
hang was caused by z/VM or the operating system you are running in the virtual machine. The first step is
to look at the operating system running in the virtual machine to determine if it is hung.

One way of determining that the virtual machine is hung is to attempt a #CP command. (For more
information on issuing CP commands with #CP, see z/VM: CP Commands and Utilities Reference.) For
instance, entering the command:

{icp indicate user

causes one of two things to appear on your screen if you are in line mode:

1. Information about your virtual machine, if it is not hung
2. Nothing, if your virtual machine is hung.

If your virtual machine appears to be hung and it is not, you can enter the command:

{icp indicate queues

If the user is in the eligible list, then over-committing storage by entering the SET SRM STORBUF
command can move the user off the eligible list and onto the dispatch list. See z/VM: Performance
specifically the section on tuning the storage subsystem for more information. As with a system hang,

18 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=hcpb8_v7r4

Introduction to Debugging

the best source of information is the VMDBK. From an authorized user, locate the hung user's VMDBK.
Check the scheduling and dispatching controls (VMDSLIST and VMDSTATE) in the hung user's VMDBK to
determine what state the user was in when the hang condition occurred. If you cannot free the user based
on the cause of the hang condition, you may need to force the user off and log the user on again. As a last

resort, you may need to restart z/VM from the operator's console. This will create an SVC002 abend dump
that can be used to do more diagnosis.

SSI Cluster Problem Diagnosis

For information on SSI cluster problem diagnosis, including descriptions of cluster modes and member
states, see the "z/VM SSI Cluster Operation" section in z/VM: CP Planning and Administration.

Use of z/VM Debugging Commands

There are many commands that are useful for interactively debugging a problem. The chapters that follow
contain many examples of commands that can be used with the different components of z/VM. However,
the commands that you use are not limited to the examples that are given. Any commands or locally
produced routines can be used for debugging a problem.

Chapter 1. Introduction to Debugging 19

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4

Introduction to Debugging

20 z/VM: 7.4 Diagnosis Guide

Debugging Interactively

Chapter 2. Debugging Interactively

CP provides interactive commands that control the system and enable the user to control his virtual
machine and associated control program facilities. The virtual machine operator using these commands
can gather much the same information about his virtual machine as the operator of a real machine
gathers using facilities on the processor console.

Several of these commands (for example, CP DISPLAY or CP STORE) examine or alter virtual storage
locations. When CP is in complete control of virtual storage (for example, as in the case of CMS and

GCS) these commands run as expected. However, when the operating system in the virtual machine itself
manipulates virtual storage (for example, as in the case of MVS or VSE), you should be very cautious if you
use these CP commands.

This chapter presents an overview of the z/VM commands used for debugging. Instructions for using the
commands discussed are in the following documents:

« z/VM: CP Commands and Utilities Reference
« z/VM: Dump Viewing Facility.

You can use the following categories of commands to help diagnose problems interactively:
« Commands that display and dump machine data

« Commands that set and query system features, conditions, and events

« Commands that monitor events

« Commands that alter the contents of storage

« Commands to collect and alter system information.

Commands That Display and Dump Machine Data

The CP DISPLAY command allows a user to display data from several real and virtual machine
components at a terminal. The CP DUMP command allows a user to print data from several real and
virtual machine components at a printer. The data that can be displayed or printed is controlled by the
privilege class of the user. See z/VM: CP Commands and Utilities Reference for more information on these
commands.

Use the CP DISPLAY command to display the following kinds of control information at your terminal or the
CP DUMP command to print the following kinds of control information on a printer.

- The contents of first-, second-, and third-level storage
« The contents of storage in address spaces of XC virtual machines
« Storage keys

« Prefix register

« General purpose registers (GPRs)

- Floating-point registers

 Control registers

« Access registers

« PSW

« The subchannel information blocks (SCHIBS)
 Linkage stacks

« Virtual machine host access list.

© Copyright IBM Corp. 1991, 2025 21

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging Interactively

Terminal Output

You can use the DISPLAY command to examine the general purpose registers, floating-point registers,
control registers, and access registers. For example, the commands:

display gg
display g
display gi
display g2-5
display y
display x7
display ar

result in displays of all the GPRs (display gg or display g), GPR1, a range of GPRs 2 through 5, all the
floating-point registers, control register 7, and all access registers, respectively.

The DISPLAY command also displays the PSW and SCHIB:

display pswg
display psw
display schib

Class G users can display virtual machine storage information. Class C or E users can display first
level-storage information by using the DISPLAY H command. The examples that follow are examples of
virtual machine storage. First-level storage output is similar except that the displayed line begins with H
instead or R. The storage information is displayed at your terminal in either of the following formats:

« Four-byte groups, aligned on fullword boundaries, hexadecimal format, with four fullwords per line. For
example, if you enter the DISPLAY command as:

display 1026-102c
you receive the response:
ROOOOLO24 XXXXXXXX XXXXXXXX XXXXXXXX Fé6

« 16-byte groups, aligned on 16-byte boundaries, hexadecimal format, with four fullwords and EBCDIC
translation per line. For example, if you enter the DISPLAY command as:

display t1026-102c
The response is:

(EBCDIC trans.)
ROOOOLO20 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX F6 *................ *

You can also specify the area of storage to be displayed by entering a hexadecimal byte count such as:
display 1024.12

The response displays 20 bytes as follows:

ROOOOLO24 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX F6
ROOOOLO34 XXXXXXXX

In addition, the storage key is displayed on the first line, as well as at every page boundary.
The previous responses illustrate the byte alignment that takes place in each of the two display formats.

If the first location to be displayed is not on the appropriate 4- or 16-byte boundary, it is rounded down to
the next lower boundary that applies.

If the last location to be displayed does not fall at the end of the appropriate 4- or 16-byte group, it is
rounded up to the end of that group.

If you enter:

22 z/VM: 7.4 Diagnosis Guide

Debugging Interactively

display k1024-3800

the storage keys that are assigned to each 4K segment of the specified storage area are displayed. For
example, the response might be:

ROOOO1000 TO OO37FF KEY=F6
ROOOO3800 TO 003800 KEY=EO

Contiguous 4K segments with identical storage keys are combined.

To display all storage keys, enter:
display k0-end

You can display any of the control registers. For example, enter:
display x1 4 a

and receive the response:

ECR 1 = XXXXXXXX

ECR 4 = XXXXXXXX

ECR 10 = XXXXXXXX
Printer Output

With the DUMP command you can dump the contents of all available registers, the PSW, the virtual
machine's host access list, and the storage keys, along with any specified area of virtual storage, to the
virtual machine's printer.

To print only the registers, the PSW, and the storage keys, you need only enter:

dump 0

To also print an area of virtual storage, you can specify the beginning and ending hexadecimal locations:

dump 1064-10ff

You can also specify in hexadecimal the beginning location and the number of bytes to be dumped:

dump 1064.9b

If you are printing a series of dumps, you can identify each one by including its identification on the DUMP
command line, following an asterisk:

dump 1000-2000 * dump no. 1

When you direct dump output to a printer, the dump output is mixed in with any printed program output.
If you want dump output separated from other printed output, use the CP DEFINE command to define a
second printer. Dump output is always sent to the virtual printer having the lowest address, so you must
define the dump printer at a address below the one used for program output. If the printer is defined in
the z/VM director as address O0E and you enter:

define printer 006

The dump output will go to the printer at address 006 and any other printed output will go to the printer at
address OOE.

To print the dump data on the real printer you must first close the virtual printer. Enter:

close 006

This closes the dump data spool file and releases it for processing on a real printer.

Chapter 2. Debugging Interactively 23

Debugging Interactively

You can use the CP VMDUMP command to dump the storage of your virtual machine. Then use the
DUMPLOAD utility to put the dump onto a disk. For a dump of a ESA/390 Architecture guest, you can use
the Dump Viewing Facility or the VM Dump Tool to analyze the dump. For a dump of z/Architecture guest,
you must use the VM Dump Tool. For details, see z/VM: Dump Viewing Facility or z/VM: VM Dump Tool.

When you enter at the terminal:
vmdump 150-200

or
vmdump 400:500

CP dumps the contents of virtual machine storage at the hexadecimal addresses between X'150' and
X'200' or between X'400' and X'500', respectively.

If you enter:

vindump 150.50
CP dumps the contents of virtual storage starting at X'150' for a total of X'50' bytes.
If you enter:

vmdump 150.all

CP dumps the contents of virtual storage from location X'150' to the end of the virtual machine address
space, including guest storage and all the DCSSs above guest storage.

Commands That Set and Query System Features, Conditions, and
Events

The SYSTEM and SET commands set system-controlled functions and events; the QUERY command lets
you determine the status of those settings.

The SYSTEM command is a privilege class G command that simulates the RESET and RESTART functions
on a real computer console. You can also use it to clear storage and store status in a virtual machine. The
SYSTEM command is described in the z/VM: CP Commands and Utilities Reference.

Some operands of the SET command useful for debugging are MSG, SMSG, WNG, EMSG, and IMSG. The
messages resulting from these settings may be useful to you while you are debugging.

The SET MSG function determines whether you receive messages sent by other users by way of the MSG
command.

The SET SMSG command turns on or off a virtual machine's special message flag. If the virtual machine
has issued DIAGNOSE code X'68' (AUTHORIZE), this flag determines whether the virtual machine accepts
or rejects messages sent by way of the SMSG command — when the flag is on, messages are accepted.

The SET WNG function determines whether you receive warning messages.

The SET EMSG command controls error message handling. Messages can be displayed in several ways
depending upon how this command is entered. If SET EMSG ON is specified, both the message identifier
and text are displayed. If SET EMSG TEXT is specified, only the message text is displayed. If SET EMSG
CODE is specified, only the identifier is displayed. If SET EMSG IUCV is specified, both the error code and
text are passed to the virtual machine through IUVC if a connection to the message system service exists.
If no IUCV connection exists, the message is handled as if SET EMSG ON had been entered. You can also
specify SET EMSG OFF so that no error messages are displayed. When you log on, EMSG is set to ON.
Because it displays the complete message, this setting is useful when you are debugging. The information
contained in the message identifier is especially helpful. It contains the name of the component and
module that issued the message as well as a message number which makes it easier to locate in z/VM: CP
Messages and Codes.

24 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw0_v7r4.pdf#nameddest=hcpw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw0_v7r4.pdf#nameddest=hcpw0_v7r4

Debugging Interactively

The SET IMSG command controls whether certain informational responses issued by some CP commands
are displayed at the terminal. Also, the SET IMSG command determines whether you receive messages
from CP when other users spool reader, printer, or punch files to your virtual machine.

When you are debugging, it may be useful to have all messages displayed at your terminal.
The SET RUN command controls whether the virtual machine stops when the attention key is pressed.

The QUERY command displays the status of features and conditions set by the SET command for your
virtual machine. When you log on, the MSG, EMSG, IMSG, and WNG operands of the SET command are set
ON, and the SMSG and RUN operands are set OFF. To verify these settings, use the QUERY SET command.

Commands That Monitor Events

The TRACE command monitors events that occur in your virtual machine. Some of the events that you can
trace include:

Instruction processing

Storage alteration

Register alteration
I/0 activity.

The TRACE command has many options. The primary operands allow you to selectively choose the events
to monitor. Each of the primary operands used with the TRACE command establishes trace traps. A trace
trap is a programming function that captures information about an event in your virtual machine. For
example, to trace all events, enter:

trace all
To trace supervisor calls, program interrupts, and changes to the access registers, enter:

trace svc
trace prog
trace ar

Continuing with this example, if, after specifying multiple activities to be traced, you decide to stop tracing
one or more of them, enter:

trace delete trapl
trace delete trap2

where trapl and trap2 are the identifiers for the program interrupt and access register trace traps. Tracing
is now confined to SVCs only.

You can also specify multiple trace events on a single command by using the TRACE GOTO command to
specify the name of a trace set that contains a list of trace commands to be run. To define the named
trace set, enter:

trace goto name
trace svc

trace prog
trace ar

To activate the named trace set, enter:
trace call name

To end the named trace set, enter:
trace end

or

trace return

Chapter 2. Debugging Interactively 25

Debugging Interactively

Controlling the Trace Information

There are several common options for controlling the amount of information you receive when you are
using the TRACE command and how the information is received.

For example, whenever you are recording trace output to display at your terminal, the virtual machine
stops running and enters the CP console read environment after each output line. If you do not want
program processing to halt every time a trace output message is issued to the terminal, you can use the
RUN option:

trace svc run

In the above example, the RUN option is used with a SVC trace. Entered in this way, the command lets you
watch supervisor call activity in your program without halting processing every time a call occurs.

If you do not require your trace output immediately, you can direct it to the printer, so that your terminal
does not receive any information at all. Also, tracing to the terminal takes you out of fullscreen mode.
You may want to direct your trace output to the printer to preserve the fullscreen environment if you are
tracing a fullscreen application (for example, XEDIT):

trace inst printer

When you direct trace output to a printer, the trace output is mixed in with any printed program output.

If you want trace output separated from other printed output, use the CP DEFINE command to define a
second printer. Trace output is always sent to the virtual printer having the lowest address, so you must
define the trace printer at a address below the one used for program output. If the printer is defined in the
z/VM director as address 00E and you enter:

define printexr 006

The trace output will go to the printer at address 006 and any other printed output will go to the printer at
address OOE.

When you finish tracing, use the CP CLOSE command to close the second virtual printer file:
close 006

If you want trace output at the printer and at the terminal, you can use the BOTH option:
trace all hoth

Trace output is always produced after the instruction is processed.

Restricting the Trace to an Address Range

The common options more clearly define the trace traps set by the primary operand. The PSWA option
lets you restrict instruction tracing to a particular address range. Note that the address range remains in
effect until you turn off the trace element set up by the TRACE command.

For example, entering the command:
trace instruct pswa 20000

causes program processing to halt after the instruction at location X'20000' is processed.

The following command:

trace instruct pswa 20000-20400

traces all the instructions within the range of X'20000' and X'20400' and produces output for each
instruction.

To see what events are currently being traced, enter:

26 z/VM: 7.4 Diagnosis Guide

Debugging Interactively

query trace

For detailed examples of tracing programs in a virtual machine, see z/VM: Virtual Machine Operation.

Selectivity

You can use many of the TRACE common options to increase selectivity. Using TRACE, it is possible to
limit tracing to a specific instruction or set of instructions. For example, to monitor only LR instructions
(operation code X'18"), enter:

trace instruct data 18

When the NORUN option is in effect, program processing halts after each monitored event. When the
RUN option is in effect, program processing continues after each event. TRACE also counts occurrences
between NORUN and RUN. These options are STEP, STOP, PASS, and SKIP. For example, to halt program
processing after 5 instructions in the range X'20000' to X'204FF' have been run, enter:

trace instruct pswa 20000.500 step 5

Program processing halts and enters the CP command environment.

Although the STEP option lets you step through your program more quickly without giving up all control,
every monitored instruction is displayed. If many instructions are processed before the problem occurs,
you may need to frequently clear your screen. You can change the frequency with which events are
displayed by using the PASS option. Ordinarily, every successful event is displayed. However, using the
PASS option makes it possible to specify the number of monitored events you want to skip before
displaying one. For example, to skip the display of 100 instructions and display the 101st, enter:

trace instruct pass 100

Tracing Successful Events

Another method of finding the failing instruction is to use the TRACE COUNT command to count the
successful trace events in your virtual machine, and the TRACE TABLE command to display a list of
successful branch instructions. If the program is abending with any sort of program exception, load the
failing program and enter the CP command:

trace prog
Follow this with the command:
trace instruct range 20000.500

(assuming the program is loaded at location X'20000' and is X'500' bytes in length). Then enter the
command:

trace count

Next start the failing program. No trace output is produced while the COUNT option is in effect. When the
program interrupt occurs, enter the QUERY TRACE command to display the current count:

query trace

You can trace the program after using the TRACE PASS option to get close to the problem.

You can also use TRACE COUNT in conjunction with more specific trace elements to produce the desired
results. For example, if a problem occurs as a result of processing an SVC 202 and the failing program

Chapter 2. Debugging Interactively 27

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb2_v7r4.pdf#nameddest=hcpb2_v7r4

Debugging Interactively

issues many SVC 202s before failing, trace only SVC 202s (operation code X'0ACA") and use TRACE
COUNT to count the occurrences. First, load the failing program and then enter:

trace svc aca
trace count

and start the program. When the error occurs, enter a QUERY TRACE to check the count.
query trace

You can trace the program after using the TRACE PASS option to get close to the problem.

For detailed examples, see z/VM: Virtual Machine Operation.

Tracing Storage Alteration

You can use the TRACE command to trace the alteration of storage in the user's virtual machine. If you
specify TRACE STORE, then whenever an instruction places a value into storage, that event is traced. See
the usage notes for the TRACE STORE command in z/VM: CP Commands and Utilities Reference for a list of
exceptions to the above statement. It is not necessary that this value be different from the previous value.

It is also possible to monitor the alteration of storage to a specific value. For example:

trace store into 20100 data 112757

monitors instructions that cause the storage at location X'20100' to become X'112757'. Note that these
instructions are traced even if the value at location X'20100' was already X'112757" before processing
any instructions.

The TRACE CMD Option

You can use the CMD option of the TRACE command to run any CP command (except SLEEP) whenever a
particular event occurs. For example:

trace instruct pswa 20000.500 run
trace store 204f0-204ff pwsa 20000.500 run cmd display 204f0-204ff

traces the processing of every instruction in the range X'20000' through X'204FF' and displays the
contents of storage at X'204F0' through X'204FF' every time any storage within the range X'204F0'
through X'204FF' is altered by an instruction in the range X'20000' through X'204FF'.

Also, you can use the CMD option to allow a program to continue at a specific address whenever a
particular event occurs. For example:

trace instruct pswa 20000.500 printer
trace branch into 0 run cmd begin 24£28

causes program processing to continue at location X'24F28' whenever a branch to location 0 occurs.
Processing continues after the instruction is displayed. When program processing resumes at location
X'24F28' and a subsequent branch to zero occurs, processing again begins at location X'24F28'. This can
result in a loop. You can use the CMD option to prevent this. For example, if LINEDIT is on, and the escape
character is set to " and the line end character is #, enter:

trace instruct 20000.500 printer
trace branch into 0 run cmd trace clear branch"i#tbegin 24£28

turns off the branch trace element and causes program processing to continue at location X'24F28' after
the instruction is displayed.

The commands associated with each trace element are run whenever the event described by the trace
element occurs. The commands are run in the order in which they appear in the set of events.

Note: If you enter a CP command while commands are being processed by TRACE, the output from the
commands may be interleaved.

28 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb2_v7r4.pdf#nameddest=hcpb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging Interactively

After you have specified the CMD option for a particular trace element, the CMD option remains in effect
until the trace element is turned off or until you change it. To change the option, see z/VM: Virtual Machine
Operation.

Stopping the TRACE

When you stop tracing, you must also enter the CLOSE command to release the spooled trace output file
for processing:

trace end
close vdev

For a more complete explanation, see “Controlling the Trace Information” on page 26.

Tracing Transactions

Trace traps can be defined to occur when the machine is running in transactional execution mode.
However, when a PER-based trace event (instruction, storage alteration, register alteration or branch
event) occurs during transactional execution, the transaction is aborted. Message HCP21061 is displayed
and the virtual machine is placed in CP READ. Without additional intervention, the virtual machine will
run from the transaction abort instruction address. This might result in the transaction being retried and
a perpetual cycle of trace events causing the transaction to abort repeatedly. The user has the option

to suppress PER-based trace events whenever the virtual machine is running in transactional execution
mode by specifying the TRACE command with the TXSUSPEND option. TXSUSPEND affects the active
trace set and remains attached to that set. TXSUSPEND can be removed from the active trace set by
specifying the TRACE command with the NOTXSUSPEND option. See z/VM: Virtual Machine Operation for
examples, and see z/VM: CP Commands and Utilities Reference for more information.

Commands That Alter the Contents of Storage

The following commands can be used to alter the contents of storage.

Altering Contents of Virtual Machine Storage (STORE Guest Command)

Use the CP STORE (Guest Storage) command to alter the contents of specified registers and locations in
virtual machine storage. The contents of the following can be altered:

« The contents of second-, and third-level storage

« The contents of storage in address spaces of XC virtual machines
- General purpose registers

 Floating-point registers

« Floating-point control registers

 Control registers

« Access registers

« PSW

Virtual storage can be altered in either fullword or byte units.

When using fullword units, the address of the first positions to be stored must have either an L or no
prefix. Each fullword operand can be from one to eight hexadecimal digits in length. If less than eight
digits are specified, they are right-justified in the fullword unit and padded to the left with zeros. For
example, the command:

store 1024 46a2
or

store 11024 46a2

Chapter 2. Debugging Interactively 29

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb2_v7r4.pdf#nameddest=hcpb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb2_v7r4.pdf#nameddest=hcpb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb2_v7r4.pdf#nameddest=hcpb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging Interactively

results in X'000046A2' being stored in locations X'1024' through X'1027".

On the other hand, the command:

store 1024 46 a2

implies storing two fullwords and results in the storing of X'00000046000000A2' in locations X'1024'
throughX'102B".

If the starting location is not a multiple of a fullword, it is automatically rounded down to the next lower
fullword boundary.

You can store in byte units by prefixing the start address with an S. The command:
store s1026 didé6c5

stores X'D1D6C5' in locations X'1026' through X'1028'. Note that the data storage is byte-aligned. If
an odd number of hexadecimal digits is specified, CP does not store the last digit, you receive an error
message, and CP ends the function. For example, if you specify:

store s1026 didé6c

CP stores d1 at X'1026' and d6 at X'1027'; when CP attempts to store c, it recognizes an incomplete
hexadecimal digit, and does not store the last digit.

You can store data into one or multiple consecutive registers.

General and control registers are loaded in fullword units that are right-justified and padded to the left
with zeros. For example, entering:

store g4 123456
loads GPR 4 with X'00123456'. The following command:
store g4 12 34 56

loads GPRs 4, 5, and 6 with X'00000012', X'00000034"', and X'00000056', respectively.

Floating-point registers are loaded in doubleword units. Each doubleword operand can be from 1 to 16
hexadecimal digits in length. If less than 16 digits are specified, they are left-justified in the doubleword
unit and padded to the right with zeros. For example:

store y2 00123456789

loads floating-point register 2 with the value X'0012345678900000'.

Altering Contents of Host Storage (STORE Host Command)

Privilege class C users can use the CP STORE (Host Storage) command to alter the contents of host
storage (first-level storage). For example, the STORE (Host Storage) command can be used to alter
information in the old and new PSWs. See z/VM: CP Commands and Utilities Reference for details.

Simulating the Hardware Store Status Facility (STORE STATUS)

You can use the STORE STATUS command to simulate the hardware store status facility. Selected virtual
machine data is stored in permanently assigned areas in low storage. Enter:

store status

The data stored by the STORE STATUS command is:

30 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging Interactively

Table 2. Non-z/Architecture mode guest

Address
Length Content

Dec Hex

163 A3 1 | Architectural-mode id (X'00")

212 D4 4 | Extended save area address. See note below.

216 D8 8| CPU timer

224 EO 8 | Clock comparator

256 100 8 [Current PSW

264 108 4 | Prefix register

288 120 64 | Access registers 0 through 15

352 160 32 | Floating-point registers 0, 2, 4, 6

384 180 64 | General registers 0 through 15

448 1CO 64 | Control registers 0 through 15

Note: The extended save area address is used only if it is provided. When the extended save area is
available, the virtual machine's floating-point registers 0 through 15 and floating-point control register are
stored there.

Table 3. z/Architecture mode guest

Address
Length Content
Dec Hex
163 A3 1| Architectural-mode id (X'01")
4608 1200 128 [Floating-point registers 0 through 15
4736 1280 128 | General registers 0 through 15
4864 1300 16 | Current PSW
4888 1318 4 | Prefix register
4892 131C 4 | Floating-point control register
4900 1324 4 [TOD programmable register
4904 1328 8| CPU timer
4913 1331 7 | Clock comparator
4928 1340 64 | Access registers 0 through 15
4992 1380 128 | Control registers 0 through 15

Note: If the operating system that is running in your virtual machine operates in the basic control mode,
these areas of low storage may be used for other purposes. You should not use this facility under these
conditions.

For detailed information about these commands, see z/VM: CP Commands and Utilities Reference.

When debugging, you may find it advantageous to alter storage, registers, or the PSW and then restart
the program. This is a good procedure for testing a proposed change. Also, you can make a temporary
correction and then continue to ensure that the program runs trouble free.

A procedure for using the STORE STATUS command when debugging is as follows:
« Enter the STORE STATUS command before entering a routine you wish to debug.

Chapter 2. Debugging Interactively 31

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging Interactively

« When processing stops (because an address stop was reached or because of an error), display the
status information that was stored with the STORE STATUS command.

« Enter STORE STATUS again and display the status information that was stored with the STORE STATUS
command. You now have the status information before and after the error. This information should help
you solve the problem.

STORE STATUS can also be done when taking a stand-alone dump by issuing the command on a CPU
where you will IPL the stand-alone dump utility.

Commands to Collect and Analyze System Information

The following commands can be used to collect and analyze system information when debugging:
« MONITOR

- INDICATE

« QUERY SRM

- LOCATE.

The CP MONITOR command provides a data collection tool that samples and records a wide range of
data. The CP INDICATE command provides a method to observe the load conditions on the system while
itis running. The CP QUERY SRM command provides observation facilities for analyzing internal activity
counters and parameters.

See z/VM: CP Commands and Utilities Reference for more information on the MONITOR, INDICATE, and
QUERY SRM commands.

See z/VM: Performance for more information on system tuning and performance.

Use the class C or E CP LOCATE command to find the address of CP control blocks associated with a
particular user, a user's virtual device, or a real system device.

What to Do If Your Program Loops

If your program seems to be in a loop, you should first verify that it is looping, and then interrupt its
processing and do one of the following:

« Halt it entirely and return to the previous environment
« Restart the program at an address outside of the loop.

An indication of a program loop may be what seems to be an unreasonably long processing time.

If you are in a long loop, you can use the CP TRACE command with the RUN option and look at the
addresses run to identify the loop.

In a smaller loop, you can verify a loop by checking the PSW frequently. If the last word repeatedly
contains the same series of addresses, it is a good indication that your program is in a loop. To check the
PSW of your virtual machine, you must be in the CP command environment. You can then use DISPLAY
PSW to examine the PSW by entering:

display psw
and then enter the command BEGIN to restart the program:
begin

If you are checking for a loop, you might enter both commands on the same line using the logical line end.
If the line end is set to a pound sign (#), enter:

display pswithegin

When you have determined that your program is in a loop, you can stop the program by entering the CMS
immediate command HX:

32 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=hcpb8_v7r4

Debugging Interactively

hx

If you want your program to continue at an address past the loop, you can use the CP command BEGIN to
specify the address at which you want to continue. For example, enter:

begin 20cd0O

You could also use the CP command STORE to change the instruction address in the PSW before entering
the BEGIN command. For example, enter:

store psw O 20cdOibegin

Debugging with CP after a Program Check

If a program check occurs while your program is running, your virtual machine may stop with a disabled
wait state. To force your virtual machine to stop when a program check occurs, use the TRACE command.

trace prog

All of your program's registers and storage areas remain exactly as they were when program interruption
occurred. The PSW that was in effect when your program was interrupted is in the program old PSW. Enter
one of the DISPLAY commands to examine its contents:

display psw prog
display pswg prog

If, after using CP to examine your registers and storage areas, you can recover from the problem, you
must use the STORE command to restore the PSW, specifying the address of the instruction just before
the one indicated by the program old PSW. For example, if your program was loaded at X'20000' and the
instruction address in your program is X'566' enter:

store psw 0 20566
begin

In this example, setting the first word of the PSW to 0 turns the wait bit off and clears all other information
in the first word, so that processing can resume.

Chapter 2. Debugging Interactively 33

Debugging Interactively

34 z/VM: 7.4 Diagnosis Guide

Using Traces to Debug

Chapter 3. Using Traces to Debug

When CP tracing is active, system events are recorded as trace entries in trace tables in real storage.
The initial number of trace table pages available to a processor is determined by the TRACE portion of
the STORAGE statement in the system configuration file. The TRACE portion of the STORAGE statement
lets you specify the number of trace table pages for the master processor and a percentage of that
number of pages for all alternate processors. The effect of this initial specification can be changed by
using the SET TRACEFRAMES command; the values currently in effect can be displayed by using the
QUERY TRACEFRAMES command. Trace entries are created for each processor in a configuration as long
as tracing is enabled.

Locating the CP Trace Table

CP keeps a detailed record in the CP trace table of every major event that takes place in your real
machine. This table is useful, particularly when trying to discover the events that led to an error in CP.

To find the address where trace tables begin, check the value in PEXTTPNT in the prefix page. For
additional information on the prefix page, see “HCPPFXPG: The Prefix Page” on page 51.

Control register 12 contains the address at which the next trace entry will be placed. That address, minus
X'20' or X'40' (depending on the entry length (see entry formats)) is the address of the last trace entry
created.

Note: Ignore bit 31 of control register 12. It is a flag indicating whether tracing is currently active.

Figure 2 on page 35 illustrates the concepts that each processor in a configuration has its own allotment
of trace table pages, that PFXTTPNT points to the beginning of the trace table, and that control register 12
points to the next trace entry.

PFXTTPNT / PFEXTTPNT
Beginning of / Beginning of)

trace table page trace table page

Next trace|entry

Next trace|entry

CR12
CR12

Trace table pages Trace table pages
for CPU 1 for CPU 2

Figure 2. Trace Table Pages for Each Processor

Trace Entries

Trace table entries can be 32 or 64 bytes. An entry's length and format are defined in its first two bytes:
- the low-order half of the first byte: 7x, where x is the number of register fields minus one

- the high-order bit of its second byte: y0, where y is 1 for 64-byte format and O for 32-byte format.
Thus the first two bytes of trace entries are:

« 7400 - 32-byte entries in the format further described below
« 7580 - 64-byte entries (this format is shown in Appendix C)

© Copyright IBM Corp. 1991, 2025 35

Using Traces to Debug

In addition to these first two bytes, trace table entries contain:

« A time-of-day clock value that indicates when the entry was made

« A constant field (0000)

« A code that defines the event being traced

« A maximum of 40 bytes of information about the specific event traced.

Figure 3 on page 36 shows the format of a 32—-byte trace entry as it would appear in a dump.

Contents of general purpose registers

Real Trace _ e .
slarage Tirme-of-day evant ¢ \
address clock coda
I 1] | I | | |
COTDICA20 T40030CT GAE4DGE40 li,‘iJEIE,l‘;iEI}:l G3000000 QOCAEZES OOTDO000 00000000 BO34CBAD
Lengih and Conatant
farmal indicatar field

Figure 3. Format of a 32—-byte Trace Entry

Each trace entry contains information on a specific system event. Consider the sample trace entry shown
in Figure 4 on page 36:

1 2 3 4 5 6 7

\ | | | | | |
00F83F80 74008776 67F53000 00002C00 0000000C 00C9CIC4 O00FC0298 00814488 8007BD3A

Figure 4. Sample Trace Entry in a CP Abend Dump

In this 32—byte trace entry at address X'00F83F80', the number over the blocks of storage refer to the
following items:

1. The time-of-day (TOD), bits 16 through 63, was set to X'877667F53000' when this trace entry was
created (at X'02' in the trace entry).

. The trace event code was X'2C00', a RETURN WITH SAVE AREA (at X'0A' in the trace entry).

. The value returned in register 15 was X'0000000C' (at X'0OC' in the trace entry).

. The condition code was 0, and the returning module identifier was ‘IID’ (at X'10' in the trace entry).

. The returned SAVBK address in register 13 was X'00FC0298' (at X'14' in the trace entry).

. The real address of the calling module from register 14 was X'00814488' (at X'18' in the trace entry).

. The real exit address of the called module from register 14 was X'8007BD3A' (at X'1C' in the trace
entry).

N o o A WON

In this example, CP stored the contents of the general purpose registers at X'FC0298' with a return code
of 12.

For a complete listing of trace table codes and their field values, see Appendix C, “Trace Table Codes,” on
page 199.

Limiting the Trace Entries Recorded

Normally, CP tracing is active during system operation. However, new trace entries are added continually
to trace tables and eventually are written over older trace entries. This process is called wrapping.

On stressed systems, wrapping may occur in well under one second. As a result, an abend dump that
includes the trace table for each processor may convey little or no information about the problem. z/VM
overcomes this limitation by allowing class A and C users to do the following:

« Limit tracing to certain user IDs or event codes
- Filter out data for certain user IDs or event codes
 Save entries on tape or in system trace files

36 z/VM: 7.4 Diagnosis Guide

Using Traces to Debug

Refine captured information.

Trace and display real I/O devices

Trace and display most code paths in CP

Extract captured trace data, including captured trace table data from trace buffers within a CP dump.

For tracing activities, you mainly use eight CP commands:

« SET CPTRACE

» QUERY CPTRACE

- TRSOURCE

* QUERY TRSOURCE
» TRSAVE

« QUERY TRSAVE

* QUERY TAPES

» QUERY TRFILES.

See z/VM: CP Commands and Utilities Reference for the format of, and information about, these
commands.

For processing trace data recorded by the TRSOURCE command or for processing CP trace data, you use
one CP utility:

« TRACERED.
See z/VM: CP Commands and Utilities Reference for detailed information about using the TRACERED utility.

Designating Entries to Be Captured or Filtered

Although trace tables can be saved on tape or in system trace files by the CP TRSAVE command, the rate
at which trace entries are generated may exceed I/0 capabilities. In such situations, you can filter out
certain entries. The goal is to capture only the trace information of interest.

Use the CP SET CPTRACE command to disable as many trace codes as possible, while still maintaining the
necessary history of system events.

To designate which entries are either captured and written to a trace table or filtered out and not written
to a trace table, specify the following:

1. Trace codes

2. User ID or SYSTEM.

Note: SYSTEM represents the trace entries CP creates while doing work for the system. This includes
all work dispatched on the SYSTEM VMDBK for serialization.

Capturing or Filtering Data by Trace Code

If you want to capture or filter data for certain trace codes, use the CP SET CPTRACE command to trace
individual codes or named categories of codes.

Capturing or Filtering Data by User ID or SYSTEM

In addition to designating trace codes for capturing or filtering, you can further limit the trace entries
written to trace tables by designating other tracing criteria. These additional tracing criteria include user
ID, SYSTEM, or certain groupings of these. Use the CP SET CPTRACE command with the SPECIFIC option
to designate certain user IDs be traced, each with its own set of tracing criteria. Use the CP SET CPTRACE
command with the NONSPECIFIC option to designate certain user IDs be traced, all sharing the same
tracing criteria.

Chapter 3. Using Traces to Debug 37

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Using Traces to Debug

Figure 5 on page 38 illustrates the concept that you can request tracing according to separate tracing

criteria for individual user IDs or shared tracing criteria for a group of user IDs.

Separate tracing criteria
for users 1, 2, and 3

Figure 5. Tracing Events for Specific and Nonspecific Users

Specific Nonspecific Shared tracing criteria
- for all other users
— User 1
User 4 ‘ P
User 5 ‘
- User 2 User 6 |
- User 3

For additional information about the SET CPTRACE command, see z/VM: CP Commands and Utilities

Reference.

More Information on Filtering

The following system events are some of the most common entries in a trace table. If you do not need
them for diagnosing problems in a particular circumstance, filter them out to reduce the number of trace

entries generated.

System Event Entry Code

Obtain free storage frame CODE=0600
Return free storage frame CODE=0700
Run user CODE=0A00
Call with save area CODE=2800
Return with save area CODE=2C00
Stack CP execute block CODE=3300
Unstack CP execute block CODE=3310
Exit to the dispatcher CODE=3600

Tracing I/0, Data Code Paths, and Virtual Machines

The TRSOURCE command lets you trace I/0 paths, data code paths, guest LAN or VSWITCH paths, and
virtual machine guests. You can use TRSAVE to save the source data on DASD and the TRACERED utility
to format the data so that you can read it interactively. The following are examples of using TRSOURCE for
tracking I/0, data paths, and virtual machine guests. For an example of using TRSOURCE with a guest LAN
or VSWITCH problem, see Using TRSOURCE to TRACE a Guest LAN or Virtual Switch in z/VM: Connectivity.

I/0 Trace Example

The operator gets a system message (COMMAND REJECT) indicating an I/0 error on the 3800 printer at
real device address 411.

38 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=trsglvs
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4

Using Traces to Debug

To look at the CCWs to this device, enter the following two commands:

trsource id printbug type io dev 411
trsource enable id printbug

Wait for the error to recur. At that time, enter this command:
trsource disable id printbug

You can now enter QUERY TRFILES to make sure that one or more trace files were created. The user ID
that issued the TRSOURCE commands is the owner of these trace files. If you received message 6084
saying that the oldest trace file was purged, more trace data was generated than could be contained in
two 256-page files. You may change the size or number of files that are created when you enable the
trace ID. If you choose to specify five 400-page files, enter:

trsave for id printbug size 400 keep 5

See TRSAVE command in z/VM: CP Commands and Utilities Reference for more information.

Trace Table Example

The problem

Several users are reporting that their user IDs seem to be hung because they cannot log off. This happens
every day between 4:00 and 5:00 in the afternoon when they want to go home. Their user IDs are USER1,
USER2, USER3, and USERA4.

The research

You have taken a restart dump. In further analysis, you find that these user IDs were hung because a wait
flag is being turned on but never turned off for them. The restart dump does not reveal the cause because
the trace table had wrapped by the time the dump was taken. There are no events for these users in the
dump.

The solution

Between 4:00 and 5:00 P.M. tomorrow, obtain the events that occur for these users. You have two 3590
tape drives located at real device addresses 181 and 182.

At 4:00 P.M., enter this command to turn tracing off for the system and for all users.
set cptrace off
Now enter the following commands to turn tracing on for these four users :

set cptrace for userl on
set cptrace for user2 on
set cptrace for user3 on
set cptrace for user4 on
trsave for cp on tape 181 182 rewind

At 5:00 P.M,, enter:
trsave off

To start the tracing for the system and for other users again, enter:
set cptrace on

You may now use the TRACERED utility to display the trace data on the tapes.

Chapter 3. Using Traces to Debug 39

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Using Traces to Debug

Data Trace Example 1

When using an application that uses IUCV to transmit data, end users are complaining that they are
receiving incorrect data. There are three possible points at which the incorrect data may be originating:

1. The sending (SOURCE) virtual machine
2. The CP send/receive mechanism (IUCV)
3. The receiving (SINK) virtual machine.

Step A

Understand what data is supposed to be sent from the SOURCE virtual machine.

Step B

Find out what data is actually being sent. (If this data does not match what is supposed to be sent, the
SOURCE virtual machine is the origin of these problems.)

At offset X'1B2' in module HCPMOD, register 5 points to the user data; register 6 points to the control
block describing the data. The instruction at this location is LR R1,R5 (X'1815").

Set up a data trace to trace the general registers, the storage pointed to by register 5 for 200 bytes, and
the storage pointed to by register 6 for 100 bytes. Enter the following command:

trsource id send type data loc hcpmod + 1b2 1815 dl g0:f g5.200 g6.100

Step C

Find out what data is being received by the receiving virtual machine. If the data is the same as what was
being sent, then IUCV is not the origin of the incorrect data. Otherwise, IUCV is the problem source.

At address X'2B200', data is passed to the SINK virtual machine. The instruction at this location is SLR
R5,R5 (X'1F55"). Register 4 points to the user data. Register 7 contains the pointer to the control block
that describes the data. Set up a data trace to trace the storage pointed to by register 4 for 200 bytes and
the storage pointed to by register 7 for 100 bytes. Enter:

trsource id sink type data loc 2b2000 1£f55 dl g4.200 g7.100

Step D

Collect the data. You are planning to analyze the data from a different user ID (USERB) than the one
issuing the TRSOURCE commands. Therefore, use TRSAVE to change the user ID that will receive the files
when the trace is completed. Enter the following three commands:

trsave for id send to userb
trsave for id sink to userb
trsource enable id send sink

Wait for the problem to occur, then enter:
trsource disable id send sink

USERB may now use the TRACERED command to process the trace data recorded by TRSOURCE.

Data Trace Example 2

The following example depicts how multiple TRSOURCE command invocations may be entered to set up a
conditional data link trace.

You have been experiencing system abends and based on preliminary dump analysis you suspect an
overlay is occurring. Information you've found so far in the CP Trace Table at the time of the abend leads
you to suspect that the error takes place during execution of module HCPNOS.

40 z/VM: 7.4 Diagnosis Guide

Using Traces to Debug

Step A

Decide what information needs to be displayed to more closely pinpoint the error.

Step B

If appropriate, use the selectivity options of TRSOURCE when defining a conditional data link trace. The
example below defines a trace at X'34' into HCPNOS at the X'58' LOAD instruction.

trsource id trcl type data loc hcpnos + 76 5840C048

Step C

Collect the data. Because you suspect that the error occurs while the dispatched machine is either
'OPERATOR' or 'MAINT/, the next two trace instructions check the VMDBK for the ID of the machine. If it is
OPERATOR, then registers 0 through 15 are displayed. If it is MAINT then 48 bytes of the program header
information that is pointed to by register 12 are displayed.

trsource id trcl if gh+200.8 EQ C'OPERATOR'
trsource id trcl then dl goO:f

trsource id trcl else if gB+200.8 eq C'MAINT'
trsource id trci then dl gc.30

trsource id trcl endif

trsource id trcl endif

trsource enable id trcl

As with example 1 TRSAVE can be used to change the user ID that will receive the files when the trace is
completed. After the data is collected the trace can be disabled.

Saving Trace Data on Tape or DASD

CP Trace table data may be saved in system trace files (TRFILEs) or on tape. Data from traces defined by
TRSOURCE may be saved only in system trace files.

If the system abends while trace activity is active, the trace information that has not been recorded on
DASD or tape at the time of the abend can be extracted from the CP dump by the TRSAVE subcommand of
the VM Dump Tool.

Factors That Affect Saving Trace Data

Number of Trace Table Pages

CP's ability to save trace table pages before they wrap depends on the number of trace table pages
available and the speed at which the entries are generated.

The number of trace table pages available to each processor is determined by the:

 Real storage size of the system (that is, by default)
« STORAGE statement in the system configuration file
« SET TRACEFRAMES command.

For more information, see the STORAGE statement description in z/VM: CP Planning and Administration
and the SET TRACEFRAMES description in z/VM: CP Commands and Utilities Reference.

Contention with Other Users or Functions

Trace tables are saved on tape at a lower rate of speed if other users or functions are on the same control
unit as the tape drive you selected to save the trace tables.

Chapter 3. Using Traces to Debug 41

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Using Traces to Debug

Rate of Data Collection

If the rate of data collected exceeds the I/0 rate for saving trace data on tape or DASD then some trace
data may not be saved.

The DEFERIO operand of the CP TRSAVE command can be used to delay the I/0 until after the trace has
been turned off. With this option real storage frames are taken from the dynamic paging area and set
aside to hold an in-storage wrap of the collected trace data. The oldest trace data is discarded when the
wrap occurs (all frames have been filled), so enough real storage frames need to be set aside to hold the
oldest trace data that you need. Filtering the amount of data collected can decrease the amount of real
storage frames needed.

Trace Wrapping

When determining the amount of data that needs to be saved before wrapping, (the TRSAVE command's
FRAMES parameter for in-storage wrap, SIZE, or both and KEEP parameter of wrapping of trace files on
DASD), you need to consider the size of the trace records collected and the frequency of the trace events.

Options Selected on the TRSAVE Command

If you are tracing a problem that takes a long time to recreate, certain options on the TRSAVE command
allow continued recording of the trace tables or data from traces defined by the TRSOURCE command,
even as the tape is filled.

Selecting the use of two tape drives on the TRSAVE command is recommended to minimize loss of
data. If two tape drives are specified, CP automatically switches to the second tape drive when the tape
on the first one becomes full. The operator can then mount another tape on the first drive so that it

too becomes available for use should the tape on the second drive also become full. With this setup,
automatic switching back and forth between two tape drives continues until the trace is complete.

In addition to specifying two tape drives, choosing either the RUN (rewind and unload) or the REWIND
option further defines how the process of saving trace entries to tape proceeds. If you select RUN (the
default), new tapes can be mounted and the drive made ready to accept additional trace information to
provide an indefinite history. If you select REWIND, recording can continue after the tape is rewound. If
writing continues to the drive, the new information will be written over existing information.

Viewing the Trace Tables

Use the TRACERED utility to format the trace entries saved onto tape or system trace files, or written to
CMS files by the VM Dump Tool TRSAVE subcommand, and then view the information in a print file or CMS
file. Use the TRACERED utility to select options and format the output. You can send the output to a CMS
file for viewing on your virtual machine or for printing. See z/VM: CP Commands and Utilities Reference for
more information on the TRACERED utility.

Factors affecting TRACE Table Pages

CMS Storage

You may encounter disk storage constraints if you select a CMS file for the output from the TRACERED
utility. The more trace entries that meet the selection criteria, the larger are the storage requirements.
One way to alleviate storage constraints is to designate more stringent selection criteria.

The table that follows shows the total number of trace entries TRACERED can process onto a single
cylinder or its equivalent in number of blocks on the specified DASD type:

Table 4. Approximate Number of Trace Entries per Cylinder or per 1000 Blocks

CMS Minidisk Device Type Formatted Unformatted
3350 1666 5000
3375 1066 3200

42 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Using Traces to Debug

Table 4. Approximate Number of Trace Entries per Cylinder or per 1000 Blocks (continued)

CMS Minidisk Device Type Formatted Unformatted
3380 2083 6250
3390 2083 6250
FBA (1000/512-byte blocks) 1873 5620

You should also beware of creating CMS files too large for the CMS editor to accommodate. Should this
occur and you still want to view the entries created, either use the COPYFILE command to break the file
into manageable pieces or increase the virtual machine storage size. The alternative is to erase the CMS
file and rerun the TRACERED utility with more stringent selection criteria.

Chapter 3. Using Traces to Debug 43

Using Traces to Debug

44 z/VM: 7.4 Diagnosis Guide

Creating a Dump

Chapter 4. Creating a Dump

A dump is a record of the contents of your machine's storage at a given moment. It can appear either
online or printed on paper. A dump can pinpoint the moment when malfunctions begin.

A dump can originate in a z/VM system within:

CP
A virtual machine in which CMS, or another z/VM component, or a guest operating system is running
A communication controller.

A dump, depending upon the type you request and where it comes from, can include data such as:

Virtual storage, which is a byte-by-byte record of the contents of a virtual machine's storage in
hexadecimal notation. The dump provides an EBCDIC translation of this data.

Real storage, which is a byte-by-byte record of the contents of your z/VM system's real storage and
includes control blocks

Access, general purpose, and floating-point registers
Control registers

The time-of-day clock

The processor timer

The program status words (PSWs).

Types of Dumps

There are several types of dumps you can request, depending on the information that you want.

A CP dump. This is a dump of the storage directly owned by CP. It is generated by CP during a hard
abend and results in system termination and possibly a restart.

A snapdump. This is a dump of the storage directly owned by CP and is very similar to a hard abend
dump but does not result in system termination.

A CP soft abend dump. A soft abend dump is a dump of a small amount of the storage directly owned
by CP. It is created when CP encounters a problem where system integrity is not jeopardized by the
error, or when CP can isolate an error to a virtual machine. It does not result in system termination.

A stand-alone dump. Sometimes, a problem can be so severe that your system cannot even produce
a CP dump on its own. For this reason, every z/VM system is equipped with a special program that will
produce a dump of real storage, regardless of how severe the problem is. It is called a stand-alone
dump because the program that produces it stands alone or independent of the rest of the system
programming. Because it is independent of the system programming, any problems there will not
prevent the dump from being created.

A dump limited to any single virtual machine (VMDUMP) running in your z/VM system. For example,
you can request a dump of a virtual machine containing CMS, RSCS, or any guest operating system that
resides in a virtual machine.

A dump of a communication controller's storage. A communication controller is a device that manages
and controls the operation of a computer network, including the routing of data therein. Such a device
contains what is called a communication controller program, a dump of which can be useful when
dealing with computer network problems. To dump information from a communication controller, see
the document associated with the type of controller installed at your location. If you use the CP CCLOAD
utility to produce a communication controller dump, you can use the CP CCDUMP utility to format the
dump file. For more information, see z/VM: CP Commands and Utilities Reference.

© Copyright IBM Corp. 1991, 2025 45

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Creating a Dump

A dump is useful when dealing with a problem in your z/VM system. A dump is a picture of the system's
(or virtual machine's) storage. The problem is likely to be somewhere in the picture. Dumps are also
especially helpful in dealing with wait states, infinite loops, and abends.

There may be times when a dump does not provide all the information you need. In those cases,
especially if the problem is a user hang, a trace table may be helpful. See Chapter 3, “Using Traces to
Debug,” on page 35 for more information.

Setting Up the System for a Dump

You must route your dump to the appropriate destination and allow sufficient space for the dump.
1. Specify the appropriate dump medium and routing.

When CP creates a dump, the dump is sent to the virtual machine defined in the SYSTEM_USERIDS
statement in the system configuration file. You should use the DUMPLOAD utility to load the dump
from the reader spool file into a CMS dump file.

If you wish, you can specify in advance the destinations for the dump. Use the CP SET DUMP command
to indicate where you prefer to send a dump whenever one is generated. You can specify up to eight
DASD devices, or one tape. The z/VM: CP Commands and Utilities Reference describes the SET DUMP
command in detail.

2. Provide sufficient spooling space to accommodate the dump.

A system dump uses a significant amount of spooling space. The amount of space required depends
on the amount of real storage on the processor in the real machine and the type of DASD allocated for
spooling. z/VM: CP Planning and Administration contains a table of suggested dump space allowances
for various storage sizes and DASD types.

3. Provide sufficient minidisk space to receive the dump.

To use the available dump viewing tools, you must process the dump into a CMS file. This requires the
receiver to have sufficient minidisk space. The precise amount of space needed depends upon:

« The amount of storage dumped
» The type of DASD
« The block size specified when the minidisk was formatted.

Guidelines for storage requirements are given in z/VM: VM Dump Tool.

4. Decide which debugging tool you want to use.

If you produce a dump of the contents of a virtual machine, consider what that machine contains.
If it contains a guest operating system (such as MVS or VSE), then consider using the dump facility
provided by that particular system. The quality and quantity of the data in the dump will probably
be higher than that obtained using z/VM dump commands. Review the manuals pertaining to the
operating system in question.

If a virtual machine contains a z/VM product or component that runs in ESA/390 Architecture mode
(such as CMS or GCS), you can use the Dump Viewing Facility to view the dump.

VMDUMPs of virtual machines in z/Architecture mode can be viewed with the VM Dump Tool.

Dumping Real or Virtual Machine Data

When CP abends, it automatically tries to create a dump. There may be other times, however, when you
need to produce a dump. This often depends on the virtual machine running on the system.

For example, when a program you run under CMS abnormally ends, you do not automatically receive a
program dump. If, after attempting to use CMS and CP to debug interactively, you still have not discovered
the problem, you may want to obtain a dump.

You might also want to obtain a dump if you find that you are displaying large amounts of information,
which is not practical on a terminal.

46 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Creating a Dump

Commands That Dump Real or Virtual Machine Data

Commands that dump real or virtual machine data are: DUMP, VMDUMP, and SNAPDUMP. See z/VM: CP
Commands and Utilities Reference for more information on these commands.

The DUMP Command

See the description of the DUMP command in z/VM: CP Commands and Utilities Reference for a description
of the real and virtual machine components that can be sent to a virtual printer.

For example, to dump the virtual storage space for a specified address range with an EBCDIC translation
of the dump enter:

dump t20000-20810

See Chapter 5, “Debugging CP,” on page 49 for more information on using dumps to debug.

The SNAPDUMP Command

The SNAPDUMP command can be used to generate a full system dump identical to a CP hard abend dump
without terminating the system. This type of dump is especially beneficial when debugging a "hung user"
type of problem or when it is impossible to shut the system down for dump generation and analysis. The
snapdump destination and dump content can be altered by the CP SET DUMP command. The SET ABEND
command can be used to redefine soft abends as snapdumps. The CP DUMPLOAD utility can be used for
processing dumps and the VM Dump Tool can be used for viewing dumps.

The VMDUMP Command

The VMDUMP command dumps virtual storage to the virtual card reader of a specified user ID. You should
use the DUMPLOAD utility to load the dump from the reader spool file into a CMS dump file and then

use the Dump Viewing Facility or VM Dump Tool to view or print it. For details, see z/VM: Dump Viewing
Facility and z/VM: VM Dump Tool. For a description of the format and contents of the VMDUMP records,
see “WVMDUMP Records: Format and Content” on page 58. See Chapter 5, “Debugging CP,” on page 49

for more information on using dumps to debug.

To create a dump of a program you are running under CMS, you can enter the command:

vmdump 0-end format cms dcss

This example dumps all the discontiguous saved segments (DCSS) outside of the virtual machine's
storage.

To dump a portion of a discontiguous saved segment, use an inline range value without specifying the
DCSS option. Enter:

vindump 100-25F0 format cms

CP dumps the contents of virtual storage from location X'100' to X'25F0', including guest storage and all
the discontiguous saved segments within the specified address ranges.

Stand-alone Dump Utility

z/VM includes a stand-alone dump utility that you can tailor according to your installation's configuration
using CMS. After you generate z/VM, you should create a stand-alone dump device for emergency use.
If, after a system failure, CP cannot create an abend dump, you can use the stand-alone dump utility to
create a dump. To use the stand-alone dump program to dump real storage, you must have access to IPL
the real machine.

See z/VM: CP Planning and Administration for information about the stand-alone dump utility. It
documents how the system administrator can install and configure the stand-alone dump program. It

Chapter 4. Creating a Dump 47

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4

Creating a Dump

also contains information about how the system operator can take a stand-alone dump and load the
dump for analysis.

48 z/VM: 7.4 Diagnosis Guide

Debugging CP

Chapter 5. Debugging CP

This chapter describes how to determine the problem and debugging CP.

Debugging CP in a Virtual Machine

Many CP problems can be isolated by running in a virtual machine. In most instances, the virtual machine
system is an exact replica of the system running on the real machine. To set up a CP system in a virtual
machine, use the same procedure that generates a CP system on a real machine. However, remember
that the entire procedure of running service programs is now done on a virtual machine. Also, the

virtual machine must be described in the real directory. See z/VM: Running Guest Operating Systems for
directions on how to set up the virtual machine.

Abend Dumps

When an abnormal end occurs, CP attempts to dump the contents of CP storage as specified by the SET
DUMP command.

A soft abend dump is taken when a problem program cannot continue, when system integrity is not
jeopardized by the error, or when CP can isolate an error to a virtual machine. If the operating system for
your virtual machine cannot continue, it ends and, in some cases, tries to take a dump. A virtual machine
dump is sent to a system data file.

A snapdump abend dump is taken when a problem program cannot continue, when system integrity is not
jeopardized by the error, or when CP can isolate an error to a virtual machine. Although the information
contained in the snapdump is identical to that contained in a hard abend dump, the system is not
terminated.

A hard abend dump is produced when the CP system cannot continue.

When you receive an abend, the dump will go to DASD SPOOL space (specified by the CP SET DUMP
command), and the dump is sent to the reader of the user ID designated as the dump receiver. This user
ID is specified by the DUMP operand of the SYSTEM_USERIDS statement in the system configuration
file. By entering the QUERY DUMP command, you can determine where the dump is being directed. After
the dump is created, use the DUMPLOAD utility to create a CMS file and then use the VM Dump Tool to
process it or view it interactively.

Use the CP SET DUMP command to designate the output device to receive system abend dumps. See
z/VM: CP Commands and Utilities Reference for the format of the SET DUMP command.

Reading CP Abend Dumps

When CP can no longer continue and abnormally ends, you must first determine the condition that caused
the abend, and then find the cause of that condition. You should know the structure and function of CP.

Two types of dump formats occur when CP abnormally ends, depending upon where the dump is directed
to in the CP SET DUMP command.

If the dump is directed to DASD, and if you want to use the VM Dump Tool to analyze it, you will need
to use the DUMPLOAD utility to load the dump into a CMS file. You can then use the VM Dump Tool
VMDUMPTL command to view the dump interactively. This chapter contains several references to the
VMDUMPTL command. For detailed information about this command, see z/VM: VM Dump Tool.

Storage is displayed in hexadecimal notation, four words to the line, with EBCDIC translation at the right.
The hexadecimal address of the first byte printed on each line is indicated at the left.

For information about obtaining detailed descriptions of CP data areas and control blocks, see “Looking at
Key Control Blocks” on page 51.

© Copyright IBM Corp. 1991, 2025 49

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa7_v7r4.pdf#nameddest=hcpa7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Debugging CP

Using the Assert Facility

The Assert Facility can help detect some problems earlier in execution. This facility allows some CP
modules to verify that certain conditions exist before continuing execution. If the conditions are not met,
an abend or stop occurs, depending on how the facility is activated.

To turn the Assert Facility on, enter:

CP SET CPCHECKing ON ABEND
or
CP SET CPCHECKing ON VMSTOP

For more information about setting conditions, see z/VM: CP Commands and Utilities Reference.

Reading the Dump with the VM Dump Tool

The VM Dump Tool gives you the ability to interactively view CP, stand-alone, soft abend, and virtual
machine dumps. It runs under CMS.

To use the VM Dump Tool for diagnosing CP problems, you need the following;:

« A copy of the dump you want to examine.

« A copy of the DUMPLOAD utility which you use to load the dump into a CMS file in order for the resulting
dump to be usable by the VM Dump Tool.

When you receive an abend, if the dump is set to go to DASD SPOOL space (specified by the CP SET
DUMP command), the dump is sent to the reader of the user ID designated as the dump receiver. This
user ID is specified by the DUMP operand of the SYSTEM_USERIDS statement in the system configuration
file. For information on the CP SET DUMP command, see z/VM: CP Commands and Utilities Reference. For
information on setting up the system abend dump environment, see z/VM: System Operation.

To use the dump with the VM Dump Tool, you must:

1. Log onto the dump receiver's user ID.

2. Load the dump into a CMS file, using the DUMPLOAD utility. See z/VM: CP Commands and Utilities
Reference for additional information on the DUMPLOAD utility.

The VM Dump Tool shortens the time you need to gather information about a CP problem. Some of the
tasks that the VM Dump Tool performs are:

« Displaying symptom record information. By using the SYMPTOM subcommand of VMDUMPTL, you can
easily check the symptom record issued with the abend dump.

- Viewing the contents of all registers and all PSW values at the time of the dump. The REGS
subcommand of VMDUMPTL enables you to view the contents of general purpose, control, access,
and floating-point registers, and all the PSW values at the time of the dump.

« Formatting trace entries. By using the TRACE subcommand of VMDUMPTL, you can format the trace
entry so that each field of a trace entry is displayed with its description.

« Locating the addresses of certain modules or entry points in a CP dump, or identifying which modules or
entry points reside at a specific address in a CP dump. Use the MAP subcommand of VMDUMPTL to do
this.

« Finding real and virtual device information. The RDEVBK and VDEVBK subcommands of VMDUMPTL
enable you to locate RDEVs and VDEVs by going through the radix tree. These subcommands display the
data on your screen.

« Finding information about any control block. Use the BLOCK and CHAIN subcommands of VMDUMPTL
to do this.

Printing Dump Information from the VM Dump Tool

After you have processed the dump so that the VM Dump Tool can use it, you can display information from
the dump.

50 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb1_v7r4.pdf#nameddest=hcpb1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging CP

After you have completed your VM Dump Tool session, use the FILE or SAVE subcommands to save
the DUMPLOG file to disk. You can use the CMS PRINT command to print this DUMPLOG file. For more
information on PRINT, see z/VM: CMS Commands and Utilities Reference.

Looking at Key Control Blocks

z/VM CP uses control blocks to hold information about many aspects of the entire system. System
processing relies on this information so that if incorrect data is placed in these control blocks, errors
occur.

When errors occur, control blocks often provide the best information about the causes. By examining
the fields within the control blocks and the available source listings, you can obtain valuable diagnostic
information for problems with z/VM.

Descriptions of some major control blocks appear in the following sections. For each control block, a brief
explanation of its purpose is given, followed by pointers or other methods for locating the control block,
and then by specific fields that you may find useful in gathering data. Although these control blocks are
especially helpful in diagnosing problems, they are not the only ones you should use.

You can obtain a detailed description of CP data areas and control blocks in several ways:
» Use the VM Dump Tool BLOCK subcommand.

The BLOCK subcommand of the VM Dump Tool can be used to format CP control blocks for displaying.
See z/VM: VM Dump Tool for information about the BLOCK subcommand.

« Use the z/VM online control block database.

For a description of the control blocks, see:

z/VM Data Areas, Control Blocks, and Monitor Records (https://www.vm.ibm.com/pubs/ctlblk.html)

HCPPFXPG: The Prefix Page

The prefix page is actually two 4K pages for each processor running in z/VM. Each prefix page contains
both hardware and software information for its processor. At system generation, HCPLOD defines the
IPL processor's prefix page location. Or, if an alternate processor is either brought online during IPL
processing or varied online after the IPL is complete, the prefix page is acquired dynamically and its
location is defined by HCPMPS.

If you receive an abend dump, you can find the address of the prefix page by using the CPUID, CREGS, or
REGS subcommands of VYMDUMPTL.

HCPPFXPG contains information you will find helpful in performing diagnosis. It contains the following:
« PSW information.

The system PSWs for the processor include PGM, MCH, 1I/0, RESTART, SVC, and EXT.
- Linkage save areas:
These include the following:
PFXTMPSV
A copy of the registers and the work areas when one module calls another.

PFXBALSV

The BALR linkage save area.
PFXWRKSV

The special work save area.
PFXFRESV

The HCPFRE save area.

PFXPTRSV
The page translation save area.

Chapter 5. Debugging CP 51

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.vm.ibm.com/pubs/ctlblk.html

Debugging CP

PFXLNKSV
The call return linkage save area.

PFXIOSID
The subchannel number of the last I/O device from which an interrupt was received, the first
halfword always contains 0001.

PFXINPRM

The address of the RDEV of the last I/O device from which an interrupt was received.
PFXRNUSR

The address of the last run VMDBK.
PFXNXTPF

If multiple processors are defined, a pointer to the next prefix area.
PFXTTPNT

A pointer to the beginning of the trace table associated with this prefix page.
PFXSYSVM

The address of the system VMDBK that is the starting point of the global cyclic list.

PFXSYS
The address of the system common area (SYSCM).

HCPSYSCM: The System Common Area

The system common area, SYSCM, contains pointers, variables, counters, and constants for the entire
system. It is created at system generation as part of HCPSYS. SYSCM is located by the pointer PFXSYS
from any prefix page.

Diagnosis information found in HCPSYSCM includes:

SYSPRFIX
The prefix area for the IPLed processor

SYSTOD
The first half of the time-of-day (TOD) clock at IPL time

SYSRDEV
The address of the first RDEV block in the radix tree

SYSTORS
Real machine storage size up to 2 GB

SYSGTORS
Real machine storage size including storage above 2 GB

HCPVMDBK: The Virtual Machine Descriptor Block

The HCPVMDBK, or VMDBK, is a control block that exists for each virtual machine that is logged on. Each
descriptor block contains information about its virtual machine. It is created when a user does any of the
following:

 Logs onto z/VM
« Defines an additional virtual processor

« Enters a SIE (Start Interpretive-Execution) instruction.

Each user has one VMDBK per virtual processor and one additional VMDBK for each virtual processor from
which the SIE instruction was entered.

CP allocates space for the VMDBKSs of virtual machines from the dynamic paging area. Because no
preallocation for VMDBKs or for any other control blocks occurs, guests cannot recover from a system
incident.

There is at least one VMDBK in the dynamic paging area for each logged-on virtual machine. The VMDBKs
remain in a disconnected state in virtual storage.

52 z/VM: 7.4 Diagnosis Guide

Debugging CP

Locating Descriptor Blocks from a Dump

You can locate VMDBKs in several ways. To display a list of all the VMDBKSs in a dump or to display a
summary of VMDBKSs for a specific user, use the VMDSCAN, VMDBK, or VMDBKS subcommands of the
VM Dump Tool VMDUMPTL command. For a complete description of these subcommands, see z/VM: VM
Dump Tool.

The following fields in other control blocks may be helpful to you when examining the VMDBKs:

VDEVUSER of HCPVDEV
A pointer to a user's VMDBK from a virtual device accessed by that user.

RDEVUSER of HCPRDEV
A pointer to a user's VMDBK from the real device owned by that user.

PFXSYSVM of HCPPFXPG
A pointer to the system VMDBK from the prefix page.

You can also locate VMDBKs by chains called the global and local cyclic lists. A global cyclic list is a chain
of all origin VMDBKSs for users logged on. The VMDCYCLE field in the system VMDBK control block points
to the first VMDBK in the list of logged-on users. Then the VMDCYCLE field of each user's VMDBK points
to the next VMDBK in the global cyclic list, and on down the chain until the last VMDBK. The last VMDBK
does not point back to the system VMDBK control block, but to the first VMDBK in the list, the same one to
which the system VMDBK points.

To point to the primary VMDBK for a specific user in a dump, use the VMDBK subcommand of VMDUMTPL.
Enter:

vimdbk userid

A local cyclic list is a chain of all VMDBKs with the anchor at a VMDBK in the global cyclic list. The
VMDLCYCL field points to the next VMDBK on a local cyclic list. The last VMDBK on a local cyclic list points
back to the origin VMDBK-the VMDBK on the global cyclic list.

To display a list of all the VMDBKs in a dump, use the VMDBK subcommand of VMDUMPTL. Enter:

vindbks

The following fields are generally useful in gathering diagnostic information about a VMDBK:

VMDSTATE
The scheduler and dispatcher state of the user. It tells you whether this user is ready to be dispatched
orisidle.

VMDSLIST
A description of the scheduling list of this user. This byte tells you whether this user is currently in the
dispatch list, eligible list, dormant list, or not in any of the lists.

VMDDLCTL
A description of the status of the user in the dispatch list. This byte gives information about the
time-slice of the user on the dispatch list and whether the user should be dropped or reordered.

VMDIOACT
The number of I/0O operations outstanding for this user at the time the dump was produced.

VMDCFCTL
A byte describing the status of the console function for this user at the time the dump was produced.

VMDCYCLE
A pointer to the next VMDBK of the global cyclic list of logged-on users.
VMDLCYCL
A pointer to the next user-defined or system-generated VMDBK for the user on the local cyclic list.

VMDCHRDN
The anchor for the radix tree to VDEVs by device number.

Chapter 5. Debugging CP 53

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Debugging CP

VMDCHRSN
The anchor for the radix tree to VDEVs by subchannel number.

HCPRDEV: The Real Device Control Block

HCPRDEV, or RDEV, is a control block that describes a device. CP uses these blocks to manage real and
logical devices. There is a real device block for each real device in the system. An RDEV is also created to
represent each logical device and is deleted when the logical device is no longer needed.

There are several ways to display the RDEV for a real device when reading a dump:
» Use the VMDUMPTL command of the VM Dump Tool.

— Use the BLOCK subcommand to format and display RDEV blocks within a dump.

— Use the RDEVBK subcommand to display summary information about real I/O control blocks. This
subcommand uses a radix tree, which is described in “Using a Radix Tree Structure to Locate RDEVs”
on page 54.

- Follow one of the radix tree procedures described in the following text.

