
z/VM
7.3

RSCS Networking
Diagnosis

IBM

GC24-6316-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
267.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-09-05
© Copyright International Business Machines Corporation 1990, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xiii

Tables..xvii

About This Document..xix
Intended Audience.. xix
Syntax, Message, and Response Conventions..xix
Where to Find More Information..xxii

Links to Other Documents and Websites... xxii

How to Send Your Comments to IBM.. xxiii

Summary of Changes for z/VM: RSCS Networking Diagnosis................................xxv
GC24-6316-73, z/VM 7.3 (September 2022)... xxv
GC24-6316-01, z/VM 7.2 (September 2020)... xxv
GC24-6316-00, z/VM 7.1 (September 2018)... xxv

Part 1. Functional Overview... 1

Chapter 1. Introduction to RSCS... 3
Operating Requirements.. 3
Task Overview...3

System Tasks...3
Link Driver Tasks... 5
Auto-Answer Task... 6

Task Interaction..6
Processing Files.. 7
Establishing SNA Connections..8
Establishing Auto-Dial and Auto-Answer Links..8
Processing Commands... 9
Processing Messages..10

Chapter 2. RSCS Structure...11
Communication Between Tasks...11

Direct Task Interfaces...13
Queued Command Interfaces.. 14

Data Structures...15
Primary Data Areas... 16
Defining Network Structure.. 17
Processing Files.. 21
Sharing RSCS Resources.. 25
Disk File Interface...26
Defining Tasks... 27
Managing Unit Record Devices... 28
Exit Facility.. 29
Message Subscriptions... 30
Message Request and Work Areas... 30
Event Scheduler.. 31
Command Authorization...31

 iii

Printer Related Areas..32

Chapter 3. Task Management..33
Using GCS Facilities..33

Task Management Facilities... 33
GCS Macros... 34

Attaching System Tasks... 35
Starting the Communications Task.. 35
Starting System Tasks...35
Starting the SNA Control Task and Auto-Answer Tasks...36

Starting Link Driver Tasks...36
Link Driver Tasks... 37
Session Driver as Primary LU..37
Session Driver as Secondary LU... 37
Auto-Start Links.. 37
Auto-Answer Links..37

Capturing Task Abends.. 38
End of Task Exit Processing..38

Chapter 4. Inter-Task Communication.. 39
Using GCS Services.. 39
Task Synchronization... 39

Task Queues..39
Event Control Blocks...40
POST and WAIT Macros..40
DMTCOMNQ and DMTCOMDQ.. 41

Task Serialization..41
DMTRES...42
Disabling Interrupts..42
ENQ and DEQ Macros... 42

Chapter 5. System Tasks... 43
Communications Task.. 43

Initialization.. 43
Creating System Tasks..44
Trapping Special Messages.. 44
Processing Commands... 45
Shutting Down RSCS... 46

Spool Manager Task... 46
Initialization.. 47
Processing Reader Interrupts...47
Processing Spool File Commands.. 48
Managing File Routines for Link Drivers... 50
Serializing Resources..51
Managing the Unit Record Device Pool.. 51

Auto-Start Task...52
Initialization.. 52
Dynamic Port Allocation... 52
Processing Commands... 52
Free Ports..53
Timer ECB..53
Termination... 53

Event Manager Task... 53
Initialization.. 53
Allocating Task IDs... 53
Event Types...54
Timer Management...54
Processing SCHEDULE Commands.. 54

iv

EXEC Processor Task..55
Initialization.. 55
Processing Exec Queues...55

SNA Control Task..55
Establishing a Session.. 55
Initializing the SNA Control Task.. 57
VTAM Exit Routines...57
Maintaining the RSCS/VTAM Interface...59

Port Redirector Task...60
Initialization.. 60
Processing LISTEN Requests... 61
Termination... 62

Auto-Answer Tasks...62
Initialization.. 62
Identifying Callers...62
Processing Sign-On Records.. 63
Invoking Links... 63
Error Processing..63
Calling Exit Points... 63

Chapter 6. Networking Link Drivers...65
Common Networking Structures... 65

Data Areas...65
Building NJE Headers... 65
Receiving NJE Headers...66
Receiving and Transmitting NMRs..67
General Purpose Routines..67
Initializing Storage.. 68
Processing Sign-on Records... 68
Processing Commands... 68
Accounting.. 68
Transmitting Buffers... 69
Receiving Buffers.. 69

SNA LU_T0 NJE Session Driver.. 70
Initialization.. 70
Terminating the Link... 71

BSC and CTC Link Driver...71
Initialization.. 71
Terminating the Link... 72

TCPNJE Link Driver...72
Initialization.. 72
Terminating the Link... 73

GATEWAY Link Driver... 73
Initialization.. 74
Gateway Service Macros...74
Terminating the Link... 75

Chapter 7. Printer Link Drivers.. 77
3270P Printer Link Driver...77

Initialization.. 77
Receiving and Sending Data... 77
Terminating the Link... 78

TN3270E Printer Link Driver.. 78
Initialization.. 79
Receiving and Sending Data... 79
Terminating the Link... 80

SNA 3270 Printer Session Driver... 80
Initialization.. 80

 v

Receiving and Sending Data... 81
Terminating the Link... 82

ASCII Printer and Plotter Link Driver... 82
Initialization.. 83
Receiving and Sending Data... 83
Command Processing... 84
Processing CP File Characteristics... 84
Building Data Streams.. 84
I/O Processing...84
Terminating the Link... 85

TCPASCII Printer and Plotter Link Driver...85
Initialization.. 86
Receiving and Sending Sata..86
Command Processing... 87
Processing CP File Characteristics... 87
Building Data Streams.. 87
Socket Processing...88
Terminating the Link... 88

Line Printer Daemon (LPD) Link Driver.. 88
Initialization.. 89
Sending and Receiving Data... 89
Terminating the Link... 90

Line Printer Remote (LPR) Link Driver... 90
Initialization.. 90
Sending and Receiving Data... 91
Terminating the Link... 92

Chapter 8. Workstation Link Drivers..93
RJE Workstation Link Driver...93

Initialization.. 93
Receiving and Sending Data... 93
Terminating the Link... 94

MRJE Workstation Link Driver..94
Initialization.. 95
Receiving and Sending Data... 95
Terminating the Link... 96

SNARJE Workstation Session Driver..96
Initialization.. 96
Receiving and Sending Data... 97
Terminating the Link... 98

Chapter 9. Special Purpose Link Drivers... 99
List Processor... 99

Initialization.. 99
Receiving and Sending Files... 99
Terminating the Link... 101

NOTIFY Link Driver...101
Initialization.. 101
Generating a Note...101
Building Note Records.. 102
Purging Files... 102

Unsolicited File Transfer (UFT) Driver... 103
Initialization.. 103
Sending and Receiving Data... 104
Terminating the Link... 105

Unsolicited File Transfer Daemon (UFTD) Driver.. 105
Initialization.. 106
Sending and Receiving Data... 106

vi

Terminating the Link... 107

Chapter 10. Utility Routines.. 109
General Purpose Routines... 109

Table Search Routines.. 109
Disk File Interface Routine...109
Time-of-Day Conversion Routines... 110
Number/Data Conversion Routines... 110
Specialized Routines.. 111
Hashed Indexing Routines... 112
Storage Management Routines.. 113
I/O Interface Routines..114
Spool Interface Routines..114
Input Spool Routines..114
Output Spool Routines... 115
NETDATA Conversion Routine.. 115
General Parsing Routines... 116
Task Table Service Routines...117

Chapter 11. Parsing Commands and Statements...119
Defining Syntax.. 119

CDEF Macro...119
LDEF Macro... 120
PDEF Macro...120
DDEF Macro.. 123

Finding Command and Statement Definitions.. 123
Parsing Commands and Statements... 124

QUERY Command Processing.. 125

Chapter 12. Message Processing.. 127
Message Structure... 127

Text Messages.. 128
Columnar Messages... 128
EMSG Settings.. 128
National Language Support.. 128
Command Response Interface...128
Message Subscriptions...129

Processing Messages... 129
Preparing to Issue Messages... 130
Issuing Messages to All Destinations.. 131
Formatting Messages... 132
Processing Substitution Values..133

Message Repositories.. 134
Conversion Repository..135
Translation Repository..136
Message Compilers...138

Part 2. Diagnostic Aids...139

Chapter 13. Debugging Considerations.. 141
Abend Processing...141

Console Abend Messages...141
Abend Dumps... 142
Reading Dumps...142
System Abend Considerations... 142
Finding RSCS Data Areas..142

GCS Considerations..143

 vii

Active Tasks.. 143
Tracing State Blocks... 143

Trace Data Format..143
Sample CTC Trace (RECORDS Option)... 143
Sample CTC Trace (ALL Option)... 145
Sample SNANJE Trace..148
Sample TCPNJE Trace.. 149

Chapter 14. Examining Dumps..157
Getting Dump Information...157

Checking for a Compressed Load Map...157
Using RSCS-Supplied Subcommands..157
CVT... 158
DWA.. 158
IOTABLE..159
ITRACE... 161
LINKS..165
NDWA... 165
RIB..166
ROUTES.. 167
TAGQUE.. 168
TIB.. 169

Chapter 15. Solving Problems in RSCS Interchange.. 171
Using REXX Traces... 171
Using a Log File...171
Using Incoming and Outgoing Mail Files... 172
Using RSCS Diagnosis Commands...172

Part 3. Reference Directories... 173

Chapter 16. Module Directory... 175
RSCS Modules.. 175

DMTAPT...175
DMTAST...175
DMTAXA.. 175
DMTAXM..175
DMTBOX..176
DMTBPL...176
DMTCMA... 177
DMTCMB... 177
DMTCMQ... 177
DMTCMX..178
DMTCMY..178
DMTCMZ..179
DMTCOM... 179
DMTCQC.. 180
DMTCQX.. 181
DMTCQY.. 181
DMTCQZ.. 182
DMTCVT.. 182
DMTDDL.. 182
DMTDUP..182
DMTEND..182
DMTEQU..182
DMTEVE...183
DMTEXE...183

viii

DMTGPI...183
DMTHAS.. 184
DMTIOT... 184
DMTITR... 184
DMTIRW.. 185
DMTIRX... 185
DMTLAX...185
DMTLCR...185
DMTLIS..185
DMTLOG.. 185
DMTLPD...186
DMTLPR...186
DMTMAN... 186
DMTMGF... 186
DMTMGI.. 187
DMTMGS... 187
DMTMGX... 187
DMTMPT..187
DMTNCR..188
DMTNET.. 188
DMTNHD... 188
DMTNHE..189
DMTNOT..189
DMTNPT.. 190
DMTNRV.. 190
DMTNTR.. 190
DMTNUS..190
DMTPAF...191
DMTPAR.. 191
DMTPCR.. 191
DMTPRD.. 191
DMTQSA.. 192
DMTRDR..192
DMTRER.. 192
DMTRES.. 192
DMTREX.. 193
DMTRGX.. 193
DMTRPT.. 193
DMTSCT...194
DMTSEP...194
DMTSJE...194
DMTSLO...194
DMTSML.. 195
DMTSNE.. 195
DMTSOK.. 195
DMTSPT...195
DMTTAP...196
DMTTAS...196
DMTTNE.. 196
DMTTPT...196
DMTUFD.. 197
DMTUFT.. 197
DMTURO..197
DMTVXT.. 197

Exit Points...198
Dump Formatting Routines..199

DMTYCV.. 199
DMTYDS.. 200

 ix

DMTYEX.. 200
DMTYIO...200
DMTYIT... 200
DMTYLI..200
DMTYND..200
DMTYRI... 200
DMTYRO..200
DMTYTG.. 200
DMTYTI... 200

Chapter 17. Control Blocks... 201
Primary Data Areas.. 201

CRV..201
CVT.. 202
SYSIDENT... 204

Network and Task Structure.. 204
DEST..204
EQUATE... 205
LINKTABL.. 205
PORT... 210
REROUTE.. 210
ROUTEGRP..211
TASKBLOK...211

Accounting Structures..212
ACNTBUFF.. 212
AUTHBLOK.. 212

Printer-Related Structures...213
FORM...213
RFCBTAB... 213
SEPBLOK... 213

File Queueing Structures... 213
SAFTAG... 214
TAG..214
TAGAREA...216
TASHADOW... 217
TASTORAG.. 217

TCP/IP-Related Structures.. 218
PRDBLOK.. 218
SOCKBLOK.. 218
SOCKCBLK.. 219
SOCKET... 220

Tracing Structures.. 224
ITRACFRM...224
ITRACHDR...224
ITRACREC... 225

Miscellaneous Structures.. 225
EVEBLOK... 225
HASHBLOK..227
IOTABLE.. 227
MONITENT.. 228
SAVEAREA...228

Chapter 18. Command and Request Elements.. 231
CMNDAREA...231

Basic Structure... 231
Type A0 (REORDER)... 232
Type A1 (CLOSE, ORDER, PURGE)..232
Type A1 (TRANSFER)..233

x

Type A2 (CHANGE)... 234
Type C0 (FORCE)...235
Type C1 (ITO)..235
Type C2 (RETRY)...235
Type E0 (Execs).. 236
Type L0 (DRAIN, FREE, HOLD, READY, START, and TRACE).. 236
Type L1 (BACKSPACE, FWDSPACE)..237
Type L2 (FLUSH)... 238
Type L3 (Commands, Messages)..238
Type V1 (START)... 239
Type V2 (STOP)... 239

MSGBLOK... 240
RDEVBLOK..242

Chapter 19. Networking Data Areas and Record Formats... 245
Data Areas and Equates...245

BUFFER... 245
HDRTRL... 245
NCC... 246
NJEEQU...246
NMR...248
RIB.. 249
TANK... 251
TIB...252
XABHDR.. 256

NJE Header Formats.. 257
Job Header Format...257
Job Trailer Format.. 259
Data Set Header Format... 259

Record Formats.. 262
Coded NOP Records... 262
Segmented Header Formats.. 263
Spanned Record Format...263

TCPNJE Record Formats.. 264
Control Record Format... 264
Data Block Header (TTB)..265
Data Block Record Header (TTR)... 265

Notices..267
Programming Interface Information...268
Trademarks.. 268
Terms and Conditions for Product Documentation.. 269
IBM Online Privacy Statement.. 269

Bibliography.. 271
Where to Get z/VM Information.. 271
z/VM Base Library..271
z/VM Facilities and Features... 272
Prerequisite Products.. 274
Related Products... 274
Additional Publications..275

Index.. 277

 xi

xii

Figures

1. RSCS Operational Environment.. 3

2. Overview of RSCS Initialization and Task Creation...5

3. Sending a File to a Remote Node.. 7

4. Receiving a File from a Remote Node... 7

5. Processing a Store-and-Forward File... 8

6. Processing a Store-and-Forward Command.. 9

7. Register Savearea Convention.. 12

8. Direct Interface Between Tasks..13

9. Command Processing Interface... 13

10. Stop Command ECB Interface..13

11. VTAM Event Interface... 13

12. Queued Task Interface..14

13. REX Task Command Queue.. 14

14. EXE Task Command Queue...15

15. EVE Task Command Queue...15

16. Command and Message Element Queue to Link Drivers... 15

17. CRV Anchored in CVT.. 17

18. Sample ROUTEGRP Hierarchy.. 19

19. Close-up of COUNTRY ROUTEGRP Entry..19

20. NODE Entries Chained to the Owning ROUTEGRP... 20

21. Overview of TAGAREA...22

22. Overview of TASTORAG Allocation... 22

23. Overview of a Page of Storage.. 23

 xiii

24. Relationship of TAG, TASHADOW, and LINKTABL Elements... 24

25. TASHADOW Queue Pointers (900 TASHADOWS on Link)..24

26. Example of Resource Ownership..26

27. Data Structures as -Line A3 2- is Read...26

28. Structure of the RSCS Task Table... 28

29. Channels Table Setup with -CHANNELS E F- Specified...29

30. Sample EXITBLOK Structure.. 29

31. Overview of MONITENT Structure..30

32. Overview of Message Builder Data Areas...31

33. Structure of the FCB Table..32

34. Processing the INIT Command...35

35. Attaching the Communications Task.. 35

36. Attaching Mandatory System Tasks..36

37. Processing the Configuration File... 43

38. A Successful BIND Request..56

39. An Unsuccessful BIND Request..56

40. Attaching the Dial-Up Task... 62

41. Structure of GATEWAY Link Driver..73

42. Structure of an ASCII-Type Link Driver...82

43. Structure of a TCPASCII-Type Link Driver.. 86

44. Initializing the RJE Link Driver Task..93

45. Initializing the MRJE Link Driver Task...95

46. Initializing the List Processor Task... 99

47. Simple Distribution List Processed by DMTNTRSB..100

48. Distribution List with Private Sections..100

xiv

49. Initializing the NOTIFY Link Driver... 101

50. Sample Keyword Table... 117

51. Sample Entry in the RSCSSTMT Macro...119

52. Syntax Structure of TRANSFER Command...120

53. Syntax Definition of the DISCONNECT Command... 121

54. Syntax Definition for NETWORK Command... 122

55. Syntax Definition for CPQUERY Command...122

56. Sample QUERY Command.. 123

57. Overview of Message Processing... 130

58. Compiling a Conversion Repository..135

59. A Message in the Conversion Repository... 135

60. Compiling a Translation Repository..136

61. Structure of a Text Message... 136

62. Building the Message Text..137

63. Building a Columnar Message.. 137

64. Bottom Level Column Headers...137

65. Sample Console Abend Message... 141

66. Output of the CVT Subcommand..158

67. Output of DWA Subcommand...159

68. Output of the IOTABLE Subcommand..160

69. Output of the LINKS Subcommand.. 165

70. Output of RIB Subcommand.. 167

71. Output of the ROUTES Subcommand...167

72. Output of the TAGQUE Subcommand.. 169

73. Output of TIB Subcommand...170

 xv

74. Sample DEBUG Output... 171

75. Sample RSCS Interchange Server Log File...172

xvi

Tables

1. Examples of Syntax Diagram Conventions...xix

2. RSCS System Tasks and Functions... 4

3. Link Driver Tasks and Associated Nodes.. 5

4. Session Driver Tasks and Associated Nodes.. 6

5. Communications Vector Table.. 16

6. GCS Macros Issued by RSCS Tasks...34

 xvii

xviii

About This Document

This document describes the debug facilities of IBM® Remote Spooling Communications Subsystem
(RSCS) Networking for z/VM. It also describes RSCS diagnostic aids and facilities. It is intended to help
you isolate and diagnose any problems that might occur in RSCS. It contains the following information:

• Overviews of RSCS functions
• Techniques and facilities for collecting and processing diagnostic information about RSCS
• Reference information about RSCS modules, entry points, and various data areas that are used for

diagnostic purposes

Intended Audience
This information is for anyone who needs to diagnose problems in the RSCS virtual machine.

You should be familiar with assembler language programming techniques and the operating procedures
for RSCS. Knowledge of the Group Control System (GCS) and Control Program (CP) components of
z/VM® is required. You should also be familiar with TCP/IP for z/VM and the Advanced Communications
Function/Virtual Telecommunications Access Method (ACF/VTAM) licensed program product (referred to
as VTAM® in this document).

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xix.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

© Copyright IBM Corp. 1990, 2022 xix

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

xx About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

About This Document xxi

Where to Find More Information
For additional information about RSCS and z/VM, see“Bibliography” on page 271.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xxii z/VM: 7.3 RSCS Networking Diagnosis

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1990, 2022 xxiii

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xxiv z/VM: 7.3 RSCS Networking Diagnosis

Summary of Changes for z/VM: RSCS Networking Diagnosis

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

GC24-6316-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

GC24-6316-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

GC24-6316-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1990, 2022 xxv

xxvi z/VM: 7.3 RSCS Networking Diagnosis

Part 1. Functional Overview

This part describes the functions, tasks, and data areas that enable RSCS to process files, messages, and
commands in the network. This information is presented for diagnostic purposes only.

© Copyright IBM Corp. 1990, 2022 1

2 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 1. Introduction to RSCS

This chapter introduces the structure of RSCS, its operational environment, and functions.

Operating Requirements
RSCS Networking for z/VM (RSCS) is an optional feature of z/VM. With RSCS, you can send and receive
files, messages, and commands to other systems and devices (called nodes) within RSCS and TCP/IP
networks.

As Figure 1 on page 3 shows, RSCS runs as an application of the Group Control System (GCS)
component of z/VM. RSCS uses GCS for task management and I/O operations; RSCS also uses GCS to
communicate with CP and other virtual machines. RSCS must run in an ESA-mode virtual machine.

To communicate within a System Network Architecture (SNA) network, RSCS requires VTAM.

RSCS and VTAM share the same GCS virtual machine group. Under GCS, VTAM creates an interface that
RSCS uses to exchange information with other VTAM applications in the SNA network. VTAM selects the
path that RSCS uses to communicate within the SNA network. It also allows RSCS to send and receive
data across SNA-type links. In addition, RSCS uses the TCP/IP feature of z/VM to communicate within an
IP network.

For information about specific operating requirements, see z/VM: General Information.

Figure 1. RSCS Operational Environment

Task Overview
RSCS’s major functions are performed by various tasks. This section provides an overview of the RSCS
system, link driver, and auto-answer tasks.

System Tasks
Most system tasks must be present for RSCS to function properly. The exceptions are the SNA control
task, which may be absent if the RSCS/VTAM interface is not running, and the TCP port redirector task,
which is not required if there are no TCPNJE-type links defined. The system tasks attach the link driver

Introduction

© Copyright IBM Corp. 1990, 2022 3

and auto-answer tasks as they are needed. See Chapter 5, “System Tasks,” on page 43 for more
information.

System tasks are referred to by a task name or an abbreviation of the name of the primary module that
comprises the task function. For example as Table 2 on page 4 shows, the communications task, whose
primary module is DMTREX, is also called the REX task. In this document, the task name and the module
abbreviation describes a task.

Table 2. RSCS System Tasks and Functions

Task Name Primary Module Function

Communications task DMTREX Initializes RSCS, creates other system tasks, and
processes commands.

Spool manager task DMTAXM Manages the RSCS virtual reader, maintains data
structures that describe the file queues, and tells
link drivers about files.

Exec processing task DMTEXE Runs GCS execs called by the RSCS EXEC
command.

Auto-start task DMTAST Manages enabled auto-dial ports for out-going
calls, auto-start links, and the Inactivity Time Out
(ITO) and RETRY functions. This task is also called
the auto-dial task.

Event scheduling task DMTEVE Runs specified events or commands at requested
times.

SNA control task DMTSCT Receives SNA requests and manages the RSCS/
VTAM interface.

TCP port redirector task DMTPRD Routes TCP/IP connection requests from a host
system to a specific TCPNJE-type link driver task.

Figure 2 on page 5 shows an overview of the RSCS initialization process. This process starts when GCS
passes an INIT command to the RSCS console input routine (DMTMANEP). If there are no syntax errors in
the command, the RSCS communications task (REX) is attached.

The communications task then calls DMTIRX to read the RSCS configuration file and calls Exit 0. If
there are no errors in the configuration file and or in any Exit 0 routines, the REX task attaches the
spool manager task (AXM), EXEC processing task (EXE), auto-start task (AST), the event scheduling task
(EVE), and the TCP port redirector task (PRD). After each system task has initialized successfully, the
RSCS virtual machine comes up. The optional SNA control task (SCT) is attached when a NETWORK
START command is issued. However, SNA-type links cannot be started before the SCT task completes the
initialization of the RSCS/VTAM interface.

Introduction

4 z/VM: 7.3 RSCS Networking Diagnosis

From Task Services
GCS Supervisor Routines
 |
 | +---------------+ +---------------+
 +--->| Console Input | | +-----------+ |
 | Task (DMTMAN) | | |I/O Request| |
 +-------+-------+ | |Translation| |
 ˅ | |(DMTIOT) | |
 +---------------+ | +-----------+ |
 | |<----------------------------->| | | | | |
 | | | |
 | | +---------------+ | +-----------+ |
 | |------>| Spool Manager |<----->| |PARM | |
 | | | Task (DMTAXM) | | |Processing | |
 | | +---------------+ | |(DMTPAR) | |
 | | +---------------+ | +-----------+ |
 | |------>| EXEC Processor|<----->| |
 | | | Task (DMTEXE) | | |
 | | +---------------+ | +-----------+ |
 | | +---------------+ | |Transaction| |
 | |------>| Auto-start |<----->| |Logging | |
 | Communications| | Task (DMTAST) | | |(DMTLOG) | |
 | Task (DMTREX) | +---------------+ | +-----------+ |
 | | +---------------+ | |
 | |------>|Event Scheduler|<----->| |
 | | | Task (DMTEVE) | | +-----------+ |
 | | +---------------+ | |Unit Record| |
 | | +---------------+ | |Processing | |
 | |------>| Auto-Answer |<----->| |(DMTURO) | |
 | | | Task (DMTDUP) | | +-----------+ |
 | | +---------------+ | . |
 | | +---------------+ | . |
 | |------>| SNA Control |<----->| . |
 | | | Task (DMTSCT) | | +-----------+ |
 | | +---------------+ | | | |
 | | +---------------+ | | Others... | |
 | |------>|Port Redirector|<----->| | | |
 | | | Task (DMTPRD) | | +-----------+ |
 +---------------+ +---------------+ +---------------+

Figure 2. Overview of RSCS Initialization and Task Creation

Link Driver Tasks
The term link driver describes all tasks that establish a link between the local RSCS virtual machine and
another node, printer, or service. There are two types of link driver tasks: network link driver tasks and
session (or SNA) driver tasks.

The LINKDEFINE statement defines links to the RSCS virtual machine. See z/VM: RSCS Networking
Planning and Configuration for information about defining links and using configuration file statements.

Link Driver Tasks
The term link driver describes any non-SNA links in RSCS. Table 3 on page 5 describes the following
information for RSCS link driver tasks: link type, primary module, and associated node.