Using a Radix Tree Structure to Locate RDEVs

RDEVs for real and logical devices are stored in a radix tree structure. You can use information about
the radix tree structure to locate RDEVs for both real and logical devices. The procedures for locating
RDEVs for real and logical devices are nearly identical. In the examples that follow, Figure 6 on page 54,
assume you are trying to locate the RDEV for real device 0191.

SYSRIOIX—l
HCPRIOIX | | | | | |
Oxxx ‘ \
01xx 0191
RDEV0191
019x

Figure 6. Using a Radix Tree to Locate an RDEV Block
Example 1
Use the VMDUMPTL command of the VM Dump Tool. When you are using VMDUMPTL to view a dump,
enter:

rdevbk 191

The information you receive will point to the address of the RDEV of real device 0191.

Example 2

Use the device number in the process outlined here. The instructions below tell how to locate an RDEV for
areal device. The differences in the process for locating the RDEV for a logical device are pointed out.

Note: On a running system, you can use the LOCATE RDEV command to find the addresses of a real device
block and its associated control blocks.

54 z/VM: 7.4 Diagnosis Guide

Debugging CP

1. Look in HCPPFXPG, the prefix page, to find PFXSYS. PFXSYS points to HCPSYSCM, the system common
area.

2. Find the address of the anchor, SYSRIOIX, for the radix tree. Assume you are using a chaining
procedure.

3. Look O fullwords past that anchor (HCPRIOIX) address because the first digit of the device number is
0.
The address at 0 fullwords past the anchor is the next (second) address you use.

4. Look 1 fullword past that second address because the second digit of the device numberis 1.

The address at 1 fullword past the second address is the next (third) address you use.

5. Repeat this procedure for the remaining two digits, 9 and 1, for the device. The last address points to
the address for the RDEV of real device 0191.

To find the logical RDEV for a logical device, use the procedure outlined above, with the following
exceptions:

 Look for SYSDVFLX (rather than SYSDVFRX) in HCPSYSCM.
e SYSDVFLX points to HCPLSOLX.

« HCPLSOLX points directly to the first table on the radix tree (rather than to another field that in turn
points to the first table on the tree).

Note: On a running system, you can use the LOCATE LDEV command to find the addresses of a system
logical device block and its associated control blocks.

Control block fields of diagnostic value in the RDEV are as follows:

RDEVAIOR
A pointer to the active IORBK for this device.

RDEVAFLG
The control flag for the device allocated at the address of this RDEV. It describes the use of the
RDEV—for instance system use, CP volume, and other usages.

RDEVDFLG
The device-dependent status flag.

RDEVRFLG
The device error recovery control flag.

RDEVSTAT
The device-operation control flag.

RDEVVDEV
The address of the VDEV, if one is present, associated with this RDEV. RDEVVDEV contains a VDEV
address only if the virtual device is dedicated. When it does not contain a VDEV address, it contains
zeros. If two or more virtual devices are linked to this RDEV, the address of the pointer to the VDEV
addresses resides in RDEVMDSK.

RDEVMDSK
The address of the MDISK block chain. The chain may consist of one or more MDISK blocks. Each
block points to a chain of one or more VDEVSs linked to that minidisk for a virtual machine. When
RDEVMDSK does not contain the address of the MDISK block chain, it contains zeros.

RDEVUSER
The address of the owning VMDBK for this device.

HCPIORBK: The I/0O Request and Response Block

CP creates an IORBK whenever it needs to perform an I/O operation. When the operation completes, the
IORBK is deleted.

Some key areas of the IORBK are as follows:

Chapter 5. Debugging CP 55

Debugging CP

IORSCHED

The scheduling and control flags for the IORBK.
IORFCTL

A description of the subchannel function of the IORBK.
IORQSTAT

A description of the status of the IORBK—waiting, active, or in dispatcher control.
IORETCOD

The return code of the I/O operation after I/O is completed.
IORUSER

The address of the VMDBK using the IORBK.
IORCPA

The address of the channel program (CCWs).
IORIRA

The address of second level interrupt handler (SLIH) routine.
IORFPNT

The address of the next queued IORBK.
IORBPNT

The address of the previously queued IORBK.
IORRDEV

The address of the RDEV associated with this IORBK operation.

HCPVDEYV: The Virtual Device Block

A VDEV describes the status of a real or virtual I/O device that can be accessed by a virtual machine. A
VDEV defines the device to the virtual machine, whereas an RDEV defines the device to the system.

A VDEV remains active while the virtual machine is either running or disconnected. It is deleted only when
the virtual machine is logged off or the virtual device is detached. VDEVs are created and deleted by
HCPVDB.

If z/VM is running, users with class C or E privileges can find the address of a VDEV by using the CP
LOCATE command. For example, to find the VDEV for USER1's 191 disk, you enter:

locate userl 191

The VM Dump Tool also offers ways to locate a user's VDEV easily. For further information on finding
virtual device blocks, see the VDEVBK subcommand of VMDUMPTL in z/VM: VM Dump Tool.

To locate VDEVs from a dump, use the following pointers. Because the VMDBK has a pointer to the radix
tree, the information in “Using a Radix Tree Structure to Locate RDEVs” on page 54 may also be helpful.

RDEVVDEV
The address of the VDEV, if one is present, associated with this RDEV. RDEVVDEV contains a VDEV
address only if the virtual device is dedicated. When it does not contain a VDEV address, it contains
zeros. If two or more virtual devices are linked to this RDEV, the address of the pointer to the VDEV
addresses resides in RDEVMDSK.

RDEVMDSK
The address of the MDISK block chain. The chain may consist of one more MDISK blocks. Each block
points to a chain of one or more VDEVs linked to that minidisk for a virtual machine. When RDEVMDSK
does not contain the address of the MDISK block chain, it contains zeros.

IORVDEV
A pointer from the IORBK to the VDEV for that I/O operation.

Diagnostic information found in the VDEV includes:

VDEVUSER
The address of the VMDBK that owns this VDEV.

56 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Debugging CP

VDEVRDEV
The address of the RDEV associated with this VDEV.

HCPCPEBK: The CP Execution Block

A CPEBK represents one unit of asynchronous work. The CPEBK format is identical to either the SAVBK or
the SVGBK.

HCPSAVBK and HCPSVGBK: The Save Area Block

A SAVBK is a save area, as is a SVGBK. Both blocks are used in CP, but their structures and sizes are
different. Most save areas are dynamic, although some are static and reside in other blocks, such as the
Prefix Page and the SSABK. The formats of the save areas and the CPEBK are identical.

When a CPEBK, SAVBK, or SVGBK is used, it contains the following:

« Acaller's registers 0 through 15

« The use status of the block

- Indicators of the size and format of the block.

» Work areas.

A save area may hold the general registers in one of three formats:
« Short (32-bit)

« Long (64-bit) contiguous

« Long (64-bit) discontiguous.

The short format is used for calls between modules that use only the low-order 32 bits of the general
registers. The long contiguous format is used for calls between modules that use the full 64 bits of the
general registers. The long discontiguous format is used for calls from modules that use the full 64 bits of
the general registers to those that use only the low-order 32 bits.

Because of these different register saving conventions, the layout of the save area is different in these
three cases. The short register and long discontiguous register layouts are identical, except that the latter
defines an additional area to hold the high-order halves of the general registers. This area is reserved

in the short register layout. The SAVBK defines these formats of the save area. The SVGBK defines the
format of the long contiguous save area.

You can use the VMDUMPTL command of the VM Dump Tool to help you debug save areas from a dump.
The CPEBK subcommand formats the save areas. To locate the save areas and format them, use the
FINDCPE subcommand. For more information on finding save areas, see z/VM: VM Dump Tool.

The following fields are helpful when you are checking CPEBKs or SAVBKs:

CPEXFPNT/CPEXBPNT, SAVEFPNT/SAVEBPNT, SVGFPNT/SVGBPNT:
The forward and backward pointers for threaded lists.

CPEXSCHC, SAVESCHC, SVGSCHC:

The stacking control field specifies what type of function the block performs.
CPEXCALC, SAVECALC, SVGCALC:

The dispatching control field specifies the status of the block.

CPEXFORM, SAVEFORM, SVGFORM:
The format field specifies the size and format of the block.

CPEXREGS, SAVEREGS/SAVEHIRG, SVGREGS:
A caller's general registers.

CPEXR1,1 SAVER11, SVGR11LO:
The VMDBK address of the user for whom the block is scheduled.

CPEXR13, SAVER13, SVGR13LO:
Generally, the previous (that is, the caller's) save area.

Chapter 5. Debugging CP 57

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Debugging CP

HCPFRMTE: The Frame Table Entry

FRMTE manages frames of real storage in z/VM. It keeps track of how each frame is currently being used
and what frames of storage are currently available.

The frame table is allocated dynamically at IPL time. The frame table is never deleted during processing.
The start of the frame table is located by PFXFTBL in any prefix page. For further information on finding
frame table entries, see the FRAME subcommand of VMDUMPTL in z/VM: VM Dump Tool.

Important HCPFRMTE fields include the following:
FRMFPNT

A forward pointer to the next frame table entry for a chained frame.
FRMBPNT

A backward pointer to the previous frame table entry for a chained frame.

FRMCSWRD
A fullword that has the following byte fields:

FRMCSBO
A description of how the frame is currently being used. For example, CP is using the frame of
storage for a trace table or user page.

FRMCSB1
A description of the static state of the real storage frame.

FRMCSB2
A description of the dynamic state of the real storage frame.

FRMCSB3
A field used in serializing the frame state changes.

VMDUMP Records: Format and Content

When a user enters the VMDUMP command, CP dumps virtual storage of the user's virtual machine. The
dump goes to the reader of the user who entered the command, unless otherwise specified. CP can store
this dump in the reader spool file of any virtual machine that the user specified as an operand on the
VMDUMP command.

Dumps produced by the VMDUMP command and Diagnose X'94' will have two different formats based

on the architecture mode of the guest virtual machine. A vmdump of an ESA/390 mode guest, such as
one running CMS, will be in ESA/390 format and only contain storage up to 2 GB. This format is the same
as dumps that were produced in previous releases. DVF DUMPSCAN or VM Dump Tool can be used to
analyze dumps in this format. A vmdump of a z/Architecture mode guest, such as one running z/VM CP or
Linux® on IBM Z°, will be in z/Architecture format and will include storage over 2 GB if such storage exists.
Only VM Dump Tool can be used to analyze dumps in z/Architecture format.

The first logical dump record contains the symptom information. The second logical dump record contains
the Dump File Map. Some of the later records contain the Dump File Information Record (DFIR), the
Address Space Information Record (ASIBK) and the dumped storage.

CP records the storage dump sequentially starting with the lowest address dumped and ending with the
highest address dumped. CP records each byte as an untranslated 8-bit binary value.

The VMDUMP command dumps virtual storage that z/VM created for the virtual machine user. VYMDUMP
creates a symptom record that provides the VM Dump Tool with header information to identify the
owner of the dump. After DUMPLOAD creates the CMS file from the VMDUMP system data file, the DVF
DUMPSCAN or the VM Dump Tool may be used to debug errors, as well as to store and maintain error
information about the virtual machine.

58 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4

Debugging CF Service Machine problems

Chapter 6. Debugging CF Service Machine Problems

This chapter describes how to gather information pertinent to debugging a Coupling Facility (CF) service
machine.

A CF service machine is a special type of virtual machine that enables a sysplex environment to be
defined on a z/VM system. A CF service machine runs the Coupling Facility Control Code CFCC (Licensed
Internal Code). This code is not part of the z/VM product and is loaded directly from the processor
controller into the CF service machine's virtual storage.

Determining the Status of the CF Service Machine

The user that is defined as the secondary user of the CF service machine can issue a limited set of

regular CFCC Commands to retrieve information about the coupling environment. This is the user ID that
is specified on the CONSOLE statement of the CF service machine directory definition. The following CFCC
commands may be helpful to diagnose problems with the CF service machine:

» DISPLAY MODE

« DISPLAY CHPIDS

« DISPLAY RESOURCES
» DISPLAY LEVEL

If the CF service machine does not respond to these commands, the CF service machine may be hung
or may have abended. Follow the steps in the next section to diagnose problems where the CF service
machine is unresponsive.

Steps to Follow When CF Service Machine Abend Occurs

When the CF service machine detects a problem, it creates a dump and does not automatically restart
itself. When this occurs, you should gather information about the current environment. This information
will be useful for diagnosing the problem.

« Save the spooled console log of the secondary user of the CF service machine. This is the user ID that
is specified on the CONSOLE statement of the CF service machine directory definition. The CF service
machine may have displayed a message indicating the cause of the problem. If the console of the
secondary user was not spooled, write down any messages that were sent from the CF service machine.

« Record information about the current system such as:

What processor model is z/VM running on?

Has the processor model changed recently?

Has the processor Licensed Internal Code been changed recently?

What was the system load at the time of the problem?
« Have the system operator take a CP SNAPDUMP of the system.
« Have the system operator issue the CP RESTART MSGPROC command to restart the CF service machine.

After the CF service machine restarts, record the release and service level of the CF service machine. This
is displayed on the secondary console of the CF service machine during its initialization. This can also be
displayed with the CFCC DISPLAY LEVEL command.

Finding the CF Service Machine Dump

When the CF service machine detects a problem, it creates a dump. The CF service machine uses the CP
VMDUMP command to dump specific ranges of storage of its virtual machine. The dumps go to the reader
of the CF service machine.

© Copyright IBM Corp. 1991, 2025 59

Debugging CF Service Machine problems

Processing a CF Service Machine Dump

Because the CF service machine is not set up to process dumps, you need to transfer the dump file to
another virtual machine to process it.

After the dump has been transferred to your virtual machine, load the dump onto a minidisk using the
DUMPLOAD utility.

To load the dump, enter:
dumpload

See z/VM: CP Commands and Utilities Reference for more information about the DUMPLOAD utility.

Diagnosing Problems for CF Service Machines

Problems with the CF service machine should be reported to the IBM Support Center. The support center
personnel will analyze the CF service machine dump in order to determine the problem. Inform the
support center if you have a CP SNAPDUMP of the system at the time of the problem.

60 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging CMS

Chapter 7. Debugging CMS

This chapter describes how to use the Conversational Monitor System (CMS) to help you debug CMS or a
problem program. In addition, a CMS user can use the Control Program (CP) commands and facilities to
debug. Information that is often useful in debugging is also included.

Debugging Commands

Here is a list of some of the commands useful for debugging. The most useful CP commands are:

« TRACE, which traces specific virtual machine activity and records the results on the terminal or printer.
« DISPLAY, which displays real or virtual machine data at your terminal.

« STORE, which alters real or virtual machine data.

« VMDUMP, which dumps virtual storage in a different format than the DUMP command. You can process
the output produced by VMDUMP by using the Dump Viewing Facility.

« DUMP, which dumps real or virtual machine data at the printer.

In addition, you may also find the SET EMSG, SET IMSG, and SET WNG commands helpful for debugging.
These commands control the display of error message handling, certain informational responses, and
WARNING command messages.

The CMS commands described in this chapter are:

« SVCTRACE, which records information about supervisor calls (SVC) occurring in a virtual machine. When
the trace is ended, the information recorded up to that point is spooled to the virtual printer.

The use of this command is described in more detail in “Using the SVCTRACE command” on page 62.

« SET AUTODUMP, which controls the creation of an automatic dump if an abend occurs. The automatic
dump can contain:

— The DMSNUC area of CMS, the storage management work area, the page allocation table, and the
loader tables

— A dump of the entire virtual machine and any discontiguous saved segments in use.

The use of this command is described in more detail in “Generating CMS Abend Dumps” on page 69.
QUERY AUTODUMP returns the current setting of the SET AUTODUMP command.

The following CMS commands help you debug storage-related problems in your applications:

« STDEBUG, which traces the obtain and release requests made by your application. This information is
displayed on your console or written to a unit record device. The trace information includes:

The number of bytes obtained or released

The address of storage obtained or released

The name of the subpool that owns the storage

The address of the caller to storage management.

- STORMAP, which provides storage information about your virtual machine. This information is displayed
on your console or written to a file. If you want to see what is displayed, issue STORMAP CALL. The
information may include:

The total blocks of unallocated storage below and above the 16 MB line

The size of the largest block of unallocated storage below and above the 16 MB line

The name of the subpool that owns the storage

The start address of the block of storage

© Copyright IBM Corp. 1991, 2025 61

Debugging CMS

The end address of the block of storage

The number of bytes of the block of storage

The number of pages of the block of storage

The storage protection key of the page in which the block resides

Storage attributes.

« SUBPMAP, which provides storage allocation information for subpools in your virtual machine. This
information is displayed on your console or written to a file. The information may include:

The name of the subpool

The storage protection key of the page

The address of the subpool descriptor block

The number of fully allocated pages

The number of partially allocated pages

Storage attributes.

In addition, several CMS commands produce or print load maps. These load maps are often used to locate
storage areas while debugging programs.

Using the SVCTRACE command

If your program issues many SVCs, you may not get all the information you need using the CP TRACE
command. The SVCTRACE command is a CMS command that provides detailed information about all SVCs
processed by your program, including:

« Register contents before and after the SVC

« Name of the called routine and the location from which it was called

« Contents of the parameter list passed to the SVC.

See z/VM: CMS Commands and Utilities Reference for the format of the SVCTRACE command.

The SVCTRACE command has only two operands, ON and OFF, to begin and end tracing. SVCTRACE
information can be directed only to the printer so you do not receive trace information at the terminal.

Because the SVCTRACE command can only be entered from the CMS environment, you must use the
immediate commands SO (suspend tracing) or HO (halt tracing) if you want tracing to stop while a
program is running. Use the immediate command RO to resume tracing.

Because the CMS system is SVC-driven, this debugging technique can be useful, especially, when you
are debugging CMS programs. For more information on writing programs to run in CMS, see z/VM: CMS
Application Development Guide for Assembler.

Tracing Capabilities in EXECs

It may be helpful to trace EXECs that are used to diagnose problems. By tracing the EXEC, you can follow
the running of the EXEC and see intermediate values that otherwise might not be obvious. There are two
EXEC processors:

« System Product Interpreter
- EXEC 2.
The amount of information displayed while running an EXEC is controlled by an instruction. The

instruction depends upon the EXEC processor you are using. To find the correct instruction, see z/VM:
REXX/VM User's Guide or the EXEC 2 HELP menu for more information.

You can also turn tracing on for the System Product Interpreter or EXEC 2 by entering the following CMS
command:

62 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb0_v7r4.pdf#nameddest=dmsb0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb0_v7r4.pdf#nameddest=dmsb0_v7r4

Debugging CMS

set exectrac on

This causes the tracing bit in CMS to be turned on and allows tracing without program modification.

During interactive debug, the interpreter pauses after every instruction, allowing you to single step
through the program.

Assume that you have a Restructured Extended Executor (REXX) program called STATUS EXEC, which
gives you some status information. The contents of STATUS EXEC follows:

/* This EXEC gives user some status information. x/

trace ?i

say 'User ID: ' userid()

say 'Time o' time()

say 'Date : ' date('w')',"' date()
exit

Notice the command trace ?1i, which is the second line of the program. This command causes the
program to go into interactive debug and to trace:

« All clauses before they are run
- Intermediate results during evaluation of expressions
« Substituted names.

When the STATUS EXEC is run without the trace command, you get a result that could look like this:

User ID: GEORGEB
Time : 09:50:54
Date : Thursday, 7 Apr 1993

When the STATUS EXEC is run with the trace command, you get a result that could look like this:

3 %x-% say 'User ID: userid()
>L> "User ID: "
SF> "GEORGEB"
>0> "User ID: GEORGEB"
User ID: GEORGEB

+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

At this point, enter:
trace off

to end debug, or press Enter to continue processing, and you get a result that could look like this:

4 x-x say 'Time : ' time()
>L> "Time : "
>F> "09:50:54"
>0> "Time : 09:50:54"
Time : 09:50:54

At this point, enter:
trace off

to end debug, or press Enter to continue processing, and you get a result that could look like this:

Chapter 7. Debugging CMS 63

Debugging CMS

5 %-%x say 'Date : ' date('w')',' date()
>L> "Date : "
SIS "
>F> "Thursday"
>0> "Date : Thursday"
SIS o
>0> "Date : Thursday,"
>F> "7 Apr 1993"
>0> "Date : Thursday, 7 Apr 1993"
Date : Thursday, 7 Apr 1993

At this point, enter:

trace off

to end debug, or press Enter to continue processing, and you get a result that could look like this:

6 *x-* exit

As you can see in the previous example, the intermediate results of steps 3 through 6 of STATUS EXEC
were traced, and processing stopped at each step.

The z/VM Procedures Language VM/REXX Interpreter also has a TRACE function and instruction. See
z/VM: REXX/VM Reference for more information on using the TRACE instruction and TRACE function.

Nucleus Load Map

Each time the CMS resident nucleus is built, a nucleus load map is produced as a printer spool file by

the HCP loader (HCPLDR). This occurs at the time the nucleus load deck is IPLed from the reader. Save
this load map. It lists the virtual storage locations of nucleus-resident routines and work areas. Transient
modules are not included in this load map. When debugging CMS, you can locate routines using this map.
For information on obtaining a load map, see z/VM: Service Guide.

Module Load Map

The module load map of a disk-resident command module contains the location of control sections and
entry points loaded into storage. It may also contain certain messages and card images of any invalid
cards or replace cards that are in the loaded files. This load map is useful in debugging.

There are two ways to get a load map:

- When loading relocatable object code into storage, make sure that the MAP option is in effect when the
LOAD command is issued. Because MAP is the default option, just be sure that NOMAP is not specified.
A load map is then created on the primary disk each time a LOAD command is issued. See z/VM: CMS
Commands and Utilities Reference for a description of the LOAD command.

« When generating the absolute image form of files already loaded into storage, make sure that the MAP
option is in effect when the GENMOD command is issued. Because MAP is the default option, just be
sure that NOMAP is not specified. Enter the MODMAP command to display the load map associated
with the specified MODULE file on the terminal. See z/VM: CMS Commands and Utilities Reference for a
description of the GENMOD and MODMAP commands.

Note: The load map displayed by the MODMAP command includes the NUCON and SYSREF areas; the
load map created by the LOAD command does not.

CMS Abend Processing

When CMS abnormally ends, any abend exit routines established through the ABNEXIT macro or the
VMERROR or VMERRORCHILD event handlers established through EventMonitor Create receive control.

64 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb1_v7r4.pdf#nameddest=dmsb1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa4_v7r4.pdf#nameddest=hcpa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Debugging CMS

These exit routines allow you to bypass CMS abend recovery and continue processing elsewhere. If no
routine exists or the exit routine returns to CMS, the following error message appears on the terminal:

DMSABE148T System abend zxx called from vstor

where xxx is the abend code and vstor is the address of the instruction causing the abend. CMS then waits
for a command to be entered from the terminal.

Finding the Reason for the CMS Abend

Determine the reason CMS abnormally ended. z/VM: CMS and REXX/VM Messages and Codes lists all the
CMS abend codes, identifies the module that caused the abend, and describes the action that should be
taken whenever CMS abnormally ends.

Types of CMS Abends

The types of CMS abnormal ends are:
1. Program exception

Control is given to the DMSITP (CMS interrupt handler) routine whenever a hardware program
exception occurs. When a program running on a CMS virtual machine abnormally ends (abends), you
receive, at your terminal, the message:

DMSABE141T exception exception occurred at vstor in
routine routine

DMSITP invokes DMSABE (the abend routine) and returns your virtual machine to the CMS
environment. From the message you can determine the types of program checks (such as operation,
privileged operation, execution, protection, or addressing) and, sometimes, the instruction address in
your program at which the error occurred.

Note: routine is the command name from the last SVC issued. This routine is not necessarily the
one that had the exception but is supplied to indicate the last command that was running when the
exception occurred.

2. ABEND macro
Control is given to the DMSSAB routine whenever a user routine processes the ABEND macro. The

abend code specified in the ABEND macro appears in the abnormal end message DMSABE155T. See
z/VM: CMS Macros and Functions Reference for more information on the ABEND macro.

3. Halt Execution command (HX)

Whenever the virtual machine operator signals attention and types HX, CMS ends and responds with
CMS. For more information on the HX command, see z/VM: CMS Commands and Utilities Reference.

4. System abend

A CMS system routine can abnormally end by issuing the DMSABN macro. The first three hexadecimal
digits of the system abend code appear in the CMS abend message, DMSABE148T. The format of the
DMSABN macro is in the z/VM: CMS Macros and Functions Reference.

5. AbnormalEnd API

An application may request a user or system abend through the AbnormalEnd CSL interface. This
function signals a VMERROR event in the abending process, and if no recovery is performed, the
VMERRORCHILD event is signaled so that a parent process can monitor when a child process is
abending. See z/VM: CMS Application Multitasking for more information on the AbnormalEnd CSL
routine.

Collecting Information

The following actions may be useful in determining the cause of a CMS abend:

Chapter 7. Debugging CMS 65

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsw0_v7r4.pdf#nameddest=dmsw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd0_v7r4.pdf#nameddest=dmsd0_v7r4

Debugging CMS

1. Display the PSW. You can use the CP DISPLAY command to compare the PSW instruction address with
the current CMS load map to determine the module that caused the abend. The CMS storage-resident
nucleus routines reside in fixed storage locations.

Also check the interruption code in the PSW.

2. Examine areas of low storage in your virtual machine.

You can find out more about the cause of the abend from the information in the nucleus constant
(NUCON) area of low storage:

a. Examine the program old PSW (PGMOPSW) at location X'28'. Using the PSW and current CMS
nucleus load map, determine the failing address.

b. Examine the SVC old PSW (SVCOPSW) at location X'20'.

c. Examine the external old PSW (EXTOPSW) at location X'18'. If the virtual machine operator stopped
CMS, this PSW points to the instruction running when the stop request was recognized.

d. For a machine check, examine the machine check old PSW (MCKOPSW) at location X'30'.

e. After you have identified the module that has caused the abend, examine the specific instruction.
See the source code listing if available.

f. If you have not identified the problem at this time, take a dump by issuing the VMDUMP command.

3. Examine several other fields in NUCON to analyze the status of the CMS system. If you are using
adump, you may return to NUCON to pick up pointers to specific areas (such as pointers to file
tables) or to examine other status fields. The following areas of NUCON may contain useful debugging
information.

« The save area for low storage
This field, called LOWSAVE, is the first 160 bytes of low storage.
- The register save area

DMSABE, the abend routine, saves the user's floating-point and general purpose registers in the
following fields:

Field Location Contents

FPRLOG X'160' User floating-point registers
GPRLOG X'180' User general purpose registers
ECRLOG X'1C0! User extended control registers

* The device

The name of the device causing the last I/O interrupt is in the DEVICE field at X'26C'.
« The last two commands or procedures processed

Field Location Contents

LASTCMND X'2A0' The last command issued from the CMS or XEDIT
command line. If a command issued in a CMS EXEC
abnormally ends, this field contains the name of the
command. When a CMS EXEC completes, this field
contains the name EXEC. EXEC 2 and System Product
Interpreter do not update this field.

PREVCMND X'2A8' The next-to-last command issued from the CMS or XEDIT
command line. If a command issued in a CMS EXEC
abnormally ends, this field contains the name EXEC.
When a CMS EXEC completes, this field contains the last
command issued from the CMS EXEC. EXEC 2 and System
Product Interpreter do not update this field.

66 z/VM: 7.4 Diagnosis Guide

Debugging CMS

Field Location Contents

LASTEXEC X'2B0" The last EXEC procedure invoked. EXEC 2 and System
Product Interpreter do not update this field.

PREVEXEC X'2B8' The next-to-last EXEC procedure invoked. EXEC 2 and

System Product Interpreter do not update this field.
« The last module loaded into free storage and the transient area

The name of the last module loaded into free storage through a LOADMOD is in the field LASTLMOD
(location X'2CQ'"). The name of the last module loaded into the transient area through a LOADMOD is
in the field LASTTMOD (location X'2C8").

« The CMSCB chain

The pointer to the first CMSCB is in the FCBTAB field located atX'5C0'. Each CMSCB contains
simulated OS control blocks for a particular file or device and resides in free storage. The CMSCB
contains a PLIST for CMS I/0 functions, a simulated job file control block (JFCB), a simulated data
event block (DEB), and the first in a chain of I/O Blocks (I0Bs). The first fullword of each CMSCB
contains a 24-bit pointer to the next CMSCB.

* The last command entered

The last command entered from the terminal is stored in an area called CMNDLINE (X'740'), and its
corresponding PLIST is stored at CMNDLIST (X'848").

« The external interrupt work area
EXTSECT is a work area for the external interrupt handler. It contains:

— The PSW, EXTPSW.

— Register save areas, EXSAVE1.

— A separate area for timer interrupts, EXSAVE.
« The I/O interrupt work area

IOSECT is a work area for the I/O interrupt handler. The oldest and newest PSW and CSW are saved.
Also, there is a register save area.

« The program check interrupt work area

PGMSECT is a work area for the program check interrupt handler. The old PSW and the address of
the register 13 save area are stored in PGMSECT.

- The SVC work area
SVCSECT is a work area for the SVC interrupt handler. It also contains the first four register save

areas assigned. The SFLAG indicates the mode of the called routine. Also, the SVC abend code,
SVCAB, is located in this CSECT.

« The simulated Communications Vector Table (CVT)

The CVT, as supported by CMS, is CVTSECT. Only the fields supported by CMS are filled in.
« The active disk table and active file table

For file system problems, examine the active disk table (ADT) or active file table (AFT) in NUCON.

4. If monitoring a VMERROR or VMERRORCHILD event, you may retrieve event data that gives
information about the abend. The data can be mapped by VNCABNH or VMASMABN macros. See
z/VM: CMS Application Multitasking for more information.

A sample utility program called DACBGEN is provided on the MAINT 193 disk. This can be used to format
CMS or CP control blocks into readable/printable formats. In addition to providing output that can be
formatted with BookMaster®, it can also be used for customer-written control blocks that adhere to a
prescribed format. See the DACBGEN README file on the MAINT 193 disk for details.

Note: The output from the DACBGEN utility is z/VM product implementation information for diagnosis and
must not be used for programming purposes.

Chapter 7. Debugging CMS 67

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd0_v7r4.pdf#nameddest=dmsd0_v7r4

Debugging CMS

Register Use

To trace control blocks and modules, it is important to know the CMS general purpose register (GPR)
usage conventions:

GPR Contents

1 The address of the PLIST

12 The program's entry point

13 The address of a 12-doubleword work area for an SVC call
14 The return address

15 The program entry point or the return code

This information should help you read a CMS dump. If it becomes necessary to trace file system control
blocks, you can use the TRACE GPR command described in z/VM: CP Commands and Utilities Reference.
With a dump, the results of the trace, and a CMS load map, you should be able to find the cause of the
abend. If you choose to use a dump, the DUMPLOAD utility and the Dump Viewing Facility will help you
process and use it.

Some Debugging Tips
Here are some tips for debugging after receiving a program check abend (for example, DMSABE141T):

« DMSITP, the CMS program interrupt handler, or DMSABE, the CMS abend processing module, issues
error messages when a program check occurs. If a SPIE or a STAE has been issued, control is passed
to the specified routine; otherwise, control passes to DMSABE to try to recover from the error. If the
message DMSITP144T is issued, the UFDBUSY byte is not zero and control is halted after the message
is typed. If the wait state bit is turned off in the PSW, control continues as above. Also, if the error
occurred during the running of a system routine, control is halted until the wait state bit is turned off or
CMSis re-IPLed.

Note: Turning off the WAIT bit may cause damage. Use caution.

- To determine the registers and PSW at the time of the abend, get the address of PGMSECT in the
nucleus constant area (NUCON X'654"). The old PSW is stored at label EPIEPSW, X'58' bytes into the
DSECT. This is followed by the registers at label EPIEREGS (X'18'). The program interrupt element (PIE),
needed by SPIE, primarily uses these areas. Registers 0 through 15 are stored at offset X'3C" into the
DSECT. The SPIE/STAE routine or the DMSSAB routine uses the other areas within the DSECT.

« Another aid to debugging is the SVC save area (SVCSAVE) for the virtual machine. Offset X'528' in
NUCON points to these areas. The save areas are easily recognizable by the check words ABCD and
EFGH contained within them. The address of the SVC caller is stored at offset 4, and the name of the
routine being called is saved at offset X'8'. At offset X'10', the old PSW of the caller is stored, and offsets
X'18"'and X'1C' hold the addresses for the normal return and the error return, respectively.

Registers 0 through 15 are stored at offset X'20', followed by the floating-point register at X'60'. After
the first check word (ABCD), the address of the next SVCSAVE area is stored, followed by the address
of the previous SVCSAVE area and the address of the user's area. If the address of the next or previous
SVCSAVE area is zero, the chain is ended.

Access registers 0 through 15 are stored at offset X'D4".

Using CMS to Debug

After an abend, you can use CMS to debug the problem. When the information provided by the abend
message does not immediately identify the problem in your program, or if you think the debugging
facilities of CMS are not appropriate, you should begin debugging procedures using z/VM. For instructions
on how to use the CP commands, see “Commands That Monitor Events” on page 25. If you choose to
produce a dump to help you debug the problem, see “Reading CMS Abend Dumps” on page 70 for

68 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging CMS

information on reading a CMS dump. If you can reproduce the problem, you can use the Dump Viewing
Facility to process the dump or look at the trace table.

The most common problem you might encounter is an abnormal end resulting from a program
interruption.

Sometimes the information provided by the abend message is enough for you to correct the error in your
source program, recompile it, and attempt to run it again.

If a CMS command is now issued, the abend routine, DMSABE, performs abend recovery and then passes
control to the DMSINT routine to process the command just entered.

Setting Machines to Automatically Create Dumps

The following describes the commands to use for automatically create dumps.

Generating CMS Abend Dumps

By using the SET AUTODUMP command, you can automatically generate a dump of your entire virtual
machine or selected parts of it whenever a CMS abend occurs. You can create a dump for irrecoverable
CMS system abends for all abends that occur in your virtual machine, or you can choose not to create a
dump automatically.

When you use the SET AUTODUMP command, you can generate a dump containing the DMSNUC area of
CMS, the storage management work area, the page allocation table, and the loader tables.

SET AUTODUMP CMS generates a dump for the following system errors:

« Program checks within nucleus resident modules
« Irrecoverable errors in the file system

- Irrecoverable storage management errors

« All other errors that result in a disabled wait PSW.

SET AUTODUMP CMS is the default.

SET AUTODUMP ALL dumps storage for all abends in the virtual machine. In addition to the abend
conditions stated above, SET AUTODUMP ALL dumps storage for:

« All program checks
* The use of the ABEND macro
« The use of the DMSABN macro.

The SET AUTODUMP CMS ENTIREVM and SET AUTODUMP ALL ENTIREVM commands dump your entire
virtual machine, all the discontiguous saved segments (DCSSs) currently in use, and data spaces that
contain server data (in CP format).

If you do not want to create dumps automatically, you can turn AUTODUMP off using SET AUTODUMP
OFF.

If you are unsure of the setting of AUTODUMP, enter the QUERY AUTODUMP command for the current
setting of your virtual machine.

If you have set AUTODUMP to ALL or CMS, the dump is produced using the CP VMDUMP command. The
dump is sent to the reader of the virtual machine that abended. This user also receives a message saying
that the dump has been taken. For more information on the SET AUTODUMP and QUERY AUTODUMP
commands, see z/VM: CMS Commands and Utilities Reference.

You can use the DUMPLOAD utility to process the dump and the DUMPSCAN command (CMSPOINT
subcommand) of the Dump Viewing Facility to view it. For more information on the DUMPLOAD utility see
z/VM: CP Commands and Utilities Reference; for more information on the DUMPSCAN command, see z/VM:
Dump Viewing Facility.

Chapter 7. Debugging CMS 69

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4

Debugging CMS

Reading CMS Abend Dumps
If you want to produce an abend dump when CMS abnormally ends, enter:

f#tcp vmdump 0-end format cms dss

By issuing this command, a dump spool file is created and sent to your reader. Re-IPL CMS and use the
DUMPLOAD utility to format the dump into a usable form. The dump formats and prints:

« Access registers

General purpose registers (GPRs)

Extended control registers

Floating-point registers

Storage boundaries with their corresponding storage protect key
Current PSW
Selected storage.

Storage is printed in hexadecimal representation, eight words to the line, with EBCDIC translation at the
right. The hexadecimal storage address corresponding to the first byte of each line is printed at the left.

When CMS can no longer continue, it abnormally ends. To debug CMS, first determine the condition that
caused the abend and then find why the condition occurred. To find the cause of a CMS problem, you
must be familiar with the structure and functions of CMS. You also need a current CMS nucleus load map
to analyze the dump.

Looking at Dump Errors

The CMSDUMP serviceability aid may be helpful when you are looking at CMS control blocks or free
storage chains within a CMS dump. The CMSDUMP aid is shipped with z/VM 7.4 on an "as is" basis,

to optionally be installed on the MAINT 193 disk. The documentation for CMSDUMP comes with the
serviceability aids package. For more information see the HELPXEDI CMSDUMP file that comes with the
package on MAINT's 193 disk.

Creating Dumps in Case of Messages

By using the SET TRAPMSG command, you can automatically generate a dump of your entire virtual
machine or selected parts of it whenever a specific CMS message occurs. Use the SET TRAPMSG
command to set a trap to spring on a particular message, and optionally, to specify how much storage to
dump.

SET TRAPMSG ON must be specified with a message number or message ID parameter. Unless a range is
specified, the default dump range is ‘0 to vmsize-1'.

The dump will generate a VMDUMP format spool file when the trap springs. The type of virtual machine
being dumped is CMS. The dump can be viewed using the Dump Viewing Facility.

You can check whether a TRAPMSG has been set using the QUERY TRAPMSG command.
SET TRAPMSG OFF is the default setting.

For more information about the SET TRAPMSG command see z/VM: CMS Commands and Utilities
Reference.

Printing a CMS Dump File

Use the Dump Viewing Facility PRTDUMP command to print CMS dump files that were previously created
with the DUMPLOAD utility. See z/VM: Dump Viewing Facility for more information on the PRTDUMP
command and z/VM: CP Commands and Utilities Reference for more information on the DUMPLOAD utility.

70 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging CMS

Commands That Alter the Contents of Storage

You can use the STORE (Guest Storage) and STORE (Host Storage) commands to alter the contents of
virtual machine storage and host storage, respectively.

You can use the ZAP and ZAPTEXT commands to alter modules, OS LOADLIBS, TEXT libraries, or TEXT
decks before the code is loaded and run.

The ZAP command is described in the z/VM: CMS Commands and Utilities Reference and the ZAPTEXT
command is described in the z/VM: VMSES/E Introduction and Reference. For information on the STORE
(Guest Storage) and STORE (Host Storage) commands, see “Altering Contents of Virtual Machine Storage
(STORE Guest Command)” on page 29 and “Altering Contents of Host Storage (STORE Host Command)”
on page 30, as well as the z/VM: CP Commands and Utilities Reference.

Diagnosing SFS-Related Application Errors

Applications and CMS commands manipulate files residing on the Shared File System in the following
ways:

« Callable Services Library (CSL) Routines

« CMS File System macros

« OS Simulation macros.

The causes of SFS related errors and warnings are well defined to applications that use CSL routines,
particularly when the extended error (WUERROR) parameter is included when manipulating files on SFS.

Applications that use CMS file system or OS macros to manipulate SFS files might not get enough
information through the defined interface to enable an application developer or system programmer to
properly diagnose the cause of the error. However, the internal DMSFSERR trace table maintains SFS
diagnostic information relating to recent errors and warnings detected by these macro services.

This table is allocated when the first SFS error or warning is detected by CMS File System macro services
following an IPL of CMS. It will maintain a number of error records. That number is defined in the FVS
control block, in the FVSFSSZ field.

The DMSFSERR table might be of particular benefit for intermittent errors, which are difficult to trace.

The format and contents of the DMSFSERR table, as well as the other CMS control blocks referenced
below, are documented at:

z/VM Data Areas, Control Blocks, and Monitor Records (https://www.vm.ibm.com/pubs/ctlblk.html)

It can be located in storage of the virtual machine experiencing the problem as follows:

1. Find the location of the AFVS field in NUCON (NUCON is at offset O in the virtual machine.) The value in
AFVS contains the address of the FVS control block.

2. Locate the FVSFSER field in the FVS control block.

3. If the value in the FVSFSER field is zero, there is no DMSFSERR trace table allocated. If the value is
non-zero, it will point to the start of the table.

4. The value in FVSFSER contains the address of the DMSFSERR table. Within DMSFSERR, the value in
FSESIZE indicates the size of the table in bytes. By finding the value in FSECURSR and backing up
one entry, you can find the most recent error entry. Use the DMSFSERR macro to see how the data is
arranged. Note that date and time information can help you navigate through the table. Also note that
when the table is filled, it will wrap to the beginning.

In most cases the file ID, file system operation name, return code, and reason code data in the FS error
trace table will be sufficient to diagnose the cause of the error. These reason codes are documented in
z/VM: CMS Callable Services Reference.

Extended error information is available in many cases if additional diagnostic information is needed. See
the WUERROR and FPERROR macro descriptions in z/VM: CMS Macros and Functions Reference for the
layout of SFS extended error information.

Chapter 7. Debugging CMS 71

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa3_v7r4.pdf#nameddest=hcpa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.vm.ibm.com/pubs/ctlblk.html
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Debugging CMS

The FS2SFSER sample program might be useful for displaying the contents of the DMSFSERR trace table
in your virtual storage. Note that it is distributed on an "as is" basis, to be installed as a sample on the
MAINT 193 disk. For more information, see the file HELP FS2SFSER.

Diagnosing CMS File System Errors

In addition to application errors, the CMS minidisk file system may detect some structural errors or
irrecoverable processing failures. Some symptoms of file system errors are:

« The CMS file system detects an irrecoverable error. This is accompanied by a DMS1307T message; the
system is placed in a disabled wait, and a VM dump is generated.

Files cannot be read from minidisk.

« A CMS formatted minidisk cannot be accessed (device error on access).

Duplicate files appear on a CMS minidisk.

Files disappear from a CMS minidisk.

Some file integrity errors may be temporary, for example, when a disk is accessed read only and there are
updates to the disk. However, other errors may be indications that the minidisk has been damaged. While
minidisk corruption may be due to any number of factors, some of the more frequent include:

« Hardware I/O errors

« Invalid configuration of minidisks (for example, overlapping minidisk extents in the CP directory or
allocation of the real pack not in PERM space.)

« Multiwrite links to a CMS formatted minidisk

« Applications that modify the virtual device addresses or links of minidisks accessed in R/W mode
without releasing the file mode .

« File mode 6 (update-in-place) files open for output during a system crash

 Minidisk caching of shared DASD

- Release of storage that is critical to the file system

« Overlays of critical file system storage

 Timing errors

« Use of undocumented file system interfaces or control blocks by applications or IBM program products.
 Storage management chain corruption

« VM/CMS system errors.

Notes:

1. CMS minidisk corruption may be experienced as a side-effect of other system outages or failures,
some that appear to be unrelated. It is therefore recommended that you examine any EREP data when
there is minidisk corruption.

2. Minidisk corruption may be detected a long time after the minidisk was actually corrupted. For
example, when a file block is marked as belonging to two different files (via pointer blocks or FSTs),
frequently the error is first detected when the second file is erased.

3. After any corruption of a minidisk has been detected, it is recommended that all files unaffected by the
corruption be copied to another disk, the corrupted disk be reformatted, and data be copied back to
the newly formatted disk. Otherwise additional latent disk corruption may surface.

4. If I/O errors are present, you may wish to attempt to move the minidisk to another physical pack.

5. Consider using MDCHECK to analyze minidisks in which corruption is suspected. MDCHECK is an
optionally installed diagnostic aid available on the MAINT 193 disk. See “Diagnosis Tools Available” on
page 74.

6. When an error appears to be caused by a CP I/0 error, return information may be available in DIOSECT.

7. If a storage overlay is suspected, examine some of the following data areas:

a. Active Disk Table (ADT)

72 z/VM: 7.4 Diagnosis Guide

Debugging CMS

b. Active File Table (AFT) if one exists
c. Device Table (DEVTAB) for the affected device.

Diagnosing Data Compression Services System Errors

When using Data Compression Services to compress your data, you will be building both a compression
and expansion dictionary on your A-disk. You must set up your A-disk as a read/write disk and allocate
enough space so that the output files generated by the CSRBDICV EXEC will execute correctly. Messages
that are requested with the msglevel argument will also be written to your A-disk. If sufficient space is not
allocated, the output will be incomplete and unpredictable results will occur.

If you get the message
colaps must be X, L, AM, or AAM

when you are using the CSRBDICV EXEC to build compression and expansion dictionaries, you must:

1. Check that one of the valid values has been entered in the colaps argument positional offset

2. Ensure that there are no sequence numbers in the far right columns of the SPECFILE data which would
offset the positional specifications. If they are present, delete the sequence numbers.

If you are using the CSRBDICV EXEC and a REXX fixed point overflow error occurs, you must:

1. Check that the SPECFILE data has been accessed correctly. The scanfilename BDICTsf file will contain
the SPECFILE data image read during processing.

2. Check that the maxnodes value which has been entered is large enough to account for at least the
base number of nodes in each size of dictionary.

Note: To ensure your maxnodes is always set correctly, do not set it for less than the dictionary
size number of entries. For example, a .5K dictionary should have a maxnodes of at least 512; a 1K
dictionary should have a maxnodes of least 1024.

3. Check if the scan data is unusually large or the stepping argument of the SCANFILE forces most lines
to be hit in one pass. If this exists, then either:

« Increase the maxnodes value to a number near the value returned by the TN argument for the
maxnodes approximation, or

« Adjust the stepping argument value to hit fewer lines per pass.

After expanding a string of data, you may notice unexpected characters at the end of the string. To correct
this, you must check the CMPSC_BITNUM bit in the CMPSC_DICTADDR_BYTES3 field of the CSRYCMPS
area after a call to Data Compression Services. If this bit is on, you must add 1 to the length of the source
area before calling Data Compression Services to expand your data. To test this bit, use a TM instruction.

CMS 0S/VSAM users can find error code information in the "OS/VSAM Error Codes" section of the z/VM:
CMS Application Development Guide for Assembler for OPEN, CLOSE, and I/O Request error code tables.

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM Version 6 Release 1
Commands, VSE/VSAM Version 6 Release 1 User's Guide and Application Programming, and VSE/ESA
Version 2 Release 1 Messages and Codes.

Getting Help From IBM

If the problem persists, and you are unable to determine the cause of the problem, contact the IBM
Support Center. The following information will be of help when diagnosing the problem:

1. As soon as possible after minidisk corruption has been detected, use the CP DASD Dump Restore
(DDR) utility to make a copy of the affected minidisk.

2. When the file system detects an unrecoverable error, DMSDKD1307T error messages generate system
dumps (unless SET AUTODUMP has been set to OFF). These dumps should be retained to analyze the
problem, as needed.

Chapter 7. Debugging CMS 73

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4

Debugging CMS

Diagnosis Tools Available

The following diagnosis aids may be useful in assisting you to diagnose file system failures. These are
provided on an "as is" basis, to be installed as samples on the MAINT 193 disk.

AFTCHAIN
may be used to determine what files are currently open, and optionally display or format Active File
Table entries associated with each open CMS file.

MDCHECK
may be used to validate the integrity of a CMS minidisk, and optionally recover most of its contents.
Note that when MDCHECK is first run against a minidisk, pre-existing (or latent) disk corruption may
be detected.

PRINTFST
may be used to display the contents of a file status table (directory) entry.

PRINTBLK
may be used to display the contents of a minidisk file block.

Note that documentation for these service aids is included as part of the tools themselves.

74 z/VM: 7.4 Diagnosis Guide

Debugging SFS and CRR

Chapter 8. Debugging the SFS Server or CRR
Recovery Server

The Coordinated Resource Recovery (CRR) facility requires a CRR recovery server. The CRR recovery
server functions reside in a Shared File System (SFS) file pool server, so you could have the same server
performing both SFS server functions and CRR recovery server functions.

Hereafter, reference to a server, it could mean one of the following:
« A dedicated SFS file pool server

« A dedicated CRR recovery server

« Both an SFS file pool server and a CRR recovery server

For more information about SFS and CRR, see z/VM: CMS File Pool Planning, Administration, and
Operation.

The following sections describe the ways you can collect information for problem diagnosis:

« “Using the Console Log” on page 76

« “Using Server Dumps to Diagnose Problems” on page 79

« “Using System Trace Data to Diagnose Problems” on page 80
« “Using the SVCTRACE command” on page 62.

Note: The server operator does not necessarily diagnose problems, especially from the server virtual
machine. Dumps and system trace data are normally used by a system programmer or whoever is
responsible for diagnosing system problems.

Summary of Steps to Follow When a Server Abend Occurs

When a server abend occurs, you must follow these steps:

1. Collect information about the error.
 Save the console log or spooled console output from the server virtual machine.
« Save and process any dumps that the server produces.

When an abend occurs in the server, either because the server issued an abend or because a server
or CMS operation caused a program exception, the server produces a dump through the CP VMDUMP
command described in the z/VM: CP Commands and Utilities Reference. CP sends the dump to the
server's virtual reader.

Note: The DUMP startup parameter must have already been specified in the server's DMSPARMS file
to get a dump to the reader.

« Save any system trace files that contain server data.
2. Collect other types of information about system status, such as:
« The status of real and virtual devices that the server is using

» The system load at the time of the error on any systems using the server and the status of each
system (for example, did another system abend?)

- The types of applications that are using the server at the time, and any information about them
« The physical connection configuration of the systems in use.

© Copyright IBM Corp. 1991, 2025 75

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsc6_v7r4.pdf#nameddest=dmsc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsc6_v7r4.pdf#nameddest=dmsc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging SFS and CRR

Using the Console Log

The server provides informational messages, as well as error messages, that may help you with problem
determination. To keep track of the console messages, enter:

spool console start to userid

userid can be the user ID of the server virtual machine or another virtual machine user ID to whom you
want the server to send the console log. You may want to add this to the server's PROFILE EXEC so a
console log is always created.

To close the console log, enter:
spool console close

The log of messages received is sent to the specified user ID. See z/VM: CP Commands and Utilities
Reference for details on the SPOOL command.

The server provides additional information at the time of an abend to help you diagnose the problem. The
console log contains information about the abend, such as:

- The abend code
« The program old PSW
- The contents of the general purpose registers.

The server also attempts to determine the displacement of the module in which the abend occurred and
the displacement of the calling module.

Figure 7 on page 77, Figure 8 on page 78, and Figure 9 on page 78 show some of the messages that
the server may issue in response to an abend condition.

76 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging SFS and CRR

DMSITP141T Operation exception occurred at 4E3E72 in routine DMS5IF
SDS ABEND SAVEAREA :

ADDR OFFSET DUMP DATA

0051E0C4 00000000 FFEOOOC1 704E3E72 00000000 003707C8 * ...A.+......... H %
0051EOGD4 00000010 OO51EQ00 0051E848 00000118 00370702 * Yooooooo00o *
OO51EQE4 00000020 00000118 00000 OO3707FC 00370760 * - %
0051EOF4 00000030 00372BEO 00465A60 00466A5F 00370760 *!-...-...- %
0051E104 00000040 70465EE8 QO4E3E70 % oofVotFoo *

ABTERM CODE OC1 AT GQ4E3E70
PROGRAM OLD PSW IS : FFEGOOC1 704E3E72

GPR 0 = 00000000 003707C8 OO51EO00 0051E848
GPR 4 = 00000118 00370702 00000118 00000000
GPR 8 = 003707FC 00370760 00372BE0 00465A60
GPR 12 = 00466A5F 00370760 70465EE8 OO4E3E70

FAILURE AT OFFSET +00058E70 IN DMSSAC PROGRAM (0048B000)
FAILURE AT OFFSET +0007E410 IN DMS3SP 89.082

CALLED FROM OFFSET +0002E9DO® IN DMSDAC PROGRAM (00409000)
CALLED FROM OFFSET +00000210 IN DMS3RA 89.080

STORAGE NEAR FAILURE :

ADDR OFFSET DUMP DATA

O04E3E50 00000000 00030000 OOOOFFFF OO04FACBO 004DD958 * [...(R. *
OO4E3E60 00000010 00000080 OOOOOOOO 00502330 OOEOOOOO * Boooooo *
OO4E3E70 00000020 00000000 10C4D4E2 F5C7D440 404040F8 * DMS5GM 8 *x
OO4E3E80 00000030 F94BFOF8 F10090EC DOOC18CF 5800C7DC * 9.081......... G. *
OO4E3E90 00000040 58EOA014 58FOE130 5810F008 1E015500 * ®sc00@c0000 *

POTENTIAL WILD BRANCH AT : OQ465EE6

BAL(R) AT OFFSET +0005CEE6 IN DMSDAC PROGRAM (00409000)
BAL(R) AT OFFSET +00000486 IN DMS3SP 89.082

ADDR OFFSET DUMP DATA

00465ECO 00000000 912F5020 90744120 91375020 90784120 * ..&....... Rooooa *
00465EDO 00000010 BB585020 907C5820 908C5820 201058F0 * ..&..@......... 0 *
O0465EE0 00000020 21D04110 906805EF 12FF4780 B4AE65820 * W.. *
O0465EFO 00000030 A2F041EO0 022613EE 50E02018 1FEEOQ6EO * .0...... Booooooo *

00465F00 00000040 50E0201C 50F02020 D207203C BB5040F0 * &...&0..K....& 0 *

AB/00C1 PIDS/5684-112 RIDS/DMS3SP ADRS/0007E410

Figure 7. Server Console Log (Operation Exception Occurred)

Chapter 8. Debugging the SFS Server or CRR Recovery Server 77

Debugging SFS and CRR

SDS ABEND SAVEAREA :

ADDR OFFSET DUMP DATA
005390C4
005390D4
005390E4
005390F4
00539104

00000000
00000010
00000020
00000030
00000040

FFEQOOC4 AQAFEAFE 00000000 0038B7C8
00000000 00539848 00000118 0038B702
00000118 0OCOOOOO OO38B7FC 0038B760
0038DBEO 00000000 OO4FEA80 0038B8A0
0038D1A0 OO4FEA80

ABTERM CODE 0C4 AT OQ4FEAFA

PROGRAM OLD PSW IS : FFEQOOC4 AOAFEAFE
GPR ©
GPR 4
GPR 8

GPR 12

00000000
00000118
0038B7FC
O04FEA80

0038B7C8
0038B702
0038B760
0038B8A0

00000000
00000118
OO38DBEO
0038D1A0

00539848
00000000
00000000
OO4FEA80

FAILURE
FAILURE

AT OFFSET
AT OFFSET

+00058AFA
+0000007A

IN DMSSAC PROGRAM
IN DMS5GM 89.065

+0005D03E
+00000486

IN DMSDAC PROGRAM
IN DMS3SP 89.065

CALLED FROM OFFSET
CALLED FROM OFFSET

STORAGE NEAR FAILURE :

ADDR OFFSET DUMP DATA
OO4FEAD8
OO4FEAE8
OO4FEAF8
OO4FEBO8
OO4FEB18

00000000
00000010
00000020
00000030
00000040

E13047F0 C0245000 FOO818B1 50DOBO0O4
50BODOO8 98F1D0O10 18DBD217 B0481000
1F225020 B1405820 B0485820 20005020
B144183A D5063000 C7824770 COA25890
30145820 901C47F0 COAE182A 58902014

AB/00C4 PIDS/5684-112 RIDS/DMS5GM

DMSITP141T Protection exception occurred at 4FEAFE in routine DMS5IF

(004A6000)

(00424000)

ADRS /00000000

Figure 8. Server Console Log (Protection Exception Occurred)

SDS ABEND SAVEAREA :

ADDR OFFSET DUMP DATA
0051D0C4
0051D0D4
0051DOE4
0051DOF4
0051D104

00000000
00000010
00000020
00000030
00000040

00000000 5049528E 00000010 00495A3C
0038C0O00 OO38CI1EC 00391016 0OOOOOOD
00000008 00000012 0COOCO01 0OOOEO12
00371340 0036FDF8 00494C90 0O36FDF8
50495290 00500D48

GPR
GPR
GPR
GPR 1

00000010
00391016
00000001
00494C90

00495A3C
0000000D
00000012
0036FDF8

0038C000
00000008
00371340
50495290

0038C1EC
00000012
0036FDF8
00500D48

N RO
L I T

AT OFFSET
AT OFFSET

+0000B28C
+000005FC

IN DMSSAC PROGRAM
IN DMS4CI 89.058

FATLURE
FAILURE

CALLED FROM OFFSET
CALLED FROM OFFSET

+0005265A
+00000192

IN DMSSAC PROGRAM
IN DMS4SR 89.081

DMS4SB3126E SAC termination during forward processing
LUWID = 57F5 USERID = BRAZIE
OPERATION =
CATALOG-ID =
PAGE-ADDRESS =
PAGE-NUMBER =

BULK INSERT
6503
392000

112A

PAGE-TYPE = INDEX

MS/DMS3040E PIDS/5684-112 RIDS/DMS4CI

DMS5FE3040E File pool server system error occurred - DMS4CI 05

(0048A000)

(0048A000)

PRCS/05

Figure 9. Server Console Log (File Pool Server System Error Occurred)

78 z/VM: 7.4 Diagnosis Guide

Debugging SFS and CRR

Using Server Dumps to Diagnose Problems

You can use the Dump Viewing Facility to collect and diagnose problem data for the server virtual
machine. The console listing, as described in “Using the Console Log” on page 76, may help you diagnose
problems without using dumps.

The steps involved in using dumps to diagnose problems are:

1. Create the server dump

2. Process the server dump
3. Diagnose the server dump
4. Print the server dump.

Creating a Server Dump

The server virtual machine creates its own dumps. The dumps go to the reader of the server virtual
machine. (The DUMP startup parameter must have already been specified in the server's DMSPARMS file
to get a dump to the reader.) Because the server virtual machine is not set up to process dumps, you need
to transfer the dump file to the appropriate virtual machine.

If the server virtual machine cannot create the dump, you can use the VMDUMP command. The VMDUMP
command dumps virtual storage that z/VM creates for the virtual machine user, in this case for the server.
If you enter the following CP command:

vmdump O-end system format sfs

the dump goes to the virtual machine specified by the DUMP operand of the SYSTEM_USERIDS statement
in the system configuration file. Do not use the reserved names ATSCABZ1 or ATSCAB2 for the dump

ID of VMDUMP. See z/VM: CP Commands and Utilities Reference for more information on the VMDUMP
command.

Processing a Server Dump
After the server virtual machine creates a dump, load the dump onto disk. To load the dump, enter:
dumpload

The default map file is SFSDVF MAP.

After you have loaded the dump, you can use the Dump Viewing Facility to format, process, view, and print
the dump. To do this, enter:

dumpscan dumpname

When you enter the DUMPSCAN command, it checks for a server extraction routine to update the
symptom record, transmit it to the symptom record repository, and update the dump.

See z/VM: Dump Viewing Facility for more information about the DUMPSCAN command, and z/VM: CP
Commands and Utilities Reference for more information about the DUMPLOAD utility.

Diagnosing a Server Dump

The DUMPSCAN command uses a symptom record, which is based on problem report information. The
symptom record helps you find out why the server created the dump. The symptom record includes:

« Information about the system environment at the time of the dump

« The symptom string that contains the following component-related symptoms:
— The error code
— The ID of the failing component
— The ID of the failing module

Chapter 8. Debugging the SFS Server or CRR Recovery Server 79

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging SFS and CRR

— The registers and PSW contents.
To see the symptom information, use the SYMPTOM subcommand of DUMPSCAN.

You can use the other DUMPSCAN subcommands to examine the dump interactively. The following
sections introduce those subcommands specifically for the server.

Formatting and Displaying Trace Records

You can scroll through the formatted output with either of the following DUMPSCAN subcommands:
« TRACE SCROLL or TRACE SCROLLU
« SCROLL or SCROLLU.

See z/VM: Dump Viewing Facility for more information about the DUMPSCAN TRACE and SCROLL
subcommands.

Printing a Server Dump

The PRTDUMP command of the Dump Viewing Facility prints the dump and symptom record that
DUMPSCAN processed. The output you get consists of the following:

« A symptom record
« A dump in hexadecimal (no special formatting)
« The contents of the registers and the PSW.

See z/VM: Dump Viewing Facility for more information on the PRTDUMP command.

Using System Trace Data to Diaghose Problems

While the server maintains an internal trace table within the server virtual machine, it also writes trace
entries to the system TRFILE file. You can use the Dump Viewing Facility to format and display the trace
table entries.

If you use the CP TRSOURCE command to create trace entries or the CP TRSAVE utility to save trace
entries, you can format them with the CP TRACERED utility. You can then use DUMPSCAN to view server
entries. For more information about the DUMPSCAN command, see z/VM: Dump Viewing Facility. For
information about the TRACERED utility and the TRSAVE command, see z/VM: CP Commands and Utilities
Reference.

Setting Internal Tracing

The server ITRACE command lets you enable or disable internal tracing for the server virtual machine. If
you want to collect server trace records, enter the following from the server virtual machine after TRSAVE
is started:

itrace on

If you want to stop tracing for the server, enter:

itrace off

ITRACE traces APPC/VM communications between the server machine and CMS users.

You may also start tracing, using ITRACE, by specifying the proper startup parameters when the server
machine is started.

To process the internal trace output, use the Dump Viewing Facility to view the results.

A complete description of the ITRACE command is in z/VM: CMS File Pool Planning, Administration, and
Operation.

80 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsc6_v7r4.pdf#nameddest=dmsc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsc6_v7r4.pdf#nameddest=dmsc6_v7r4

Debugging SFS and CRR

Setting External Tracing

The server ETRACE command lets you enable or disable external tracing for the server virtual machine. If
you want to collect server trace records, enter the following from the server virtual machine after TRSAVE
is started:

etrace on
After you enter ETRACE ON, a series of prompts allow you to specify the type and level of data to be
traced. The prompts you will receive are for:

« Which user ID processing will be traced. You can specify a single user ID or all user IDs with an asterisk
™).

- What type of server processing will be traced. In response to this prompt, you can specify SAC, DAC, or
both to indicate the type of server processing.

« Server tracing of the subcomponents and the trace level desired.
A 0 may be entered as a response to any prompt to cancel the ETRACE command.

If you want to stop tracing for the server machine enter:

etrace off
You may also start tracing with the ETRACE command by specifying the proper startup parameters when
the server machine is started.
To process the external trace output, use the Dump Viewing Facility to view the results.

When you set external tracing on, certain internal server trace records are written externally to a spool
file. A complete description of the ETRACE command is in z/VM: CMS File Pool Planning, Administration,
and Operation.

Other Diagnostic Facilities

There are other diagnostic aids that may be useful when working with IBM support personnel for
diagnosing SFS server errors. These are distributed on an "as is" basis to be installed as a sample on
the MAINT 193 disk. These include:

SFSDOT
A set of SFS operator commands that may be useful when attempting to diagnose problems.

LCTRACE
A facility to trace interactions between a user machine and the Shared File System (SFS). LCTRACE is
invoked from a user machine's CMS session.

Note that not all of the output formats are documented, as these are designed for IBM System Support
personnel use.

Chapter 8. Debugging the SFS Server or CRR Recovery Server 81

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsc6_v7r4.pdf#nameddest=dmsc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsc6_v7r4.pdf#nameddest=dmsc6_v7r4

Debugging SFS and CRR

82 z/VM: 7.4 Diagnosis Guide

Debugging GCS

Chapter 9. Debugging GCS

The Group Control System (GCS) is a multitasking operating system and is a component with z/VM. Only
XA or XC virtual machines may use GCS.

XA and XC virtual machines run with the full capabilities of z/VM. Either 24-bit or 31-bit addressing can
be used (thus allowing addresses below and above 16 MB), as well as the more efficient I/O using the
Channel Subsystem.

While running programs on the Group Control System (GCS), you can encounter the following types of
problems:

- Loops

- Abends

- Incorrect results

- Disabled wait states. 3

To help you deal with these problems, GCS provides:

« “Internal Tracing Facilities” on page 83

- “External Tracing Facilities” on page 104

« “Dumping Facilities” on page 110

« “Interactive Debugging Support” on page 110.

Internal Tracing Facilities

The GCS supervisor maintains a wraparound trace table that serves:

« Each virtual machine individually in a group if the trace table is placed in the virtual machine's private
storage

« Allvirtual machines collectively in a group if the trace table is placed in common storage.

The trace table is placed in private storage by default unless common storage is specified when the
GROUP EXEC is run at build time. When building your GCS configuration file, you specify how big you want
this table to be. The minimum you can choose is 4 KB; the maximum depends upon how much common
storage you have available to use if you place the trace table in common storage. If you don't set a size
limit, GCS gives you a default size of 16 KB. See z/VM: Installation Guide for more information about how
to load, build, and save GCS.

The trace table contains information about the following supervisor events:
« Task dispatches

« External interrupts

« I/O interrupts

 Program interrupts

« SVCinterrupts

« I/0 requests (SSCH, DIAGNOSE, HSCH, TSCH, which are called by the supervisor)
« IUCV signal system service detail entries

- SVC GETMAIN storage requests

« SVC FREEMAIN storage requests

« APPC/VM synchronous events

3 OQutlined in Chapter 1, “Introduction to Debugging,” on page 1.

© Copyright IBM Corp. 1991, 2025 83

Debugging GCS

- Branch entry FREEMAIN storage requests
« Branch entry GETMAIN storage requests
« Service Point (SP) trace entries.

The tracing of supervisor events is activated as soon as your virtual machine joins a group. You can trace
data from any of your GCS programs (GTRACE events) by entering the ITRACE command followed by the
GTRACE macro. Service Point (SP) trace entries are activated only if you enter ITRACE SP.

Using the ITRACE Command and GTRACE Macro

To begin tracing data in a virtual machine, you must enter from the console the ITRACE command with the
GTRACE option. Then the GCS application program you want to trace must call the GTRACE macro. The
GTRACE macro cannot begin tracing unless you first enter the ITRACE command.

You can enter the ITRACE command for:

« Individual virtual machines
- Entire virtual machine groups.

Any virtual machine operator who enters it on behalf of the whole group (ITRACE GROUP) must have an
authorized user ID.

For more information about the ITRACE command and the GTRACE macro, see z/VM: Group Control
System.

Note: ITRACE of GTRACE records will only trace GTRACE records that are less than or equal to 256 bytes.
GTRACE records that are greater than 256 bytes and up to 8k can only be traced as external trace records.

Formats of Internal Trace Entries

Internal trace entries can be generated by applications from the GTRACE macro and by the GCS
supervisor.

GCS trace entries consist of a common 16-byte header followed by event-specific data of up to 264 bytes.

Header Data

16 16 to 264

Note: In the following diagrams, reserved fields are indicated by the word 'Reserved' or by dashes (- -).

Trace Header Format
The 16-byte header looks like this:

84 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Debugging GCS

Header

Data

Length | Machine
ID

OoT<
o<md

Time-Of-Day
Clock

1

Type
shows the type of trace entry:

Hex Code
Trace Entry Type

01

Dispatcher
02

External interrupt
03

I/O interrupt
04

Program interrupt
05

SVC interrupt
06

I/0 request

07

—

2 2

IUCV signal system service details

08
SVC GETMAIN request

09
SVC FREEMAIN request

0A

GETMAIN request through a branch entry

0B

FREEMAIN request through a branch entry

ocC

APPC/VM synchronous event entry

OE
GTRACE macro data.

TEVC (trace entry verification code)

keeps track of every time the table wraps around. The first set of entries will have a TEVC of X'00'.
Each time the table wraps around, this number increases by 1 until it reaches X'FF'. After that, it

recycles to X'00'.

By looking at this number, you will be able to identify entries left over from the previous wraparound.
This could be important, for example, if the GCS supervisor secures a trace table slot and then gets

Chapter 9. Debugging GCS 85

Debugging GCS

interrupted by CP before storing a new entry there. That slot would remain reserved, but unused, by
the interrupted machine. Other machines in the group, when dispatched by CP, would create trace
table entries in slots following it.

Length
contains the length of the whole entry, including this header. This length does not include the space
that follows GTRACE entries which aligns the next trace table entry on a 32-byte boundary.

Machine ID
identifies the virtual machine associated with this entry. When the trace table is located in common
storage, there is a single trace table for the entire GCS group. It is important that you have the proper
virtual machine identification.

Time-Of-Day Clock
indicates what time this entry was created in time-of-day format.

Trace Data Format

The data portion of trace entries can have any of the following formats:
« “Dispatcher” on page 87 (type X'01")

« “External Interrupt” on page 88 (type X'02")

« “I/O Interrupt” on page 90 (type X'03")

« “Program Interrupt” on page 91 (type X'04")

« “SVC Interrupt” on page 92 (type X'05")

« “SI0O” on page 94 (type X'06")

« “IUCV Signal System Service” on page 95 (type X'07")

« “GETMAIN via SVC” on page 96 (type X'08')

« “FREEMAIN via SVC” on page 98 (type X'09")

« “Branch Entry GETMAIN” on page 99 (type X'0A")

« “Branch Entry FREEMAIN” on page 101 (type X'0B")

« “APPC/VM Synchronous Event” on page 102 (type X'0C")
« “GTRACE” on page 103 (typeX'OE")

86 z/VM: 7.4 Diagnosis Guide

Debugging GCS

Dispatcher
Type X'01'
Header Data
Task
TT‘S" o Block Virtual PSW
Address
2 2 4 8

Task ID

identifies the task being traced.
Task Block Address

contains the address of a task control block for the task being dispatched.

Virtual PSW
contains the virtual PSW being dispatched.

Chapter 9. Debugging GCS 87

Debugging GCS

External Interrupt
Type X'02'
Header Data
Inter -- Interrupt APPC/VM
Code Data Data Reserved
2 2 4 4 4
External Old PSW Reserved
8 8
Reserved
16
Inter Code

contains the External Interruption Code.

Interrupt Data
contains a value that depends on the type of external interrupt.

« For atimerinterrupt (code X'1004') it contains a pointer to the timer queue element.
« Foran IUCV or APPC/VM interrupt (code X'4000") it contains a:

— 2-byte IPPATHID

— 1-byte IPFLAGS1

— 1-byte IPTYPE.
« Forall other types of external interrupts this is a reserved field.

APPC/VM Data
contains APPC/VM data.

88 z/VM: 7.4 Diagnosis Guide

Debugging GCS

« For an APPC/VM interrupt (code X'4000' with an IPTYPE of X'81', X'82', X'83', X'87', X'88', or X'89"),
it contains a:
— 2-byte IPCODE.
— 1-byte IPWHATRC—for a connect pending (type X'81') interrupt, this byte contains the IPFLAGS2
field.
— 1-byte IPSENDOP.
 For all other types of external interrupts this is a reserved field.

External Old PSW
contains the external old PSW. If an IUCV poll (rather than an external interrupt) generates this entry,

the external old PSW contains zeros (except for the interrupt code).

Chapter 9. Debugging GCS 89

Debugging GCS

I/0 Interrupt
Type X'03'
Header Data
Device - -
Address Status
2 2 12
/O Old PSW Reserved
8 8
Reserved
16

Device Address
contains the device number (2 bytes) of the interrupting device.

Status
contains the subchannel status word (SCSW, 12 bytes).

I/0 Old PSW
contains the I/O old PSW (8 bytes).

90 z/VM: 7.4 Diagnosis Guide

Program Interrupt

Debugging GCS

Type X'04'
Header Data
Task Inter !
D Code Reserved Program Old PSW
2 2 1 3 8
Task ID
identifies the task being traced.
Inter Code

contains the Program Interruption Code.
ILC
contains the Instruction Length Code.

Program Old PSW
contains the program old PSW.

Chapter 9. Debugging GCS 91

Debugging GCS

SVC Interrupt
Type X'05'
Header Data
Task S
- Vv Flags - - SVC Old PSW
D
C
2 1 1 2 2 8
Register1 Register0 Reserved
4 4 8
Command
16
Task ID
identifies the task being traced.
SvC
is the number of the SVC entered by the invoker (1 byte).
Flags

is a reserved field for all but two SVCs.

For SVC 203, it contains the flag and code parameter.
For a DOS SVC, the leftmost bit of this field is set to one, and the rest of the 2 bytes is reserved.

SVC Old PSW
contains the SVC old PSW (8 bytes) for all SVCs.

Register 1
contains the contents of register 1 for all SVCs.

92 z/VM: 7.4 Diagnosis Guide

Debugging GCS

Register 0
contains the contents of register O for all SVCs.

Command
contains the first 16 bytes of the command for an SVC 202.

Chapter 9. Debugging GCS 93

Debugging GCS

SIO
Type X'06'
Header Data
F
Task Device | Instruction
ID Address Reserved cC a o Address
g
2 2 4 1 1 2 4

Task ID
identifies the task being traced.

Device Address
contains the virtual address of the device to which a Start Subchannel (SSCH), Test Subchannel
(TSCH), or Halt Subchannel (HSCH) command has been issued. For TSCH, this is the virtual channel
address.

cc
contains the condition code from Start Subchannel operation. For GENIO START, it contains the
condition code returned by the SSCH instruction. For GENIO STARTR, it contains the condition code
returned by the DIAGNOSE code X'98' SSCH subfunction.

Flag
indicates a GENIO START or START function has been issued and that the CC field contains a valid
condition code.

Instruction Address
contains the address of an I/O instruction or a DIAGNOSE.

94 z/VM: 7.4 Diagnosis Guide

IUCV Signal System Service

Debugging GCS

Type X'07'
Header Data
Path - - Target .
ID Class Parameter List Data
2 2 4 8
Path ID

identifies a 2-byte IUCV path.

Target Class

identifies an IUCV target class containing the interrupt source's signal ID and type of signal sent.

Parameter List Data

contains IUCV parameter list data.

Chapter 9. Debugging GCS 95

Debugging GCS

GETMAIN via SVC
Type X'08'
Header Data
Task S K Storage Lenath Invoker's
ID E 3 Address g Address
2 1 1 4 4 4
Task ID

identifies the task being traced.

Sub

identifies the subpool of storage being requested. It contains zeros when:

« An SVC 4 fails because of an incorrect parameter list address

« The GETMAIN fails because of an incorrect mode byte

« The requested subpool was zero

contains the key of storage being obtained. It contains zeros when:

« An SVC 4 fails because of an incorrect parameter list address.

Key
contains the following information:
Bits
Description
0-1
contains LOC or position in storage where:
01
is below the line.
10
is resident storage.
11
is above the line.
2
Unused
3-6
« The GETMAIN fails because of an incorrect mode byte.
- If either the length or the subpool is incorrect.
7

contains the fetch-protection signal. The rightmost bit of this field serves as a fetch-protection

signal. If the subpool of storage you request is not fetch-protected, this bit is O (zero).

96 z/VM: 7.4 Diagnosis Guide

Debugging GCS

Storage Address
contains the address of storage obtained. If the GETMAIN failed, it contains zeros.

Length
contains the length of the storage requested. It contains zeros when:

« An SVC 4 fails because of an incorrect parameter list address.
« The GETMAIN fails because of an incorrect mode byte.

Invoker's Address
contains the address that follows the invoker's SVC.

Chapter 9. Debugging GCS 97

Debugging GCS

FREEMAIN via SVC
Type X'09'
Header Data
Task S Storage Lenath Invoker's
ID E) Address 9 Address
2 1 1 4 4 4

Task ID

identifies the task being traced.
Sub

identifies the subpool of storage being released. If the FREEMAIN fails, it contains the subpool
associated with the FREEMAIN.

It contains zeros when:

« An SVC 5 is entered with an incorrect parameter list address

« An unsupported MVS parameter is specified on the FREEMAIN macro
« Anincorrect mode byte is encountered

» The requested subpool was zero.

Storage Address
contains the address of storage being released. If the FREEMAIN fails, it contains the storage address
passed to FREEMAIN.

It contains zeros for the following failures:

« An SVC 5 is entered with an incorrect parameter list address

« An unsupported MVS parameter is specified on the FREEMAIN macro
« Anincorrect mode byte is encountered.

Length
contains the length of the storage released. If the FREEMAIN fails, it contains the length passed to
FREEMAIN.

It contains zeros for the following failures:

« An SVC 5 is entered with an incorrect parameter list address
« An unsupported MVS parameter is specified on the FREEMAIN macro
« Anincorrect mode byte is encountered.

Invoker's Address
contains the address that follows the invoker's SVC.

98 z/VM: 7.4 Diagnosis Guide

Debugging GCS

Branch Entry GETMAIN
Type X'0A'

Header Data

Task S K Storage Length Invoker's
ID e Address Address

o C
<<

2 1 1 4 4 4
Task ID
identifies the task being traced.

Sub
identifies the subpool specified in the GETMAIN request.

Key
contains the following information:
Bits
Description
0-1
contains LOC or position in storage where:

01
is below the line.

10
is resident storage.

11
is above the line.

Unused
3-6
contains the key of storage being obtained. It contains zeros when:
« An SVC 4 fails because of an incorrect parameter list address.
« The GETMAIN fails because of an incorrect mode byte.
- If either the length or the subpool is incorrect.

contains the fetch-protection signal. The rightmost bit of this field serves as a fetch-protection
signal. If the subpool of storage you request is not fetch-protected, this bit is O (zero).

Storage Address
contains the address of storage obtained. If the GETMAIN failed, it contains zeros.

Length
contains the length of the storage requested.

Chapter 9. Debugging GCS 99

Debugging GCS

Invoker's Address
contains the address following the invoker's GETMAIN call.

100 z/VM: 7.4 Diagnosis Guide

Debugging GCS

Branch Entry FREEMAIN
Type X'0OB'
Header Data
S .
Task U i Storage Lenath Invoker's
ID " Address 9 Address
2 1 1 4 4 4

Task ID

identifies the task being traced.
Sub

identifies the subpool specified in the FREEMAIN request.
Storage Address

contains the address of storage being released. If the FREEMAIN fails, it contains the storage address
passed to FREEMAIN.

Length

contains the length of the storage released. If the FREEMAIN fails, it contains the length passed to
FREEMAIN.

Invoker's Address
contains the address following the invoker's FREEMAIN call.

Chapter 9. Debugging GCS 101

Debugging GCS

APPC/VM Synchronous Event

Type X'0C'
Header Data
Path Data APPC/VM Reserved
Data
4 4 8
Path Data
contains a:

- 2-byte IPPATHID
 1-byte IPFLAGS1
- 1-byte IPTYPE.

APPC/VM Data
contains a:

« 2-byte IPCODE

« 1-byte IPWHATRC—For a connect pending (type X'81") interrupt, this byte contains the IPFLAGS2
field
e 1-byte IPSENDOP.

102 z/VM: 7.4 Diagnosis Guide

Debugging GCS

GTRACE
Type X'OE'
Header Data
(’-rr'-'
Machine | Task | AID FID EID Reserved Appl Data
ID ID
()()
2 2 1 1 2 8 1 to 256
Machine ID

identifies the virtual machine associated with this entry. When the trace table is located in common
storage, there is a single trace table for the entire GCS group. It is important that you have the proper
virtual machine identification. This ID is the same data that is in the header.

Task ID
identifies the task being traced.
AID
indicates this is a data record. It always contains X'FF'.

FID (format ID)
identifies the formatting module that handles this entry.

EID
contains information from the GTRACE macro's ID parameter.

Appl Data
is up to 8192 bytes of data provided by the application. If internal tracing is being used, then the
maximum is 256 bytes.

Service Point (SP) Trace Entries

The SP trace entries appear as GTRACE records in the trace table with the following EIDs and application
data:

X'E400" Branch Entry to WAIT Data= Registerl (4 bytes)
Registerl4 (4 bytes)
X'E401" Branch Entry to SCHEDEX Data= The SCHEDEX Data Area
(85 bytes)
X'E402' Branch Entry to IUCVCOM Data= The IUCVCOM parameter list
(40 bytes)
X'E404' Branch Entry to VALIDATE Data=

Register0 (4 bytes)
Registerl (4 bytes)
Register2 (4 bytes)
Registerl4 (4 bytes)

Chapter 9. Debugging GCS 103

Debugging GCS

X'E405' Branch Entry to POST Data= Registerl (4 bytes)

Registerl4 (4 bytes)
See the ITRACE command in z/VM: Group Control System for more information on SP trace entries.

External Tracing Facilities

You can collect trace data in the system trace files for later formatting and viewing. This requires entering
the following commands:

1. The TRSOURCE and TRSAVE commands
2. The ETRACE command.

See z/VM: CP Commands and Utilities Reference for more information on the TRSOURCE and TRSAVE
commands; see z/VM: Group Control System for more information on the ETRACE command.

The users who enter the TRSOURCE command must have a Class C privilege user ID. After the TRSOURCE
commands have been entered, this machine can enter the ETRACE command to commence tracing for

its own application or ETRACE GROUP for tracing the entire group (if it's an authorized machine). Use
ETRACE to specify which of the following events should be traced and recorded in the spool file:

« Task dispatches

« External interrupts

« I/O interrupts

« Program interrupts

« SVC interrupts

« I/0 requests (SIO and Diagnose)

« IUCV signal system service details
« APPC/VM synchronous events

« GETMAIN requests

« FREEMAIN requests

 User trace data generated using the GTRACE macro.

The CP TRACERED utility provides the facility with processing of trace data defined by the TRSOURCE
command in system trace files. TRSOURCE defines what is going to be traced. TRSAVE specifies where
data from traces defined by the TRSOURCE command are to be saved. CP and virtual machine data can be
merged to produce a consolidated output file in chronological sequence.

See “I/O Debugging” on page 148 for guidance information on setting up tracing activity for CP, GCS,
VSCS, and VTAM.

Using the TRSOURCE Command

TRSOURCE controls and displays CP data and I/O tracing activity. It supports definitions and control of
I1/0, data, and guest tracing. It controls and displays the status of guest tracing.

When you use the BLOCK option of TRSOURCE, trace data to be recorded is buffered by GCS. In this
mode, if the GCS supervisor fails or a system reset occurs, the data remaining in the trace buffer cannot
be sent to CP and is not recorded by CP. However, if a dump is available, you can view the trace data
remaining in the buffer by finding the pointer to it in a system control block. See “Locating the External
Trace Buffer” on page 105.

When you use the EVENT option of TRSOURCE, each trace record is sent directly to CP with no buffering of
the trace data. When the trace is running in EVENT mode, there is no loss of data in the event the virtual
machine loses control from CP, but the performance gain of BLOCK mode is lost.

104 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Debugging GCS

Locating the External Trace Buffer
You can locate the external trace buffer by doing the following;:

Locate the SI extension (SIE) address in the NUCON at displacement X'5C4'
Locate the TAB address in the SIE at displacement X'AQ'
Locate the external trace buffer address in the TAB at displacement X'C'.

Format of the External Trace Buffer
The format of the external trace buffer is:

Buffar Lemgih CF Header
Haadar

Z05 Heoader User Data

Traoe Reoced
Aopeats until butfer is ful

The layout of the buffer header is:

O | TREFBELEM | CaOCROOO0000] TREFHLEN I DDCOOCT000

B | TREFMRAG

10 | TREFFRT

12 | DESC ZIZIZIZIIIII:I:I:EI:EEEE| TREFTIME

Disp Name Length Description
(bytes)
0 TRBFBLEN Number of bytes filled in buffer
2 TRBFRES1 Reserved
4 TRBFHLEN Length of buffer header W/0O TRBFBLEN and TRBFRES1
6 TRBFRES2 Reserved
8 TRBFMRG Name of merge routine
10 TRBFFMT Name of format routine

18 TRBFDESC Block descriptor set by CP on call to
DIAGNOSE X'EO'
Reserved

Time zone differential

19 TRBFRES3
1C TRBFTIME

b~ w FPOONNNN

The layout of the CP header is:

[CPHTYFE | CPHHLEN | CFHCODE | CPHLTH
Disp Name Length Description
(bytes)
@ CPHTYPE 1 The type of CP header (3D)
1 CPHHLEN 1 The length of the CP header (in doublewoxds)
(Headers must end on doubleword boundary)
2 CPHCODE 2 Individualizing code
2 CPHRESER 1 Reserved byte
3 CPHINDIV 1 GCS individualizing code byte

(The individualizing code values are the same

as the values in the TYPE field in HEADER1 of

the internal trace records.)

See “Formats of Internal Trace Entries” on page 84.
4 CPHLTH 2 Length of header + length of data

(This length includes the CPH DSECT and

the user data. It does not include any

round up of the record to a 16 byte

(DWORD) boundary.)

2 Reserved

The layout of the GCS header is:

Q 8 16
Suparvisar record TOD | USER

| TIME | 1D

a S
GTHRACE recoed USER

Lo

Chapter 9. Debugging GCS 105

Debugging GCS

The layout of the user data is the same as for internal tracing entries. (See “Internal Tracing Facilities” on

page 83).

Using the TRSAVE Command

TRSAVE specifies where data is to be saved. Data from traces defined by TRSOURCE may be saved in a
system trace file.

A TRSOURCE/TRSAVE Command Example
The following is an example of a guest trace invoked by using the TRSOURCE and TRSAVE commands:

trsource id gl type gt for rscs
trsave id g1 size 40 keep 3
trsource enable id gl

trsource disable id gi

trsource drop id gl

Note: Between the commands TRSOURCE ENABLE ID G1 and TRSOURCE DISABLE ID G1 in the above
example, all tracing from the RSCS virtual machine is collected in a TRFILE with file name G1.

Using the CP TRACERED Utility

The CP TRACERED utility reads and formats trace data. All files to be processed must have been created
under a valid current release. A total of five system trace files can be merged. Only one CP system trace
table file or tape may be included. Therefore, you may specify one of the following:

« One CP system trace table file with up to four TRSOURCE trace files

« One CP tape with up to four TRSOURCE trace files

« Up to five TRSOURCE trace files.

A TRACERED Utility Example

The following is an example of CP data merged with virtual machine data:

If you entered the following:
tracered 0003 0004 cms cpvm out a (all hex

you might receive the following output:

---------------------------- 04/06/95 16:54:06 e L e L T L
CPU TOD CLOCK CODE **xkk**xxkx* TRACE ENTRY CONTENTS **kkkkkkkx

---------------------------- 04/86/95 16:54:32 =-=m-m-m-mm-mmmmemeeoemoaoos

33D17D82A640 A3888540 8481A381 40A396C2 C540D9C5 C3D6D9C4 SPID 0003
C5C4C9E2 40F3F240 E4E2C5D9

---------------------------- 04/86/95 16:56:00 =--==-=-=-====-=m-m-omomoaoos

33D452F96400 A3888540 8481A381 40A396C2 C540D9C5 C3D6D9C4 SPID 0003
C5C4C9E2 40F3F240 E4E2C5D9

---------------------------- 04/86/95 16:56:19 =-==-===-=m-m-mmmeememaoos

0000 33E68389D640 0600 4CACACAC 00000026 008B1008 OOFADOOO 80522988 SPID 0004
0000 33E6838C9480 3300 D2C34040 004D3720 OOFADOOO OOFFD580 805229C8 SPID 0004
0000 33E6838DA260 2C00 00522178 OOE5E2D7 OOFFB180 8050570E 8052219C SPID 0004
0000 33E6838EA840 0700 4C4CACAC 00000001 OOB6EOO8 OOFADOOO 8050572E SPID 0004
0000 33E683913620 2C00 00000004 OOD8C3D8 OOFFDE8SO 805036BC 805055A0 SPID 0004
0000 33E683926000 2200 0086FO08 80001010 OOFADOOO OOFADOOO 0031FCB8 SPID 0004

Using the QUERY TRFILES Command

Use the QUERY TRFILES command to display information about system trace files that you own. This
includes the spool ID, file name, and time of creation.

106 z/VM: 7.4 Diagnosis Guide

Debugging GCS

General Trace Information

You can find general information about external tracing in z/VM: Group Control System.

Formatting and Displaying External Trace Records

The external trace file contains two different entries produced by GCS virtual machines for:

» GCS supervisor records
« GTRACE records.

The format for supervisor records is as follows:

CP Header Userid Data
8 16
CP Header
contains an 8-byte header appended by CP when it gets the record.
User ID
identifies the virtual machine that the entry belongs to.
Data

contains the data portion of the event's internal trace entry. 4

The format for GTRACE records is as follows:

Header Data
T T . _
y E Length | Machine --- Time-Of-Day
D V ID Clock
e | C
1 1 2 2 2 8
CP Header
contains an 8-byte header appended by CP when it gets the record.
User ID
identifies the virtual machine that the entry belongs to.
Len
contains the length of the entry, including the GTF header.
0000

is a reserved field in the GTF header.

4 Internal trace entry formats are described in “Formats of Internal Trace Entries” on page 84.

Chapter 9. Debugging GCS 107

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Debugging GCS

AID
contains X'FF', indicating that this is a data record.

FID (Format ID)
identifies the formatting module used for this record.

TOD Clock
indicates when the record was built, in time-of-day format.

EID
contains information from the GTRACE macro's ID parameter.

Data
contains the internal trace entry without the internal header (up to 8k).

The main reason you create an external spool file with TRSOURCE is to print out or interactively display
your trace information. The TRACERED utility ® lets you do that by formatting trace entries in your
external spool file and then printing your external file or creating a CMS file. The TRACERED utility
handles the formatting of supervisor and GTRACE entries, sending both to a common format routine
(GCTYTD). The TRACERED utility formats supervisor records and GTF header information. However, the
applications being traced by means of the GTRACE facility have to supply their own GTRACE formatting
modaules. If they do not, their trace entries for the data portions of the records are printed unformatted, in
hexadecimal.

As TRACERED goes through the spool file, it examines each entry one by one. Trace entries, which were
recorded by GCS using a "MC 1, 10" instruction, are passed to a GCS module GCTYTD for formatting.

For supervisor records, GCTYTD calls a GCS-supplied formatting routine named GCTYTS to format

it. However, for GTRACE records, GCTYTD uses GCS-supplied formatting routines to format the GTF
header part of the record. GCTYTD also looks for another formatting routine, one supplied by the traced
application, to finish the data portion of the record. (It uses the GTRACE record's 1-byte FID field to locate
this routine. The routine's name must be GCTYTXxx, with xx being the 2-digit FID, and it must have a file
type of TEXT.)

If the GCTYTD program cannot find a user-supplied formatting routine, it prints the entry information in
hexadecimal. If the program does find a GCTYTXxx TEXT, it calls that routine.

For information about coding user-supplied formatting routines, including register contents at the time
they are called by the GCTYTD program, see the GTRACE Macro in z/VM: Group Control System.

Examples of Formatted External Trace Table Entries

Here are several sample supervisor event entries as you would see them in your external trace file.

< An entry type X'03' for an I/O interrupt:

3D 03 useridxx VM/GCS I/0 INTERRUPT
DEVICE ADDRESS = xxxx
STATUS = XXXXXXXX X X XXXXXX XX XX XXXX
OLD PSW = XX X X X X XX XXXXXXXX

« An entry type X'05' for an SVC interrupt:

5 TRACERED is a CP data reduction utility that works on the system trace file created by TRSOURCE. For more
information on TRACERED, see z/VM: CP Commands and Utilities Reference.

108 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging GCS

3D 05 useridxx VM/GCS SUPERVISOR CALL INTERRUPT
SVC CODE = xx
TASK ID = xxxx
FUNCTION NAME = XXXXXXXX
PARM BYTES 8-15 = X'XXXXXXXXXXXXXXXX' = *kXXXXXXXX*
REGISTER 1 = XXXXXXXX
REGISTER O = XXXXXXXX
OLD PSW = XX X X X X XX XXXXXXXX

An entry type X'08' External Trace Table Entry by SVC GETMAIN:

3D 08 useridxx VM/GCS GETMAIN VIA SVC
TASK ID = xxxx
KEY = x XXXX XXX XXX XXX XXX XXX
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX
LOC = XXXXX

An entry type X'09' External Trace Table Entry by SVC FREEMAIN:

3D 09 useridxx VM/GCS FREEMAIN VIA SVC
TASK ID = xxxx
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX

An entry type X'0OA' External Trace Entry by Branch Entry GETMAIN:

3D OA useridxx VM/GCS GETMAIN VIA BRANCH ENTRY
TASK ID = xxxx
KEY = x XXXXXXXXXXXXXXXXXXX
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX
LOC = XXXXX

An entry type X'OB' External Trace Entry by Branch Entry FREEMAIN:

3D OB useridxx VM/GCS FREEMAIN VIA BRANCH ENTRY
TASK ID XXXX
SUBPOOL XX
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX

An entry type X'OE' for a GTRACE entry:

3D OE useridxx VM/GCS USER REQUESTED GTRACE
TIME OF DAY CLOCK = XXXXXXXXXXXXXXXX
LENGTH OF GTF HEADER AND TRACE DATA = XXXX
FORMAT ROUTINE ID = xx
EVENT IDENTIFICATION = XXXX
[formatted GTRACE data appears here. . . .]

Chapter 9. Debugging GCS 109

Debugging GCS

Dumping Facilities

The following describes the common dump receiver and rules of authorization.

The Common Dump Receiver

To let you dump out the contents of virtual storage and see where problems have occurred, GCS must
provide a way around its own safeguard mechanisms. Otherwise, your GCS dumps would be largely
incomplete.

Rules of Authorization

If adump is directed to an authorized user, all of the requested storage is dumped, including the saved
segments. If the dump is directed to an unauthorized user, only the storage with a key of 14 and
nonfetch-protected storage is to be dumped.

If you direct the dump to yourself or to another unauthorized user ID, you cannot dump any fetch-
protected areas or storage with a key other than 14. Unauthorized dump receivers can accept only key-14
and other nonfetch-protected storage.

You can solve this problem by singling out one authorized virtual machine as your common dump receiver.
At build time, when creating your GCS configuration file, you are prompted to name this common dump
receiver. Choose any authorized user ID, perhaps the same user ID that you specify as your recovery
machine. Be sure you list it on the GROUP EXEC's screen of authorized GCS user IDs. If you name

a common dump receiver, GCS's dump functions, described in “Creating GCS Dumps” on page 111,
automatically send their output to it. ©

Interactive Debugging Support

The following describes using authorized CP commands for debugging support.

Using Authorized Control Program (CP) Commands

Authorized user IDs can have access to the following CP debugging commands:
« BEGIN

« DISPLAY

« STORE

- DUMP

Initially, these are Class G commands, available to all user IDs. You may want to reclassify these
commands to prevent unauthorized users from altering storage that may effect other members of the
GCS group.

For more information on controlling access to CP commands, see z/VM: CP Planning and Administration.

Analyzing Dumps
After storage has been dumped, it can be:
« Read into a CMS file

 Analyzed by the receiving virtual machine under CMS with the Dump Viewing Facility
- Dumped to tape (using spool-to-tape) and sent to an IBM support center for analysis.

The Dump Viewing Facility uses specialized routines for formatting GCS dumps.

To use the Dump Viewing Facility successfully in processing a virtual machine dump, the minidisks
containing GCS must be accessed before processing the dump by the Dump Viewing Facility.

6 The exception is GDUMP, which optionally lets you choose another receiver.

110 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4

Debugging GCS

Dump Viewing Facility Features for GCS Dumps

Creating a GCS module map —
the Dump Viewing Facility MAP command looks for a nucleus load map with the default name
GCSNUC MAP *. It creates a module map called GCSDVF MAP that contains a header and a
compressed version of the load map. The Dump Viewing Facility ADDMAP command appends the
module map to a formatted dump.

Printing formatted VTAM or VSCS control blocks —
Use the Dump Viewing Facility PRTDUMP command to specify whether you want formatted VTAM or
VSCS control blocks printed in a dump. You'll have this option for any GCS- or VMDUMP-generated
dump of type GCS or RSCSV2. First you receive a prompt asking you if you want your dump printed
using the VTAM option. If you do not pick the VTAM option, you receive a prompt asking you if you
want your dump printed using the VSCS option. If you do not choose either option, only summary
information from the dump is printed.

Viewing the GCS dump information —
Use the Dump Viewing Facility DUMPSCAN command to format a GCS dump and to view it, along with
the appended module map, interactively. Use the Dump Viewing Facility BLOCKDEF utility to format
control blocks and to view them interactively. For more information, see “Processing GCS Dumps with
the Dump Viewing Facility” on page 118 and z/VM: Dump Viewing Facility.

Using the GCS debug tools —
Additional GCS debugging tools are available and may be helpful when diagnosing GCS problems.
When run against an existing GCS dump, these tools may help by formatting trace tables, calculating

storage used by load modules, as well as mapping storage used by particular tasks. Other useful
debugging capabilities are also included with this tools package.

The GCSDUMP tools package is shipped with z/VM 7.4 on an "as is" basis, optionally installed on the
MAINT 193 disk. For more information, see the README SAMPGCS file that comes with package on
MAINT's 193 disk.

Dumping VSAM Information

When VSAM detects certain internal logic errors, it produces a special dump, called an IDUMP, that
can help you identify those problems. To look at information in the dump header, use the DUMPID
subcommand of DUMPSCAN. This dump header contains the following information:

SAVEAREA |
ADDE

WEAM IDUMP | 24-character symplom string WAVDOY Y | HHMRESS

VSAM IDUMP
is a dump identification message.

24-character symptom string
identifies error codes, the location of the error, and the module that detected the error. For
information on how to interpret this character string, see VSE/VSAM Programmer's Reference.
MM/DD/YY
is the date when VSAM detected the error.

HH:MM:SS
is the time of day when VSAM detected the error.

SAVEAREA ADDR
contains the address of the save area that shows what each register contained when VSAM discovered
the error. Ignore the first 16 bytes of this save area, and look for the register contents beginning at the
17th byte. You will find the contents of all 16 registers in the following order: registers 9-15, registers
0-8.

Creating GCS Dumps

GCS uses the CP VMDUMP command to produce dumps of virtual machines. Dumps are always sent to a
virtual reader.

Chapter 9. Debugging GCS 111

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4

Debugging GCS

Dumps are produced several ways:

« By using the GDUMP command

« From an application using the SDUMP, SDUMPX macro or ABEND macro

- By entering the CP command, SYSTEM RESTART

« After an abnormal end of the GCS supervisor or an abnormal termination of a program.

All GCS dumps follow the same rules for authorization. If the receiver of the dump is not authorized, he
receives only key 14 and other non-fetch-protected storage. If the receiver is authorized, all areas of the
virtual machine and any saved segments can be dumped.

By using the VMDUMP command.

If the receiver is authorized, all areas of the virtual machine and any saved segments can be dumped.

The GDUMP Command

GDUMP is a GCS command. When you enter the GDUMP command, a “snapshot” of the virtual machine's
storage is taken. You can spool the dump to a common dump receiver's virtual reader, to a specified
user's virtual reader, or to the issuer's virtual reader. You can dump specific ranges of storage by
specifying it on the GDUMP command. For further information on GDUMP and dump authorization, see
z/VM: Group Control System.

The SDUMP Macro

SDUMP is a macro that you can start during GCS processing. It takes a dump of the GCS system and
continues processing. The resulting dump contains the storage of the issuer's virtual machine. SDUMP is
spooled to a common dump receiver or to the issuer's virtual reader. All or portions of storage may be
requested when using the SDUMP macro. A dump will not be taken if SET DUMP OFF has been issued. For
further information on SDUMP, see z/VM: Group Control System.

The SDUMPX Macro

Use the SDUMPX macro when you are running an XC virtual machine and wish to dump part or all of a data
space that you are accessing. For further information on SDUMPX, see z/VM: Group Control System.

The ABEND DUMP Macro

Conditions can occur within a program that may force an abnormal ending (abend) and cause the
dumping of the system registers and storage. When this happens, an abend dump is produced. In
addition to the “forced abend”, a program may also choose to generate an abend condition by issuing
its own ABEND MACRO. The dump contains the entire virtual machine as well as any discontiguous
shared segments (shared segments linked to your GCS system, but not within the bounds of your virtual
machine). GCS uses this facility just as CMS and CP do, except that the dump is spooled to the common
dump receiver if one was specified at GCS build time (in the GROUP EXEC), rather than the user's virtual
reader.

Note: The DUMP operand is overridden by the SET DUMP command. SET DUMP ON implies that the dump
is always issued. SET DUMP OFF implies the dump is not issued. If you enter SET DUMP DEFAULT, the
DUMP operand from ABEND takes preference.

For further information on abend dumps, see “Processing Abends” on page 117.

The SYSTEM RESTART Command

GCS has the capability to dump a virtual machine's storage and any saved segments when that virtual
machine issues the CP command SYSTEM RESTART. This is helpful when you cannot use the GDUMP
command, for example, if you have a GCS disabled loop and enter #icp system restart.

As with other GCS dumps, the resulting dump from the SYSTEM RESTART is in VMDUMP format and is
spooled to a common dump receiver. If you don't have a common dump receiver, the data goes to the

112 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Debugging GCS

machine that issued it. A SYSTEM RESTART dump follows the same rules of authorization as other GCS
dumps, when determining what storage to dump.

The VMDUMP Command

VMDUMP is issued in GCS in the same manner as in CMS. When you enter the VMDUMP command,
a snapshot of the system is taken. This snapshot is then spooled to your virtual reader. For further
information on the VMDUMP command, see z/VM: CP Commands and Utilities Reference.

Preserving Common Storage

To produce a dump requested by one of these functions, GCS calls CP and requests a dump. While it
performs the dump, CP continues dispatching other machines in the virtual machine group. This poses a
problem if those members go on to change common storage as it is being dumped.

To preserve common storage contents until the dump finishes, the GCS supervisor acquires the common
storage lock. This prevents other machines from acquiring the lock during the dump. If all authorized
machines test the common lock before trying to change common storage, they will be effectively
suspended until the dump finishes. The only common storage that might change is that obtained by
other machines before the dump began.

If the SET DUMPLOCK OFF command was entered, the common storage lock is not held while GCS is
dumping. Other virtual machines running in the group can then alter common storage.

Note: The common storage lock gets set on only if your common dump receiver is an authorized GCS user
ID and you are using the SDUMP and GDUMP functions. It is possible to receive two dumps. An example
of this would be if a user ran out of storage while producing a dump. One dump would be produced as the
user dump, and the second dump would be the supervisor dump.

How to Find the GCS Virtual Machine That Created a Dump

When you process a GCS dump by the DUMPLOAD utility, the user ID of the virtual machine where the
dump was produced is not kept for use by the Dump Viewing Facility. Therefore, situations may arise
where you have several dumps on the minidisks and you need to know which virtual machine has created
them. Use the DUMPSCAN DISPLAY 204 subcommand to view the NUCVMID field. NUCVMID is an 8-byte
field that contains the virtual machine user ID, as specified in the CP directory.

Using the GCS Trace Facilities

The GCS trace is a powerful tool used to help track down the source of a problem.

GCS has two tracing facilities:

« Internal trace (ITRACE)
« External trace (ETRACE).

These tracing facilities record events while GCS is running. You can specify which events to track on the
ITRACE or ETRACE commands. For information on how to use these commands, see z/VM: Group Control
System.

ITRACE

The internal trace facility records specific events as they occur in the GCS system. Internal tracing of
GCS supervisor events is automatically enabled at IPL, but the user may disable this tracing if so desired.
Unauthorized users can disable events for themselves only if these events have not been enabled for the
entire group.

Chapter 9. Debugging GCS 113

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Debugging GCS

Locating the GCS Internal Trace Table

Because the internal trace table can be in either private or common storage, you need to determine in
which storage the active trace table is located.

If you are in interactive mode, enter the QUERY TRACETAB command. The response you receive tells you
in which storage location the trace table is now being maintained.

If you are working from a dump:
« Use the load map to locate the address of the GCTGST.
« Locate the group flag in the GST at displacement X'14'. If the flag contains:

XIXX XXXX trace table is in private storage
XOXX XXXX trace table is in common storage.

In Private Storage
You can locate the internal trace table in private storage by doing the following:

« Locate the SI Extension (SIE) address in the NUCON at displacement X'5C4'
- Locate the private trace anchor table (TAB) address in SIE at displacement X'AQ'
- The TAB contains the following pointers to the internal trace table when it is in private storage.

Displacement
Field Description

X'10'
The starting address of the trace table
X'i4'
The ending address of the trace table
X'18'
The address of the next available trace table entry

Following is an example for locating the trace table in private storage:

cp d 5C4.4

ROOOOO5C4 OOOOO750

Ready;

cp d 7F0.4

ROOOOO7FO 0OOO2B28

Ready;

cp d 2B38.C

ROOOO2B38 OOFEONOOO OOFE4000 OOFE2BCO
Ready; A A A

| | |
| | ----Next available trace table entry address
| = ~ecocccccessses Trace table end address
---------------------- Trace table start address

In Common Storage

You can locate the internal trace table in common storage by doing the following:

« Locate the common trace block (CTB) address in NUCON at displacement X'21C'

- The CTB contains the following pointers to the internal trace table when it is in common storage.

Displacement

Field Description
X'00'

The starting address of the trace table
X'o4'

The ending address of the trace table

114 z/VM: 7.4 Diagnosis Guide

Debugging GCS

X'os8'
The address of the next available trace table entry
« If these first three fields in the CTB are zero, tracing is being done in private storage.

Following is an example for locating the trace table in common storage:

cp d 21c.4

ROOOOO21c OO83EB6O

Ready;

cp d 83eb60.C

ROO83EBHO OO83FOOO 00843000 00841C60
Ready; R R R

----Next available trace table entry address
------------- Trace table end address
---------------------- Trace table start address

Locating the Last Trace Entry in Storage or in a Dump

To find the last trace entry, use the pointer to the next available trace entry. Trace entries created by the
GCS supervisor are 32 (X'20") or 64 (X'40") bytes long. Trace entries created by the GTRACE macro have
variable lengths (consisting of a fixed 32-byte area and 1 to 256 bytes of data). Trace entries which follow
GTRACE entries are aligned on a 32-byte boundary, and the space between these entries is filled with
binary zeros.

If the trace table does not contain any GTRACE entries, find the last entry by subtracting 32 (X'20") or 64
(X'40"), depending on the type of supervisor trace entry (see “Formats of Internal Trace Entries” on page
84), from the pointer to the next available trace entry. If the trace table contains GTRACE entries, you
have to know the layout of those trace entries to be able to find the last trace entry.

Using the Trace Table

Each supervisor trace table entry is 32 or 64 bytes long. The first 16 bytes are the header. The header
describes what type of event is being recorded, the time of the event, and for which virtual machine the
event is being recorded. The remaining bytes contain information unique to the recorded trace event.
Trace entries created by GTRACE macro have variable length. Trace entries which follow GTRACE entries
are aligned on a 32-byte boundary, and the space between these entries is filled with binary zeros. For
further information on trace table entries, see “Formats of Internal Trace Entries” on page 84.

To see which events were being traced for a virtual machine in a dump, look at the trace anchor block
(TAB), as follows:

1. Locate the SI Extension (SIE) address in the NUCON at X'5C4'
2. Find the TAB address at SIE + X'AQ".

The TAB contains the following information:

Displacement

Field Description
Xx'oo'

The address of the CTB
X'o4'

Flags for external tracing

Byte
Field Description

IXXX XXXX
Dispatcher

Chapter 9. Debugging GCS 115

Debugging GCS

XAXX XXXX

External interrupts
XXX XXXX

I/0 interrupts
XXX1 XXXX

Program interrupts
XXXX Ixxx

SVC interrupts
XXXX X1XX

I/0 requests
XXXX XX1x

Signal system service events
XXXX XXX1

GTRACE events

X'05'

Byte

Field Description
IXXX XXXX

GETMAIN requests
XAXX XXXX

FREEMAIN requests
XXX XXXX

APPC/VM synchronous events
xxx1 1111

Reserved

X'06'

Flags for Internal Tracing

Byte
Field Description

1111 11xx
Reserved

XXXX XX1x
Supervisor events

XXXX XXX1
GTRACE events

When a tracing flag is on, that event is being traced for the subject virtual machine.

ETRACE

The external trace facility records specific events within a group as they occur in the GCS system. These
events are recorded in one or more system trace files by the CP TRSOURCE command. This spool file may
optionally be a wraparound file. In order to use the ETRACE facility, a user with VM privilege class C must
first enter the CP TRSOURCE command. After the CP TRSOURCE command is completed, any user in the
group can enter ETRACE to begin tracing in their own virtual machine, or an authorized user can start
ETRACE for the entire group. The data recorded in the system trace file is for the entire group.

You can use the CP TRACERED utility to format and display CP TRSOURCE trace information. The
formatted information can either be printed out or placed in a CMS file.

116 z/VM: 7.4 Diagnosis Guide

Debugging GCS

The procedure for setting up and formatting ETRACEs using the CP TRSOURCE command and CP
TRACERED utility are found in “External Tracing Facilities” on page 104.

GTRACE

Either the ITRACE or ETRACE command must be entered prior to GTRACE if GTRACE is to work. A GTRACE
entry is a special trace entry that can be recorded either internally or externally. It is started by the
GTRACE macro, and records up to 256 bytes of application data for an internal trace record and up to

8K for an external trace record. For further explanation of the GTRACE macro, see z/VM: Group Control
System.

Processing Abends

Problems occurring in the system may result in abend (abnormal end) processing. When an abend occurs,
an abend completion code is given, an abend work area is filled in, and a dump is taken if DUMP is
specified in the ABEND macro. Internal abends always specify DUMP. See “The ABEND DUMP Macro” on
page 112 for information on the precedence of SET DUMP.

Abend completion codes give the user some idea of why the error occurred and what part of the system
may be responsible for the problem. These codes are explained in z/VM: CP Messages and Codes.

The abend dump contains information that enables the problem to be tracked further. Using the Dump
Viewing Facility REGS command, the contents of the registers at the time the abend occurred can be
displayed. The internal trace table and system control blocks can also be displayed. They aid in problem
determination and debugging.

The abend work area is used during abend processing to save information about the system at the time
of the abend. It contains information such as the registers, the PSW, and the pointer to the next available
trace table entry at the time abend occurred. The abend work area address is located at offset X'298' in
NUCON.

The Abend Work Area

The abend work area is used during abend processing to save information about the system at the time of
the abend.

The abend work area contains the following information:

« The general purpose registers and access registers at the time of error

- The PSW at the time of error

« An abend completion code

« Areason code (if applicable).

It also contains the address of the next available trace table entry at the time the abend occurred.
The trace table entries before this address show the events that preceded the error.

Note: It is possible that an abend can be issued while another abend is being processed. In this case, an
abend recursion message is issued.

The recursive abend appears in the trace table. The trace table has recorded the events for both abends.

The abend work area contains information from the original abend, and only the original abend state block
(STBLK) (type SVC) remains on the state block chain (see “State Block” on page 121 for information about
state blocks).

For abends that result from a program check, the abend work area contains the registers and PSW at the
time of the program check.

The field NUCABW in the NUCON (at displacement X'298") points to the abend work area.

The abend work area contains the following important fields:

Chapter 9. Debugging GCS 117

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw0_v7r4.pdf#nameddest=hcpw0_v7r4

Debugging GCS

Displacement
Field Description

X'00' to X'3F'

Registers at the time of failure (0 to 15)
X'40'

PSW at the time of failure
X'48'

Abend code at the time of failure (full word)
X'4ac'

Reason code at the time of failure (full word)
X'D8'

Trace pointer at abend time (full word)
X'DC' to X'11B'

Access Registers at the time of failure (0 to 15)

Program Checks

When a program check occurs, an abend results. The abend work area contains the registers and PSW at
the time of the program check.

Processing GCS Dumps with the Dump Viewing Facility

The Dump Viewing Facility is a facility that lets you view VM dumps. You should be familiar with the facility
and how it works before using the Dump Viewing Facility for GCS dumps.

All dumps taken in GCS are in VMDUMP format and can be viewed using the Dump Viewing Facility.

The Dump Viewing Facility component of z/VM has some DUMPSCAN subcommands you can use to
display certain areas of a GCS dump. You must have the GCS nucleus load map in order to use the
DUMPSCAN subcommands that are relevant for GCS dumps.

These DUMPSCAN subcommands are:

« DUMPID—displays the dump identifier specified in the SDUMP or SDUMPX commands
IUCV—displays the entire IUCV path table

TACTIVE—displays information about active programs on a specified task
TLOADL—displays the load list for a specified task

TSAB—displays the task storage anchor block for a specified task

- VMLOADL—displays information about all programs loaded in virtual storage.

You can use other Dump Viewing Facility commands with a GCS dump to aid in debugging. Any Dump
Viewing Facility command or subcommand that is valid for VM dumps can help with a GCS dump. The
PRTDUMP command and the DUMPSCAN subcommands of CHAIN, DISPLAY, and LOCATE are most
helpful when debugging with the Dump Viewing Facility. For more information on these commands, see
z/VM: Dump Viewing Facility.

Information Used by the Dump Viewing Facility
The Dump Viewing Facility uses general purpose control blocks.

For more information on abend work areas, see “The Abend Work Area” on page 117. Program
management control blocks are displayed by DUMPSCAN subcommands. Those fields are:

« From the virtual machine load list (displayed by the VMLOADL subcommand)
— The major NUCCBLK address

118 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4

Debugging GCS

— The module name (major NUCCBLK)

— The entry point address (major NUCCBLK)

— The module size (major NUCCBLK)

— The module load address (major NUCCBLK)

— The minor NUCCBLK address

— The entry point name (minor NUCCBLK) and

— The type of minor NUCCBLK (ALIAS or IDENTIFY).
From the task load list (displayed by the TLOADL subcommand)
The task ID

The task block address

The load block address

The module name and

The load count.

For more information on program management, see “Program Management” on page 126.

Task management control blocks are displayed by the DUMPSCAN TACTIVE subcommand. The fields are:

The task ID (TIDTB)

The task block address (TIDTB)

The task completion code (TBK)

The state block address (TBK and STBK)

The state block type (STBK)

The state block module name (STBK)

The state block module entry point address (STBK) and
The state block general registers (STBK).

For more information on task management, see “Task Management” on page 121. Storage management
control blocks are displayed by the DUMPSCAN TSAB subcommand. The fields are:

The pointer to the TSABE (TSAB extension), which contains a pointer for each grain of storage to a list
of task storage header blocks that describe the storage owned by a task (for terminology see “Storage
Management” on page 134).

A 256-bit map of subpools owned by a task (TSAB).

In addition, the TSAB subcommand also displays for each task:

The task ID (TBK)
The task block address (TBK)
The task storage anchor block address (TBK).

For more information on task management, see “Task Management” on page 121.

IUCV management control blocks are displayed by the DUMPSCAN IUCV subcommand. The fields are:

The user ID block (UIDB) address (IUCPT)
The exit address (IUCPT)

The user word (IUCPT)

The task block address (IUCPT) and

Flags of the path status (IUCPT)

The Dump identifier, if present.

For more information on IUCV, see “The Path ID Table IUCPT)” on page 132.

Chapter 9. Debugging GCS 119

Debugging GCS

NUCON and SIE

In GCS, the NUCON control block and the SIE state descriptor block are located in the first virtual page of
GCS. Each GCS virtual machine, when logged on, has its own NUCON and SIE.

There may be times when diagnosing problems on a running system may be preferable to looking at a
dump. In these cases the QUERY ADDRESS command can often make chaining through control blocks and
data areas easier. See z/VM: Group Control System for more information on this command.

The data contained in these two blocks is not shared, as the various fields in the NUCON and SIE relate to
the operation of a specific user rather than the group.

The NUCON contains many important fields describing the current status of GCS in a GCS virtual machine.
Examples of such fields are:

« The various old and new program status words (PSWs)

The I/0 subsystem identification word (SID) (X'B8' in the NUCON)
The I/O interrupt parameter (X'BC' in the NUCON)

The virtual machine's user ID (X'204"' in the NUCON)

The task ID of the currently active task (X'212" in the NUCON)

A pointer to a string of the four anchors of common storage: low common start, low common length,
high common start, and high common length.

In addition, other important GCS control blocks are pointed to by NUCON fields. Examples of those
control blocks are:

« The task block of the currently active task (pointed to from X'214'in the NUCON)

« The common trace block (pointed to from X'21C' in the NUCON)

« The SIE (pointed to from X'5C4' in the NUCON)

« Various work areas (for example, the abend work area, pointed to from X'298' in the NUCON).

The SIE is an extension of the NUCON and contains further pointers to other control blocks. Some
pointers, useful when performing diagnostics, that you can find in the SIE are:

« The address of the task ID table (X'10" in the SIE)

« The address of the asynchronous exit queue (X'18'" in the SIE)

« The address of the virtual machine control block (VMCB) (X'2C' in the SIE)

« The address of the storage management anchor block (SMAB) (X'40' in the SIE).

Virtual Machine Control Block

When a virtual machine IPLs GCS, a VMCB is maintained for that machine. There are as many VMCBs as
the maximum number of virtual machines that can join the GCS group (the maximum number is specified
at GCS generation time).

A VMCB is 24 bytes long and, among other information, contains:

« The virtual machine user ID (the first 8 bytes of the VMCB)
« The machine ID (the 2 bytes at displacement X'0A' of the VMCB).

For other information on VMCBs, see “VMCB — Virtual Machine Control Block” on page 196.

How to Determine the User ID That Created a Trace Entry

Each entry in the GCS internal trace table has a reference to the machine ID of the virtual machine that
created the entry. The machine ID is a binary number assigned to the virtual machine when GCS is IPLed
in the virtual machine.

120 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Debugging GCS

To determine the user ID that created a trace entry, you have to translate the machine ID to its
corresponding user ID. In other words, you have to access the VMCBs of the GCS virtual machine,
because the VMCB is the place where user ID and machine ID are correlated.

To find the VMCBs of the virtual machines in a GCS group, use the following procedure:

1. Locate the SI Extension (SIE) address in the NUCON at X'5C4'
2. Find the address of the VMCB array at SIE + X'28'.

How to Locate the GCS Common Lock

The SIELKCOM field in the SIE (at displacement X'20') points to the common lock. The common lock is a
word-long field in common storage that contains the machine ID (2 bytes) and the task ID (2 bytes) that
are currently holding the common lock. If the common lock is free, it contains binary zeros.

The GCS QUERY LOCK command can be used to display the status of the common lock. A query on the
lock is sufficient to determine if the lock has changed since the last query.

When you are recreating a problem and you want to know when the common lock is being acquired, use
the CP TRACE command. This can be done by entering a CP TRACE on a store into the common lock word,
and when CP TRACE stops the virtual machine you can display the machine and task ID values.

If at that time you take a dump of the virtual machine that has acquired the lock, you will be able to use
DUMPSCAN subcommands to interrogate the task in question and determine what module is issuing the
request for the lock.

An alternative could be to use the CP TRACE command to display stores in the SVC OLD PSW (at
displacement X'20' in the NUCON). This would be an SVC 203 (X'CB') for the LOCKWD macro.

The mapping of the NUCON in GCS is different from that in CMS. The SIE has also been added as

an extension of the NUCON. Both contain important information for the debugging of GCS. For more
information on the NUCON and SIE Extension mappings and field descriptions, see “NUCON — GCS
Nucleus Constant Area” on page 177 and “SIE — NUCON Extension” on page 182.

Task Management

This section describes the use of different types of blocks.

Task Block

The task block (TBK) gives you a good idea of the state of a task. The task block for a task is pointed to
from the task ID table and contains information such as:

« A pointer to a list of state blocks describing the programs that have been running under the task

« A pointer to a list of load blocks describing the programs that the task has loaded in storage through a
LOAD SVC (SVC 8 or SVC 122) or through the GCS LOADCMD command

« The value of the registers and PSW when the task is dispatched, if the task is dispatchable
« The address of the task block of the owning task
« The task ID and task priority.

For information on the task block mapping and field descriptions, see “TBK — Task Block” on page 186.

State Block

GCS uses state blocks (STBLKs) to keep track of a particular task's processing activity.

There is a state block for each active program in the task. The primary purpose of the state block is to
save and restore PSWs and other processing status in particular steps in a task.

The chain of state blocks for a task can be seen as an active stack:

Chapter 9. Debugging GCS 121

Debugging GCS

« When the task is created, a state block for that task is also created. This state block is always called
INIT.

« When certain events occur in the task, GCS adds new state blocks to the top of the stack. GCS sets a
flag byte (at displacement X'24") in the state blocks to indicate what type of event has occurred:

— If the task has issued a LINK, SYNCH, XCTL, or ATTACH macro, the flags contain X'80', and the state
block is referred to as a LINK block.

Note: If the task has issued a SYNCH macro with RESTORE=YES, the flags contain X'90'. The
RESTORE=YES operand tells GCS that the general registers 2 through 13 are to be restored when
control is passed back to the calling program.

— If the task has issued an SVC instruction, the flags contain X'40', and the state block is referred to as
an SVC block.

— If an asynchronous exit has been scheduled for the task, the flags contain X'20', and the state block
is referred to as an AEB block.

In this case, other flags (at displacement X'25") in the AEB block, indicate whether the asynchronous
exit was scheduled as a result of a SCHEDEX macro, an I/O interrupt from a general I/O device, or a
timer interrupt.

- When a program represented by a state block ends, the corresponding state block is removed from the
top of the stack.

The preceding discussion leads to the conclusion that the analysis of the existing state block chain (stack)
for a task gives an important idea of the events (LINK, SVC, or AEB) that are still being handled, and the
order they have occurred.

The state block chain is pointed to from the task block with the most recently added state block at the
beginning of the chain.

The PSW and the general registers in a state block see the previous program running under the state
block. The PSW for a running program is in the task block.

For more information on the state block mapping and field descriptions, see “STBLK — State Block” on
page 188.

WAIT COUNT Field in a State Block

An important field in a state block is WAIT COUNT. Use this field (STBWAIT at displacement X'26'in the
state block) to determine if a task is waiting.

If the contents of the field are:
Value

Meaning
0

The task is not in a wait state.
1

The task is in a wait state.

Note that the STBWAIT field is maintained by GCS only if the task has used the WAIT SVC (SVC 1) to enter
a wait state.

By looking into the instructions that precede the SVC instruction, you probably will find a LOAD (L) or a
LOAD ADDRESS (LA) instruction that loads in Register 1 the address of the ECB (Event Control Block) (or
ECBLIST) associated with the wait. Use this to determine what the task is waiting for.

Note: If the task has entered a wait state by other means (for example, by a LOAD PSW instruction, if the
task was running in supervisor state) this is not reflected in the STBWAIT field.

122 z/VM: 7.4 Diagnosis Guide

Debugging GCS

LINK Block

A LINK block is a type of state block that represents a module to which control was passed when the task
issued a LINK, SYNCH, XCTL, or ATTACH macro.

When that module returns control to the program that issued the macro, the LINK block is removed from
the state block chain of the task.

The caller's registers are not moved into a LINK block unless it is for a SYNCH macro with RESTORE=YES.

The second word of the PSW in the LINK block (field STBPSW) points to the address following the SVC

instruction. Use this address to determine the module that has issued the ATTACH, LINK, SYNCH, or XCTL
macro.

SVC Block

An SVC block is a type of state block that represents a module to which control was passed when the task
issued an SVC instruction.

The second word of the PSW in the SVC block (field STBPSW) points to the address following the SVC
instruction. Use this address to determine the module that has issued the SVC instruction.

Asynchronous Exit Block (AEB)

The AEB is a type of state block that represents an asynchronous exit that has been scheduled to be run
under a task.

Certain flags in an AEB indicate whether the asynchronous exit has been scheduled by general I/0,
SCHEDEX, or TIMER functions.

When an asynchronous exit is to be scheduled to run under a task, GCS gets an AEB from storage, fills in
the appropriate fields—such as register values, task block address the AEB is to run under, and the entry
point of the exit routine—and queues that AEB on the SIEAEQ. It is then dispatched from the SIEAEQ to
the appropriate task state block chain.

Asynchronous exits resulting from SCHEDEX functions have their AEB blocks in two additional chains:

SIEAEQ
Is a field in the GCS SIE control block that contains a pointer to a queue of AEBs (located in private
storage), to run in a virtual machine. This queue is used as follows:

1. When a task, A, in a virtual machine wants to schedule an exit to run in another task, B, task A
issues the GCS SCHEDEX macro, specifying the task ID of task B and the exit routine address.

2. GCS SCHEDEX processing, running for the "SCHEDEXing" task, gets an AEB, fills in the appropriate
fields, and queues the AEB in the SIEAEQ.

3. When the GCS dispatcher gets its turn to run, before dispatching any tasks, it checks if there are
any AEBs queued in the SIEAEQ.

If so, it takes the AEB off the SIEAEQ and queues it at the beginning of the task B state block chain.
4. When task B eventually gets dispatched, the exit routine runs as the currently active state block.

VMCSCHDX
Is a field in the virtual machine control block (VMCB) that contains a pointer to a queue of AEBs
(located in common storage) used in cross-machine exit functions. The pointer to VMCB is in the
NUCON (SIE at displacement X'28"). For more information on VMCB, see “VMCB — Virtual Machine
Control Block” on page 196. An example of how this queue is used is:

1. When a task, A, in the virtual machine A wants to schedule an exit routine to run in a task B in
the virtual machine B, task A issues the GCS SCHEDEX macro, specifying the machine ID of virtual
machine B, the task ID of task B, and the exit routine address.

Chapter 9. Debugging GCS 123

Debugging GCS

2. GCS SCHEDEX processing, running for the SCHEDEX task, gets an AEB, fills in the appropriate
fields and, using Compare/Swap logic, queues the AEB on the VMCSCHDX queue associated with
the target virtual machine (B).

3. After that, GCS running in virtual machine A issues an IUCV message to virtual machine B that
informs it about the exit routine to be scheduled.

4. Virtual machine B is interrupted by the IUCV message (external interrupt).
5. The IUCV interrupt handler in GCS calls the GCS scheduling routines GCTSDT and GCTSDX.

These routines find the VMCB of the virtual machine B, dequeue any AEBs queued on the
VMCSCHDX queue for this virtual machine, and queue them in the SIEAEQ queue.

6. Finally, when the dispatcher gets control in virtual machine B, before dispatching any tasks, it
checks if there are any AEBs queued in the SIEAEQ.

If so, it takes the AEB off the SIEAEQ and queues it at the beginning of task B State block chain.
7. When task B eventually gets dispatched, the exit routine runs as the currently active state block.

The Dispatch Queue

Because GCS is a multitasking environment, tasks are performed concurrently. The dispatcher is called
each time a new task can be run. System services, such as interrupts and service calls (SVCs), pass
control to the GCS dispatcher.

Within a virtual machine there are multiple tasks to perform. Each task has a priority associated with it.
The task with the highest priority is given control to run first.

To keep track of tasks and their priorities, a dispatch queue is set up which chains the tasks (through task
blocks) by priority. The task with the highest priority is placed at the beginning of the chain. Each priority
level contains tasks of equal priority. Each level is capable of containing more then one task, but each task
on that level is of the same priority.

If a task has been running an extended amount of time, the dispatcher switches to another task of equal
priority that is waiting in the dispatch queue. This only happens if there is a task of equal or higher priority
waiting to be processed.

When the dispatcher is ready to dispatch a task, it first looks at the tasks with the highest priority level.
These tasks are at the beginning of the dispatch queue. If the first task on that level is ready to run, it is
given control. If not, the next task (if any) on the same priority level is checked.

This is continued until a task is found ready to run. If no tasks on that priority level are ready to run, the
next priority level is checked until a ready to run task is found.

To find and follow the dispatch queue:
1. Locate the SI extension (SIE) address in the NUCON at X'5C4'.

2. Find the address of the first task block (TBK) on the dispatch queue at SIE + X'14".

3. TBK + X'00' is the address of the task block on the dispatch queue of higher priority than this task
block.

4, TBK + X'04' is the address of the task block on the dispatch queue of lower priority than this task
block.

5. TBK + X'08' is the address of the next task block of the same priority.
6. TBK + X'C' is the address of the previous task block of the same priority.
All of the task blocks on this chain are of the same priority and are dispatched in turn.

Using the steps listed, the whole dispatch queue can be traversed and each task waiting to be run can be
found.

For more information on the Dump Viewing Facility and task management control blocks, see “Processing
GCS Dumps with the Dump Viewing Facility” on page 118.

124 z/VM: 7.4 Diagnosis Guide

Debugging GCS

How to Find the Task ID Table

The task ID table lists all the tasks in the virtual machine. All valid task blocks (TBK) are anchored in the
task ID table (TIDTB). This table can be used to find all tasks or a specific task by its ID. The make-up of
the task ID table is shown in Figure 10 on page 125.

To find the task ID table (TIDTB):
« Locate the SI extension (SIE) address in the NUCON at X'5C4".
« Find the TIDTB address at SIE + X'10".

« The first 8 bytes in the table are table control data and do not point to a task block. Instead it contains a
table label and a pointer to the next task ID table.

« The table entries start at the TIDTB address + X'08'.
« Each TIDTB has 255 entries.

Each TIDTB entry describes a task:

« Each entry is 8 bytes long

« The first halfword (the first 2 bytes) in an entry contains the task ID

« The following halfword (the second 2 bytes) is unused

« The next fullword (the last 4 bytes) contains the address of the task block for that task.

0 2 4 8
TIDTB + X'0' label XXXX next TIDTB
TIDTB + X'8' task id XXXX task block addr
task id XXXX task block addr

Figure 10. The Task ID Table (TIDTB)

How to Find Which Task Is Running

In NUCON there is a field that contains the task ID of the task currently running. Use this task ID and find
its entry in the task ID table. In NUCON there also is a field that points directly to the task block (TBK)

of the task currently running. This address and the address of the task block in the TIDTB for the current
task ID should be the same.

« Locate the active TBK address in the NUCON at X'214'.
» Locate the address of the state block of the last active module at TBK + X'10'.

See “TBK — Task Block” on page 186 and “STBLK — State Block” on page 188 for important fields.

If you are using the Dump Viewing Facility, the following procedure using DUMPSCAN subcommands yield
similar information in formatted form:

Chapter 9. Debugging GCS 125

Debugging GCS

« Enter DISPLAY X'212'to get the current task ID.
« Enter TACTIVE using the task ID just found.

- The display that results includes the completion code, the program name, and the register contents
associated with the state block.

If an abend occurs with a dump while GCS is processing an I/O interrupt or an external interrupt, the
pointer to the active task will point to a special task block located in low storage. It will not be on any
task block chain. The X'02' flag at displacement X'CE' will be on to signify that is the special interrupt task
block. See Table 7 on page 186 for displacement X'CE' and its flag bytes and descriptions.

Tracing Task and Program Management

ITRACE and ETRACE facilities record supervisor events and the GTRACE macro records user events, as
these events occur in GCS. Included in these event recordings are the dispatcher and program interrupt
trace table entries. These entries can be of use when debugging potential task and program management
problems.

« The dispatcher trace entry (X'01' type) is made whenever a task is dispatched. If an active task is being
redispatched, no trace table entry is created. The entry includes the task ID, task block address, and
PSW.

« The program interrupt entry (X'04' type) is made each time a program interrupt occurs. It includes such
information as the task ID and program old PSW.

« Each GTRACE entry in the trace table includes the task ID of the task that issued the GTRACE.

Program Management

When you are analyzing a dump of a GCS virtual machine, there are some important control blocks that
give you information about the programs loaded in storage.

A program can use GCS program management macros to dynamically load and run program modules by
name. GCS macros that may cause GCS to load a module in storage are:

LOAD
Loads a module into storage. Control is not passed to the loaded module.

LINK
Loads a module and calls it. When the LINKed module returns, control is also returned to the module
that issued the LINK.

XCTL
Loads a module and transfers control to it. When the XCTLed module returns, control is not returned
to the module that issued the XCTL. Instead, control is passed to the module that called the issuer of
the XCTL macro (if there is one) or to GCS.

The above GCS macros refer to a module by its entry point name (or ALIAS entry point name as defined in
the LOADLIB libraries).

When looking for the entry point, GCS searches the following items in sequence:

1. The virtual machine private storage, because the module associated with the entry point name may
already be loaded.

2. Any saved segment directories that may have been created with the GCS CONTENTS macro, which
sets up a directory for the entry points in that segment.

For example, the VTAM saved segment has a directory built with the CONTENTS macro. Therefore, you
are able to LINK, LOAD, and XCTL to the VTAM entry points.

The VSAM saved segment (used by NetView) does not have a built-in directory. Therefore, you are not
able to LINK, LOAD, and XCTL to the VSAM entry points.

3. The directories of any load libraries that may have been defined for the virtual machine through the
GCS GLOBAL LOADLIB command.

126 z/VM: 7.4 Diagnosis Guide

Debugging GCS

If the module cannot be found in storage and it exists in a load library, GCS loads the module into storage.
GCS keeps track of modules loaded in storage through two lists:

« The virtual machine load list, which describes all the modules that have been loaded into storage.

« The task load list, which associates loaded modules with the task that caused the module to be loaded.
Note that only modules for which the task has issued a LOAD SVC are referred to in the task load list.

Note: In addition to this list, GCS also creates a state block for a task each time the task issues the
ATTACH, LINK, SYNCH, or XCTL macro. State blocks are discussed in “State Block” on page 121.

In addition, other GCS macros are used with the program management functions:
IDENTIFY

Allows dynamic creation of a new entry point for a loaded module.
SYNCH

Calls a loaded module.

DELETE
Removes a module from storage.
BLDL

Requests GCS to locate a module in a GLOBALed LOADLIB and to retrieve the module size and
characteristics.

Task Load List

The task load list is made up of load blocks representing programs that a task has requested through the
LOAD macro. There may be a load list for each task. The load list consists of load blocks chained together
and pointed to by the task block (TBK + X'14").

The load block (LDBLK) contains the following information:
Displacement

Field Description
X'o0'

The program name
X'o8'

The address of next load block on chain
x'oc'

The address of previous load block on chain
X'10'

The address of NUCCBLK for this load block
X'i4'

The load count (2 bytes)
X'16'

Flag

Byte

Field Description
Axxx
Load issued by LOADCMD

X'17'

RMODE and AMODE

You may enter a LOAD for a program more than once. The load count keeps track of the number of LOADs
issued for a program by a particular task. The count ensures that the storage used to load the program is
not freed while being used by the program. The LOADCMD flag is used ensuring that the program storage
is not freed at command termination. For more information on the LOADCMD command, see “LOADCMD
Command” on page 149.

Chapter 9. Debugging GCS 127

Debugging GCS

Virtual Machine Load List

When GCS loads a program into storage, it builds a major NUCCBLK that contains information about the
program that was loaded. When a task issues a LOAD, LINK or XCTL macro for a module that exists in
the shared segment directory, GCS builds a major NUCCBLK. If the loaded entry point is an ALIAS entry
point, or if an IDENTIFY macro is issued for a loaded program, GCS builds a minor NUCCBLK. The minor
NUCCBLKs are chained together and pointed to by the corresponding major NUCCBLK. When the major
NUCCBLK is deleted, the minor NUCCBLKSs associated with it are also deleted.