Table 3. Link Driver Tasks and Associated Nodes

Link Type Primary Module Associated Node

ASCII DMTAPT Local or remote ASCII printer or plotter

GATEWAY DMTGPI Any peer node (for example, a CMS server or
remote system)

LISTPROC DMTLIS None

LPD DMTLPD Remote LPR client in a TCP/IP network

LPR DMTLPR A line printer daemon within a TCP/IP network

MRJE DMTSML Remote multi-leaving workstations

Introduction

Chapter 1. Introduction to RSCS 5

Table 3. Link Driver Tasks and Associated Nodes (continued)

Link Type Primary Module Associated Node

NJE DMTNET Remote NJE peer systems

NOTIFY DMTNOT None

RJE DMTNPT Remote workstations

TCPASCII DMTTAP ASCII printer or plotter within a TCP/IP network

TCPNJE DMTTNE Remote NJE peer system within a TCP/IP network

TN3270E DMTTPT TCP/IP attached 3270 printers

UFT DMTUFT An unsolicited File Transfer daemon in a TCP/IP
network

UFTD DMTUFD A UFT client in a TCP/IP network

3270P DMTRPT Local or remote 3270 printers

Link driver tasks are attached when a START command is issued or when RSCS receives a call on an
enabled auto-answer port. NOTIFY-type and LISTPROC-type links, which do not need dedicated line
addresses, are only attached when a START command is issued for the link.

Session Driver Tasks
In RSCS, the term session driver describes all SNA-type links (see Table 4 on page 6). Session driver
tasks are attached when a START command is issued for an SNA-type link. They are also attached when
RSCS receives an SNA request from a remote node for a logical unit (LU) driven by an RSCS session driver.

Table 4. Session Driver Tasks and Associated Nodes

Driver Name Primary Module Associated Node

SNANJE DMTSNE Remote peer systems

SNARJE DMTSJE Remote RJE workstation

SNA3270P DMTSPT Remote or local 3270 printers

Auto-Answer Task
The RSCS auto-answer task monitors enabled auto-answer ports. DMTDUP is the primary module for
the task. An auto-answer task (DUP) is attached each time the RSCS ENABLE command is issued for an
auto-answer port. Several auto-answer tasks may be present in the RSCS virtual machine at the same
time.

When an auto-answer port receives a call from a remote system, the auto-answer task on the local node
establishes a connection and then analyzes the sign-on record it receives from the caller. The sign-on card
identifies the calling system and identifies the type of link driver (NJE, MRJE, or RJE) requested for the
connection. If a matching link has been defined on the local node, the auto-answer task transforms itself
into the link driver task for the specified link.

Task Interaction
This section describes an overview of how RSCS tasks work together in the RSCS virtual machine to
ensure the receipt and delivery of files, commands, and messages in the network.

Introduction

6 z/VM: 7.3 RSCS Networking Diagnosis

Processing Files
RSCS’s main responsibility is to receive and deliver files to the destination specified by the file originator.
In the RSCS virtual machine, these responsibilities include:

• Sending files from local users to remote users
• Receiving files from remote users to local users
• Sending files from remote users to other remote users (store-and-foward handling)

To RSCS, a remote user is any user, workstation, or printer to which RSCS can communicate through a link.

Sending Files to Remote Users
When you send a file to a user at a remote node, you create a spool file that is spooled to the RSCS
virtual reader. CP generates an interrupt to tell the RSCS virtual machine when the file arrives. GCS, which
provides interrupt handling facilities for RSCS, receives this interrupt and notifies the spool manager task
(AXM) about the file.

The AXM task queues the file on any link that is eligible to send it. If an eligible link is idle, the AXM task
notifies that link driver about the file, and the link driver task takes control of the file.

The link driver task selects the file to be transmitted, opens it, and builds transmission buffers according
to the file’s contents and link protocol. When the end of the file is reached as it is read from spool,
the link driver will wait for the remote node to acknowledge receipt of the file. When it receives the
acknowledgement, the link driver then closes and purges the file from the local node.

 +-------+ +-------+ +--------+ To
 | GCS +---->| AXM +---->| Driver +------------> Remote
 +-------+ +-------+ +--------+ Node

Figure 3. Sending a File to a Remote Node

Receiving Files from Remote Users
When RSCS receives a file from a remote node, a link driver task is informed of the arrival of
teleprocessing (TP) buffers. Non-SNA links are notified by I/O interrupts on the devices they own. SNA-
type links are notified when a VTAM RECEIVE request has completed. TCP/IP-type links are notified when
a Socket RECV request has completed.

When it detects the beginning of a file, the link driver task calls the AXM task, which defines an output unit
record (UR) device. The file data is written to that UR device by write CCWs. When the end of the file is
reached, the UR device is spooled to the destination user and the device is closed. If necessary, the link
driver sends an acknowledgement to the remote node.

 From +--------+ +-------+ +---------+
 Remote ------->| Driver +---->| AXM +---->| User ID |
 Node +--------+ +-------+ +---------+

Figure 4. Receiving a File from a Remote Node

Handling Store-and-Forward Files
Files that originate on a remote node and are destined to another remote node are called store-and-
forward files on an intermediate (local) node. The intermediate node first receives the file from a remote
node and then sends it to the next remote node.

When it receives a file, a link driver on the intermediate node opens an output UR device and writes the
file to that device. When the end-of-file marker is received, the output device is spooled to the virtual
reader of the local RSCS virtual machine. When the device is closed, the file appears in RSCS’s virtual
reader. The link driver then sends an acknowledgement to the node that sent the file, if necessary.

The spool manager task is notified when the file arrives in the RSCS virtual reader. The AXM task queues
the file on a link that is eligible to send it to the next node.

Introduction

Chapter 1. Introduction to RSCS 7

The link driver task selects the file for transmission, opens it, and builds transmission buffers based on
the file’s contents and link protocol. When it reaches the end of the file, the link driver will wait for the
remote node to acknowledge receipt of the file. When it receives this acknowledgement, the link driver
closes the file and purges it from the local node.

From +--------+ +--------+ +-------+ +--------+ To
Remote <--->| Driver +-->| Reader +-->| AXM +-->| Driver |<---> Remote
Node A +--------+ +--------+ +-------+ +--------+ Node B

Figure 5. Processing a Store-and-Forward File

Establishing SNA Connections
The RSCS/VTAM interface allows RSCS to establish SNA connections within the network. When a
NETWORK START command is run, the REX task attaches the SNA control task (SCT). After it initializes,
the SCT task monitors the initialization of the RSCS/VTAM interface. When this process completes,
session drivers can be attached.

When a START command is issued for an SNA-type link, the REX task passes the request to the SCT task.
The SCT task then runs the VTAM SIMLOGON macro, which causes VTAM to simulate a logon request from
the remote node. The local node becomes the primary LU for the SNA session.

When VTAM establishes contact with a remote node, it drives the remote system's logon exit. If the
remote system is another RSCS, a session driver task will be attached on that remote RSCS. The
session driver task then issues a VTAM OPNDST request. This request establishes the RSCS connection
allowing data to be processed over the link. SNANJE-type links must also exchange NJE sign-on records.
Printer and workstation links (SNA3270P-type and SNARJE-type) can send data when the SNA session is
established.

If no problems are found, the SNA control task becomes idle. If a SNA 3270 printer is shared by
multiple systems, VTAM can issue a release request (RELREQ). This request tells RSCS that another SNA
application needs the printer. However, if files are enqueued on the session driver, RSCS does not release
the printer. If the printer is no longer needed on the local node, the SCT task deactivates the printer
session; the session driver task remains active. If the printer is needed later, the session driver task runs
the VTAM SIMLOGON macro to ask VTAM to reacquire the printer for the local RSCS virtual machine.

For SNANJE-type links, a START command does not have to be issued on both ends of the session. A
VTAM operator can enter a VARY LOGON command to begin a session. If an operator on a remote node
enters a START command for an SNANJE-type link on the local node, VTAM drives the SCIP exit in the
local RSCS virtual machine. The session driver task on the local node becomes the SNA secondary LU
(SLU). It then issues the VTAM OPNSEC macro to establish the session. Data can flow on the SNA session
once sign-on records are exchanged. RSCS can only act as the SLU for SNANJE-type links; workstation
and printer links must be the primary LU in an SNA session. See “SNA Control Task” on page 55 for more
information.

Establishing Auto-Dial and Auto-Answer Links
Auto-dial and auto-answer links can be established between RSCS virtual machines that do not
communicate often with it each other. Auto-dial and auto-answer ports must be defined and enabled
on each RSCS virtual machine. The RSCS virtual machines must also have a link, with auto-start options,
defined between them.

When a file is queued on the link between the RSCS virtual machines, the spool manager task on the
local RSCS virtual machine tells the auto-dial task (DUP) that an auto-dial port is needed. The auto-dial
task then assigns an available port address to the link and attaches the link driver task. The link driver
task initializes and dials the phone number specified on its PARM statement or on the DEFINE or START
commands.

When an enabled auto-answer port on the remote node receives the call, the DUP task establishes the
connection. The DUP task examines the sign-on record from the calling node. If it finds a correct link
definition, the DUP task runs the GCS LINK macro to transform itself into the type of link driver specified
by the caller.

Introduction

8 z/VM: 7.3 RSCS Networking Diagnosis

After the file is sent and the links become idle, Inactivity Time Out (ITO) definitions for each link
determine how long the connection remains up. See z/VM: RSCS Networking Planning and Configuration
for information about ITO definitions.

Processing Commands
RSCS also processes commands that originate from local and remote users. The commands may be run
on the local node or sent to another node in the network.

Commands Issued By a Local User for the Local Node
When RSCS initializes, the REX task establishes a connection to the IUCV *MSG service. All SMSG
commands issued at the local node are placed on DMTREX’s command queue by an interrupt handler.

If the command is for the local node, the processing routine for the command is called. Command
responses are then returned to the command originator. If the command requires another RSCS task to
complete work, the command processing routine passes a command element to the appropriate task.
The CMNDAREA maps each type of command element (see “CMNDAREA” on page 231). Commands to
manipulate files or queues (CHANGE, TRANSFER, REORDER) are passed to the AXM task. Commands,
such as FLUSH, TRACE, and DRAIN, are passed to a link driver. The SCHEDULE command is passed to the
EVE task; the EXEC command is passed to the EXE task. The TCP command is passed to the PRD task. The
network command is passed to the SCT task.

Some commands cause RSCS to attach or delete a task. For example, a START command creates a link
driver task and the ENABLE command creates an auto-answer task. The NETWORK START command
causes the SNA control task to be attached. The TCP START command causes the TCP/IP Port Redirector
to be attached.

Commands Issued to Remote Nodes
To send a command to a remote node, users on the local node must enter the CMD command. The
REX task receives the command element from the RSCS interrupt handler and passes it to a command
processing routine for processing. This processing routine builds a command element and queues it on
the appropriate link driver. The link driver task dequeues the element and sends it to the remote node.

Commands Issued to the Local Node
When a user on a remote node enters a command for the local RSCS virtual machine, a link driver task is
informed of the arrival of a TP buffer. When it finds the command element in the TP buffer, the link driver
task calls DMTRGX to determine how the command should be processed. DMTRGX then notifies the REX
task about the command and places the command element on its command queue.

Processing continues as if the command originated from a local user. However, RSCS returns any
command responses to the command originator over an appropriate link to the node.

Commands Issued by a Remote User for a Remote Node
Like files, commands that originate from one remote node can be destined to another remote node. The
local (intermediate) node does not process the command element. After a link driver task receives the
command element, it calls DMTRGX. As Figure 6 on page 9 shows, DMTRGX then queues the element
onto the next node's link driver task. This link driver then removes the command element from its queue,
places it in a TP buffer, and sends the element to the next remote node.

 From +--------+ +--------+ +--------+ To
 Remote <--->| Driver +-->| DMTRGX +---->| Driver |<---> Remote
 Node A +--------+ +--------+ +--------+ Node B

Figure 6. Processing a Store-and-Forward Command

Introduction

Chapter 1. Introduction to RSCS 9

Processing Messages
In RSCS, message processing is similar to command processing. However, when a remote user sends a
message to a local user, the link driver task that receives the message element also delivers the message
to the user. The REX task does not process the message. See Chapter 12, “Message Processing,” on page
127 for more information.

Introduction

10 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 2. RSCS Structure

This chapter describes the overall structure of RSCS communication and data flow. The first section
describes how RSCS tasks communicate and share information. The second part describes some of the
data areas that store the information RSCS needs to successfully complete a task.

Communication Between Tasks
This section provides an overview of task communication within RSCS. Because few RSCS functions are
completed by a single task, inter-task communications are an important part of RSCS processing. For
more information, see Chapter 4, “Inter-Task Communication,” on page 39.

The register savearea convention that RSCS follows is shown in the following figure.

RSCS Structure

© Copyright IBM Corp. 1990, 2022 11

SaveArea#/
Reserved

_________ sa bwd

_________ sa fwd

R14 _________

R15 _________

R0 _________

R1 _________

R2 _________

R3 _________

R4 _________

R5 _________

R6 _________

R7 _________

R8 _________

R9 _________

R10 _________

R11 _________

R12 _________

Savewrk1 _________

Savewrk2 _________

Savewrk3 _________

Savewrk4 _________

Savewrk5 _________

Savewrk6 _________

Savewrk7 _________

Savewrk8 _________

Note: Each item is a fullword in length.

Save Areas

SaveArea#/
Reserved

_________ sa bwd

_________ sa fwd

R14 _________

R15 _________

R0 _________

R1 _________

R2 _________

R3 _________

R4 _________

R5 _________

R6 _________

R7 _________

R8 _________

R9 _________

R10 _________

R11 _________

R12 _________

Savewrk1 _________

Savewrk2 _________

Savewrk3 _________

Savewrk4 _________

Savewrk5 _________

Savewrk6 _________

Savewrk7 _________

Savewrk8 _________

SaveArea#/
Reserved

_________ sa bwd

_________ sa fwd

R14 _________

R15 _________

R0 _________

R1 _________

R2 _________

R3 _________

R4 _________

R5 _________

R6 _________

R7 _________

R8 _________

R9 _________

R10 _________

R11 _________

R12 _________

Savewrk1 _________

Savewrk2 _________

Savewrk3 _________

Savewrk4 _________

Savewrk5 _________

Savewrk6 _________

Savewrk7 _________

Savewrk8 _________

SaveArea#/
Reserved

_________ sa bwd

_________ sa fwd

R14 _________

R15 _________

R0 _________

R1 _________

R2 _________

R3 _________

R4 _________

R5 _________

R6 _________

R7 _________

R8 _________

R9 _________

R10 _________

R11 _________

R12 _________

Savewrk1 _________

Savewrk2 _________

Savewrk3 _________

Savewrk4 _________

Savewrk5 _________

Savewrk6 _________

Savewrk7 _________

Savewrk8 _________

SaveArea#/
Reserved

R14 _________

R15 _________

R0 _________

R1 _________

R2 _________

R3 _________

R4 _________

R5 _________

R6 _________

R7 _________

R8 _________

R9 _________

R10 _________

R11 _________

R12 _________

Savewrk1 _________

Savewrk2 _________

Savewrk3 _________

Savewrk4 _________

Savewrk5 _________

Savewrk6 _________

Savewrk7 _________

Savewrk8 _________

Figure 7. Register Savearea Convention

RSCS Structure

12 z/VM: 7.3 RSCS Networking Diagnosis

Direct Task Interfaces
Figure 8 on page 13 shows a direct interface between two synchronized tasks. Task 1 sends a request
to Task 2, which then acts on that request. Task 1 cannot make other requests until Task 2 completes the
first request.

 +--------+ +--------+
 | Task 1 +-------->| Task 2 |
 +--------+ +--------+

Figure 8. Direct Interface Between Tasks

REX Task Command Interface
When a non-GCS command is entered at the GCS console, GCS uses information from the GCS LOADCMD
command to determine which application should process the command. GCS determines RSCS should
process the task due to the use of the "RSCS" command prefix, passing the command to the RSCS
console task, DMTMANEP.

As Figure 9 on page 13 shows, DMTMANEP then passes the command to the communications task,
which is responsible for processing the command. The REX task notifies DMTMAN when the processing
completes. DMTMAN then passes a return code from the command back to GCS.

 +--------+
 |Command |
 +--------+ +-------+
 |DMTMANEP|<------->| REX |
 +--------+ +-------+

Figure 9. Command Processing Interface

STOP Command Interface to Link Drivers
The LTERECB field in a link’s LINKTABL indicates if the link driver task should end. Link driver tasks
check this field each time a GCA WAIT macro call has been satisfied. The REX task and VTAM TPEND
exit usually post the LTERECB for link and session drivers, respectively. Other system tasks can also post
this ECB. When its LTERECB ECB is posted, the link driver task stops processing as soon as possible and
terminates, returning control to GCS.

 +-------+ +---------+
 | Tasks +-------->| Drivers |
 +-------+ +---------+

Figure 10. Stop Command ECB Interface

VTAM Event Interface to Session Drivers
The SNA control task (SCT) detects several VTAM events (for example, SEND and RECEIVE requests) that
affect RSCS-SNA sessions. VTAM informs the SCT task of these events by posting an ECB or by scheduling
a VTAM exit routine in DMTVXT.

The SCT task then posts an ECB in the session driver task’s LINKTABL to notify the session driver of the
VTAM event. If VTAM passes new BIND information to RSCS, the SCT task also passes this information to
the session driver.

 +-------+ +---------+
 | Tasks +-------->| Drivers |
 +-------+ +---------+

Figure 11. VTAM Event Interface

RSCS Structure

Chapter 2. RSCS Structure 13

Queued Command Interfaces
Figure 12 on page 14 shows a queued interface between tasks that are not synchronized. For this type of
communication, a task places its requests on another task’s input queue. Each request is represented by
a queue element, which can be up to 256 bytes long.

In this example, Task 2 reads requests from its input queue and acts on them after Task 1 has made its
request. Other tasks may place requests in the queue before Task 2 has acted on the first request. These
additional requests are held in the input queue until Task 2 completes the first request.

 +--------+ +--------+
 | Task 1 +-----+ +---->| Task 2 |
 +--------+ | | +--------+
 | |
 | ˅ | |
 +-------+
 Task 2
 Input Queue

Figure 12. Queued Task Interface

The RSCS routines, DMTCOMNQ and DMTCOMDQ, can access all of the queue interfaces within RSCS.
Tasks call DMTCOMNQ to place elements on other task queues; they call DMTCOMDQ to remove elements
from their own input queue.

The task that called DMTCOMNQ then posts the ECB associated with the specific queue for the target
task. When the target task determines that its ECB is posted, it calls DMTCOMDQ to receive the element.
This process continues until DMTCOMDQ indicates that no elements remain on the task’s input queue; the
target task then clears its queue ECB. For more information, see “DMTCOMNQ and DMTCOMDQ” on page
41.

REX Task IUCV and Command Queue
The REX task receives commands from several sources. The command elements are in the L3 format of
CMNDAREA. The REX task then passes them to the main command processor module, DMTCMX.

DMTAXMEP
START commands when links are to be auto-started.

DMTREXIU
Commands when data from SMSG commands is received on the IUCV session connected to the *MSG
system service.

DMTMANEX
ENABLE commands when auto-answer ports must be re-enabled.

Link Drivers
Commands from workstations or command nodal message records (NMRs) from remote nodes.

 +----------+
 | DMTAXMEP |
 | DMTMANEX | +-------+
 | DMTREXIU +-----+ +---->| REX |
 | Drivers | | | +-------+
 +----------+ | |
 | ˅ | |
 +--------+
 DMTREXCQ

Figure 13. REX Task Command Queue

System Task Command Queue
Each RSCS system task has one or more input command queues. Most of the input to the command
queues comes from other system tasks.

RSCS Structure

14 z/VM: 7.3 RSCS Networking Diagnosis

EXE Command Queue
Command elements are enqueued to the EXEC processor task (EXE) when a link must be restarted or
when an exec is issued. As Figure 14 on page 15 shows, the EXE task receives the command elements
from DMTCMZ and the end of task routine, DMTMANEX.

 +----------+
 | DMTCMZ | +-------+
 | DMTMANEX +----+ +---->| EXE |
 +----------+ | | +-------+
 | |
 | ˅ | |
 +-------+
 DMTEXECQ

Figure 14. EXE Task Command Queue

EVE Task Command Queue
The event scheduler task, EVE, receives the processed form of SCHEDULE commands from DMTCMB. Exit
routines, running in any RSCS task, can also make requests for schedule events.

 +--------+ +-------+
 | DMTCMB +-----+ +---->| EVE |
 +--------+ | | +-------+
 | |
 | ↓ | |
 +-------+
 DMTEVECQ

Figure 15. EVE Task Command Queue

Link Driver Command and Message Queues
RSCS converts all link driver commands (for example, HOLD, FLUSH, and FWDSPACE) to command
elements and places them on the command queue (LCMN) of the appropriate link driver. The LINKTABL
entry of each link driver contains its command queue anchor. For non-NJE link drivers, the routing
element of the CMD command is also placed in the command queue.

 +--------+ +--------+
 | Task 1 +-----+ +---->| Driver |
 +--------+ | | +--------+
 | |
 | ˅ | |
 +-------+
 LCMD/LMSGQ

Figure 16. Command and Message Element Queue to Link Drivers

RSCS converts all nodal message records (NMRs) it receives from NJE nodes for which it must forward to
other nodes into routing elements. These elements, which are in the L3 format of the CMNDAREA macro,
are placed on the message queue (LMSGQ) of the appropriate link driver task. The LINKTABL entry for
each link driver contains the anchor for the message queue.

If a command or message is routed to another node, the command processing and message-issuing
modules also generate routing elements. These elements are placed in the link driver’s message queue.

Data Structures
This section describes the primary data structures RSCS uses to perform various tasks. Some data areas
represent an external feature of the RSCS network (for example, each defined link has a LINKTABL entry).
Other structures are important parts of the processing of each RSCS task.

RSCS Structure

Chapter 2. RSCS Structure 15

Primary Data Areas
The communications vector table (CVT) and the common routines vector (CRV), two of the primary data
areas, point to other important data areas and routines within RSCS. Other RSCS tasks and user exit
routines use these data structures to find information about the RSCS virtual machine.

Communications Vector Table
The CVT contains pointers to other RSCS data areas, which are described in the following table. Given
the location of the CVT, tasks can locate other RSCS data structures or routines. Therefore, RSCS passes
the address of the CVT to every exit routine (see z/VM: RSCS Networking Exit Customization for more
information). For more information about the CVT format, see “CVT” on page 202.

Table 5. Communications Vector Table

Data Structure Anchor Field Function

LINKTABL TLINKS The first LINKTABL entry represents the local node;
each LINKTABL entry that follows represents a link.

ROUTEGRP TROUTEGP Represents a combination of routed nodes.

PORT TPORTS Represents an address of a switched
telecommunications line or binary synchronous
communication (BSC) connection to a remote node.

TAGAREA TTAGQ Contains pointers to all the file related data
structures in RSCS.

AUTHBLOK TAUTH Contains the authorization level of a node ID and
user ID that can use privileged commands.

REROUTE TREROUTE Contains information about how files, commands,
and messages are rerouted to a specific node ID
and user ID.

DEST TDEST Identifies a printer under the control of the Printer
Service Facility (PSF/VM) on the local node.

EXITBLOK TEXITS Points to a vector of 256 addresses; each pointer
is an anchor for a table of contiguous EXITBLOKs
representing exit points 0 through 256.

MONITOR TMONITOR, TMONIMSG Monitors the command settings of the global SET
command (TMONITOR) and the SETMSG command
(TMONITOR).

FORM TFORMTAB Represents a print form name and its defined
characteristics.

RFCBTAB TFCBTABA Defines a forms control buffer (FCB) image to
RSCS.

CRV TCRVTAB Contains the addresses of common RSCS routines.

EVEBLOK TEVENTS Represents an event to the event scheduler task.

EQUATE TEQUATE Represents the types of link drivers known to the
RSCS system tasks.

RESBLOK TRESOURC Represents a resource that many RSCS tasks may
share.

RSCS Structure

16 z/VM: 7.3 RSCS Networking Diagnosis

Table 5. Communications Vector Table (continued)

Data Structure Anchor Field Function

TASKBLOK TTASKTAB Points to an index vector containing 1024 pointers;
each of these pointers may point to one TASKBLOK
or a chain of TASKBLOKs.

The CVT also contains counters for the number of active tasks. The CVT also contains flags (TGLOBALx
fields) that indicate the state of the RSCS virtual machine. The default values for MAXDSH and MSGSKIP
parameters for the networking link drivers are set in the CVT when the configuration file is processed. The
CVT also points to various work areas within RSCS. It also contains the maximum hop count value, which
determines when a file is looping in the network. Finally, the CVT contains the count for the maximum
number of messages that can be returned in response to a query command.

The CVT also contains a user exit usage field called TUSER. This field can be used to anchor working
storage that must be accessible to multiple exit packages. See z/VM: RSCS Networking Exit Customization
for further details.

Common Routines Vector
The CRV contains pointers to RSCS routines, queue anchors, and locks, which are useful to exit routines
outside the RSCS load library (see “CRV” on page 201). No RSCS modules reference the CRV. As Figure 17
on page 17 shows, given the address of the CVT, an exit routine can use the TCRVTAB field to find the
CRV.

 +---------+---------+---------+
 CVT | ... | TCRVTAB | ... |
 +---------+----+----+---------+
 ↓
 +--------+--------+----------+
 CRV | CAXMRQ | ... | |
 +--------+--------+----------+

Figure 17. CRV Anchored in CVT

Parameters specified on the RMOD and RCALL macros determine if the exit routines use standard
V-constant linkage to call RSCS routines (if the module is link-edited into the RSCS LOADLIB) or if they
access routines through the CRV. See z/VM: RSCS Networking Exit Customization for more information
about these macros and the RSCS exit facility.

Defining Network Structure
The structure of the RSCS network is defined by the operands you specify on the LINKDEFINE and ROUTE
statements and on the DEFINE, DELETE, START, and ROUTE commands.

This section describes the LINKTABL, NODE, and ROUTEGRP data areas, which describes the RSCS
view of the network’s structure. RSCS uses these structures to determine the links on which files or
messages can be transmitted, or routed, to their destination nodes. To route a file or message, a task calls
DMTCOMGN to locate the following information:

• The NODE entry corresponding to the specified node
• The ROUTEGRP entry for the node, by following the NODERGRP pointer
• If the ROUTEGRP is part of another group, its root group is located by the ROUTGDAD pointer.
• The primary and any alternate links, using the ROUTLNKS and ROUTALNK pointers.

LINKTABL
A link table (LINKTABL) entry describes any RSCS connection to a peer node, printer, or workstation
created by a LINKDEFINE statement or by the DEFINE and START commands. Each link defined to the
RSCS virtual machine has a LINKTABL entry. The TLINKS field in the CVT points to the chain of LINKTABL

RSCS Structure

Chapter 2. RSCS Structure 17

entries. The first LINKTABL entry in the chain contains information about the local RSCS node. The LINKID
field in this LINKTABL contains the node ID of the local node.

Most LINKTABL fields correspond to the operands of the LINKDEFINE statement and the DEFINE or
START commands. Fields that represent operands of the LINKDEFINE statement and START and DEFINE
commands have two forms:

• LACTxxxx fields for the active, or current, value of a field
• LDEFxxxx fields for the default values specified on a LINKDEFINE statement or on the DEFINE

command.

The LACTxxxx fields contain copies of the values in the LDEFxxxx fields when the link is inactive. If the link
is started by a START command that specified PARM or OPARM values, only the values in the LACTxxxx
fields are changed; they are restored when the link becomes idle.

All PARM, OPARM, or UPARM parameters are represented by a pointer in the LINKTABL. This field points
to a data area that contains a half-word header, indicating the number of characters in the parameter
string, and the text of the string. If no parameters are specified on the link, this pointer contains zeros.

The LINKTABL contains LFLAG fields indicating the link’s status. It also contains ECBs and queue anchors
for commands and work queues for active links. The LINKTABL anchors and keeps counts for TASHADOW
queues that represent inactive files on the link. Other LINKTABL fields govern multistreaming, link
message subscriptions, SNA and TCP/IP sessions, and the node and user ID of the START command
originator. The LINKTABL also contains a pointer to the ITRACE settings used for the link task. For more
information about the LINKTABL format, see “LINKTABL” on page 205.

When a link is deleted, its LINKTABL entry remains in the LINKTABL chain and its LINKID field is cleared.
When a new link is defined, RSCS searches the LINKTABL chain to find a LINKTABL entry containing an
blank LINKID field. If it finds one, RSCS uses the existing structure to create the LINKTABL entry for
the new link. If no links have been deleted (there are no cleared LINKID fields), RSCS creates a new
LINKTABL entry for the new link.

When RSCS initializes, all LINKTABL entries are added to a hash table based on their link ID. Tasks call
DMTCOMLK to locate LINKTABL entries in the hash table (see “DMTCOMLK and DMTCOMGG” on page 109
for more information on DMTCOMLK).

ROUTEGRP
A route group (ROUTEGRP) represents a group of nodes or a collection of groups. ROUTEGRP entries
define the routes within the network. They also contain counters for the number and types of files
enqueued on the nodes. (For more information on the ROUTEGRP control block, see “ROUTEGRP” on
page 211.) The following terms describe the routing structure with an RSCS network:
Root (top-level) group

A ROUTEGRP entry that is directly routed to a collection of links. A root ROUTEGRP is not owned by
any other ROUTEGRP.

Bottom-level group
A ROUTEGRP entry that does not own other ROUTEGRP entries. This group entry can contain zero or
more nodes.

Honorary group
A ROUTEGRP entry that represents a loosely related set of nodes that are routed through the same
combination of primary and alternate links. Honorary ROUTEGRP entries are always both root groups
and bottom-level groups. Honorary groups are identified by the ROUTHONR flag.

Real group
Any ROUTEGRP that is not a honorary group. It is the subject or object of a ROUTE statement.

Parent group
Any ROUTEGRP that owns another (child) group.

Child group
Any ROUTEGRP that is owned by another (parent) group. The ROUTGDAD field points to the parent
ROUTEGRP entry.

RSCS Structure

18 z/VM: 7.3 RSCS Networking Diagnosis

RSCS creates routing groups from the options you specify on the ROUTE command and configuration
file statements. For example, if you specify the following configuration file statements, you create the
ROUTEGRP hierarchy shown in Figure 18 on page 19 within the RSCS network.

 ROUTE GROUP COUNTRY TO LINKA LINKB
 ROUTE GROUP WEST TO GROUP COUNTRY
 ROUTE GROUP EAST TO GROUP COUNTRY
 ROUTE GROUP SITE1 TO GROUP WEST
 ROUTE GROUP SITE2 TO GROUP WEST
 ROUTE GROUP SITE3 TO GROUP EAST
 ROUTE GROUP SITE4 TO GROUP EAST
 ROUTE NODE1 TO GROUP SITE1
 ROUTE NODE2 TO GROUP SITE2
 ROUTE NODE3 TO GROUP SITE3
 ROUTE NODE4 TO GROUP SITE4

 +--------------------+ +----------------+
 | COUNTRY | | Honorary Group |
 | Links: LINKA LINKB | | Links: LINKA |
 +--------------------+ | (NODEA1) |
 ^ ^ | (NODEA2) |
 +---+--+ +-+----+ | (NODEA3) |
 | WEST | | EAST | +----------------+
 +------+ +------+ +----------------+
 ^ ^ ^ ^ | Honorary Group |
+-----+-++-+-----++-----+-++-+-----+ | Links: LINKB |
| SITE1 || SITE2 || SITE3 || SITE4 | | (NODEB1) |
|(NODE1)||(NODE2)||(NODE3)||(NODE4)| | (NODEB2) |
+-------++-------++-------++-------+ | (NODEB3) |
 +----------------+

Figure 18. Sample ROUTEGRP Hierarchy

A group can also own links and other groups. In the preceding example, group EAST could contain group
SITE1 and SITE2 while owning any number of nodes.

In root group entries, several ROUTEGRP fields contain important information about links:
ROUTLNKS

Points to a vector of pointers to primary links (see Figure 19 on page 19). The LINKTABL addresses
are listed in alphabetic order by link ID.

ROUTLNUM
Contains the number of primary links in the vector.

ROUTALNK
Points to the LINKTABL for an alternate link; contain zero if none was defined.

 ROUTEGRP
 +--------------+
 | . . . | +--------------------+
 +--------------+ +-----------+ +------→| LINKTABL for LINKA |
 | ROUTLNKS +---------→| Pointer 1 +----+ +--------------------+
 +--------------+ +-----------+
 | ROUTLNUM = 2 | | Pointer 2 +----+ +--------------------+
 +--------------+ +-----------+ +------→| LINKTABL for LINKB |
 | . . . | +--------------------+
 +--------------+

Figure 19. Close-up of COUNTRY ROUTEGRP Entry

ROUTEGRP entries can be accessed in several ways:

• Directly by name, using DMTCOMGG; the ROUTHASH field is the hash chain pointer.
• As a member of their owning group. Child groups owned by a parent group are part of doubly-linked

chain linked by the ROUTGNXT and ROUTGPRV fields. This chain is anchored at the ROUTGRPA field of
the parent ROUTEGRP.

• By scanning all groups. Groups are part of a doubly-linked chain linked by the ROUTNEXT and
ROUTPREV fields. This chain is anchored at the TROUTEGP field in the CVT.

• As the owner of a child group, using the ROUTGDAD field

RSCS Structure

Chapter 2. RSCS Structure 19

• As the owner of a node, using the NODEGRP field as a pointer.

NODE
A NODE entry represents each node defined to RSCS by a ROUTE statement or command. RSCS also
creates NODE entries to represent nodes for each link ID and group name. RSCS generally routes these
nodes to the matching link or group.

The NODENAME field identifies the name of the node. This field may contain a generic name ending with
an asterisk (*). If RSCS cannot find an exact match for a node name, it searches for the NODE entry whose
NODENAME entry generically matches the target node name.

As Figure 20 on page 20 shows, NODE entries are chained off their owning ROUTEGRP entry; the
NODERGRP field points to the ROUTEGRP entry. Although there are no global NODE chains, tasks can find
NODE entries in three ways:

• Directly by name; tasks call DMTCOMGN to locate a NODE entry and a pointer to its root ROUTEGRP
entry. (For more information, see “DMTCOMGN” on page 109.)

• As a member of their owning group; NODE entries owned by a group form a doubly-linked chain which
is linked by the NODENEXT and NODEPREV fields. The chain is anchored by ROUTNODA in the owning
ROUTEGRP (see Figure 20 on page 20).

• Scanning through all NODE entries.

 +---------------------+
 | ROUTEGRP |
 +----------+----------+ +------+ +------+ +------+
 | ... | ROUTNODA +---->| NODE |<--->| NODE |<--->| NODE |
 +----------+----------+ +------+ +------+ +------+

Figure 20. NODE Entries Chained to the Owning ROUTEGRP

REROUTE
RSCS creates a REROUTE element for each REROUTE statement or command that creates a new reroute.
REROUTE elements are doubly-linked in a global chain from the TREROUTE field of the CVT. (For more
information on the REROUTE control block, see “REROUTE” on page 210.) REROUTE elements are
removed from this chain when the OFF operand is specified on the REROUTE command.

The reroute scanning routine, DMTRER, uses this data structure to determine which REROUTE entry
corresponds to a transaction. Each REROUTE element contains the following information:

• Original destination node and user ID of the data to be rerouted (corresponds to the FOR operand of the
REROUTE command and statement)

• The new destination node (TO operand)
• The type of data being rerouted (files, messages, or commands)
• Indication if a message should be issued to the file originator (QUIET operand).

REROUTE elements for commands are indexed in a hash table by the node specified on the FOR operand;
this HASHBLOK is located at DMTRERHC. REROUTE elements for messages and files are indexed by the
user ID specified on the FOR operand. In this case, one HASHBLOK represents each FOR node, for which
one or more reroutes have been defined; each of these HASHBLOKs is contained in a RERNBLOK.

The RERNBLOK contains the node name and the number of REROUTE elements indexed from its
HASHBLOK. RERNBLOKs are indexed by their FOR node by a HASHBLOK at DMTRERHB.

DEST
RSCS creates a DEST entry for each DEST statement in the configuration file. Each DEST entry identifies
the name of a PSF printer on the local node. The DEST entries are anchored at the TDEST field of the CVT.

RSCS Structure

20 z/VM: 7.3 RSCS Networking Diagnosis

PORT
RSCS creates a PORT entry for each PORT statement or command that specifies the address of a switched
telecommunications line for an auto-answer or auto-dial link. When a port becomes active, the PORTLINK
field contains the address of the LINKTABL entry for the link that is using the port. The TPORTS field in
the CVT anchors the chain of PORT entries. For more information about the format of the PORT area, see
“PORT” on page 210.

Processing Files
RSCS’s main function is to send files to, and receive files from, remote nodes. The spool manager task
(DMTAXM) is primarily responsible for processing files. DMTRDR, DMTURO, and link driver tasks are also
involved in this process. The data structures described in this section represent the files as they are
processed through the network.

Files go through many stages as they progress through the RSCS network. TAG elements contain
information about the file; TASHADOW contain information about files that are enqueued on links. The
following terms describe a file’s status:
Inactive

The file is waiting to be transmitted; TASHADOW elements, which represent the file, are enqueued on
each link that is eligible to send the file. The TAGTOLOC field in the TAG contains the file’s destination
node.

Active input
RSCS reads the file from spool and begins to send the file on an eligible link.

Active output
As it receives the file, RSCS is in the process of writing the file data into spool.

Inactive and active input files are identified by their local spool ID, which must be between 0 to 9999.
Active output files are not identified by their local spool ID. There can be any number of active output
files.

TAGAREA
The TAGAREA contains pointers to all the data structures RSCS uses to process file queues (see
“TAGAREA” on page 216). The CVT field TTAGQ points to the TAGAREA. As Figure 21 on page 22 shows,
the TAGAREA contains the following fields:
TAGASVEC

Points to a 10,000 word vector that relates file spool IDs to the TAG slots that represent them.
TAGASLOT

Anchors a doubly-linked chain that contains all the TAG elements in use.
TAGACIN

Anchors the chain of TAG elements for all active input files (files read from spool).
TAGACOUT

Anchors the chain of TAG elements for all active output files (files written to spool).
TAGASLVE, TAGASLVX

Anchor the entry and exit vectors for SLOWDOWN command processing.

The TAGASLOT, TAGACIN, and TAGACOUT chains are doubly-linked by the TAGNEXT and TAGPREV fields
in the file’s TAG element. The TAGLINK field in TAG elements that are on the TAGACIN and TAGACOUT
chains indicates the link on which they are active. The LINKTABL entry does not anchor TAG element
chains.

Inactive TAG elements are not enqueued on a link’s LINKTABL entry; the TAGLINK field for these
elements is not used. Rather, inactive files, which can be enqueued on many inactive links, are
represented by TASHADOW elements.

TAGAREA contains two fields, TAGATSTO and TAGASSTO, that point to the TASTORAG storage allocation
data structures for the TAG and TASHADOW elements, respectively. The TAGAREA also contains the

RSCS Structure

Chapter 2. RSCS Structure 21

number of TAG elements currently in use and a pointer to a vector. This vector locates inactive and
active-input TAG elements by their local spool ID.

 +-----+-------+-----+
 CVT | ... | TTAGQ | ... |
 +-----+---+---+-----+
 ˅
 +-----+----------+----------+---------+----------+----------+----------+-----+
 TAGAREA | ... | TAGASVEC | TAGASLOT | TAGACIN | TAGACOUT | TAGASLVE | TAGASLVX | ... |
 +-----+-+--------+--+-------+---+-----+-----+----+-------+--+--------+-+-----+
 | | | | | |
 ˅ ˅ ˅ ˅ ˅ ˅
 +---------+ +----------+ +----------+ +----------+ +----------+ +---------+
 | ptr to | | TAG slot | | input | | output | | n | | m |
 | TAG for | | in use | | TAG slot | | TAG slot | +----------+ +---------+
 | spid 0 | +---+------+ +----+-----+ +----+-----+ | entry(1) | | exit(1) |
 +---------+ | ^ | | +----------+ +---------+
 | ptr to | ˅ | ˅ ˅ | entry(2) | | exit(2) |
 | TAG for | +-----+----+ +----------+ +----------+ +----------+ +---------+
 | spid 1 | | TAG slot | | input | | output | | . | | . |
 +---------+ | in use | | TAG slot | | TAG slot | | . | | . |
 | ... | +---+------+ +----+-----+ +----+-----+ | . | | . |
 +---------+ | ^ | | +----------+ +---------+
 | ptr to | ˅ | ˅ ˅ | entry(n) | | exit(m) |
 | TAG for | +----------+ +---------+
 |spid 9999|
 +---------+

Figure 21. Overview of TAGAREA

TASTORAG
RSCS uses the TASTORAG area to allocate and deallocate the storage needed for TAG and TASHADOW
elements (see “TASTORAG” on page 217). There are two TASTORAG areas; the first area, anchored in the
TAGATSTO field in the TAGAREA, manages TAG elements. The second area, anchored in the TAGASSTO
field in the TAGAREA, manages TASHADOW elements.

Each TASTORAG area (see Figure 22 on page 22) points to a vector that contains the addresses of pieces
of available virtual storage. TASTORAG fields also contain the number of pages in each piece of storage
and the number of TAG or TASHADOW elements in each page.

The TASTORAG area also contains a pointer, TASBITM, to an allocation bit map, which identifies available
virtual storage elements. The number of bits in the bit map equals the number of items for which storage
has been allocated.

When an item is allocated, its allocation bit is turned on in the bit map. This bit is turned off when the
item is no longer allocated. The byte offset and bit mask needed for this are stored in the items when
the chunks are initialized. In the TAG element, this information is stored in the TAGOFFAL and TAGBITMP
fields. In a TASHADOW, this information is in the TASOFFAL and TASBTMAP fields.

 +-----+----------+-----+----------+-----+
 TASTORAG | ... | TASTCVEC | ... | TASTBITM | ... |
 +-----+------+---+-----+-----+----+-----+
 +------------------------+ +-----+
 | ˅
 | +-------+-------+-------+-------+ +----------------+
 +→| Ptr 1 | Ptr 2 | ... | Ptr m | | Bit for Item 1 |
 +--+----+---+---+-------+---+---+ +----------------+
 ˅ ˅ ˅ | Bit for Item 2 |
 +-------+ +-------+ +-------+ +----------------+
 | Page1 | | Page1 | ... | Page1 | | ... |
 +-------+ +-------+ +-------+ +----------------+
 | Page2 | | Page2 | ... | Page2 | | Bit for Item k |
 +-------+ +-------+ +-------+ +----------------+
 | ... | | ... | ... | ... |
 +-------+ +-------+ +-------+
 | Pagem | | Pagem | | Pagem |
 +-------+ +-------+ +-------+

Figure 22. Overview of TASTORAG Allocation

Each page of allocated storage is identified by an eye catcher, which may be used to identify the TAG
or TASHADOW elements within a dump. Any free elements in the page of storage are also marked (see
Figure 23 on page 23).

RSCS Structure

22 z/VM: 7.3 RSCS Networking Diagnosis

 +-------------+
 | Eye catcher |
 +-------------+
 | Item 1 |
 +-------------+
 | Item 2 |
 +-------------+
 | ... |
 +-------------+
 | Item l |
 +-------------+

Figure 23. Overview of a Page of Storage

TAG Element
A TAG element (also called a TAG slot) describes a file’s attributes, including: its origin, destination, file
size, file name, and file type (see “TAG” on page 214). During initialization, RSCS acquires storage for
10,000 TAG elements.

When a TAG element is not in use, the corresponding bit in the TAG allocation map in TASTORAG is set to
zero. TAG elements that represent files awaiting transmission are kept on a global allocated TAG element
queue. This queue is anchored at the TAGASLOT field in the TAGAREA. TAG elements that represent files
being transmitted are chained on the active input queue, anchored at TAGACIN in the TAGAREA. The TAG
elements for files being written into spool are queued on the active output queue, anchored at TAGACOUT
in the TAGAREA.

TASHADOW
A TAG shadow element (TASHADOW) represents a TAG element on each link that is eligible to send a
file. Many TASHADOW elements can represent one TAG element. TASHADOW elements only represent
inactive files. Each allocated TASHADOW is part of a doubly-linked chain that is anchored at its owning
TAG element. Each TASHADOW is also a part of a doubly-linked chain, anchored at the LINKTABL for the
link on which it is queued. For more information, see “TASHADOW” on page 217.

TASHADOW elements are identified as primary or alternate shadows. Primary TASHADOW elements are
enqueued on the primary links to the file’s destination. They reflect the alphabetic order of the primary
links.

Alternate TASHADOW elements represent the file on any alternate link that has been defined to the
destination node. The alternate TASHADOW, if present, is the last element in the TASHADOW queue
representing the TAG element. If an alternate link is disabled because the primary links are connected, an
alternate TASHADOW may be invisible.

For example in Figure 24 on page 24, File 1 is represented by TAG 1. This file can be sent on Link A
(primary) or Link B (alternate). File 2, which is represented by TAG 2, can be sent on Link B (primary) or
Link C (alternate).

RSCS Structure

Chapter 2. RSCS Structure 23

 +----------+ +----------+ +----------+
 | LINKTABL | | LINKTABL | | LINKTABL |
 | A | | B | | C |
 +----+-----+ +----+-----+ +----+-----+
 | | |
 ˅ ˅ ˅
 +----------+ +----------+ +----------+
 | TASHADOW | | TASHADOW | | TASHADOW |
 +---+------+ +---+------+ +---+------+
 | ^ | ^ | ^
 ˅ | ˅ | ˅ |

 | ^ | ^ | ^
 ˅ | ˅ | ˅ |
+-------+ +-----+----+ +-----+----+ +-----+----+
| TAG 1 |------>| TASHADOW |<-->| TASHADOW | | TASHADOW |
+-------+ +---+------+ +---+------+ +---+------+
 | ^ | ^ | ^
 ˅ | ˅ | ˅ |
+-------+ +-----+----+ +-----+----+ +-----+----+
| TAG 2 +---+ | TASHADOW | +->| TASHADOW |<-->| TASHADOW |
+-------+ | +---+------+ | +---+------+ +---+------+
 | | ^ | | ^ | ^
 | ˅ | | ˅ | ˅ |
 | ... |
 +----------------+

Figure 24. Relationship of TAG, TASHADOW, and LINKTABL Elements

Each TASHADOW element contains information about the file it represents, including: spool ID, a pointer
to the LINKTABL, and queuing information. Because this information is available in the TASHADOW
elements, RSCS does not process TAG elements each time a file is enqueued on a link or when a link’s file
queue is reordered.

TASHADOW Queue
RSCS divides a link’s TASHADOW queue into 9 equal segments. The LINKTABL contains pointers to the
TASHADOW elements that are on the segment boundaries. As Figure 25 on page 24 shows, RSCS inserts
a TASHADOW in a file queue by finding the correct segment and location in which the element belongs.
RSCS adjusts the boundary pointers each time it adds or removes a TASHADOW element from a link’s
shadow queue.

 LINKTABL +-----------> TASHADOW 1
 +-----------+ | .
 | ... | | .
 +-----------+ | +--------> TASHADOW 100
 | LINPUTQ +-+ | .
 +-----------+ | .
 | Pointer 1 +----+ +----> TASHADOW 200
 +-----------+ | .
 | Pointer 2 +--------+ .
 +-----------+ +-> TASHADOW 300
 | Pointer 3 +-----------+ .
 +-----------+ .
 | Pointer 4 +-------------> TASHADOW 400
 +-----------+ .
 | Pointer 5 +-----------+ .
 +-----------+ +-> TASHADOW 500
 | Pointer 6 +--------+ .
 +-----------+ | .
 | Pointer 7 +----+ +----> TASHADOW 600
 +-----------+ | .
 | Pointer 8 +-+ | .
 +-----------+ | +--------> TASHADOW 700
 | LINPUTQE ++| .
 +-----------+|| .
 | ... ||+-----------> TASHADOW 800
 +-----------+| .
 | .
 +------------> TASHADOW 900

Figure 25. TASHADOW Queue Pointers (900 TASHADOWS on Link)

RSCS Structure

24 z/VM: 7.3 RSCS Networking Diagnosis

If a file has been ordered to the top of a link’s queue by an ORDER command, its TASHADOW elements
remain at the top of the link’s TASHADOW queue. If at least one copy of a multiple copy print file has
been printed, the TASHADOW elements for the file also retain their order on the queue. When a new file is
enqueued on the link, its TASHADOW elements are added to the end of the queue, following the ordered
TASHADOW elements.

When RSCS initializes, it reserves 20,000 TASHADOW elements. This number can be modified by the
SHADOWS configuration file statement. See z/VM: RSCS Networking Planning and Configuration for more
information.

If all TASHADOW elements are in use, RSCS tries to obtain more storage for the TASTORAG element that
manages TASHADOW storage. If storage is unavailable, RSCS takes the following steps:

• Issues message DMT599W to indicate that RSCS is running in degraded mode.

This message is issued every 100th time RSCS fails to enqueue a TASHADOW element on a link. When
a new file arrives in RSCS’s virtual reader, RSCS borrows elements from the files that are represented
by the most TASHADOW elements. It then uses these borrowed TASHADOW elements to represent the
new file.

• When 1,000 TASHADOW elements are available as files are sent or removed from RSCS’s reader, RSCS
returns 500 TASHADOW elements to the TAG elements that are represented by the least number of
shadows and to those that lent the most TASHADOWs.

• When all TASHADOW elements are returned, RSCS issues message DMT598I and returns to its usual
processing mode.

Sharing RSCS Resources
Because many tasks run in the RSCS virtual machine, two or more tasks may need to use the same
resource at the same time. This section describes the RESBLOK and RESQBLOK data areas, which RSCS
uses to serialize the use of its resources. For more information, see “DMTRES” on page 42.

RESBLOK
A resource block (RESBLOK) describes any RSCS resource for which multiple tasks may have to compete.
Each RESBLOK contains the name of the resource it manages. All RESBLOKs are in a chain anchored at
the TRESOURC field in the CVT.

RESQBLOK
Any RSCS task can use a resource queue block (RESQBLOK) to get the exclusive use of a resource
managed by the RSCS resource manager. A task attempts to get a resource by inserting its RESQBLOK at
the head of a chain of RESQBLOKs that is anchored at the RESANCH field of the resource’s RESBLOK. The
task whose RESQBLOK is at the end of this chain owns the resource. All other tasks that have RESQBLOKs
on the chain must wait for the owning task to give up control of the resource.

When the owning task stops using the resource, it removes its RESQBLOK from the end of the chain. The
owning task then tells the task that now has its RESQBLOK at the end of the chain (if there is one) that the
resource is available.

For example in Figure 26 on page 26, Task Z owns the spool resource. When it no longer needs that
resource, Task Z removes its RESQBLOK from the chain and tells Task Y that the resource is available.
Task Y then owns the resource. Task A owns the ddname resource; however, no other tasks are waiting to
use that resource.

RSCS Structure

Chapter 2. RSCS Structure 25

 +-----+----------+-----+
 CVT | ... | TRESOURC | ... |
 +-----+----+-----+-----+
 ˅
 +---------+ +----------+ +----------+ +----------+
 | spool +----->| Task X +----->| Task Y +----->| Task Z |
 | RESBLOK | | RESQBLOK | | RESQBLOK | | RESQBLOK |
 +----+----+ +----------+ +----------+ +----------+
 ˅
 +---------+ +----------+
 | ddname +----->| Task A |
 | RESBLOK | | RESQBLOK |
 +----+----+ +----------+
 ˅
 . . .

Figure 26. Example of Resource Ownership

Disk File Interface
RSCS uses the file interface routine, DMTCOMFI, to read configuration files and other files from a disk
that is accessible to RSCS. This section describes the data areas used as a file is processed. For more
information, see “Disk File Interface Routine” on page 109.

FILREQ
The file request block (FILREQ) contains information about the file. It is also used as a master work area
to request records from a file. Flags in the FILREQ identify if RSCS accessed the file by a predefined
ddname or by its file ID. FILREQ also contains flags that can suppress imbed support and the issuing of
error messages.

FILWORKA
RSCS uses a file work area (FILWORKA) to read records from a file. When a file is opened, RSCS creates a
FILWORKA and chains it off the FILRAWA field in the FILREQ block. If imbed support is active and RSCS
finds a valid IMBED statement in the file, another FILWORKA is queued off the first FILWORKA acquired
when the file is opened (see Figure 27 on page 26).

The FILWORKA chain that is anchored on the FILREQ block is a doubly linked list that acts as a stack.
The FILREQ area points to the bottom of the stack, while the top of the stack describes the file that
is currently processed. The FILWORKA is also maintained in a doubly-linked chain, anchored at the
TFILWRKS field in the CVT.