The list of major NUCCBLKs is pointed to from the field NUCCBLKS in the NUCON (at displacement
X'5EQ"). The NUCCBLKSs contain the following information:

Displacement
Field Description
Xx'oo'
The program/alias/identify name
X'os'
The next NUCCBLK
x'oc'
The previous NUCCBLK address for the major NUCCBLK

or major NUCCBLK address for the minor NUCCBLK
X'10'
The entry point address
X'14'
Flags
X'16'
The use count for the major NUCCBLK
X'18'
Key
X'19'
AMODE and RMODE from the LOADLIB
X'10'
RMODE ANY
X'03'
AMODE ANY
X'02'
AMODE 31
X'o1'
AMODE 24
(Major NUCCBLK only)
X'20'
The program start address or zero
X'24'
The program size or zero
X'28'
The alias / minor NUCCBLK address
The above maps both a major and a minor NUCCBLK. The major NUCCBLK is larger with the additional
fields at the end of the block. The program start address and size will be zero if the program resides in

common storage or a shared segment. The KEY is filled in only for a major NUCCBLK and is the first bits in
the field.

The FLAGS field is 2 bytes long and is used as follows:

128 z/VM: 7.4 Diagnosis Guide

Byte

Debugging GCS

Field Description

First

Byte:

AXXX XXXX
A major NUCCBLK

XAXX XXXX
An alias minor NUCCBLK

XXX XXXX
An identify minor NUCCBLK

Second Byte:
(Only used in the major NUCCBLK)

IxXXX XXXX
Reentrant

XAXX XXXX
Reusable

XXAX XXXX
A reusable module and currently in use

XXX XXXX
The module is executable

XXXX Ixxx
In common storage or shared segment

XXXX XAXX
The module is non-reusable and has been used

How to Find Where a Program Is Loaded

Depending on what you know about a program, you can use one of the following methods to find where
the program is loaded and other information about the program.

1. If the program you are looking for is running in the current task:

Using the procedure given in “How to Find Which Task Is Running” on page 125, find the task block
(TBK) for the task ID for the program.

After the task block is located, locate the active state stack pointer at TBK + X'10'. This points to the
first state block in a chain.

Locate the program name in the state block (STB) at X'00'. The program name may be the name of
an ALIAS or IDENTIFY as well as the main program itself.

If this is not the name of the program you are looking for, follow the state block chain to the next
state block. Locate the chain pointer at X'10'in STB.

If the program name is ‘INIT ’ or the chain pointer is zero, you have reached the end of the chain. The
program being searched for may not be running under this task, or was not called by the program
management SVC macros.

When the state block for the program is found, locate the address of the NUCCBLK at X'1C" in STB.

The NUCCBLK contains information about the program, such as its name, entry point address, where
it is loaded, and more.

If you only wish to know the entry point address for the program, it can be found in the state block at
STB + X'20'".

2. If you know that the program has been loaded using the LOAD macro, and that it has been debugged
using the Dump Viewing Facility, you can use the following method to find where the program is
loaded.

Enter the TLOADL subcommand of DUMPSCAN to display the NUCCBLKs.

Chapter 9. Debugging GCS 129

Debugging GCS

« The resulting display includes the load blocks for the tasks specified when issuing the TLOADL
subcommand. Each load block contains the program name and the address of the NUCCBLK. The
NUCCBLK contains the address of the loaded program. For more information on NUCCBLK and load
blocks see “Task Load List” on page 127 and “Virtual Machine Load List” on page 128.

3. If the following are true:

« You have the program name
e The program has been debugged using the Dump Viewing Facility
« The program has not been loaded by using the LOAD SVC.

You can use the following method to find where the program is loaded:

« Enter the VMLOADL subcommand of DUMPSCAN to display the NUCCBLKs.

 The resulting display includes the major NUCCBLKs and minor NUCCBLKs. The major control blocks
represent the module itself, and the minors map IDENTIFY or ALIAS entry points. The module name
and address are found in the major NUCCBLK, and the ALIAS or IDENTIFY entry points are found in
the minor NUCCBLK.

« The NUCCBLK addresses are also given in case you wish to display the NUCCBLK in storage for more
information about the program.

4. If you have the program name and the program is not running on the active task or you are not
debugging in the Dump Viewing Facility, you can follow the chain of NUCCBLKs in the following
method:

« Display the NUCCBLK block address at X'5EQ' in the NUCON.

« Locate the program name at X'00" in the NUCCBLK. If this is not the program name, follow the major
NUCCBLK chain to the next NUCCBLK. Locate the chain pointer at X'08' in the NUCCBLK.

« If the program name may be an ALIAS or IDENTIFY, search through the minor NUCCBLKs before
going to the next major NUCCBLK. The pointer to the first minor NUCCBLK is located at major
NUCCBLK + X'28'. In the minor NUCCBLK, the chain pointer for minor NUCCBLKs is located at minor
NUCCBLK + X'08'. A zero in this field indicates the end of the chain.

« After the NUCCBLK for the program is found, you can use the information in the NUCCBLK to find out
more about the program—the entry point address, where it is loaded, or its size, for example.

GCS Load Error

If your job abends with an abend code of 106 and a reason code of 030B in register 15 when you are
loading a module, the GCS abend was caused by a disk I/O error. The reason for the disk I/O error can be
found in the ERRCODE field of the DIODA.

To locate the ERRCODE field:

 Locate the address of the DIODA (NUCDIODA) at X'67C' in the NUCON
« ERRCODE is at displacement X'FF' into the DIODA.

IUCV

Note: In the IUCV section, when the word user appears, it refers to any supervisor or problem program.

GCS supports communication within a virtual machine or between any two virtual machines by using
IUCV. Routines running within a task communicate through IUCV with one of the following:

« Other routines in the same machine (same task or different task)
« Routines in other virtual machines
« CP.

When communication is set up through IUCV, the user is assigned a linkage for communication called a
path. A path is established when the source communicator calls the IUCV CONNECT function using the
IUCVCOM macro, and the target communicator calls the IUCV ACCEPT function, again using the IUCVCOM

130 z/VM: 7.4 Diagnosis Guide

Debugging GCS

macro. Both the source and target communicators must be defined in the GCS IUCV environment for a
path to be established between them. That is, each must issue an IUCVINI SET macro function first.

A single communicator can have multiple paths defined at a time. When an IUCVINI SET macro is issued
to admit a user into the IUCV environment, an authorized user may make himself privileged, using the
PRIV=YES parameter if the user is running in supervisor state. This lets the task communicate on a path
using IUCV directly, rather than through the GCS IUCV support.

For more information on IUCV, see z/VM: CMS Application Development Guide for Assembler. GCS IUCV
support is further discussed in z/VM: Group Control System.

Debugging Applications

When IUCV problems are first suspected, you should ensure that the application or program running is
using IUCV correctly and that the parameter lists are set up correctly. TRACE stops should be set after
IUCV macros are issued within a program or application. After the IUCV function has completed, check
the return code in register 15 and any other information that is returned in the CP IUCV parameter list.
If the return code in register 15 is over 1000 (decimal), the error occurred while the IUCV function was
being processed by CP. The IPRCODE field in the CP IUCV parameter list indicates the cause of the error.

Tracing IUCV

IUCV can be traced through the trace facility. Both CP and GCS keep track of IUCV with trace table entries.
CP trace makes an entry into the CP trace table for each IUCV function that it processes. ITRACE and
ETRACE make IUCV trace table entries each time an IUCV SVC or external interrupt occurs for GCS. For
more information on GCS Trace facilities see “Using the GCS Trace Facilities” on page 113.

The IUCV Anchor Block (IUCBK)

The IUCV anchor block (IUCBK) contains general information about the GCS IUCV environment. It is
pointed to from the SIE at SIE + X'B8".

The IUCV anchor block contains the following among other information:

Disp Label Field Description

X'00" IUCCBFAD Address of control external interrupt buffer (EIB)

X'o4' IUCEIBAD Address of application external interrupt buffer

X'08' IUCVIDAN Address of user ID block (IUCID) chain

X'oc' IUCPRMAD Address of internal copy of IUCV parameter list

X'10' IUCVPTAD Address of path ID table

X'14' IUCVSAVE Address of user savearea

X'24' IUCVCONN Maximum number of connections allowed (from MAXCONN in VM

directory entry)

The control external interrupt buffer (EIB) contains information about the last interrupt on a control
path. The application EIB contains information about the last interrupt on a non-control path. For more
information about control paths see z/VM: CP Programming Services.

The user ID block (IUCD) chain and the path ID table are explained later in this chapter in more detail.

The IUCPRMAD points to a copy of the last CP IUCV parameter list that was issued by the GCS IUCV
support, either implicitly (IUCVINI) or explicitly (IUCVCOM). The internal parameter list holds a copy of
the last CP IUCV parameter list that was issued by the GCS IUCV support on behalf of one of its users. It is
also used for IUCV functions that GCS IUCV support must start, for example, to sever an incoming path to
a user that has not issued an IUCVINI SET function.

Chapter 9. Debugging GCS 131

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

Debugging GCS

The User ID Blocks (IUCID)

User ID blocks contain information about active users in the IUCV environment. There is an IUCID for
each user, containing the user name, user word, and associated task block address. The IUCIDs are
chained together, with the most recently added user at the beginning of the chain. The first IUCID is
pointed to by IUCVIDAN in the IUCV anchor block (IUCBK).

The user ID block is built when a user is admitted into the IUCV environment using the IUCVINI SET
macro. The name specified in the macro is the name by which the user is known in the IUCV environment.
When paths are established using IUCYCOM CONNECT and IUCVCOM ACCEPT functions, the user names
specified on the two macro invocations identify the two parties wishing to do IUCV communications.

The IUCVINI CLR macro ends the IUCV environment for the specified user. When the user is terminated
from IUCV, the associated user ID block is deleted from the user ID chain, and all paths for the user are
severed.

The IUDB contains the following information:

Displacement

Field Description
X'00'

The next user ID block address
X'04'

The general exit address
Xx'os'

The user name
X'10'

The user word
X'i4'

The task block address
X'as'

Flags

Byte

Field Description

Axxx
The problem state indicator

x1xx
The privilege state indicator

xXx1x
The exit will be run in AMODE 31

The Path ID Table (IUCPT)

The path ID table contains an entry for every possible IUCV path based on the maximum number of paths
available for this virtual machine. A path entry is filled in when the path is established using IUCVCOM
CONNECT, and also on the resulting pending connect interrupt. Therefore, a single communication's path
is represented by two path entries. A path can be in different states as indicated by the flags in the path
entry. Before any GCS IUCV function is processed, the state of the path is checked to see if the function is
allowed.

For more information on the Dump Viewing Facility and IUCV management control blocks, see
“Processing GCS Dumps with the Dump Viewing Facility” on page 118.

Each path ID table entry is 20 (X'14') bytes long.

The path ID table contains the following information:

Displacement
Field Description

132 z/VM: 7.4 Diagnosis Guide

Debugging GCS

X'00'
The address of user ID block
X'04'
The exit address
X'08'
The user word
X'oc'
The task block address
X'10'
Flags
Byte
Field Description
IXXX XXXX
The path is active.
XAXX XXXX
The connect is issued.
XXX XXXX
The connect is pending.
XXX1 XXXX
The path is quiesced.
XXXX IXXX
The path is severed.
XXXX X1XX
The exit will be run in AMODE 31
XXXX XX1X
Problem state indicator
XXXX XXx1

Privilege state indicator

The task block address represents the task that was running when the path was created. The user ID
block address points to the user ID block for the owner of the path. The exit address is for the owner's
path-specific exit.

How to Find Information about a Path

You can find information about a path, such as who owns it and its present status, in a path ID table
entry for the path. The path ID provides an index into the path table to get to the entry that describes the
particular path.

« If you have a VMDUMP formatted dump, you can use the Dump Viewing Facility.

— Enter the Dump Viewing Facility DUMPSCAN IUCV subcommand

— The resulting display shows the important information found in each of the path entries in the path ID
table.

- If you are manually displaying addresses and following chains, this procedure yields the path table
entry for a specific path ID:

— Locate the SI extension (SIE) address in the NUCON at X'5C4".
Locate the IUCV anchor block (IUCBK) address at SIE + X'B8'.
Locate the path ID table (PIDT) address at IUCBK + X'10".

The specified path ID is in hexadecimal.

Calculate the offset as follows:
Offset = pathid x X'14".

Chapter 9. Debugging GCS 133

Debugging GCS

Each path table entry is X'14' or 20 bytes long.

For example, if pathid = X'B', the path entry is at displacement X'B' x X'14' = X'DC' into the table.
— The path entry is located at PIDT + offset.
— See the path ID table entry map for the layout of the path entry.

Storage Management

The storage management component of GCS controls the allocation of storage for a GCS virtual machine.
GCS manages storage with three different perspectives:

« Storage location (private or common storage, above or below the 16 megabyte line)
« Storage protection (storage key and fetch or store protection bits)
- Storage ownership (persistent or task related storage).

Information about common storage for the whole virtual machine is in the storage management anchor
block (SMAB). To locate the SMAB, first locate the SIE address at location X'5C4' in the NUCON and then
locate the SMAB at displacement X'40' in the SIE.

The fields describing common storage are:
1. The address of the start of low common storage is in SMASCOML (SMAB + X'60").

The length of low common storage is in SMALCOML (SMAB + X'64").
2. The address of the start of high common storage is in SMASCOMH (SMAB + X'68").

The length of high common storage is in SMALCOMH (SMAB + X'6C").

For more information on storage management mapping and field descriptions, see “SMAB — Storage
Management” on page 192.

Storage Anchor Blocks

There are five types of storage anchor blocks:
« Private storage anchor blocks:
— Low private anchor block (LPAB)
— High private anchor block (HPAB),
depending on the position of the private storage—above or below the 16 megabyte line.
« Common storage anchor blocks:
— Low common anchor block (LCAB) and
— High common anchor block (HCAB),
depending on the position of the common storage—above or below the 16 megabyte line.
 Task storage anchor blocks (TSAB).

The first four storage anchor blocks (LPAB, HPAB, LCAB and HCAB) are identical. They contain pointers to
the start of arrays of major and minor storage anchor control blocks (SACBs) describing the free storage

pages.

The TSAB contains a pointer to the TSAB extension which is a string of pointers to the start of a double-
linked list of task storage header blocks (TSHBs), one pointer for each division (or grain) of the storage.
The TSHBs describe the storage belonging to a task.

To find any of the four free storage anchor blocks:

1. Locate the SIE address at displacement X'5C4' in the NUCON.

2. Locate the pointer to the storage management anchor block (SMAB). This pointer is at displacement
X'40"in the SIE.

134 z/VM: 7.4 Diagnosis Guide

Debugging GCS

3. The LCAB is pointed to by the SMALCAB field (at SMAB + X'00").
4. The HCAB is pointed to by the SMAHCAB field (at SMAB + X'04").
5. The LPAB is pointed to by the SMALPAB field (at SMAB + X'08").
6. The HPAB is pointed to by the SMAHPAB field (at SMAB + X'0C").

The TSAB is pointed to by the field TBKSTOR at displacement X'A8' in the task block (TBK).

For more information on the storage anchor block mapping and field descriptions, see “ANCH — Storage
Anchor Block” on page 194.

Description of the Storage Anchor Control Blocks (SACBSs)

There are two types of storage anchor control blocks (SACBs): major and minor.

A major SACB is 14 bytes long, and a minor SACB 10. They are in contiguous storage, are built at
initialization time, and are permanent.

There is a major SACB to describe each page of free storage. Contiguous to each major SACB is a chain of
minor SACBs. Each of these describes a noncontiguous free area in the page.

Important Fields in Major SACBs

The major SACBs contain the following fields:
Displacement
Field Description
Xx'oo'
MAIJINXTPT points to the major SACB for the next page of the same key.
X'04'
MAJBKPTR points to the major SACB for the previous page of the same key.
Xx'os'
MAJMAXLN is a 2-byte field that names the largest free area on the page that does not begin on a
page boundary.
X'0A'
MAJLNCON is a 2-byte field that gives the length of the free area at top of the page.
x'oc'
MAJKEY is an 8-bit field that contains the key and fetch bit for the page.
X'op'
Flags
Byte
Field Description
1117 xxxx
Not used
XXXX Ixxx
MAJTOLIN SACB to go to no key queue
XXXX x1xx
MAJLIMBO SCAB to go to no key queue
XXXX Xx1x
MAJENDL Major SACB is at the low end of array of majors

XXXX XXx1
MAJENDH Major SACB is at the high end of array of majors

Important Fields in Minor SACBs

Minor SACBs are control blocks used for the following purposes and contain specific fields:

Chapter 9. Debugging GCS 135

Debugging GCS

1. Combined with a major SACB, they describe free storage on a page boundary. Each of these minor
SACBs are headers for a chain of minor SACBs that describe all free storage on a given page.

Displacement
Field Description
Xx'oo'
MNORNXT points to the next minor SACB used to describe the next noncontiguous free area on the
same page.
X'o4'
MNORPTRF points to the free area on the page boundary.
X'os8'
MNORLN is the length of free area on the page boundary; this field has a length of 2 bytes.

2. They describe free storage not on a page boundary. These minor SACBs are found on pages of storage
that are chained together and are pointed to by ANCHPGMN in the anchor block.

Displacement
Field Description
X'oo’
MNORNXT points to the next minor SACB used to describe the next noncontiguous free area on the
same page.
X'o4'
MNORPTRF points to free storage not on a page boundary.
Xx'os'
MNORLN is the length of the free storage, this field has a length of two bytes.

For more information on the Dump Viewing Facility and storage management control blocks, see
“Processing GCS Dumps with the Dump Viewing Facility” on page 118.

Checking for Storage Fragmentation

Check the fields ANCHPGL and ANCHPGH, which point to the major SACBs that represent the lowest

and highest completely free pages of storage. If these pointers are both zero, then storage is fragmented
down to the page level. If they are not zero but the request is for greater than a page, scan the major SACB
between these major SACBs to see if there is sufficient storage.

Scanning the Major and Minor SACBs

1. Find the appropriate anchor block for private or common storage.
2. Starting with ANCHMAJL, scan the major/minor combinations:
a. Major SACBs exist for each page of private/common free storage.
b. Minor SACBs have the address of the page represented (MINPTRF at X'04").
c. Match the page represented with the address of the storage in question.
i) These minor SACBs are contiguous with the major SACBs they describe.
i) Scroll until the corresponding page is found.

Checking Free Storage on Any Given Page

1. Find the appropriate anchor block for the private or common storage.

2. Starting with ANCHMAJL, scan the major/minor combinations for the major SACB for the appropriate
page. For more information, see “Scanning the Major and Minor SACBs” on page 136.

3. The first minor SACB is the header for a chain of minor SACBs that describe all free storage for the
page. This minor SACB describes the free storage on the lower page boundary. If MNORLN is 4 KB, the
page is fully free and is available for use in any key.

136 z/VM: 7.4 Diagnosis Guide

Debugging GCS

4. If MNORLN is not 4 KB, look at MAJMAXLN. This field tells you the largest free piece of storage
available on the page not on a page boundary.

Note: Because this page is not completely free, it cannot be used for a request of another key.

5. To calculate free storage for two or more contiguous pages, check MAJLNCON for free storage at the
top of the page and MNORLN for free storage at the bottom of the page.

6. To find the description of all free storage on a given page, follow the chain of minor SACBs.

Finding the Key for a Given Page

« To find the actual key for a given page of storage, use the CP command DISPLAY K.
« To see what key GCS has for the same page:

1. Scan the chain of major SACBs for the one that describes the page you are interested in. For more
information, see “Scanning the Major and Minor SACBs” on page 136.

2. To find the key and fetch bit in MAJKEY:
a. The GCS storage management key and fetch protect bit are right-justified.
b. In GCS, 1C corresponds to EOQ through E7 in CP, meaning key 14 nonfetch-protected storage.

MAJKEY 000kkkkF CP KEY | KKKKFXXX

« To check pages of free storage in any given key and fetch protection:

1. Find the appropriate anchor block for private or common storage.

2. ANCHKEYP (at X'04' in LPAB or HPAB) is the start of an array of 32 records that are the anchors for
chains of major SACBs for each key and protection status.

3. To find the appropriate pointer for the key and fetch protection you want to follow down the chain:
a. The first pointer is for key zero nonfetch-protected, the second for key zero fetch-protected, and
S0 on.

b. This pointer will point to the first major SACB that describes free storage for the key and fetch
protection.

c. Use MAINXTPT, the forward pointer, and MAJBKPRT, the backward pointer, to follow up and
down the chain.

Control Blocks Describing the Storage Owned by a Task

Task-owned storage can only be in private storage. Though a task can get common storage with the
GETMAIN macro, that storage is not automatically freed when the task ends and must be freed with the
FREEMAIN macro by the task itself or by another task. No control blocks describe the gotten common
storage.

The task-owned storage is described by two types of control blocks:
« Task storage headers (TSHs)
« Gotten storage blocks (GSBs).

As shown in Figure 11 on page 138, the TSHs are blocked in blocks called task storage header blocks
(TSHBs) and the GSBs are blocked in blocks called blocks of gotten storage blocks (GSBBs). The TSHBs
are linked in a double linked list. Each TSH points to a GSBB block (block of GSBs). Each GSB has the final
description of a piece of gotten storage (address, length, subpool, and key).

The TSHB contains a block header followed by a string of TSHs. The GSBB contains a block header
followed by a string of GSBs. Neither the TSHs in a TSHB nor the GSBs in a GSBB are linked together.

Chapter 9. Debugging GCS 137

Debugging GCS

TBK

1

AB | TBEETOR

TEAR

TSATER

B | Bemap of
subipoals
ownad

TEH page hoador

4 | TEATEABE

TEABE

o| Grame [json A boiow
a| GRaNT |
e GRaNz |
c| Gramz

Mumbar of grais =
SIEVMSILERAGHAIN

GEB page hoador

0| TEHPNFR a| GSBPNFF
4| TeHpEEp 4 | GSBPPFP
B | TEHPCNT 8| GSBPCNT
L, . TeHs | GEER
0| TEHHNTEH | GSBHTEH
4| TEHHPTEH 4| GHBECHT
B | TEHHTSABR 8| G=8
| TEHHENT T =58 T
1a| TEH
1 TEH T 58 (expanson)
o | GSBADDA
4 | GSBLEN
TEH |owpansion) 8 | asesuEP
0| TEHLADDR 3 | GSBFLAG
4| TEHWGSRE f— A
B | GSBHEYZ

Figure 11. TSHB and GSBB Control Blocks

Each page of Task Storage Header (TSH) blocks contains a header at the beginning of the page. The fields
in the page header are:

Disp
x'oo0'
X'04'
x'og'

Label

TSHPNFP
TSHPPFP
TSHPCNT

Field Description

Next page of TSH page blocks.

Previous page of TSH page blocks.
Number of used TSH blocks on this page.

The fields in the Task Storage Header Block (TSHB) are:

Disp
x'o0'
X'04'
x'o8'
x'ocC'
X'10'

Label
TSHHNTSH
TSHHPTSH
TSHHTSAB
TSHHCNT

The fields in a TSH are:

Disp
X'00'

X'04'

Label
TSHLADDR

TSHAGSBB

Field Description

The link pointer to the next TSH block for the same task
The link pointer to the previous TSH block for the same task
The link pointer back to the TSAB

The number of TSHs in this block

The first TSH in this block

Field Description

The low address of the areas described by the GSBs in the corresponding
GSB block

The address of the block of GSBs

The description of the relation between the TSHB and the block of TSHs is in the SMAB. The field
descriptions are:

138 z/VM: 7.4 Diagnosis Guide

Debugging GCS

1. The length of a block of TSHs (including the block header) is in the SMATSMBL (SMAB + X'40").
2. The number of blocks of TSHs on a page is in SMATSHBN (SMAB + X'42").
3. The maximum number of TSHs in a block is in SMATSHBM (SMAB + X'44").

Each page of Gotten Storage Block (GSB) blocks contains a header at the beginning of the page. The fields
in the page header are:

Disp Label Field Description

X'00' GSBPNFP Next page of GSBs.

X'04' GSBPPFP Previous page of GSBs.

X'08' GSBPCNT Number of used GSB blocks on this page.

The fields in a Block of Gotten Storage Blocks (GSBB) are:

Disp Label Field Description

X'00" GSBHTSH The link pointer back to the TSH
X'o4' GSBCNT The number of GSBs in this block
X'08' The first GSB in this block

The fields in a GSB are:

Disp Label Field Description

X'00" GSBADDR The address of the gotten storage

X'04' GSBLEN The length of the gotten storage

X'08' GSBSUBP The subpool of storage

X'09' GSBFLAG A flag byte containing, in the right-most bit, the flag showing whether the piece

of storage described by the GSB is in key zero nonfetch-protected

X'0B' GSBKEYZ Key 0 non-fetch protected storage.

The description of the relation between the GSBB (block of GSBs) and the GSBs is also in the SMAB. Field
descriptions are:

1. The length of a block of GSBs is in SMAGSBBL (SMAB + X'46").

2. The number of GSB blocks on a page is in SMAGSBBN (SMAB + X'48").

3. The maximum number of GSBs in a block is in SMAGSBBM (SMAB + X'4A").

How to Find the Storage Belonging to a Given Task

1. Find the task block (TBK) (see “Task Management” on page 121).
2. Find TBKSTOR (X'A8' into the TBK), which points to the task storage anchor block (TSAB).
3. TSATSABE (X'04' into the TSAB) points to the task storage anchor block extension (TSABE).

4. TSABTSHB (X'00' into the TSABE) points to the first TSHB (TSH block) of the array of TSHBs belonging
to the task.

How to Check What Subpools Belong to a Given Task

1. Find the task block (TBK) (see “Task Management” on page 121).
2. TBKSTOR (X'A8' into the TBK) points to the TSAB.

3. TSASPOOL (X'08' into the TSAB) is a 256-bit map of all possible subpool values. Each subpool nhumber
that is owned by the task has the appropriate bit on. If the bit is off, then there is an owning task with
the corresponding bit on. You can search up the task chain to find the owner of any given subpool by

Chapter 9. Debugging GCS 139

Debugging GCS

looking for the appropriate bit to be on. At least one task has the bit on. The commands task has all
256 bits on.

System-Wide Description of Storage

The total of your virtual machine size (including common storage, though not used as task-oriented
storage) is divided into sections called grains. The size of a grain is determined at IPL time when the
SMAB is built. The field describing the size of a grain is SMAGRAIN (SMAB + X'3C"). The field named
SMATSBEL (SMAB + X'18") contains the number of existing grains times 4. Each grain has a pointer in the
TSABE to the first TSHB for that task in that grain. Consequently, SMATSBEL represents the size of the
TSABE (TSAB extension). Furthermore, there is, for each grain, a double-linked list of TSHBs pertaining to
that task. The number of grains is fixed at IPL time; therefore, to find the anchor of TSHBs for a particular
part of storage, you need to determine the pointer in the TSABE (a zero entry indicates there is no TSHB)
pertaining to that particular grain.

System-Wide Description of TSHBs and GSBBs

The TSHBs and GSBBs reside on four (two for each type of block) double-linked lists of pages. All four are
anchored in the SMAB.

For each type of block the two linked lists are:

« Alist with full pages of TSHBs or GSBBs
- Alist of pages containing space for at least one block (TSHB or GSBB).

The TSHBs are double-linked lists, and thus can reside on both lists of pages. The pointers in the TSABE
anchor the lists of TSHBs for each grain and point somewhere on one of the two lists of pages to the first
TSHB for that particular grain.

The anchors in the SMAB of the four double-linked lists of pages are the following:

Displacement
Field Description
X'ac
Pointer to first page filled with TSHBs
X'20'
Dummy backward pointer
X'24'
A pointer to the first page of TSH blocks containing at least one free block
X'28'
A dummy backward pointer
X'2c'
A pointer to first page filled with GSB blocks
X'30'
A dummy backward pointer
X'34'
A pointer to the first page of GSB blocks containing at least one free block
X'38'

A dummy backward pointer

Each page from any of the four lists has a header, the blocks follow immediately afterward. The fields of
the header are:

Displacement
Field Description

X'o0'
A pointer to the next page of TSH or GSB blocks (TSHBs or GSBBs)

140 z/VM: 7.4 Diagnosis Guide

Debugging GCS

X'04'

A pointer to the previous page of TSH or GSB blocks (TSHBs or GSBBs)
Xx'os'

The number of used TSH or GSB blocks (TSHBs or GSBBs) on this page

Depending on the position of the page inside the list, the first or second position could be zero.

Common Storage Management Problems
FREEMAIN or GETMAIN goes into an infinite loop:

1. GETMAIN or FREEMAIN is searching for the task that owns the subpool requested. The task chain or
the TSABs may have been overlaid.

a. This problem will show up on a task-related request.

b. Find the active task and search the task chain for each ancestor task. See if any have been overlaid.
(GETMAIN and FREEMAIN search back up the task chain to find the task that owns the subpool.)

c. TBKSTOR (X'A8' into the task block) points to the task storage anchor block (TSAB).

d. TSASPOOL (X'08' into the TSAB) is a 256-bit map of all the subpools owned by this task. Either
the active task or one of the owning tasks must have the appropriate bit on for a given subpool.
GETMAIN or FREEMAIN will continue to search until the owner of the subpool is found.

Abend 80A, 804, or 878. Improper length or insufficient virtual storage:

1. Check the trace table for the length of the request. (Tracing is done for SVC invocations of GETMAINs
and FREEMAINSs. Branch entries to GETMAIN and FREEMAIN are not traced.).

If the length is valid, then check for fragmentation. (See “Checking for Storage Fragmentation” on page
136.)

2. If there is fragmentation, find out who has not freed the storage.

a. Find out who is not freeing storage by first finding the key of the storage with the CP command
DISPLAY K.

b. If most of the storage allocated is in key 6, then VTAM is not freeing the storage.
c. If most of the storage is in key 14, then storage is not being freed by an application such as RSCS.

d. If most of the storage is allocated in key 0, the problem could be internal to GCS, or GCS could be
getting storage in behalf of some application.

e. Check both the allocated storage of the task blocks and the free storage described by the major/
minor SACB for patterns. Are the same size pieces of free storage being left? All major SACBs are
found in contiguous storage and can be easily scanned. All the minor SACBs that describe free
storage can be found on pages of minor SACBs pointed to by ANCHPGMN found in the anchor
blocks. Thus you can easily scan the minor SACBs.

f. Check the trace table for the last GETMAINs. See if FREEMAINs are done for that storage.
Abend 778. One of the following could be true:
1. There is an invalid mode byte in SVC parameter list.
2. The program is returning storage in wrong key.
a. It could be returning someone else's storage.
b. A privileged program could have changed the key.
3. Storage management ran out of storage for internal control blocks.
Check the following:
1. The parameter list set up by the macro.

2. Whether actual storage key matches what GCS storage management identifies as the key. For more
information, see “Finding the Key for a Given Page” on page 137.

3. Fragmentation.

Chapter 9. Debugging GCS 141

Debugging GCS

Tracing Storage Management

Supervisor tracing using ITRACE and ETRACE includes tracing GETMAINs and FREEMAINSs (called through
SVCs) as they occur in GCS. GETMAIN trace entries (X'08' type) and FREEMAIN trace entries (X'09' type)
contain much of the same information:

e The task ID

« The storage address obtained or released
« The length of the storage

« The storage subpool

- The invoker's address.

GETMAIN also includes the key of the storage being obtained.

GeneralI/O

GCS General I/0 (GENIO) Functions: All I/O except DASD and console I/0 is performed using the GCS
GENIO macro. However, because GCS does not provide any device specific code, using the GENIO macro
requires that the application requesting the I/0 has to perform all the related I/O control tasks, including
error recovery.

You can use operands of the GCS GENIO macro to request the following functions:

OPEN
is needed for an application to use and own a particular device. To open a device, the program
provides the virtual device address and the address of an exit routine. GCS passes control to this exit
routine whenever the opened device presents an I/0O interrupt.

When a GENIO OPEN is issued, GCS gets a table entry for the GENIO table (GIOTB) for the device and
initializes the entry.

A task or program may not open a device that is already open.

CLOSE
closes a device when the device is no longer needed.

GCS cleans up any I/0O requests queued on the virtual channel queue, halts any active I/0, and deletes
the entry from the GIOTB table. (See “The General I/O Table (GIOTB)” on page 145 for a discussion of
the GIOTB table.)

The exit routine specified in the GENIO OPEN macro is no longer scheduled if I/O interrupts are
received from the device.

MODIFY
modifies a CCW of an active I/O program. DIAGNOSE code X'28' is issued to CP to effect the CCW
modification.

CHAR
requests the characteristics (such as device class, type, and model) of a device.

GCS gets this information by using DIAGNOSE code X'210'.

The CHAR function does not require the device to be open in order to obtain the requested
information.

START
starts an I/O operation to an open device.

For this operation, the program specifies the virtual device address and the address of a channel
program to be run on the device. The channel program key is set to the PSW key of the program that
issued the START.

GCS checks that:

« The device is open

142 z/VM: 7.4 Diagnosis Guide

Debugging GCS

« The device is not busy with another operation.
GCS issues a virtual SSCH instruction to the device.

GCS does not accept another START function to the device until the current operation completes. The
end of the operation is identified by a device end interrupt.

STARTR
lets an authorized program use real channel programs with a dedicated device. Only real attached
devices may use real channel programs.

If a device is not capable of real I/O (not a real device), a return code is set, and no further processing
takes place.

The process of a STARTR function is similar to the START function, the only difference is GCS uses
DIAGNOSE code X'98' instead of an SSCH instruction.

Note: A virtual machine must be authorized to issue DIAGNOSE code X'98'. This authorization is
granted by specifying DIAG98 in the directory entry of the virtual machine (OPTION statement).

If the machine is not authorized for DIAGNOSE code X'98', a return code is passed to the program
issuing the GENIO STARTR function. See z/VM: CP Planning and Administration for a description of the
setup necessary to use DIAGNOSE code X'98'.

HALT
forces GCS to halt the device.

General I/O in GCS lets a program drive any I/O device that is defined on the virtual machine except a
DASD. Using the GENIO macro, a user can obtain, use, and release any I/O device. For further information
on the GENIO Macro, see z/VM: Group Control System.

IOSAVE

Information pertaining to general I/O is found in the IOSAVE area. IOSAVE is used as a save area when
I/0 interrupts are being handled. It resides in private storage and is loaded during system initialization.
The address of IOSAVE is found in the load map for the system. The user must have the load map (for the
IOSAVE address) to do general I/O debugging for GCS.

IOSAVE gives an overall picture of general I/O in the GCS virtual machine at a point in time, such as the
time of the dump:

- The I/O old PSW, containing the address of the interrupting device in the second halfword of the PSW
- The address of the first entry in the general I/O table linked list
« A pointer to the page fix table (PFXTB) that identifies the pages that have been locked in real storage

« The address of the last entry in the general I/0 table related to GENIO processing (either from an I/O
interrupt or from issuing a GENIO macro).

The IOSAVE block resides in private storage and is built during GCS initialization. The initial value of all
fields in IOSAVE is 0.

To determine the start address of the IOSAVE control block, locate GCTIOSAV in the GCS nucleus map.
The IOSAVE contains the following information:

Displacement
Field Description
X'oo'
A save area for registers (twice)
X'90'
The I/O old PSW
X'98'
The SCSW from the I/0 causing the interrupt

Chapter 9. Debugging GCS 143

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Debugging GCS

X'A0'

A pointer to the general I/O table
X'A4'

The address of the page fix table
X'A8'

The address of the last entry (before the current) in the general I/0 table
X'AC'

A real I/O authorization flag
X'BO'

The interrupt code
X'B2'

The instruction length
X'B4'

The address of the first entry in the subchannel identification table

The saved PSW and SCSW are stored in the IOSAVE from the last I/O interrupt.

The Subchannel ID Table (SIDTABLE)

At IPL time, a table is built containing the existing configuration. Each entry corresponds to one
subchannel. This is the SIDTABLE, a linked list with an entry for every active device. The SIDTABLE is
anchored in IOSAVE + X'B4', and it is cross-linked with the general I/O table. (Each entry in the general
I/0 table points to a SIDTABLE entry and the reverse if there is a correspondent entry in the general I/O
table.)

A SIDTABLE entry provides information about the device as:

« Subchannel ID

« Subchannel address

- Virtual and real device characteristics

« The interrupt request block for the respective device

- The operation request block for the respective device.
The fields in a SIDTABLE entry are:
Displacement

Field Description
X'000'

The next subchannel pointer
X'004'

The subchannel ID
X'008'

The subchannel address
x'ooc'

The virtual device type class
X'00D'

The virtual device type
X'00E'

The virtual device status
X'OOF'

The virtual device flags
X'010'

The real device type class

144 z/VM: 7.4 Diagnosis Guide

Debugging GCS

X'011'

The real device type
X'012'

The real device model number
X'013'

The real device feature code
X'014'

The address of the GCTGIOTB entry
X'018'

The interrupt request block
X'118'

The operation request block

The General I/0 Table (GIOTB)

The general I/0 table (GIOTB) is found at IOSAVE + X'AQ'. It is a linked list with an entry for every open
device.

A GIOTB entry provides information about the device, such as:
« The device address
« The task ID and task block address of the task that has opened the device

Only one task can own a device at any one time. A task owns a device when it opens the device and
loses ownership when it closes the device, or when the task ends.

« Several flags describing the status of the I/O activity on the device

If the flag for “exit scheduled” is on, an asynchronous exit block (AEB), pointed to by GIOTB+X'38,
contains information related to the exit and is enqueued on the AEB queue pointed to by the SIE at
SIE+X'18'.

- Characteristics of the device (virtual and real)

« A pointer to the subchannel ID table (SID) correspondent entry.
The field IOSGIOTB is found at IOSAVE + X'AQ".

The general I/0 table contains the following information:

Displacement
Field Description

X'00'
The address of the next entry in the table
X'04'
The device address
X'os'
The address of the task requesting an open
x'oc'
The task ID of the task requesting an open
X'OF'
Flags
Byte
Field Description
AXXX XXXX
I/Ois active
XXX XXXX

I/0is queued

Chapter 9. Debugging GCS 145

Debugging GCS

XX1x XXXX
An asynchronous interrupt has been queued

XXX1 XXXX
An exit has been scheduled for asynchronous interrupt

XXXX XXX
An asynchronous interrupt has been queued

XXXX X1xx
An asynchronous interrupt is pending

XXXX Xx1x
Wait
XXXX XXx1
Format 1 type CCWs are being used
X'14'
The address of the exit when I/O has been completed (GIOEXIT)

(Do xxxx)
Call exit in AMODE 31

X'18'

The characteristics of the virtual device
X'1C'

The characteristics of the real device
X'24'

The address of the CCW to be started
X'38'

The address of the asynchronous exit block (AEB)
X'40'

The synchronous interrupt control block (ICB)
X'sC'

The asynchronous interrupt control block (ICB)
X'D8'

The address of SID table entry

I/0 Interrupt Handling

The exit routine specified in the GENIO OPEN macro is provided with the SCSW from the interrupt, and
with the sense bytes if a unit check occurred. When subsequent SCSWs are received, the status bytes are
OR'd with the SCSW already stored in the interrupt control block.

The exit routine receives control in the key and state of the task that opened the device:

« If the task is an authorized program, the exit routine is entered with interrupts disabled.
- If the task is not an authorized program, the exit routine is entered with interrupts enabled.

Interrupt Control Blocks

Within each GIOTB entry are two interrupt control blocks (ICBs) that keep information about the last
synchronous (GIOSICB) and asynchronous (GIOAICB) I/0 interrupts for the device.

The asynchronous and synchronous ICBs are mapped alike, except that the synchronous ICB contains
sense bytes in case of unit checks. The synchronous ICBs contain a 0 in the first byte, while the
asynchronous ICBs contain a 1.

The ICBs contain the device address and the Subchannel Status Word (SCSW).

The interrupt control blocks contain the following information:

146 z/VM: 7.4 Diagnosis Guide

Debugging GCS

Displacement
Field Description

X'o4'
The device address
Xx'os'
The first two words of the SCSW
X'10'
The sense bytes (synchronous only - 32 sense bytes)
X'40'
The complete SCSW from the interrupt

How to Find What Pages Are Locked by PGLOCK

The page fix table (PFT) keeps track of the virtual pages that are locked into real storage by the PGLOCK
macro. When a page is locked, an entry for that page is added to the PFT. The entry is deleted from the
PFT when the page is unlocked using the PGULOCK macro. The PFT entries are chained together and are
pointed to from IOSAVE (I0SAVE + X'A4").

A PFT entry contains the following information:
Displacement

Field Description
X'o0'

The address of the next PFT entry
Xx'o4'

The virtual address of the page
Xx'os'

The real address of the page
x'oc'

The task ID that locked the page
X'OE'

Flag:

X'so'

AMODE 24 page

Finding Pages Not Paged in After a Page Fault

If you are using the pseudo page fault support by issuing the CP command SET PAGEX ON and the task
block is waiting for page fault completion(s), you can find out what page it is by following these steps:

At X'13C' into the SIE, there is a pointer which points to a chain of ECBs (Event Control Blocks) that
provide information about tasks waiting for a page of storage to be paged into real storage. Each ECB
control block pointed to by the pointer at X'13C" into the SIE has the following format:

Displacement
Field Description
X'o0'
The forward pointer to the next ECB control block
Xx'o4'
The backward pointer to the previous ECB control block
Xx'os'
The address of the page having page fault
x'oc'
An ECB

Chapter 9. Debugging GCS 147

Debugging GCS

Byte 01
Flag Field

AXXXXXXX
The task is waiting for the page to be paged in
X'oD'
The three-byte address of state block of task waiting for page

Use the state block pointer to find the backward pointer to the task block that is waiting for the page to be
paged in real storage.

The page fault address for the last page fault handled is at X'90" If the high order bit is on, GCS has been
notified of the completion. The program interrupt code, which must be X'14' for a page fault, is at X'8E'

How to Find the Characteristics of a Device

The GENIO macro with the CHAR option gives information about a specific device. The data returned
contains both real and virtual characteristics. The device does not have to be open for you to enter the
GENIO CHAR macro.

If the device has been opened, an entry in the general I/0 table (GIOTB) for that device has been
made. The GIOTB contains both real and virtual characteristics for the device. If there is no real device
associated with the virtual device, the real characteristics are zero.

I/0 Debugging

I/0O problems can occur in four areas: CP, GCS, VSCS, or VTAM and its applications. Indicators that there
may be an I/O problem in one of these areas include:

« Printers or a SNA/CCS terminal that hang
« AVTAM link that does not initialize
« A questionable status returned from I/0.

When you suspect an I/O problem, you should first keep track of error messages and keep the console
log, especially for VTAM. I/O problems generally require recreating the problem using traces. You can set
traces for each area suspected of an I/O problem. Trace files are helpful to track the sequence of events
following the handling of an I/O interrupt. Proceed as follows:

1. Set up traces for CP, GCS, VSCS, and VTAM by entering:

trsource id xx type gt user vtam

trsave for id xx on dasd

trsource enab id xx

vscs traceon (ext (starts the VSCS external trace)

etrace gtrace sio i/o group:

vtam £ trace, id=luname, type=buf (or type=i/o) (starts the VTAM trace)

2. Recreate the problem.
3. Turn off the traces by entering:

trsource disa id xx

vtam £ notrace, id=luname, type=buf (or type=i/o) (stops the VTAM trace)
etrace end (stops the GCS trace)

vscs traceoff (stops the VSCS trace)

If you want to do an internal trace:
1. Using ITRACE involves entering only the GCS and VTAM parts of this scenario:

itrace gtrace (enables GCS to record GTRACE data in the internal trace table)
vtam £ trace,id=a0@la3e0,type=io (instructs VTAM to record IO trace data)
vtam £ trace,id=a01a3e0,type=buf (instructs VTAM to record buffer trace data)

2. Recreate the problem.

148 z/VM: 7.4 Diagnosis Guide

Debugging GCS

3. Turn off the traces by entering:

vtam £ notrace,id=a0@la3e0, type=io (stops the VTAM IO trace)
vtam £ notrace,id=a0l1a3e0,type=buf (stops the VTAM buffer trace)
itrace gtrace off (stops GCS internal tracing for GTRACE).

Trace Table Entries

After tracing has completed, the trace events for all areas that were traced are found in the GCS internal
trace table, unless a wraparound has occurred. If GCS is using an external trace, the trace entries are in

the TRFILE created for the TRSOURCE trace ID. VTAM and VSCS entries in the trace table are entered as
GTRACE entries.

GCS traces of I/O requests (type X'06") and interrupts (type X'03") contain information that may be useful
when debugging I/0 problems. For more information on debugging VTAM, see VTAM Diagnosis Guide.

Recreating the Problem

When unexpected results occur on terminals or other SNA devices, you should recreate the problem with
VTAM and VSCS traces on. This helps isolate the failing component. Most hung LU conditions are not GCS
problems; they are probably CP or VSCS problems.

Tracing I/0 is important when trying to recreate an I/O problem. It is helpful to know the state and
configuration of the system before and after I/0O is processed.

When you track I/O for a VTAM application, you should look at the parameter list that is being passed to
GCS in the GENIO macro:

« Set a trace stop at the beginning of the GCS GENIO module (GCTGIM). This address is found in the load
map for GCS.

« When VTAM issues the GENIO macro for I/O processing, the trace will occur.
 Register 1 will point to the parameter list. Ensure that it is a valid parameter list.

Command and Console Support

The GCS VM operator uses the console to communicate with either the GCS supervisor or applications
through commands. The GCS supervisor and the applications can communicate with the operator through
write-to-operator (WTO) and write-to-operator-with-reply (WTOR) instructions.

Command and console support includes commands issued from a terminal by a user and commands
issued through the CMDSI macro. A user can use the CMDSI macro to enter GCS-, CP-, or LOADCMD-
defined commands from within a program running in GCS. For more information on the CMDSI macro, see
z/VM: Group Control System.

LOADCMD Command

The LOADCMD command is included in the command support. LOADCMD lets users define their own
command names for an entry point within a module. The module must reside in a load library that the
user has defined with the GLOBAL command.

When the command defined by LOADCMD is issued, the module containing the entry point gets control.
For more information on LOADCMD, see z/VM: Group Control System.

The LOADCMD command uses the NUCEXT function to determine if a command is already loaded as a
nucleus extension. If the nucleus extension does not exist, NUCEXT is used to establish a nucleus for the
command.

The chain of NUCX blocks are pointed to by SIENUCX located in the SI extension at X'A4'.
The NUCX contains the following important fields:

Displacement
Field Description

Chapter 9. Debugging GCS 149

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Debugging GCS

X'o0'
NUCXPRT points to the next NUCX block
X'o4'
NUCXUWRD is the user fullword
Xx'os'
NUCXNAME names the command
X'10'
NUCXPSW points to the starting PSW for the nucleus extension
X'11'
NUCXKEY is the user's key-hit(8)
X'14'
NUCXENTR points to the entry point address
X'30'
NUCXADDR is the address of the NUCCBLK that corresponds to this entry point
X'34'

NUCXTASK contains the task ID of the establisher-fixed(16)

NUCON Information

NUCON has a command area that contains information about commands that have been issued. This area
contains information such as the command input line, the tokenized parameter list, and the pointers to
the extended argument list.

NUCON contains the following command areas:

Displacement
Field Description

X'2E8'

The command input line
X'388'

The tokenized parameter list
X'5B8'

The address of the command token
X'5BC'

The address of the beginning of the argument string
X'sco’

The address of the end of the argument string
X'5c4’

The address of the SIE state descriptor block

The command input line contains the last command or commands the user entered from the terminal
along with the tokenized parameter list. The tokenized parameter list is built in NUCON when the
command and parameters are scanned and validated. The extended parameter list is also built during
the scanning, and the fields for the extended parameter list in NUCON are filled in. When issuing one
or more commands from the command line, only the command token and parameter list of one of the
commands are included in the extended parameter list.

SIE Information

The SIE state descriptor block contains a commands and console area. This area contains such
information as ECBs, CCWSs, and pointers to the queues for the commands, messages, and replies that
have not yet been processed.

150 z/VM: 7.4 Diagnosis Guide

Debugging GCS

The SIE contains the following command and console areas:
Displacement
Field Description
X'54'
The attention interrupt ECB
X'58'
The I/O complete ECB
X'sC'
The output pending ECB
X'60'
The command ECB
X'64'
FLAGS
IXXX XXXX
Read I/O is in progress
XAxx XxXxXX
Write I/O is in progress
xXAx xxxx
An attention is pending
XXX1 XxXxXX
Output is pending
X'68'
The address of the first CMDBUF on the queue
X'6C'
The address of the last CMDBUF on the queue
X'70'
The address of the first WQE on the queue
X'74'
The address of the last WQE on the queue
X'78'
The address of the first ORE on the queue
X'7c!
The address of the last ORE on the queue
X'so'
The Read/Write CCW
X'ss8'
The No-Op CCW
X'90'
The ORE ID bits
X'9D'
The last assigned ORE ID

Each ECB in the SIE is 4 bytes long. The first byte in the ECB is the most important. If the first bit is set on,
the ECB is waiting. If the second bit is on, the ECB has been posted.

The following queues are maintained by the communications task:

- CMDBUF
« Write queue elements (WQE)
« Operator reply elements (ORE).

Chapter 9. Debugging GCS 151

Debugging GCS

Each of these queues is pointed to from within the SIE and contain elements that have not yet been
processed. As a command, write message, or reply is processed, it is taken from the queue. The first
element on each queue is the next element to be processed. The last element on each queue is the most
recently added element to the queue.

The SIE contains two CCWs. The first CCW is used for READ/WRITE, the second CCW is a no-op. The CCW
contains a command code (CC), a data address, and the length. The data address points to the data to be
read or written. The length of the data is given in the length field.

A format 0 CCW is mapped as shown in Figure 12 on page 152:

Data

cC Address

Length

CC =X'0A" —» READ
CC =X "'09' » WRITE

Figure 12. CCW Mapping

The ORE ID bits in the SIE are used to keep track of which reply numbers are outstanding (00 through 99).
If the bit is on (1), the reply ID has been assigned, but the reply is still outstanding. When the ORE is built
as a result of a WTOR instruction, the ORE ID is assigned from those that are available. When the reply

is processed, the ORE is freed, and the ORE ID is made available again. (The bit associated with the ID is
turned off.)

CMDBUF

The CMDBUF queue contains commands that have not yet been processed. Immediate commands are
processed as soon as they are entered and are not entered into the CMDBUF queue. A CMDBUF element
contains the command input data, the extended parameter list, and the tokenized parameter string.
These fields correspond to fields in NUCON. The last CMDBUF in the queue contains the same information
as in NUCON if it was the last command issued. If an immediate command was the last command issued,
that command's parameter list is found in NUCON.

The CMDBUF element contains the following information:

Displacement
Field Description
Xx'oo'
The next CMDBUF on the queue
Xx'o4'
The length of the command data
X'os'
Command input data
Xx'sc'
The address of the command token
X'90'
The address of the start of the argument string
X'94'
The address of the end of the argument string
X'BO'
The tokenized parameter list

152 z/VM: 7.4 Diagnosis Guide

Debugging GCS

WQE and ORE

The WQE queue consists of messages to the VM operator. A WQE is built when a WTO or WTOR is issued.
When the operator processes the WQE, it is taken from the queue. If a reply is expected (WTOR issued), a
corresponding ORE is found in the ORE queue. The operator's reply is placed in the reply buffer pointed to
by the ORE. If the message did not expect a reply (WTO issued), no corresponding ORE is present.

A WQE contains the following information:

Displacement
Field Description
X'oo’
The address of the next WQE on the chain
X'06'
The length of the message text
X'os'
Message text

An ORE contains the following information:

Displacement
Field Description
X'oo'
The address of the next ORE on chain
X'04'
The reply ID
Xx'os'
The address of the task block that issued the message
x'oc'
The length of the message text
X'10'
The message text
Xx'sc'
The key of the issuer
X'8sD'
The length of the reply
X'90'
The address of the reply buffer
X'94'
The address of the reply ECB

A user can see if a message has not been processed by following the WQE chain, looking for a particular
message. The end of the chain is reached when the next address in the chain is zero. If a WQE containing
the message is not found, the message has been processed by the operator. If the message requested a
reply, the user can follow the ORE chain, looking for the message and a reply. The user may also enter the
QUERY REPLY command, which will return all messages that have outstanding replies.

VSAM

GCS supports a VSAM interface very similar to that supported by CMS. As in CMS, GCS supports an
0S/MVS macro interface and maps these requests to VSE/VSAM. The VSAM operations are performed by
the VSE/VSAM program.

Chapter 9. Debugging GCS 153

Debugging GCS

Data Compression Services

The VSE/VSAM for VM Version 6 Release 1 (program number 5686-081) supports Data Compression
Services to save DASD space in large customer databases. CMS and GCS will also support the VSE/VSAM
for VM Version 6 Release 1 interface for Data Compression Services. When you use AMSERV to create a
VSAM cluster, the COMPRESS parameter of the DEFINE function will allow record data to be compressed
when it is written and will expand data when it is read. This parameter automatically lets VSAM know

if the data is to be converted by VSAM when it is read or written; no application program changes are
necessary.

Application Migration Considerations

An existing application can take advantage of these VSAM Data Compression Services without the
need for program changes. The compression controls are in the VSAM product and are not tied to the
application code. Two things must be done to migrate existing data sets to compressed format:

1. A'VSAM.COMPRESS.CONTROL' KSDS compression control data set must be defined in each catalog
where compressed data will reside.

2. The existing data set CLUSTER must be redefined as COMPRESS format.

Existing data sets can be unloaded temporarily so that the cluster can be redefined as compressed.
The cluster can then be reloaded to create the compressed database which is immediately usable by
application programs.

Data Compression Services will take advantage of the CMPSC hardware compression instruction, if
available, to improve performance. Otherwise, a software simulation of the instruction will be used to
execute the actual data compression.

Some return codes and feedback reason codes for Data Compression Services differ between MVS/VSAM
and VSE/VSAM environments. For more detailed information on these differences, see “OS/VSAM Error
Codes” in z/VM: CMS Application Development Guide for Assembler for OPEN, CLOSE, and I/O Request
error code tables.

GCS users can find error code information in “VSAM Data Management Service Macros” of z/VM: Group
Control System.

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM Version 6 Release 1
Commands, VSE/VSAM Version 6 Release 1 User's Guide and Application Programming, and VSE/ESA
Version 2 Release 1 Messages and Codes.

Major differences between GCS and CMS for VSAM support include:
- AMS is not supported by GCS. Disk initialization, catalog definition, and file definition must be
performed under CMS.

« All required VSE SVC simulation is part of the GCS nucleus. Therefore, there is no need to use a DOS
segment.

« GCS includes basic support for VTAM.
« The SET SYSNAME command can only be used before the VSAM environment is initialized in GCS.

« GCS associates open ACBs with the task that performed the open. When a task completes, all open
ACBs associated with that task are closed.

 Sharing of VSAM data in GCS is governed by VSAM and is the same as sharing VSAM data in a VSE
partition.

« GCS supports Local Shared Resources (LSR) and Deferred Write (DFR) functions to enhance
synchronous VM/VSAM processing.

This section concentrates on those areas in VSAM support that are unique to GCS or have changed from
CMS. You should have some knowledge of how VSAM works in CMS and GCS, and the differences. More
information on GCS support of VSAM is in z/VM: Group Control System. General information on VSE/VSAM
support within VM is in z/VM: CMS Application Development Guide for Assembler.

154 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4

Debugging GCS

NUCON Changes

The GCS NUCON differs from the CMS NUCON in regard to VSAM support. The following is a summary
of the changes in the NUCON for GCS support of VSAM and other information that is still found in the
NUCON.

« The communications vector table (CVT) address is still located at X'10' in the NUCON. Neither the CMS
nor GCS versions of the CVT table support all the fields defined in the MVS/OS environment. Only those
fields used individually by the two VM subsystems are supported. However, the following are the two
major differences between the CMS and GCS versions of the CVT:

— The GCS version initializes its unsupported fields to X'0' values, while CMS initializes unsupported
fields to X'FFFFFFFF' values.

— The GCS version supported fields are a one-for-one match with MVS/0S supported fields as to the
intent of the field definition. CMS supported fields may vary in some cases from the original intent of
the MVS/OS definition.

« The VSE partition communications region (BGCOM) address, which is located at X'4EQ' in the CMS
NUCON, is located at X'14"'in the GCS NUCON.
The following fields in the BGCOM have changed for GCS:
Displacement
Field Description
X'20'
The address of the VSAM anchor block minus 1
X'3B'
The dump option flag, which is always set
X'sc'
The flag for the GETVIS area initialized

The system communications region (SYSCOM) address, which is located at X'4E4' in the CMS NUCON, is at
X'80' in the GCS NUCON.

The following fields in the SYSCOM have changed for GCS:
Displacement

Field Description
X'2F'

The XA hardware flag, which is now set

VAD Information

The VTAM/VSAM data block (VAD) supports VSAM on GCS. This data block resides in the first 64 KB
segment of private storage in the GCS nucleus, the address of which can be found in the GCS nucleus load
map. The VAD contains key addresses and other data relevant to running of VTAM and VSAM in GCS. This
includes the addresses of the VSAM and BAM segments, the addresses of the VTAM OPEN, CLOSE, and
CBMM routines, and pointers to the VSAM work areas chain, open ACBs list, and DOSCB chain.

The VAD contains the following information:

Displacement

Field Description
X'o4'

The address of the first VSAM work area
X'os'

The address of the start of the VSAM segment
X'10'

The address of the start of the BAM segment

Chapter 9. Debugging GCS 155

Debugging GCS

X'18'

The address of the first DOSCB
X'ac'

The addresses of the VTAM routines
X'28'

The address of the VSE transient area
X'30'

The address of the VSE lock table
X'34'

The address of the simulated VSE TCB
X'38'

The address of the VSE ppsave area
X'3C'

The address of the VSE LTA save area
X'40'

The number of DOSCBs in effect
X'ss8'

The address of the list of open ACBs
X'8C'

The length of the open ACBs list
X'90'

The address of VSAM VSRT table

Boundary Box Usage

The boundary box (BBOX), which normally shows the bounds of the partition in VSE, shows the bounds of
a 16 MB virtual machine instead. Thus, all validity checks made by VSE/VSAM will be successful. GCS has
its own address validation scheme, which is called before giving control to GCS/VSAM.

VSAM Anchor Block

In GCS, the anchor block contains the addresses of the VSAM dynamic assign table, VSAM AMCB table,
VSAM OAL (OPEN ACB) table, Data Compression Services root block pointer, Data Compression Services
gate word, and a reserved area for VSAM use. It does not contain the address of modules that are
CDLOADed, and it does not mark the boundary between GETVIS storage and partition storage, as CMS
does. The VSAM anchor block is pointed to by the BGCOM.

VTAM/VSAM Work Areas

A VTAM/VSAM work area (VIPWORK) is established for each GCS task running VTAM/VSAM. The work
areas are chained together with the newest task VIPWORK added to the beginning of the chain.
VIPWORKS are removed from the chain when their related tasks end.

To find the VIPWORK:

« Locate the address of the VAD in the GCS nucleus load map
- Locate the address of the first VIPWORK at VAD + X'04'

« The address of the next VIPWORK is at VIPWORK + X'50'.
The VIPWORK contains the following information:

Displacement
Field Description
X'50'
The address of the next VIPWORK

156 z/VM: 7.4 Diagnosis Guide

Debugging GCS

X'54'

The address of the previous VIPWORK
X'58'

The address of the temporary OPEN/CLOSE ACB list
X'sC'

The size of the temporary OPEN/CLOSE ACB list
X'5E'

The task ID
X'7E'

Flags

Byte

Field Description

IXXX XXXX
PSW condition code =0

XAXX XXXX
PSW condition code =1

XXX XXXX
PSW condition code = 2

X'80’

The save area for the caller's registers
X'BC'

The VIP entry caller return address
X'FO'

The DOS return code to the user

Helpful Hints for VSAM debugging

The following are GCS commands and macros you can use to get information about the state of the
system at the current time.

QUERY SYSNAMES
Displays the names of the standard saved systems or system names established through the SET
SYSNAME command.

DLBL
Without any operands specified, the current file definitions that were defined by the DLBL command
are displayed.

SHOWCB
A macro that returns the fields of a specified control block within VSAM.

TESTCB
A macro that tests the values in the fields of a specified control block within VSAM.
IDUMP

A VSAM IDUMP macro supported by GCS. GCS converts the request to an SDUMP macro for
processing.

Debugging Data Compression Errors

After expanding a string of data, you may notice unexpected characters at the end of the string. To correct
this, you must check the CMPSC_BITNUM bit in the CMPSC_DICTADDR_BYTES field of the CSRYCMPS
area after a call to Data Compression Services. If this bit is on, you must add 1 to the length of the source
area before calling Data Compression Services to expand your data. To test this bit, use a TM instruction.

Some return codes and feedback reason codes for Data Compression Services differ between MVS/VSAM
and VSE/VSAM environments. For more detailed information on these differences, see “OS/VSAM Error

Chapter 9. Debugging GCS 157

Debugging GCS

Codes” in z/VM: CMS Application Development Guide for Assembler for OPEN, CLOSE, and I/O Request
error code tables.

GCS users can find error code information in the “VSAM Data Management Service Macros” section of the
z/VM: Group Control System.

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM Version 6 Release 1
Commands, VSE/VSAM Version 6 Release 1 User's Guide and Application Programming, and VSE/ESA
Version 2 Release 1 Messages and Codes.

An Example of Control and Data Flow in GCS

The following is an example of the flow of a VTAM command that is entered by an application program.
The diagram, shown in Figure 13 on page 158, describes the configuration of a sample GCS group which
contains five virtual machines:

« VTAM

« RSCS

« NetView

« An application (APPL)
The recovery machine.

Subsystem
(VTAM)

Read/Write Storage

GCS Supervisor

=Er-H<
wona
sm—<-Amz
ruvu»
<am<ooOomzm

CP

Figure 13. Sample GCS Group

A problem state application (APPL), running in its own virtual machine, issues the VTAM SEND macro. The
VTAM SEND macro branches into an entry point in the VTAM shared segment. This entry point is filled in
by VTAM when the application opened an ACB. The VTAM code, residing in the shared segment, issues

the GCS AUTHCALL macro to enter another VTAM entry point in supervisor state. Now that the code is
running in supervisor state, VTAM moves the data into common storage and issues a GCS SCHEDEX macro
to signal the VTAM virtual machine in the group. The SCHEDEX function uses the CP signal system service
to signal the VTAM virtual machine.

When CP dispatches the VTAM virtual machine, the GCS IUCV interrupt handler receives control to
process the interrupt from the signal system service. The GCS IUCV interrupt handler passes control to a
GCS module which schedules an asynchronous exit to run on a VTAM task, which may directly access the
data in common storage. When that task is dispatched by the GCS dispatcher, it issues a GENIO STARTR
to start the send on the virtual VTAM device. This must be done from the VTAM virtual machine because
all VTAM GENIO devices are owned by the VTAM virtual machine. GENIO later receives a device end
condition and schedules an I/0 exit on the VTAM virtual machine, indicating the success of the operation.

Assuming the operation was successful and a response is required, the VTAM virtual machine receives
an attention interrupt from the GENIO device. The VTAM virtual machine issues a GCS SCHEDEX to notify

158 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Debugging GCS

the application that issued the SEND of the response. SCHEDEX again uses the signal system service to
schedule an exit (provided by VTAM) on the applications task that issued the SEND. The GCS Dispatcher
then runs the VTAM exit on the applications task, and the exit informs the application through an interface
provided by VTAM, completing the cycle for that SNA SEND.

Chapter 9. Debugging GCS 159

Debugging GCS

160 z/VM: 7.4 Diagnosis Guide

Debugging TSAF

Chapter 10. Debugging TSAF

The three ways that you can collect error information for problem diagnosis within Transparent Services
Access Facility (TSAF) are described in this chapter. They are:

« Using console logs, described in “Using the Console Log” on page 161
« Using dumps, described in “Using TSAF Dumps to Diagnose Problems” on page 162
« Using system trace data, described in “Using System Trace Data to Diagnose Problems” on page 164.

In addition, “Interactive Service Queries” on page 166 describes how the TSAF QUERY command can also
provide you with problem diagnosis information.

Note: The TSAF operator does not necessarily diagnose problems, especially from the TSAF virtual
machine. Dumps and system trace data are usually used by a system programmer or whoever is
responsible for diagnosing system problems.

Summary of Steps to Follow When a TSAF Abend Occurs

When a TSAF abend occurs, you should do the following;:

1. Collect information about the error.

 Save the console log or spooled console output from the TSAF virtual machine
« Save and process any dumps that TSAF produces

When an abend occurs in TSAF, either because TSAF issued an abend or because a TSAF or CMS
operation caused a program exception, TSAF produces a dump through the CP VMDUMP command
described in the z/VM: CP Commands and Utilities Reference. CP sends the dump to TSAF's virtual
reader.

« Save any system TRFILE that contains TSAF data.
2. Collect other types of information about system status, such as:
- Status of real and virtual devices that TSAF is using

« System load at the time of the error on any systems using TSAF and the status of each system (for
example, did another system abend?)

« Types of applications that are using TSAF at the time and any information about them
« Physical connection configuration of the systems in use.
3. Recover from the abend to continue processing.

After TSAF creates a dump, it issues the LOAD PSW (LPSW) instruction. If TSAF is not invoked from the
PROFILE EXEC, you must restart the TSAF virtual machine.

z/VM: Other Components Messages and Codes lists the TSAF abend codes and their causes.

Using the Console Log

TSAF provides informational messages, as well as error messages, that may help you with problem
determination. To keep track of the console messages, enter:

spool console start to userid

where userid can be the user ID of the TSAF virtual machine or another virtual machine user ID to whom
you want TSAF to send the console log. You may want to add this to TSAF's PROFILE EXEC so that a
console log is always created.

To close the console log, enter:

© Copyright IBM Corp. 1991, 2025 161

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=hcpw1_v7r4

Debugging TSAF

spool console close

The log of messages received is sent to the specified user ID. See z/VM: CP Commands and Utilities
Reference for more information on the SPOOL command.

TSAF provides additional information at the time of an abend to help you diagnose the problem. The
console log contains information about the abend, such as:

- Abend code
« Program old PSW
« Contents of the general purpose registers.

TSAF also attempts to determine the displacement of the module in which the abend occurred and the
displacement of the calling module.

Figure 14 on page 162 shows some of the messages that TSAF may issue in response to an abend
condition:

ATSCAC999T TSAF system error

ATSCABO17I Abend code ATS999 at 022730

ATSCABO18I Program old PSW is FFEQO2FF 40022730

GPRO-7 00022FFC OOOOO3E7 00022FDA 00052BCO 00208080 00020C58 0O33E811 000001
GPR8-F 7F3B78AF 603C0000 00020B64 00022D6F 50021D70 00022B48 40022718 00023FBO
ATSCABO19I Abend modifier is ATSCAC

ATSCABO21I Failure at offset OAG6 in module ATSCAC dated 86.020

ATSCABO22I Called from offset 04B4 in module ATSSCN dated 86.078

ATSCABO23I VMDUMP ATSCAB*ATSCABLl 05/28/86 16:02:06 taken

Figure 14. Sample TSAF Console Log

Using TSAF Dumps to Diagnose Problems

You can use the Dump Viewing Facility to collect and diagnose problem data for the TSAF virtual machine.
The console listing, as described in “Using the Console Log” on page 161, may help you diagnose
problems without using dumps.