 Actual files:
 +----------+
 | FILWORKA | File A 1 File A 2 File A 3
 | file A 3 | +-----------+ +-----------+ +-----------+
 +-----+----+ | line A1 1 | | line A2 1 | | line A3 1 |
 ^ | | line A1 2 | | imbed A 3 | | line A3 2 |
 | ˅ | imbed A 2 | | line A2 2 | | line A3 3 |
 +---+------+ | line A1 3 | | | | |
 | FILWORKA | +-----------+ +-----------+ +-----------+
 | file A 2 |
 +-----+----+ File as seen by caller:
 ^ | +-----------+
 | ˅ | line A1 1 |
 +---+------+ | line A1 2 |
 | FILWORKA | | line A2 1 |
 | file A 1 | | line A3 1 |
 +----------+ | line A3 2 |
 ^ | line A3 3 |
 +-----+----+----+-----+ | line A2 2 |
 FILREQ | ... | FILRAWA | ... | | line A1 3 |
 +-----+---------+-----+ +-----------+

Figure 27. Data Structures as -Line A3 2- is Read

RSCS supports a maximum of 10 FILWORKAs in a stack. If you attempt to imbed more than 10 levels of
files, errors will occur and all the files in the stack will be closed.

RSCS Structure

26 z/VM: 7.3 RSCS Networking Diagnosis

Dynamic ddname Allocation
If RSCS receives a request to open or imbed a file by its file name and file type, it must define a ddname
for the file. To do so, RSCS reserves the ddnames in the range @F000@ to @F999@. An allocation map,
pointed to by TDDNMVEC in the CVT, manages the use of these reserved ddnames by multiple tasks. The
allocation map contains 1000 bytes of storage; each byte corresponds to a ddname and can have the
following settings:

X'FF'
Allocated ddname

X'00'
Available ddname

If all the dynamically defined ddnames are in use when a ddname is needed, an error occurs and all files
in that FILREQ’s stack are closed.

Defining Tasks
Each system task and link driver task must be defined to RSCS. For correct processing, RSCS must know
the task’s characteristics (for example, networking or printer link driver). RSCS uses task descriptor blocks
and EQUATE entries to identify specific tasks.

TASKBLOK
RSCS maintains a table of task descriptor blocks (TASKBLOKs) about each RSCS task (system, link driver,
and auto-answer). A TASKBLOK, which only describes an active task, contains the following information
about the task:

• Time it was attached
• GCS task ID
• Name and eye-catcher describing the task
• Type (system, link driver, or auto-answer)
• Pointer to the main control block for the task (SYSIDENT, LINKTABL, or PORT)
• ITRACE settings and a 10-doubleword work area (used by the ITRACE macro to build parameter lists

passed to DMTITR).

The TASKBLOKs are maintained by a hash index that is created by DMTTAS. If two or more GCS task IDs
create the same index entry, the second and all following TASKBLOKs are chained off a collision pointer in
the TASKBLOK.

RSCS Structure

Chapter 2. RSCS Structure 27

 +-----+----------+-----+
 CVT | ... | TTASKTAB | ... |
 +-----+----+-----+-----+
 ˅ +----->+---------------------------+
 +----------+ | | |
 | -----+-----+ | TASKBLOK+---------+
 +----------+ | | zero |
 | zero | +-----------------+---------+
 +----------+
 | zero | +----->+---------------------------+
 +----------+ | | |
 | -----+-----+ | TASKBLOK+---------+
 +----------+ | | |
 | zero | +-----------------+----+----+
 +----------+ |
 | zero | +----------------------+
 +----------+ ˅
 | . | +---------------------------+
 | . | | |
 | . | | TASKBLOK+---------+
 +----------+ | | zero |
 | zero | +-----------------+---------+
 +----------+
 | zero |
 +----------+
 | -----+----------->+---------------------------+
 +----------+ | |
 | zero | | TASKBLOK+---------+
 +----------+ | | zero |
 +-----------------+---------+

Figure 28. Structure of the RSCS Task Table

System Task Equates
Each type of RSCS system task is represented by an EQUATE entry. The EQUATE table starts with the
EQUATE entry for the REX task. EQUATE entries and the GCS IDENTIFY macro identify task names to GCS.
They are also used when the REX task calls the ATTACH macro to create the other system tasks.

Link Driver Equates
EQUATE entries describe the characteristic of each link driver. When RSCS initializes, the EQUATE entries
for each type of link driver form a chain that is anchored at the TEQUATE field in the CVT. If you define a
new link driver with a LINKTYPE statement, its EQUATE entry is inserted at the beginning of this queue.

Each EQUATE entry contains the following information about a link driver:

• Symbolic name
• Entry point that is dispatched when the link driver task is started
• Flags that describe the link driver’s characteristics.

The entry point addresses of RSCS-defined link drivers are determined when RSCS initializes. Dynamically
created EQUATE entries, those added by LINKTYPE statements, are identified by a flag. Their entry point
addresses are determined when the link is started.

Managing Unit Record Devices
The CHANNELS configuration file statement tells RSCS to use unit record (UR) devices on certain virtual
channels. RSCS uses UR devices to write files to, and read files, from CP spool.

Channel Table
The channel table anchors the allocation maps for each channel on which RSCS can define UR devices.
UR devices can be defined on any virtual channel. The allocation map for each channel contains 256
bytes, one for each of the 256 addresses on the channel. RSCS reuses most types of devices; the byte
corresponding to each device in the map may have any of the following settings:

RSCS Structure

28 z/VM: 7.3 RSCS Networking Diagnosis

X'FF'
Free address (no device defined)

X'00'
Device address in use

X'F0'
Free RDR device

X'xx'
Free device (device type defined in DEVTYPES copy file).

 +-----+----------+-----+
 CVT | ... | TCHANNEL | ... |
 +-----+----+-----+-----+
 ˅
 +---------------+
 | Channel 0 |
 | Alloc map ptr |
 +---------------+
 | Channel 1 |
 | Alloc map ptr |
 +---------------+
 | . . . | +------------+------------+-------+------------+
 +---------------+ +---->| Byte for | Byte for | . . . | Byte for |
 | Channel E +----+ | device E00 | device E01 | . . . | device EFF |
 | alloc map ptr | +------------+------------+-------+------------+
 +---------------+ +------------+------------+-------+------------+
 | Channel F +--------->| Byte for | Byte for | . . . | Byte for |
 | alloc map ptr | | device F00 | device F01 | . . . | device FFF |
 +---------------+ +------------+------------+-------+------------+

Figure 29. Channels Table Setup with -CHANNELS E F- Specified

Exit Facility
The RSCS exit facility lets you extend and customize RSCS processing without modifying the RSCS source
code. Using EXIT statements or commands, you can specify the names of the exit routines called at each
exit point. See z/VM: RSCS Networking Exit Customization for more details on exit points.

EXITBLOK
RSCS creates an EXITBLOK for each entry point specified for an IBM-defined exit point. The EXITBLOK
contains the name of the entry point, the address of the exit routine, and flags to indicate if the exit point
is active. The TEXITS field in the CVT points at a 256 word vector that accesses the EXITBLOKs for exit
points 0 through 255. The EXITBLOKs for each exit point are maintained in a table with the EXBLAST flag
on in the last EXITBLOK in the table.

For example, if you specify the following configuration file statements, RSCS creates the EXITBLOK
structure shown in Figure 30 on page 29.

EXIT 0 PURGEX00 BURSEX00
EXIT 2 PURGEX02

 +-----+--------+-----+
 CVT | ... | TEXITS | ... |
 +-----+---+----+-----+
 ˅
 +---------+---------+---------+-------+----------+
 | Exit 0 | Exit 1 | Exit 2 | . . . | Exit 255 |
 | Pointer | Pointer | Pointer | . . . | Pointer |
 +----+----+---------+----+----+-------+----------+
 ˅ ˅
 +----------+ +----------+
 | EXITBLOK | | EXITBLOK |
 | PURGEX00 | | PURGEX02 |
 +----------+ +----------+
 | EXITBLOK |
 | BURSEX00 |
 +----------+

Figure 30. Sample EXITBLOK Structure

RSCS Structure

Chapter 2. RSCS Structure 29

Message Subscriptions
You can subscribe node IDs and user IDs to receive certain RSCS messages. If you use the SETMSG
command or statement to subscribe to a message, the user receives a copy of that message each time
it is issued. If you enter the SET command, the user only receives the message when it is issued to
the RSCS console. RSCS uses two versions of the monitor entry (MONITENT) to represent message
subscriptions: short version for the SET command and long version for the SETMSG command. See z/VM:
RSCS Networking Planning and Configuration and z/VM: RSCS Networking Operation and Use for more
information about message subscriptions.

MONITENT (Short Version)
When a SET command is issued for a message subscription, RSCS creates a short version of the
MONITENT. This MONITENT contains the node and user ID of the SET command originator and the node
and user ID to receive the subscription. If the subscription is for messages about a link, the MONITENT
is added to a chain that is anchored at the LMONITOR field in the LINKTABL for the link. The TMONITOR
field in the CVT anchors the MONITENT entries for subscriptions to the RSCS console messages.

MONITENT (Long Version)
RSCS creates a long version of the MONITENT to represent message subscriptions entered by the
SETMSG command or statement. In addition to the information in the short MONITENT, the long version
contains a 125-byte bit map (1000 bits) that identifies the subscribed message numbers. The chain of
long MONITENT entries is anchored at the TMONIMSG field in the CVT.

 +-----+----------+-----+----------+-----+--------+-----+
 CVT | ... | TMONIMSG | ... | TMONITOR | ... | TLINKS | ... |
 +-----+----+-----+-----+----+-----+-----+----+---+-----+
 ˅ ˅ ˅
 +----------+ +----------+ +------------+
 | long | | short | | LINKTABL | +----------+ +----------+
 | MONITENT | | MONITENT | | LMONITOR +-->| short +-->| short +---> . . .
 +----+-----+ +----+-----+ +-----+------+ | MONITENT | | MONITENT |
 ˅ ˅ ˅ +----------+ +----------+
 +----------+ +----------+ +------------+
 | long | | short | | LINKTABL | +----------+ +----------+
 | MONITENT | | MONITENT | | LMONITOR +-->| short +-->| short +---> . . .
 +----+-----+ +----+-----+ +-----+------+ | MONITENT | | MONITENT |
 ˅ ˅ ˅ +----------+ +----------+

Figure 31. Overview of MONITENT Structure

Message Request and Work Areas
To build a message, RSCS uses a message request block (MSGBLOK), which is passed to the message
builder by the task that wants to issue a message. The message building modules also use message work
areas (MSGWA) to build the text of a message. See Chapter 12, “Message Processing,” on page 127 for
more information about the message building process.

MSGBLOK
A message request block (MSGBLOK), the parameter list passed to the message builder, contains the
following information:

• Requested message number
• Destination node and user ID (if any)
• Override routing and severity codes
• Information about any variables to be placed in the message text.

The MSGBLOK also contains information about any Command Response Interface (CRI) options that may
have been specified. Also, if the message is issued from a private message repository, the MSGBLOK can
contain the pointer to that message repository and a conversion repository.

RSCS Structure

30 z/VM: 7.3 RSCS Networking Diagnosis

MSGWA
The message work area (MSGWA) is the basic work area used by the message builder to construct a
message. The calling task may supply a MSGWA by placing a pointer to it in the MSGBWA field in the
MSGBLOK. If a pointer is not specified, the message builder acquires an MSGWA for the calling task.

The MSGWA contains separate anchors for message header and text issued in the local, network, or
private language. It also contains anchors for the text of messages issued in language independent form.

 MSGBLOK
 +--------+
 | ... | MSGBWA
 +--------+ +----------+
 | MSGBWA +------->| ... | +------------------------------+
 +--------+ +----------+ +->| MSGLINE: local language text |
 | ... | | MWALTEXT +--+ +------------------------------+
 +--------+ +----------+
 | MWALHDR +--+ +--------------------------------+
 +----------+ +->| MSGLINE: local language header |
 | ... | +--------------------------------+
 +----------+

Figure 32. Overview of Message Builder Data Areas

MSGLINE
As the message text is built, RSCS gets a message line element (MSGLINE) to temporarily hold the lines of
the message. For multiple line messages, RSCS creates a chain of MSGLINE elements to reflect the order
of the lines in the message.

Event Scheduler
The event scheduling task (EVE) runs commands or events at the times specified in the EVENTS file or by
the SCHEDULE command. This section describes the data structures used to process scheduled events.
For more information, see “Event Manager Task” on page 53.

EVEBLOK
An event block (EVEBLOK) represents each scheduled RSCS event. “EVEBLOK” on page 225 describes
the format of the EVEBLOK. The chain of EVEBLOKs is anchored at the TEVENTS field in the CVT. The
EVEBLOK chain reflects the order in which the events are scheduled. EVEBLOKs can represent a repetitive
event (one scheduled several times during a day) or a single event (one processed at a specific time).
Events are also categorized according to how they were scheduled (by entries in the EVENTS file or by the
SCHEDULE command).

The EVE task creates a special EVEBLOK for the midnight event. The midnight event ensures that the EVE
task processes the EVENTS file every night at midnight. The EVE task then builds a new EVEBLOK queue;
this queue contains requests specified in the EVENTS file and events that were schedule using the DAILY
operand of the SCHEDULE command.

TANBLOK
The EVE task assigns a unique event task number to each EVEBLOK in the EVEBLOK chain. RSCS refers
to this task number when it must suspend, resume, or delete an event. The EVE task uses a TANBLOK to
allocate a task number. Each TANBLOK contains a bit map that allocates 1024 task numbers for EVEBLOK
entries. The chain of TANBLOK entries is anchored at the TTANQ field in the CVT.

Command Authorization
You can limit user access to privileged commands and system information. RSCS uses AUTHBLOK entries
to describe any user privileges.

RSCS Structure

Chapter 2. RSCS Structure 31

AUTHBLOK
An AUTHBLOK entry represents the information specified on an AUTH statement. The AUTHBLOK entry
contains the node and user ID of a privileged user and information about the user’s privileges (for
example, full operator, link operator, or CP command privilege). When RSCS initializes, it creates a chain
of AUTHBLOK entries, which is anchored at the TAUTH field in the CVT. For more information on the
AUTOBLOK structure, see “AUTHBLOK” on page 212.

Printer Related Areas
This section describes the FCB and FORM tables, which contain information about printing characteristics.
At times, printer and workstation link drivers might need additional information to process some files. You
may also need to define characteristics to print certain files.

FCB Table
During initialization, RSCS builds the forms control buffer (FCB) table (RFCBTAB) from FCB statements
in the configuration file. As Figure 33 on page 32 shows, the chain of RFCBTAB entries is anchored at
FCBTABA in the CVT. Each element in the chain contains the name of an FCB image and 256 1-byte areas
that correspond to line numbers on a page. These 1-byte areas are initialized to zero before the channels
are assigned to the line numbers. Channel numbers are assigned by using their line number counterpart
as an index to the 256-byte array; this is similar to the paper tape on a 1403 printer.

 +-----+----------+-----+
 CVT | ... | TFCBTABA | ... |
 +-----+--+-------+-----+
 |
 |
 | +-----------+-----------+--+--+--+--+--+--+-----+--+--+--+
 +-->| Pointer | fcbname |ch|ch|ch|ch|ch|ch| ... |ch|ch|ch|
 +-----+-----+-----------+--+--+--+--+--+--+-----+--+--+--+
 +---------+
 | +-----------+-----------+--+--+--+--+--+--+-----+--+--+--+
 +-->| Pointer | fcbname |ch|ch|ch|ch|ch|ch| ... |ch|ch|ch|
 +-----+-----+-----------+--+--+--+--+--+--+-----+--+--+--+
 +---------+
 |
 +--> . . .
 |
 +---------+
 | +-----------+-----------+--+--+--+--+--+--+-----+--+--+--+
 +-->| zero | fcbname |ch|ch|ch|ch|ch|ch| ... |ch|ch|ch|
 +-----------+-----------+--+--+--+--+--+--+-----+--+--+--+

Figure 33. Structure of the FCB Table

FORM Table
RSCS creates a FORM table entry for each valid FORM configuration file statement. FORM entries are
added to a chain anchored at the TFORMTAB field in the CVT. (For the entire FORM block structure, see
“FORM” on page 213.) Each FORM entry contains the following information:

• Form name
• Type of separator page (VM, RSCS, or none)
• Width, length, and number of lines per inch on the form.

FORM statements define specific printing characteristics and give them a symbolic form name. You can
then specify this form name to print files with the printing characteristics associated with the form.

RSCS Structure

32 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 3. Task Management

This chapter provides an overview of the facilities and processes that enable RSCS to create tasks.

Using GCS Facilities
This section describes the GCS facilities that enable RSCS to create and manage tasks. For more
information, see z/VM: Group Control System.

Task Management Facilities
GCS provides an environment within a virtual machine that can contain many independent threads of
execution called tasks.

Tasks can create additional tasks by issuing the GCS ATTACH macro. This resulting task is called a subtask
and is dependent on the parent task that created it. Each task is represented in GCS by a task control
block (TCB). The TCBs are chained to represent the task’s relationships. Generally, subtasks must end
before their parent task ends. However, a subtask that is attached from a GCS command processing
module does not have to end before the command processor ends.

While a task is executing, GCS can pre-empt the task at any point during its processing. GCS can then
dispatch another task to do some work. Within a task, GCS maintains state blocks to represent the levels
of a task’s execution. New levels of execution can result from a synchronous operation within a task,
such as an supervisor call instruction (SVC). Asynchronous external operations (for example, another task
issues the GCS SCHEDEX macro to schedule work) also create a new level of execution.

When a new level of execution is created for a task, the task suspends its processing at the current
level. When one level has finished, the task continues processing the previous level at the point where
its processing was suspended. While work is in progress at the highest level, the task suspends its
processing of all lower levels of execution.

GCS Console Task
When GCS initializes, it creates the console task and the command task to interface with RSCS. The
GCS console task manages command input and messages written to the RSCS console. The console task
processes the following types of commands:

• Immediate commands, like HX.
• Native commands, like QUERY and LOADCMD, are processed by GCS. Execs, which are a special type of

native command, are processed by the Procedures Language VM/REXX Interpreter.
• Commands that have been identified by the LOADCMD command, like RSCS. To execute these

commands, the GCS command task calls an entry point identified by a previous LOADCMD (for example,
when the RSCS INIT command is issued).

GCS Command Task
The GCS command task executes program code that has been identified to GCS by a LOADCMD. GCS can
access programs that reside in the following locations:

• A global load library, identified by the GLOBAL LOADLIB command. Programs are identified by entry
point names and aliases created by the linkage editor.

• A discontiguous saved segment (DCSS); GCS uses the CONTENTS macro to identify these programs.
• A load module previously loaded into storage; programs are identified using the IDENTIFY macro.

The GCS command task issues the LOADCMD command to load a module into storage and identify it as
a GCS command processor. The command task also calls the ATTACH, BLDL, DELETE, LINK, and LOAD
macros, which are described in Table 6 on page 34.

Task Management

© Copyright IBM Corp. 1990, 2022 33

GCS Macros
During their processing, RSCS tasks call many GCS macros. Table 6 on page 34 lists these macros and
their function within RSCS.

Table 6. GCS Macros Issued by RSCS Tasks

Macro Function

ATTACH Loads a module and creates a new task.

CHAP Changes the run priority of a task. An RSCS task can use CHAP to change its own
priority or the priority of another task it created. The issuing task can be suspended if it
raises the priority of another task above its own priority.

CMDSI Allows RSCS to issue commands that ordinarily would be issued from the console.
Used in exec processing to issue the GCS FILEDEF command and to execute the exec
by name.

DCB Creates a data control block to manage file I/O.

DCBD Generates the symbolic name for each field in a data control block for file I/O.

DELETE Tells GCS to remove a previously loaded module from storage.

DEQ Allows RSCS to release control of a serially reusable resource.

DETACH Tells GCS to remove a task from storage.

ENQ Allows RSCS to request control of a serially reusable resource.

ESTAE Specifies and describes an exit routine to GCS, which receives control if a task abends
and provides additional task termination functions.

FREEMAIN Returns storage to GCS.

GENIO Tells GCS to connect RSCS to a virtual I/O device, start a channel program, or release
the device.

GET Moves a record from a file into RSCS storage.

GETMAIN Gets an area of storage from GCS.

IUCVCOM Is the GCS interface to the CP IUCV facility.

IUCVINI Establishes the IUCV environment for RSCS usage.

LINK Loads a module into storage and calls its named entry point.

LOAD Brings a load module containing a specified entry point into virtual storage and makes
the code at that entry point available for use.

OPEN Tells GCS to access a file for processing.

POST Tells GCS to set an ECB when an event has occurred. For more information, see “POST
and WAIT Macros” on page 40.

STIMER Tells GCS to set a timer for a specified period and defines an exit routine that is
scheduled when the timer elapses.

TTIMER Cancels a timer previously set by STIMER.

WAIT Suspends a task until an event, identified by a POST macro, occurs. For more
information, see “POST and WAIT Macros” on page 40.

WTO Tells GCS to display a message at the RSCS console.

Task Management

34 z/VM: 7.3 RSCS Networking Diagnosis

Attaching System Tasks
Before RSCS can begin to function, its system tasks must be attached and started. The communications
task (REX) is the first task that is attached when RSCS initializes. The REX task then attaches the other
RSCS system tasks. This section provides an overview of system task creation and management. For more
information about each task, see Chapter 5, “System Tasks,” on page 43.

Starting the Communications Task
RSCS initialization begins when the GCS command task routes the INIT command to entry point
DMTMANEP in the RSCS program. The GCS command task issues the GCS LINK macro to pass this
command to RSCS (see Figure 34 on page 35). This creates a state block on the GCS command task to
run DMTMANEP.

 +----------+ +----------+
 | Console +-------->| Command +--+
 +----------+ +----------+ | LINK
 | DMTMANEP |<-+
 +----------+

Figure 34. Processing the INIT Command

After DMTMANEP identifies the INIT command, it calls DMTCMXEP to parse and validate the command. It
then calls the GCS IDENTIFY macro to identify the entry points for all RSCS task modules (this may have
been done before if RSCS had previously initialized).

As Figure 35 on page 35 shows, DMTMANEP calls the GCS ATTACH macro to start the REX task and
waits for it to initialize.

 +----------+ +----------+
 | Console +-------->| Command +--+
 +----------+ +----------+ | LINK
 | DMTMANEP |<-+
 +----┬-----+
 | +----------+
 +-------->| DMTREXEP |
 ATTACH +----------+

Figure 35. Attaching the Communications Task

When the REX task posts its initialization complete ECB (DMTREXIC), DMTMANEP returns control to GCS.
At this point, RSCS is represented to GCS by module DMTREX. All commands, including those issued at
the GCS console and initially handled by DMTMANEP, are executed under the REX task. All other RSCS
tasks become subtasks of the REX task, which also owns all storage (except file data areas and link driver
work areas).

Starting System Tasks
During RSCS initialization, the REX task calls DMTIRX to read the configuration file and calls Exit 0 to
prepare any information needed for other exit points. The REX task then attaches each mandatory system
task (spool manager, auto-start, EXEC processor, event scheduler, and port redirector) and waits for them
to initialize (see Figure 36 on page 36).

Task Management

Chapter 3. Task Management 35

+----------+ +----------+
| Console +------>| Command +--+
+----------+ +----------+ | LINK
 | DMTMANEP |<-+
 +----+-----+
 | +----------+ +----------+
 +------->| REX Task |<--->| DMTIRXEP |
 ATTACH +----+-----+ +----------+
 |
 | +----------+
 | | +--------+-+
 +---------> +-+ +--------+-+
 ATTACH +-+ +--------+-+
 +-+ Sys Task |
 +----------+

Figure 36. Attaching Mandatory System Tasks

If DMTIRX, an Exit 0 routine, or a system task does not initialize properly, RSCS initialization fails. The
REX task tells all initialized system tasks to end and waits for this termination to complete. Termination
processing occurs in reverse order; the last system task to initialize is the first to end. Exit 1 is then called
to perform any termination processing needed for any other exit routines previously installed. Finally, the
REX task ends and indicates the initialization error.

The Port Redirector task, which is the RSCS interface to TCPNJE-type links, is started automatically when
you initialize RSCS. For more information about this task, see “Port Redirector Task” on page 60 and
z/VM: RSCS Networking Operation and Use.

Starting the SNA Control Task and Auto-Answer Tasks
The REX task does not start the SNA control task and auto-answer tasks during RSCS initialization. Rather,
each task is started when a NETWORK START or ENABLE command, respectively, is issued.

SNA Control Task
When the NETWORK START command is issued, the REX task calls DMTCMZ to process the command and
attach the SNA control task (SCT). DMTCMZ does not wait for the SCT task to initialize. Rather, it returns
control to the REX task so that other commands can be processed. If the SCT task fails to initialize, RSCS
continues to operate but no SNA functions will be available. The SCT task ends when a NETWORK HALT
command is issued or automatically if it is active when a SHUTDOWN command is issued.

Auto-Answer Tasks
Each time an ENABLE command is issued for a NODIAL port, the REX task attaches an auto-answer task
(DUP). Several auto-answer tasks, one for each enabled port, can be active at a time. Because the REX
task does not wait for the DUP task to initialize, RSCS continues to operate even if the task initialization
fails.

Auto-answer tasks can be ended by a DISABLE command. They also end automatically if they are active
when a SHUTDOWN command is issued.

When a port receives a phone call, its corresponding auto-answer task transforms itself into an
appropriate link driver task. The caller identifies the needed link driver on the sign-on card it provides.

Starting Link Driver Tasks
RSCS can start the following types of link driver tasks:

• Link driver, started by a START command or by the auto-start task
• Link driver for an auto-dial link, started by a START command or an auto-start task
• Link driver, started when RSCS receives a call on an auto-answer port
• Session driver, started as a primary LU (PLU) by a START command, auto-start task, or the VTAM

operator

Task Management

36 z/VM: 7.3 RSCS Networking Diagnosis

• Session driver, started as a secondary LU (SLU) in response to a START command issued from a remote
RSCS node or by the VTAM operator.

Link Driver Tasks
When a START command is issued for an inactive non-SNA link with a nonzero line address, the REX task
calls DMTCMYST. DMTCMYST then processes the command and calls DMTBPLAL. The REX task does not
wait for the link driver task to initialize. Rather, it continues to process other available work.