These steps describe how to use dumps to diagnose TSAF problems:

1. Create a TSAF Dump Viewing Facility map, if it does not already exist
2. Create the TSAF dump

3. Process it

4. Diagnose it

5. Display it.

The sections that follow describe how to use the Dump Viewing Facility to perform this process.

Creating the TSAF Map

Note: You only need to do this step when a new CMS nucleus or TSAF module is built.

When a new CMS nucleus or TSAF module is built, enter the Dump Viewing Facility MAP command to
compress the TSAF load map:

map cmsnuc map fm tsaf map fim (tsaf

The default names for the load maps are:

« TSAF MAP for the map source file
« CMSNUC MAP for the input CMS nucleus load map

162 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging TSAF

- TSAFDVF MAP for the compressed map file, which you create using the MAP command.

Note: If you do not have the compressed map file, the power of the Dump Viewing Facility, which allows
for diagnosis with dumps, is greatly reduced. For instance, without the map you cannot locate the TSAF
modules by name.

For more information, see z/VM: Dump Viewing Facility.

Creating a TSAF Dump

The TSAF virtual machine creates its own dumps. The dump goes to the reader of the TSAF virtual
machine. Because the TSAF virtual machine is not set up to process dumps, you need to transfer the
dump file to the appropriate virtual machine.

If a dump of the TSAF virtual machine is necessary and the TSAF virtual machine did not abend, you can
enter the VMDUMP command from the TSAF virtual machine console.

f#tcp vmdump 0-end system format tsaf

This CP VMDUMP command will dump the issuer's virtual storage contents from address 0O to the last
address of storage and send it to the user ID designated as the dump receiver. This user ID is specified
by the DUMP operand of the SYSTEM_USERIDS statement in the system configuration file. TSAF is the
format type of the dump. The z/VM: CP Commands and Utilities Reference has more information about the
VMDUMP command.

Processing a TSAF Dump

After the TSAF virtual machine creates a dump, load the dump onto disk. To load the dump, enter the
following command:

dumpload

After you have loaded the dump onto a disk, append the map to the end of the dump by using the Dump
Viewing Facility ADDMAP command:

addmap tsafdvf map a dumpname *

See z/VM: Dump Viewing Facility for more information on the ADDMAP command, and see z/VM: CP
Commands and Utilities Reference for more information about the DUMPLOAD utility.

Diagnosing a TSAF Dump

When you process a dump, a symptom record is generated. The symptom record helps you find out why
TSAF created the dump. The symptom record includes:

« Information about the system environment at the time of the dump
- The symptom string that contains the following component-related symptoms:

The error code

The ID of the failing component
The ID of the failing module
The register and PSW contents.

When you use the Dump Viewing Facility DUMPSCAN command, the TSAF symptom record extraction
routine updates the symptom record. You can use a version of the TRACE subcommand, provided
specifically for TSAF, to format TSAF trace entries.

Note: TRACE is normally available only for CP dumps.

Chapter 10. Debugging TSAF 163

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging TSAF

Displaying the TSAF Dump Information

The FDISPLAY subcommand of the DUMPSCAN command displays data control blocks, tables, and arrays
important to the TSAF virtual machine. You can get information about the following by invoking different
FDISPLAY parameters:

« Path array (PATH)

« Service table (SERVICE)

« Collection control block (COLLECT)

» Resource table (RESOURCE)

» Neighbor table (NEIGHBOR)

 Routing array (ROUTING)

« Link definition array (LINKDEF)

« Link control blocks (LINKCTL with types APPC, BSC, CTCA, ELAN, TLAN).

See z/VM: Dump Viewing Facility for a complete listing of FDISPLAY parameters.

Formatting and Displaying Trace Records in a Dump

TSAF maintains an internal trace table within the TSAF virtual machine. You can use the TRACE
subcommand of DUMPSCAN to format and display trace records from the TSAF internal trace table. By
using the HEX or FORMAT parameters, you can display the trace table entries in a hexadecimal display or
a formatted display.

You can scroll back and forth through the formatted or hexadecimal output by using the DUMPSCAN
subcommands FORWARD and BACKWARD.

Printing a TSAF Dump

If you want a listing of the dump, you can print one. The Dump Viewing Facility PRTDUMP command prints
the dump and symptom record that DUMPLOAD processed. The output you get consists of the following:

« A symptom record

« A dump in hexadecimal (no special formatting)
» Appended load maps

« Contents of the registers and the PSW.

See z/VM: Dump Viewing Facility for more information on the PRTDUMP command.

Because of the recommended size of the TSAF virtual machine, the dump could be quite large.

Using System Trace Data to Diaghose Problems

While maintaining an internal trace table, the TSAF virtual machine can write trace entries to the system
TRFILE. You can use the Dump Viewing Facility to format and display these trace table entries.

Setting External Tracing

The TRSAVE command specifies where you want to save the data. The TRSOURCE command controls

the collection of the TSAF information. This information helps with problem determination. The TSAF SET
ETRACE command lets you enable or disable external tracing for the TSAF virtual machine. You can trace

data on specific links to the TSAF virtual machine. You can also trace data for other virtual machines (user
IDs) that have established an APPC/VM path through the TSAF virtual machine.

To be sure that all trace data is recorded, enter the TRSOURCE command before issuing the SET ETRACE
command. The users who enter the TRSOURCE command must have a Class C privilege user ID. In many
locations, the TSAF virtual machine does not have the privilege class to issue the TRSOURCE command.

164 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4

Debugging TSAF

For this reason, you may need to enter the command from another virtual machine that has authority to
doso.”

To activate TRSOURCE for TSAF records only and to pass blocks of trace data to CP, enter:

trsource id tsafid type gt block for user userid
trsave for id tsafid
trsource enable id tsafid

tsafid is the trace identifier, and userid is the TSAF virtual machine user ID.
To activate TRSOURCE for TSAF records only and to pass individual records to CP, enter:

trsource id tsafid type gt event for user userid
trsave for id tsafid
trsource enable id tsafid

After you have entered the TRSOURCE command, you can begin to collect TSAF trace records. Enter the
following from the TSAF virtual machine console:

set etrace on

When you set external tracing on, certain internal TSAF trace records are written externally to a system
trace file (TRFILE). A complete description of the SET ETRACE command is in z/VM: Connectivity.

To end TSAF trace record generation, enter:
set etrace off

To end TRSOURCE processing, enter:
trsource disable id tsafid

When you enter this command, the output data is stored as a system trace file (TRFILE).

To delete the trace ID, enter:

trsource drop id tsafid

For more specific information about the TRSOURCE and TRSAVE commands, see z/VM: CP Commands and
Utilities Reference.

Viewing TSAF Trace Entries

You can use the CP TRACERED utility to format and print or view the trace entries. The DUMPSCAN
command displays the external trace entries. In order to use the TRACE subcommand, the TSAF trace
formatting routines must be on an accessed disk.

For information about the TRACERED utility, see z/VM: CP Commands and Utilities Reference.

For information about the DUMPSCAN command and the TRACE subcommand, see z/VM: Dump Viewing
Facility.

Trace Table Entry Format for TSAF

The trace table entries vary in length and follow the format described below. The length fields are 2 bytes
long and may be any number from 0 to 32767. The length and data fields are optional data fields.

A trace table entry looks like the following;:

length(1) data(1) length(n) data(n) Trailer record

The trailer record format looks like the following:

7 Privilege class is defined in the directory entry for the user ID.

Chapter 10. Debugging TSAF 165

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4

Debugging TSAF

Clock (STCK format) Characters 4 through 6 of | Trace ID code |Data area X'EOQE'
module name length

The lengths associated with these fields are:

Clock (STCK format)—8 bytes
Characters 4 through 6 of module name—3 bytes
Trace ID code—2 bytes

Data area length—2 bytes
‘EOOE’x—2 bytes.

Note: Module entries and module exits do not have length fields associated with each data field. Module
entries and exits do, however, have the data area length in the trailer record.

Module entry trace records appear only in the internal trace table. TSAF identifies these records by setting
bit 15 of the trace identifier code to 1. The data for a module entry is in the parameter list used during the
module call.

Module exit trace records also appear only in the internal trace table. TSAF identifies these records by
setting bit 14 of the trace identifier code to 1. The data for a module exit is in registers 14 and 15 at the
time of the module exit.

Interactive Service Queries

The TSAF QUERY command, issued from the TSAF virtual machine, can give you more information to help
you diagnose problems. The TSAF QUERY command gives you data about the TSAF configuration when
the TSAF virtual machine is running:

« QUERY COLLECT displays the processor names that are currently in the TSAF collection.
- QUERY ETRACE displays the current setting of the external tracing.
« QUERY GATEWAY displays the current list of gateways defined in the TSAF collection.

« QUERY LINK displays information about the links that TSAF currently has including the neighboring
processor name that the link is connected to.

« QUERY RESOURCE displays the current list of global resources in the collection.
* QUERY ROUTE displays the route information at the node where the command was issued.

« QUERY STATUS displays the current information about the correlation of other TSAF virtual machines in
the collection.

See z/VM: Connectivity for more specific information about the TSAF QUERY command.

166 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4

Debugging AVS

Chapter 11. Debugging AVS

Effective problem diagnosis for APPC/VM VTAM Support (AVS) is a process consisting of:
 Analyzing the dump

« Analyzing system trace data

 Using the AVS QUERY command

 Receiving an AVS abend response.

Each of the above steps will be addressed individually.

Note: The AVS operator does not always diagnose problems. In fact, dumps and system trace data are
often handled by a system programmer or other person specifically responsible for diagnosing system
problems.

Using AVS Dumps to Diagnhose Problems

The Dump Viewing Facility analyzes dumps and tracks problems in z/VM. You can use the Dump Viewing
Facility to collect and diagnose problem data for the AVS virtual machine. Because AVS runs in a GCS
group, you can use all GCS and AVS subcommands of DUMPSCAN.

The steps used to diagnose problems using dumps are:

1. Obtain a GCS load map, if one doesn't already exist
2. Obtain the AVS dump

3. Process the AVS dump

4. Use DUMPSCAN to diagnose the AVS dump.

Obtaining the GCS Load Map

Note: This step is not necessary every time you create a dump; however, it is required when a new GCS
nucleus is built.

When you build a new GCS nucleus, enter the MAP command of the Dump Viewing Facility to compress
the GCS load map into a format that the Dump Viewing Facility can use:

map gcsnuc map fm (gcs

The default map file is GCSDVF MAP. See z/VM: Dump Viewing Facility for more information on the MAP
command.

If you do not have the GCS load map, the GCS subcommands for the DUMPSCAN command are affected.
The AVS subcommands for the DUMPSCAN command are unaffected.

Creating an AVS Dump

When a problem occurs because of an abend, or when an abnormal condition is detected, AVS produces
one of the following:

« A dump when AVS abends
« A problem dump when the system detects an error but does not cause AVS to abend.

The problem dump takes a snapshot of the system to try to capture the problem. An informational
message appearing at the operator console corresponds to a message number generated with the
problem dump report. DIAGNOSE code X'94' (VMDUMP) is used to take the problem dump.

The maximum number of AVS problem dumps that can be taken during each AVS session is determined
by the value set for MAXPROBD in the AGWTUN ASSEMBLE file. The default is 20. This, and other

© Copyright IBM Corp. 1991, 2025 167

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4

Debugging AVS

IBM-supplied default values contained in AGWTUN ASSEMBLE can be changed by a system programmer.
For information about modifying this file, see z/VM: Connectivity.

If you want to create a dump for the AVS machine, enter:

gdump O0-end format avs dss

This Group Control System GDUMP command will dump the issuer's virtual storage contents, from
address 0 to the last address of virtual storage, and send it to the issuer's virtual reader. AVS is the format
type of the dump. The dump will also include any discontiguous saved segments that the virtual machine
may be using. z/VM: Group Control System contains more information about the GDUMP command.

Processing an AVS Dump
To load any AVS virtual machine dump directly onto a disk, enter:

dumpload

After you have loaded the dump onto the disk, append the map to the end of the dump by using the Dump
Viewing Facility ADDMAP command:

addmap gcsdvf map a dumpname *

See z/VM: Dump Viewing Facility for more information on the ADDMAP command, and see z/VM: CP
Commands and Utilities Reference for more information about the DUMPLOAD utility.

Diagnosing an AVS Dump

When you process a dump, a symptom record is generated. The symptom record helps you discover why
AVS created the dump. The symptom record includes:

« Information about the system environment at the time of the dump
« The symptom string that contains the following component-related symptoms:

The error code

The ID of the failing component
The ID of the failing module
Register and PSW contents.

When you use the Dump Viewing Facility DUMPSCAN command, the AVS symptom record extraction
routine updates the symptom record. You can use a version of the TRACE subcommand, provided
specifically for AVS, to format AVS trace entries.

Displaying the AVS Dump Information with DUMPSCAN

The GDISPLAY subcommand of DUMPSCAN displays data control blocks and addresses important to
the AVS virtual machine. You can get information about the following by invoking different GDISPLAY
parameters:

« Conversation block (CVB)

« Global control block (GCB)

« Gateway block (GWB)

« Gateway parameters (GWBPTRS)
« Module names (MAPA)

« Module addresses (MAPN)

« Remote LU block (RLU)

« Subtask control block (SCB)

« Scheduling global block (SGB).

168 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging AVS

Because AVS runs in a GCS group, you can use other DUMPSCAN subcommands to further examine these
parts of the AVS dump:

Iucv
All entries in the IUCV path table.

TACTIVE
The task's active program list.

TLOADL
The task's load list.

TSAB
The subpool map and chain header of a task.

VMLOADL
Information about all programs loaded in this virtual machine.

See z/VM: Dump Viewing Facility for more information.

Formatting and Displaying Trace Records in a Dump

AVS maintains an internal trace table within the AVS virtual machine. You can use the TRACE
subcommand of DUMPSCAN to format and display trace records from the AVS internal trace table. By
using the HEX or FORMAT parameters, you can display the trace table entries in a hexadecimal display or
a formatted display. See z/VM: Dump Viewing Facility for examples of using the TRACE subcommand and
the sample outputs.

You can scroll back and forth through the formatted or hexadecimal output by using the DUMPSCAN
subcommands FORWARD and BACKWARD.

Using System Trace Data to Diagnose Problems

While maintaining an internal trace table, the AVS virtual machine can also write trace entries to the
system trace file (TRFILE). You can use the Dump Viewing Facility to format and display these trace table
entries.

Setting Internal Tracing

When the AGW START command is entered, internal tracing is set as if you entered an AGW SET ITRACE
ALL ON command. Internal tracing information is written to an internal wraparound table in the AVS
virtual machine.

See the description of the AGW SET ITRACE command in z/VM: Connectivity for information about tracing
events for a gateway or for stopping and restarting tracing.

Setting External Tracing

The TRSAVE command specifies where you want to save trace information. The TRSOURCE command
controls the collection of the data. This information helps with problem determination. The AGW SET
ETRACE command lets you enable or disable external tracing for the AVS virtual machine. External tracing
will not be in effect unless you also have internal tracing set on. The type of external tracing you receive
will be the same as the type of internal tracing you requested. To be sure that all trace data is recorded,
enter the TRSOURCE command before issuing the AGW SET ETRACE command. The users who enter the
TRSOURCE command must have a class C privilege user ID. Because the AVS virtual machine is not set up
to diagnose problems, only one authorized user at a time may enter the TRSOURCE command. 8

To activate TRSOURCE for AVS records only and to pass blocks of trace data to CP, enter:

trsource id avsid type gt block for user userid
trsource enable id avsid

8 The privilege class is defined in the directory entry for the user ID.

Chapter 11. Debugging AVS 169

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4

Debugging AVS

avsid is the trace identifier, and userid is the AVS virtual machine user ID.

To activate TRSOURCE for AVS records only and to pass individual records to CP, enter:

trsource id avsid type gt event for user userid
trsource enable id avsid

After you have entered the TRSOURCE command, you can begin to collect AVS trace records. Enter the
following from the AVS virtual machine:

etrace gtrace
agw set etrace on

When you have internal and external tracing set on, AVS trace records are written externally to a system
trace file. The ETRACE command is described in z/VM: Group Control System. A complete description of
the AVS SET ETRACE command is in z/VM: Connectivity.

To end TRSOURCE processing, enter:

trsource disable id avsid

When you enter this command, the output data is stored as a system trace file (TRFILE). For more specific
information about the TRSOURCE command, see z/VM: CP Commands and Utilities Reference.

Viewing AVS Trace Entries

You can use the CP TRACERED utility to format and print or view the trace entries. The DUMPSCAN
command also displays the external trace entries. In order to use the TRACE subcommand, the AVS trace
formatting routines must be on an accessed disk.

For information about the DUMPSCAN command and the TRACE subcommand, see z/VM: Dump Viewing
Facility.

For information about the TRACERED utility, see z/VM: CP Commands and Utilities Reference.

Trace Table Entry Format for AVS

AVS trace table entries vary in length and follow the format described below. The length fields are 1 byte
long and may contain any number from 0 to 236. An AVS trace entry cannot exceed 255 bytes. The length
and data fields are optional. A trace entry table looks like the following:

length(1) data(1) length(n) data(n) Trailer record

The trailer record format looks like the following:

Clock (STCK format) Characters 4 through 6 of | Trace ID code |Data area X'EOOE'
module name length

The lengths associated with these fields are:

The clock (STCK format)—8 bytes
Characters 4 through 6 of the module name—3 bytes

The trace ID code—2 bytes

The data area length—2 bytes
X'EOOE'—2 bytes.

Getting Information about Trace Entries
You can use the CP QUERY command to obtain information about traces and trace entries. For example,

« QUERY TRFILES displays detailed information about one or more system trace files and counts the
number of files that match your specified criteria.

170 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Debugging AVS

« QUERY TRSAVE displays the destination of the traces.
« QUERY TRSOURCE displays the status of traces defined by TRSOURCE.

For information about the QUERY command, see z/VM: CP Commands and Utilities Reference.

Interactive Service Queries

The AVS QUERY command provides information about the operating AVS virtual machine.

« AGW QUERY ALL displays all of the current information about various settings and conditions of AVS.

AGW QUERY CNOS displays the contention winner/contention loser information for the gateways.

AGW QUERY CONYV displays information about the current conversations.

AGW QUERY ETRACE displays the current setting of the external tracing.

AGW QUERY GATEWAY displays the status of all gateways that are currently in the collection.
AGW QUERY ITRACE displays the current setting of the internal tracing.

AGW QUERY USERID displays the remote LU, remote user ID, and local user ID.

See z/VM: Connectivity for more information about this command.

Summary of Steps to Follow When an AVS Abend Occurs

When an AVS abend occurs, follow these procedures:
« Collect information about the error.

— Print the console log for the time that the error occurred. Save the console sheet or spooled console
output from the AVS virtual machine.

— Save and process any dumps that AVS produces.

— Enter the MAP command to convert the GCS load map to a format that allows the Dump Viewing
Facility to append the GCS load map to the dump.

— Use the DUMPLOAD utility to load the dump from a reader spool file into a CMS dump file.
— Enter the ADDMAP command to append the load map to the dump.

— Enter the DUMPSCAN command with the necessary subcommands to look at the contents of the
dump.

— Save any trace files that contains AVS data (described in “Using System Trace Data to Diagnose
Problems” on page 169).

« Collect system status information. The following information can help better determine problems:

— The system load at the time of failure on any systems using AVS and the status of each system (for
example, did another system abend?).

— The types of applications that are using AVS at the time, and any information about them.
— The physical connection configuration of the systems in use.
« Recover from the abend to continue processing.
— When an abend occurs in AVS, either because AVS issued an ABEND or because an AVS or GCS

operation caused a program exception, AVS produces a dump by way of DIAGNOSE code X'94'
(described in z/VM: CP Programming Services).

z/VM: Other Components Messages and Codes lists the various AVS abend codes and their causes.

Chapter 11. Debugging AVS 171

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=hcpw1_v7r4

Debugging AVS

172 z/VM: 7.4 Diagnosis Guide

Problem-Specific Checklists

Appendix A. Problem-Specific Checklists

After you determine the general nature of your problem, find the checklist associated with that problem.
Then, collect the information stated in the checklist before you call IBM.

CP Abend Checklist

Collect the following information before calling IBM:

. The last action performed by CP before the abend occurred
. Any output generated that demonstrates the problem

. Any messages and return codes received

. A CP restart or snapdump

. ACP abend dump

. A CP nucleus loadmap

N o o A WON P

. If possible, the program label or the address at which the abend occurred.

CMS Abend Checklist

Collect the following information before calling IBM:

. The last action performed by CMS before the abend occurred

. Any output generated that demonstrates the problem

. Any messages and return codes received

. At a minimum, the contents of the PSW and the general and control registers
. A dump of the virtual machine containing CMS

. A CMS nucleus loadmap

N o o WON R

. If possible, the program label or the address at which the abend occurred.

GCS Abend Checklist

Collect the following information before calling IBM:

1. The identity of the virtual machine in the GCS virtual machine group that experienced the abend
2. A dump of the virtual machine that terminated abnormally

3. Any output generated that demonstrates the problem

4. Any messages and return codes received

5. A GCS nucleus loadmap

6. If possible, the program label or the address at which the abend occurred.

RSCS Abend Checklist

Collect the following information before calling IBM:

1. The last action performed before the abend in RSCS occurred
2. Any messages and return codes received

3. The RSCS console log

4. An RSCS abend dump

5. The RSCS nucleus loadmap (RSCS Version 1)

© Copyright IBM Corp. 1991, 2025 173

Problem-Specific Checklists

6.
7.

The RSCS link edit map (RSCS Version 2 or higher)
If possible, the program label or the address at which the abend occurred.

CP Wait State Checklist

Col
1.

2
3.
4

N O o1

lect the following information before calling IBM:

The last action performed by CP before the wait state occurred

. A CP restart or standalone dump

Any output generated that demonstrates the problem

. The contents of the PSW. (Take particular note of the last word of the PSW. A CP wait state code might

be stored there.)

. The contents of the general registers
. A copy of the CP internal trace table. (This accompanies the dump.)
. If available, the wait state code.

Virtual Machine Wait State Checklist

Collect the following information before calling IBM:

1. The last action performed by the virtual machine in question

o 0o A WN

0

RSCS

. Any output generated that demonstrates the problem

. Any messages and return codes received

. The contents of the PSW

. The contents of the general and control registers

. The contents of the CSW. (Take particular note of CSW bits 32 through 47 where input/output device

conditions might be noted.)

. A dump of the virtual machine in question
. If available, the wait state code.

Wait State Checklist

Collect the following information before calling IBM:

1.

o gk W

The last action performed by the virtual machine in question
. Any output generated that demonstrates the problem

. Any messages and return codes received

. The contents of the PSW

. The contents of the general and control registers

. The contents of the CSW. (Take particular note of CSW bits 32 through 47 where input/output device
conditions might be noted.)

7. A dump of the RSCS virtual machine

8.
9.
10.
11.

The RSCS console log

The RSCS nucleus loadmap (RSCS Version 1)

The RSCS link edit map (RSCS Version 2 or higher)
If available, the wait state code.

Application Program checklist for Unexpected Output

Collect the following information before calling IBM:

174 z/VM: 7.4 Diagnosis Guide

Problem-Specific Checklists

1. Documentation associated with the application program
2. Input to the program
3. The job control statements (JCL) included with the program.

Checklists for Performance Problems

Collect the following information before calling IBM.

An Infinite Loop in CP

Collect the following information before calling IBM:

. Any console or printed output that demonstrate the problem

. ACP restart dump

. The contents of the PSW

. The contents of the general and control registers

. The contents of storage locations from hexadecimal addresses 00 through 100
. If possible, the instructions (and their addresses) that are involved in the loop

N o oA WN R

. A CP nucleus loadmap—particularly the names of the modules involved in the loop.

An Infinite Loop in a Virtual Machine
Collect the following information before calling IBM:

1. Any output generated that demonstrates the problem

2. A dump of the virtual machine in question

3. ACMS nucleus loadmap

4. If possible, the instructions (and their addresses) that are involved in the loop.

An Infinite Loop in RSCS

Collect the following information before calling IBM:

. Any output generated that demonstrates the problem
. The RSCS nucleus loadmap (RSCS Version 1)

. The RSCS link edit map (RSCS Version 2 or higher)

. The RSCS console log

. A trace of activity in the RSCS virtual machine

. If possible, the name of the RSCS module involved

N o oA WN R

. If possible and if applicable, the name of the RSCS link or line driver involved.

Hardware Failure
Collect the following information before calling IBM:

1. Any messages and return codes received
2. The hardware error record.

Inadequate System Parameters
Collect the following information before calling IBM:

1. Normal system parameter readings
2. Present system parameter readings

Appendix A. Problem-Specific Checklists 175

Problem-Specific Checklists

3. The configuration of your system's input/output devices.

176 z/VM: 7.4 Diagnosis Guide

GCS Control Blocks

Appendix B. GCS Control Blocks

This appendix describes the layouts of some GCS control blocks and important fields that help you
identify problems in a VM/SNA environment. The information that is provided is enough to allow you to
display the GCS areas that may be relevant when determining the source of a problem.

This appendix describes the format and layout of:

NUCON

The GCS nucleus constant area (Table 5 on page 177)
SIE

The NUCON extension (Table 6 on page 182)
TBK

The task block (Table 7 on page 186)
STBLK

The state block (Table 8 on page 188)
SMAB

The storage management block (Table 9 on page 192)
ANCH

The storage anchor block (Table 10 on page 194)
EXTWA

The external interrupt handler work area (Table 11 on page 195)
SVCWA

The SVC interrupt handler work area (Table 12 on page 195)
PGMWA

The program interrupt work area. (Table 13 on page 196)
VMCB

The virtual machine control block (Table 14 on page 196)

In all the descriptions, the field lengths are shown in hexadecimal.

NUCON — GCS Nucleus Constant Area

Table 5. Contents of the GCS Nucleus Constant Area (NUCON)
HEX
DISP NAME LENGTH DESCRIPTION
000 NUCON 1880 The nucleus constant area
000 NUCIPPSW 8 The initial program loading PSW
000 NUCRNPSW 8 The RESTART new PSW
008 NUCROPSW 8 The RESTART old PSW
010 NUCADCVT 4 The address of the OS CVT
014 NUCBGCOM 4 The address of BGCOM
018 NUCEOPSW 8 The external old PSW
020 NUCSOPSW 8 The SVC old PSW
022 NUCSOBT2 1 Byte 2 of PSW
NUCSOAS1 X'80' The first address space control bit

© Copyright IBM Corp. 1991, 2025

177

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

gIE;(P NAME LENGTH DESCRIPTION
NUCSOAS2 X'40' The second address space control bit
024 NUCSOADR 4 The XA SVC instruction address
NUCSOA31 X'80" The AMODE SVC old PSW
028 NUCPOPSW 8 The program-check old PSW
030 NUCMOPSW 8 The machine-check old PSW
038 NUCIOPSW 8 The I/0 old PSW
04C NUCACVT2 4 The CVT address for dump routines
054 NUCTRACE 4 The address of the table trace header
058 NUCENPSW 8 The external new PSW
060 NUCSNPSW 8 The SVC new PSW
068 NUCPNPSW 8 The program-check new PSW
070 NUCMNPSW 8 The machine-check new PSW
078 NUCINPSW 8 The I/O new PSW
080 NUCSYSCM 4 Used by VSAM
084 2 Reserved—set to zero
086 NUCEICOD 2 The external interruption code
088 1 Reserved—set to zero
089 NUCSVILC 1 The SVC ILC (XA and XC virtual machine)
08A NUCSVCN 2 The SVC interruption code (XA or XC virtual machine
08C 1 Reserved—set to zero
08D NUCPIILC 1 The program-check ILC
NUCPILC1 X'04' The program instruction length bit 1
NUCPILC2 X'02' The program instruction length bit 2
O8E NUCPICOD 2 The program interruption code
090 NUCTE 4 The page fault address
090 NUCTEA 1 Reserved—set to zero
NUCTEAC X'80" The page fault is complete
091 NUCTEAA 3 The translation exception address
094 1 Reserved—set to zero
095 NUCMCNUM 1 The Monitor CALL class number
096 NUCPERCD 1 The program event recorder code
097 1 Reserved—set to zero
098 NUCPER 1 Reserved—set to zero
099 NUCPERAD 3 The program event recorder address
09C NUCEID 4 The MONITOR-CALL EID

178 z/VM: 7.4 Diagnosis Guide

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

gIE;(P NAME LENGTH DESCRIPTION
09D NUCMTRCD 3 The MONITOR-CALL code
0AO NUCEXAID 1 The exception access ID
0A8 NUCMCKLA 8 The machine-check LOGOUT area
0A8 NUCTXCP 4 The exception alet
0A8 NUCCHNID 4 The channel ID
0AC NUCIOEL 1 Reserved for future use
AD NUCIOELA 3 The I/O extended LOGOUT pointer
0BO NUCLCL 4 The limited channel LOGOUT (ECSW)
0B8 NUCIOSID 4 The SID causing I/0O interrupt
0B8 NUCIOSTY 2 The SID type
OBA NUCIOAA Z The I/O device causing interrupt
The I/0O subchannel causing INTR
0BC NUCINTP 4 The interrupt parameter
0Co LOWSAVE 96 The save area for the first 96 bytes of storage
OES8 NUCMCIC 8 The machine check interrupt code
OE8 NUCMCICO 1 MCIC byte O
0E9 NUCMCIC1 1 MCIC byte 1
NUCMCCP X'40' X1XX = channel report pending
OEA NUCMCIC2 1 MCIC byte 2
OEB NUCMCIC3 1 MCIC byte 3
OEC NUCMCIC4 1 MCIC byte 4
OED NUCMCIC5 1 MCIC byte 5
OF8 NUCFSA 4 The failing storage address
100 NUCASIT 8 The failing storage asit
120 NUCACRLG 64 The access register save area
160 NUCFPRLG 32 The floating point register save area
180 NUCGPRLG 64 The general purpose register save area
1CO0 NUCECRLG 64 The extended control register save area
200 NUCVTAM 4 Reserved for VTAM
204 NUCVMID 8 The virtual machine user ID
20C NUCLVL 4 The release/service level
20D NUCRLVL 1 The release level
20E NUCSLVL 2 The service level
210 NUCIDS 4 The signal ID/task ID
210 NUCSIGID 2 This virtual machine signal ID

Appendix B. GCS Control Blocks 179

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

gIE;(P NAME LENGTH DESCRIPTION
212 NUCATID 2 The active task ID
214 NUCATB 4 The address of the active task
218 NUCPOST 4 The branch entry address for the post
21C NUCCTB 4 The common trace block pointer
220 NUCNPM 4 The network performance monitor
224 NUCSTOR 4 The address of common storage data
228 NUCZIT 4 The start of private storage (dump viewing facility use
only)
22C NUCAGW 4 The AGW RAS use
230 NUCVMPST 4 Reserved for VTAM
234 NUCUSER 4 Reserved for VTAM
238 NUCSAF 4 Reserved for RACF®
23C NUCDUMP 4 Pointer to the dump receiver
240 NUCANCH 4 The pointer to the user anchor table
244 NUCFLAGS 1 FLAGS
NUCXCMDE X'80" XC Virtual Machine
NUCHWCMP X'40' Hardware Compression
28C NUCFEIBM 12 The component ID-dump viewing facility referenced
298 NUCABW 4 The address of the abend work area (for the dump
viewing facility)
29C NUCRSTS1 4 The system restart save area
2A0 NUCRSTS2 4 The system restart save area
2A4 NUCRSTF 1 The system restart flags
NUCMSGR X'02' The recursion bit (message facility)
NUCRSTR X'01' The recursion bit (restart)
2A5 3 Reserved
2A8 NUCBLRSV 64 The register save area
2E8 NUCCMDLN 160 The command input line
388 NUCCMLST 536 The tokenized PLIST
5A0 NUCUPPER 4 The upper case translate table
5A4 NUCPLFID 4 The flag word used by GCTSCN
5A4 NUCPLSWT 1 The 1-byte switch used in GCTSCN
5A8 NUCCWR 4 The console write routine
5AC NUCACPF 4 The CP command PASSTHRU
5B0 NUCSCANN 4 The scan routine entry point
5B4 NUCSCNT 4 The scan routine entry point

180 z/VM: 7.4 Diagnosis Guide

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

gIE;(P NAME LENGTH DESCRIPTION

5B8 NUCPLIST 8 The extended PLIST (untokenized)

5B8 NUCPLCMD 4 The address of the command token

5BC NUCPLBEG 4 The address of the start of argument string

5C0 NUCPLEND 4 The address of the end of argument string

5C4 NUCSIE 4 The pointer to the SIE (NUCON extension)

5C8 NUCIHCSA 8 The interrupt handler common save area

5D0 NUCSAVQ1 4 The header pointer for the interrupt handler save area

5D4 NUCSAVQ2 4 The trailer pointer for the interrupt handler save area

5D8 NUCSRPTR 4 The pointer to the system restart work area

5DC NUCDEB 4 The DEB entry to the chain address

5EO0 NUCCBLKS 4 The pointer to modules known to program
management

5E4 4 A restricted field

650 NUCFCBTB 8 The FCB anchor chain

650 NUCFCB1 4 The address of the first FCB

654 NUCFCBNM 2 The number of FCBs in the chain

658 NUCLAF 4 V(GCTLAF) AACTLKP

65C NUCERS 4 V(GCTERS) AERASE

660 NUCSTTN 4 V(GCTSTT) AESTATE

664 NUCFNS 4 V(GCTFNS) AFINIS

668 NUCFVS 4 V(FVS) AFVS

66C NUCAUD 4 V(GCTAUD) AUPDISK

670 NUCRDBUF 4 V(GCTRWBRD) GCTRWBRD

674 NUCDEVTB 4 V(DEVTAB) the address of DEVTAB

678 NUCADTS 4 V(ADTSECT) the address of ADTSECT

67C NUCDIODA 4 V(DIOSECT) the address of DIODA

680 NUCAFTS 4 V(AFTSTART) the address of AFTSTART

688 NUCTODCA 16 The timing information

688 NUCTODTT 8 The total virtual machine time

690 NUCTODDT 8 The time of day when dispatched

6A0 NUCLLNAM 4 The address of the LOADLIB name list

6A4 NUCLLDIR 4 The address of the LOADLIB directory list

6A8 NUCLLSIZ 4 The size of the LOADLIB name and directory storage

6AC NUCLLNUM 2 The number of globaled LOADLIBs

6B0 NUCXAWRK 4 The XA-mode work area

Appendix B. GCS Control Blocks 181

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

gIE;(P NAME LENGTH DESCRIPTION

6B0 NUCMFLAG 1 The nucleus machine flag:
NUCXA X'80' IXXXXXXX = Virtual machine is XA or XC
NUCDMPON X'40' IXIXXXXX = Dump on switch
NUCDMPDE X'20' XXIXXXXX = Dump default switch
NUCLCKHO X'10' XXXIXXXX = Hold common lock for dump
NUCIPOLL X'08' XXXX1XXX = IPOLL function in use
NUCNOPLL X'04' XXXXX1XX = IPOLL buffer in use
NUCDMPFM X'02' XXXXXX1X = Dump format switch
NUCSGRP X'01' XXXXXXX1 = Single user group

6B1 NUCMASKE 1 The system enable byte

6B2 NUCMASKW 1 The STNSM/STOSM work byte

6B4 NUCLINE 4 The start of high storage

6B8 NUCAMDS80 4 Used by GCTAMODE

6BC NUCAMD7F 4 Used by GCTAMODE

6CO0 NUCMCKSA 64 The machine check work area

700 NUCGLUSA 64 The glue work area

740 NUCBESAV 4 The work area

744 NUCBER14 4 Register 14 from the branch entry
NUCBEA31 X'80" The branch entry was in AMODE 31

748 NUCFLGS 4 Flags
NUCREX31 X'80' REXXSTOR = 31

750 NUCPFPSW 8 The PSW at page fault interruption

SIE — NUCON Extension

Table 6. Contents of the NUCON Extension (SIE)

HEX

DISP NAME LEN DESCRIPTION

000 SIE 328 The NUCON Extension

000 8 Eye catcher (GCTSIE)

008 SIETRQ 4 The timer request queue start

00C SIEQCB 4 The ENQ control block queue start

010 SIETTBL 4 The address of the task ID table

014 SIETBQ 4 The address of the first task block in the dispatch
queue

018 SIEAEQ 4 The address of the asynchronous exit queue

182 z/VM: 7.4 Diagnosis Guide

GCS Control Blocks

Table 6. Contents of the NUCON Extension (SIE) (continued)

HEX
DISP NAME LEN DESCRIPTION
01cC SIESCB 4 The pointer to the STAE control block pool
020 SIELKCOM 4 The address of the common storage lock
024 SIELKTID 2 The task ID waiting for the lock
026 SIELOCKB 1 The byte indicating whether the machine
SIELKCMB X'80' is waiting for the lock
027 SIEPM 1 The program management flag byte
SIEPMGLB X'80" Set on when the global LOADLIB command is issued
* Set off when the BLDL searches the directories
SIEPMOSR X'40' Set on when OSRUN is active
* Set off by LINK
SIEPMLDR X'20' Set on by GCTLOS for LOADADDR
028 SIEVMCBS 4 The address of the VMCB array
02C SIEVMCB 4 The address of this machine's VMCB
030 SIESYSNM 4 The pointer to the VSAM SYSNAMES table
034 SIEPOST 4 The branch entry to POST
038 SIEGETM 4 The branch entry point to GETMAIN
03C SIEFREM 4 The branch entry point to FREEMAIN
040 SIESMAB 4 The pointer to the SMAB
044 SIECAADR 4 The address of the attention interrupt ECB
048 SIECIADR 4 The address of the I/O complete ECB
04cC SIECOADR 4 The address of the console output pending ECB
050 SIECTADR 4 The address of the command tack ECB
054 SIECAECB 4 The attention interrupt ECB
058 SIECIECB 4 The I/O complete ECB
05C SIECOECB 4 The output pending ECB
060 SIECTECB 4 The command task ECB
064 SIECONFL 1 The console task flags
SIECRDIO XXX XXXX A READ I/Ois in progress
SIECWRIO XXX XXXX AWRITE I/Ois in progress
SIECATTP XXX XXXX The attention pending bit
SIECOUTP XXXL XXXX The output pending bit
SIECLEAR XXXX XXX Clear screen
065 SIECMDFL 3 Reserved command flags
068 SIEFCMDQ 4 The pointer to the first command input buffer
06C SIELCMDQ 4 The pointer to the last command input buffer

Appendix B. GCS Control Blocks 183

GCS Control Blocks

Table 6. Contents of the NUCON Extension (SIE) (continued)

HEX

DISP NAME LEN DESCRIPTION

070 SIEFSWQE 4 The pointer to the first WQE buffer on the queue

074 SIELSWQE 4 The pointer to the last WQE buffer on the queue

078 SIEFSORE 4 The pointer to the first ORE buffer on the queue

07C SIELSORE 4 The pointer to the last ORE buffer on the queue

080 SIECCWS 16 Console CCWS

080 SIECCW1 8 The first CCW

080 SIECCW1C 1 The CCW command code

081 SIECCW1A 3 The data address

084 SIECCW1F 1 A flag byte

085 SIECCWIN 1 An unused flag byte

086 SIECCW1B 2 The byte count

088 SIECCW?2 8 The second CCW

088 SIECCW2C 1 The CCW command code

089 SIECCW2A 3 The data address

08C SIECCW2F 1 A flag byte

08D SIECCW2N 1 An unused flag byte

08E SIECCW2B 2 The byte count

090 SIEIDORE 13 The bit string for ORE IDs

09D SIELSTID 1 The last ID used for assigning

09E 2 Reserved

0AO SIETAB 4 The trace anchor block pointer

0A4 SIENUCX 4 The pointer to the nucleus extension control block
chain

0A8 SIEBVSAM 4 The beginning of the VSAM shared segment

0AC SIEEVSAM 4 The end of the VSAM shared segment

0BO SIEBBAM 4 The beginning of the BAM shared segment

0B4 SIEEBAM 4 The end of the BAM shared segment

0B8 SIEIUCAB 4 The IUCV anchor block

0BC SIESSPTH 2 The signal services path (path ID)

OBE RESERVED 2 Reserved

0Co SIEFREST 4 The start of available common free storage

0C4 SIEZNR 4 The start of available private free storage

0C8 SIEVMSIZ 4 The size of this virtual machine

occ SIETQE 4 The address of the TQE pool

0DO RESERVED 4 Reserved for future use

184 z/VM: 7.4 Diagnosis Guide

GCS Control Blocks

Table 6. Contents of the NUCON Extension (SIE) (continued)

HEX
DISP NAME LEN DESCRIPTION
0D4 SIEIFLAG 1 Initialization flags
SIEPGFT X'80' Page faults initialized
SIEAUSER X'02' ON means the virtual machine is authorized
0D5 SIETIME 8 The system save time
0DD SIEDATE 8 The system save date
OE5 SIECRIT 1 Critical bits
SIESMGMT X'80' Storage management
SIESTERM X'40' System termination
SIEINIT X'20' Initialization
SIESVC X'10' SVC handler
SIEFSACC X'08' File system
SIEFSERS X'04' File system
SIEFSFNS X'02' File system
SIEFSWRB X'01' File system
OES8 SIEREDRN 4 The highest ready task level
OEC SIEDSP 1
SIEDSTOP X'80' The priority change bit
OFO0 SIESLICE 8 The time slice in microseconds
OF8 SIESDXBR 4 “V(GCTSDXBR)” branch entry to SCHEDEX
OFC SIESAV 4 “V(GCTSAR)” save area for branch entry
100 SIEIUS 4 “V(GCTIUSBR)” branch entry to IUCV
104 SIEGENIO 4 “V(GCTGIMSB)” branch entry to GENIO START/R
108 SIESATB 4 Saved active task block address
10C SIESATID 2 Saved active task block ID
10E SIETRSP 1 Trace service points
SIETRBRW X'80' Trace branch entries to WAIT
SIETRBRS X'40' Trace branch entries to SCHEDEX
SIETRBRI X'20' Trace branch entries to IUCVCOM
SIETRBRV X'10' Trace branch entries to VALIDATE
SIETRBRP X'08' Trace branch entries to POST
10F SIETRSAV 1 Save trace points
110 SIEASYID 4 “V(SYID)” pointer to the SYID
114 SIEAEXEC 4 “V(GCTREXBR)” pointer to REXX
118 SIEAEXCO 4 “V(GCTREXV2)” pointer to EXECCOMM
11C SIEAEXGC 4 “V(GCTREXGC)” pointer to GETCOMM

Appendix B. GCS Control Blocks 185

GCS Control Blocks

Table 6. Contents of the NUCON Extension (SIE) (continued)

HEX
DISP NAME LEN DESCRIPTION
120 SIEAEXSC “V(GCTREXSC)” pointer to SETCOMM
124 SIEMOD “V(GCTMOD):” pointer to GCTMOD
128 SIENTPRI The address of the first Private Level Name/Token
pair
12C SIEFREHC 4 The address of free-high common storage
130 SIEINTAT 4 The address of active task at time of interrupt
134 SIESAI 4 Save area for branch entry
138 SIEIATID 2 The active task id at interrupt
13C SIEPFECB 4 The address of active page fault ECBs
140 SIEPFFRE 4 The address of free page fault ECBs
144 SIEPFLST 4 The address of last active page fault ECB
TBK — Task Block
Table 7. Contents of Task Blocks
HEX
DISP NAME LEN DESCRIPTION
000 TBK 320 The task block
000 TBKUP 4 The address of the task of higher priority
004 TBKDOWN 4 The address of the task of lower priority
008 TBKFRWD 4 The address of the next task of the same priority
0oC TBKBKWD 4 The address of the prior task of same priority
010 TBKACT 4 The active state block address
014 TBKLOAD 4 The load list
018 TBKPSW 8 The PSW loaded by the dispatcher
018 TBKIOMSK 1 The channel and external interrupt masks
019 TBKPKEY 1 The key
TBKPMXA X'08' The XA mode mask
01C TBKPSWA 4 The second half of the PSW
TBKPAM31 X'80" User in AMODE 31
01D TBKINSTR 3 The instruction address
020 TBKPSW2 4 The last half of PSW for abnormal termination
024 TBKATRSA 4 The address of attach's register save
028 TBKREGS 64 Registers loaded by dispatcher
068 TBKFLOAT 32 The floating point registers
088 TBKMOM 4 The mother task address

186 z/VM: 7.4 Diagnosis Guide

Table 7. Contents of Task Blocks (continued)

GCS Control Blocks

HEX
DISP NAME LEN DESCRIPTION
08C TBKSIB 4 The next task address following the mother task
address
090 TBKCHILD The address of the first subtask
094 TBKECB The address of attach ECB posted when subtask
completes
098 TBKETXR 4 The address of the asynchronous exit block to
schedule when task ends
09cC TBKSTAE 4 The address of the ESTAE control block
0AO TBKDEB 4 The address of the DEB table
0A4 TBKIDENT 4 Machine and task IDs
0A4 TBKMID 2 The machine ID
0A6 TBKTID 2 The task ID
0=Task run in behalf of a user exit called from an
interrupt handler
1=Console task
2=Command task
0A8 TBKSTOR 4 The address of the task storage anchor block (TSAB)
0AC TBKIUCV 4 The address of the IUCV EIB chain
0BO TBKREXWB 4 The address of the REXX work block
0B4 TBKSFSTL 4 The address of the first line in the program stack
0B8 TBKSLSTL 4 The address of the last line in the program stack
0BC TBKSNLST 4 The number of lines in the program stack
0Co TBKSNBST 4 The number of program stacks
0c4 TBKCOMP 4 A task completion code (ABEND)
0C5 TBKCOMP1 3 A completion code value
0Cs8 TBKRCODE 2 The abend reason code
0CA TBKKEY 1 The task storage key
0CB TBKPRIOR 1 The task dispatching priority
0cC TBKNDSP 1 The task nondispatchability flags
TBKNODIS X'80" The task is non-dispatchable
0CD TBKFLAG1 1 A flag byte
TBKPROB X'80' The problem state task
TBKAPPL X'40' This is an independent application
TBKTERM X'20' The task has terminated
TBKNAEB X'10' Schedule no AEBs on this task
TBKESTAE X'08' The ESTAE exit routine is active on task

Appendix B. GCS Control Blocks 187

GCS Control Blocks

Table 7. Contents of Task Blocks (continued)

HEX
DISP NAME LEN DESCRIPTION
TBKDUMP2 X'04' Turned on for the second dump
TBKDUMP X'02' The dump is requested by abnormal termination
TBKOSACT X'01' OSRUN is active on this task
OCE TBKFLAG2 1 A flag byte
TBKABEND X'80' The abend was entered
TBKDOS X'40' DOS SVCis in effect
TBKCCVAL X'20' The TBKCOMP contains a valid COMP code
TBKSER X'10' GCTSER entered
TBKFIRST X'08' The first task on priority level
TBKPATHS X'04' The IUCV paths defined by the task
TBKINTER X'02' The interrupt task block
TBKPGFLT X'01' The task waiting on page fault
OCF TBKFLAG3 1 A flag byte
TBKPGLCK X'80' PGLOCK issued for this task
0DO TBKSUBTA 4 The subtask abend resource manager
0D4 TBKREGSV 4 The address of the abend register save area
0D8 TBKTIME 8 The time task was dispatched
OEO TBKICODE 2 The interrupt code
OE2 TBKILC1 1 The instruction length
OE3 TBKRXMSK 1 The GCTREX PSW int mask
OE8 TBKRBAD 4 The address of the RB
OEC TBKTIOTA 4 The address of the TIOT
OF0 TBKEPIE 4 The address of the EPIE chain
OF4 TBKWRKEI 4 The address of the EXECIO work area
OF8 TBKWRKCL 4 The address of GCTEIOAB work area
OFC TBKNTPTR 4 The address of the first Task Level Name/Token pair
100 TBKACRS 64 Access Registers loaded by the dispatcher
140 TBKEND 0 The end of the task block
140 TBKLEN The length of the task block
STBLK — State Block
Table 8. Contents of State Blocks
HEX
DISP NAME LEN DESCRIPTION
000 STBLK 240 The state block

188 z/VM: 7.4 Diagnosis Guide

Table 8. Contents of State Blocks (continued)

GCS Control Blocks

HEX
DISP NAME LEN DESCRIPTION
000 STBNAME 8 The program name
008 STBPSW 8 The PSW saved for block in STBNEXT
008 STBIOMSK 1 The channel and external interrupt masks
009 STBKCMWS 1 The key, mode, masks, and state
009 STBKEY The key - bits 0-3
009 STBCMW The mode, machine check, and wait masks - bits 4-6
STBEC X'08' 0=BC mode, 1=XA mode
STBEM X'04' Machine check
STBEW X'02' Wait mask
STBSTATE X'01' O=supervisor, 1=problem state
00A STBICP 1 XA-Mode ILC, CC, program mask
oocC STBINSTR 4 The instruction address
STBPSW31 X'80" AMODE 31 bit
010 STBNEXT 4 The address of the next state block on state stack
014 STBPREV 4 The address of the previous state block - O for the
first
018 STBTB 4 The address of the task block for this stack
0ic STBNUCBL 4 The address of the NUCCBLK for this module
020 STBENTRY 4 The entry point of the program or SVC
STBENA31 X'80" AMODE 31 bit
024 STBFLAG1 1 A flag byte
STBLINK X'80" The link block
STBSVC X'40' The SVC block
STBAEB X'20' The asynchronous exit block (AEB)
STBSYNCH X'10' Synch restore=yes specified
025 STBFLAG2 1 A flag byte
STBFREE X'80" FREEMAIN AEB when the exit ends
STBGMBR X'40' Branch entry (1) for AEB or (0) for SVC entry
STBAEBSD X'20' AEB is for a scheduled exit
STBAEGIO X'10' AEB is for a general I/O
STBAETIM X'08' AEB is for the timer
STBINTER X'04' The interrupt state block
026 STBWAIT 1 The wait count
027 STBMASK 1 The mask at entry to lock
028 STBSP 1 The subpool of GETMAIN for this block

Appendix B. GCS Control Blocks 189

GCS Control Blocks

Table 8. Contents of State Blocks (continued)

HEX
DISP NAME LEN

DESCRIPTION

029 STBLDLOS

STBIOERR X'80'
02A STBIORC 1
02B STBLIBCT 1
02C STBICODE 2
02E STBILC1 1
02F STBAMRM 1

STBCAM31 X'80'

STBCRM31 X'40'
030 STBEGPRS 64
070 STBOVER 64

GCTBLDL-GCTLOS communication byte
ON-BLDL had an I/O error

The I/O error return code

The LOADLIB number (1 based)

The interrupt code

The instruction length

The AMODE/RMODE at the time of SVC
The caller was in AMODE 31

The caller was in RMODE 31

The caller's register save area (all registers)

SECTION FOR ASYNCHRONOUS EXIT AND LINK BLOCKS:

070 STBWORK 64
070 STBAETB 4
074 STBAERO 4
078 STBAER1 4
07C STBAER13 4
080 STBAEPSW 8
080 STBAEIOM 1
081 STBAEKC 1
081 STBAEKEY
081 STBAECMW
STBAEC X'08'
STBAEM X'04'
STBAEW X'02'
STBAESTA X'01'
084 STBAEINS 4
STBAEA31 X'80'
088 STBAEICO 2
08A STBAEILC 1
SECTION FOR SVC BLOCKS:
070 STBSVCA 64
070 STBRSVD2 1

190 z/VM: 7.4 Diagnosis Guide

The work area

The task block address used for AE

The RO contents when AE gets control
The R1 contents when AE gets control
The R13 contents when AE gets control
The PSW when AE gets control

The channel and external interrupt masks
The key, mode, masks and state

The key - bits 0-3

Mode, machine check, wait masks - bits 4-6
0-BC mode, 1=XA mode

Machine check

The wait mask

O=supervisor, 1=problem state

The instruction address

AMODE 31 bit

The interrupt code

The instruction length

Reserved

Table 8. Contents of State Blocks (continued)

GCS Control Blocks

HEX
DISP NAME LEN DESCRIPTION
071 STBFLAG3 1 A flag byte
STBERRET X'80" Error return desired
STBNOSA X'40' No save area wanted
STBRETRG X'20' Return callee's RO, R1 to caller
STBUSVC X'10' User SVC call
STBVSAM X'08' OS VSAM request
STB203 X'02' SVC 203
STBOSSIM X'01' 0S simulation SVC
072 STBCODE 2 The SVC 203 code value
074 STBNRMRT 4 The address of the normal return
078 STBCALLR 4 The address of the SVC caller
07C STBERADR 4 The address of error return
080 STBEFPRS 32 The caller float register save (0-6)
080 STBEFPRO 8 The caller float register O save area
088 STBEFPR2 8 The caller float register 2 save area
090 STBEFPR4 8 The caller float register 4 save area
098 STBEFPR6 8 The caller float register 6 save area
0AO STBUSAVE 4 A (user save area)
0A4 STBSASZ 2 The size of the user save area
0A6 STBSAKEY 1 The key of the user save area
0A6 STBSAKY 1 The actual key of the user save area
0A7 STBRSVD3 1 Reserved
0A8 STBOSRS1 4 The first OSRUN save area pointer
0AC STBOSRS2 4 The second OSRUN save area pointer
COMMON SECTION:
0BO STBEACRS 64 The caller's access register save area (all registers)
OFO0 STBEND 0 The end of the state block
OFO0 STBENDSV 0 The end of the SVC block
OF0 STBSZSVC 0 The length of the SVC block
OF0 STBSZLA 0 The length of the link or AEB

Appendix B. GCS Control Blocks 191

GCS Control Blocks

SMAB — Storage Management

Table 9. Contents of Storage Management

HEX

DISP NAME LEN DESCRIPTION

000 GCTSMAB 7208 The storage management anchor blocks

000 SMASALT 16 The list of anchor blocks

000 SMALCAB 4 The address of low storage anchor block

004 SMAHCAB 4 The address of high storage anchor block

008 SMALPAB 4 The address of low private storage anchor block

oocC SMAHPAB 4 The address of high private storage anchor block

010 SMATASK 4 The address of the task block of the abending subtask

014 SMAFLAGS 1 Flags
SMAIPL X'40" The IPL initialization is complete
SMAGFDCP X'20' GTCGFDCP is running
SMACOMMN X'10' Getting COMMON storage
SMANSTK X'08' The save area is not on stack (GCTSVQ)

015 SMAGFDFL 1 Used by GCTGFPCP
SMARTSH X'80" We removed a TSH page from the spare list
SMARGSB X'40" We removed a GSB page from the space list
SMARMNOR X'20"' We removed a MNOR page from the spare list
SMARTSBE X'10' We removed a TSABE block from the spare list
SMAATSH X'08' We added a TSH page to the spare list
SMAAGSB X'04' We added a GSB page to the spare list
SMAAMNOR X'02' We added a MNOR page to the spare list

018 SMATSBEL 4 Length of the storage used for TSABE

0ic SMATSHF 4 The address of the first page of full TSH pages

024 SMATSHFF 4 First page of the TSH blocks with one 1 free block

02C SMAGSBF 4 The address of the first page of full GSB pages

034. SMAGSBFF 4 First page of GSB blocks with 1 free block

03C SMAGRAIN 4 The size of the grain of storage

040 SMATSHBL 2 The length of a block of TSHs

042 SMATSHBN 2 The number of blocks of TSHs on a page

044 SMATSHBM 2 The maximum number of TSHs in a block

046 SMAGSBBL 2 The length of a block of GSBs

048 SMAGSBBN 2 The number of blocks of GSBs on a page

04A SMAGSBBM 2 The maximum number of GSBs in a block

04cC SMAFTSH 4 The address of a free TSH page

054 SMAFGSB 4 The address of a free GSB page

192 z/VM: 7.4 Diagnosis Guide

Table 9. Contents of Storage Management (continued)

GCS Control Blocks

HEX

DISP NAME LEN DESCRIPTION

05C SMAFTSBE 4 The address of free TSABE

060 SMASCOML 4 The address of the start of low common storage

064 SMALCOML 4 The length of low common storage

068 SMASCOMH 4 The address of the start of high common storage

06C SMALCOMH 4 The length of high common storage

070 SMASAVEA 4 The address of the current GETMAIN/FREEMAIN save
area

074 PRISAVEA 2364 Save area set one

074 PRISAVE 60 The register save area for branch entry

0BO PRIWORK1 256 The work area for branch entry

1BO PRIWORK2 256 The work area for branch entry

2B0 PRIWORK3 256 The work area for branch entry

3B0 PRIWORK4 256 The work area for branch entry

4B0 PRIWORKS5 256 The work area for branch entry

5B0 PRIWORK6 256 The work area for branch entry

6B0 PRIWORKY 256 The work area for branch entry

7B0 PRIWORKS 256 The work area for branch entry

8B0 PRIWORK9 256 The work area for branch entry

9B0 PR2SAVEA 2364 Save area set two

9B0 PR2SAVE 60 The register save area for the second branch entry

9EC PR2WORK1 256 The work area for branch entry

AEC PR2WORK2 256 The work area for branch entry

BEC PR2WORK3 256 The work area for branch entry

CEC PR2WORK4 256 The work area for branch entry

DEC PR2WORK5 256 The work area for branch entry

EEC PR2WORK®6 256 The work area for branch entry

FEC PR2WORK?7 256 The work area for branch entry

10EC PR2WORKS8 256 The work area for branch entry

11EC PR2WORK9 256 The work area for branch entry

12EC PR3SAVEA 2364 Save area set three

12EC PR3SAVE 60 The save area for GCTGFDCP

1328 PR3WORK1 256 The work area for branch entry

1428 PR3WORK2 256 The work area for branch entry

1528 PR3WORK3 256 The work area for branch entry

1628 PR3WORK4 256 The work area for branch entry

Appendix B. GCS Control Blocks 193

GCS Control Blocks

Table 9. Contents of Storage Management (continued)

HEX

DISP NAME LEN DESCRIPTION

1728 PR3WORK5 256 The work area for branch entry
1828 PR3WORK6 256 The work area for branch entry
1928 PR3WORK?7 256 The work area for branch entry
1A28 PR3WORKS8 256 The work area for branch entry
1B28to PR3WORK9 256 The work area for branch entry
1C27

ANCH — Storage Anchor Block

Table 10. Contents of Storage Anchor Blocks

gIE;(P NAME LENGTH DESCRIPTION

000 ANCHBK 552 The storage anchor block

000 ANCHFLAG 1 Flags
ANCHLCAB X'80" The anchor block for low common storage
ANCHHCAB X'40" The anchor block for high common storage
ANCHLPAB X'20"' The anchor block for low private storage
ANCHHPAB X'10' The anchor block for high private storage

004 ANCHKEYP 512 Starts an array of 32 records, each 4 words long
ANCHKEYH 4 The head of the SACB queue for this key
ANCHKEYT 4 The tail of the SACB queue for this key
ANCHKEYZ 4 The size of the last request under 4K
ANCHKEYL 4 The SACB of the last request under 4K

204 ANCHPGMN 4 The address of the 1st page of minor SACBs

208 ANCHPGL 4 The major SACB for the lowest fully free page

20C ANCHPGH 4 The major SACB for the highest fully free page

210 ANCHMAJL 4 The major SACB for the lowest free page of storage

214 ANCHMAJH 4 The major SACB for the highest free page of storage

218 ANCHS200 4 TSABE for storage gotten in subpool 200

21C ANCHTABL 4 The list of contiguous blocks of free storage

220 ANCHFMNR 4 The free minor's page

224 4 The dummy backward pointer

194 z/VM: 7.4 Diagnosis Guide

GCS Control Blocks

EXTWA — External Interrupt Handler Work Area

Table 11. Contents of the External Interrupt Handler Work Area (EXTWA)

gf;(P NAME LENGTH DESCRIPTION

000 EXTWA 328 The external interrupt handler work area
000 EXTPSW 8 The external old PSW

008 EXTSAVE 80 A save area

058 EXTAREA 72 A save area

0AO EXTREGS 64 Registers at the time of the interrupt
OEO EXTFPR 32 Floating point registers

100 EXTACRS 64 Access registers at the time of the interrupt
140 EXTICODE 2 The interrupt code

142 EXTILC1 1 The instruction length

143 5 Reserved

SVCWA — SVC Interrupt Handler Work Area

Table 12. Contents of the SVC Interrupt Handler Work Area (SVCWA)

gf;(P NAME LENGTH DESCRIPTION

000 SVCWA 536 The SVC interrupt handler work area

000 SVCSAVE 64 Registers at the time of the interrupt

040 SVCFREGS 32 Floating point registers

040 SVCFREGO Floating point register O

048 SVCFREG2 Floating point register 2

050 SVCFREG4 Floating point register 4

058 SVCFREG6 8 Floating point register 6

060 SVCASAVE 64 Access registers at the time of the interrupt
0AO SVCSTB 240 The default state block

190 SVCUSA 96 The default user save area

1F0 SVCSTPTR 4 A pointer to the state block in use

1F4 SVCNUM A copy of the SVC number

1F5 SVCILC 1 A copy of the ILC byte

1F6 RESERVED 2 Reserved

1F8 SVCNQRY 24 The PLIST for the NUCEXT QUERY

1F8 SVCNFUNC =CL8‘NUCEXT’ identifies the NUCEXT function
200 SVCNNAME =CL8‘’ nucleus extension name

208 SVCNPTR 4 Receives the pointer to NUCXBLK

Appendix B. GCS Control Blocks 195

GCS Control Blocks

Table 12. Contents of the SVC Interrupt Handler Work Area (SVCWA) (continued)

II:-)IIE;(P NAME LENGTH DESCRIPTION
20C SVCNIND 4 =XLA‘FFFFFFFF’ identifies the NUCEXT QUERY
function
210 SVCC14 8 A place for the control reg 14
210 SVCC14B1 1 The first byte of control reg 14
C14MCKON X'10' Enable for CRWs

PGMWA — Program Interrupt Work Area

Table 13. Contents of the Program Interrupt Work Area (PGMWA)

gf;(P NAME LENGTH DESCRIPTION
000 PGMWA 272 The program check interrupt work area
000 PGMOPSW 8 The program old PSW
008 PGMREGS 64 Registers at time of the interrupt
048 PGMACRS 64 Access registers at time of the interrupt
088 PGMICODE 2 The interrupt code
08A PGMILC1 1 The instruction length
08B PGMILCTR 1 ILC for trace
PGMILCB1 X'02' ILC bit1
PGMILCB2 X'01' ILC bit 2
090 PGMSAVE 64 The register save area
0DO PGMPFSAV 64 The page fault reg save area

VMCB — Virtual Machine Control Block

Table 14. Contents of the Virtual Machine Control Block (VMCB)

HEX
DISP NAME LENGTH DESCRIPTION
000 VMCB 32 The virtual machine control block

000 VMCUSER The virtual machine user ID
008 VMCINSIG
008 *

00A VMCSIGID
0oC VMCLCKH
010 VMCLCKW

014 VMCSCHDX

The initialization signal ID
Reserved

The virtual machine signal ID
The lock holding pointer

The lock waiting pointer

The pointer to the chain of AEB blocks to be
scheduled for this virtual machine

o S T S TN \ S T \ S S e o]

196 z/VM: 7.4 Diagnosis Guide

GCS Control Blocks

Table 14. Contents of the Virtual Machine Control Block (VMCB) (continued)

HEX
DISP NAME LENGTH DESCRIPTION
018 VMCFLAGS 1 Flags

VMCWAIT X'80' The virtual machine in wait

Appendix B. GCS Control Blocks 197

GCS Control Blocks

198 z/VM: 7.4 Diagnosis Guide

Trace Table Codes

Appendix C. Trace Table Codes

Trace code table entries come in two flavors: 32-byte and 64-byte. The 32-byte entry format is shown in
Figure 15 on page 199. The 64-byte entry format is shown in Figure 16 on page 200.

Time-of-day Trace Contents of

7400 Giock 00xx '\5"" REG N

0 1 2 8 A C

Contents of Contents of Contents of Contents of
REG N+1 REGN+2 REGN+3 | REG N+4

10 14 18 1C
Figure 15. Format of a 32-byte CP Trace Table Entry

Hex Displacement
Contents
X'oo'
X'74', which indicates a CP trace table entry.
x'o1'
Unused (zeros).
X'02'
The contents of the time-of-day clock at the time the event being traced occurred.
Xx'os'
Model-dependent value.
X'0A!
The trace ID or trace entry code, which defines the event.
x'oc'
The contents of register n.
X'10'
The contents of register n+1.
X'i4'
The contents of register n+2.
X'18'
The contents of register n+3.
x'ac'
The contents of register n+4.

© Copyright IBM Corp. 1991, 2025 199

Trace Table Codes

Time-of-day

7580 Clock

Contents of
REG N

10

Contents of
REG N+2

20

Contents of
REG N+4

30

Figure 16. Format of a 64-byte CP Trace Table Entry

Hex Displacement
Contents

X'o0!

X'75', which indicates a CP trace table entry.

X'o1'

X'80', which indicates a 64-byte CP trace table entry.

Xx'o2'

18

28

38

00xx

Contents of
REG N+1

Contents of
REG N+3

Contents of
REG N+5

The contents of the time-of-day clock at the time the event being traced occurred.

200 z/VM: 7.4 Diagnosis Guide

Trace
ID

Trace Table Codes

x'oc'

Model-dependent value.
X'OE'

The trace ID or trace entry code, which defines the event.
X'10'

The contents of register n.
X'18'

The contents of register n+1.
X'20'

The contents of register n+2.
X'28'

The contents of register n+3.
X'30'

The contents of register n+4.
X'38'

The contents of register n+5.

The format of a trace table entry and TRACE ID codes are described by the TTABK. The format of a trace
table page and its forward/backward pointers (last two words) are described by the TTPBK.

A summary of the event-specific information that CP records in its trace table entries from bytes X'0A' to
X'1F' (for 32-byte entries) is available. See “Trace Table Codes for 32-byte Entries” on page 201.

A summary of the event-specific information that CP records in its trace table entries from bytes X'OE' to
X'3F' (for 64-byte entries) is available. See “Trace Table Codes for 64-byte Entries” on page 232.

Trace Table Codes for 32-byte Entries

The following table summarizes the event-specific information that CP records in its trace table entries
from bytes X'0A' to X'1F', which are for 32-byte entries.

Appendix C. Trace Table Codes 201

Trace Table Codes

202 z/VM: 7.4 Diagnosis Guide

Trace Table Codes

€-0
(MOWd) Spiop 1043u0)

Jauueyagng

1uswageuely yred AJAAIAYIAIAAIAA 2€20 1OAdOH AJIpON 1eNMIA
uondnuialul
plop @I uondniisiug MAAWA | L-17 S93A@ MSd PIO O/T | €-0 S@3A8 MSd P10 0/1 2020 SIAdOH Jeydepy jenuia
‘'z 93ed uo sal3ug 91Aq-19 104 SOpO) 8)qe] 9del] ,, 39S 1020
‘'z 98ed uo sal3ug 91Aq-19 104 SOPO) a)qel 9del] ,, 39S 0LL0
‘z€z 98ed uo saiug a31Aq-19 10} Sepo) 8)qe] ddel] , 89S 0S.0
a3el01s
SSaIpPPy UINiayY s,4a11ed | ssalppy YAAWA 1911ed | ssalppy 201G pauiniay pauiniay saikg 00 00 00 00 02L0 Xd4doH 1004 ISJS uiniay
(rTdd9) (c¥dd) (TYdD) ssaippy (0¥dD) agei01sg
SSalppy uiniay s,doned | ssauppy MIAWA 1811ed 320]g JenMIA pauiniay | paulniay spiomajgnoq XXX>,dI S 0019 0TLO W4AdOH | 9914 a1qeaded uiniay
(PTHdD) (TTHdD) (TYd9) ,dv40,X 10 (0¥dD) (1344)
SS2IPPY UINISY S,4311D | SSRIPPY MEAWA S,4911BD | SSaIppy 3001g paulnioy | paulniay spiomsignog XXX>,a1 s 10019 0040 | 444dOH 344doH 83eI01G 8814 UInlay
ssalppy a3el01s
SSIppY UINidyY s,19)1ed MEAWA S,101s8nbay | ssaippy x3001g paudissy paisenbay saikg JuBwuBNY spo0ig 0290 Xd4doH 100d 1SJS ureiqo
(PTH3Y) (TTYdD) ssalppy (lenpin) pajsenbay a3el01s
SSalppy uIniay s,Ja1e)d MEAWA s,J01senbay | ssalppy ¥o01g pausdissy SpJop 81gnoQ XXX>,aI S 2019 0T90 W4AdOH | 9814 81qesled ureiqo
(34344X4d) (TTHdD) (TddD) #0019 | (0¥IFY4Xdd) persenbay (9914)
Ssalppy uiniay s,4e71ed SSaIppY MAAIWA paugIssy 40 ssalppy spiomajqnoqg XXX>,aI s,42019 0090 | 444dOH 344dOH a3el01S 9914 URIqO
‘ez ded uo 9T a1qe] - Salllus 3}Aq-179 10} SOP0J adel] 89S TOS0
(QIDOW)
apo) uondnaiaiul (vs4) 1dnuiaiug
MSd P10 %28YJ dulyde X08Yd 8uIyde| | Ssaippy 88el01s Suljied 00%0 HOWJOH %99yJ aulyoe
00 00 00 00
1o 00 00 00 00
10
ssalppy
MSd P10 welgold uoldaox3 uolyeisuel] wdnueur ‘11 SSaIPPY MAAWA 00€0 H4ddoH 1dnuieiu] wesgoud
(dOIASX4d) (1IDASX4d) NN.X
MSd P10 OAS 1dnusuI OAS OASD | WL PUaqy §i puaqy 0020 JASdOH 1dnusuI OAS
2T 8T 14" oT bo) v (xay) 135440
V+N €+N ¢+N T+N
H3Y 40 SLNILNOD H3Y 40 SLNILNOD 93y 40 SLNILNOD 534 40 SINILNOD | N HIY 40 SLNILNOD ar3dvil 31NAOW IWVYN

Sa1i3ua 23Ag-z € 10f Sap0d 230 "ST d]qu]

Appendix C. Trace Table Codes 203

Trace Table Codes

(a40) »o01g (4OIVAIQY) 0=22
1sanbay uonesadp | ssalppy MGYOI 2AIY ansA3adiAIan3ay 0€0T SOIdOH ‘lauueyogns eis
€=20
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ansA3adiAIan3ay €20T | T10AdOH SOIdOH ‘lauueyagns A{poiy
=22
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ansA3adiAIan3ay T20T SOIdOH ‘lauueyogns A4Ipoiy
€T
(MOWd) Sp4op 1043u0D 0=22
9 PIOM MO 1uswageuely yied ansA3adiAIan3ay 020T SOIdOH ‘lauueyagns A4Ipoiy
(4OIVAIQY) €=00
00 00 00 00 00 00 00 00 00000000 | SSaIPPY MGHOI 2AIdY ansA3adiAIan3ay €T0T SOIdOH ‘]auueyaqns ey
(4OIVAIQY) =22
00 00 00 00 00 00 00 00 00000000 | SSaIPPY MGHOI 2AIdY ansA3adlAIan3ay TT0T SOIdOH ‘|]auueyoqns JeH
(4OIVAIQY) 0=22
00 00 00 00 00 00 00 00 00000000 | SSaIPPY MFYOI 2A1dY ansA3adiAIan3ay 0T0T SOIdOH ‘lauueyogns jeH
(4OIVAIQY) €=20
00 00 00 00 00 00 00 00 00000000 | SS2IPPY MFYOI A1y ansA3adiAIan3ay €00T SOIdOH ‘lauueyogns Jes|)
(4OIVAIQY) 0=22
00 00 00 00 00 00 00 00 00000000 | SS2IPPY MFYOI @MDY ansA3adiAIan3ay 000T SOIdOH ‘lauueyogns Jea))
welgold (MV2)
]auueY) UL MDD 1SdI4 | PIOM SSBIpPY 1auuey) AJAAIQHIAIAAIAA 1SNIAWAI0O0 00 640 QOAdOH | 1sed O/I He1S |enMIp
weidold (MV2) HOAdOH
]auuey) Ul MDD 1sdi4 | PIOM SS8IPPY 1suuUey) AJAAIAHIAIAAIAA 1SNIAWAI00 00 0600 AOAdOH 0/I He1S [enuIp
(MS2)
PIOM SNiels jauuey) | 1n0807 18UURYD paliWI AJAAIAHIAIAAIAA 1SNIAWAI00 00 0000 MSIdOH Pa101S MSD 1enMIA
1dnuiaug
1ajoweled ydn.iaul (Q1s) @1 1suueydgns AJAAIQYIAIAAIAA | (TAVOIAWA) puesado 1SNIAWAI00 00 9€20 SOAdOH gulpuad 1s8] 1enuiIA
(MS2SY0I)
(MS3) (MS2S) p1om Jauueyogns
plop snieis papusixy snjels jauueyagns AJAAIQYIAIAAIAA G€20 SOAdOH 1s9] 1enMIA
(g40) >o019 Jauueyagns
1sanbay uonelado (TAVOIAWA) puesado AIAAIAYIAIAAIAA €€20 SOAdOH Hels [enuIA
2T 8T 14" oT bo) v (xay) L3sd40
V+N €+N Z+N T+N
D34 40 SLINILNOD 93y 40 SLNILNOD 53y 40 SLN3ILNOD 534 40 SINILNOD | N H3Y 40 SLNILNOD ar 3dovul 31NAOKW JWYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

204 z/VM

Trace Table Codes

HIAdOH SOAdOH

1SS94ppY QOAdOH
2IN0sqy 1SOH MF0Id (4OIvAIQY) NvddOoH €=00 ‘1duueyoqns
1SS94ppPY TOAdD 1SSIPPY Y920y pepuadsng snoindld | SS8Ippy YGHOI oAy ansA3adinaanaay €80T HVddOH awnsay eay
HIADOH SOAdOH
1SSaIppyY AOAdOH
2IN0sqy 1SOH MF0Id (4OIvAIQY) NvYddOoH ¢=20 ‘|auueyogns
1SS3IPPY TOAdD 1SS8IPPY Y90ay papuadsng snoinaid | sSaIppy MEYOI 8AIOY ansA3adlAIanaay Z80T HVYddOH awnsay 1eay
YIADOH SOAdOH
1SSaIppyY AOAdOH
21IN0sqy 1SO0H M90Id (4OIvAIQY) NvddOH T=00 ‘]duueyodqgns
1SS3IPPY TOAdD 1SS8IPPY YFIay papuadsng snoineld | $S2Ippy MEYOI A0y ansA3adlAIanaay T80T HvddOH awnsay eay
YIADOH SOAdOH
1SS2IppY QOAdOH
81n10sqy 1SOH MF0Id (4OIVAIQY) NVddOH 0=20 ‘|auueyoqns
1SS2IPPY TOAdD 1SSIPPY ME2ay papuadsng snoinald | SSaIppY HGHOI dA1Y ansA3adinIan3ay 080T HvddOH awnsay jeay
(4OIVAIQY) €=20
00 00 00 00 00 00 00 00 00000000 | SS9IpPPY MGHOI @AY ansA3adlAIan3Iay €50T I4IdOH ‘lauueyoqns 1sa]
(MS3) (MS2S) p1om =22
plop snieis papuslxy snjels jauueyagng ansA3adlAIanIay TSOT I4IdOH ‘1duueydqns 1saL
(MS3) (MS2S) p1om 0=22
plop snieis pepuslxy snjels jauueyogng ansA3adlAIanIay 0S0T I4IdOH ‘1duueyoqns 1saL
(a40) 2019 asuas £=09
1senbay uonelado SS3IPpPY MEYOI ansA3ay [A3an3ay ge0tT I4IdOH ‘louueyagns el
asuas T=2)
00 00 00 00 00 00 00 00 00 00 00 00 SSaIppy MEYOI ansA3aydlAIanaay 6€0T I4IdOH ‘1euueyogns Hels
(a40) o019 (4OIVAIQY) dsuas 0=29
1sanbay uonesadp | ssalppy MGYOI 2AIY ansA3adlAIan3Iay 8€0T I41dOH ‘1duueydgns Hels
(a40) o019 €=20
1sanbay uonelado SSalppy ¥GY0I ansA3adlAIan3Iay €€0T SOIdOH ‘lauueyogns 1eis
=22
00 00 00 00 00 00 00 00 00 00 00 00 SSaIppy MGYO0I ansA3adlAIan3Iay TEOT SOIdOH ‘1duueydgns Hels
2T 8T 14" oT bo) v (xay) L3sd40
v+N €+N Z+N T+N
53y 40 SLNILNOD 53y 40 SLNILNOD 53y 40 SLNILNOD H3Y¥ 40 SINILNOD | N H3Y 40 SLNILNOD aI 3ovil 31NAOW JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 205

Trace Table Codes

GT - 0 salkg

10MY3H0I

paAIg2ay eleq

BleQ 9susas jua.linduo) 0 @1Ag M¥3 AJAAIQY T40T I4IdOH 9suUaS Jua.linduo)
paniaoay
ST - 0 s1Ag eieq asuss 1NOSY0IIAIaAIaY 040T I4IdOH eleq asuas Of1
00 00 00 00 00000000 9p0J uiniay SSalppy MgHO0I ansA3adiAnIan3aay 0voT XOIdOH 1senbay O/1 190uE)
ssalppy 1dnuiaug
MSd P10 O/1 YSNNYX4d 32019 921AaQ 1edy aIisA3ayd 660T H4IdOH 1auueydqns T adAL
€=20
‘louueyagns Apoiy
00000000 00000000 00 00 00 00 00 00 00 00 aIisA3ay 86071 QIldoH 1auueyaqgns T adAL
¢=20
‘lauueyagns Apoiy
00000000 00000000 00 00 00 00 00 00 00 00 aIsA3ay L60T QIldoH 1auueyagns T adAL
=00
‘]auueyagns AjIpoly
00000000 00000000 00 00 00 00 00 00 00 00 aIisA3ayd 960T QIldoH 1auueyagns T adAL
€T 0=00
(MOIWd) SpP40/ 1043U0D ‘lauueyagns A4Ipoiy
9 PIOM MOWd 1uswageuely yred aisA3aayd S60T AaIldoH Jauueyagns T adAL
€=20
‘lauueyoqns 1sa|
00 00 00 00 00000000 00000000 00000000 aIisA3aay €60T H4IdOH 1auueyoqns T adAL
=00
(Ms3) (MS2S) p1om ‘]euueydqns 1saL
PIOM SNILS pSpuslIXy sniels jsuueyogns aIsA3ayd ¢60T H4IdOH 1auueyaqns T adAL
0=22
(Mms3) (MSJS) P10 “]duueyoqns 1sa|
PJOM sNie1S papuslIxy snjels jsuueyoqgns aisA3aay 1607 H4IdOH 1auueyaqgns T adAL
‘WAl J0} PoAIESaY asuodsay/isenbay
060T OIOdOH uoljewJoju] jpuuey)
‘INGI 10} panIasay UolELLIOU
180T OIOdOH |auuey) pspusixy
oT 8T 1% ot bo] v (xay) 13s440
v+N €+N C+N T+N
934 40 SLNILNOD 93y 40 SINILNOD 93y 40 SINILNOD 93y 40 SINILNOD N 934 40 SLNILNOD ar 3dvil 37NAOKN JWVYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

206 z/VM

Trace Table Codes

‘INgI 10} poAIasey (enHIA)
€rct 1430 ¥dnuiaiuI 10d
‘INGI 10} POAISSSY Cmmw_v
[4%4" 1430 3dnuauI 10d
‘WAl 10} pansasay TTCT 1dnuieuI 19d 4o N1od
"WEI 10} panIasay 0TCT
‘WEI 10} panasay 402t
‘WEI 10} pantasay Joct
‘WEI 10} pantasay aoct
‘WGl 10} pansasay 2021 (1eay) oju1 1UsA3 10d
‘INGI 10} paniasay a0¢ctT (1eay) 19 8401S 10d
"WEI 10} panIasay vozT (1eay) 21015 10d
"WEI 10} pantasay 60CT (1eay) peo10d
WBI04 poressy 80¢T €20 a__ﬁmw_\ﬁ%
WBI04 poressy LOTT [4s0) a_%wh_ﬂ%
Lo pariesed 90T 130 Atpow T
WBI 04 PoA8SSY S0ZT 029 z_%w_n_ﬂ%
WELC) paniesey 7021 ponss1 PO 14
"WEI 10} pantasay €0CT (1eay) €22 A{IpOIA 10d
‘WEI 10} pantasay zocT (1eay) 222 AJIPOIW 10d
‘WEI 10} pantasay TOCT (1eay) 122 AJIPOIW 10d
‘IWEI 10} paniasay 00¢T (1eay) 022 A4IPOIW 10d
oT 8T 1% ot bo] v (xay) L13s440
P+N €+N TN T+N
934 40 SLINILNOD 934 40 SLNILNOID 93y 40 SLNILNOD 534 40 SINILNOD | N D3 40 SINILNOD aI 3oVl 31NAOW AWYN

(panuiuo2) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 207

Trace Table Codes

(1enuIA)

WL 10} ponIesey oget £20 2014 1821307 €9

"W 10} pontesay 472t

WA 10§ panIesay 322t

WA 10§ panIesay azzt

WA 104 panIesay 32zt

"W 04 paniesey azzt

"W 10} PonIesay vzzT

"W 10} pontesay 622t

WA 10§ panIesay geet

WA 104 panIasay LTt

WA 104 paniesay 9zt

"W 04 paniesey 412t

"W 10} ponIosay 31T

"W 10} pontesay atet

"W 10} panIesay 12T

WA 10§ paniasay a1zt

WA 04 panIesay VIZT

"W 04 paniesey 61T

"W 10} POAIOSaY 81zT

"W 10} pontesay L1t

WA 10} panIesay 91T

WA 10§ paniasay STt

WA 104 panIesay pTeT
T 8T 141 oT bo) v (xay) 13s440

PN £+N Z+N T+N

D34 40 SINIINOD | DIUJOSINILNOD | DIWAOSINILNOD | DIy 40 SINILNOD | N DIY 40 SINILNOD a1 3ovaL FINAOW IWYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

208 z/VM

Trace Table Codes

uoIdNIISUT 00 Ts3eld
IX3N J0 ssalppy 00000000 | |0 ¥eym|zs3erd|eress [apo) uy|ar yred AdADNI By} 40 ssalppy ao0vT VNIdOH L123INNOD WA/IddY
uoI1oNIISuT dOaN3s Tsselq
1XaN 40 Ssalppy MIOSIA 40 SSaippy |24 1eym|zsSerd|are1s |apod uiy|ar yred gaAJNI 8y} JO ssalppy SOVT VNIdOH JAIFIIY WA/IddY
uoI19NIISuT dOaN3s Tsselq
1X8N JO ssalppy MEDSI 0 SSaIppY | |0Y ¥eym|zsseld|erels [opod uid|ar yied gAJNI 8Y1 Jo ssalppy vovT VNIdOH | XXXXAN3S WA/JddY
‘INGI 10} panlasay 4€¢T
‘INGI 10} paniasay J€CT
‘INGI 10} panIasay aset (1eay) 8yu028Q 10d
. (1enuip)
10} paAIBSD
WEL 104 P o 0£2T £99 84u023Q 10d
. (1enuIp)
0O} poAISSD
WL 104 pan13s3y aset 292 8yu023Q 10d
. (1enuIA)
10} poAISSD
WeI104 P o veeT 092 84u023Q 10d
‘INGI 10} panlasay 6€CT
‘INGI 10} paniasay 8€CT
‘INGI 10} paniasay LETT (1eay) 81n3yuo) 19d
. (1enuip)
10} paAIaSD
WEL 104 P o 92T £20 1N8Yuo) 19d
. (1enuIp)
O} poAISSD
WL 104 pan13s3y ezt 200 218Yu0d 19d
. (1enuIA)
10} poAISSD
WeI104 P o veTT 022 2In8yu0) 10d
‘INgI 10} paAIasay (1eod)
€eCT 20.d 1e21307 11eD
. (1enuIp)
10} POAISSD
WEI 10} P 4 zezt 201d 1821507 118D
‘INGI 10} paniasay (1eod)
TETT €20 204 1e21507 118D
2T 8T 14" oT bo) v (xay) 135440
v+N €+N ¢+N T+N
D34 40 SINILNOD D34 40 SINILNOD D34 40 SINILNOD D34 40 SINFLNOD | N H3Y 40 SINILNOD aI 3ovil 31NAOKW JWYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 209

Trace Table Codes

uolnonllsur

IX3N JO ssalppy NEDSI JO ssaippy 00 00 00 00 | s8el4 [opod uky|AI yied aAJNI dY} J0 ssalppy LOST VYNI4OH | uona)dwo) 1sal ADNI
uolnonilsut
IX8N JO ssalppy MEOSI 0 ssalppy 00 00 001AJSAS-dD | s8eid [apod ury|ar yred GADNI dY} 40 ssalppy 90ST VYNIdOH Aday AoNI
uoloniisut
IX3N JO ssalppy MEOSI 0 ssalppy 00 00 001AJSAS-dD | s8eid [apod ury|ar yred dAJNI dY} o ssalppy S0ST VYNIdOH 9A1929Y AJNI
uol3onJisut
IX3N J0 ssalppy MEOSI 0 ssalppy 00 00 00/@JSAS-dD | sSeld [opod ud|ar yied dAJNI dY} o ssalppy 70ST VYNIdOH puas AJNI
uolonlisur
IX3N 40 ssalppy MEOSI JO ssalppy 00 00 00 00 | s8eld [opo) ud|ar yred AN 3y} Jo ssalppy €0ST VYNIdOH aql1asag AJNI
uolonilsut
IX3N JO ssalppy lajjng Jo ssaippy 00 00 00|@JISAS-dD 00 00 00 00 gdAJNI 8y} Jo ssalppy Z0ST VNIdOH | J8yng ansliey ADNI
uolonilsur
IX3N JO ssalppy 00 00 00 00 00 00 00 00 0000 00[22 gdAJNI 8y} Jo ssalppy TOST VYNIdOH agesssln 1591 AJNI
uolnonilsut suol1oauu0)
1X8N JO ssalppy 40 'ON "Xe|y|aziswied 00 00 00|@JISAS-dD 00 00 00 00 gdAJNI dY3 Jo ssalppy 00ST VYNIdOH Aand AONI
Alessadauun awnsay
darJesn 00 00 00 00 00 00 00 00 00 00 00 00 aevt 4NIdOH L12INNOD WAIOddY
SSaIppyY MAAWA SSaIPPY TNYVdI SSaIppy G100 | 8eid [adAL wurlar yred AaAJNI 9y} Jo ssalppy 0EVT WNIdOH 1dnueul WA/DddY
108UU0)
uolNIISUT 00]24 papuadsng swnsay
1X8N JO ssaippy 00 00/8p0J ¥dI ¥eym |zsseld|Ts3eld 00(|8po) ury|dI yied AN 3y} Jo ssalppy dcvt YNIdOH 123INNOJ WA/JIddY
uoloniisut
IX8N JO Ssaippy 00 00 |00lzdOaN3s 00 00 00[®1e1S | s8eld [opod uld|ar yied dAJNI 8y} JO ssaippy vIvT VYNIdOH J1V1S13S WA/OddY
uolonllsur
1X8N JO ssalppy 00 00 00 [cdOdN3S 00 00 00|a1e1S | s8eld [9po) uld|dar yied aAJNI dY} J0 ssalppy ETVT VNIdOH | A4AQOW13S WA/OddY
uonoNlsut 19A87 ONAS PO
IX8N J0 SSaIppY | 2dS [8e14 dIS [9p0D dIS 00 |00lzsoVv14[e1eis | s3eid [apod ury|al yied gaAdNI 8y} Jo ssalppy cIvT VNIdOH | 31VISAYO WA/DddY
uoloniisug 00 Ts3¢e]4
IXaN J0 ssaippy 00000000 | |24 yeym|zsseld|erels [opod uld|arl yied gAJNI 8y} o ssaippy 40T VYNIdOH 43AIS WA/IddY
2T 8T 14" oT bo) v (xay) L3sd40
v+N €+N Z+N T+N
D34 40 SINILNOD D34 40 SINILNOD 53y 40 SLNILNOD H3Y¥ 40 SINILNOD | N H3Y 40 SLNILNOD aI 3ovil 31NAOW JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

210 z/VM

Trace Table Codes

SS2IPPY MAAWA 1ua1in) A3QY 8y} Jo ssaippy 00 001(S292) a1 Yyied 00 |13a024-d1/00 00 00 00 00 00 €09T MOAdOH 39dNd S22
£ N1y} GT niy} MOAdOH
0 s81Aq ‘ereq 1dedoy 00 001(S29) aI yied 8 s81Aq ‘ereq 1deooy 009T LOAdOH 1da2dy S22
SSaIppPY MAAWA SSaIPPY TNUVdI SSaIppy 19102 3INON gaAdNI 8y} Jo ssalppy 0SST WNIdOH 1dnaiaiu oN AJNI
M1ax1
SSalppy VHI SSaIPPY NEDSIW $salppy M0O149XI | 8eld [9po) 4d1|yied SSO 00 00 00]dI SSO TEST 4NIdOH | @21n8S welsAs ADNI
SSaIppyY MAAWA SSaIppY TNHVdI SSaIppy G100 | 8eid [adAL wurlar yred AaAJNI 9y} Jo ssalppy 0€ST WNIdOH wdnuisiur ADNI
uoloNIIsuI Jaynq y18ua
1X3N J0 ssalppy elep 8y} Jo ssalppy ereq [yiBuaT Jayng 00 00 00 00 gAINI 8y} Jo ssalppy GTST VYNIdOH 110dI ADNI
uolonilsut
IX3N JO ssalppy 00 00 00 00 00 00 00 00 00 00 00]1sel gdAJNI 8y} Jo ssalppy TIST VYNIdOH | XSe 1043U09 189S ADNI
uolnonllsur
IXaN 40 ssalppy 00 00 00 00 00 00 00 00 00 00 00]1Sen gdAJNI 8y} Jo ssalppy 0TST VYNIdOH %Se 189S AJNI
uolonilsuT
1XaN J0 ssaippy 00 00 00 00 00 00 001AJSAS-dD | s8eid [epod ury|al yred gdAJNI 3y} Jo ssalppy 40ST VYNIdOH 1aAds ADNI
uolonJiisut
IX3N JO ssalppy 00 00 00 00 00 00 001AJSAS-dD | s8eid [epod ury|ar yred AaAdNI 9y} Jo ssalppy 30ST VYNIdOH awnsay AJNI
uoljonJisut
IX3N J0 ssalppy 00 00 00 00 00 00 00/AJSAS-dD | sSeld [opod ud|ar yied AaAJNI 9y} Jo ssalppy aost VYNIdOH 32531n0 AJNI
uolonJisur
1X3N JO ssalppy layng ay3 jo ssalppy 00 00 00|AISAS-dD 00(/8pod ur4|00 00 AN 3y} Jo ssalppy 20ST VYNIdOH Jayng aJe108Qg AJNI
uolonilsut
IX3N JO ssalppy 00 00 00 00 00 00 00/@JSAS-dD | sSeld [epod ud|ar yied gdADNI 8y} Jo ssalppy g0ST VNIdOH 108UU0D AJNI
uoIdNIISUT 00 Ts8eld
IX3N 40 ssaippy 00000000 | 00 :Zs8eI4]:dDSAS-dD [opod urd|ar yied gaAdNI 8y} Jo ssalppy VOST VYNIdOH 1da22y ADNI
uolonilsut
1XaN J0 ssaippy MEOSI 0 ssalppy 00 00 001AJSAS-dD | s8eid [epod ury|ar yred gdAJNI dY3 Jo ssalppy 60ST VYNIdOH 83ind AONI
uoljoniisut
IX3N J0 ssalppy MEOSIA JO SsaIppy 00 00 001AJSAS-dD | s8eid [epod ury|al yred gaAdNI 9y} Jo ssalppy 80ST VYNIdOH 19fey AJNI
T 8T 141 ot bo] v (xay) 13s440
v+N €+N Z+N T+N
D34 40 SINILNOD D34 40 SINILNOD 53y 40 SLNILNOD H3Y¥ 40 SINILNOD | N H3Y 40 SLNILNOD aI 3ovil 31NAOW JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 211

Trace Table Codes

£ N1y} 00/3ao0%y ST Ny} MOAdOH
0 s81Aq ‘ereq 1dedoy -dI [(S22) Al yred 8 s81Aq ‘ereq 1deooy 08971 LOAdOH Jol3 14322V S22
uolNSUT ZOOXOA
SSaIPPY MAGINA Judlin) 1se7 40 ssalppy 00 00 00 00 00 00 00 00 00 00 00 00 ST9T XOAdOH puaqy 4os S22
M1G9XI | ¥VHO-93M [LId3-93IM arvi-gim juswiuodIAug
AJNI 8y o ssalppy | [D14d2-93IM INN4-gIM 00 00[(s22) dI yied |3A0W-93MI00 00 00 00 00 00 YT9T dOAdOH Jasn ulJ4ok3 S99
M19XI| ¥VHO-93M [LId3-93IMm (WSA) aivi-gam Magam
AJNI 8y} Jo ssalppy | [974d40-93IM INN4-G3IM | AT y¥ed [(S2D) AI yied [3A0IN-93M[00]00 | MEVNS dY3 J0 ssaippy €T9T XOAdOH | WSA Ut 10113 21807 S22
aweun 00 001(S292) a1 yied aweulsN 19T L1OAdOH | N740} LOINNOD SI2
zliany (WSN) a18)dwo)
M19XI ADNI 40 SSaIppy -dI |TLIANY-dIl00 00| I y¥ed |(SDJ) AI yied JAOW-93MI00 00 00 | MEVYNS 8y} Jo ssalppy TT9T OJAdOH a8essal SO0
puasn WSA 00 00[(S29) a1 Yed 00(exeq 48sn|00 00 00 00 00 00 0197 LOAdOH | WSA wouy YIAIS SID
LIWITOSI WSA
puasn WSA [(S22) Al y¥ed Jawi1]00 00 00 00 00 00 3091 LOAdOH 10} 12INNOD S22
AJAdOH
MOAdOH
M1EXI| ¥VHO-93M [LIa3-93IM (WSA) aivi-gam SOAdOH 4OAdOH
AJNI 3y} o ssalppy | [974d40-93IM INN4-93IM | Al y¥ed [(S2D) dI Yied [3AOW-93MI00 00 | MEVNS Y} o ssalppy 209T OOAdOH | IWSA Wouy A1d3H S22
M19XI| ¥VHO-93M [LId3-93IMm (WSA) aivi-gam Magam
AJNI 3y} Jo ssalppy | [974d40-93IM INN4-G3IM | AT y¥ed [(S2D) AI Yied [3AOW-93MI00 00 | MAVYNS Y} o Ssalppy 09T dOAdOH | S22 ut o113 21807 S22
(WSA) £ NIyl T s81hq ZONdOH
aweunt| @I yred [(S22) AI Yied ‘aweulaN|ereq lesn VYO9T | XOAdIH LOAdOH ¥3IAIS SO
M19XI | ¥VHO-93IM [LIa3-93m (WSA) aivi-gam
AJNI 3y} jo ssalppy | [974d40-93IM INN4-g3IM | Al y¥ed [(SOD) dI Yied [3AOW-8IMI00 00 | MEVNS 3y} JO ssalppy 609T | XOAdOH AOAdOH Aem-z aN3s S22
W19XI | ¥vHI-93IM [LIa3-93IM (WSA) arvi-gam
AJNI 3y} o ssalppy | [974d40-83IM INN4-G3IM | Al y¥ed [(SOD) dI Yied [AAOW-93MI00 00 | MEGVNS 8y} o ssalppy 809T | XOAdIH ADAOH Aem-T aN3S S22
W19XI | ¥vHI-93IM [LIQ3-93IM (WSA) arvi-gam
AJNI 3y} o ssalppy | [974d40-93IM INN4-G3IM | Al y¥ed [(S2D) dI Yied [3AOW-93MI00 00 | MEGVNS Y} o ssalppy 90971 NOAdOH A1d3¥ S20
M1EXI| ¥VHO-93M [LIa3-93IM (WSN) aivi-gam
AJNI 3y} o ssalppy | [974d40-93IM INN4-93IM | Al y¥ed [(S2D) dI Yied [3AOW-93MI00 00 | MEVNS Y} o ssalppy 09T dOAdOH ETNERERESele]
2T 8T 14" oT bo) v (xay) L3sd40
v+N €+N Z+N T+N
53y 40 SLNILNOD 53y 40 SLNILNOD 53y 40 SLNILNOD H3Y¥ 40 SINILNOD | N H3Y 40 SLNILNOD aI 3ovil 31NAOW JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

212 z/VM

Trace Table Codes

. SN
10} POAISSD
WEI 10} P d 0TLT JIvdOH | Buides)s e dn-axem
"INGI 10} panIasay 404T JIVdOH | luswageury L8V |V
‘INGI 10} panIasay 30LT dVYAdOH EI AL
‘INGI 10} paniasay aost dOAdOH a1 uone|dwo) isod
"INGI 10} paniasay 20LT IVAdOH guniod 41V 185e@
‘INgI 10} paAIasay SHuaS
a0LT IVAdOH 41V 189y 104 110d
‘NG 10} panIasay 60LT OOAdOH (1enMIA) € 20 VOIS
"INGI 104 panlasay 80LT 10IdOH (1eay) ¢ 22 VOIS
‘INGI 104 panlasay LOLT OOAdOH (lenMIA) € 20 VOIS
‘INGI 10} paniasay 90LT OOAdOH (1enuIA) T 22 VOIS
‘INGI 10} panIasay SOLT OOAdOH (1enMIA) 0 20 VOIS
‘NG 10} panIasay v0LT 10IdOH (1eay) € 20 VOIS
"INGI 10} panIasay €0LT 10IdOH (1eay) T 20 VOIS
"INGI 104 panlasay ¢0LT 10IdOH (1eay) 0 22 VOIS
‘INGI 10} panlasay 10413
TOLT 0OAdOH | /88ueyn e1e15 @nangy
‘WEI 10} pantasay 19JSUBIL E1EQ
00LT OOAdOH | /88uey) e1e1s 8neng)
M19XI | ¥VHO-93M [LIa3-93m (WSA) aivi1-9Im |3ao Jo13
AJNI 8y} Jo ssalppy | [974d40-83IM INN4-g3IM | Al y¥ed [(SOD) dI Yied -g3M [0013A00Y-dI | MAVNS 8y} jo ssaippy 689T | XOAdIH ADAdIH Aepm-z aN3s S0
W1GXI | ¥vHI-93IM [LIa3-93IM (WSA) aiv1-gim |3aow Jodi3
AJNI 3y} o ssalppy | [974d40-83IM INN4-G3IM | Al y¥ed [(SID) dI Yied -93M [00/3A028-dI | MAVNS 8y} o ssaippy 889T | XOAdOH ADAdOH Aepm-T aN3S S0
W1GXI | ¥vHI-93M [LIQ3-93IM (WSN) aIv1-9Im |3aow
AJNI 3y} o ssalppy | [974d40-93IM INN4-g3IM | I y¥ed [(S2D) dI Yied -93M [00/3A02Y8-dI | MEVNS 8y} jo ssaippy 9891 AOAdOH 10113 A1d34 S22
M1GXI| ¥VHO-93M [LId3-93IM (WSN) divi1-93m |3Aow
AJNI 3y} o ssalppy | [974d40-93IM INN4-93IM | Al y¥ed [(S2D) dI Yied -93M [00/3A02Y8-dI | MEVYNS 8y} jo ssaippy 89T dOAdOH 10413 IAIF03Y SID
2T 8T 14" oT bo) v (xay) L3sd40
v+N €+N Z+N T+N
53y 40 SLNILNOD 53y 40 SLNILNOD 53y 40 SLN3ILNOD H3Y¥ 40 SINILNOD | N H3Y 40 SLINILNOD aI 3ovil 31NAOW JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST d]qu,

Appendix C. Trace Table Codes 213

Trace Table Codes

‘WEI 10} pansasay YwLT 103doH panssI IVLS 1entIA

‘INGI 10} panlasay pa1sjdwo)

EVLT 103doH 20dIS 1enHIA

‘I 10} paniasay [47A% 103doH | PanssI 20dIS 1enMIA

‘WgI 10} pansasay pajejdwo)

VLT 103doH 20dd3 1enuIA

"WEI 10} pantasay ovLT 103dOH | panssI 20dOT 1enHIA

"WEI 1o} pantasay 8CLT 40AdOH (renuip) € 22 S803

"WEI 10} pantesay LTLT 40AdOH (renuin) Z 22 s803

"Wl 10} paniasay 9CLT 40AdOH (tenuin) T 225903

‘WEI 10} panasay SZLT 40AdOH (1endin) 0 20 s903

"Wl 10} paniasay veLT 4OAdOH | (enuip) pansst sgd3

WELI0} ponised €Lt 90OAdOH €20 <9mg_\mmmw_\m

"Wl 10} panIasay (renuip)

TTLT 90OAdOH T 20 VOIS WSg30

"Wl 10} paniasay (Tenuip)

TCLT 90AdOH T 20 VOIS WSg30

WA 10} paniessy 0CLT 950OAdOH 022 <9mc_\mmm_m\%

‘I 10} paniasay 9TLT 30AdOH (tenuin) € 92 S90S

‘WAl 1o} pantasay STLT 30NdOH (tenuin) € 92 S90S

"Wl 10} paniasay YILT 3IONdOH (tenIn) T 02 S90S

"WEI 10} pantesay €TLT JONdOH (renuin) 0 20 S80S

"WEI 10} pantesay CTLT 3I0OAdOH | (fenmiIA) panss sgds

WEI 10} paniessy TTLT ITVdOH | 4asn Buoim %MMB%M

oT 8T 1% ot bo] v (xay) 13s440
7+N €+N Z+N T+N

934 40 SLINILNOID 934 40 SLNILNOD 934 40 SLINILNOID 934 40 SINILNOD | N D3 40 SINILNOID ar3ovyl 31NA0W dWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

214 z/VM

Trace Table Codes

"zeg 98ed uo _sallug 91Aq-179 10} SO0 d)qe doel], 935 0T6T
"zec 98ed uo _sallug 91Aq-19 10} SOp0) d)qe doel] , 995 606T
‘zec o8ed uo _sallug 91Ag-19 104 S9p0) d)qe doel], 995 806T
‘'z 93ed uo sal3ug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S L06T
'zcz 98ed uo sa1ug a1Ag-179 10} S9P0O) S)qe] aJel], 995 906T
'zeg 98ed uo sallug 91Ag-179 10} SO0 d)qe ddel], 935 S06T
"zeg 98ed uo _sallug 91Ag-179 10} SO0 d)qe doel], 935 06T
‘zec 98ed uo _sallug 91Aq-19 10} SOp0) d)qe doel], 995 €06T
‘zec o8ed uo _sallug 91Aq-19 104 S9P0))qeL doel], 995 206T
‘'z 93ed uo sal3ug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S TO6T
p=pazireniu 1oN
yied O=pszijeriur yied aIidHO SNneA MHD 00 000000 00000000 04T ddOdOH (MY21S) MYD 8101
(MY2) 00 uoleUIWIBL
plopm Hoday jauueyy 00000000 | 00000040 NIHOWX4d 00000000 00 0000 00 €04t J44dOH 18 Xo8y) 1suueyy
SS3IPPY p1033Y | 00 00 00 00 40 ssalppy 0000
000000 00 00000000 Jo.13 807 waishs 3oo)g @dineq 1esy | 10 gNSAIAYIAIAAIAY c0dart J44dOH 393YJ 1suuey)
00
00 00 00 410 1818WeIed (MY2) pelle)
00000000 indug 128Y) aulyoe piop Hoday jauueyy 000000 00 00000000 Toart J44dOH aulyoe parelay 0/1
(% (zddo) (TddD) 00 00
pue £4d9) MJD Suljreq 00 00 00/9V14-4OI | 199DALY-0I [1A1034-01| 1o anSA3IadIAIaAAIay ¢00T 3AddOH uoidaox3 uun
00 00
MO Sulreq 00 00 00/9V14-HOI | [19DALY-0I [TA1034-0I | 40 aNSAIAYIAIANIAY TOJT JYL1dOH Xo8yd Hun
‘WQI 10} poAISsSY 8VLT 103doH pPansST IV1S 1eay
‘WAl 10} panlasay LYVLT 103doH panss1 90dIS 188y
‘WAl 10} panlasay VLT 103doH panss1 90dJ3 188y
‘WgI 10} poAIasey pajejdwiog
SYLT 103doH IVLS 1enMIA
a1 8T 12" (1) po] v (xay) 13s440
7+N €+N C+N T+N
934 40 SLNILNOD 934 40 SLNILNOD 934 40 SLNILNOD 934 40 SLNILNOD N Y34 40 SIN3ILNOD aI3dvil 37NAON JWVYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 215

Trace Table Codes

'z€¢ 98ed uo sauiug a1kg-179 10} S9P0O) d)qe] 9Jel] ,, 39S €0TC
‘'z 93ed uo sal3ug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S 20712
"zeg 98ed uo sal3ug 91Ag-179 104 SOPO) d)qe ddel], 935 TOTC
‘'z 98ed uo sal3ug 81Aqg-179 10} SOP0O) 8)qe] adkel] ,, 89S 00TC
‘'z€¢ 98ed uo ,sa13ug a3kqg-179 10} SOPO) 8)qe] 9Jkel] ,, 89S 5002
'z€z 98ed uo ,sa1ug a1kqg-179 10} SBPO) d)qe] 9dkel] ,, 39S 700¢
'z€¢ 98ed uo sauiug a1kg-179 10} S9PO) d)qe] 9Jel] ,, 99S €002
‘'z 93ed uo salug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S 2002
"zeg 98ed uo sal3ug 91Ag-179 104 SOPO) d)qe ddel], 935 T00T
‘'zcz 98ed uo salug a1Aqg-179 10} SOP0O) 8)qe] adkel] ,, 89S 0002
'z€z 98ed uo ,sal3ug a3kqg-179 10} SOPO) d)qe] 9Jkel] ,, 89S 8G6T
'z€z 98ed uo ,sa1ug a1kqg-179 10} SBPO) d)qe] 9dkel] ,, 39S LS6T
'z€¢ 98ed uo sauiug a1kqg-179 10} SOP0O) d)qe] 9Jel] ,, 89S 956T
‘'z 93ed uo sal3ug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S GS6T
"zeg 98ed uo sal3ug 91Ag-179 104 SO0 d)qe ddel], 935 56T
‘'zcz 98ed uo ,sal3ug a1Aqg-179 10} SOP0O) 8)qe] 8dkel],, 89S €G6T
‘'z€¢ 98ed uo ,sa13ug a3kqg-179 10} SOPO) d)qe] 9dkel] ,, 89S 2S6T
'z€¢ 98ed uo ,sa1ug a1kqg-179 10} SBPO) d)qe] 9dkel] ,, 39S 166T
'z€¢ 98ed uo sauiug a1kqg-179 10} SOPO) d)qe] 9Jel] ,, 39S 0S6T
‘'z 93ed uo salug 91Aq-19 104 SOpO) a)qel 9del] ,, 39S ST6T
"zeg 98ed uo sal3ug 91Ag-179 104 SO0 d)qe ddel], 935 vT6T
‘zcz 98ed uo ,sa13ug 91Aqg-179 10} SOP0O) 8)qe] 8dkel],, 89S €T6T
'z€¢ 98ed uo ,sa13ug a3hqg-179 10} SOPO) d)qe] 9Jkel] ,, 89S Z16T
‘'z 93ed uo sau3ug 91Aq-19 104 SOpO) 81qe] 9del] ,, 89S TT6T
a1 8T 12" (1) po] v (xay) 13s440
7+N €+N C+N T+N
934 40 SLNILNOD 934 40 SLNILNOD 934 40 SLNILNOD 934 40 SLNILNOD N Y34 40 SIN3ILNOD aI3dvil 37NAON JWVYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

216 z/VM

Trace Table Codes

1915189y 1oys

(PTHdD) (PTHIAVYS) (ETYD) ssappy (,XXX,2) woJy Je1s1gay §uo 0}
SSaIppPY }XJ |eay 93)e) SSaIppPY edy J3]1e) MAAVS pauinidy | @I SINPOW uin1dy B 22 | (STYIAVS) 8p0oJ uiniay 0822 YASdOH | ealeanes-yum-uiniay
(rTddD) (PTHIAVS) (€TYdY) ssalppy (:XXX,2) 1915189y Su0T Woly
SSaIppPY }IX3 |eay 99)1e) ssalppy 1eay Ja1jed MAAVS pauiniday | @I dINpoW Win1dy B 90 | (STYIAVS) 8po) uiniay 0vdT YASOH | ealeanes-yum-uiniay
(PTUNIXd) (PTYIAVS) (€TYdY) ssalppy (,XxX,2)
Hx3 1eay a91ed Ssalppy 1eay 4a11ed MEAVS pauiniay | @l dINPOW uinidy 18 39 | (STYIAVS) 8p0D uiniay 01T YASdOH uiniay 11ed 1a41pul
(PTANTX4d) (PTH3INVS) (ETYdD) ssaippy ASeW ,XXX,J aI 8oid
1x3 1eay a971ed SSaIppy 1eay 4a11ed MEAVS pauiniay 9INPOIA UIN}eY B 30 | (STYIAAVS) 9po2 uiniay 0022 JASdOH | ealesnes-yupm-uiniay
‘'z 93ed uo sal3ug 91Aq-19 104 SOpO) a1qe] 9del] ,, 39S 1682
(STY3AVS) (PTY3AVS) (€TY¥dD) 1915189y 1HOYS
SSIPPY 1eNHIA 89]18D SSaIppY ey J3]1e) SSaIPPY MAAVYS MEN | XXX,D AI 2INPOW J9)1ed (T4d9D) DIY WHVd 088¢ JASdOH | 03 ealeanes-yum-11ed
(STYIAVS) (7TY3AVS) (€TYdD) 1915180y 8uoT
SSIPPY 1eNHIA 88]18D SSaIppPY edy J3]1e) SSaIPPY MAAVYS MEN | XXX,D AI 2INPOW Ja)1ed (Z4dD) DIY WHVd 0v8Z OASdOH | 03 ealeanes-yum-1ied
(STY3ANVS) ssalppy (PTHIAVS) (€THdY)
MGYII 189y 99)1e) ssalppy 1eay Ja1jed SSaIPPY MAAYS MEN | XXX,D ‘Al 2INPO Ja)1ed (2¥dD) H3H WHvd 018¢ JASdOH | 1senbay 11 10811pUl
(STYIAVYS) (PTYIAVS) (€THdY)
SSaIPPY [eNUIA 9311eD SSaIppPY |edy J3]1e) SSaIPPY MAAYS MEN | XXX,D AI 2INPOW J9)1eD (24dD) 53 WHvd 008¢ JASdOH ealeanes-yum-11ed
uoljejsueliun
MDD paje|suel] 1sang SS2IPPY MID ANN, 00 00 00 00 00S¢ LINNdOH 0/I1seny
LIVMOAIWA
| LIVMOAIWA
3Sv4[1L040aWA ov 14
puewwo) pajelraiqqy [11240AWA 3SYE | -asSH [3dAL-ASHI00 00 00 00 00 00 TOET W4DdOH | puBWWO) dJ 81nd8X3
WYVYd-WOD SOAdOH ¥OAdOH
(94d9) [INdVYdE-WO0D [9Y14d OJAdOH
SSaIppY MAAIaY MEaWA uolreuiisaq MEAWA Jo1euidiio -WOJ |1V1S-IW0D SS9IPPY MEIW0D 002¢ 020dOH | MEIW0D ¥JV1S 10 aav
‘z€z 98ed uo _saiug a1Aq-19 10} Sepo) 8)qe] ddel] , 89S 1L0TC
zez 98ed uo _salug a3Aq-y9 10} Sepo) 8)qe] adel] , 89S 9012
zez 98ed uo salug a1hq-y9 10} Sepo) d)qe] adel] ,, 89S G012
'z 93ed uo sau3ug 91Aq-19 104 SOpO) 81qe] 9del] ,, 89S 0T
2T 8T 14" oT bo) v (xay) L3sd40
V+N €+N Z+N T+N
H3Y 40 SLNILNOD H3Y 40 SLNILNOD 534 40 SINILNOD 534 40 SINFLNOD | N H3Y 40 SINILNOD ar 3dovul 31NAOKW JWYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 217

Trace Table Codes

‘z€z 98ed uo _saiug a1Aq-9 10} Sepo) 8)qe] adel] , 89S 9T9¢
Zez 98ed uo _salug a3Ag-19 10} Sepo) 8)qe] adel] , 89S €T19¢€
'zcz 98ed uo _salug a1hq-19 10} Sepo) d)qe] adel] ,, 89S ZT9¢
‘'z 93ed uo sau3ug 91Aq-19 104 SOpO) 81qe] 9del] ,, 89S TT9¢€
‘'z 93ed uo sal3ug 91Aq-19 104 SOPO) a1qe] 9del] ,, 39S 0T9¢
Z€z 98ed uo saiug a1Aq-19 10} Sepo) 8)qe] ddeld] , 89S 209¢
‘z€z 98ed uo saiug a1Ag-19 10} Sepo) 8)qe] adel] , 89S T09¢E
974MA-AWA
00 00 00|LVLSMX4d ‘T MGAWA pPa1o9]es XXX, [LV.LSY-AWA 110101
ssalppy 91npo Sunix3 | 81Ag|1VLSHX4d 0 81Ag Aiuading jo ssaippy a1 eInpow Sux3|00 -AWA |3LV1S-aWA 009¢ dSAdoH | 48ydredsiq ay3 03 11X3
W42d2H
(ssa4ppy 1X3) STYXAdD SSalppy ¥493dD SSaIpPpPY MFAIWA JHJS-X3d2100 00 00 ,OND oTee 450adoH Mg3dD oeisun
ssalppy
Yoeis Sunsenbay JHJS-X3dD |1SI1S (PTYX3dD)
auinoy dunen SSalppy ¥93dd SSaIPPY MAAWA | -AWA [3LVLS-AWALL YD Ssalppy uiniay 0oge MISdOH | MG3dD udniay xoels
ssalppy
oeiS Sulisanbay JHJS-X3dD |1SI1S
aunnoy suied SsaIppy ¥93dd SSaIppyY MAAWA | -AWA [FLVLS-AWALSD | (STUX3IdD) SSaIppY X3 00€e M1SdOH Mg3d0 uedin yoeis
ssalppy
Yoels sunsanbay JHJS-X3dD [1SI1S
aunnoy suned SSalppy ¥d93dD SSaIppyY MAAWA | -AWA |13LVLS-AWALDD | (STUX3IdD) SSaIppY HX3 oo€e M1SdOH Mg3do oels
(anren 1v1SO-aWA [00]31V1S SMLOHAWA 1s17 yoredsia
leuld) ALYdAAiWA SSaIppY MAAIWA -AWA |3dAL-AWA -10- YdSSMAWA oTce M1SdOH wouy sesn doiq
(antep 1V1SO-AWA |00]31V1S SMLOHAWA isi
eIHUT) ALYdAAWA SSaIppY MFAIWA -AWA |13dAL-AWA -10- YdSSMAWA 00ze MLISdOH | yoiedsiq o1 J48sn ppy
(ssa1ppy MaoyL
1X3) vHIGOYLIVHIYOI | Ssaippy Ma0YLIMaHOL SSaIpPpPY MFAIWA ¢1]1]00]00/00 1IN0 0T0¢E 450adoH /M9H0I YorIsun
ssalppy
Yoels Bulisenbay eLIIILSI1S (ssaippy
auinod gunjed Ma0y1INad0oI1 SSaIPPY MAAWA | -AWA |FLVLS-AWALLD | ¥X3) vHI90d1|vdIY0I 000€ MLISdOH | M9OYL/MGHOI Xoeis
2T 8T 14" oT bo) v (xay) L3sd40
V+N €+N Z+N T+N
53y 40 SLNILNOD 53y 40 SLNILNOD 53y 40 SLNILNOD 934 40 SINILNOD | N H3Y 40 SLNILNOD aI 3ovil 31NAOKW JWYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

218 z/VM

Trace Table Codes

(ME9AS)
SSaIPPY MADAS (06€

¢914004d

SSaIppVY ¥AHIL

LWAMIHOL

0=)9) ‘@191dwo) peay

/¥S3) ssalppy NAAYS [[01D9V14004d [DV14NLS Aiuz a1qe) yseH AINHOL Aoy yseH ejeq yewod xoel| TOTY HL4dOH | SSIIW 8Yde) 3sIpIUllN
ZpuesadQ|Tpuesado NENSL diN4dOH yneq
Ssalppy MEHIL SSaIpPY AJAA [s8eld]4aqunN ¥y SSaIPPY 3001g ¥SeL | ayoe) Ul ssalppy yned 00T¥ dLld4dOH | @8ed ayoe) ysipiuli
‘'z 93ed uo sal3ug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S 02OV
3aoiun gupjoojun o8elI0lS
SSaIPPY S,aWeld 1eay 01 SSaIppYy [enIA SSaIPPY NAWA ssalppy s,4a11ed 04€0 10 ¥X00 TTOV SIWAdOH auIydey TenHIA
uyo07 a8el01S
SSaIPPY S,aWeld [eay | %207 0} SSaIPPY TenHIA SSaIPPY NFAWA Ssalppy s,4911ed 0L€0 40 ¥X00 0TOY SWAJOH BUIYIE JENHIA
(84d9) panieday
(MFSOdSAS) ssalppy (94dD) (TYIAVYS) wdnuaiug Jafjospuoy
2019 sniels Od (L4d9) 00 0000 00 | sSaIppy %2019 e1ed Od (G4dD) 00 00 00 00 (74dD) 00 00 00 00 440¢ YOddOH | Jossado.d paydliosun
pau.aniay
(MESOdSAS) ssalppy (Mad3YSId) sseippy (VYI9Qyyo2d) (SYEINAYId) SdS3y-add 1sanbay ao1A18S
2019 SN¥ess Od ®o01g 1sanbay Od [ssalppy ydoigereqdd | SSaIppPY MEAWA oseg |ads3¥-aodl00o 00 §90¢ 90ddOH | 4811043u0) J0SSEd0.d
pau.iniay
(MGSIdSAS) ss21ppY | (M9OIYSId) SSeIppY (TIYIMIAVS) (SYEWAYId) SdS34-add 1sanbay asougelq
0019 SN¥ess Od %o01g 1sanbay Od [ssalppyydoigereqdd | SSeIppPY MEAWA oseg |ads34-aodl0o 00 650€ VOddOH | 1911043u0) 10Ss8d0.d
(€ @1Aq) pauels
(MASIdSAS) SsaIppy (O¥2dSId) ssaippy (QdMYMdOH)VY | 02 HVIA (SYEWAYId) (@Mawodad) 1sanbay 118D 82InI8S
32019 snieis Od 3o01g 1sanbay Jd | ssaippy %2019 eleq Od MEaWA aseg PJOM puewwo) 0TOE 92ddOH 19]10J1U0) 10SS920.d
(€ 8¥hq) palels
(M9SIdSAS) ssaippy 0Y2dSad ssaippy (OdMYMdIOH)V | 22 HVIA (SYEWAYId) (@Mamwo¥od) 1senbay asougelq
32019 snieis Od 320]g 1s9nbay Jd SSalppy %20]g ereq Jd MIAWA 8seg pJo puBWIWO) 002€ VOddoH 18]]0J1U0) 10SS820.d
ssalppy
yoe1s Sulisanbay 00]1S17S
aunnoy Suied | paxoels Sulag 1g JIoMm $SaIPPY MIAWA | -AQIWA [3LVLS-AWALM,D 00 00 00 00 00LE M1SdOH sHg 3o 1oels
9lels
0 0 (LMNdOWYS) SNdD Suliem Jo ysep 0 TS9¢€ IVMdOH Hem pajqeus Jajug
‘'z 93ed uo sal3ug 91Aq-19 104 S9pO) 81qe] 9del] ,, 89S LT9E
T 8T 141 oT bo) v (xay) 13s440
v+N €+N ¢+N T+N
93y 40 SINILNOD 93y 40 SINILNOD 93y 40 SINILNOD 934 40 SINILNOD | N D3 40 SINILNOD ar3ovyl 31NAOW dWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 219

Trace Table Codes

721MS24a d9adoH 00079« 10
[.814090 1Z0LMS289a | (QISHDEa) AIA-AIAA g90doH | asoudeiq wouy synsay
(040) 3s1 ssaippy | 2409d |00l+9zIs %2019 [HOLMSO9a | Al yseH|ad1Aa@ 1enMIA SSaIpPY MAAWA TTYH 9TT¥ | ¥19dOH WIGdOH ayde) YsIpIuliN
(Lvaxiiaq) (MgHJL1AQ) 0IMO019x
(passad2de 10U Yoell I 0 (passad2e j0uU yoed] JI (AaM141AQ) AJA-AJAA 10 asougeiq 404 8gind
10) e1RQ YRW.IO4 YoRI] 0 10) ssaIppy MAHIL Aoy sse00y Yol 00 00[221A8@ 1BeNMIA SSaIppy MAAWA TTYH STTV NIGdOH [oelL ayoed ysipiuly
‘NI 10} panIasay vity
‘INGI 10} panIasay ETTY
(1nss820NS) X3
00lz5v14.104 %SIpIUIIA 10} AT YseH Joye)nwis Hun j0lu0)
[3dALS104 9V 14104 SSaIPPY M4.104 SSaIPPY MGYOI | [4equinu 8d1Aeq 1eNUIA SSaIppY MAAWA [ARAY S14doH ayoe) ysIpIuly
(Hoqy) 1x3
00lz5Hv 14104 %SIpIUl 1o} AT YyseH Joye)nwis yun joljuo)d
[3dALS1O4 DY 14104 SSaIPPY Md.104 SSaIPPY MGYOI | [4equinu 8d1AeQ 1enHIA SSaIppy MAAWA TTTY 314dOH ayoe) ysIpIulig
‘goud
"ueyo ul "81e 32019 MID Az
818007 g4 Ise7o Bie sIpiull 1o} AT yseH Jlojejnwis Hun 1043U09
HHO2 MDD 399S 1se1 SSalppy 9104 SSaIPPY MGYOI | [4equinu 8d1AeQ TenHIA SSaIppy MAAWA 0TTV S14doH ayoe) sIpIulig
‘INGI 10} paniasay 60TV
(Youy
/2) SSaIpPPV MNGOAS (06€ 00 Ssalppy MAHIL ai.s
/¥S3) SSaIppy MAAVS | |29V T4AVS |9V T14AYS Aiuz a1qe] yseH AIMHIL A8 yseH Ssalppy AIAA 80TY | IW4dOH IL4dOH | -uoN se Aiiey O/I DA
(MAAVS) ¥93dO0ND 29514004d SSaIpPPY MAHIL EIEIEL
SSaIppy ¥93d2 | 10/9V14008d [DV1dMLS Aiuz 91qe] yseH AIMHIL A8y yseH SSaIpPpPY swnsay SOtV H14dOH ‘ayoe) YSIpIulIN
(Youy
/2) SS2IPPVY MEIAS (06€ X14avHIL a1 SSaIppy MAHIL LWAMIHOL ay91dwo) O/1
/¥S3) SsaIppy MAAVYS aoeds ssalppy ayoed Alu3 a\qe] yseH AIMHOL A8y yseH ele(yew.o yoel| 0T | IW4dOH I14dOH SSIW 8Y2e) ¥SIPIUIN
(Youay
/2) SS9IPPVY MEIAS (06€ 2974004d SsaIppy MAHIL papaaN 0/1
/¥S3) $S2IppY MEAVS | [0]9V14008d [DVTINLS Aiu3g e1qel yseH AIMHOL A8y yseH ssalppy AIAA €01V H1ddOH SSIW 8Y2e) ¥SIPIUIN
(Youay
/2) ss21ppy MADAS (06€ | ¢9T140048d [AOINSYIY SSalppy MAHIL €=00 ‘pajled peay
/¥S3) ssaIppy MAAVS | [9Y14004d [9V14M1S Aiu3 e1qe] yseH AIMHIL A8y yseH Ssalppy AIAA [0 A% H1ddOH SSIW 8Yde) YSIPIUIN
2T 8T 14" oT bo) v (xay) L3sd40
v+N €+N Z+N T+N
D34 40 SLNILNOD D34 40 SINILNOD D34 40 SINILNOD D34 40 SINILNOD | N H3Y 40 SINILNOD aI 3ovil 31NAOW JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

220 z/VM

Trace Table Codes

€=00 ‘HOSI
1SISSY UO0IINdaX3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ansA3adlAIan3Iay €20S I1ddOH annjaidialu] 1els
=22 ‘HOSW
1SISSY UoI11ndax3
00 00 00 00 00 00 00 00 00 00 00 00 SSaIppY MGYOI ansA3adIAIanIay 220S I1ddOH annjaidiau] 1els
T=22 ‘HOSW
1SISSY UOIINd9x3
00 00 00 00 00 00 00 00 00 00 00 00 SS3IPpPY MEYOI ansA3adlAIanaay T20S I1ddOH aAlaidisiu] el
(€-T SPIOM 0=22 ‘HOSW
MOINd) SPIOM 1043U0D 1sISSY UOIINd8X]
9 PIOM MOWd 1uswageuely yied ansA3aydlAIanaay 020S I1ddOH aAlaidisiur el
€=00 ‘HOSH
1SISSY uoIlindax3y
00 00 00 00 00 00 00 00 00 00 00 00 SSalppy ¥GY0I ansA3adlAIanIay €T0S I1ddOH aAlaidisiur el
=22 ‘HOSH
1SISSY uoIlindax3y
00 00 00 00 00 00 00 00 00 00 00 00 SSalppy ¥GY0I ansA3adlAIan3Iay 2T0S I1ddOH aAlaidielu el
T=22 ‘HOSH
1SISSY Uol11nd8x3
00 00 00 00 00 00 00 00 00 00 00 00 SSaIppy MGYO0I ansA3adlAIan3Iay TT0S I1ddOH annjaidialu] 1els
0=22 ‘HOSH
1SISSY UoI11ndax3
00 00 00 00 00 00 00 00 00 00 00 00 SSaIppY MGYOI ansA3adIAIanIay 0T0S I1ddOH annjaidiaur 1els
€=00 ‘HOSD
1SISSY UOIINd9x3
00 00 00 00 00 00 00 00 00 00 00 00 SSaIPpY MGYOI ansA3adlAIanaay £00S I1ddOH aAljaidisiu] el
0=22 ‘HJSD
1SISSY U0I1ndax3y
00 00 00 00 00 00 00 00 00 00 00 00 SSaIppy MEYOI ansA3aydlAIan3aay 000S I1ddOH aAlaidisiu] el
‘INGI 10} panIasay 61TV
"INGI 10} panIasay 8TTY
"INGI 10} panIasay LTTV
2T 8T 14" oT bo) v (xay) L3sd40
v+N €+N Z+N T+N
53y 40 SLNILNOD 53y 40 SLNILNOD 53y 40 SLNILNOD H3Y¥ 40 SINILNOD | N H3Y 40 SLNILNOD aI 3ovil 31NAOW JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 221

Trace Table Codes

T=00 ‘HOSY
1SISSY UOIINd9X3

00000000 00000000 00 00 0000 SSalppy MgH0I gnsA3adiAnIan3Iay 18085 I11ddOH aAljaidisiu] el
0=200 ‘HOSY
1SISSY UoIINJax3
00 00 00 00 00 00 00 00 00000000 SS9IPPY MFGHOI ansA3adiAIan3Iay 0805 I1ddOH aAjaidisiu] el
=230
“IdL 1SISSY UOIINJ9XT
00 00 00 00 pIOM Q1 3dnusBIu] JejowWeIRg 1dnLIBIU] a1 weishsans 0000 00 00 1905 ILddOH aAaIdIBIT MIeIS
0=20
“IdL 1SISSY UOIINJ9XT
00 00 0000 00 00 0000 00 00 0000 00 00 00 00 00 00 00 00 090S I1ddOH aAljaldiaiu] Hels
€=00 ‘HOSL
1SISSY UOIIN28X]
00 000000 00 00 0000 00 000000 00 00 0000 ansA3adiAnIan3ay €909 I11ddOH annjaidialu] Mels
T=00 ‘HOSL
(Ms3) (MS2S) p1om 1SI1SSY U0IINJaX3
PO SNIELS papualxy snjels jsuueyogns ansA3adiAnIan3Iay 1509 I11ddOH aAljaidisiur el
0=20 ‘HOSL
(Ms3) (MS2S) pom 15ISSY UOIINJ8XT
PIOM SNIELS pSpuslIXy snjels jsuueyogns gnsA3adiAnIanaay 0S50S I11ddOH aAljaidisiu] 1elS
€=20 ‘HJSS
1SISSY UoIINJ8X3
00 00 00 00 00 00 00 00 00000000 SS3IPPVY MFGHOI ansA3adIAIan3Iay €€0S I1ddOH aAlaidisiu] el
=200 ‘HOSS
1SISSY U0IINJ8X3
00 00 00 00 00 00 00 00 00 00 00 00 SSaIppy Mgy0I gnsA3adIAIan3ay ¢e0S I11ddOH aAljeldiaiu] Hels
T=02 ‘HOSS
15ISSY U0IINJ8X3
00 000000 00 00 0000 00 000000 SSalppy Mgy0I ansA3adIAIan3ay T€0S I11ddOH aAljaldiaiu] Hels
0=02 ‘HJSS
(g40) >o019 1SISSY UO1INd9X3
1sanbay uoneiado SSalppy Mg40I ansA3adiAnIan3ay 0€0S I11ddOH 8Aljaidislu] 1Bl
a1 8T 12" (1) po] v (xay) 13s440

7+N €+N C+N T+N
93y 40 SLINILNOD 93y 40 SLINILNOD 93y 40 SLINILNOD 93y 40 SLINILNOD N 934 40 SIN3ILNOD a1 3dvil I1NAOKW JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

222 z/VM

Trace Table Codes

zez 98ed uo salug a3Aq-y9 10} Sepo) 8)qe] adel] , 89S 2209

zez 98ed uo _salug a1hq-y9 10} Sepo) d)qe] adel] ,, 89S T209

‘'z 93ed uo sau3ug 91Aq-19 104 S9pO) 81qe] 9del] ,, 89S 0209

‘'z 93ed uo sal3ug 91Aq-19 104 SOpO) a1qe] 9del] ,, 39S 9T09

‘Z€z 98ed uo saiug a1Aq-19 10} Sepo) 81qe] ddel] , 89S GT09

‘z€z 98ed uo _saiug a31Ag-19 10} Sepo) 8)qe] ddel] , 89S ¥T09

zez 98ed uo _salug a3hq-y9 10} Sepo) 8)qe] adel] , 89S €T09

zez 98ed uo _salug a1hqg-y9 10} Sepo) d)qe] adel] ,, 89S 2T09

'z 93ed uo sau3ug 91Aq-19 104 SOpO) 81qe] 9del] ,, 89S TT09

‘'z 93ed uo sal3ug 91Aq-19 104 SOpO) a)qe] 9del] ,, 39S 0T09

‘Z€z 98ed uo saujug a1Aq-19 10} Sepo) 81qe] ddel] , 99S 9009

‘z€z 98ed uo _saiug a31Aq-19 10} Sepo) 8)qe] ddel] , 89S 5009

zez 98ed uo _salug a3Aq-y9 10} Sepo) 8)qe] adel] , 89S 009

zez 98ed uo _salug a1hq-y9 10} Sepo) a)qe] adel] ,, 89S €009

‘'z 93ed uo sau3ug 91Aq-19 104 SOPO) 81qe] 9del] ,, 89S 2009

‘'z 93ed uo sal3ug 91Aq-19 104 SOpO) a)qe] 9del] ,, 39S T009

‘Z€z 98ed uo sauug a1Aq-19 10} Sepo) 81qe] ddeld] , 99S 0009

‘z€z 98ed uo _saiug a31Aq-19 10} Sepo) 8)qe] ddel] , 89S T0OSS
1senbay Q/I 192ue)
1SISSY uUoIlindax3y
00 00 00 00 00 00 00 00 8po) uiniey ssalppy MgYO0I ansA3ay|nIanaay 0v0S XOIdOH anlaldisiu] 1Rl
€=00 ‘HOSY
1SISSY uoIlindax3y
00 00 00 00 00 00 00 00 00 00 00 00 ssalppy MGYO0I ansA3ayiAIanaay €805 ILddOH anialdisiu] 1Rl
2=20 ‘HOSY
1SISSY UoIIN2ax3
00 00 00 00 00 00 00 00 00 00 00 00 ssalppy MgYO0I ansA3aydiAIan3ay 2805 ILddOH aAlaIdIaUL MBS
oT 8T 1% ot bo] v (xay) 13s440

v+N €+N ¢+N T+N

934 40 SLNILNOD 93y 40 SLNILNOD 93y 40 SLNILNOD 934 40 SLNILNOD | N H3¥ 40 SINILNOD ar3ovyl 31NA0W dWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 223