DMTBPLAL attaches the appropriate link driver task and increments the count of active links. If necessary,
DMTBPLAL also loads and calls the code for the link (standard RSCS links are loaded when RSCS
initializes). If it cannot load the link driver task, DMTBPL issues an error message and returns control
to GCS.

If the ASTART option is specified, the link may also be started automatically when a file is enqueued on
the link. The AXM task, which detects arriving files, enqueues the START command for the link driver on
the REX task’s command queue. It then posts REX’s command arrival ECB.

Link drivers can be stopped by the DRAIN, STOP, or FORCE commands. If they are active when a
SHUTDOWN command is issued, the link ends automatically. When a link driver task ends, it returns
control to DMTBPLEP. DMTMANEX then performs clean up for the link (closes files, resets fields) and
decrements the active link counters, as needed.

Session Driver as Primary LU
When a START command is issued for an inactive SNA link, the REX task calls DMTCMY, which passes the
request to the SCT task. The REX task does not wait for the session driver task to initialize.

The SCT task issues a SIMLOGON request to VTAM to request an SNA session. When the SNA session
is ready to start, VTAM issues the GCS SCHEDEX macro to schedule RSCS’s LOGON exit, DMTVXTLG.
DMTVXTLG, which executes under a state block in the SCT task, verifies logon parameters. It also calls
DMTBPLAL to attach the session driver task. DMTBPLAL also increments the count of all links and the
count of session drivers.

When processing a START request, the SCT task does not wait for the logon exit to be scheduled; it
continues its processing to perform other SNA functions. The START command does not have to be issued
to start a session driver. A VTAM operator on a remote node can also drive DMTVXTLG directly. For more
information, see “SNA Control Task” on page 55.

Session drivers are stopped by the DRAIN or STOP command. If they are active when a NETWORK HALT
or SHUTDOWN command is issued, they stop automatically.

Session Driver as Secondary LU
An SNANJE session driver can also be started as a secondary LU, in response to commands issued by a
VTAM operator on a remote node. In this case, VTAM processes the request and issues the GCS SCHEDEX
macro to schedule the RSCS SCIP exit, DMTVXTSC. DMTVXTSC executes under a state block in the SCT
task and calls DMTBPLAL to attach the session driver task.

Auto-Start Links
When a START command is issued for an auto-dial link, the REX task passes the command to the
auto-start task (AST). The REX task does not wait for the task to initialize. The AST task calls DMTBPLAL
to attach the link driver task.

Auto-Answer Links
When an auto-answer task (DUP) detects a call on an enabled port, it examines the sign-on record sent
by the caller. If the sign-on record requests a link that has been defined on the local node, the DUP task
issues the GCS LINK macro. The LINK macro passes control to the entry point of the link driver task

Task Management

Chapter 3. Task Management 37

indicated in the sign-on record. The DUP task then transforms itself into the specified link driver task;
RSCS does not create a new task.

Capturing Task Abends
RSCS uses the GCS ESTAE facility to capture task abends. When it initializes, each task issues an ESTAE
macro to identify the routine to process any abends. RSCS defines three main ESTAE exit routines:
DMTMANSE

Processes system task abends. RSCS ends, but any CP command specified on the RECOVERY
statement may be executed. This command can re-IPL the GCS virtual machine and cause RSCS
to be reinitialized. (If the SCT task abends and no session drivers are active, RSCS does not end).

DMTMANDE
Processes abends in link drivers; the link driver task is not restarted.

DMTMANPE
Processes abends in auto-answer tasks.

The ESTAE exit routines in RSCS process a dump, in the format specified by the DUMP statement, and
write a dump summary to the console. Exit 35 can be used to suppress multiple dumps of a known
problem; see z/VM: RSCS Networking Exit Customization for more information.

If a task expects the possibility of an abend, it issues the ESTAE macro before the instruction that might
cause the abend. The exit routine specified on the ESTAE macro sets a flag if the abend occurs. The task
then tests this flag to determine if the instruction executed successfully. After that instruction is executed,
the task cancels the ESTAE exit. For example, the AXM task may expect an abend if the z/VM system does
not support some Diagnose X'14' subcodes. Also, if the appropriate code is not found, an abend will occur
when DMTBPLLX attempts to load an exit routine or link driver task.

End of Task Exit Processing
When each RSCS task is attached, it specifies the end-of-task exit routine, DMTMANEX, on the ETXR
operand of the ATTACH macro. DMTMANEX performs any clean-up and issues the DETACH macro to end
the subtask. DMTMANEX first identifies the type of task that ended. It can then determine what type of
cleanup is needed for the task.

DMTMANEX is scheduled in the parent task when the subtask returns control to GCS. For example, when
a link driver ends, DMTMANEX runs as a state block on the REX task. The REX task does not become
active until DMTMANEX completes its processing. For session drivers, DMTMANEX runs as a state block
to the SCT task. In this case, VTAM cannot issue requests to start other session link drivers. The SCT task
does not become active again until DMTMANEX completes its processing.

DMTMANEX and DMTBPLEP maintain counts of the number of active link and session driver tasks. If a
NETWORK HALT command is being processed and there are no active session driver tasks, DMTMANEX
posts DMTSCT’s stop ECB. If a SHUTDOWN command is processed and there are no more active link
driver tasks, DMTMANEX posts the REX task’s stop ECB.

When a link driver ends, DMTMANEX may try to restart it by enqueuing a request onto the exec processor
task. The EXE task can then schedule a recovery exec for the link. When a port ends, DMTMANEX can
enqueue an ENABLE command to the REX task to re-enable the port.

When the REX task ends, DMTMANEX issues message DMT100I to indicate that RSCS has shut down. If
RSCS stops because of an abend, DMTMANEX also issues the CP command specified on the RECOVERY
statement (see z/VM: RSCS Networking Planning and Configuration for more information).

Task Management

38 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 4. Inter-Task Communication

As described in Chapter 2, “RSCS Structure,” on page 11, RSCS tasks must communicate with each other
to accomplish most transactions. This chapter describes the RSCS and GCS facilities that enable tasks to
communicate.

Using GCS Services
As described in Chapter 3, “Task Management,” on page 33, RSCS uses GCS supervisor services to create
tasks. While a task performs work, it appears to run without interference from other tasks. The GCS
dispatcher causes the processor to process each dispatchable task, in turn, for a few milliseconds at a
time.

A task can be dispatchable or nondispatchable. A dispatchable task is eligible to perform work; it can
be running or in the dispatcher queue waiting to run. A nondispatchable task is waiting to receive and
perform some work.

If no RSCS tasks are dispatchable (this can happen when no links are active and no files are arriving), the
RSCS virtual machine enters an enabled wait state. In this state, an interrupt must occur to cause the GCS
dispatcher to make at least one RSCS task dispatchable again.

Several RSCS tasks may be dispatchable at the same time. When this occurs, GCS may dispatch a second
task between the processing of two instructions in the first. The process by which one task can interrupt
another task’s operation at any time is called preempting.

Task Synchronization
In many cases, an RSCS task must wait for another task to complete or provide work. For example, this
includes the following situations:

• When RSCS initializes, DMTMAN waits for the REX task to initialize before returning control to the
console.

• Link driver tasks wait for an I/O operation to complete, a file or command to arrive, or notification to
end.

• The AXM task waits for commands, files, or a shutdown request.
• During RSCS termination, the REX task waits for other tasks to end before it ends.

This section describes the facilities RSCS uses to synchronize operations and communications among its
tasks.

Task Queues
Each RSCS system and link driver task has one or more queues for messages or commands. When a new
element is placed on a queue, the task tries to accomplish the requested work.

Work items for the task are placed on one of these queues. Each item on the queue is represented by a
QBLOCK. A QBLOCK contains an 8 byte header field that points to the address of the next and the last
QBLOCK associated with the queue. This header field is followed by the command or message element.

The queue anchors for system tasks reside in the primary module that comprises the task. For example,
the communications task’s command queue anchor is in DMTREXCQ. The spool manager task’s command
queue anchor is in DMTAXMRQ. However, the queue anchors for link driver tasks do not reside in their
primary modules. Rather, the LINKTABL entry for each link contains the link driver task’s queue anchors.

Task Communication

© Copyright IBM Corp. 1990, 2022 39

Event Control Blocks
Each queue anchor is associated with an event control block (ECB). Tasks use ECBs to notify each other
when they must perform work. Tasks also monitor their own ECBs to determine when they have received
requests to perform work. Each ECB is a fullword in length and contains the following sections:

Bits Purpose

0 Indicates that a task has issued the GCS WAIT macro on this ECB. Only one task at a time
can wait on a specific ECB.

1 Indicates that a task has issued the GCS POST macro for this ECB.

2-31 May contain more information about the work request.

Most RSCS tasks respond to several types of work requests. For example, the AXM task may receive stop
requests, commands, or new files. In this case, the task may contain an ECB list. The ECB list contains the
addresses that represent each type of work the task may process. The ECBs do not have to be together in
storage, but the ECB list must contain a contiguous list of addresses. To identify the end of the ECB list, bit
0 in the last address of the ECB list is set to 1.

POST and WAIT Macros
RSCS tasks often use the GCS POST and WAIT macros to synchronize their communications.

When a task must wait for work, it issues a WAIT macro for the ECB associated with the specific type of
work. Before it issues a WAIT macro, a task ensures that all its ECBs are cleared. The GCS supervisor then
suspends that task until it is notified of a work request by another task. The task is then considered to be
waiting on that ECB; it is not dispatched until the ECB is posted.

When a task has work for another task, it can issue the GCS POST macro for the other task’s ECB. The
posted ECB is associated with the task’s work queue (file, command, message).

When a task posts an ECB that another task is waiting on, the second task can become dispatchable
again. However, the task may not begin to run when the ECB is posted. The task may run only when it is
selected by the GCS dispatcher. As a result, several ECBs may be posted when the task actually starts to
run or the same ECB may be posted several times. When it completes the work associated with an ECB, a
task clears the ECB before it issues another WAIT macro to wait for more work.

For example, after the REX task initializes, it attaches the other system tasks. The REX task attaches the
spool manager task. It then issues a WAIT macro and waits for the spool manager task to signal that it
has successfully started. When it initializes, the spool manager task posts its initialization complete ECB
(DMTAXMIC). The REX task then attaches the next system task and waits for it to initialize.

This process continues until all system tasks have initialized or a system task indicates that it cannot
initialize successfully. If a task cannot begin, it posts its termination ECB. The REX task also waits on an
ECB list for termination ECBs. When one of these termination ECBs is posted, the REX task then posts the
termination ECB for each system task that has already initialized successfully.

GCS and VTAM also use the POST macro to notify RSCS of events. GCS posts an ECB associated with the
specific device or interrupt code. VTAM may also post ECBs when a VTAM operation completes.

Processing Several ECBs
A task can also issue a WAIT macro to refer to several ECBs at the same time. In this case, the task
indicates that it is waiting on an ECB list. If another task does not post one of the ECBs in the list when
the WAIT macro was issued, the task waits (becomes nondispatchable) until one of the ECBs is posted.
The task must then test each ECB in the list to determine if it was posted by an other task. When it finds
the posted ECB, the task then performs the requested work. All RSCS tasks cycle through an ECB list to
determine if work has been received.

Task Communication

40 z/VM: 7.3 RSCS Networking Diagnosis

DMTCOMNQ and DMTCOMDQ
In addition to the POST and WAIT macros, RSCS also uses two routines to notify tasks of requested work.
These routines, DMTCOMNQ and DMTCOMDQ, form the basis of the DMTCOMNQ protocol.

Using the DMTCOMNQ protocol, a task can provide additional information (more than that supplied in the
30 spare bits of the ECB) about the work request. For example, to process a command, a task needs to be
told of the arrival of the command element and the specified command text.

Each task has an ECB that is associated with a queue. For example, DMTREXCQ, the main command
queue for RSCS, is controlled by the DMTREXCM ECB. It also provides a fullword anchor to contain the
actual text of the commands.

Issuing a Work Request
To issue a request, a task creates a request element, which contains the command text. It then calls
DMTCOMNQ specifying the address of the request element and the address of the anchor for the ECB.
DMTCOMNQ copies the request into a new storage area (a QSABLOK). It then enqueues this area onto the
serving task’s anchor. Then, the requesting task issues a POST macro for the ECB. The task should not
issue the POST macro until after it calls DMTCOMNQ.

Receiving Work Requests
When its ECB is posted, the serving task calls DMTCOMDQ and specifies the anchor and an area of storage
to receive the element. DMTCOMDQ removes the first request element from the anchor’s queue and
copies it into the serving task’s storage area. If there are no request elements on the anchor, DMTCOMDQ
issues return code 4.

The task that processes the request should clear the associated ECB before calling DMTCOMDQ.
DMTCOMDQ removes one element from the queue each time it is called. The task should call DMTCOMDQ
until no elements remain on the queue. After DMTCOMDQ successfully runs, each dequeued request
elements is placed in a work area where it can be examined and run by the task.

Request Element Format
The requesting and serving tasks agree on the format of each request. DMTCOMNQ and DMTCOMDQ do
not process the details of the request. However, the first byte of each request must indicate the length of
the request excluding that byte (the total length, minus one).

The CMNDAREA macro maps most request formats (see “CMNDAREA” on page 231). CMNDAREA defines
a standard header format that includes two bytes (CMNDTYPE and CMNDMOD) that determine the format
of the rest of the request. The Type L3 format is used for most RSCS commands. The L3TEXT field of this
request element contains the text of the command to be processed.

Other types of RSCS request elements include the EVEBLOK and the MSGBLOK. The EVEBLOK is passed
from the SCHEDULE command processor to the EVE task to request to schedule or change an event.
The MSGBLOK is passed from the message processing routines to the REX task when they need to issue
messages.

Task Serialization
In some cases, several RSCS tasks may want to process the same data or use the same resource to
perform work. However, they cannot do their work simultaneously because the tasks would interfere with
each other. In this case, RSCS serializes the tasks’ access to certain resources.

RSCS defines the following types of resources (exits routines can also define new resources to RSCS):

Resource Description

Spool Includes all data areas and routines in DMTAXM. It also includes file queue-related data
structures (TAG and TASHADOW elements).

Task Communication

Chapter 4. Inter-Task Communication 41

Resource Description

File Includes the dynamic ddname allocation vector and the file work area (FILWORKA) chain
for DMTCOMFI.

To prevent many tasks from simultaneously accessing a resource, RSCS uses "locking" mechanisms,
which are described in the following sections. The term critical section describes the section of code in
a task module that needs to use a resource that other tasks also need. Any number of tasks can wait
for access to a resource; however, only one task at a time can use a resource. Tasks receive access to a
resource in the order they call DMTRESLO to request a lock on that resource. While a task has a lock on
a resource, other tasks can continue to communicate with each other and process requests, such as I/O
operations.

For example, all spool-related areas in DMTAXM are serialized. These areas can run under all RSCS
system tasks and link driver tasks. DMTAXMRQ ensures that only one task at a time can use these
resources.

DMTRES
Routines in module DMTRES ensure that tasks efficiently share resources. Each RSCS resource is
represented by a RESBLOK (see “RESBLOK” on page 25). A task uses a RESBLOK to identify the resource
it wants to use; it then calls routines in DMTRES to access the resource.

Locking a Resource
To exclusively use a resource, a task points at the RESBLOK that represents the needed resource and calls
DMTRESLO. DMTRESLO then places the task in a wait state until the resource becomes available.

If the resource is in use and more than one task has requested it, each contending task queues a resource
queue block (RESQBLOK) on the resource block. Use of the resource is determined on a first-in-first-out
(FIFO) basis.

Unlocking a Resource
When a task no longer needs the resource, it calls DMTRESUN to make the resource available to the next
waiting task. DMTRESUN issues a POST macro to inform this task that the resource is now available.

Clearing a Lock
If a task ends while it is contending for a resource, the RSCS end-of-task processing routine calls
DMTRESCL. If the ended task owns a resource that other tasks are waiting to use, DMTRESCL issues
a POST macro to tell the next waiting task that the resource is now available. If the ended task was
waiting for a resource but did not own it, DMTRESCL removes that task’s RESQBLOK from the resource on
which it is queued.

Disabling Interrupts
In some cases, an RSCS task will disable interrupts for the processor on which RSCS is running to prevent
other tasks from processing any work. When interrupts are disabled, however, no other tasks can be
dispatched while the lock is held, even if they are working in different areas. Also, the task that disables
the interrupts cannot make additional work requests (including I/O requests) to other tasks. When it no
longer needs that resource, the task enables the interrupts again.

ENQ and DEQ Macros
RSCS also uses the ENQ and DEQ macros to serialize access to a resource, such as a PORT table. Using
these macros, tasks can share access to a resource if they do not interfere with each other’s processing.
They can also identify the resource by its name, rather than storage address. For information about these
macros, see z/VM: Group Control System.

Task Communication

42 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 5. System Tasks

This chapter describes the RSCS system and auto-answer tasks. Except for the SNA control task and
the port redirector task, each task must be present for RSCS to function. All system tasks are serially
re-usable and nonreentrant.

Each task is identified by two names: a task name and a module identifier. For example, the spool
manager task is also called the AXM task. However, all system tasks do some processing outside their
main module. Other tasks, such as link drivers, may use routines in a system task’s main module for
processing.

Communications Task
The communications task (REX) is the main RSCS system task. It is the parent task of all other RSCS tasks
(system, link driver, and auto-answer). It owns all storage acquired by the GETMAIN macro, except those
work areas needed by active links and data areas representing files. These areas are owned by the link
driver tasks and the spool manager task, respectively.

Initialization
The REX task is attached when an INIT command is issued on the RSCS console or by a GCS exec (see
Figure 35 on page 35). The command is passed to DMTMAN, which determines if RSCS is initialized and
passes the command to DMTCMX. After verifying the command, DMTCMX returns a zero return code to
DMTMAN. DMTMAN then calls the GCS ATTACH macro to attach the REX task at entry point DMTREXEP.
DMTREXEP then issues the ESTAE macro to identify the routine GCS will call if the communications task
abends.

Reading the Configuration File
The REX task calls DMTIRX to process the configuration file. DMTIRX reinitializes any data areas,
including most fields in the CVT, that may have been used if RSCS was previously initialized. It then
issues Diagnose code X'00' to determine the following system information:

• Time-of-day (TOD) clock offset from Greenwich Mean Time (GMT)
• Features supported by the level of z/VM RSCS is running on
• User ID of the RSCS virtual machine

DMTIRX also determines whether or not RSCS is fully enabled. This determines which link tasks will be
allowed to be started. DMTIRX calls DMTCOMFI to get records from the configuration file. It then calls
DMTPAF to parse each record. As Figure 37 on page 43 shows, DMTPAF then passes the record back to a
post-processing routine in DMTIRX.

 +--------+ +--------+ +--------+
 | DMTREX +----->| DMTIRX |<------>| DMTPAF |
 +--------+ +--+-----+ +--------+
 | ↑
 ˅ |
 +-----+--+
 | DMTCOM |
 +---+----+
 ˅
 +--------+
 | CONFIG |
 +--------+

Figure 37. Processing the Configuration File

REX Task

© Copyright IBM Corp. 1990, 2022 43

After the configuration file is processed, the REX task obtains storage for various data areas needed by
other RSCS tasks. It also builds the initial hash tables for LINKTABL, LUNAME, NODE, and ROUTEGRP
entries.

Exit 0
After the configuration file is processed, the REX task calls Exit 0. Exit 0 can be used to prepare
information for other exit routine packages. An Exit 0 routine can also cause RSCS initialization to fail
by returning a return code of 8. See z/VM: RSCS Networking Exit Customization for more information.

Processing DEST Statements
If the configuration file contains DEST statements for a Printer Services Facility (PSF) printer, RSCS does
not process a destination identifier file. If the configuration file does not contain DEST statements, RSCS
determines if a file with the ddname “DEST” has been defined. If not, RSCS assumes that no destination
identifiers have been defined.

If the ddname is defined, RSCS attaches the prefix “DEST” to each record in the file. RSCS then processes
the information on each record as if had been specified on a DEST configuration file statement. When all
records in the file are processed, the REX task regains control.

Error Processing
If DMTIRX finds errors while processing a file, it issues return code 4 when returning control to the REX
task. The following situations may cause an error:

• RSCS is not defined in an ESA-mode virtual machine
• RSCS is installed on an incorrect level of z/VM
• Insufficient storage to initialize
• LOCAL statement or system ID is missing or not valid
• Problems in reading the configuration or destination identifier file
• Errors are found when RSCS is in "no tolerance" mode.

Creating System Tasks
After initializing, the REX task attaches the other RSCS system tasks: spool manager task (AXM), exec
processing task (EXE), auto-start task (AST), the event managing task (EVE), and the port redirector task
(PRD). For each task, the REX task calls the GCS ATTACH and WAIT macros. These macros suspend the
REX task until each attached task indicates if it has initialized successfully.

When all system tasks initialize, the REX task posts its initialization complete ECB (DMTREXIC).
DMTMANEP then issues message DMT000I to the RSCS console to indicate the RSU service level and
that the RSCS virtual machine is running. It also issues the CP command SET SMSG IUCV, which allows
RSCS to receive SMSGs from users and operators on the local node.

Trapping Special Messages
When RSCS receives a special message (SMSG) from a local virtual machine, it is trapped and executed as
a command. RSCS use an IUCV interrupt handler to trap the SMSGs. The REX task calls the GCS IUCVINI
and IUCVCOM macros to establish an IUCV path to the *MSG system service.

When RSCS receives an SMSG, GCS calls DMTREXIU, the IUCV interrupt handler, to process the IUCV
interrupts that occur. DMTREXIU issues GCS macros with the RECEIVE option to receive the element. It
then calls DMTCOMNQ to place the element on the REX task’s command queue.

REX Task

44 z/VM: 7.3 RSCS Networking Diagnosis

Processing Commands
After RSCS initializes, the REX task monitors the execution of commands for the RSCS virtual machine.
These commands may be issued from the RSCS console, a remote node, or arrive as an SMSG executed
on the local node (like from RSCSAUTH).

DMTMAN receives commands that originate from the RSCS console or from a GCS exec. DMTMAN places
these command elements in a static area. This ensures that the REX task only processes one console
command at a time.

After calling DMTCOMDQ to remove an element from its command queue, the REX task calls DMTCMX
to process the command. However, the REX task may call DMTCOMNQ to pass the command element
to another task to complete the command processing. Each RSCS task has a command queue and an
ECB through which it is notified of the arrival of a command element. When a NETWORK HALT or STOP
command is issued, the REX task posts each active SNA task’s terminate ECB. The following table lists
each RSCS task and the commands they process.

Task Commands Processed

Communications CP, CPQUERY, EXIT, QUERY, ROUTE

Spool manager CHANGE, ORDER, PURGE, REORDER, TRANSFER

Link driver BACKSPACE, DRAIN, FLUSH, FREE, FWDSPACE, HOLD

SNA control START (for SNA links)

Exec processor EXEC

Event scheduler SCHEDULE

Port Redirector TCPIP

Some commands are usually processed by the REX task. However, the REX task may also call the AXM
task to re-enqueue existing files according to the network structure. For example, when processing the
ROUTE command, the REX task passes a REORDER command element to the AXM task after the network
definitions are updated.

When the following commands are issued, the REX task calls the GCS ATTACH and DETACH macros to
create or remove system tasks:
START

Attaches a non-SNA link driver task
FORCE

Detaches a non-SNA link driver task
ENABLE

Attaches an auto-answer task (DUP)
NETWORK START

Attaches the SNA control task (SCT)
TCPIP START

Attaches the TCP port redirector task (PRD)
TCPIP STOP

Detaches the TCP port redirector task (PRD)

DMTCMX, the main command processing module, receives all commands from the REX task. DMTCMX
calls Exit 19 to determine if RSCS should process the command. It then calls DMTPAF to parse the
command element. If RSCS does not recognize the command, DMTCMX calls Exit 29 to process the
command. DMTCMX also contains routines to process certain RSCS commands. If it cannot process a
command, DMTCMX calls one of the following modules:

• DMTCMA (see “DMTCMA” on page 177)

REX Task

Chapter 5. System Tasks 45

• DMTCMB (see “DMTCMB” on page 177)
• DMTCMQ (see “DMTCMQ” on page 177)
• DMTCMY (see “DMTCMY” on page 178)
• DMTCMZ (see “DMTCMZ” on page 179).

A PAFBLOK describes each RSCS command and contains the address of the routine that executes
the command. The command’s CDEF entry in the RSCSCMDS macro (see “CDEF Macro” on page 119)
contains the name of this processing routine.

Issuing Return Codes
When commands originate from the RSCS console or from an exec, RSCS issues a return code to GCS or
to the exec. Return code zero indicates that the command completed successfully; a nonzero return code
indicates an error.

A nonzero return code corresponds to the message number of the error message that is generated as the
command is processed. DMTCMX passes this number to the REX task, which passes it on to DMTMAN.
DMTMAN then returns the number to GCS.

Shutting Down RSCS
When a SHUTDOWN command is issued or most system tasks abend (except for the port redirector task),
DMTMANEX posts the REX task’s termination ECB and waits for all link driver tasks to end. After the link
drivers end, DMTMANEX tells the REX task to end. The REX task then issues the CP command SET SMSG
OFF, severs its IUCV connection to the *MSG system service, and posts each system task’s termination
ECB.

When each system task ends, DMTMANEX posts the task’s ECB in the SYSIDENT table. After the system
tasks end, the REX task calls Exit 1 to perform termination tasks for any exit routines that were initialized
by Exit 0. On return from Exit 1, the REX task ends and returns control to GCS.

When GCS calls DMTMANEX to signal the end of the communication task, it issues messages to signal that
RSCS is no longer active. If a CP command was specified on the SHUTDOWN command, the command is
executed by Diagnose code X'08'.

If RSCS ends because a system task abends, the REX task runs the command specified on the RECOVER
statement. This command can be an IPL command, which may cause RSCS to be reinitialized. See z/VM:
RSCS Networking Planning and Configuration for more information.

Spool Manager Task
The spool manager task, AXM, is the RSCS interface with CP spool functions. It detects files arriving in
RSCS’s virtual reader and enqueues them on the proper links for transmission. It also maintains the data
structures that represent files as they are processed in the network.

The AXM task accepts files and completes command execution. When responding to a link driver’s
request, however, code in the DMTAXM module executes under the control of the link driver task. The
module DMTAXM has three main functions:

• Accepting files that have arrived in the virtual reader
• Completing the execution of commands that manipulate files or queues
• Responding to a link driver’s request to open and close files for input and output, and to open

transmission algorithms.

All operations in DMTAXM are executed under the control of the resource lock, DMTAXMRS. This ensures
that only one task accesses the file and queue data structures.

AXM Task

46 z/VM: 7.3 RSCS Networking Diagnosis

Initialization
As it initializes, the AXM task calls the ESTAE macro to identify DMTMANSE as its permanent task abend
routine.

Setting Up Virtual Devices
The AXM task also manages the use of virtual unit record devices in the RSCS virtual machine. The AXM
task defines a virtual reader device for the RSCS virtual machine at address 0001. The control program
then places files spooled to the RSCS virtual machine in that virtual device. The AXM task calls the GCS
GENIO macro to tells GCS to notify it of any interrupts on device 0001.

The AXM task also manages a pool of input and output UR devices, which are defined by the
CHANNELS configuration file statement (see z/VM: RSCS Networking Planning and Configuration for more
information). The AXM task checks the channels specified on the statement and detaches any devices
defined on the reserved channels. The link driver tasks use these devices when attempting to open an
input or output file.

Storage Requirements
As it initializes, the AXM task acquires storage for work areas. This includes work areas for accounting
and messages and the save areas acquired by calls to DMTQSAAB and invocations of the GCS GETMAIN
macro. These save areas are later used by the link driver tasks when they call DMTAXMRQ.

Processing Reader Interrupts
When it initializes, the AXM task posts its initialization complete ECB, which tells the REX task that it is
ready to receive work. The AXM task then posts its file arrival ECB. This causes it to process any files that
may already be in RSCS’s virtual reader. This ECB is then posted each time GCS detects an interrupt for
the virtual reader device 0001.

Getting Information About New Files
When its file arrival ECB is posted, the AXM task gets information from CP about the new file in RSCS’s
virtual reader. It then creates a TAG element for each file. The following routines in DMTAXM enable RSCS
to process new files:
DECGET

Converts the file priority value from EBCDIC decimal to binary.
GETSHADO

Gets a free SHADOW element.
GETSLOT

Gets a free TAG queue element.
GSUCCESS

Issues Diagnose code X'14' to get information about the file.
PARMGET

Parses the destination node and user ID and priority.
TAGGEN

Places information from the file’s SFBLOK and CP tag data into the TAG element.
TAGFIND

Determines if RSCS already has a TAG element for the spool ID of the new file.
TAGSETUP

Parses the store-and-forward indicator and prepares registers to parse the destination node and user
ID.

The AXM task also calls DMTRER to determine if the file should be rerouted; the reroute destination, if
any, is also placed in the TAG element.

AXM Task

Chapter 5. System Tasks 47

Exit 2 and Exit 21
Module DMTAXM contains exit points 2 and 21, which you can use to perform the following functions
when a new file is being processed:

• Accept the file
• Accept a store-and-forward file that may have been created by an alternate (trusted) virtual machine
• Reject the file and have RSCS issue a message to its originator
• Reject the file without issuing a message.

Exit 2 is not called when a file reorder is in progress; however, Exit 21 is always called. See z/VM: RSCS
Networking Exit Customization for more information about these exit points.

Updating File Queue Structures
When a file is sent to a local user, the AXM task places its origin in the CP tag text placed on the file.
The AXM task then transfers the file to the specified virtual machine. If the file is sent to a remote node,
printer, or workstation, the AXM task enqueues it on all links that can send the file.

Exit 6 and Exit 31
Before files are enqueued on a link, DMTAXM calls Exit 6, which lets you adjust a file’s priority. DMTAXM
also calls Exit 31, which lets you monitor the priority of files on a link’s queue. You can also use Exit 31 to
prevent a file from being sent on a link.

Informing Link Drivers About Files
When queueing files for transmission, the AXM task places TASHADOW elements on each link that can
send the file to its destination. Many TASHADOW elements can represent a single file, or TAG element
(see “TASHADOW” on page 23).

If the TASHADOW element is placed on an active networking link, the spool manager task calls the
transmission algorithm specified for that link. The transmission algorithm determines if the file may be
selected for transmission and, if applicable, the streams on which the file can be sent.

If the TASHADOW is placed on a non-networking link, the AXM task posts the link’s file arrival ECB to tell it
of the arrival of a new file. This ensures that an inactive printer driver is automatically told about new files.
Any multistreaming link drivers that have available transmission streams are also informed of new files.

Processing Spool File Commands
The AXM task also monitors a command queue onto which other tasks enqueue command requests. The
command ECB is posted by the task that calls DMTCOMNQ to enqueue the command. When this ECB is
posted, the AXM task calls DMTCOMDQ to dequeue the command element. It then calls the appropriate
routine in DMTAXM to execute commands, which are described in the following sections.

CHANGE Command
The REX task passes an encoded form (Type A0) of the CHANGE command to the AXM task for execution.
The command element describes the link on which the files are to be changed. It also contains a filter
program (created by DMTCQC), which describes the files to be changed on the link. To process the
CHANGE request, the AXM task may modify the file’s CP tag data, determine the operator form name for
the file, or execute the CP CHANGE command.

The AXM task examines all TASHADOW elements to find the files that match the criteria specified on the
command. When it finds a match, the AXM task sets the TASPULL bit in the TASHADOW element. It then
finds all TASHADOW elements marked with the TASPULL bit and removes all the file’s TASHADOWs from
the link’s file queue. The TAGPLACE routine then places all TASHADOWs back on the link. Exit 6 and Exit
31 can then process the file, using any characteristics that were affected by the CHANGE command.

AXM Task

48 z/VM: 7.3 RSCS Networking Diagnosis

The AXM task ensures that any files that were previously ordered do not lose their position on the link’s
queue. Before a TASHADOW element is removed from a file queue, its position on the queue is marked.

CLOSE Command
The CLOSE command (Type A1) is not externally accessible to users or authorized operators. It processes
any remaining active files on a link that has deactivated. DMTMANEX, the end-of-task routine, builds a
CLOSE command element when a link driver task deactivates. When the SCT task or PRD task deactivates,
DMTMANEX also builds a CLOSE command element to close any log traces if network or TCP/IP tracing
has been specified.

When processing the CLOSE command, the AXM task scans the active input and output queues for files
belonging to the deactivated link. Input files are closed and re-enqueued on links so that they can be sent
later. Output files are closed and purged. Active trace files, started by a TRACE command or by the TRACE
option of the START or DEFINE command, are not purged. The AXM task then posts the LUWORD field in
the link’s LINKTABL entry. This tells DMTMANEX that the CLOSE command has been processed.

PURGE Command
The AXM task can receive the PURGE command from the REX task or from a user exit routine. The
command element (Type A1) may contain a filter program that describes a file or a list of spool IDs for
files that are to be purged. The PURGEFLT command modifier indicates if the filter program is used.

If a list of spool IDs is specified, the AXM task ensures that all the files in the list exist on the specified
link. It then determines which files are to be purged.

When it identifies a file that is to be purged, the AXM task calls Exit 4, which you can use to create
an accounting record. It then removes the file’s TASHADOW elements from all links on which they are
enqueued and purges the file from RSCS’s virtual reader. The AXM task then returns the file’s TAG element
to a pool of available TAG elements.

REORDER Command
Each time a REORDER request is issued, the AXM task rebuilds or realigns all file-related data structures.
The AXM task can receive a REORDER command element when one of the following commands is issued:

• REORDER (with or without the QUICK option)
• DEFINE
• LOOPING
• NETWORK START
• ROUTE
• When a link goes into "connect" status.

A reorder request can also be processed when the AXM task executes a CLOSE command. The command
element (Type A2) that is passed to the AXM task indicates the reason for the reorder request.

TRANSFER Command
The REX task passes the TRANSFER command (Type A1) to the AXM task. The files specified on the
command are identified by a list of spool IDs or by a filter program created by DMTCQC. If a list of spool
IDs is specified, the AXM task determines if all the spool IDs are valid and if the corresponding files are on
the specified link. If a filter program is specified, the AXM task examines all files to determine those that
meet the criteria of the filter program. These files are then marked (by the TASPULL bit) and are processed
later.

The AXM task rewrites the CP TAG data for the specified files to reflect the new destination. It then
removes all TASHADOW elements from the links on which the file originated and queues them on the
appropriate links to the new destination.

AXM Task

Chapter 5. System Tasks 49

Managing File Routines for Link Drivers
When a link driver task wants to process a file, it calls DMTAXMRQ to request to use an AXM task
resource. This request is identified by an RDEVBLOK, which contains the required information for each
type of request (described in the following sections). It also provides fields that the AXM task uses to
return information to the calling link driver task.

OPENIN Requests
A link driver task makes an OPENIN request to open an input file (for example, selects a file for
transmission). The AXM task selects the appropriate file and gets a 4K file I/O area (FIOA) to use as
it reads the file from CP spool. It then defines a virtual reader device on a reserved channel and issues
Diagnose code X'14' to open the file.

Because the file’s TASHADOW elements are removed from all links, the file’s TAG element is placed on
the active input queue (anchored at the TAGACIN field in TAGAREA). After processing XAB and form
specifications, if applicable, the AXM task returns control with the file’s TAG address in the RDEVBLOK to
the link driver task.

CLOSEIN Requests
A link driver task makes a CLOSEIN request when a file’s transmission completes or ends prematurely.
The RDEVBLOK provided by the link driver points to the TAG element of the input file to be closed. The
AXM task removes the TAG element from the active input queue and processes any XAB related storage
for the file. It then calls Exit 3, which can be used to create accounting records when the file is sent.

When the file has been transmitted and no longer is queued on the node, the AXM task closes and purges
the file. If the link could not send the file or if more copies of the file remain to be sent (on non-networking
links only), the file is closed but not purged. The link driver task, if necessary, determines if the file should
be held on the link. The AXM task then frees the storage for the FIOA and the file’s TAG element.

OPENOUT Requests
Link driver tasks make OPENOUT requests to open an output file (for example, write a file that is being
received into CP spool). The calling link driver task provides a sample TAG element, which is anchored at
the RDEVTAG field in the RDEVBLOK. This TAG element contains a one byte field that identifies the type of
UR device that is defined to write the file to spool.

The AXM task calls DMTQSAAB to get an output TAG element for the file. It also obtains a FIOA, which
it uses to build channel programs that are executed against the output UR device. The AXM task copies
all information in the sample TAG element into another TAG element, which it places on the active output
queue. It then returns a pointer to that TAG element in the IOTABLE, which is built at the top of the FIOA.

After processing the TAG element, the AXM task defines the requested output device and its required
spooling options. When processing a log trace file, the file is spooled to the UR device. If its destination
is a remote node, it is spooled to the RSCS virtual reader. For all other files received on the link, the UR
device is spooled to RSCS’s virtual reader. This ensures that a user does not receive a partial copy of a file
if RSCS suddenly ends.

CLOSEOUT Requests
A link driver task makes a CLOSEOUT request when it needs to close an output file that was opened by
an OPENOUT request. In the RDEVBLOK, the calling task provides a pointer to the file’s TAG element from
the active output queue. The AXM task removes the TAG element from the queue and updates any fields
that were not initialized by the link driver task.

If the file is received on a non-networking link, the AXM task calls DMTRER to determine if the file should
be rerouted. Files received on networking links are processed by DMTRER as their NJE headers are
received.

AXM Task

50 z/VM: 7.3 RSCS Networking Diagnosis

The link driver task may close the file if the transmission from the remote node was not valid or ended
prematurely. In this case, the link driver task indicates in the RDEVBLOK that the file should be closed
and purged. If the file is not to be purged, the AXM task calls Exit 5. Exit 5 routines can create or modify
accounting records for each file RSCS receives; see z/VM: RSCS Networking Exit Customization for more
information.

The AXM task then determines if the file is eligible for second-level addressing. If the file is for a local
user, the AXM task tags the output device with the text (origin time and the spool, node, and user ID)
that is expected when RSCS delivers the file. If, however, the file is to be queued on another link for
transmission, the AXM task places a store-and-forward tag on the device. If the link driver task has built
an XAB for the file, the XAB is written to spool by Diagnose code X'B4'. The AXM task then spools and
closes the device and returns storage for the output TAG element and the FIOA.

OPENINTA Requests
Networking link driver tasks make OPENINTA requests to initialize the transmission algorithm for
a multistreaming link. (See z/VM: RSCS Networking Exit Customization for more information about
transmission algorithms.)

The AXM task calls the transmission algorithm, which can reside in DMTAXA or in a separate exit load
library, for the link. The transmission algorithm is initialized by passing it an open request and the
LINKTABL for the appropriate link. The transmission algorithm will have an opportunity to process each
file enqueued on that link when a reorder is initiated in response to the link going into "connect" status.

Serializing Resources
Most spool file resources cannot be used by two tasks at the same time. RSCS serializes the resource
to ensure that only one task (the AXM or a link driver task) uses these resources at any time. DMTRES
manages the serialization of resources within module DMTAXM.

As part of its initialization process, the AXM task creates a RESBLOK to represent the spool interface
resource (DMTAXMRQ) and adds it to the global RESBLOK chain. Tasks then call DMTRESLO to gain
exclusive use of the resource and call DMTRESUN to return use of the resource.

Managing the Unit Record Device Pool
RSCS attempts to reuse the devices it has previously defined. The CHANNELS statement specifies the
channels RSCS can use for unit record devices. A 256 byte allocation map is created for each channel
specified on the statement. Bytes in the allocation map can have the following settings:
X'FF'

No device defined
X'00'

Device defined and in use
X'xx'

Device defined and free (code xx indicates type of device).

When the AXM task receives a request to define a new device, it looks for any matching device type that
was previously defined. If it finds a device, the AXM task passes it to the caller. If a free device of the
requested type does not exist, the AXM task searches for an address where no device is defined. If an
address is free, the AXM task issues a Diagnose code X'08' to define the requested device. If no addresses
are available, the AXM task looks for an address where a device is defined but not in use. It then detaches
the existing device at that address, defines the new device, and returns its address to the calling task.

The AXM task, in turn, does not usually detach the device that the caller passes to it. The calling task can
issue a request to force the device to be detached. This request indicates that the task has closed the
device and wants to return it to the pool of free devices.

If a virtual reader, punch, 1403 or 1443 printer is being detached, RSCS does not issue a DETACH
command. Other tasks may reuse these devices. However, some devices (such as 3211 or 3800 printers)

AXM Task

Chapter 5. System Tasks 51

may have FCBs loaded and other tasks cannot reuse the device. In this case, the device is always
detached.

Auto-Start Task
The auto start task, AST, manages the pool of auto-dial ports. It also monitors ITO for any link task and
RETRY intervals for SNA and auto-dial links.

Initialization
The REX task attaches the auto-start task during RSCS initialization. After it sets up its ESTAE exit, the
AST task waits on the following ECBs:

• Dynamic port allocation request
• Command
• Port free
• Timer
• Termination.

Dynamic Port Allocation
The spool manager task, and the AST task, post the dynamic port allocation ECB when a request element
is placed on the DMTASTSQ queue anchor. This queue contains start request elements for dial-out links
that have not been assigned a dial-out port. These links may be started because a file has been enqueued
on the link or they are eligible for an auto-start. They may also be started if their RETRY interval has
expired.

In each case, the AST task obtains exclusive use of the PORT table and searches for an available dial-out
port to assign to the link. If no dial-out ports are available, AST marks the link in the dial-queue state until
a dial-out port is freed.

If an operator or an exec issues a START command for an auto-dial link that requires a dynamically-
allocated port, the AST task does not process the request. Rather, DMTLAXEP attempts to allocate a port.
If no ports are available, the START command fails and the command originator is notified. The link is not
placed in the dial-queue state and the AST task does not attempt to start the link when a port is freed.

Processing Commands
The AST task processes the FORCE, ITO, and RETRY commands for auto-start links. These commands are
represented by the Type C0, Type C1, and Type C2 formats, respectively, of the CMNDAREA.

If a FORCE command is issued for a link that was attached from the AST task, the REX task passes the
command to the AST task. This enables the AST task, which attached the link driver task, to detach and
terminate the link.

The ITO command, an internal RSCS command element, is enqueued to the AST task by any link that
has been defined with a nonzero ITO interval. When a link initializes, it enrolls itself into the ITO process.
The link driver task then resets the inactivity time-out value in its LINKTABL when it executes an open
request for an input or output file. The AST task monitors the ITO value to determine if the link should be
deactivated.

The RETRY command, another internal RSCS command element, is enqueued to the AST task by the end-
of-task routine (DMTMANEX). The AST task receives this command element when an SNA or auto-dial link
deactivates with an error condition that makes it eligible for a retry. The AST task monitors the number
of consecutive retry attempts on the link. It then copies the appropriate retry interval in to the link’s
LINKTABL entry. The AST task then attempts to start the link after the retry interval expires. The retry
intervals default to 1, 10, 19, 27, 34, 40, 45, 49, 52, 54, and 55 minutes. These values can be overridden
by the RETRY statement, described in z/VM: RSCS Networking Planning and Configuration.

AST Task

52 z/VM: 7.3 RSCS Networking Diagnosis

Free Ports
When a link that has been assigned a dynamically allocated port ends, DMTMANEX posts the free port
ECB for the AST task. This tells the AST task that a dial-out port is now available. The REX task may also
post the free port ECB when a PORT command defines a dial-out port.

When this ECB is posted, the AST task determines if any links are held in dial-queue status. If it finds a
dial-queue link, the AST task assigns the free port and attaches the link driver task.

Timer ECB
When the first link enrolls itself for ITO processing or a link goes into a retry wait state, the AST task
starts to maintain a timer. This timer is set at 1 minute intervals. When the interval expires, the AST task
determines if it should deactivate any ITO links. It then monitors any links that are in a retry-wait state to
determine if a start request should be issued for a link.

The AST task checks if any ITO links are currently processing a file. If a link is active, the AST task does
not change the ITO value in the link’s LINKTABL. If it is not active, the AST task decrements the ITO
value in the LINKTABL by one minute. Each time a link requests to open a file, however, the OPENIN
and OPENOUT routines in DMTAXM reset the LINKTABL field to the link’s original ITO value. When the
inactivity time value reaches 0, it indicates that the link has been idle for the number of minutes specified
on the ITO operand. The AST task then posts the link’s termination ECB.

If a link is in retry-wait state, the AST task also decrements its retry wait interval by one. When this interval
reaches zero, the AST task attempts to restart the link.

For SNA links or dial-out links that have dedicated dial-out ports, the AST task passes a START command
to the REX task. If, however, a dial-out link requires a dynamically allocated dial-out port, the AST task
receives the START request. In this case, the link may be placed in a dial-queue state until a dial-out port
becomes available.

In each case, the AST task increases the count of consecutive retry requests performed on the link. The
AST task can then determine the next retry interval to use when it receives a RETRY command request.

Termination
The AST task ends when a SHUTDOWN command is issued or if an abend occurs in another RSCS system
task. In each case, the AST task’s termination ECB is posted. The AST task then ends and returns control
to GCS.

Event Manager Task
The event manager task, EVE, issues RSCS commands and causes other types of events to occur at
predefined times.

Initialization
After it has identified its ESTAE exit, the EVE task reads the EVENTS file; it then schedules any events that
are to take place before midnight.

Scheduled events are represented by EVEBLOKs (for the EVEBLOK layout, see “EVEBLOK” on page 225),
which form a chain anchored at the TEVENTS field in the CVT. This chain is maintained in ascending order,
based on the next time each event is to be executed (see “EVEBLOK” on page 31). After it processes the
EVENTS file, the EVE task sets a timer that expires when the event represented by the first EVEBLOK is
scheduled to be processed.

Allocating Task IDs
Each EVEBLOK is assigned a unique task ID. The EVE task refers to the task ID to delete, suspend,
or resume an event. The EVE task uses a task ID number allocation block (TANBLOK). Each TANBLOK

EVE Task

Chapter 5. System Tasks 53

contains 1024 valid task IDs. If more than 1024 events are scheduled, the EVE task obtains storage for
additional TANBLOKs.

Event Types
Events can be scheduled to execute once, at a specific time, or repetitively. Repetitive tasks are executed
every nn minutes or at a certain time, mm minutes, past the hour. The EVEBLOK for a repetitive event
retains its task ID until midnight. It does not receive a new task ID each time the event occurs. An event
can be specified in the EVENTS file or by a SCHEDULE command.

System Events
All events specified in the EVENTS file are called system events. These events can be scheduled to be
executed on a day of the week. They can also be scheduled to execute on a special day defined by a
SPECIAL record in the EVENTS file. If the scheduled time for an event has already passed when RSCS
reads the EVENTS file, the event is not scheduled for that day.

User Events
Events specified by the SCHEDULE command are called user events. These events are usually only
executed on the day the SCHEDULE command is issued. However, if you specify the DAILY operand, the
EVEBLOK for the event is added to the EVEBLOK chain for the following day.

Midnight Event
The EVE task creates the midnight event to ensure that it reads the EVENTS file at midnight. The EVE task
can then determine the events that are to be scheduled for the next 24 hours. When it finds the midnight
event, the EVE task creates a new chain of EVEBLOKs to represent the next day’s system events. It then
merges this chain with any user events (those that specified the DAILY operand) that are to be carried
over to the next day.

Timer Management
The EVE task calls the GCS STIMER macro to ensure that GCS notifies it when the next event is to be
executed. The event is executed as the EVE task compares the scheduled time of the event to the current
system time.

When the timer expires, GCS schedules the TIMERPOP routine, which posts the timer ECB and returns
to GCS. The EVE task then dequeues the EVEBLOK for the scheduled event from the EVEBLOK chain and
executes the requested command. If the EVEBLOK represents a repetitive event, the EVE task updates
the time of next execution in the EVEBLOK and places it back in the chain.

Processing SCHEDULE Commands
The REX task calls DMTCOMNQ to enqueue an encoded version of the SCHEDULE command element to
the EVE task. This command element is a version of the EVEBLOK; it is not described by the CMNDAREA.
The EVE task calls DMTCOMDQ to dequeue the command element. If the command schedules a new
event, the EVE task creates a new EVEBLOK and adds it to the EVEBLOK chain. The EVE task then returns
the task ID assigned to the EVEBLOK to the originator of the SCHEDULE command.

If the command element does not represent a request to schedule new events, it may be a request
to manipulate existing events. These requests are specified by the various operands of the SCHEDULE
command, which are described in the following sections.

DISKLOAD Operand
The DISKLOAD operand tells the EVE task to process the EVENTS file again when changes have been
applied to it. (If the EVENTS file has been changed while RSCS is running, the RSCS virtual machine must
have accessed the latest information on the disk where the file resides.) The EVE task deletes all existing

EVE Task

54 z/VM: 7.3 RSCS Networking Diagnosis

system events from the EVEBLOK chain. It then creates a new chain of system events and merges the new
chain with any user events that remain on the EVEBLOK chain.

DELETE Operand
When the DELETE operand is specified, the EVE task deletes an existing event. The delete request can
specify a specific task ID or a task name for those events that have a common task name. The EVE task
removes all EVEBLOKs that represent the specified tasks from the EVEBLOK chain.

SUSPEND Operand
The SUSPEND operand causes the EVE task to temporarily suspend one or more existing events. The
suspend request can specify a specific task ID or a task name. For this request, the EVE task marks all
specified EVEBLOKs as suspended. The EVEBLOKs remain on the EVEBLOK chain. However, the EVE task
does not execute the event until the RESUME operand has been specified.

RESUME Operand
When the RESUME operand is issued, the EVE task allows any events that were previously specified on
the SUSPEND operand to be executed at their next scheduled time.

EXEC Processor Task
The EXEC processor task, EXE, calls execs for other RSCS tasks. The EXE task allows execs to call RSCS
commands.

Initialization
During RSCS initialization, the REX task attaches the EXE processor task. The EXE task then establishes its
ESTAE exit to process any abends.

Processing Exec Queues
The REX task and DMTMANEX call DMTCOMNQ to enqueue an exec request on the EXE task’s exec queue.
The EXE tasks calls DMTCOMDQ to remove each request from the queue. It then issues the GCS CMDSI
macro to call the specified exec.

SNA Control Task
The SNA control task (SCT) maintains the RSCS/VTAM interface, which enables RSCS to use SNA
to communicate with remote nodes. The SCT task activates and deactivates session drivers. It also
processes any VTAM RECEIVE operations that cannot be handled by the session drivers. If no SNA links
are defined, however, RSCS does not need the SCT task to function.

Establishing a Session
A logical unit (LU) is a system or device that uses a selected SNA protocol to communicate with another
system or device. Before logical units can communicate with each other, they must establish a session. In
a session, each LU agrees on a protocol to be used when exchanging data. The agreement is established
by a bind image, which defines the rules that each LU follows when communicating with the other. If the
LUs cannot agree on the bind image, the bind process fails and the SNA session is not established. After
the session is established, however, either logical unit may request to end the session.

Logical Units
In SNA sessions, one LU acts as the primary and the other as the secondary. The primary LU can define
the BIND image for the session. The LU that initiates the session chooses its role (primary or secondary)
in the session. For SNANJE sessions, RSCS may act as the primary or secondary LU. For SNA3270P or

EXE Task

Chapter 5. System Tasks 55

SNARJE sessions, RSCS can only act as the primary LU. RSCS defines the following types of session
drivers:

Session Driver Function

SNANJE DMTSNE Peer to peer connection using the LU_T0 based SNA/NJE protocol.
RSCS can be the primary or secondary LU in this connection.

SNA3270P DMTSPT Connection to 3270 printers (or a device that emulates one) by
LU_T0, LU_T1, and LU_T3 protocols; RSCS is always the primary LU.

SNARJE DMTSJE Connection to the System/36 MSRJE facility by a subset of the LU_T1
protocol; RSCS is always the primary LU.

SIMLOGON
When an LU wants to initiate a session and become the primary LU for that session, it issues a SIMLOGON
macro. The SIMLOGON request is first handled by the requesting LU’s system service control point (SSCP).
The SSCP arranges sessions between eligible LUs that are within or outside the domain it governs. If the
secondary LU is outside the SSCP domain, the SIMLOGON request is passed to the SSCP that governs
the domain in which the secondary LU resides. If the SSCP grants permission, a control initiate request
(CINIT) is sent to the initiating LU (which drives its LOGON exit). The CINIT requests that the LU send a
BIND request to the secondary LU (this drives the secondary’s SCIP exit).