Trace Table Codes

z€z 98ed uo _salug a3hg-19 10} Sepo) 8)qe] adel] , 89S 3004
Zcz 98ed uo _salug a1hq-y9 10} S8po) d)qe] adel] ,, 89S aoos
anand
YIOM B Wol} (MGHVI)
SSaIppY UWIn}dy s,19)1ed Joyouy anang SSaIPPY MFYVYD 20 2004 ANEdoH o8essa|y € 199 048I
anand
YoM B 01 (MFHYD)
SSaIppY UIn}dy s 19)1ed Joyduy anand SSaIPPY MFYVYD 4a00L ANGdOH | o8essa e ppy 04SI
Ued uoneanddy
SSaIppY UIN}dyY s,19)1e) SSaIppY M93IAW SSaIPPY MGH1d 20 Vv00L ANGdoH dd399Y) 24SI
jul e 1oy a8essaly
SSaIPPY MAMNT 14VIdAL [30023AIW SSaIppY M93IAW SSaIPPY MGH1d arosWIam [974INN4 600L HWOdOH e @nanbaq 0451
Ul e o) 93essaly
SSaIPPY MAMNT 14VIdAL [30003AIW SSaIppY M93IAW SSaIPPY MdH1d AI9SWIAW [974INNA 800L SIWOdOH eanand 24SI
anand
3O B wody (MGIAW)
SSaIppy UINidy s,19)1ed Joyduy anang SsaIppY Mg3IAW 20 S00L ANEdoH 83essol € 189 D4SI
anand
Y1OM B 01 (MG3AIN)
SSaIppY Uwin}ay s,19)1ed Joyouy anang SsaIppy Mg3IaW ¥00L ANGdOH | ©8esssi e ppy O4SI
uolIssas
uolyediunwwo) Joj
Q] uoissas Anioeq waisAg-1aiug
SSaIppY UIn}ay s 19)1ed SsaIppy M93IaW 10 ssaIppy MgH1d +00 €004 ANGdOH | Ad MEH1d 83207 04SI
ar Yred oddv
SSaIppY UIN}dY s,19)1e) SSaIPPY MFIAW | Y¥ed 10 ssalppy MGH1d +00 200L ANGdOH | Ag MEH1d 83207 04SI
yred ADNI
SSaIPPY UIN}dY S,19)1e) SSaIppY M93IAW SSaIPPY MGH1d 20 000L ANGdOH /2dd¥ %9842 04SI
zez 98ed uo _salug a3Aq-y9 10} Sepo) 8)qe] adel] , 89S G209
‘zcz 98ed uo _salug a1hq-y9 10} Sepo) d)qe] adel] ,, 89S 209
‘'z 93ed uo sau3ug 91Aq-19 104 SOpO) 81qe] 9del] ,, 89S €209
T 8T 141 oT bo) v (xay) 135440
v+N €+N ¢+N T+N
D34 40 SLINILNOD D34 40 SINILNOD D34 40 SINILNOD D34 40 SINILNOD | N H3Y 40 SINILNOD a1 3dvil 31NAOKW JWVYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

224 z/VM

Trace Table Codes

‘'z 93ed uo sau3ug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S dac0L
"zeg 98ed uo sal3ug 91Ag-179 104 SOPO) d)qe ddel] , 935 v20L
‘WAl 10} panlasay 8¢0L
apo) doel] (TE-9T
SS3SS3IAW SS3S13IANW SS3IPPV ME3AIN | AIDSIWIAN T€-9T sHg TIVINIAIW | sHG ONN43dW :4-0 sHg L20L | TIMdOH SOVdIOH 98e103S 40 INQ J4SI
‘zec 98ed uo _sallug 91Aq-19 10} SOp0) d)qe doel] , 995 920L
‘zec @8ed uo _saliug 91Aq-19 104 S9p0) d)qeL doel], 995 G20L
‘'z 93ed uo salug 91Aq-19 104 SOpO) a)qel 9del] ,, 39S v20L
‘zeg 98ed uo sal3ug 91Ag-179 104 SO0 d)qe ddel], 935 €20L
'zeg 98ed uo sallug 91Ag-179 104 SO0 d)qe ddel], 935 220L
"z€g 98ed uo _sallug 91Aq-179 10} SO0 d)qe doel], 935 T20L
‘zec 98ed uo _sallug 91Aq-179 10} S9p0) d)qe doel] , 995 020L
‘zec o8ed uo _saliug 91Ag-19 104 S8p0) 9)qe doel], 995 4aT0L
‘'z 93ed uo sal3ug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S VvYTOL
"zeg 98ed uo sal3ug 91Ag-179 104 SOPO) d)qe ddel], 935 6T0L
1X81u0) :TE-vT sHg 0 10 SsaIppe YEXN1 8TOL NIgdOH 88ueyQ SN1eIS O4SI
"z€g 98ed uo _sallug 91Ag-179 10} SO0 d)qe doel], 935 LTO0L
‘zec @8ed uo _sallug 91Aq-19 10} SOp0) d)qe doel], 995 STOL
3er4 J01e21puUt ar-tesn ar-tesn JaquinN aoInaQ
ssalppy 12]ed yoeleq :Te-v¢ shg 4O si8joBIRYD 17 1SR 4O s18j0BIRYD 7 18114 801N TE-9T sHd ¥TOL 1a4doH yur e eroway J4SI
Al
SWEeN Yui SSalppy 49]1€D SS3IPPY MEMNT €104 104dOH | 1821807 € or0way J4SI
"zeg 98ed uo sal3ug 91Ag-179 104 SOPO) d)qe ddel], 935 Z10L
"zeg 98ed uo _sallug 91Ag-179 104 SO0 d)qe ddel], 935 TI0L
"z€¢ 98ed uo _sallug 91Aq-179 10} SO0 d)qe doel], 935 0T0L
"zec 98ed uo _sallug 91Aq-19 10} SOp0) d)qe doel] , 995 400L
a1 8T 12" ot 2 v (xay) 13s440
7+N €+N C+N T+N
934 40 SLNILNOD 934 40 SLNILNOD 934 40 SLNILNOD 934 40 SLNILNOD N Y34 40 SIN3ILNOD dI 3dvil 37NAON JWVYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST d]qu,

Appendix C. Trace Table Codes 225

Trace Table Codes

ININADVO [TLNJADVD

ININXIVI [TLNIXOVD

ssaIppy

[ALOVADVO |ANIdADVD | IALOVYXIVD |[ANIdXIVD SSaIPpPVY AJAA A SSaIppy AJAA X NGANWA 18umo X S06L ALDdOH 1959y Wa1sAs J10A
LININADVYO [TLNDADVD | LNINXOVO [1LNOXOVD SsaIppy
[ALOVADVO |ANIdAIVD | IALOVYXIVD |[ANIdXIVD SS3IPpVY AJAA A SS9IPpPY AJAA X AGAWA 18UMO X 064 NLOdOH 1958y SAI109]18S J10A
ININADVO [TINDAJVD | LNINXIVD [TLNOXIOVD SSalppy 108uuo0dsig
[ALOVADVO |ANIJAIVD | [ALOVXIVD |[ANIdXIVD SS9IPPY AJAA A SSaIppyY AJAA X MNEANWA 18UmMo X €06L NALDdOH 92¥IS1UT 10N
ssalppy
SS9IPPY AJAA 198JeL | SSBIPPY MAAWA 1981eL SS3IPPY AJAA A SSaIppy AJAA X MNEANA 18uUmo X ¢06L NALOdOH 8]dnod J10A
ININADVO [TLNDADVO | LNINXOVD [1LNOXIVO SSaIppy
[ALOVADVO |ANIdAIVD | [ALOVXIVD |[ANIdXIVD SSaIpPpPY AJAA A SSalppy AJAA X AGAWA 13UMO X T06L ALDdOH yoeiaqg J10A
ssalppy
00 00lAJAA3IAA 00 00 0000 00 00 0000 $Salppy AJAA X AGAWA 18UMO X 0064 ALDdOH auyad J10A
‘INGI 10} panlasay 9BUEYD
LOVL diysiaquay AL
. agueyo Janp-ayel
NI 10} paAlasay 90VL dnouy 1104 paireys
‘WL 0} paAISSaY a8ueyd Jajaweled
P SOvL dnoJuo 104 paJteys
. Jajsuel] punoqui 1od
Wl 1o} psniassd vovL 83plig Youms 1enin
. uaA3 uoneidwo) Hod
0} panIasa
WEI 10} paAlasay covL a8plig Yo1ms 1enuin
Jajsuel]
‘INGI 10} paniasay punoginQ Hod
covL 93plig YouUMS Jenmip
‘'z 93ed uo salug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S TOVL
zcz 98ed uo sa1ug a1Ag-179 10} S9P0O) S)qe] 9Jel], 995 00vL
zeg 98ed uo salug 914q-19 Joj Spo) ajqel ddel] ,, 39S 1£04
zez 98ed uo saug 91Aq-19 Joj SOpo) ajqel 9del],, 99S 0£0L
'z€z 98ed uo ,sa1ug a1kqg-179 10} SBPO) d)qe] 9dkel] ,, 39S J20L
T 8T 141 oT bo) v (xay) L13s440
7+N €+N C+N T+N
93y 40 SLINILNOD 93y 40 SLINILNOD 93y 40 SLINILNOD 93y 40 SLINILNOD N 934 40 SIN3LNOD ar 3dvil I1NAOKW JWVN

(panuiuo2) sarijua aiAg-z ¢ 10f Sapod 2301 "ST a]qu,

7.4 Diagnosis Guide

226 z/VM

Trace Table Codes

asuas
(a40) o019 (4OIVAIQY) 0=22 ‘1duueyogns
1sanbay uonesado | ssalppy MGYOI 2AIY ansA3adlAIan3aay 8€08 I4IdOH 1ea107 1eis
(840) o019 €=00 ‘|auueyoqns
1senbay uonelado SS8IPPY MEHOI ansA3adlAIan3aay £€08 SOIdOH |eaigo1 Heis
T=02 ‘18uueyogng
00 00 00 00 00 00 00 00 00 00 00 00 SS2IPPY MFHOI ansA3adlAIan3aay TE08 SOIdOH edigo1 Hels
(a40) 2019 (4OIVAIQY) 0=20 ‘|auueyogns
1senbay uonesad | SS2IPPY MEYOI SAIOY ansA3adiAIan3ay 0€08 SOIdOH 1edigo7 Hels
€=00 ‘|auueyoqgns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ansA3adlAIan3ay €208 SOIdOH 1821807 Ajipon
T=00 ‘1duueyogns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ansA3adlAIanIay TC08 SOIdOH 1821807 Aj1poIW
c-T
(MOINd) SP40p 1043U0D 0=22 ‘1duueyogns
9 PJIOM MO 1uswageuely yied ansA3adlAIan3aay 0208 SOIdOH 1821807 AjIpoIN
(4OIVAIQY) €=00 ‘jduueyogns
00 00 00 00 00 00 00 00 00000000 | SS8IppY MAYOI 8AdY ansA3adlAIan3aay €108 SOIdOH 1e21807 yeH
(4OIVAIQY) T=20 ‘|auueyoqns
00 00 00 00 00 00 00 00 00000000 | SS8Ippy MEYOI 8AldY ansA3adlAIan3aay TT08 SOIdOH 1e21307 yeH
(4OIVAIQY) 0=20 ‘|auueyogns
00 00 00 00 00 00 00 00 00000000 | SS2IppY MEYOI AIOY ansA3adlAIan3ay 0T08 SOIdOH 1eoigoT Jes))
(4OIVAIQY) €=00 ‘|auueyogns
00 00 00 00 00 00 00 00 00000000 | SS2IppY MEYOI 8AIOY ansA3adlAIan3ay €008 SOIdOH 1eoigoT Jes))
(4OIVAIQY) 0=22 ‘1duueyagns
00 00 00 00 00 00 00 00 00000000 | SS2IppPY MAYOI 8AIDY ansA3adlAIanIay 0008 SOIdOH 1eoigoT Jes))
snieisuun | ININXOVYD [TLNOXOVD ssalppy 1dnuaiug
[00|AJAAIAA | IALOYXOVD |[ANIAXIVD $S2IPPY AJAA A ssalppy AJAA X NEAWA J8umo X L06L ALOdOH pauoinosun J10A
yiduaeleq [s8eyy | LNINXOVI [1LNIXIVD ssalppy
MDJ [8p0oado MID | [ALIYXIVD |[ANIdXIVD SS2IPPY AJAA A ssalppy AJAA X NAAWA J8umo X 906L J10dOH | uonenwis 0/I 91IA
2T 8T 14" oT bo) v (xay) L3sd40
v+N €+N Z+N T+N
534 40 SINILNOD D34 40 SINILNOD 534 40 SINILNOD 534 40 SINFLNOD | N H3Y 40 SINILNOD ar 3dovul 31NAOKW IWVYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 227

Trace Table Codes

'z€z 98ed uo ,sa1ug a1kqg-179 10} SBPO) d)qe] 9dkel] ,, 39S 103V

'z 93ed uo sal3ug 91Aq-19 104 SOpO) 81qe] 9del] ,, 39S 1TV6

‘'z 93ed uo sal3ug 91Aq-19 104 SOpO) a)qel 9del] ,, 39S 00v6
) Wsg30

10} panlasa

Walr-o4p o aose 40AdOH a1 uonedwo) isod
. 79 (1eay)
WEI 10} pon1ossy V0L6 dVAdOH ydnuiayur Jeydepy

‘zcz 98ed uo sa3ug 914q-19 Joj SOpo) ajqel 9del],, 99S 0ovs

'z€z 98ed uo ,sa1ug a1kqg-179 10} SBPO) d)qe] 9dkel] ,, 39S 0€L8

'z€¢ 98ed uo sauiug a1kqg-179 10} SOPO) d)qe] 9Jel] ,, 39S 02.8

'z 93ed uo sau3ug 91Aq-19 104 SOPO) a)qel ddel] ,, 39S 0€£98

‘ze¢ 98ed uo salug 91Aqg-19 104 SOpO) ajqel 9del] ,, 39S 0298

‘zeg 98ed uo salug 914q-19 Joj Sepo) ajqel adel] ,, 99S T0S8

zez 98ed uo salug 91Aq-19 J0j SOpO) a)qel 9del],, 99S 00€8

'z 98ed uo ,sa1ug a1kqg-179 10} SBPO) d)qe] 9del] ,, 39S 0018
paAIaday
GT-0 So1Ag ejeq asuag 1NOSY0IIAIaAIaY 0408 I4IdOH | e¥eQ 9Suas O/1 1821807
(4OIVAIQY) €=2J ‘]auueyoqgns
00 00 00 00 00 00 00 00 00000000 | SSaIppV MGHOI 31OV ansA3adiAnIan3aay €608 I41dOH 1eo1807 3s91
(Mms3) (MSJS) piom T=29 ‘]auueyoqns
PIOM SNIELS papualxy snjels jguueyoqns ansA3aadlAnIan3aay 1508 I4IdOH 1eoigoT 1s81
(Mms3) (MS2S) piom 0=32 ‘18uueyagns
PIOM SN1eLS papuslx3y SNiels [suueyogns gnSA3adIAIaAIaY 0508 I4I1dOH 1821807 391
asuag
(a40) #2019 €=00 ‘|auueyoqns
i1sanbay uonelado SS8IpPpyY MFHO0I gnsA3ayIAIan3Iay g€08 I4I1dOH |edigo7 Hels
asuag
T=30 ‘1@uueyagns
00 00 00 00 00 00 00 00 00 00 00 00 SSaIppV MEHOI ansA3adlAIan3aay 6£08 I4I1dOH 1ea18o7 pels
oT 8T 1% ot bo] v (xay) 13s440

7+N €+N C+N T+N

934 40 SLNILNOD 934 40 SLNILNOD 934 40 SLNILNOD 934 40 SLNILNOD N Y34 40 SIN3ILNOD dI3dvil I37NAON JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

228 z/VM

Trace Table Codes

8x ox ox ax ax 0004 ex | 90®IL BRIQ 9DINIBS WA
‘'z 93ed uo sal3ug 91Aq-19 104 SOpO) 81qe] 9del] ,, 39S 90T)D
puasn
WAL 0} panosay it
6702 J4WdOH sunfely pajred
‘WEI 10} pantasay L¥0D AdWdOH | Jayng jauuey) a1edo
‘WEI 10} pansasay 902 C4WdOH Jayjng jauuey) 1sa]
‘INGI 10} POAISSSY eiEd
G700 C4WdOH | Jayng 1auuey) anoW
WBI 104 poAESSY 00 vm“nuwn Jayyng JauuRy TRUSIS
‘INGI 10} POAIBSaY 184ng
€V00 AdWdOH Jauuey) atedald
"WEI 10} pantasay 3100 V4WdOH | 19uueyogns DS Jes])
‘WEI 10} pantasay atoo V4IWdOH | 19uueyaqng DS 1saL
"INGI 10} paAIasay 1suueydqns
JT02 V4WdOH DS 81015
WBI 104 porESSY 4100 V4IWdOH %M_\,,h_m\m_o%%_\m
‘WGl 10} pansasay VY100 V4WdOH o1e)S 98BSO 1S9
"WEI 10} panIasay 610D 94WdOH a8essaly puas
‘ceC oded uo Solu3 m;o_-v@ 10} S9p0) 91qe] adel] ,, 995 TT0OD
‘cEC oged uo Solu3 m;o_-v@ 10} S9p0) 9|qe] adel] ,, 995 0T0D
‘cEC o8ed uo «Solug otﬁ-ﬁo 10} S9p0) 9)|qe] adel] ,, 99s 7099
‘ceC o8ed uo «SOHIU3 m;o_-._wo 10} S8p0) 8)|qe] adel] ,, 98s 0099
oT 8T 1% ot bo] v (xay) 13s440
P+N €+N TN T+N
934 40 SLNILNOD 934 40 SLNILNOD 934 40 SLNILNOD 534 40 SINILNOD | N D3 40 SINILNOD aI 3oVl 31NAOW AWYN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

Appendix C. Trace Table Codes 229

Trace Table Codes

00 00 00 0t 40 ‘500

00 00 00 00 10 (ETHdD)

JaquinN aN3av

passado.d
1snf @1 eINpo aN3gy

00 00 08 ‘00 00 00 00 SSaIPPY MAAVS SSaIPPY MAAWA | S!uuu alaym --, uuu,j SI XXX BIBYM -- XXX, 2084 dNSdOH 1x3 dwnpdeus
00 00 (€TYdD) JaquinN aN3gy a1 @NpolN aN3gy lou1e waishs
00 0Ot 10 500 00 00 08 SSaIPpY MAAVS SSaIPPY MAAWA | S!uuu aI8ym --, uuu,y SI XXX BIBYM -- XXX, TO84 dNSdOH | el paxoaur dwnpdeus
(€THdD) JaquinN an3gy a1 anpoW an3gy puewwo)
00 00 00 00 SSaIPPY MAAVS SSaIPPVY MAAWA | S!uuu 818y --, uuu,g SI XXX 9I9YM -- XXX ;) 0084 dNSdOH | elA paxoaul dwnpdeus

‘z€g 98ed uo _saiug a1Aq-19 10} Sepo) 8)qe] ddel] , 89S V0.4

zez 98ed uo _salug a1hq-y9 10} Sepo) 8)qe] adel] , 89S 80/4

Zcz 98ed uo sa1ug a1hq-19 10} Sepo) d)qe] adel] ,, 89S 90/4

‘'z 93ed uo sal3ug 91Aq-19 104 SOpO) 81qe] 9del] ,, 89S 0.4
gunpueH
329y aulyoe sulng
00 40v4 HOWdOH 11n4 88ed aoel|

(rewo4
a3ed Xyald S,1055920.d (DI2W) @p0o) 1dnaisjul dV1S) Jossadold A1anooay
00 00 00 00 palled jo ssaippy %98YJ sulyoe pajled Jo ssalppy TOvd HOWdOH | 10ss®20.d dois %o8y)
paddois
00 00 00 00 JI0W 00 00 00 00 oot4 HOWdOH %98 sI 10SS820.d
8% 8% 8% ox ax 6004 ax | 90BIL SBIQ 82IAIBS WA
8% 8% 8% ox 8x 8004 ax | 90B1] SeIQ 92IAIBS WA
8x 8x 8x ax ax £004 ex | 90BIL SRIQ 82IAIBS WA
8x 8x 8x ax 8x 9004 ax | 9OBIL SBIQ 9DINIBS WA
8% 8x 8x ax ax 5004 ex | ©OBIL SBIQ 9DIAIDS WA
ox x x ax ox 004 ax | 9OBIL SBIQ 92IMBS WA
8% 8% 8% ox ax €004 ax | 90BIL SBIQ 82IAIBS WA
8% 8% ox ox 8x 2004 ax | 90B1] SeIQ 92IAIBS WA
8x 8x 8x ax ax T004 ex | 90BIL SRIQ 82IAIBS WA
2T 8T 14" oT bo) v (xay) L3sd40
v+N €+N Z+N T+N

D34 40 SLINILNOD D34 40 SINILNOD D34 40 SINILNOD 534 40 SINILNOD | N H3Y 40 SLNILNOD aI 3ovil 31NAOW JWVN

(panuiuo02) sarijua aiAg-z ¢ 10f Sapod 230 "ST a]qu,

7.4 Diagnosis Guide

230 z/VM

Trace Table Codes

JaquinN puagy

dI 3A0n

pusqy 4os

dVNS,D ssaippe NdJ 8ulreq SSaIPPY MAAWA Sl uuu 1Y --,uuu,d SI XXX 9I8YM == XXX,D 4444 NEVdOH | 8uung eoel) puadsng
'zez 98ed uo _salug a1hq-y9 10} Sepo) d)qe] adel] ,, 89S a444
ssalppe NdD ua4ind

‘(duou Ji 4444 40) puaqy Hos

dVNS, Q| ssaippe nNdd sholnald SSaIppyY MAAWA | (79-2€ s¥d) %2010 AOL (T€-0 s1@) %2010 AOL 3344 NEVdOH 181y 9oel] swnsay

ssalppe uiniay s,J91ed 00 00 00 00 SS9IPPY MAAWA | 48912 03 3s1d Jo Y38uaT | Jes)d o3 isnd jo ssalppy oov4 ddzdoH isnd Jasied Jes))

anjeA 1911e2 Jo ssalppe HX9 siy3 Joy 3sid 00000000 sAemje (dON) ystui4

TdINLVHIX XXXXXXXX _mm‘_ ,._VHW_ XXXXXXXX u_o .__u_um _._Hm XXXXXXXX m_ ws_m> XXXXAAAA ._erc:c X3 XXXX0000 o764 NXZdOH wc_wsom X3 :mU
anjea J8]]e2 Jo ssalppe 1IX8 s1y3 Joj isnd | sweljurew o3 yoeq juss

STIVILIX XXXXXXXX 1881 “fTYH XXXXXXXX 1O IpPE ‘TY XXXXXXXX 9P02 uIN}ay XXXX0000 Jaquinu 1IX3 XXXX0000 0€64 NXZd2oH ysiui4 uxg ned

anjea J9]]e2 Jo ssalppe 11Xd SIy3} 1oy 3snd 9p0od uInlal 8y} ysiui4

TdINLTHIX XXXXXXXX 188l “ZTYH XXXXXXXX 1O IppE ‘TY XXXXXXXX | O SoAjey yrog XxxXAAAA Jaquinu Hx3 XXXX0000 0264 NXZdoH aullnoy 1x3 11ed
anjea J9]]ed Jo ssalppe 11Xd SIy3 Joy 3snd MIHIX

TAINLTHIX XXXXXXXX 188l “PTYH XXXXXXXX JO IPPE ‘TY XXXXXXXX | 89U} JO SSDIPPY XXXXXXXX Jaquinu Hx3 XXXX0000 0T 64 NXZdOH | Hels auiinoy 11x3 11ed
anjea 1a11eo Jo ssalppe 1x@ siyi 4oy isnd 1X® SIY} 10§ MF1IX

STTVILIX XXXXXXXX 1881 ‘“TYH XXXXXXXX 1O IppPe ‘TY XXXXXXXX 1O SSBIPPY XXXXXXXX Jaguinu 11X3 XXXX0000 0064 NXZdIJH uels ux3 ned

2T 8T 14" oT bo) v (xay) L3sd40
V+N €+N Z+N T+N

53y 40 SLNILNOD 53y 40 SLNILNOD 53y 40 SLNILNOD 534 40 SINILNOD | N H3Y 40 SLNILNOD ar Idvul 31NAOKW JWYN

(panuiuo02) sariua aiAg-z ¢ 10f Sapod 290 "ST d]qu,

Appendix C. Trace Table Codes 231

Trace Table Codes

Note:

1. These fields are generated only by HCPPAH and HCPPAU. HCPVOD, HCPVOS, and HCPVIR generate
zeros (00 00 00 00).

2. CPSYSCD is filled in for non-APPC paths, Flags2 is filled in for APPC paths.

3. IOR|TRQSCHED - Bit seven in this field indicates whether this field contains the address of the TRQBK
(the bit is on) or the address of the IORBK (the bit is off).

4. If CC equals 0, the PTHBK Address is traced. If CC does not equal 0, the PTHBK could not be located
and the path ID requested is traced.

5. If a system error invoked a soft ABEND, which was set to SNAPDUMP by the SET ABEND command,
a value of 80 00 00 00 will be present. A value of 40 00 00 00 will be present if invoked by the
HCPABEND macro with SNAPDUMP as the defined ABEND type.

6. For Diagnose X'18' results, this is the DBCMAXSZ block size.
7. This flag byte is dependent on the operation type as defined by DBCSWTC2.
« When DBCSWTC2 bit 5 is on (X'04"), this field contains DBCDOPER
« When DBCSWTC2 bit 6 is on (X'02"), this field contains DBCBOPER
« When DBCSWTC2 bit 7 is on (X'01"), this field contains DBCA4SWT
« When none of the previous bits are on, this field contains DBC18SWT.

8. This field varies based on the temporary diagnostic code given to the customer by the VM Service
organization.

Trace Table Codes for 64-byte Entries

The following table summarizes the event-specific information that CP records in its trace table entries
from bytes X'OE' to X'3F', which are for 64-byte entries.

232 z/VM: 7.4 Diagnosis Guide

Trace Table Codes

Appendix C. Trace Table Codes 233

Trace Table Codes

(r)1sen

(v)ssalppy uior ‘(T)9¥ers n)
(P)sew | auinoy uolyedylian ‘(T)s8erd
wajysAs Suirediolied ‘(w)suonndo S101S 81sd14 40 | (¥7)p4oM 3007 dUAS ‘(T)8POIN~ P10 uonound 1SS
o8essa QUAS J0 s81Aq g 1suid | “(V7)Ss@ippe MaHAW ASWIddOH | so3els Jlaquiay ISS ‘(7)¥se "uuo) ‘(T)@pOWIND €06T W1ddoH uolyeziuolyouis
(7)sen
uior ‘(T)9reIs NnY
(v)rse 88ueyd ‘(T)s8erd4
aouelsur ‘(y7)3sel S101S 81511410 | ()P40 X207 JUAS ‘(T)®POIN~ P10 aguey)
0 0| weishgpajoauuo) | selels lequisiW ISS ‘()ASe "uuo) “(T)8POW™1n) T06T | W1ddOH Auaosuuo)
(r)Mse
uior ‘(T)s1e1s 1)
‘(T)s8el4 1sonbay
Oy uolyedyliap apo) S101S 81sd14 40 | (¥7)p4OM 3007 dUAS ‘(T)ePOW P10 uoyez|uoiyouAs
a8essaly JUAS Jo salfq g isii4 ISS L3S 1o 0187 uoseay uoljenieAs | saje}s Jaquidaiyl ISS ‘(F)%SeW "uuoy ‘(T)epoW™1n) T06T W1ddOH ajenjend
NG 104 poAlasay GzeT ysaljay 10d @IWAN
INEI 104 ponlasay vzeT AIPOIW 10d @WAN
NG 104 ponlasay €eet 91035 10d SWAN
NG 104 ponlasay zeet O/I ®WAN
INGI 10} panlasay T2CT 9101S IDd 1SOH
INEI 104 poAIasay 0zeT peo110d 1sOH
JOINAIAA YOISAIAA d0IdAIAA 00 00 00 00 uondnuiaul
OYOIAIAA 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 WdVd dIS | ans AIAA A3d AJAA T020 SOAdOH O/T VX 1enMIA
1s9nbay
23el0]S 93l JO
adA] Jayjouy
10} 98ed a8el01s
ssalppe 9314 pasnun
0 0 0 Sssaippe s,49]]e) vidd o8ed 1e0180] 350H 0LL0O 444dOH Ai3ualing asnay
ssalppe 28e101S 99.4 10}
0 0 0 ssaippe s,49]1e) vddd oged 1e2150] 1s0H 0SL0 444doH a8ed SXS Urelq0
Ody3naay ILXNA3QY 40IvAaaQy (A3ay)vY YN EW TN TIW
0 00 00 00 00 00 00 00 00 00 00 00 00 00000000 | 49ns A3ad A3a A3dad T0OSO I41dOH uondniaul O/1
8¢ o€ 8¢ (174 8T oT 3 (xay) 135440
v+N €+N ¢+N T+N 53y I —.ndow IWYN
G+N 934 40 SINILNOD | H3¥ 40 SINILNOD | H3Y 40 SLNILNOD | 93 40 SLINILNOD 40 SINILNOD | N93¥ 40 SINILNOD | 3oVl

(Z 1ow.i04) Sa11Jua 3)Aq-19 10f SaP02 39D4["9T 3)GDL

7.4 Diagnosis Guide

234 z/VM

Trace Table Codes

(r)Msen
ulor ‘(T)9¥eis n)
‘(T)sseld
(2)24 1dA3 ‘(2)8p0od S101S 81sd14 40 | (¥7)p4oM 3007 dUAg ‘(T)aPOIN~ P10
0 0 Juang ‘(7)o4ez | serels Jaquisin ISS ‘(7)¥sel "uuo) ‘(T)@pOWIND 0T6T W1ddOH | Ssnnsay juanz ulor
(P)se
uior ‘(T)ere1s 4n)
‘(T)s3eld
(L)odaz Elslele} S101S 81sd1440 | (¥7)p4OM 34007 dUAS ‘(T)@POIN~ P10 8po) uINkdy
0| ‘(T)Hoqe Jojuoseay uinidy ASW1ddOH | soiels laquisiy ISS ‘(7)¥sel "uuo) ‘(T)@pOoW1IND 606T W1ddOH uolyeziuolysuis
(r)Mse
uior ‘(T)ere1s 4n)
‘(T)s8eld
(P)MselW 810N STA | (P)¥Sel Iseopeoig (T)uonoung S101S 81sd1440 | (¥7)p4OM 3207 dUAS ‘(T)@POIN~ P10 uoIouNn4 194208
‘(P)vse asuodsay oN ‘()24 ¥D0SdIH 19008 ‘(L)oto7 | sere1s Jequisiy ISS ‘(P)Mse "uuo) ‘(T)aPON1IND 806T W1ddOH 9z1uoJyoUAs
(r)Msen
ulor ‘(p)sreis un)
‘(T)s8el4 1senbay
()oY S101S 81S414 40 | (¥7)p4OM 207 dUAS ‘(T)8POIN P10 uoyez|uoiyouAs
0| MXO0SdOH ‘(¥)olez asuodsay 810 | sarels Jaquisiy ISS ‘(7)¥Sel "uuo) ‘(T)@pPOIW ™ 4InD L06T W1ddOH oy Aiday
(r)Msen
uior .A._Uwumuwltju
(p)enjea gy | (T)erels paisenbay ‘(T)s8eld
s,J8)1e) ‘(v7)ssaippy ‘(T)ere1S P10 S101S 81sl14 40 | (¥7)p4oM 3207 dUAS ‘(T)aPoIN~ P10
0 uiniay sJafjed | (T)adAL 11ed (G)osez | serels Jaquisiy 1SS ‘(F)%SeW "uuoy ‘(T)apoNIng 906T WT1ddOH | @8uey) ajess 1eo07]
(r)Mse
uior .A.SB.EMI__:U
‘(T)s8el4 1senbay
93esSa 93esS9|A JUAS 93esSa S101S 8111410 | ()pP4OM 007 dUAS “(T)8POIN~ P10 uoI3eZIU0IYDOUAS
JUAS 0 2 03 LT saiig J09T 016 S81Ag | OUASJO g 01T selhg | se1els IequIBly ISS ‘(7)¥se "uuo) ‘(T)@pPOWIND S06T W1ddOH 91909y
(r)Msen
ulor ‘(T)are1s 4n)
‘(T)s8erd
293essa 93essa|z JUAS 293essa 531015 81541440 | (f7)PJOM X007 dUAS ‘(T)POW P10
JUAS 0 Z 03 LT saikg j09T 016 s031hg | OuAS 0801 T SeIAg | serels aquisy ISS ‘(F)Se "uuoy ‘(T)@pOWIND 06T W1ddOH | @suodsay anleday
8¢ o€ 8¢ (174 8T oT E| (xay) 135440
v+N €+N ¢+N T+N D3N aIl Sinaow IWYN
G+N D34 40 SINILNOD | H3¥ 40 SINILNOD | H3IY 40 SLNILNOD | 93 40 SLINILNOD 40 SINILNOD | N93¥ 40 SINILNOD | 3oVl

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

Appendix C. Trace Table Codes 235

Trace Table Codes

00

DYI474SN
s3ey} R
uolounigng
310\ 9poJ uiniay BLAEREN)
000000001 js3np3y~aNas 153N03YAN3S 13A3T¥SN s211ed 1seIpEROIG PUSS
00000000 M00SdOH MJ0SdOH 1SX1dUSN aryasn | josseippy sysndsn| 0S6T| HSNdOH 195905 %gYSN
(T)8¥€1S”MaN " INdINO
‘(T)e¥e1s P10 1ndinQ
‘(T)sAs~dsns"wnN~IndinQ
‘(T)epog uiniey (p)IppY~ win1ay
‘(T)e1e1s dad indino a1qe} walshs a1qe1 walsAs 1SS a1qe1 welsAs ISS | ‘(T)91e1S yad indur
‘(T)SHVT4DAS dad ut sio)s | 1SS ul s3o]s ysie isiy ul s101S Y319 151y u1 $301S Y319 151y ‘(T)s8el4
‘(T)91e1s” maN~indur 1y319 154y JO saje1s 10 sajels Jsquiaw JO sajels Jaquisw JO sajels Jaquisw ‘(T)@POIN~ P10 ¥ad ul
‘(T)ere1s P10 Indur | Jequiswi IS ndug ISS 1ua.4ind 1ndinQ ISS uauno indur | 1SS snoiasad indug ‘(T)poW—InD ST6T ddddOH | 98uey) arels 1edo
(7)¥isen
ulor ‘(T)areis 4ng
‘(T)s8el4
()049Z7 ‘(7)woishs S101S 81S414 40 | (¥7)p4OM ¥207 dUAS ‘(T)aPOIN~ P10 wa3sAs 18007
0 0 SulIeB81] Josey | SalelS BquIB W ISS ‘(7)SeW "uuo) (T)8pOW 1N vT6T W1ddOH | puadsng 0} pajjed
()¥isen
ulor ‘(T)areis 4n)
(9)ola7 ‘(T)s8erd4 UOI3eOYIION
hmwmmmwz _ucwn_wzw wmmmmwz Ucwamsw S10]1S g 1sl1d Jo Qwv_u_o>> 3207 Uc>w A._vabo_}_l_u_O _ucmo_msw e
0 40 s91Aq T 1XaN Josalhq gisiig | serels Jequisiy ISS ‘(F)%SeW "uuoy ‘(T)@pPOW ™ InD €T6T W1ddOH paniaoay
()Misen
(2)4equinN ulor ‘(T)8re1s™ang
101S WalsAg ajoway ‘(T)s8el4
aweN ‘(2)o49Z ‘(v)are1S S101S 81sd14 40 | (¥7)p4oM 3207 dUAS ‘(T)8POIN~ P10 aguey) aels
QEmewE_._. leaqliesH Ewuw\»w aloway MBN E®Hw>m aloway S9]elsS IaquiB|A ISS A._wvv_m.m_\,_ ‘uuo) .A._Um_uo_\,_l__su CT6T IN1ddOH E®Hm>m aloway
(7)Misen
ulor ‘(T)e¥eis 4y
‘(T)sseld
dweN 82IAI8S adAL 11ed S101S 81sd14 40 | (¥7)p4oM 34007 dUAS ‘(T)8POIN~ P10 s}nsay
9p0J uIn}ay 1B dIAISS | JO si8jdoeleyd 81sii4 | Jo siajoeseyd gisiid | sd8iels Jaquisin ISS ‘(7)¥sel "uuo) ‘(T)@pOW1IND TT6T W1ddOH [IEOESIISEN
8¢ (11 8¢ (174 8T oT E| (xay) 135440
v+N €+N ¢+N T+N D3N aIl Sinaow IWYN
G+N D3Y 40 SINILNOD | D3 40 SINILNOD | 9H3¥ 40 SINILNOD | H3Y 40 SINILNOD 40 SIN3LNOD | N93¥ 40 SINILNOD | 3OVil

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

7.4 Diagnosis Guide

236 z/VM

Trace Table Codes

00 00 00 00
00 00 00 00

00000000
00000000

00000000
0000

JAOWdSXd
JAOWISXd

1V1SdSXd
1V1SISXd
WNN1SSXd
ASINTISSXd

JWVN WILSAS

00 00 00 00
00 00 00 00

€G6T

4SNdOH

paniaday aguey)
91e1S Mgysn

00 00 00 00
00 00 00 00

00000000
00000000

ardasn XaamwA

0=Xg4sno1y #
00 = 9V147dSN
00

SLAERIN)
0000
0=Xg4sno1y #

00000000
10

IV1494SN
T3IATTESN
1SX1ddSN

Ma01y ou yl
00000000

00000000
10

ardasn ¥aond

J1371eD 0 ssalppy
00000000

¢s6T

4SNdOH

11ed
uol}ed0]1ay Mgysn

00 00 00 00
00 00 00 00

00000000
00000000

apo) uiniay
ADJ3IH ¥IOSdOH

MgHAW ou }I
00000000
00000000

10

00

IV1494SN
T3IATTESN
914084SN
45084sn
TIA108d8SN
11S284sn

MEHAW ou I
00000000

00000000
10

aryg3asn

J1371eD 0 ssalppy
NGHd ou JI

00000000
10

sdsnysn

TS6T

4SNdOH

2A1909Y
19905 Mgusn

8¢

(114

8¢

(114

8T

(1)7

(xay) 135440

S+N 934 40 SIN3ILNOD

v+N
934 40 SLNILNOD

€+N
934 40 SLNILNOD

¢+N
934 40 SLNILNOD

T+N 93y
40 SIN3ILNOD

N 934 40 SIN3ILNOD

ai
Iovil

37INAON

JWVYN

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

Appendix C. Trace Table Codes 237

Trace Table Codes

AgHEaW ou JI

00 00 00 00
00 00 00 00
10
00
OV1498SN MEHEW ou i 18778 J0 SS81pPY
T3IATTESN 00 00 00 00 MEGHEI ou 4
914084sN 00 00 00 00 00 00 00 00
apo) 45084sn 0 10
00 00 00 00 00000000 | yinyey x1438~ANIS TATOHSN 10113 Aldoy
00000000 00000000 SJ0SdOH 115084sn ary3asn SUSNUSN LS6T| dSNdOH 195208 MgYsN
00 00
sgeyy R
uonduNgng
910/ 9poJ uiniay 00 00 yse Azoy
00000000 1S3NOIN"ANIS 153N03IN"ANIS Aoy
00000000 MD0SdOH MD0SdOH ISXTdSAS ar¥asn 00000000 | 956T| ¥SNdOH| 1seopeoigygusn
00
Oy 1474SN
sg3e)} 3 uolouNgNS
INSEAHS _ @100 apog uInjey 9Y1494SN 19]]ED 40 $5RIPPY
153n0O34 " aN3s 153nd3d AN3s 13A37dSN
IV4CdHS %D0SdOH SJ0SdOH 1SX1d¥SN am¥asn sysN¥sN GS6T| dSNdOH | aunyreq utor ygusn
S1SIX@ 2uoU JI
00 00 00 00
10
1ned
ureyINgYSNIAIL
10 Ssaippy 00
S}SIX3 SUOU I oYI147dSN
00 00 00 00 00 00
10
BLAELENY 197118 10 SSa. a3el015 1o
00 00 00 00 0000 00 00 1011 01 9GHSN ~3A3THeN 153 40 8581PPY A1u3 e1qe] yseH
00000000 00000000 18U JO SSaIppY 1SX1ddsSN aryasn 00 00 00 00 vG6T| usNdoH 919190 YQYSN
8¢ (11 8¢ (174 8T oT E| (xay) L3sd40
p+N €+N Z+N T+N D3y arl Sqnaow INYN
G+N 934 40 SINILNOD | H3¥ 40 SINILNOD | D3Y 40 SLNILNOD | HIY 40 SLNILNOD 40 SINILNOD | N D34 40 SINIINOD | IoviL

(panunuoo) (z 3pw.io) salijua ajAq-9 40 Sapod 220.] ‘9T dJqDL

7.4 Diagnosis Guide

238 z/VM

Trace Table Codes

pajesauagd sem
Aijus s2e1} 81aym
ssalppe a1Ag-1

00 uoljeayliou
WdX1dSAS J00WdSXd a8ueyo ajels
WOX1dSAS 300WISXd ISS Ue paniadal
1SXT1dSAS uoleziuolyouhs
0 0 0 NCXTdSAS [NOASYVA OISYVA 20 €002 | IWQYdOH | urewop uoied0)ay
pajesauag sem
Asjus aoe1] D19YM LVXdOH
ssaippe alAg-v CTddOH
00 DT4dOH
IWNdX1dSAS 300WdSXd 374dOH
WOX1dSAS 300WISXd Wa¥doH
1SX1dSAS NOTdOH %20]
0 0 0 NCXTdSAS [NOISYVA OISYVA 20 z00¢ QyvdoH WIXVVA 9ses|ay
pajesauag sem
Aijus soe1} a1aym
ssaippe alAg-v AIXdOH
00 CT4dOH
IWNdX1dSAS 300WdSXd DT4dOH
WOX1dSAS 300WISXd Wa¥doH
1SXTdSAS ND1dOH Aeqois 320
0 0 0 NCXTdSAS [NOISYVA OISYVA 20 TO0T QyvdoH NIXVVA 24inboy
palelauad sem LVXdOH
Asjus soe1] D19YM CT4dOH
ssalppe a1Ag-v OT4dOH
00 374dOH
IWNdX1dSAS 300WdSXd V14dOH
WOX1dSAS 300WISXd Wa¥dOH
1SX1dSAS NDTdOH A1ea0) 300)
0 0 0 NCXTdSAS [NOISYVA OISYVA 20 0002 QyvdOH NIXVVA 24inboy
0000
sdeyy g
uolounigns
INSCAHS _91on 9po) uIniay 0000 18]]eD J0 SSIPPY
1S3nd3Y aNas 1s3n0G3y anas dn
IV4ACdHS MI0SdOH NI0SdOH 1SX1dSAS WILSAS sSdsSNYSN 8561 dSNdOH | -deim utor Madsn
8¢ o€ 8¢ (174 8T oT E| (xay) 135440
v+N €+N Z+N T+N D3y a1l .ndow IWYN
G+N D3Y 40 SINILNOD | D3 40 SINILNOD | 9H3¥ 40 SINILNOD | H3Y 40 SINILNOD 40 SIN3LNOD | N93¥ 40 SINILNOD | 3OVil

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

Appendix C. Trace Table Codes 239

Trace Table Codes

pus
0} 8]130443 8y} 10}
1em 0} WISSddOH

(921n0S ¥O7)
pawnsal sey anow

pafed dMYT4dIH ssalppe | 3jusas segessaw anow Alows| 1911104y L
0 0 0 uaym aol uinjal s, 191e) Alowsauw jo yunoy z01e d1ddOH pus-01-pu3
00000000
(®4n0s ¥91)
a11104y1 paniadal a3essaw
921nos pajsanbal uoleni}oeaq
uoljeul}sap sawil | 1uas sa8essawl anow 191104y L
0 0 0 0 jounoj Asowaw jo junoy T0TC 414dOH pus-01-puz
00000000
a11o1y: (®21n0S ¥97)
921nos pajsanbal paAIgdal a3essaw
uoljeul}sap sawil | 1uas sa8essawl anow UOI1BAIIDY 81104y
0 0 0 0 jounoj Asowaw jo junoy 00T¢ 414dOH pus-01-puz
pajesauagd sem
Aijus s2e1} a1aym
ssalppe a1hg-v
00
WdX1dSAS 00
WOX1dSAS 00
ISXTdSAS es
0 0 0 NCXT1dSAS | NO3ISYVA OISYVA 20 G00¢ VT4dOH paire; NNMIXdOH
pajesauag sem
Aijus s2e1} 819ym
ssalppe a1Ag-1
00
WdX1dSAS 00
WOX1dSAS 00
ISXTdSAS 1180 1N}SS829NS
0 0 0 NCXT1dSAS | NO3ISYVA OISYVA 20 700¢ VT4dOH NNMTXdOH
8¢ o€ 8¢ (114 8T ot 3 (xay) 13s440
v+N €+N C+N T+N D3y ar 31NaoN JWYN
G+N Y34 40 SINJLNOD | Y34 40 SINILNOD | 934 40 SLNILNOD | 934 40 SLNILNOD 40 SIN3LNOD | N D3¥ 40 SINILNOD 30Vvdl

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

7.4 Diagnosis Guide

240 z/VM

Trace Table Codes

Aiug 1S 01

133Ul0d SWEN uoIjoun4 Baly 9nes 29)e) ssalppy 991je) | SSaIppy ealy anes ssalppy Ja)ed Vst (snourep) | j1ed uonoung 9 X
JBALIP 92IASP Ul
133ul0d SWEN uoljoun4 ealy anes aa)e) ssalppy 99)e) | SSaIppy ealy anes ssalppy Ja)ed V8T (snourep) | e uonoung 9 X
Jajuj0d sweN uolound Baly 9NeS 99118D) ssalppy 99]1e) | Ssalppy ealy anes SsaIppy Ja)1ed 168¢ (snouep) | 11e0 uonoung 9 11X
919)dwod 03 saged
agelols Alerjixne ananb pajed (824n0S
jo 8uissadold | 8y} uo sygaod 40 YH1) dwnsal
snouoJyouhse | uno) ‘Suissasoid 01)1em 1vad
104 11em 0} SNOUOJYIUASE 10} Suimole ‘paysiuy
pasned Mdd0ddoH Suiem s31d | 1ues sefessaw anow sey Jossadold
0 0 0 usym 4oL 40 JaquinN Alowaw Jo 3uno) 90Tz | QOddoH XNy Uo safed,
s)Yg0Ssd Suissadoud
dooj 01 pey
3unnoJyIul | WISTYdOH Sawi jo
1e2180] wioylad o} juno) ‘guissasoid (924n0s
HL1IOMdOH pajoaul SNOUOJYIUASE 10} 497) pawnsal sey
1814 WOSTYdOH Suiyrem s31d pananb | juas sagessaw anow Mem 1vQa 91104y L
0 0 usym aol jolequinN [sMEOSd 40 3uno) Alowaw Jo uno) S0T¢ ST4dOH jqur 1earSol
0000 0000
(924n0S
uissaoold Yo1) pawinsal
unJJano unJiano SNOUOJYIUASE 10} sey Joyjem
un1JaA0 XUl 182130 B pajoalap J,usem yui) 1eaiso) Sem yul] 1ed180) Suiyiem s31d pananb | juas sedessaw arow MaWDHd 911104y L
158] g4INT8dOH Usym @Ol | @yl sawi Jo Juno) 8y} sawil Jo Juno) josaquinN | sYE0Sd 40 3uno) Atowsw o 3unoy v0TC WT4dOH Nury 1eaido]
00000000
(924n0s
Suissaoold 497) pawnsal sey
21104y} unJaJano UunJJano SNOUOJYdUASE 10} 10ss8%04d , XNy uo
3ul] 1e2180] 8y} uo 3upo0iq 3,usem yui 1eaigo) Sem yul] 1ed180) Suiyiem s31d pananb | juas sedessaw anow sagded,, 911104y L
ue8aq HAA0ddOH Usym QOL | 8ys sawi jo uno) 8y} sawiil Jo Juno) josaquinN | sYE0Sd 40 3uno) Atowsw yo unoy €0TZ| QOddoH Nur 1eaido]
i o€ :14 (114 8T ot 3 (xay) 13s440
v+N €+N C+N T+N D3y ar 31NaoN JWYN
G+N Y34 40 SINJLNOD | Y34 40 SINILNOD | 934 40 SLNILNOD | 934 40 SLNILNOD 40 SIN3LNOD | N D3¥ 40 SINILNOD 30Vvdl

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

Appendix C. Trace Table Codes 241

Trace Table Codes

ssalppe s,Jaulerqo

Ssalppe 3207

ssalppe
uinjal s Jaje)d

%20]
2y} Jo ureiqo ay}

320] 8y} O Ulelqo

XVNASdOH
BIA AISN]OXT

0 00 00 00 00 00 00 00 00 00000000 | 94049 AMOOTINAS | 3YildHe AMIOTNAS TovE NASdOH %007 uIds 199
ssalppe
ssalppe s,Jaureiqo ssalppe %207 uIn}al s, Jaed 1901
81 o ureiqo ayi 320] 8y1 JO ulelqo SAISN|OX3
0 00 00 00 00 00 00 00 00 00000000 | 940499 AMOOTINAS | SYiIdHe AMIOTNAS oove NASdOH %007 uIds 199
'GTY Ul X3 UO anjeA
8y} suleiuod shkempe
pJOMI]IN} PUODSS BY |
"9p02 uJnial 8y}
SUIBIUOD PIOMINY JBOALIP
151y ay1 ‘paonpoud 92IA9P Ul UIN}aY
J91Ul0d SWep uojund Baly SARS 99]1e) SsaIppy 99]e)d S| 9p0J uInjal eI ssalppy 4918 1902 (snorrep) uoiung J X
'GTY Ul 1IXd UO anjeA
8y} sulejuod sheme
pJOMI]IN} PUODSS BY |
"9p02 UJNn}al 8y}
SUIBIUOD PIOMIINY
151y 8y} ‘paonpoud 10443 ‘uiniay
J91Ul0d SWep uoj3und Baly SARS 99]18) SsaIppy 99]e) S| 9p0J uInjal eI ssalppy J49]1eD Tvoz (snorrep) uoioung J X
'GTY Ul 31X UO anjeA
9y} Suleluod shemie
pJOM|IN} PUODSS BY |
"9p02 UJNn}al 8y}
SUIBIUOD PJOM|INY
1544 8y} ‘paonpo.d uiniay
J91Ul0d SWeN uoi3ound Baly 9AES 93]18) Ssalppy 99)e)d S| 9p0d uInjal eI ssalppy 918D 16T (snorrep) uoioung J X
00 00 00 00
ONQOddIH
UoI}PUOI UNJLIBAO wou} 3y ,81104yi, (824n0S ¥Y97)
3uided/ygaod e uo 2y} paniadal pawnsal Jayjem
%9019 03 WOSSddOH (MdLT4dOH) NEINDd ‘PeAj0sal
pa1ed dMAO0ddOH ssalppe | Joxem MgINDd 9yl | 3Iuss sagessaw anow UOI3}IPUOD UNJIBAO
0 0 uaym qol uinjal s,J8ed Sawl} JO JUN0) AJjowaw j0 uno) L0TC d0ddOH 3uiged 1o ¥gqod
i o€ :14 (114 8T ot 3 (xay) 13s440
v+N €+N C+N T+N 953 ar 31NA0W INYN
G+N D34 40 SINILNOD | 934 40 SLNILNOD | 934 40 SLNILNOD | D34 40 SLINILNOD 40 SINJLNOD | N D34 40 SLNILNOD | 3dVil

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

7.4 Diagnosis Guide

242 z/VM

Trace Table Codes

ssalppe s,Ja)e)

4SNNYX4d
:€9-¢€ sigd
1V1SHX4d
‘TE-vC sHg

J1V1SXdd :€¢-9T sHg

IdA1Xdd :ST-8 SHE
4v10dX4dd :4-0 s¥g

T09¢€

O9dWdOH

I13d1 ysnoiyy
uondnuiaiul
-joed]-guluiep

‘INGI 10} panlasay

LTVE

IXSdOH

2AISN]OX3
03} p1aH %007 uids
paJteys aguey)

‘WGl 104 paniasay

9TvE

IXSdOH

paJeys
03207 uids
aAISN)ox3 a8uey)

‘NGl 104 paniasay

STvE

IXSdOH

yoojuidse
JO aJeys e asea)ay

‘INGI 10} paAlasay

vive

TXSdOH

SYIXSdOH
eIA Y007 ulds
e JO aIeyS 199

‘INGI 10} pantasay

ETVE

IXSdOH

%207
uids e jo aleys 10H

‘INGI 10} panlasay

(44743

TXSdOH

9AISN]IX3

P18H X207
ulds e asea)ay

‘INGI 10} panlasay

TTve

IXSdOH

XVIXSdOH
BIA 9AISN]OXT Y007
uidse1en

‘WGl 104 paniasay

0Tve

IXSdOH

SAISN|OX3
o0 uids e 199

Ssaippe s,19s5e9]9Yy

00 00 00 00

ssaippe ¥207

00 00 00 00

ssalppe
uinial s, Jaed

00000000

390]
8y} 10 aseajal ay}
910439 AMOOTINAS

%20] 8y} o asea)al
9yl 1aye AMIOOTNAS

cove

NASdOH

SPOW
BAISNOXT WOl
3007 uidg asesjay

8¢

(114

8¢

(114

8T

(1)7

(xay) 135440

S+N 934 40 SIN3ILNOD

v+N
934 40 SLNILNOD

€+N
934 40 SLNILNOD

¢+N
934 40 SLNILNOD

T+N 93y
40 SIN3ILNOD

N 934 40 SIN3ILNOD

ai
Iovil

37INAON

JWVYN

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

Appendix C. Trace Table Codes 243

Trace Table Codes

010 8pod
uinial dNJdNdIH
‘€9-ce sig
payJedun

Bulaq Jossao0.d Jo
SSaIppY :T€-0 skd

€T9¢€

JdWdOH
‘dSAdoH

Jossado4d yledun

0:€9-97 sug

4v10dX4dd
‘GT-8 sHd

144MdXdd :4-0 s¥g

(aanqrey

Bunjied) ¢ 1o (sse20ns
gunjred) 0 :€9-2€ sug
payled

3ulaq Jossadoud Jo
sseJppy (T€-0 s

¢19¢€

gSAdoH
‘OdIWNdOH
‘dSAdoH

ajels
11em payJled Jaiug

010 dp0od

uinial WSdOSdOH
‘€9-cesig
ssalppe
J1ossad0.d Jaysely
MaN :T€-0 sHg

T79¢€

4dIWdOH
‘OdWdOH

J191sBW YoUMS

sadA1 ndd
11E 40} ysew yJedun

40 £9-8% se1Ag

sadA1 ndd
e 40} ysew yredun

10 L¥-2€ soukg

sadA1 Ndd
11e 40} ysew ytedun

40 T€-9T solhg

sadA1 ndd
11E 40} ysew yledun

40 GT-0 saikg

0:€9-cc sug

yi18uay Ndd
yledun iTE-9T sug

ssalppe Jossadold
191Se :9T-0 sid

0T9¢

JdWdOH

ysew yJedun indug

0

0

uolouny puadsns
190 dwWi} pasde|]

awilj uolzoeal T1M

0:€9-vE sug

2p0d 11xd puadsns
-ILM i€E-CE SHg
J1VISXdd ‘T€-v¢ SHg
AdALXdd ‘€¢-9T sHg
puadsns-T] M Joyye
4V10dXdd ‘ST-8 Sig
puadsns-T] M a4040q
4V10dXdd :4-0 s¥g

¢09¢€

XSAdOH

uolsuadsng
uoixdnuialur-yoel]
-Suiulepn Jayy
uonindwnsay

8¢

(114

8¢

(114

8T

(1)7

(xay) 135440

S+N 934 40 SIN3ILNOD

v+N
934 40 SLNILNOD

€+N
934 40 SLNILNOD

¢+N
934 40 SLNILNOD

T+N 93y
40 SIN3ILNOD

N 934 40 SIN3ILNOD

ai
Iovil

37INAON

JWVYN

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

7.4 Diagnosis Guide

244 z/VM

Trace Table Codes

1NJ1SXdd JO01T0ONX4dd
Ssaippy ssaippy 3007 s8] oyloads
00000000 00000000 d3yH1001 1201001 18201 49-v9 8lpueH Hg-¥9 7009 MZSdOH | wiojield Jsurejuo)
1NJ1SXdd JO01TONX4d
Ssaippy Ssalppy MZSdOH Yo0)un ayioads
00000000 00000000 d3yH1001 1201001 18001 49-v9 8lpueH Hg-¥9 €009 SHJdOH | wlojield Jsuleiuo)d
LNDSX4d 90TONXAd Auz
Ssaippy ssaippy 3001unN oy1oads
00000000 00000000 d3yH1001 1201001 18201 49-v9 8|pueH Hg-¥9 2009 MZSdOH | wiojield Jsurejuo)
1NJ1SXdd J01T0ONX4dd
Ssaippy ssaippy 3207 oy1oads
00000000 00000000 d3yH1001 1201001 18201 49-v9 8|pueH Hg-¥9 T009 MZSdOH | wiojield Jsureiuo)
1NJ1SXdd J01T0ONX4dd
SSaIppy Ssalppy A1ju3g 3007 oyloads
00000000 00000000 d3yH1001 1201001 18201 49-v9 8|pueH Hg-¥9 0009 MZSdOH | wiojield Jsurejuo)
00000000
ans A3ayd
J0IvAIQY (A3Q¥)V uondnuiaiu]
0 0| (A3aA)V 00 00 00 00 00 00 00 00 00000000 A3A AJaY T0SS 1dIdOH niyL ssed 0/I
xyaud
Ne + Aujiqeded
SS3IPPVY MAANWA + U810 318V
Ssaippy ssaippy uolye|suel|
SSaIppY 1¥GISVY SS8.ppPY s,49118D 00000000 00 00 00 00 | ¥SOH INdiINQ Hg-¥9 lenuiA Indur 1g-v9 ocov 4LHdOH Ssalippy
(Annyssedans (Anyssedons
92saInb e J1 0197) 92saInb e y1 0192)
no - -
P] I iiouthrid I isiong ERDRRp S 4E.X-00.X SNdD e 1 11
1°0 - : ‘99sainb o3 pajiey ‘99saInb 03 pajiey} R T G -82T YHm 82saind)
awl| pasde|3 0:T€-0s1d 1ey1sNdd JO%sBW [18yl SNdI JOySseiN MSselW Ndd ndug "MselW NdD indug LT9€ g8SAdOoH NdJ 40 snsay
(s1ossadoud
payJed sepnjour) (s10ssa20.d (s1ossad0.1d
(s1ossad0.d pay.ed AEX-,00.XSNdD pax.ed sapnjout) pai.ed sapnioul) LNV
$dpNdUl) 4£4.X-,07.X SNdD -51055990.d ALX-07.X SNdD AE€X-,00X SNdD 9pod mme_ﬁ MaN :€9-95 sig SSEW 1 NdD 1
's10ss9204d pajenloe paleAlloe Jo ysew ‘SN Msew 'SNdD Msew NdJ-£9-95 s1d INWOVIDY -8¢T yum adueyd
JOXseWw NdJ duljuo uaLng [NdJ duljuo jualing NdJ duluo 1e81e| NdO dunuo 3agie] 0:95-0s1d P10 :TE-vC sug 919¢ OdIWdOH 19A3] Sulpeauy L
8¢ o€ 8¢ (114 8T ot 3 (xay) 13s440
v+N €+N C+N T+N D3y ar 31NaoN JWYN
G+N Y34 40 SINJLNOD | Y34 40 SINILNOD | 934 40 SLNILNOD | 934 40 SLNILNOD 40 SLINJLNOD | N 934 40 SINILNOD | 3JVil

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

Appendix C. Trace Table Codes 245

Trace Table Codes

HX3

SILVINAZ ININONAT ssaIppy ssaIppy 1UaA3 1eA DYy1oads

0 0 0000 00 00 00 00 00 00 YENAI HG-79 SIPUBH HG-79 | TZ09| 3zSdOH | wiopeld Jaureuo)

Aiu3

SILVINAZ IN3INONA3I sseuppy ssaIppy 1UaA3 1eA dYy1oads

0 0 0000 00 00 0000 00 00 YENAI HG-79 SIpUBH HG-79 | 0209 | 3ZSdOH | wiopeld Jaureuo)

LNDTISX4d JOTONX4d YT

IN3aNOLY1 sseuppy ssaIppy ajesojjeaq oyroads

0000 00 00 0000 00 00 Q3YHLLYT 31VISIV1 NEIVARI = SIPUBH HG-79 | 9T09| 1zSdOH | wiope)d Jaureuo)

LNDTISX4d JOTONX4d YET

IN3aNOLY1 sseuppy ssaIppy a1e20]y oyi0ads

0000 00 00 0000 00 00 Q3YHLLYT 31VISIV1 NEIVARI = SIPUBH HG-79 | ST09| 1zSdOH | wiopeld Jaureuo)
LNDTISX4d JOTONX4d

IN3aNOLY1 sseuppy ssaIppy yore 3o oyioeds

0000 00 00 0000 00 00 Q3YHLLYT 31VISIV1 NEIVARI = SIPUBH HG-79 | $T09| 1ZSdOH | wiope)d Jaureuo)

LND1SX4d J010NX4d ¥x3

IN3aNOLY1 sseuppy ssaIppy yarejun oy1ads

0000 00 00 0000 00 00 Q3YHLLYT 31VISIV1 NEIVARI = SPUBH HG-79 | €T09| 1zSdOH | wiope)d Jaureuo)

LND1SX4d J010NX4d Anug

IN3aNOLY1 sseuppy ssaIppy yarejun oy1ads

0000 00 00 0000 00 00 Q3YHLLYT 31VISIV1 NEIVARI = SIPUBH HG-79 | 2T09| 1zSdOH | wiopeld Jaureuo)
LNOJTISXdd JOTONX4d

IN3aNOLY1 sseuppy ssaIppy 1x3 yoye oyioeds

0000 00 00 0000 00 00 Q3YHLLYT 31VLSLIV1 NEIVARI = SPUBH HG-79 | TT09| 1zSdOH | wiopeld Joureuo)

LND1SX4d J010NX4d Anug

IN3aNOLY1 sseuppy ssaIppy yore oy1ads

0000 00 00 0000 00 00 Q3YHLLYT 31VLSLIV] NEIVARI = SPUBH HG-79 | 0T09| 1zSdOH | wiopeld Jaureuo)

INDTISX4d JOTONX4d 1201

Ssalppy SSaIppy a1e00]e9 g oyl10ads

0000 00 00 0000 00 00 Q3YHLI01 %201001 Y8207 HG-79 SIPUBH HG-79 | 9009 | MZSdOH | wuopeld saureuo)

INDTISX4d JOTONX4d 1201

Ssalppy SSaIppy 91e00]|y duyloads

0000 00 00 0000 00 00 Q3YHLI01 %201001 Y8207 HG-79 SIPUBH HG-79 | G009 | MZSdOH | wiope)d saureuo)

8¢ (11 8¢ (174 8T oT 3 (xay) L3s440

v+N €+N Z+N T+NDIY a| 31ndow —

G+N D3Y 40 SINILNOD | D3 40 SINILNOD | DIY 40 SLNILNOI | HIY 40 SLNILNOD 40 SINJLNOD | N D3 40 SIN3INOD | 3Iovil

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

7.4 Diagnosis Guide

246 z/VM

Trace Table Codes

QlpueH SNnlels 1000310.4d
(P19Y NN1 6€-9€ soihg :GT-¢T seiig
914q-T) 5dAL 8010 vv oiAg a|pueH JaquinN @auanbag Jayluspl

ssaippy 9210 :€v7-0v soikg Hod :gg-z¢€ saig laylend 102030.d laylen(100030.d TT-8 saikg 1sanbay 0100 L209 HZSdOH puewwo) 1S3S

a|pueH SNJe1S 102030.4d

P19y NN16E-9€ seikg GT-¢T seikg

914q-T®) 9dAL 8010 ‘v 21hg s)pueH JaquinN @ousnbag Jaynuepl
ssalppy 9210 :£v-0v seikg Hod :G€-2€ sokg Jaynen(j000301d Jagien(1000301d TT-8 seikg 1senbay 0100 9209 HZSdOH asuodsay 1S0S
VISV |
M1LVINAT 3IN3INONAI ssaIppy ssalppy a1e00)eaQ oy10ads
0 0 00 00 00 00 00 00 00 00 MEANAT H]-19 dlpueH 1g-19 5209 3ZSdOH | wlojreld Jaureiuo)d
BT =
M1LVINAT 3N3aNONA3 ssalppy ssalppy 91e20]))Y oY109ds
0 0 00 00 00 00 00 00 00 00 MANAI H]-179 dpueH Hg-19 7209 3ZSdOH | wlojeld Jaurejuo)
X3 Jueng
M1LVINAT 3N3aNONA3 Ssalppy ssalippy Aji3oN oy1oads
0 0 00 00 00 00 00 00 00 00 MANAT H]-179 dlpueH Hg-v9 €209 3ZSdOH | wlojpeld Jaureuo)
Alju3 uang
M1LVINAT 3N3aNONAI SSaIppy ssalppy AyiloN oyroads
0 0 00 00 00 00 00 00 00 00 MANAT H]-19 dpueH 1g-179 2209 3ZSdOH | wlopeld Jaureiuo)
8¢ (11 8¢ (174 8T oT E| (xay) L3sd40
v+N €+N ZHN T+N 53y aIl Sinaow IWYN
G+N D34 40 SINILNOD | H3Y 40 SINILNOD | 93 40 SINILNOD | H3Y 40 SLINILNOD 40 SINILNOD | N H93Y 40 SINILNOD | 3Fowil

(panunuoo) (z 3pw.io) salijua ajAq-9 40 Sapod 220.] ‘9T dJqDL

Appendix C. Trace Table Codes 247

Trace Table Codes

a191dwo)
UOI1eZIUOIYIUAS

anjep duAs apoN 3004 aOMdOH 9PON J4SI
Hels
uoI3eZIU0IYdOUAS
anjep ouAs apoN aoos 9OMdOH 9PON J4SI
yisual
asuas :ze-0¢ selkg
(paly @4Ag-T
e) 8dAL 010 :8¢ 81Ag snie1s 454 :4-7 seikg
snielis puewwo)
Beleg asusS jo HelS | ele(asuss Jo Hels ddd :L2-vC seikg Jaynen(4s4 Jaynen(4s4 454 :€-0 saiig 0€09 HZSdJH pu3 1S23S
P12y @1Ag-T I uoireunsag
e) 8e14 310 €€ a1Ag SSB]) 90INI8S /- so1hg
(P12 931Ag-T ©) *€¢-0¢ so¥g adAigns puewwo)
adA1 9100 z€ a14g puewwo) 310 | uondQ :6T-9T soihg NNT| uonesadQ :g-0 saikg 6209 HZSdoH Hoddns 150S
S8pod
juswageuew
uoIINd9Xd
aa0-vaMkg -
sainquue
Juswagdeuew
ysergag - € g -
sainquue
%sergao - ¢ aMg -
Jsquinu
8oualal
puewwo)
-Toig - JequinN
'aJe 7T 19540 NN1d04 :4-v saikg
e sa91Aq 1noy 8
¥e s83Aq noj ay | £-0 sakg
(JEM J01diosaq J01d11osaq JaquinN NN yidua puewwo)
91Ag-T ®) 2dAL 9100 puewwo) 424 puewwo) 424 do4 :TT-8 so¥hg ddd :€-0 saikg 8209 HZSdOH eled 0/11S0S
8¢ o€ 8¢ (174 8T oT 3 (xay) 13s440
7+N €+N C+N T+N 93y al 31NaoN JWYN
G+N 934 40 SINILNOD | 934 40 SLINILNOD H3Y 40 SLINILNOD | B3Y 40 SLINILNOD 40 SINJLNOD | N 934 40 SLIN3ILNOD JOVHL