If the secondary LU accepts the BIND imagine, it sends a positive response to the primary LU (see Figure
38 on page 56). The BIND image presented by the RSCS session drivers generally is not negotiable.
However, the SNANJE session driver, when acting as the secondary LU, will tolerate some negotiation.

 +-------------+ +-------------+
 | Node A | | Node B |
 +------+------+ +------+------+
 | SSCP | PLU | | SSCP | SLU |
 +------+------+ SIMLOGON +------+------+
 | | ---+-----------------+--> | |
 | | | CINIT | | |
LOGON | | <--+-----------------+--- | |
Exit | | | | | |
 | | | OPNDST/BIND | | |
 | | ---+-----------------+------+--> | SCIP
 | | | +RESP | | | Exit
 | | <--+-----------------+------+--- |
 | | | | | |
 +------+------+ +------+------+

Figure 38. A Successful BIND Request

If the secondary LU does not accept the BIND imagine, it sends a negative response to the primary LU
(see Figure 39 on page 56).

 +-------------+ +-------------+
 | Node A | | Node B |
 +------+------+ +------+------+
 | SSCP | PLU | | SSCP | SLU |
 +------+------+ SIMLOGON +------+------+
 | | ---+-----------------+--> | |
 | | | CINIT | | |
LOGON | | <--+-----------------+--- | |
Exit | | | | | |
 | | | OPNDST/BIND | | |
 | | ---+-----------------+------+--> | SCIP
 | | | -RESP | | | Exit
 | | <--+-----------------+------+--- | | | |
 | | | | | |
 | | | CLSDST | | |
 | | ---+-----------------+--> | |
 | | | | | |
 +------+------+ +------+------+

Figure 39. An Unsuccessful BIND Request

SCT Task

56 z/VM: 7.3 RSCS Networking Diagnosis

Initializing the SNA Control Task
The REX task does not attach the SCT task when RSCS initializes; rather, the SCT task is attached when
a NETWORK START command is issued. The SCT task ends when a NETWORK HALT or SHUTDOWN
command is issued. If you do not have SNA connections within your RSCS network, the SCT task does not
need to be started.

To initialize the RSCS/VTAM interface, the SCT task obtains storage for parameter lists and data areas that
are passed to VTAM when sessions are started. The SCT task also opens communications between RSCS
and VTAM and prepares to receive any requests that may be waiting for RSCS.

The SCT task monitors incoming requests from VTAM for any session driver or for the RSCS application
itself. It also ensures that VTAM can run certain exit routines provided in RSCS. These exit routines
become available when the SCT task initializes and opens the ACB (see “VTAM Exit Routines” on page
57 for more details on the ACB task).

Request Parameter Lists
RSCS uses a request parameter list (RPL) to make an SNA request. The RPL contains information and data
areas, which VTAM uses to process the request. When RSCS processes a NETWORK START command for
a session driver, it generates a SIMLOGON request, which requires an RPL. The SCT task acquires storage
for all SIMLOGON RPLs and associated data areas. The number of RPLs acquired is determined by the
RPLS option of the NETWORK START command.

The following data areas are associated with an RPL; their interactions are described in “Maintaining the
RSCS/VTAM Interface” on page 59:
ECB

Posted by VTAM when the SIMLOGON request completes; one ECB is required for each SIMLOGON
RPL. Pointers to the ECBs are also passed to VTAM with the SIMLOGON request. Additional ECBs
(terminate, receive and command) are used within the SCT task.

Flag bytes
Used as an allocation map for the RPLs used by RSCS.

NIB
The node initialization block contains information that RSCS provides VTAM about general session
characteristics (such as, LU name and BIND information).

Access Method Control Block
The access control block (ACB) gives VTAM information about a VTAM application program (in this case,
RSCS). It assigns a name to the program and lists the exit routines associated with it. This ACB must
be opened before any application can interface with VTAM. The VTAM OPEN macro tells VTAM that
the application is running. VTAM can then accept requests for sessions and schedule (or call) any exit
routines.

VTAM Exit Routines
DMTVXT contains the exit routines VTAM requires for the RSCS application and the SNA session. Entry
points in DMTVXT correspond a specific VTAM exit routine, which are described in the following sections.

LOSTERM
DMTVXTLT is scheduled when a session is abruptly ended or disrupted. This routine searches LINKTABL
entries to find a matching communication identifier (CID) and posts the LTERECB for that link. VTAM
generates the CID when a SIMLOGON request is issued and returns its value in the NIB provided by RSCS
with the SIMLOGON request. When the SIMLOGON completes, RSCS stores the CID in the LINKTABL for
the session driver.

SCT Task

Chapter 5. System Tasks 57

LOGON
DMTVXTLG is scheduled when a SIMLOGON request, initiated by the SCT task in response to a START
command, completes. It is also scheduled when RSCS receives a VARY LOGON request from VTAM.
DMTVXTLG searches LINKTABL entries for the appropriate LU name and attaches the appropriate session
driver task.

If any of the preceding steps fail, DMTVXTLG cleans up the LINKTABL entry (if necessary) and issues a
CLSDST request for the session driver. CLSDST tells VTAM to end a session or reject a CINIT between
RSCS (the primary LU) and the secondary LU.

To attach the session driver, DMTVXTLG calls the VXTATTH subroutine. This routine acquires storage for
a task initialization vector. It then calls DMTBPLAL to attach the session driver task. It also initializes
the LINKSTAT control block, which contains data used for QUERY command responses. At this point, the
session driver is considered to be active.

NSEXIT
DMTVXTNS is scheduled when RSCS receives the following Network Service requests from VTAM:
Clean Up

Called when a session, driven by RSCS, has been ended without prior warning to RSCS.
Notify

Called when VTAM tells RSCS that it cannot successfully process a request. If RSCS has not violated
any defined procedures for session initiation, it may choose to retry the request.

Procedure Error
Called if VTAM detects a procedure error when a session starts or stops. This request (NSPE) can also
be issued as a Notify request if RSCS has not asked to be notified when a request completes.

With each NSEXIT request, VTAM passes an LU name to RSCS. DMTVXTNS finds the LINKTABL with the
matching LU name and posts that link’s terminate ECB. It then processes the rest of the LINKTABL and
disables auto-start of the link. The routine also determines if it should restart the session, based on the
RETRY option specified either on the LINKDEFINE statement or the START and DEFINE commands.

RELREQ
DMTVXTRL lets RSCS share printers and workstations with other VTAM applications. This routine is
scheduled when another VTAM application requests an LU that is currently in session with an RSCS
SNA3270P or SNARJE session driver. This exit routine finds the LINKTABL entry that contains the
matching LU name and posts the LRELECB for that link. The session driver only gives up the session
if there are no active files being processed. When its LFILECB is posted, indicating that a file has arrived
on the link, the session driver can issue a SIMLOGON request to reacquire the SNA session.

SCIP
DMTVXTSC is scheduled when RSCS receives a Session Control request from VTAM. DMTVXTC processes
BIND requests by calling VXTATTH to attach a session driver task as a secondary LU. However, DMTVXTSC
passes the following requests directly to the appropriate session driver:
CLEAR

Issued by the primary LU to stop the flow of session requests
RQR

Issued by the secondary LU to request sequence number synchronization
SDT

Issued by the primary LU to start or resume the flow of session requests
STSN

Issued by the primary LU to set and test sequence numbers
UNBIND

Sent by either LU to end a session, usually for unexpected outages.

SCT Task

58 z/VM: 7.3 RSCS Networking Diagnosis

TPEND
DMTVXTTP is scheduled when VTAM abruptly ends. This may occur when the VTAM operator issues a
HALT command, VTAM quiesces because of an internal problem, or VTAM abends. This exit routine posts
the SCT task’s terminate ECB. Depending on the severity of the error, DMTVXTTP may queue a DRAIN
command or post the terminate ECBs for all active session driver tasks. The SCT task then waits for the
session drivers to end before completing its termination processing.

However, if an OPEN request fails, RSCS may make several attempts to retry the request. The number of
attempts is specified on the RETRY option of the NETWORK START command. RSCS may retry the OPEN
request under the following conditions:

• VTAM is not initialized
• VTAM does not have enough storage to open the ACB
• ACB is currently being closed
• Wrong password specified on the NETWORK START command
• APPLID on the NETWORK START command is incorrect or not found.

After the OPEN completes successfully, the SCT task issues a SETLOGON request. This request tells VTAM
that the RSCS LOGON exit is ready to receive any CINITs for RSCS session drivers. When the SETLOGON
completes, the RSCS/VTAM interface is ready to process data and the TGSSNAUP flag is set in the CVT.

Maintaining the RSCS/VTAM Interface
To maintain the RSCS/VTAM interface, the SCT task monitors and waits on three ECBs: command, receive-
any, and terminate. It also waits on a list of ECBs associated with any outstanding SIMLOGON requests.

Before starting its main processing cycle, the SCT task watches for inbound requests destined for RSCS
session drivers. The SCT task then issues a RECEIVE ANY request. The RECEIVE macro requests VTAM to
transfer data or control information to RSCS’s storage areas. This enables the SCT task to use the RSCS
hashing routines to search for the matching CID and link; VTAM does not perform this search.

RECEIVE requests can be limited to specific sessions (identified by CID) or to a group of sessions
(identified by the application ID assigned during OPEN ACB processing). The RECEIVE ANY parameter
tells VTAM that this request applies to all of the RSCS session drivers.

RECEIVE Processing
RSCS generally uses RECEIVE ANY requests for SNA3270P and SNARJE session drivers. The SNA3270P
driver does not expect to receive data on a regular basis as opposed to the SNANJE driver which does
expect to receive regular data. The SCT task requests the RECEIVE function for the SNA3270P and
SNARJE session drivers.

The first time an SNANJE session driver satisfies the SCT task’s RECEIVE ANY request, the session driver
initiates and maintains a RECEIVE SPECIFIC/CONTINUE SPECIFIC for the duration of the session. VTAM
passes any RPLs for that session (identified by CID) to the session driver.

When the SCT task’s receive ECB is posted, the CID is retrieved from the RPL passed by VTAM. LINKTABL
entries are searched sequentially, unless the NIBUSER field already contains a pointer to the LINKTABL.
The NIBUSER field is filled in as the session driver initializes. NIBs are usually associated with an RPL for
most VTAM requests. Making use of this facility eliminates the need for sequential searches. The session
driver’s receive ECB is then posted.

However, RSCS does not retrieve any data from VTAM at this point. VTAM does not transfer the data to
RSCS’s private storage until the session driver issues a RECEIVE SPECIFIC request. After this request
completes, the session driver task issues RESETSR to place the session in CONTINUE ANY mode. This
allows the SCT task’s RECEIVE ANY request to remain eligible to receive another RPL from VTAM. The
SNANJE session drivers must then issue and maintain their own RECEIVE SPECIFIC/CONTINUE SPECIFIC
after this RESETSR.

SCT Task

Chapter 5. System Tasks 59

Command and SIMLOGON Processing
When a START command is issued for an SNA link, DMTCMY queues the command element to the SCT
task and posts its command ECB. The SCT task then searches the RPL allocation map to find an RPL for
the SIMLOGON request. Each byte in the allocation map corresponds to a SIMLOGON RPL, a NIB, an ECB,
and an ECB pointer. If it finds a free RPL, the SCT task marks its corresponding byte in the allocation map.
It then uses the associated data areas for the SIMLOGON.

If no RPLs are available, the SCT task enters RPL starvation mode. This means that RSCS cannot process
any START commands for SNA-type links until an outstanding SIMLOGON completes. Any session drivers
that are started while RSCS is in RPL starvation mode remain in the “RPL-WAIT” state. When a SIMLOGON
RPL becomes available, the session driver enters the “STARTING” state.

When a SIMLOGON completes, VTAM posts the SIMLOGON ECB and the status changes to “LOGON
WAIT”. VTAM then schedules DMTVXTLG to attach the session driver task and DMTVXT will also increase
the count of active SNA links in the CVT. The SCT task then marks the allocation byte for that SIMLOGON
RPL and returns the ECB, its pointer, and the RPL for use by another SIMLOGON. If the SCT task is in RPL
starvation mode, it also posts its command ECB because it can now work with an RPL and associated data
areas. If not in RPL starvation mode, the SCT task continues to monitor and wait on each ECB.

Termination
The REX task posts the SCT task’s terminate ECB when a SHUTDOWN or NETWORK HALT command is
issued, or from the TPEND exit (DMTVXTTP).

When the ECB is posted, the SCT task starts to close the RSCS/VTAM interface to prevent VTAM from
driving additional LOGON or SCIP exit routines. When ending as usual, the SCT task issues a SETLOGON
request with the QUIESCE option. When an abend occurs (for example, the terminate ECB is posted from
the TPEND exit), the SCT task issues a CLOSE ACB request. The CLOSE macro tells VTAM that RSCS is
ending its association with VTAM.

The SCT task then sets the VTAM interface shutdown in progress flag (TGSVSIP) in the CVT to prevent
RSCS from starting more session drivers. Each session driver’s terminate ECB is posted and the SCT
task waits on its terminate ECB until all session drivers terminate. Depending on the severity of the
termination, TPEND or normal, the links may quiesce (drain) or abrubtly end (STOP). DMTMAN then
decrements the count of the active SNA session drivers. When that count is zero and the TGSVSIP flag is
on, DMTMAN posts the terminate ECB for the SCT task. The SCT task calls DMTCOMDQ to dequeue any
commands and then ends.

SNA Session Cleanup
When a session driver task ends abnormally, GCS schedules the ESTAE exit and the general end of task
exit, DMTMANEX. In turn, DMTMANEX, calls the session cleanup routine, DMTSCTCU, for the SCT task.
DMTSCTCU performs the necessary session cleanup for the session driver that abends. If the session
driver is the primary LU, DMTSCTCU issues a CLSDST request. If the session driver is the secondary LU, it
issues a TERMSESS request.

Port Redirector Task
The port redirector task (PRD) performs LISTEN calls on specific TCP/IP ports on behalf of TCPNJE
links to wait for incoming connect requests from a specific remote IP address. User-defined TCP/IP link
drivers can also use PRD service. When a connect request is received from a remote host that matches
the remote IP address specified by the calling task, the PRD task will transfer that connection to the
requesting task.

Initialization
The REX task attaches the port redirector task during RSCS initialization. The port redirector task can also
be stopped, and restarted, by the TCPIP command (see z/VM: RSCS Networking Operation and Use). When
started, the PRD task waits to receive work from TCPNJE link driver tasks.

PRD Task

60 z/VM: 7.3 RSCS Networking Diagnosis

The PRD task can support up to 16 active TCP/IP virtual machines with a maximum of 64 active ports for
each virtual machine. It uses one IUCV connection to communicate with each TCP/IP virtual machine.

Processing LISTEN Requests
The PRD task and the calling task use PRDBLOKs to communicate with each other. The PRDTYPE field
in the PRDBLOK is used to post requests and responses between the tasks. PRDTYPE may have the
following values:

Values Function

PRDADD Requests to listen for a remote IP address on a specific local port

PRDDEL Requests to cancel a previous LISTEN request

PRDERR Indicates an error response

PRDGIVE Give socket reply response

Starting and Canceling LISTEN Requests
When a task wants to listen for a connect from a specific host, it posts a PRDADD request to the PRD
task. To cancel an existing request, the calling task posts a PRDDEL request. The calling task also updates
PRDBLOK fields with the following information; the task then calls DMTPRDNQ to enqueue the PRDBLOK
to the PRD task:
PRDTYPE

PRDADD indicates an add request, or PRDDEL to cancel a request
PRDTCPID

The user ID of the TCP/IP virtual machine
PRDTASK

Task name of the calling task
PRDCLIEN

Client ID of the calling task; returned by the GETCLIENTID socket call.
PRDSOCKA

Socket addressing structure, which includes:

• Addressing family (AF_INET)
• TCP port number to listen on
• The IP address of the remote host for which the calling task is waiting to receive a connect request.

Receiving a Reply
After the request PRDBLOK has been posted, the PRD task issues SOCKET functions to allocate a socket
and bind the socket to the port specified by the calling task. It then starts a LISTEN call for a connect
request on that port for the remote IP address specified by the calling task.

When the LISTEN request successfully completes, the PRD task issues a GIVESOCKET request, using the
information (domain, user name, and subtask name) it received from the calling task. The PRD task then
posts the calling task's LPRDECB. It also updates the PRDTYPE field in the PRDBLOK to indicate the type
of response it received:

• If this is a PRDGIVE response, a matching connection has arrived for this task. The PRD task updates
the PRDCLIEN and PRDSOCKN fields in the PRDBLOK. The calling task can then use this information to
issue a TAKESOCKET socket call to accept the connection.

• If this is a PRDERR response, the PRDERRNO field in the PRDBLOK will contain a TCP/IP error number.
The error number is defined in the SOCKET macro and can be obtained by using the DSECT function
(see “SOCKET” on page 220 for the SOCKET macro layout).

PRD Task

Chapter 5. System Tasks 61

The calling task then calls DMTPRDDQ to receive the response from the PRD task. It then issues a
TAKESOCKET request to accept the connection.

The port redirector task will continue to listen for connect requests on the port for the task. If the PRD
task receives another request while the calling link driver task is in active state, it indicates that the
remote side of the link has gone down and is restarting. In this case, the calling link driver task was
unaware the connection had ended. When the calling link driver task issues the TAKESOCKET request, the
link will terminate and restart to establish a new connection.

Requests from a task remain queued by the port redirector task until the task posts a delete request
or terminates. The PRD task periodically checks for requests for tasks that have ended. A request also
remains queued if an error is detected. The PRD task also periodically retries LISTEN calls for ports. Error
responses are posted to the requesting task only if the error number changes.

The TCPIP command can also be used to trace the port redirector task. Information that is captured by
tracing the task includes IUCV connect information and specifics on socket calls PRD issues.

Termination
The port redirector task is terminated when a SHUTDOWN command is issued or when the TCPIP STOP
command is issued. The task may be restarted by the TCPIP START task.

Auto-Answer Tasks
An auto-answer task (DUP) manages an auto-answer port. (The auto-answer task is also known as the
dial-up task because the remote caller dials in to RSCS.) Unlike other system tasks, many auto-answer
tasks can be present in the RSCS virtual machine. Auto-answer tasks are not attached when RSCS
initializes. They are attached when an ENABLE command is issued for a port that has been defined with
the NODIAL option. Auto-answer tasks are detached when RSCS ends.

The DUP task monitors ports for incoming phone calls. When RSCS receives a phone call, the caller sends
a sign-on record. Using this record, the DUP task identifies the caller’s link ID. If the requested link type
has been defined to RSCS, the DUP task transforms itself into the link driver task for the specified link.

Initialization
As Figure 40 on page 62 shows, the DUP task is attached when an ENABLE command is issued. The
REX task passes the ENABLE command element to DMTCMZ, which attaches the DUP task. The DUP task
performs all required processing.

 +--------+ +--------+ +--------+ +--------+
 | ENABLE +---->| DMTREX +---->| DMTCMZ +----->| DMTDUP |
 +--------+ +--------+ +--------+ +--------+

Figure 40. Attaching the Dial-Up Task

When the DUP task receives control, it executes the GCS ESTAE macro to establish the abend exit routine.
It also obtains required storage and initializes a work area for each dial-up task.

The DUP task then starts a channel program for the dial-up port. The channel program enables the
modem to receive an incoming phone call. When the modem detects a call, the channel program
completes and data can be transferred over the phone line.

Identifying Callers
When a call completes successfully (the modem detects a valid signal carrier from the other modem), the
DUP task uses binary synchronous (BSC) protocols to identify the caller. The DUP task issues ACK or NAK
control characters in response to any BSC information received from the modem, until a data buffer is
received (indicated by a STX control character). When the call is detected, the DUP task sets a 5 minute
timer and waits for a data buffer to arrive.

DUP Task

62 z/VM: 7.3 RSCS Networking Diagnosis

Processing Sign-On Records
The DUP task assumes that the data buffer it receives is a sign-on record that is recognized by a BSC
link driver (RJE, MRJE, or NJE). The beginning of the buffer is scanned to determine if it is an NJE or
MRJE format sign-on record or if it starts with the word “SIGNON”. If so, the target system name is
extracted from the sign-on record. The DUP task then looks for an appropriate type of inactive RSCS link
that connects to the calling node.

Invoking Links
The DUP task gives final processing of the sign-on record, and further processing on the BSC link, to the
appropriate link driver task. The DUP task updates the LINKTABL entry for the link so that the link appears
to be active. It then calls the GCS LINK macro to branch into the link driver code.

The DUP task regains control in the following situations:

• The link completes its processing
• The link is drained
• The remote node signs off
• The link detects an incorrect password
• No password is specified on the link parameters.

The DUP task ends and returns control to the REX task. DMTMANEX then must issue the ENABLE
command to enable the port to receive more calls.

Error Processing
The DUP task must process hardware errors and data that is not valid, including indications of possible
misuse of the port.

The DUP task follows bisynchronous protocol to process hardware errors. If the error is not severe, the
DUP task sends a NAK control character. This character requests that the calling node repeat its last
transmission. If a severe error occurs, the DUP task ends the phone connection; it may also request that
the REX task re-enable the port.

If it receives invalid data, the DUP task ends and requests the REX task to re-enable the port. Invalid data
may include: an incorrect sign-on buffer, unknown link ID, attempts to sign on to an active link, and failure
to send a sign-on record within 5 minutes of placing the call.

The DUP task also recognizes attempted misuse of a port. If a caller makes 5 consecutive attempts to
send an incorrect sign-on record to a port, the DUP task ends; it does not request that the REX task
re-enable that port.

Calling Exit Points
The following IBM-defined exit points let you modify or monitor the processing of the DUP task:
Exit 7

Sign-on time limit expiration
Exit 8

Unrecognizable data
Exit 9

Sign-on validation
Exit 10

Sign-on reject.

You can use these exit points to create accounting records to monitor the use of ports at your installation.
You can also use Exit 9 to specify additional restrictions for using auto-answer ports. See z/VM: RSCS
Networking Exit Customization for more information.

DUP Task

Chapter 5. System Tasks 63

DUP Task

64 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 6. Networking Link Drivers

This chapter describes the link driver tasks that enable RSCS to send and receive files, messages,
and commands from other nodes in the network. For more details on NJE, see z/OS: Network
Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa320988/$file/hasa600_v2r5.pdf).

Common Networking Structures
This section describes the RSCS structures and routines that are common to all networking link drivers
(NJE, SNANJE, and TCPNJE) and the LISTPROC link driver. The GATEWAY link driver may also use some of
these structures and routines.

Data Areas
The key data area for NJE protocol based link drivers is the Networking Dynamic Work Area (NDWA). The
NDWA, passed in register 8 to all the NJE modules, contains the following information:

• Pointer to chain of RIBs (Receiver Information Blocks)
• Pointer to chain of active and inactive TIBs (Transmitter Information Blocks)
• MSGBLOK, for issuing messages
• RDEVBLOK
• Flags, indicating the type of link driver and supported options
• Additional work areas.

Building NJE Headers
Networking link drivers call routines in module DMTNHE to build NJE headers for files sent on the link.
These NJE headers are built from information in TAG elements and TIBs. RSCS processes the following
types of NJE headers:
Job header

Indicates the file’s origin and tentative destination
Data set header

Contains the destination and characteristics about the file
Job trailer

Ends the transmission.

Building the Job Header
DMTNHEJH builds job headers from information in the TAG element and TIB. The TIB also indicates if the
header is for a SYSIN or SYSOUT file.

The origin and destination fields in a SYSOUT job header are reversed (or swapped) of the fields used for
a SYSIN job header. Also, SYSIN streams from some MVS systems may not contain a data set header. If
present, the data set header will only contain a Record Characteristics Change Section (RCCS). RSCS does
not generate an RCCS section.

When the job header has been built, DMTNHE calls Exit 11. Exit 11 routines can add a user section to the
job header. See z/VM: RSCS Networking Exit Customization for more information.

Building the Data Set Header
DMTNHEDH builds data set headers for all SYSOUT files originating on the local node or processed by a
list processor on the local node. This data set header contains the following information:

Networking Structures

© Copyright IBM Corp. 1990, 2022 65

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

• General section
• RSCS section of the data set header, which includes:

– Origin user tag
– File name and file type of the file
– Version and release number of RSCS that created the header

• 3800 printer characteristics section (if applicable)
• Data stream characteristics section (if applicable).

The TAGSCAN routine in DMTNHE updates fields in the data set header, based on options specified on the
origin user tag. When the data set header is built, DMTNHE calls any Exit 12 routines that can add user
sections to the header. See z/VM: RSCS Networking Exit Customization for more information.

Building the Job Trailer
RSCS calls DMTNHEJT to build a job trailer, which identifies the end of the file transmission. It then calls
Exit 13 routines, which can add user sections to the job trailer.

Receiving NJE Headers
When a networking link receives a file, it calls routines in DMTNHD to process the NJE headers associated
with the file.

Reconstructing Headers
If a file’s NJE header is larger than 256 bytes, the system that sends the file segments the header. When
RSCS receives the file, it must reconstruct the NJE header before it can process the file.

DMTNHDHR collects the segments that make up an individual NJE header. As it receives the header
segments, DMTNHDHR determines if any segmentation errors have occurred. When it receives all
sections of the header, DMTNHDHR tells the calling link driver that the header is complete. It also
indicates the type of header it received. The RIB contains a pointer to the data area that contains the NJE
header. The calling routine must then pass the complete header to the appropriate processing routines in
DMTNHD, which are described in the following sections.

Receiving the Job Header
DMTNHDJH scans information in the reconstructed job header and places it in a TAG element provided by
the calling link driver task. Only the information that RSCS needs to process the file is kept accessible in
the TAG element. If RSCS is processing a store-and-forward file and VAFP=NO is specified for the link, the
complete job header information is written to spool using CCW NOP opcodes. If VAFP=NO is not specified,
the information is written to spool using a VAFP device.

Before updating the TAG element with information from the received job header, DMTNHD calls Exit
14. Exit 14 routines can alter information in the job header, record information in the TAGUSER field,
or reject the file. Any changes made to the job header at Exit 14 can affect values in the eventual TAG
element. After updating the TAG element, DMTNHD calls Exit 41. Exit 41 routines can alter information
in the TAG element after RSCS has extracted the job header information. See z/VM: RSCS Networking Exit
Customization for more information about Exit 14 or Exit 41.