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

7.4 Diagnosis Guide

248 z/VM

Trace Table Codes

ssalppy SSaIppyY apo) a8essa|y Indug
dWeN od uofeunnsad | MAMIS:€9-cEsHA | MEHEAW :€9-cEsHd | dweN Hod 921nos Al ®pOoN 921n0S 8o®l] 1£9-9G SHg 020L AOMdOH | Paysrewun 04SI
JaquinN @duanbag
puss :g9-g¢ s1d
Jaquiny @duanbag
SAI908Y (TE-9T sid
JaquinN 1uno) ad1neq Ssalppy MUl wody 821AeQg
SSaIPPY MAMNT 92IA8Q :€9-¢€ sid NUITIGT-0 sHg SWEN Hul NAAdT :€9-¢€ sHd a104L TOMdOH 108uu0dsIq J4SI
Ssalppy JaquinN SSalppy MUl 031 82IA8Qg
NAMNT :€9-¢€ sig 92In8Q 1€9-¢€ siid SWEeN Hur NAAQT :€9-¢€ sid V104 1OMdOH 108UuU0) J4SI
ERIVEIENg] JaquinN a3eJ01s ulurelqo
32010 0L SWeN Yul 92In8(Q :£9-81 sHg 6T0L MOXdOH Aejaq 048I
uoloung
pue j020301d 8po) al ssalppy pajieq a3essajn
a3essoN :£9-2€ sug 10113 1€9-¢€ sHg 9PON uoneunseQ AGHEN €9-¢€ sHd LTOL IOMdOH PUSS INASx 04SI
9po) SS3Ippv SSalppy SOMdOH INQ pawiL
9del] 1£9-9G sig SWeN Hod | MEMIS :€9-¢¢ sug MEGHEN €9-¢€ sig STOL AOMdOH 83essa| D4SI
sdel4
1011U0] 1€9-¢¢ sHg Ssalppy
MEGMDS €9-C¢ sHd
ssalppy pakoiisaq
1911eD TE-0 sug @I ®poN 1e81el SWweN Hod 194lluspI iTE-0 sHg ¢T0L SOMdOH 19908 J4SI
ssalppy
MEGMDS €9-C¢€ sHgd
pajeal)d
UMmouy jI sWwen 1od 194luspI iTE-0 sHg TT0L SOMdOH 18908 J4SI
$S3IPPV MEMIS
QI @poN uolreunnsaq Jajulod 32019 10 8p0J uin1ay ssalppy pajieq a3essan
9PON :£9-¢€ siid Jol3 1€9-¢¢ sug MGHAN €9-¢€ sig 0TOL JOMdOH puss J4SI
apo) nSen 1Se aoMdOH Ay1oN @8ueyd
adel] 1£9-94G sHg 1dI-€9-¢€ sid awill ISS MaN :€9-¢€ sHg 4004 9OMdOH Ayiaizoauu0) D481
8¢ o€ 8¢ (174 8T oT 3 (xay) L13s440
7+N €+N C+N T+N 93y al 31NaoN JWYN
G+N 934 40 SINILNOD | 934 40 SLINILNOD H3Y 40 SLINILNOD | D3Y 40 SINILNOD 40 SLIN3JLNOD | N 934 40 SLIN3ILNOD JIVHL

(panunuoo) (z 3pw.io) salijua ajAq-9 40 Sapod 220.] ‘9T dJqDL

Appendix C. Trace Table Codes 249

Trace Table Codes

ssalppy
MGMNT:€9-C€ sHg
snjeis

NuIige-ve sug
1uN0Y 821A8Q

unoj Buipuad 1uno) 8utpuad XY :€2-9T skd
JUN0) 91928y a3exoed o3essa Juno) 9dIA3Q
agexoed :£9-81 sHd :€9-gesud :€9-gesud X1:GT-8sHg
JUN0) 1ep JUN0J Pa1oIYL Juno) panand 1uno) Bundwes
wno) a1Ag paniaoay no) 81Ag jues ogexoed :T€-0sHg | o8essel :T€-0 skg | o8essay :TE-0 sHg 921A9Q :£-0 sHd G20L TOMdOH peoT ull 048I
Ssalppy
J911e) €9-¢¢ sig
a3essaly 10}
YSely uoljeunsaq puno4 juiod pu3
‘T€-0SHg | QI SpON uolreunsaqg SWEN HOod 821n0s SSalppy MGHA ¢0L AdMdOH | Sulyolen oN 24SI
JaquinN
90I1A8(:£9-81 SHg
ssalppy | JequunN 8ouanbag ’ ’ Jo413
MMM :€9-C€ sHg ‘€9-8F slig | s)lelad :g9-¢€ sig IX81uo) Ly-C€ sHd €¢0L MONdOH Jeullod ejeq 04SI
JaquinN @dausanbag
o3essa
:€9-8v7 sud
JaquinN @duanbag
ENERENE1I I
AUl iLy-2€ s1g
JaquinN @duanbag
ogesoed 'TE€-9T sHd
apo)
JaquinN aauanbag 80®I] :£9-96 Sig Jo4i3
9A1903Y 93e¥oed SSaIppyY SSalppy ssalppy ' JaquinN aouanbag
NUITIGT-0 sHg MNGMNT:€9-CESHA | MAMMT:€9-CE sl | MAAdT:€9-CE sHd Alold :Te-vz sug ¢coL MONdOH AGMMT D4SI
1uno)
1Un02say 91Ag :Lv-0¥ sug JaquinN
9p0oJ uiniay Ly-0v sud s8el4 :6€-9€ sug 92IN8(Q :£9-81 sHg
0/1:€9-8¥ sud S1S0S :6€-9€ sug 10443 1Ly-0¥ sug
(€:0) awod snieis 0/1
00 :Ly-TE sud 9susS :g9-¢esHd | SLSAQ:sg-cEsid -MJJ :GE-C€ sug 1X80) :Tg-0 sig TcoL MONdOH paidadxaun 4SI
8¢ o€ 8¢ (174 8T ot 3 (xay) 13s440
7+N €+N C+N T+N 93y al 31NaoN JWYN
G+N 934 40 SINILNOD | 934 40 SLINILNOD H3Y 40 SLINILNOD | B3Y 40 SLINILNOD 40 SINJLNOD | N 934 40 SLIN3ILNOD JOVHL

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

7.4 Diagnosis Guide

250 z/VM

Trace Table Codes

apod
uiniay :€9-z¢€ sig
yi8ua)
23essoy TE-8 sHg
uol3oalIp agessaw
1U81U0D 98eSSsaly JUB1U0D 83eSsay JU81U0D 88eSSsal juajuod agessa|y | o8esseN :£-0 sHg aWwleu 181]043u0) 00vL VYMSdOH J181]043U0)
dnuea)d
Al spoN JSew spoN T€0L AdMdOH $S0] 9PON J4SI
apod
uonoalid :£9-99 sig
ssalppy 8pod ssalppy ssalppy agueyd spow
MEMNT:€9-C€ s1d 98el10315 :£-0 s)g MMM (€9-C€ s1g MEAQ1 :€9-C€ s1g 0€0L MOXdIOH Hodsuel] 048I
JaquinN
92IA8(Q 1£9-81 sHg
o113 :Lp-07 sug
aIspoN
AI dPON :€9-0 sug 1X8u0) :TE-0 s¥g J¢0L WAaMdOH ayeandnq 24SI
JaquinN
92IA8(Q 1£9-81 sHg
o113 :Lp-07 sHg
Juang
1X8u0) :TE-0 s¥g acoL WAMNdOH | 410443 21A8Q J4SI
ualayng lo JaquinN
adA1 :€9-8¥ sig 9o1Ae(:€9-81 s1d
lo113 :Lp-07 sug
(ve-L7) (9T-6) (8-T) usqsweld o 10113 sweld
1944ng :€9-0 sud 19jjng :€9-0 s1g J8jng :€9-0sug | 19SHO :LP-TE sud 1X8u0) (TE-0 s¥g VeoL WAaMdOH punoqur J4SI
MNSeW 0 410 ¥se apo) 92110N asuodsay
YSe 1881l :€9-gg sHg | BN 1€9-ZE sHg | SNoIABId 1€9-Z€ sHd anjep ouAs apoN 9del] £€9-95 slg QI 8PON 824n0S 9¢0L 9OMdOH 9)e7 04SI
8€ o€ 8¢ (114 8T ot E| (xay) 13s440
v+N €+N C+N T+N D3y ar 31NaoW JWYN
G+N Y34 40 SINILNOD | HY3¥ 40 SINILNOD 934 40 SLINILNOD | 934 40 SLNILNOD 40 SIN3LNOD | N D3¥ 40 SINILNOD 30Vvdl

(panunuoo) (z 3pw.io) salijua ajAq-9 40 Sapod 230.] ‘9T dJqDL

Appendix C. Trace Table Codes 251

Trace Table Codes

a3el01s

SSaIppy SSaIppyY SSalppy %2019 paisenbay 9914 paudny
00000000 uiniay s,481e) MGAWA 103sanbay paugissy 8inosqy SPIOM 81qnoa 00000000 0€98 44VdOH 91Njosqy ureiqo
ssalppy agel015
Ssalppy Ssalppy %0019 32019 paudissy paisanbay 9914 paudny
SS3IPPV MAAWA S,43118D MAAWA Joysanbay paugissy ainjosqy 1821807 150H SPIOM d1qnoa XXX> X dI s2019 0¢98 S4VdOH | 1801807 150H ureiqo
00000000
ans A3ayd
40IvA3IQY (A3QY)V 1dnuisiug
0 0 0 00000000 00 000000 A3A A3AY 1058 I4IdOH 0/11e21807
) , QIWLlY ssaIppe GAWA
mww_wu;wym__momm_%uw“ MSd P10 Weioid 9poo uondnIBUL (Yoav/2)
Ssalppe jJuana-gunyealg uondaox3 ereq SSaIppY Hneq J1I 00€8 94ddOH | 1dnuisiur weidoig
apo) uondnuisiug
1euJa1x3 ‘ssalppy
MSd P10 1eutaixy NndJd “81aweled 00 00 00 00 (Yyouy
uondnuiaiug /z) uondnuiaiug
0 0 Jeulalxy X3, 2 0018 1X3dOH Jeulalxy
ssalppy
MNAAWA :€9-C€ sig
IV 910Wway e
01 83uey)d = TO08X
JVIA 810Way
B 9]ed0]lY = 0008X
IV 910Wway e
9Sed18Y = 008X
JVIW |ed07 e
20e1day = G000X
SS3IPpV OV JVIW |ed07 e
Jaydepy = Zox 9Sed18Y = 000X
SS3IPpPV OV JVIW |ed07 e
Sulpuad = TOX 03 98ueyd = TOO0X
0197 10 JaquunN SSaIppPY DV JVIA 18207
90IASQ 1BNMIA 1€9-81 s1d ua4ing = 00X B 9]1e20]lY = 0000X
019z 10 olaz SSalppy oJez 0492 10 SSalppy NOILYY3dO 1uswageue|y
%SelN WalsAs ISS :Ly-C€ sHg 10 @I 18sn J1dd41d MAASI ‘€9-¢€ SsHg 1o adA] :£-0sHg JVIN :€9-9T sHd ‘GT-0sud TovL WTANdOH SS3IPPY JVIN
8€ o€ :14 (114 8T ot E| (xay) 13s440
v+N €+N C+N T+N D3y ar 31NAON IWYN
G+N Y34 40 SINJLNOD | Y34 40 SINILNOD | 934 40 SLNILNOD | 934 40 SLNILNOD 40 SLINJLNOD | N 934 40 SINILNOD | 3JVil

(panunuoo) (z 3bw.io) salijua ajAq-9 40 Sapod 230.] ‘9T d]qDL

7.4 Diagnosis Guide

252 z/VM

Trace Table Codes

00 00
|4dMdOH 031 passed

wswisnipe yI (MSdD3IIS) MSd 1s8ny paisnipeun ssalppe MdaWA 1s9n3\
pausis | Y4dMdOH 01 }sanny | ssalppe AMLNI3IIS e 0} uondnuiaiul
00000000 00000000 | passedId pausis MGAWA FISA | | 4dM,D FJAOWWAIWA TOV6 ddMdOH | weigoid e ooy48y

ssalppe ssalppe

sen MAAWA JISA MEAWA 15enDy
(NXW'SA) (MSdHIIS) MSd 1S8NHA (421v/2) SPOIN 9IS
(TYIDSMAWA) THD Mopeys | £-0'Mg3IS 1senHy 00 00 00 00 NYM,D 00 00V6 | NYMOH | 1enuip utiesn uny

00
00 00 00 [Id¥19doH IdYI9dOH
03 passed (MSdDIIS) MSd 1seny paisnipeun einlseng e
DJTIIdHIDdOH 01 ssaippe MaaWA AMLNI3IS o3 uondnuiaiul
00000000 00000000 | possed)Id pausis | ssaippeda)ied | |,0dD,0 IAONWAWA coas HIDdOH | wes3oid e 108)10Y
00 00/0ddI9dOH JdYdIDdOH
01 passed 711 (MSdD3IS) MSd 1senD paisnipeun BIA 33N e
| 9dYTDdOH 0} : ssaippe YGdiWA AMINI3IS o3 uondnuiaul
00000000 00000000 | passeddld pausis | ssadppeJajied | |,0d9,0 IAOWWAWA 1048 UIDdOH | weioid e 10940y
9dYIDdOH
000000 BIA Hmmjm e
sang paisnipeu :

00 | DAYIDIH 03 (MSJOIIS) MSd 15eND PRISNIPEUN | oo5 5 ygqun AMINIIIS 01 uondnueu
00000000 00000000 | possed)Id pausis | ssauppeJaned | |,0d9,0 IA0WWAWA 0048 dIDdoH | wesBoud e 108)50y

AMLNI3IS

san NNY,D

(MSdHIIS) MSd 1s8nH $S2IPPE YIAWA
0 0 00 00 00 00 JAOWWAWA 0ovs NNYdOH [(Yd24v/z) Jasn uny
a3elo15
SSalppy Ssalppy Ssalppy 32019 pauiniay 9914 paudny
00000000 uiniay s,4a11ed MAAWA S 1211BD | pauiniay ainiosqy spJop a1qnoq 00000000 0€L8 H4VdOH aInjosqy uiniay
ssalppy 23el01S 934
ssalppy Ssalppy o019 32019 pauiniay pauiniay paugny jeaiso
SSIPPY UIN1dY S,19]1e) MEAWA s, 1911ed pauiniay 81n10sqy 1821807 1SO0H spJom d1qnoq 00000000 0CL8 S4VdOH 1SOH uiniay
8¢ (11 8¢ (174 8T oT E| (xay) L3sd40
v+N €+N ZHN T+N 53y aIl Sinaow IWYN
G+N D3Y 40 SINILNOD | D3 40 SINILNOD | 9H3¥ 40 SINILNOD | H3Y 40 SINILNOD 40 SIN3LNOD | N93¥ 40 SINILNOD | 3OVil

(panunuoo) (z 3pw.io) salijua ajAq-9 40 Sapod 220.] ‘9T dJqDL

Appendix C. Trace Table Codes 253

Trace Table Codes

ssalppy 41ddoH awelq agelo1s
0 0 0 | sseippy awe. jeay AYMSIOWYES | JLWYHAL 1821807 1soH 8044 31ddoH 9314 uiniay
(3s1 o8ed paniasal
98®101S 991} WO} saged
w:_mm_r: saged 10 Sjuajuo) Ssalppy Slualuo)d SSalppy paxoeg mwm._oym
SSIppy uiniay s,Jojed 1UN02) ANILXVSYH HI1VISWYL awield 81njosqy HI1VLISSXS 83ed 1821507 SXS 9044 dXSdoH 8814 urelqo
saged
S4NXSVYSH Sjuslu0) ssalppy Sjusu0) SsaIppy paxorg agelols
SSalppy uiniay s,19)ed 10 HJNXSYSY DILVISINYS swel4 a1njosqy HI1VISSXS a3ed 1821807 SXS 0.4 dXSdOH 9914 uiniay
(NIVINWOL)
(WY41SWIL) durod palaiep 9zIs ayoed urew 9191dwo) 1esls
SsoIppe YEHAS Hg-79 | swnsal ueds 1g-79 laquinu 1g-19 0 |en1oe 1g-79 8z|s 1831e1119-19 90T2 AW4dOH | 88ei01S urew damw
paxoojun g 98e101S Xo01Un
0 0| ssolppyowei{ieay | O SSalppy |enMIA SsaIppPy MAAWA SSaIppy s,4311eD TT0D SWAdOH auIYde| 1eNHIA
pa)o07 8g 93e101G Y207
0 0| ssalppyowei{ieay | OL SSalppy |enMIA SSaIPPY MEAWA SSaIppY S,43118D 0T02 SIWAdOH auIyde| 1enuIA
adI3Is THdD 1sanH (Yoay
1SNI3IS 91401318 (MSdD3IS) MSd ¥senH ssalppe YdaWA 40 sd31Aq 1noy Jspio /2) uondadiayu]
0 JAOWWAWA 00 00 00 00 -M07 00 00 00 00 0549 AYddOH | uondnisuI 1seny
AMLNI3IS
3a02131S
(MSd9DIIS) MSd ¥senH 0000
ssaippe MgdiNA 00 uonoNIIsuI
0 0 00 00 00 JAOWWAWA 0054 NNYdOH | 10N ‘uondadialu]
(20) ssalppe
ySeln weldoid 0] 10SS920.d
€9-gE sHg 1€9-z€ sug
0:£9-z€ sug
19pI0 ssalppe wolj
0 0 dDIS :TE-0 sHg dDIS TE-0sHg | J0ssad0lid ‘TE-0 sHg TO3V d9SdOH uoloNIISUl dOIS
(ad1—
‘1SNIIIS =)
(MSdHIIS) MSd 1SeNHA WHVATATS (Youay
(WXW'SN) 9142131S ‘3A0JI3IS /2) uondadiayu]
0| €-0"Mg3IS 1senNHA 00 00 JINNYM,D 00 TIV6 | NYIMJOH IS 1enUIA
8¢ (11 8¢ (174 14 oT E| (xay) L3sd40
v+N €+N ZHN T+N D3y aIl Sinaow IWYN
G+N D34 40 SINILNOD | H3Y 40 SINILNOD | H3Y 40 SLNILNOD | H3Y 40 SLINILNOD 40 SINILNOD | NH93Y 40 SINILNOD | 3Fowil

(panunuoo) (z 3pw.io) salijua ajAq-9 40 Sapod 220.] ‘9T dJqDL

7.4 Diagnosis Guide

254 z/VM

Trace Table Codes

0:€9-c¢E sug

ssalppe Aiu3
0 0 0 0 0| J0ssdd0ld:T€-0sHd a444 I11dDH | ©d%ell dwels awi]l
awelq agelo1s
0 0| ssalppyaulel]iesy 0 0 0 v0Ld 31ddOH 9al4 ureilqo
8¢ o€ 8¢ (114 8T ot E| (xay) 13s440
v+N €+N C+N T+N 953 at 31NA0W INYN

G+N 934 40 SINILNOD | 934 40 SINILNOD | 93 40 SLNILNOD | 934 40 SLNILNOD 40 SINJLNOD | N 934 40 SINJFLNOD | 3JVil

(panunuoo) (z 3pw.io) salijua ajAq-9 40 Sapod 230.] ‘9T dJqDL

Appendix C. Trace Table Codes 255

Trace Table Codes

256 z/VM: 7.4 Diagnosis Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

© Copyright IBM Corp. 1991, 2025 257

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Terms and Conditions for Product Documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

258 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Commercial Use

You may reproduce, distribute and display these publications solely within your enterprise provided

that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS

ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,

to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

« The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)

« Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 259

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

260 z/VM: 7.4 Diagnosis Guide

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information

The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview

« z/VM: License Information, GI113-4377
« z/VM: General Information, GC24-6286

Installation, Migration, and Service

« z/VM: Installation Guide, GC24-6292

e z/VM: Migration Guide, GC24-6294

« z/VM: Service Guide, GC24-6325

« z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration

= z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
« z/VM: CMS Planning and Administration, SC24-6264

« z/VM: Connectivity, SC24-6267

= z/VM: CP Planning and Administration, SC24-6271

« z/VM: Getting Started with Linux on IBM Z, SC24-6287

« z/VM: Group Control System, SC24-6289

= z/VM: I/O Configuration, SC24-6291

« z/VM: Running Guest Operating Systems, SC24-6321

« z/VM: Saved Segments Planning and Administration, SC24-6322

z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning

« z/VM: CP Exit Customization, SC24-6269
» z/VM: Performance, SC24-6301

Operation and Use

« z/VM: CMS Commands and Utilities Reference, SC24-6260
e z/VM: CMS Primer, SC24-6265

« z/VM: CMS User's Guide, SC24-6266

« z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1991, 2025 261

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/i1343773.pdf#nameddest=i1343773
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa2_v7r4.pdf#nameddest=hcpa2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpf2_v7r4.pdf#nameddest=hcpf2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa4_v7r4.pdf#nameddest=hcpa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa3_v7r4.pdf#nameddest=hcpa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsc6_v7r4.pdf#nameddest=dmsc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd1_v7r4.pdf#nameddest=dmsd1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpl0_v7r4.pdf#nameddest=hcpl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe2_v7r4.pdf#nameddest=hcpe2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa7_v7r4.pdf#nameddest=hcpa7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcps0_v7r4.pdf#nameddest=hcps0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe9_v7r4.pdf#nameddest=hcpe9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=hcpb8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb2_v7r4.pdf#nameddest=dmsb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb3_v7r4.pdf#nameddest=dmsb3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

z/VM: System Operation, SC24-6326

« z/VM: Virtual Machine Operation, SC24-6334

z/VM: XEDIT Commands and Macros Reference, SC24-6337
z/VM: XEDIT User's Guide, SC24-6338

Application Programming

- z/VM: CMS Application Development Guide, SC24-6256

« z/VM: CMS Application Development Guide for Assembler, SC24-6257

= z/VM: CMS Application Multitasking, SC24-6258

« z/VM: CMS Callable Services Reference, SC24-6259

« z/VM: CMS Macros and Functions Reference, SC24-6262

« z/VM: CMS Pipelines User's Guide and Reference, SC24-6252

 z/VM: CP Programming Services, SC24-6272

« z/VM: CPI Communications User's Guide, SC24-6273

« z/VM: ESA/XC Principles of Operation, SC24-6285

« z/VM: Language Environment User's Guide, SC24-6293

« z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
« z/VM: OpenExtensions Callable Services Reference, SC24-6296

« z/VM: OpenExtensions Commands Reference, SC24-6297

» z/VM: OpenExtensions POSIX Conformance Document, GC24-6298

« z/VM: OpenExtensions User's Guide, SC24-6299

« z/VM: Program Management Binder for CMS, SC24-6304

« z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
« z/VM: REXX/VM Reference, SC24-6314

« z/VM: REXX/VM User's Guide, SC24-6315

- z/VM: Systems Management Application Programming, SC24-6327

 z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis

e z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
z/VM: CP Messages and Codes, GC24-6270

z/VM: Diagnosis Guide, GC24-6280

z/VM: Dump Viewing Facility, GC24-6284

z/VM: Other Components Messages and Codes, GC24-6300
z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM

« z/VVM: DFSMS/VM Customization, SC24-6274

« z/VM: DFSMS/VM Diagnosis Guide, GC24-6275

« z/VM: DFSMS/VM Messages and Codes, GC24-6276
e z/VM: DFSMS/VM Planning Guide, SC24-6277

262 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb1_v7r4.pdf#nameddest=hcpb1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb2_v7r4.pdf#nameddest=hcpb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb6_v7r4.pdf#nameddest=dmsb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb5_v7r4.pdf#nameddest=dmsb5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd0_v7r4.pdf#nameddest=dmsd0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb5_v7r4.pdf#nameddest=hcpb5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/ceeb7_v7r4.pdf#nameddest=ceeb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp4_v7r4.pdf#nameddest=dmsp4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp3_v7r4.pdf#nameddest=dmsp3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp0_v7r4.pdf#nameddest=dmsp0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp2_v7r4.pdf#nameddest=dmsp2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsl0_v7r4.pdf#nameddest=dmsl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsk7_v7r4.pdf#nameddest=dmsk7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb1_v7r4.pdf#nameddest=dmsb1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb0_v7r4.pdf#nameddest=dmsb0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmse6_v7r4.pdf#nameddest=dmse6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsw0_v7r4.pdf#nameddest=dmsw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw0_v7r4.pdf#nameddest=hcpw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc1_v7r4.pdf#nameddest=hcpc1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=hcpw1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt1_v7r4.pdf#nameddest=hcpt1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt5_v7r4.pdf#nameddest=hcpt5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt2_v7r4.pdf#nameddest=hcpt2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt0_v7r4.pdf#nameddest=hcpt0_v7r4

« z/VM: DFSMS/VM Removable Media Services, SC24-6278
« z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM

« z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
= z/VM: Directory Maintenance Facility Messages, GC24-6282
 z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
« Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/
docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf), SC14-7580

« Open Systems Adapter-Express ICC 3215 Support (https://www.ibm.com/docs/en/zos/2.3.0?
topic=0sa-icc-3215-support), SA23-2247

« Open Systems Adapter Integrated Console Controller User's Guide (https://www.ibm.com/docs/en/
SSLTBW_2.3.0/pdf/SC27-9003-02.pdf), SC27-9003

« Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/docs/en/
SSLTBW_2.3.0/pdf/ica2z1f0.pdf), SA22-7935

Performance Toolkit for z/VM

 z/VM: Performance Toolkit Guide, SC24-6302
« z/VM: Performance Toolkit Reference, SC24-6303

The following publications contain sections that provide information about z/VM Performance Data Pump,
which is licensed with Performance Toolkit for z/VM.

» z/VM: Performance, SC24-6301. See z/VVM Performance Data Pump.
= z/VM: Other Components Messages and Codes, GC24-6300. See Data Pump Messages.

RACF® Security Server for z/VM

« z/VM: RACF Security Server Auditor's Guide, SC24-6305

« z/VM: RACF Security Server Command Language Reference, SC24-6306
« z/VM: RACF Security Server Diagnosis Guide, GC24-6307

« z/VM: RACF Security Server General User's Guide, SC24-6308

» z/VM: RACF Security Server Macros and Interfaces, SC24-6309

« z/VM: RACF Security Server Messages and Codes, GC24-6310

« z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
= z/VM: RACF Security Server System Programmer's Guide, SC24-6312
 z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM

« z/VM: RSCS Networking Diagnosis, GC24-6316

z/VM: RSCS Networking Exit Customization, SC24-6317

z/VM: RSCS Networking Messages and Codes, GC24-6318
z/VM: RSCS Networking Operation and Use, SC24-6319

z/VM: RSCS Networking Planning and Configuration, SC24-6320

Bibliography 263

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt3_v7r4.pdf#nameddest=hcpt3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt4_v7r4.pdf#nameddest=hcpt4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpk4_v7r4.pdf#nameddest=hcpk4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpk2_v7r4.pdf#nameddest=hcpk2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpk3_v7r4.pdf#nameddest=hcpk3_v7r4
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpl8_v7r4.pdf#nameddest=hcpl8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpl7_v7r4.pdf#nameddest=hcpl7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=hcpb8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=dp_intro
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=hcpw1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=datapump_msgs
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha8_v7r4.pdf#nameddest=icha8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha4_v7r4.pdf#nameddest=icha4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/ichb2_v7r4.pdf#nameddest=ichb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha1_v7r4.pdf#nameddest=icha1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha3_v7r4.pdf#nameddest=icha3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha6_v7r4.pdf#nameddest=icha6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha7_v7r4.pdf#nameddest=icha7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha2_v7r4.pdf#nameddest=icha2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/ichc6_v7r4.pdf#nameddest=ichc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta7_v7r4.pdf#nameddest=dmta7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta4_v7r4.pdf#nameddest=dmta4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta3_v7r4.pdf#nameddest=dmta3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta2_v7r4.pdf#nameddest=dmta2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta1_v7r4.pdf#nameddest=dmta1_v7r4

TCP/IP for z/VM

« z/VM: TCP/IP Diagnosis Guide, GC24-6328

« z/VM: TCP/IP LDAP Administration Guide, SC24-6329
« z/VM: TCP/IP Messages and Codes, GC24-6330

« z/VM: TCP/IP Planning and Customization, SC24-6331
« z/VM: TCP/IP Programmer's Reference, SC24-6332

« z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities

« Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/docs/en/
SSLTBW_3.1.0/pdf/ickug00_v3rl.pdf), GC35-0033

Related Products

XL C°++ for z/VM

e XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
« XL C/C++ for z/VM: User's Guide, SC09-7625

z/0S

IBM Documentation - z/OS (https://www.ibm.com/docs/en/zos)

264 z/VM: 7.4 Diagnosis Guide

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kdpl0_v7r4.pdf#nameddest=kdpl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kldl0_v7r4.pdf#nameddest=kldl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kinl0_v7r4.pdf#nameddest=kinl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kill0_v7r4.pdf#nameddest=kill0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kiml0_v7r4.pdf#nameddest=kiml0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kijl0_v7r4.pdf#nameddest=kijl0_v7r4
https://www.ibm.com/docs/en/SSLTBW_3.1.0/pdf/ickug00_v3r1.pdf
https://www.ibm.com/docs/en/SSLTBW_3.1.0/pdf/ickug00_v3r1.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/edclv_v7r4.pdf#nameddest=edclv_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/vmcug_v7r4.pdf#nameddest=vmcug_v7r4
https://www.ibm.com/docs/en/zos

Index

A

ABEND macro 65
abnormal end (abend)
AVS 171
CF 59
checklist for reporting
CMS 173
CP173
GCS 173
RSCS 173
CMS 64
code
106, reason code 030B 130
778 141
804 141
80A 141
878 141
CP, reason for 12
CRR server 75
dump
description of type 49
dumping to DASD 49
reading 49
specifying output device 49
GCS 117
hard 12
overview 2
problem types 3
processing, GCS 117
program check, processing 118
reason for, CP 12
SFS server 75
soft 12
TSAF 161
types of 11
virtual machine 13
work area 117
AbnormalEnd API 65
active disk table (ADT) 67
active file table (AFT) 67
active task 125
ADDMAP command 163, 168
address range, restricting tracing to 26
ADT (active disk table) 67
AEB block
SIEAEQ 123
VMCSCHDX 123
AFT (active file table) 67
AGW SET ETRACE command 169
AGW SET ITRACE command 169
alter contents of storage 71
altering storage contents 29
analyzing data 4
anchor blocks, storage 134
APPC/VM synchronous event (type X'0C') entry 102
appending the map 163, 168

applications, debugging 131
Assert Facility 50
audience of this document xiii
automatic generation of CMS abend dumps 69
AVS (APPC/VM VTAM Support)
abnormalend 13,171
AGW SET ETRACE command 169
AGW SET ITRACE command 169
creating dumps 167
debugging 167
diagnosing dumps 168
displaying dump information 168
dumps
creating 167
diagnosing 168
displaying information 168
processing 168
formatting and displaying trace records 169
processing dumps 168
setting external tracing 169
setting internal tracing 169
using system trace data to diagnose problems 169

BEGIN command 13,110
BLDL macro 127
BLOCKDEF utility command 111
boundary box usage 156
branch entry
FREEMAIN (type X'0OB') entry 101
GETMAIN (type X'0A") entry 99
byte alignment on terminal output 22

C

calling IBM for assistance, data needed 8
CCW mapping 152
CF (Coupled Facilities) service machine
debugging 59
determining status 59
diagnosing problems 60
processing a dump 60
checking free storage 136
checklist
for performance problem
hardware failure 175
inadequate system parameters 175
infinite loop in a virtual machine 175
infinite loop in CP 175
infinite loop in RSCS 175
for specific problem
CMS abend 173
CP abend 173
CP wait state 174
GCS abend 173
incorrect or unexpected output 174

Index 265

checklist (continued)
for specific problem (continued)
RSCS abend 173
RSCS wait state 174
virtual machine wait state 174
clock comparator 18
CMDBUF 152
CMNDLINE (command line) 67
CMS (Conversational Monitor System)
abnormal abend processing 64
checklist for reporting abends 173
dump file printing 70
dump generation, automatic 69
dump reading, abends 70
reading abend dumps 70
CMSCB (OS control blocks) 67
collecting TSAF error information 161
command
ETRACE
AVS 169
SFS 81
TSAF 164
INDICATE 32
ITRACE (for SFS) 80
LOCATE 32, 55
MONITOR 32
QUERY SRM 32
QUERY TRACEFRAMES 35
SET DUMP 50
SET ETRACE (for TSAF) 164
SET ITRACE (for AVS) 169
SET TRACEFRAMES 7, 35
summary for debugging 19
support 149
to collect and analyze system information 32
tracing 37
command and console Support 149
common dump receiver 110
common lock, GCS 121
common storage
anchor blocks (CSAB) 134
management 141
preserving contents while dump finishes 113
Communication Task Queues
CMDBUF 151
Operator Reply Elements (ORE) 151
ORE 151
WOE 151
Write Queue Elements (WQE) 151
configuration file for GCS 83, 110
console log
definition of 6
sample, SFS 76
sample, TSAF 162
control block
description 51
HCPCPEBK 57
HCPFRMTE 58
HCPIORBK 55
HCPPFXPG 51
HCPRDEV 54
HCPSAVBK 57
HCPSVGBK 57
HCPSYSCM 52

266 z/VM: 7.4 Diagnosis Guide

control block (continued)
HCPVDEV 56
HCPVMDBK 52
controlling display of messages 61
controlling trace information 26
coupling facility, debugging 59
CP (Control Program)
abnormalend 12
checklist for
reporting abends 173
wait state 174
disabled wait 16
enabled wait 16
execution block 57
trace table
locating 35
CP SET DUMP command 49
create
AVS dump 167
dump 45
GCS module map 111
TSAF dump 163
TSAF map 162
CRR server abnormal end 13
CSAB - common storage anchor blocks 134
CVT (Communications Vector Table) 155
CVTSECT (CMS Communications Vector Table) 67

D

data compression services, GCS 154
data needed before calling IBM for assistance 8
data sheet, problem inquiry 8
DDR (Dasd Dump Restore) 14
debug
abnormal end
AVS 171
CF 59
CMS 64
CP12
CRR 75
GCS 117
SFS 75
TSAF 161
virtual machine 13
AVS
abnormalend 171
creating dumps 167
diagnosing dumps 168
displaying dump information 168
dumps 167
formatting and displaying trace records 169
processing dumps 168
setting external tracing 169
setting internal tracing 169
using system trace data to diagnose problems 169
CF service machine, debugging 59
CMS
abend processing 64
abend, finding reason for 65
abend, types of 65
collection information 65
commands, debugging 61
dumps, creating to debug 69

debug (continued)

CMS (continued)
dumps, creating when specific message is received
70
module load map 64
nucleus load map 64
printing dump file 70
tips 68
tracing 62
useful information 65
using CMS to debug 68
commands summary 19
CcpP
abend dump 49
control blocks, looking at 51
debugging in a virtual machine 49
reading abend dump 49
data compression errors 157
data needed before calling IBM 8
determining the cause of a problem 8
GCs
ABEND DUMP macro 112
abnormal end 117
common storage management problem 141
common storage, preserving 113
control blocks 118
Dump Viewing Facility to process dumps 118
dumping facilities 110
dumps, creating 111
external trace records 107
external tracing facilities 104
GDUMP command 112
GTRACE macro 84
I/0 142
interactive debugging support 110
internal tracing facilities 83
ITRACE command 84
load error 130
preserving common storage 113
program check 118
program, where loaded 129
SDUMP macro 112
SDUMPX macro 112
SYSTEM RESTART command 112
trace facility 113
TRACERED utility 106
TRSAVE command 106
TRSOURCE command 104
VMDUMP command 113
how to start 1
I/0 148
identify the problem 2
interactive 21
introduction 1
loop 14
problem types 8
servers
abnormalend 75
collecting error information 75
creating file pool server dump 79
CRR 75
diagnosing a server dump 79
formatting trace records 80
printing a server dump 80

debug (continued)
servers (continued)
processing a server dump 79
sample console log 76
setting external tracing 81
setting internal tracing 80
SFS 75
using console log 76
using server dumps to diagnose 79
TSAF
abnormal end 161
collecting error information 161
creating TSAF dump 163
displaying trace records 164
displaying TSAF dump information 164
formatting trace records 164
printing TSAF dump 164
processing TSAF dump 163
sample console log 162
setting external tracing 164
trace table entry format 165
trace table trailer record format 165
TSAF QUERY command 166
using the console log 161
using TSAF dumps to diagnose 162
unexpected result 14
wait
CP disabled wait 16
CP enabled wait 16
virtual machine disabled wait 16
virtual machine enabled wait 17
with z/VM facilities 11
defining separate printer for trace data 23, 26
DELETE macro 127
device characteristics 148
diagnosing
AVS dump 168
CF dump 60
TSAF dump 163
diagnosis with key control blocks 51
dispatch queue 124
dispatcher (type X'01') entry 87
display
AVS dump information 168
AVS trace records 169
real machine data 21
TSAF dump information 164
virtual machine data 21
DISPLAY command 21, 61, 110
DMSABE (abend routine) 66
DMSABN macro 65
DMSITP 68
DMSITP routine 65
does a problem exist? 1
dump
abnormal end dump 112
analyzing 110
AVS

creating 167
diagnosing 168
displaying information 168
processing 168
CF 59
communication controller storage 45

Index 267

dump (continued)
CP 45
CP restart
obtaining copy of 46
when to use 14, 16, 18
creating 45
definition 4
formatting trace entries 50
GCSs 111
GDUMP 112
generation, automatic 69
information included in 45
locating
control block information 50
module and entry point addresses 50
RDEVs and VDEVs 50
printing information 50
problems helped by 46
PSW values, viewing 50
reading 50
real machine data 47
register contents, viewing 50
SDUMP 112
SDUMPX 112
setting up the system for 46
single virtual machine 45
snapdump 45
stand-alone 45
to DASD 49
TSAF
creating 163
diagnosing 163
printing 164
processing 163
types of 45
used in problem determination 12
virtual machine data 47
VMDUMP 113
DUMP command 15, 21, 23, 47, 61, 110

DUMP operand of SYSTEM_USERIDS statement in system
configuration file 50, 79, 163
Dump Viewing Facility
displaying dump information 50
DUMPSCAN command 70
features for GCS dumps 111
obtaining a GCS map 167
processing GCS dumps 118
PRTDUMP command 70
TSAF trace entries 165
DUMPSCAN command 111

E

ECRLOG (extended control registers) field 66
ETRACE 7, 116
ETRACE command
AVS 169
SFS 81
TSAF 164
ETRACE GROUP 104
external interrupt (type X'02') entry 88
External Interrupt Handler Work Area (EXTWA) 195
external trace

268 z/VM: 7.4 Diagnosis Guide

external trace (continued)
buffer
format of 105
locating 105
facilities, GCS 104
record, formatting and displaying 107
servers 81
EXTOPSW (external old PSW) 66
EXTSECT (external interrupt work area) 67
EXTWA - External Interrupt Handler Work Area 195

F

FCBTARB (file control block table) 67
fetch-protected storage 110
filtering 38
finding evidence of a problem 4
formatting AVS trace records 169
FPRLOG (floating-point registers) field 66
fragmentation, storage 136
frame table control block 58
free storage 136
FREEMAIN
goes into an infinite loop 141
via SVC (type X'09') entry 98

G

GCS (Group Control System)
abnormalend 13, 117
checklist for reporting abends 173
common Lock 121
configuration file 83, 110
control blocks 177
data compression 154
debug 83
debug, dumping facilities
common dump receiver 110
rules of authorization 110
debug, external tracing facilities
displaying external trace records 107
ETRACE command 104
ETRACE GROUP 104
external trace table formatted entries, examples
108
formatting external trace records 107
TRSOURCE command 104
debug, interactive debug support
analyzing dumps 110
CP Commands 110
dumping VSAM information 111
debug, internal tracing facilities
GTRACE macro 84
internal trace table format 84
ITRACE command 84
dump processing 118
external trace table formatting entries, examples
entry type X'03' 108
entry type X'05' 108
entry type X'08' 109
entry type X'09' 109
entry type X'0A' 109
entry type X'0B' 109

GCS (Group Control System) (continued)

hard abnormal end 12

external trace table formatting entries, examples (continued)ardware

entry type X'OE' 109
internal trace table format
data 86
header 84
internal trace table format, trace header entries
APPC/VM synchronous event (type X'0C') 102
branch entry FREEMAIN (type X'0B') 101
branch entry GETMAIN (type X'0A") 99
dispatcher (type X'01') 87
external interrupt (type X'02") 88
FREEMAIN via SVC (type X'09') 98
GETMAIN via SVC (type X'08') 96
GTRACE (type X'0E') 103
I/0 interrupt (type X'03") 90
IUCV signal system service (type X'07') 95
program interrupt (type X'04") 91
SIO (type X'06") 94
SVC interrupt (type X'05") 92
load error 130
locating 114
nucleus constant area 177
obtaining a GCS map 167
service point trace entries 103
trace 113
trace table 120
virtual machine that created dump 113
GCTYTD control program 108
GDUMP 112
general I/O
options
CHAR 142
CLOSE 142
HALT 142
MODIFY 142
OPEN 142
START 142
STARTR 142
table 145
generating CMS abend dumps automatically 69
GENMOD command 64
GETMAIN
goes into an infinite loop 141
via SVC (type X'08') entry 96
getting information AVS trace entries 170
GIOTB 145
GPRLOG (general purpose registers) field 66
GSB (Gotten Storage Blocks) 137
GSBB (block of gotten storage blocks) 137
GSBB, system-wide description of 140
GTF header 108
GTRACE 117
GTRACE (type X'OE') entry 103
GTRACE macro 84
guest operating system problem 1

H

halt execution (HX) in CMS 65
hang
condition 2, 3,18
system 18
user 18

checklist for reporting failure 175

failure 2
HCPCPEBK control block 57
HCPFRMTE control block 58
HCPIORBK control block 55
HCPPFXPG control block 51
HCPRDEV control block 54
HCPSYSCM control block 52
HCPVDEV control block 56
HCPVMDBK control block 52
how to find the machine ID 120
how to start debugging 1

I

I/0 (Input/Qutput)
debugging 148
interrupt
(type X'03") entry 90
handling 146
request and response block 55
IDENTIFY macro 127
identifying the problem 2
incorrect results
checklist for reporting 174
description 2
hardware failure 175
inadequate system parameters 175
infinite loop in a virtual machine 175
infinite loop in CP 175
infinite loop in RSCS 175
INDICATE command 32
infinite loop
checklist for reporting in a virtual machine 175
checklist for reporting in CP 175
checklist for reporting in RSCS 175
definition 2
information sources that describe z/VM's condition 4
internal trace table
GCS
locating 114
locating in common storage 114
locating in private storage 114
locating last trace entry 115
TSAF 165
internal tracing
facilities, GCS 83
server virtual machines 80
interrupt
control blocks 146
handling, I/O 146
introduction to debugging 1
IOSAVE 143
IOSECT (I/0 interrupt work area) 67
ITRACE 7,113
ITRACE command
AVS 169
GCS 84
SFS 80
IUCV (Inter-User Communications Vehicle)
anchor block 131
debugging applications 131

Index 269

IUCV (Inter-User Communications Vehicle) (continued)
path ID block 132
signal system service (type X'07') entry 95
tracing IUCV 131
user ID block 132

K

key
control blocks 51
page 137

L

LASTCMND field 66
LASTEXEC field 67
LINK block 123
LINK macro 126
load
error, GCS 130
list, virtual machine 128
map
definition of 5
generation 64
information contained in 5
obtaininga 5
maps 62
LOAD command 64
LOAD macro 126
LOADCMD command 149
LOCATE command 32, 55
locating CP control blocks in storage 32
locking function 113
loop
condition in virtual machine 2, 6
CP disabled loop 14
debugging 14
infinite
checklist for reporting in a virtual machine 175
checklist for reporting in CP 175
checklist for reporting in RSCS 175
description 2
problem type 3
program 32
virtual machine disabled loop 15
virtual machine enabled loop 15
LOWSAVE (debug save area) 66

M

machine check 13
machine ID 120
macro
BLDL 127
DELETE 127
GTRACE 84
IDENTIFY 127
LINK 126
LOAD 126
SYNCH 127
XCTL126
major SACBs fields 135
MAP option of GENMOD command 64

270 z/VM: 7.4 Diagnosis Guide

MAP option of LOAD command 64
MCKOPSW (CMS machine check old PSW) 66
messages
controlling display of 61
description and use 4
minor SACBs fields 135
MODMAP command 64
module load map 64
MONITOR command 32

N

nucleus
load map
debugging CMS 64
definition of 5
information contained in 5
obtaininga 5
NUCON
changes 155
CMS nucleus constant area 66
extension 182
GCS nucleus constant area 177
information 150
mapping 177

o

obtaining a GCS load map 167
ORE 153

P

page key 137
path
ID block 132
information 133
performance, slow 2
PGLOCK 147
PGMOPSW (program old PSW) 66
PGMSECT (program check interrupt work area) 67
PGMWA - Program Interrupt Work Area 196
preface xiii
prefix page 51
prerequisite knowledge xiii
PREVCMND field 66
PREVEXEC field 67
printer output 23
printing
CMS dump file 70
TSAF dump 164
VM Dump Tool, using 50
with the VM Dump Tool 50
private storage anchor blocks (PSAB) 134
problem
identifying 2
inquiry data sheet 8
recreating 149
type
hang condition 3
loop 3
performance 3
unexpected results 3

problem (continued)

type (continued)

wait 3

processing a dump

AVS 168

GCS 118

TSAF 163
program

check 118

check debugging 33

exception, CMS 65

interrupt (type X'04') entry 91

load 129

loops 32

management 126

temporary fix (PTF), applying 1
Program Interrupt Work Area (PGMWA) 196
PRTDUMP command 70
PSAB - private storage anchor blocks 134
PTF (program temporary fix), applying 1
purpose of this document xiii
PWS (Program Status Word)

definition of 5

key 14110

value, viewing 50

Q

QUERY AUTODUMP command 61, 69
QUERY command 25

QUERY SRM command 32

query system feature, condition, or event 24
QUERY TRACEFRAMES command 35
QUERY TRFILES command 106

R

RDEV, how to locate 54
reading
CMS abend dump 70
CP abend dumps 49
dump 50
real device control block 54
reason code 030B 130
recreating the problem 149
register
access 5
contents, viewing 50
control 5
definition 5
floating point 5
general purpose 5
use 5, 68
repetitive output 2
restart, system 112
return code 4

RSCS (Remote Spooling Communications Subsystem

Networking)
checklist for reporting abend 173
checklist for wait state 174
running task 125

S

SACB
major SACBs 135
minor SACBs 135
scanning 136
save area block 57
saving trace tables 41
SDUMP 112
SDUMPX 112
server
abnormal end 13
console log 76
dump
creating 79
diagnosing 79
printing 80
processing 79
use to diagnose 79
Service Point (SP) trace entries 103
SET AUTODUMP command 61, 69
SET DUMP command 50
SET ETRACE command
AVS 169
TSAF 164
SET ITRACE command
AVS 169
SET TRACEFRAMES command 7, 35
setting
external tracing
AVS 169
TSAF 164
internal tracing, AVS 169
setting system feature, condition, or event 24
SFS (Shared File System)
debugging
abnormal end 75
collecting error information 75
creating file pool server dump 79
diagnosing a server dump 79
displaying trace records 80
printing a server dump 80
processing a server dump 79
sample console log 76
setting external tracing 81
setting internal tracing 80
using console log 76
using server dumps to diagnose 79
ETRACE command 81
ITRACE command 80
SFS server abnormal end 13
SID 144
SIDTABLE 144
SIE - NUCON Extension 182
SIE extension mapping 182
SIE information 150
SIO (type X'06') entry 94
slow performance 2
SNAPDUMP Command 47
soft abnormal end 12
spool command 76
SPOOL command 162
SSI cluster diagnosis 19
stand-alone dump utility 47

Index 271

state block (STBLK)
AEB block 123
LINK block 123
mapping 188
SVC block 123
task waiting 122
wait count 122
STBLK - state block 121
STDEBUG command 61
storage
alteration, tracing 28
anchor blocks
common storage anchor blocks 134
mapping 194
private storage anchor blocks 134
contents alteration
STORE (Guest Storage) command 71
STORE (Host Storage) command 71
ZAP command 71
ZAPTEXT command 71
contents, altering
host storage 30
virtual machine storage 29
fragmentation 136
management
common 141
GCS component 141
mapping 192
problems 141
tracing 142
system-wide description of 140
task block 139
STORAGE statement in system configuration file 7, 35
STORE (Guest Storage) command 29, 71
STORE (Host Storage) command 30, 71
STORE command 61, 110
STORE STATUS command 30
STORMAP command 61
subchannel ID table 144
SUBPMAP command 62
subpools, task block 139
summary of
steps to follow when a TSAF abend occurs 161
steps to follow when an AVS abend occurs 171
z/VM debugging commands 19
SVC block 123
SVC interrupt (type X'05") entry 92
SVC Interrupt Handler Work Area (SVCWA) 195
SVC save area (SVCSAVE) 68
SVCOPSW (SVC old PSW) 66
SVCSAVE (SVC save area) 68
SVCSECT (SVC interrupt work area) 67
SVCTRACE command 61, 62
SVCWA - SVC Interrupt Handler Work Area 195
symptom record
definition 8
displaying 50
duplicate, locating 50
for AVS 168
symptoms of problems
message
compared with return code 4
message identifier 4
message text 4

272 z/VM: 7.4 Diagnosis Guide

symptoms of problems (continued)
message (continued)
parts of 4
return code compared with message 4
SYNCH macro 127
system
abnormal end 65
common area 52
hangs 18
information, collect and analyze
INDICATE command 32
LOCATE command 32
MONITOR command 32
parameters checklist for problem reporting 175
restart 112
trace data to diagnose TSAF problems 164
SYSTEM command 24
system configuration file
STORAGE statement 7, 35
SYSTEM_USERIDS statement, DUMP operand 50, 79,
163
SYSTEM_USERIDS statement in system configuration file 50,
79,163
system-wide description of storage 140
system-wide description of TSHBs and GSBBs 140

T

task
active 125
block (TBK) 121
block mapping 186
block storage 139
block subpools 139
control blocks 137
ID table (TIDTB) 125
load list 127
running 125
storage header block (TSHB) 137, 140
storage headers (TSHs) 137
waiting 122
TBK - task block 121, 186
terminal output 22
TEVC (trace entry verification code) 85
TIDTB (task ID table) 125
trace
32-byte table entries
CP 201
64-byte table entries
CP 232
capabilities in EXECs 62
code paths 38
command 7
definition of 7
entry
AVS 169
capturing 37
contents 35
filtering 37
format 36
limiting 36
TSAF 164, 165
wrapping 36
entry verification code (TEVC) 85

trace (continued)
ETRACE 7, 116
events in virtual machine with TRACE command 25
external, AVS 169
external, TSAF 164
GCS 113
GTRACE 117
I/0 devices 38
information, controlling 26
internal, AVS 169
ITRACE 7,113
IUCV 131
program management 126
real I/0 37
restricting to address range 26
run a CP command 28
selectivity 27
SNA tracing tools 8
stopping 29
storage alteration 28
storage management 142
successful events 27
table
CP, locating 35
entries 149
GCSs 120
saving 41
using 115
viewing 42
table entries
AVS 169
CP 35,199
GCS 84, 149
TSAF 164, 165
task management 126
TRACE 7
traps 29
TRSAVE 7
TRSOURCE 7
using 35
virtual machines 38
TRACE command 13, 15, 25, 61
TRACERED utility 106, 108
tracing 7
trap use with AVS 169
TRSAVE command 106
TRSOURCE command 38, 104, 108, 165, 169
TSAF (Transparent Services Access Facility)
abnormalend 13, 161
collecting error information 161
creating TSAF dump 163
debugging 161
displaying trace records 164
displaying TSAF dump information 164
dumps
creating 163
diagnosing 163
printing 164
processing 163
use to diagnose 162
formatting trace records 164
internal trace table
entry format 165
trailer record format 165

TSAF (Transparent Services Access Facility) (continued)
printing TSAF dump 164
processing TSAF dump 163
QUERY command 166
sample console log 162
SET ETRACE command 164
setting external tracing 164
trace table entry format 165
trace table trailer record format 165
using dumps to diagnose 162
using the console log 161
TSAF QUERY command 166
TSAFDVF MAP 162
TSH (Task Storage Headers) 137
TSHB (Task Storage Header Blocks) 137

U

unexpected result
checklist for reporting 174
description 2
determining the cause 3
hardware failure 175
inadequate system parameters 175
infinite loop in a virtual machine 175
infinite loop in CP 175
infinite loop in RSCS 175
type of error 14
user hangs 18
user ID
block 132
trace entry 120
using
console log 161
system trace data to diagnose
AVS problems 169
TSAF problems 164
traces 35
TSAF dumps to diagnose problems 162
using this document
audience xiii
prerequisite knowledge xiii

\'}

VAD 155
viewing
AVS trace entries
using DUMPSCAN 170
using the Dump Viewing Facility 170
using TRACERED 170
trace tables 42
TSAF trace entries
using DUMPSCAN 165
using the Dump Viewing Facility 165
using TRACERED 165
virtual device control block 56
virtual machine
abnormalend 13
checklist for wait state 174
data, displaying or dumping
byte alignment on terminal output 22
DISPLAY command 21

Index 273

virtual machine (continued)
data, displaying or dumping (continued)
DUMP command 21
printer output 23
terminal output 22
VMDUMP command 47
descriptor block 52
disabled wait 16
enabled wait 17
load list 128
that created GCS dump 113
virtual machine control block (VMCB) 120
Virtual Machine Control Block (VMCB) 196
VM Dump Tool
CP dumps 49
printing dump information 50
reading a dump 50
VMCB - virtual machine control block 120
VMCB - Virtual Machine Control Block 196
VMDUMP command
basic examples 24
example for CMS 47
example for SFS 79
example for TSAF 163
VMDUMP records
format 58
VMDUMPTL command
debugging save areas 57

displaying symptom record information 50

displaying the RDEV 54
formatting CP control blocks 51
formatting trace entries 50
locating descriptor blocks 53
VSAM
anchor block 156
debugging 157
dumping information 111
work areas 156
VSCS printing formatted control blocks 111
VSCS, I/O trace 148
VTAM
I/O trace 148
printing formatted control blocks 111
work areas 156

w

wait
count 122
problem type 3
wait state
checklist for CP 174
checklist for RSCS 174
checklist for virtual machine 174
in virtual machine 2, 6
work area
VSAM 156
VTAM 156
WQE 153

X

XA virtual machine 83

274 z/VM: 7.4 Diagnosis Guide

XC virtual machine 83
XCTL macro 126

y4

ZAP command 71
ZAPTEXT command 71

Product Number: 5741-A09

Printed in USA

GC24-6280-74

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information
	Links to Other Documents and Websites

	How to provide feedback to IBM
	Summary of Changes for z/VM: Diagnosis Guide
	SC24-6301-74, z/VM 7.4 (July 2025)
	SC24-6301-74, z/VM 7.4 (June 2025)
	GC24-6280-74, z/VM 7.4 (January 2025)
	GC24-6280-74, z/VM 7.4 (September 2024)
	GC24-6280-73, z/VM 7.3 (October 2023)
	GC24-6280-73, z/VM 7.3 (September 2023)
	GC24-6280-73, z/VM 7.3 (May 2023)
	GC24-6280-73, z/VM 7.3 (September 2022)

	Chapter 1. Introduction to Debugging
	How to Start Debugging
	Does a Problem Exist?
	Abnormal End
	Unexpected or Incorrect Result
	Infinite Loop
	Wait State
	Hang Condition
	Slow Performance

	Identifying the Problem
	Return Codes
	Messages

	Analyzing the Available Data
	Dump
	Nucleus Load Map
	Registers
	Program Status Word
	Console Log
	Traces
	Symptom Records

	Determining the Cause
	Data You Need Before Calling IBM for Assistance
	Problem Inquiry Data Sheet
	System Information
	CPU Information
	Problem Inquiry Data Sheet Fields

	How to Use z/VM Facilities to Debug
	Abends
	CP Abend
	Hard Abend
	Soft Abend
	Reasons for the CP Abend

	CF Service Machine Abend
	CMS Abend
	SFS or CRR Server Abend
	GCS Abend
	TSAF Abend
	AVS Abend
	Virtual Machine Abend (Other than CMS)

	Unexpected Results
	Loops
	CP Disabled Loop
	Virtual Machine Disabled Loop
	Virtual Machine Enabled Loop

	Wait States
	CP Disabled Wait
	CP Enabled Wait
	Virtual Machine Disabled Wait
	An Example of a Virtual Machine Disabled Wait

	Virtual Machine Enabled Wait

	Hang Conditions
	System Hangs
	User Hangs

	SSI Cluster Problem Diagnosis
	Use of z/VM Debugging Commands

	Chapter 2. Debugging Interactively
	Commands That Display and Dump Machine Data
	Terminal Output
	Printer Output

	Commands That Set and Query System Features, Conditions, and Events
	Commands That Monitor Events
	Controlling the Trace Information
	Restricting the Trace to an Address Range
	Selectivity
	Tracing Successful Events
	Tracing Storage Alteration
	The TRACE CMD Option
	Stopping the TRACE
	Tracing Transactions

	Commands That Alter the Contents of Storage
	Altering Contents of Virtual Machine Storage (STORE Guest Command)
	Altering Contents of Host Storage (STORE Host Command)
	Simulating the Hardware Store Status Facility (STORE STATUS)

	Commands to Collect and Analyze System Information
	What to Do If Your Program Loops
	Debugging with CP after a Program Check

	Chapter 3. Using Traces to Debug
	Locating the CP Trace Table
	Trace Entries
	Limiting the Trace Entries Recorded
	Designating Entries to Be Captured or Filtered
	Capturing or Filtering Data by Trace Code
	Capturing or Filtering Data by User ID or SYSTEM

	More Information on Filtering

	Tracing I/O, Data Code Paths, and Virtual Machines
	I/O Trace Example
	Trace Table Example
	The problem
	The research
	The solution

	Data Trace Example 1
	Step A
	Step B
	Step C
	Step D

	Data Trace Example 2
	Step A
	Step B
	Step C

	Saving Trace Data on Tape or DASD
	Factors That Affect Saving Trace Data
	Number of Trace Table Pages
	Contention with Other Users or Functions
	Rate of Data Collection
	Trace Wrapping
	Options Selected on the TRSAVE Command

	Viewing the Trace Tables
	Factors affecting TRACE Table Pages
	CMS Storage

	Chapter 4. Creating a Dump
	Types of Dumps
	Setting Up the System for a Dump
	Dumping Real or Virtual Machine Data
	Commands That Dump Real or Virtual Machine Data
	The DUMP Command
	The SNAPDUMP Command
	The VMDUMP Command

	Stand-alone Dump Utility

	Chapter 5. Debugging CP
	Debugging CP in a Virtual Machine
	Abend Dumps
	Reading CP Abend Dumps
	Using the Assert Facility
	Reading the Dump with the VM Dump Tool
	Printing Dump Information from the VM Dump Tool

	Looking at Key Control Blocks
	HCPPFXPG: The Prefix Page
	HCPSYSCM: The System Common Area
	HCPVMDBK: The Virtual Machine Descriptor Block
	Locating Descriptor Blocks from a Dump

	HCPRDEV: The Real Device Control Block
	Using a Radix Tree Structure to Locate RDEVs
	Example 1
	Example 2

	HCPIORBK: The I/O Request and Response Block
	HCPVDEV: The Virtual Device Block
	HCPCPEBK: The CP Execution Block
	HCPSAVBK and HCPSVGBK: The Save Area Block
	HCPFRMTE: The Frame Table Entry
	VMDUMP Records: Format and Content

	Chapter 6. Debugging CF Service Machine Problems
	Determining the Status of the CF Service Machine
	Steps to Follow When CF Service Machine Abend Occurs

	Finding the CF Service Machine Dump
	Processing a CF Service Machine Dump

	Diagnosing Problems for CF Service Machines

	Chapter 7. Debugging CMS
	Debugging Commands
	Using the SVCTRACE command

	Tracing Capabilities in EXECs
	Nucleus Load Map
	Module Load Map
	CMS Abend Processing
	Finding the Reason for the CMS Abend
	Types of CMS Abends
	Collecting Information
	Register Use
	Some Debugging Tips

	Using CMS to Debug

	Setting Machines to Automatically Create Dumps
	Generating CMS Abend Dumps
	Reading CMS Abend Dumps
	Looking at Dump Errors

	Creating Dumps in Case of Messages
	Printing a CMS Dump File

	Commands That Alter the Contents of Storage
	Diagnosing SFS-Related Application Errors
	Diagnosing CMS File System Errors
	Diagnosing Data Compression Services System Errors
	Getting Help From IBM
	Diagnosis Tools Available

	Chapter 8. Debugging the SFS Server or CRR Recovery Server
	Summary of Steps to Follow When a Server Abend Occurs
	Using the Console Log
	Using Server Dumps to Diagnose Problems
	Creating a Server Dump
	Processing a Server Dump
	Diagnosing a Server Dump
	Formatting and Displaying Trace Records

	Printing a Server Dump

	Using System Trace Data to Diagnose Problems
	Setting Internal Tracing
	Setting External Tracing
	Other Diagnostic Facilities

	Chapter 9. Debugging GCS
	Internal Tracing Facilities
	Using the ITRACE Command and GTRACE Macro
	Formats of Internal Trace Entries
	Trace Header Format
	Trace Data Format
	Dispatcher
	External Interrupt
	I/O Interrupt
	Program Interrupt
	SVC Interrupt
	SIO
	IUCV Signal System Service
	GETMAIN via SVC
	FREEMAIN via SVC
	Branch Entry GETMAIN
	Branch Entry FREEMAIN
	APPC/VM Synchronous Event
	GTRACE

	Service Point (SP) Trace Entries

	External Tracing Facilities
	Using the TRSOURCE Command
	Locating the External Trace Buffer
	Format of the External Trace Buffer

	Using the TRSAVE Command
	A TRSOURCE/TRSAVE Command Example

	Using the CP TRACERED Utility
	A TRACERED Utility Example

	Using the QUERY TRFILES Command
	General Trace Information

	Formatting and Displaying External Trace Records
	Examples of Formatted External Trace Table Entries

	Dumping Facilities
	The Common Dump Receiver
	Rules of Authorization

	Interactive Debugging Support
	Using Authorized Control Program (CP) Commands
	Analyzing Dumps
	Dump Viewing Facility Features for GCS Dumps

	Dumping VSAM Information

	Creating GCS Dumps
	The GDUMP Command
	The SDUMP Macro
	The SDUMPX Macro
	The ABEND DUMP Macro
	The SYSTEM RESTART Command
	The VMDUMP Command
	Preserving Common Storage
	How to Find the GCS Virtual Machine That Created a Dump

	Using the GCS Trace Facilities
	ITRACE
	Locating the GCS Internal Trace Table
	In Private Storage
	In Common Storage
	Locating the Last Trace Entry in Storage or in a Dump

	Using the Trace Table
	ETRACE
	GTRACE

	Processing Abends
	The Abend Work Area
	Program Checks

	Processing GCS Dumps with the Dump Viewing Facility
	Information Used by the Dump Viewing Facility

	NUCON and SIE
	Virtual Machine Control Block
	How to Determine the User ID That Created a Trace Entry
	How to Locate the GCS Common Lock

	Task Management
	Task Block
	State Block
	WAIT COUNT Field in a State Block
	LINK Block
	SVC Block
	Asynchronous Exit Block (AEB)
	The Dispatch Queue
	How to Find the Task ID Table
	How to Find Which Task Is Running
	Tracing Task and Program Management

	Program Management
	Task Load List
	Virtual Machine Load List
	How to Find Where a Program Is Loaded
	GCS Load Error

	IUCV
	Debugging Applications
	Tracing IUCV
	The IUCV Anchor Block (IUCBK)
	The User ID Blocks (IUCID)
	The Path ID Table (IUCPT)
	How to Find Information about a Path

	Storage Management
	Storage Anchor Blocks
	Description of the Storage Anchor Control Blocks (SACBs)
	Important Fields in Major SACBs
	Important Fields in Minor SACBs
	Checking for Storage Fragmentation
	Scanning the Major and Minor SACBs
	Checking Free Storage on Any Given Page
	Finding the Key for a Given Page
	Control Blocks Describing the Storage Owned by a Task
	How to Find the Storage Belonging to a Given Task
	How to Check What Subpools Belong to a Given Task
	System-Wide Description of Storage
	System-Wide Description of TSHBs and GSBBs
	Common Storage Management Problems
	Tracing Storage Management

	General I/O
	IOSAVE
	The Subchannel ID Table (SIDTABLE)
	The General I/O Table (GIOTB)
	I/O Interrupt Handling
	Interrupt Control Blocks
	How to Find What Pages Are Locked by PGLOCK
	Finding Pages Not Paged in After a Page Fault
	How to Find the Characteristics of a Device

	I/O Debugging
	Trace Table Entries
	Recreating the Problem

	Command and Console Support
	LOADCMD Command
	NUCON Information
	SIE Information
	CMDBUF
	WQE and ORE

	VSAM
	Data Compression Services
	Application Migration Considerations

	NUCON Changes
	VAD Information
	Boundary Box Usage
	VSAM Anchor Block

	VTAM/VSAM Work Areas
	Helpful Hints for VSAM debugging
	Debugging Data Compression Errors
	An Example of Control and Data Flow in GCS

	Chapter 10. Debugging TSAF
	Summary of Steps to Follow When a TSAF Abend Occurs
	Using the Console Log
	Using TSAF Dumps to Diagnose Problems
	Creating the TSAF Map
	Creating a TSAF Dump
	Processing a TSAF Dump
	Diagnosing a TSAF Dump
	Displaying the TSAF Dump Information
	Formatting and Displaying Trace Records in a Dump
	Printing a TSAF Dump

	Using System Trace Data to Diagnose Problems
	Setting External Tracing
	Viewing TSAF Trace Entries
	Trace Table Entry Format for TSAF

	Interactive Service Queries

	Chapter 11. Debugging AVS
	Using AVS Dumps to Diagnose Problems
	Obtaining the GCS Load Map
	Creating an AVS Dump
	Processing an AVS Dump
	Diagnosing an AVS Dump
	Displaying the AVS Dump Information with DUMPSCAN
	Formatting and Displaying Trace Records in a Dump

	Using System Trace Data to Diagnose Problems
	Setting Internal Tracing
	Setting External Tracing
	Viewing AVS Trace Entries
	Trace Table Entry Format for AVS
	Getting Information about Trace Entries

	Interactive Service Queries
	Summary of Steps to Follow When an AVS Abend Occurs

	Appendix A. Problem-Specific Checklists
	CP Abend Checklist
	CMS Abend Checklist
	GCS Abend Checklist
	RSCS Abend Checklist
	CP Wait State Checklist
	Virtual Machine Wait State Checklist
	RSCS Wait State Checklist
	Application Program checklist for Unexpected Output
	Checklists for Performance Problems
	An Infinite Loop in CP
	An Infinite Loop in a Virtual Machine
	An Infinite Loop in RSCS
	Hardware Failure
	Inadequate System Parameters

	Appendix B. GCS Control Blocks
	NUCON — GCS Nucleus Constant Area
	SIE — NUCON Extension
	TBK — Task Block
	STBLK — State Block
	SMAB — Storage Management
	ANCH — Storage Anchor Block
	EXTWA — External Interrupt Handler Work Area
	SVCWA — SVC Interrupt Handler Work Area
	PGMWA — Program Interrupt Work Area
	VMCB — Virtual Machine Control Block

	Appendix C. Trace Table Codes
	Trace Table Codes for 32-byte Entries
	Trace Table Codes for 64-byte Entries

	Notices
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