Receiving Data Set Headers
DMTNHDSH scans information from the reconstructed data set header and updates the TAG element
provided by the calling link driver task. This is the same TAG element that was initialized by DMTNHDJH.
However, information in the data set header may override the information in the job header (for example,
the destination node and user ID).

Networking Structures

66 z/VM: 7.3 RSCS Networking Diagnosis

Before updating the TAG element with information from the received data set header, DMTNHDSH calls
Exit 15. Exit 15 routines can alter information in the data set header, record information in TAGUSER
field, or reject the file. Any updates made to the data set header in Exit 15 can affect values in the
TAG element RSCS creates to represent the file. After updating the TAG element, DMTNHD calls Exit 42.
Exit 42 routines can alter information in the TAG element after RSCS has extracted the data set header
information. See z/VM: RSCS Networking Exit Customization for more information about Exit 15 or Exit 42.

Multiple Data Set Headers
For LISTPROC-type links, RSCS may combine store-and-forward data sets from several files into one file.
This may occur if the data sets are sent on the same link and if they specify the same device type.

RSCS uses different criteria for combining data sets for files that are sent to a user on the local node
or a printer attached to the local RSCS virtual machine. RSCS only combines these data sets if each file
specifies the same node ID, user ID, class, copy count, translation tables, form name, and external writer
name.

Receiving the Job Trailer
DMTNHDJT uses the information from the reconstructed job trailer to update the TAG element provided
by the calling link driver task. This is the TAG element that was initialized by DMTNHDJH and DMTNHDSH.

Before updating the TAG element with information from the received job trailer, DMTNHD calls Exit 16.
Exit 16 routines can alter information in the job trailer, record information in TAGUSER, or reject the file.
Any updates made to the job trailer by an Exit 16 routine can affect the values in the TAG element RSCS
creates to represent the file. After updating the TAG element, DMTNHD calls Exit 43. Exit 43 routines can
alter information in the TAG element after RSCS has extracted the job trailer information. See z/VM: RSCS
Networking Exit Customization for more information about Exit 16 or Exit 43.

Receiving and Transmitting NMRs
DMTNHD also contains routines that the networking link drivers use to send and receive nodal message
records (NMRs).

RSCS calls DMTNHDMR to receive NMRs from remote nodes. DMTNHDMR translates the NMR into the
appropriate Type L3 element for RSCS. For store-and-forward elements, any non-RSCS fields in the NMR
are retained. DMTNHDMR then calls DMTRGX to process the resulting command element.

Networking link driver tasks call DMTNHDMT to send a message or command element to a remote node.
DMTNHDMT then converts the Type L3 element into the appropriate NMR format.

General Purpose Routines
DMTNUS contains routines that networking link drivers use to process NJE records.

Compressing Records
DMTNUSCP compresses records presented in intermediate buffers (called TANKs) into the buffer
provided by the calling link driver task. DMTNUSCP uses string control bytes (SCBs) to compress the
data. SCBs can perform the following functions:

• Compress repeated characters (up to 63 at a time)
• Compress repeated blanks (up to 63 at a time)
• Repeat data as it appears (up to 63 at a time).

DMTNUSCP uses minimum compression when processing files sent on CTC, 3088 (BSC), ESCON®,
FICON®, and TCPNJE links. It uses maximum compression for all other types of networking links. You
can use the COMPRESS link operational parameter to change the default value for the NJE-type, SNANJE-
type, and TCPNJE-type links. See z/VM: RSCS Networking Operation and Use for more information.

Networking Structures

Chapter 6. Networking Link Drivers 67

Decompressing Records
DMTNUSDC decompresses a record from the buffer, pointed to by the calling networking link driver,
and places the result in a TANK. DMTNUSDC interprets all SCBs that were used by the remote
system to compress the headers or records. If decompression errors occur, DMTNUSDC also passes
an appropriate return code to the calling link driver. The link driver then issues a message to indicate that
a decompression error has occurred.

Creating Coded NOPs
When a networking link driver receives a store-and-forward file, it calls DMTNUSCN. If the system option
VAFP=NO was specified, this routine creates NOP records for the file’s NJE header and any other records
that RSCS may not be able to write to spool. DMTNUSCN then segments the records, if necessary, and
writes them into a spool file that is created for the file. The NOPs contain information that enable RSCS to
reconstruct the records when it sends the file to the next node.

If VAFP=YES was specified for the system option, the records are written to the spool device using the
SRCB as the CCW opcode.

Creating NJE Headers from NOPs
DMTNUSDN reconstructs NJE headers and file records from NOP records. Before sending a file to its next
node, networking link drivers call DMTNUSDN to reconstruct the records as they are read from spool.

Initializing Storage
When an NJE link driver initializes, it calls DMTNCRIN to initialize storage and various data fields. These
areas and fields include:

• RIBs and TIBs
• TANKs
• NDWA fields
• MSGBLOK fields.

DMTNCRIN also calls DMTAXMRQ to make an OPENINTA request. This request initializes the transmission
algorithm specified for the link. When the link driver activates, DMTAXMRQ also reorders the files on the
link queues.

Processing Sign-on Records
DMTNCRSG processes and verifies the sign-on records received from remote nodes. Because the
buffer size is determined through the sign-on records, DMTNCRSG also obtains storage for TP buffers.
Networking link drivers use two types of sign-on records. I records describe the features supported by the
local RSCS virtual machine. J records are in response to an I (initial sign-on) record and describe to the
remote node the features supported by RSCS on the local node.

Processing Commands
When the command arrival ECB is posted in a networking link’s LINKTABL entry, the link driver task calls
DMTNCRCD. This routine calls DMTCOMDQ to dequeue the command element. The link driver can process
the following commands: DRAIN, FLUSH, FREE, HOLD, START, and TRACE. DMTNCR contains additional
routines to process each command.

Accounting
DMTNCR also contains routines that monitor accounting information on the NJE-type links.

DMTNCRTC counts the number of transactions performed on the link. These transactions include each
I/O, VTAM, or TCP/IP socket requests performed by the link driver task. DMTNCREC counts I/O errors

Networking Structures

68 z/VM: 7.3 RSCS Networking Diagnosis

(excluding VTAM errors) on the link. DMTNCRTO counts the number of time outs on a link. However, it
does not count the time outs that occur when no data is sent on session drivers during idle periods.

Transmitting Buffers
The link driver tasks (DMTLIS, DMTNET, DMTSNE, and DMTTNE) call DMTNTR when they need to send
data in an available buffer.

Managing Output Buffers
Networking link driver tasks use two types of buffers to send data. Large buffers contain message and
file data. Smaller buffers contain control characters and are also used as null buffers. If the mixed record
control byte (RCB) feature is used, the control characters are sent in the large buffers. In this case, the
small buffers only are only used on the links as null buffers.

When a networking link driver task calls DMTNTR, it obtains the first buffer from a queue of large, free
buffers. If the mixed RCB feature is used, DMTNTR moves the data from any queued small buffers to the
top of the large buffer. It then frees the small buffers for use as a null buffer. If needed, DMTNTR also
places a receiver online flow in the buffer.

Processing Message Streams
If messages are queued to the link driver, DMTNTR calls DMTCOMDQ to obtain a message element.
DMTNTR calls DMTNHDMT, which formats the element into an NMR, and attempts to place the NMR into
the buffer. If the mixed RCB feature is not in use and the MSGSKIP parameter is specified for the link,
DMTNTR may place the NMR into a special buffer reserved for messages. This buffer is not sent until it is
full or until a certain number of buffers have been filled with file data. DMTNTR repeats this process until
no more message elements are available or until the buffer is full.

Dispatching File Streams
When all other data is placed into the buffer (with mixed RCBs) or if no other data is available, DMTNTR
determines the next transmission stream it will process. It first dispatches any inactive streams for which
files are available. DMTNTR places each TIB, which represent each new file, on the active TIB chain
according to the buffer space needed to send the file. DMTNTR then compares the remaining buffer space
needed to send all currently active files. When a stream is dispatched, DMTNTR ensures that the other
streams that contain active files are credited. This ensures that large files are also transmitted efficiently.

Processing Streams
When DMTNTR selects a transmission stream to dispatch, it places as much file data as possible into the
buffer. DMTNTR calls DMTRDREP to read each record of the file. If the file does not have NJE headers,
DMTNTR also calls DMTNHE to build the necessary header records to accompany the file.

If the file contains a distribution list and is being processed on a LISTPROC-type link, DMTNTR calls
DMTLCR and DMTNHE to convert each list entry onto a data set header. For store-and-forward files,
DMTNTR calls DMTNUS to reassemble any NJE header, spanned, or other stored records from NOP spool
records.

If a record contains record segments that are longer that 256 bytes, DMTNTR must perform additional
processing, called spanning. Each record is divided into segments containing a maximum of 254 bytes.
DMTNTR then sends these segments with spanned record indicators in the SRCB.

If a networking link driver receives a receiver cancel or negative permission response from the remote
node, DMTNTR processes the file and associated TIBs appropriately.

Receiving Buffers
DMTNRV unpacks the buffers received from the remote node. It is called after any I/O, VTAM READ, or
SOCKET RECEIVE requests complete on the link driver. The list processor task also calls DMTNRV to
empty buffers that were previously filled by DMTNTR.

Networking Structures

Chapter 6. Networking Link Drivers 69

When it starts to process a buffer (or when it detects an RCB change with the mixed RCB support),
DMTNRV determines the RIB associated with the data in the buffer. DMTNRV then passes the address of
the RIB and the data to an appropriate routine that processes the specific type of data.

Managing Input Buffers
DMTNRV removes filled input buffers from the input buffer queue and processes all the data in them. As
each buffer is emptied, DMTNRV places it on the free receive buffer queue.

Processing Message Streams
When processing message streams, DMTNRV calls DMTNUS to obtain each NMR from the buffer. DMTNRV
calls DMTNHDMR to format the NMR into a Type L3 element, mapped by CMNDAREA. It then calls
DMTRGXEP to route the element to its destination.

Processing Control Records
DMTNRV calls DMTNUSDC to obtain each RCB from the buffer. It then identifies the type of control record
it receives and processes it accordingly:

RCB Type Meaning Action

X'90' RQT A free RIB is selected or generated and associated with the stream.
An answer response is built in a small buffer.

X'A0' PERMOK The correct TIB is found and its wait bits are cleared.

X'B0' NEGP The correct TIB is found, its rejection bits are set, and any wait bits
are cleared.

X'C0' FUNCOMP The correct TIB is found, its wait bits are cleared, and the completion
bits are set.

X'D0' RECVONL The correct TIB is found and its wait bits are cleared.

X'F0' GENCTL If the record is an I or J record, DMTNRV issues return code 8 to the
link driver task; the link is then deactivated.

Processing File Streams
DMTNRV calls DMTNUSDC to obtain each record segment from the buffer. DMTNRV passes the record
segments to DMTNHD, which reassembles them into the appropriate type of NJE headers. If the record is
not segmented, DMTNRV writes to each active device in the device chain.

SNA LU_T0 NJE Session Driver
DMTSNE is the primary module for the SNA LU_T0 SNANJE session driver. Its main responsibility is to set
up the SNA session that RSCS uses to send data on the link.

Initialization
During initialization, DMTSNE calls DMTNCR to set up the NDWA and the initial RIB and TIB areas needed
for the transmission streams. DMTSNE also validates the BIND image that is received in the LOGON or
SCIP exit for the SNA session. If the session driver is the primary LU and the BIND image contains errors,
it can attempt to correct the problems. See z/OS: Network Job Entry (NJE) Formats and Protocols (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf) for
more information. If the session driver is the secondary LU, it cannot correct the fields in the BIND image;
the SNA session then terminates.

SNANJE

70 z/VM: 7.3 RSCS Networking Diagnosis

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

After it validates the BIND image, DMTSNE issues VTAM OPNDST or OPNSEC requests to establish the
SNA session. The session drivers then exchange file mode (FM) SNA headers (the primary LU sends FM
headers first) and checks for positive responses.

At this point, the NJE primary is determined by the EBCDIC order of the node names. The node name that
is higher becomes the NJE primary. The primary side sends an I record, which is generated by DMTNCR.
The secondary side must receive this sign-on record. If it accepts the I record, the secondary sends a J
record.

Processing
DMTSNE uses two RPLs to communicate with VTAM. It uses the first to issue SEND macros when filled
buffers can be sent on the link. DMTSNE uses the second RPL to issue RECEIVE macros when it must
receive buffers from a remote node.

When it uses the SEND RPL, DMTSNE also uses two wait lists. The first wait list checks for files and
messages to send to the remote node. It may also check for link driver commands and the completion of
the RECEIVE RPL. If data is available to send, DMTSNE calls DMTNTR to fill the buffers.

DMTSNE uses the second wait list when all the send buffers are filled. It waits for VTAM to accept the
buffer by posting the completion ECB for the SEND RPL. DMTSNE then calls DMTNTR to fill the buffer with
more data.

Terminating the Link
DMTSNE terminates when the DRAIN or STOP command is issued for the session driver. It can also
terminate when the remote node requests to end the session. When acting as the primary LU, DMTSNE
calls the VTAM CLSDST macro to terminate the session. When it is the secondary LU, DMTSNE sends an
RSHUTD Request Unit (RU) request to the remote node.

If the session driver abends when it is the primary LU (for example, after a decompression error), DMTSNE
calls the VTAM CLSDST macro. If it abends while it is the secondary LU, DMTSNE issues the VTAM
TERMSESS macro. If VTAM ends the session, DMTSNE does not call the macros and returns control to
GCS.

BSC and CTC Link Driver
DMTNET is the primary module for the BSC and CTC (connections using either CTCA, 3088, ESCON, or
FICON hardware) link drivers. It also supports the hardware associated with these links. Unlike DMTSNE,
DMTNET performs error checking and recovery for the links.

Initialization
Initialization of DMTNET is similar to DMTSNE, except that it does not check for BIND requests. However,
it must determine the type of adapter for the link and the channel programs set up for the adapter.
DMTNET also calls DMTNCR to prepare the NDWA and the initial RIB and TIB areas needed for the
transmission streams.

Initial contact differs for BSC and CTC links; see z/OS: Network Job Entry (NJE) Formats
and Protocols (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/
hasa600_v2r5.pdf) for more information. The link driver initializes the adapter and attempts to send data
to the remote node. If the corresponding link on the remote node is already active, the send completes
and a response is received. The link driver then becomes the BSC and NJE primary and sends the I
sign-on record.

If the corresponding remote link is inactive, the link driver puts up a PREPARE (for BSC) or waits for
an ATTN interrupt (for CTCA). When the remote link sends data, the link driver sends the response and
becomes the secondary system. Primary and secondary mode can also be forced with an initialization
parameter.

NJE

Chapter 6. Networking Link Drivers 71

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

After contacting the remote node and determining the primary node, the primary node sends an I sign-on
record. DMTNET calls DMTNCRSG to evaluate the I record and convert it to the response J record. The
initial FCS and BCB values are set on the sign-on records.

DMTNET uses one main wait list and several others, which are used for error recovery situations and for
PREPARE mode. When its file or message ECB is posted, DMTNET calls DMTNTR to fill as many output
buffers as possible. It may have up to 6 output buffers. When I/O completes successfully (no I/O errors
and the BCB is correct), DMTNET calls DMTNRV to empty the buffer. It then schedules a new I/O request,
with the first available buffer in the output queue.

Error Processing
DMTNET processes the following type of recoverable and irrecoverable errors:

• BSC I/O adapter errors
• CTC I/O adapter errors
• BCB errors.

DMTNET processes recoverable errors by executing appropriate channel programs to synchronize the
adapter with the remote system. For BSC links, DMTNET sends a NAK character to indicate that the last
buffer was lost. For CTC links, the only recoverable error condition is getting buffered status. In this case,
the link is able to read the last buffer.

When processing unrecoverable errors, DMTNET sends the remote system notification about the error
(possible only with BCB errors) and disables the adapter. If it cannot notify the remote system about the
error, DMTNET terminates the link driver.

Preparing Protocols
If no files or messages are enqueued on the link and no incoming streams are active, DMTNET attempts
to enter prepare mode, if the feature was agreed on in the sign-on records. A special null buffer is set up
to request entry to prepare. If the other side agrees to prepare, it responds with a similar buffer. At this
point, the two sides have entered prepare mode. After 10 minutes, DMTNET checks the remote system to
determine if the connection is still valid.

Terminating the Link
When a BSC or CTC link terminates, DMTNET issues a return code. For unrecoverable errors or invalid
sign-on records, the return code indicates if the link should be restarted or auto-started.

TCPNJE Link Driver
DMTTNE is the primary module for the TCPNJE link driver. This link driver is a full NJE link driver and has
the same RSCS link features as other NJE links. However, for TCPNJE-type links, TCP/IP is used as the
data transport mechanism. After a connection has been established, the two nodes will use NJE CTCA
packets to communicate with each other.

Initialization
During initialization, DMTTNE calls DMTNCR to setup up the NDWA and the initial RIB and TIB areas
needed for transmission streams. The remote and local nodes establish communications with each other
by issuing TCP/IP socket CONNECT calls.

Identifying Unique Connections
In a network, RSCS may need to communicate with more than one NJE node. In this case, RSCS must
differentiate where each link driver is connected. For physical links, the subchannel address identifies
each unique connection. For TCP/IP sockets, however, the local and remote IP address and port numbers
uniquely identify the connection. Port numbers are global within the same IP address.

TCPNJE

72 z/VM: 7.3 RSCS Networking Diagnosis

Each TCPNJE link driver must listen on a specific port (which is defined to the other NJE node by the
RMTPORT parameter) and the IP address of the remote node must be defined to the link. The TCPNJE
link driver must also define a local port number (using the LCLPORT parameter); this port is used to listen
for CONNECT requests from the remote NJE node. If the local and remote NJE nodes are on different
systems, the default values for the RMTPORT and LCLPORT parameters can be used to define the links.
See z/VM: RSCS Networking Planning and Configuration for more information about other TCPNJE link
parameters.

For each TCPNJE-type link, one IUCV connection is used between RSCS and the TCP/IP virtual machine.

Processing
To start the connect process, a LISTEN request must be performed for a specific port. The LISTEN request
allows another node to attempt a connection. Either side of the connection (the local or remote node)
can attempt to connect to a port on the other node. To do so, the node issues a TCP/IP CONNECT socket
call. The other node then accepts the connect request with an ACCEPT socket call. The two nodes then
exchange control records followed by an exchange of I and J sign-on records. For more information about
establishing a TCP/IP NJE connection, see z/OS: Network Job Entry (NJE) Formats and Protocols (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf).

After this connection is established, the two nodes use NJE CTCA packets to communicate with each
other. Data transmission is asynchronous. That is, a TCP/IP RECEIVE socket call is always outstanding on
the link and a SEND request is issued whenever data can be transmitted. When a RECEIVE socket call is
issued, the quantity of data that is received may vary. For example, the link driver may receive one byte
of data or the entire length of the data. To account for the varying data length, DMTTNE calls deblocking
routines correctly assemble the data it receives.

Terminating the Link
DMTTNE terminates when a DRAIN or STOP command is issued for the link. It can also terminate when
the remote node requests to end the connection. When it terminates, it will issue a SOCKET CLOSE
function.

GATEWAY Link Driver
The GATEWAY link driver, part of the RSCS gateway programming interface, allows RSCS to exchange
NJE data with nodes that use other networking protocols. GATEWAY-type links can also be used to
exchange NJE data over nonstandard NJE paths, such as to tape or over a TCP/IP network. The gateway
programming interface is also made up of gateway service macros, supplied by RSCS, and gateway
programs, which each installation creates for any special purpose. The remote node to which the
GATEWAY-type link is connected must also supply code to communicate with the gateway program.

The GATEWAY link driver task, DMTGPI, does not provide a mainline routine for the GATEWAY-type link.
Rather, it contains routines, which correspond to the gateway service macros, that read and write data
and control the state of the interface. The gateway program accesses the DMTGPI routines by invoking
the gateway service macros (see Figure 41 on page 73).

Figure 41. Structure of GATEWAY Link Driver

GATEWAY

Chapter 6. Networking Link Drivers 73

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

Initialization
When it initializes, DMTGPI obtains all needed storage and processes all parameters specified for the
GATEWAY-type link. DMTGPI calls DMTNCRIN to prepare the NDWA, RIBs, and TIBs. Finally, the gateway
program is loaded into storage and invoked. When the gateway program returns, the GATEWAY link driver
task returns control to GCS.

Gateway Service Macros
Gateway programs access information from RSCS by invoking the gateway service macros. The macro
invocations correspond to various routines in DMTGPI.

NJEOPEN
A gateway program invokes the NJEOPEN macro when it wants to send or receive a file or set up an input
or output message stream. The type of NJEFILE determines the action that is taken and any errors are
reflected by a return code:

• For the input or output message stream, the message TIB or RIB is set up and associated with the
NJEFILE control block.

• For an input file, a free TIB is located and DMTAXMRQ is called (OPENIN request) to obtain an input file.
If one is available, it is associated with the TIB and NJEFILE control blocks, which are also associated
with each other.

• For an output file, a free RIB is located or built and associated with the NJEFILE control block.

NJECLOSE
The gateway program invokes NJECLOSE to complete sending or receiving a file or to release the input or
output message stream.

• For the input or output message stream, the message TIB or RIB is disassociated with the NJEFILE
control block and marked as inactive.

• For an input file, DMTAXMRQ is called (CLOSEIN request) to complete the reading of the file. If the
entire file has not been read, it is placed in the queue; otherwise, it is purged.

• For an output file, if the entire file has not been received, DMTAXMRQ is called (CLOSEOUT request) for
each open output spool file to purge the partial files. If the entire file was received, DMTAXMRQ is called
(CLOSEOUT request) to close and accept each output spool file.

NJEGET
Gateway programs invoke NJEGET to obtain another record for an open input stream.

• For the message stream, DMTCOMDQ is called to obtain a routing element. If none is available, a return
code is passed back. Otherwise, DMTNHDMT is called to format the element into an NMR, which is then
passed back.

• For a file stream, DMTNHE is called to build any necessary NJE headers, which are then passed back
to the gateway program with the appropriate SRCB and length. All data records are obtained by calls to
DMTRDREP and passed back with the appropriate SRCB and length.

NJEPUT
Gateway programs call NJEPUT to write a record to an open input stream. The type of NJEFILE
determines the action that is taken; any errors are reflected by a return code:

• For the message stream, DMTCOMDQ is called to obtain a routing element. If none is available, a return
code is passed back. Otherwise, DMTNHDMT is called to format the element to an NMR and that is
passed back.

GATEWAY

74 z/VM: 7.3 RSCS Networking Diagnosis

• For a file stream, DMTNHE is called to build any necessary headers, which are passed back to the
gateway program with the appropriate SRCB and length. All data records are obtained by calls to
DMTRDREP and passed back with the appropriate SRCB and length.

NJERJECT
Gateway programs call NJERJECT to indicate that it wants to stop receiving a file. The reason may be
indicated by an NJE reason code. DMTAXMRQ is called (CLOSEIN request) to close and hold the input
spool file or perform any other action that may be indicated. The NJEFILE and TIB control blocks are
disassociated.

NJEABORT
Gateway programs invoke NJEABORT to stop sending a file for any reason. The request is processed by
calling DMTAXMRQ (CLOSEOUT) to close and purge any open output spool files; the NJEFILE and RIB
control blocks are disassociated.

NJECONCT
Gateway programs invoke NJECONCT to notify RSCS that it is ready to process transactions. The link is
then marked as “connect”.

NJEDSCON
The gateway program calls NJEDSCON to notify RSCS that it is not ready to process any transactions. The
link is then marked “active”.

Terminating the Link
The gateway program indicates when the GATEWAY link driver task should terminate. DMTMANEX, the
end of task routine, processes any open spool files. DMTGPI does not perform any session clean up. When
the link terminates, it returns control to GCS.

GATEWAY

Chapter 6. Networking Link Drivers 75

GATEWAY

76 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 7. Printer Link Drivers

This chapter describes the RSCS printer link driver tasks. RSCS can communicate with 3270 information
display printers over SNA and non-SNA links.

3270P Printer Link Driver
DMTRPT is the primary module for the 3270 printer link driver task. DMTPCR formats individual records
into 3270 data stream format on behalf of DMTRPT. 3270P-type links send output spool files to 3270
printers attached by a 3271, 3272, 3274 or 3276 control unit. 3270P-type links also support Graphic
Data Display Manager (GDDM®) files that are sent to 3270-type printers.

DMTRPT performs the following functions between RSCS and the printer:

• Sends spool files to the remote printer
• Sends messages and responses to the remote printer
• Reads asynchronous Intelligent Printer Data Stream (IPDS) interrupts from the printer.

Initialization
The REX task attaches DMTRPT when a START command is issued for a 3270P-type link. DMTRPTEP is
the main entry point to the link driver task. Other routines in DMTRPT and DMTPCR initialize the link,
process START parameters, process the printer data, and stop the link.

After it is attached at DMTRPTEP, the PRTINIT routine initializes the link driver task. PRTINIT obtains
storage and initializes a chain of save areas and work areas (DWAs). It then identifies the ESTAE exit for
the task and initializes the ECB list. PRTINIT also defines the read modified CCWs and initializes the write
CCW.

Receiving and Sending Data
After PRTINIT completes its processing, it calls the PRTGO routine. PRTGO, the main processing routine,
monitors ECBs (LMSGECB, LCMDECB, LFILECB) to determine when work arrives for the link. If applicable
to the printer, PRTGO also checks for asynchronous interrupts that can occur while a file is being
processed.

When a message is enqueued on the link, PRTINIT calls the MSGPROC routine. MSGPROC calls
DMTCOMDQ to remove each message element from the link’s message queue. Any blanks in the message
text are removed by the COMPACT routine. MSGPROC then places each message in a buffer. When the
buffer is full or all messages have been processed, MSGPROC calls the LINEIO routine to send it to the
printer. Prefix information is added to each buffer before any data is inserted.

If the printer supports intelligent printer data stream (IPDS) data streams, DMTRPT indicates the
beginning of the file in the structured field. This ensures that the messages are not mistaken to be part of
any files that might be sent to the printer. When all messages are processed, the final buffer contains an
end of file marker. If the printer does not support IPDS, LINEIO only sends messages between the files
that are being processed. After all messages are processed, PRTGO regains control.

When a file arrives on the 3270P-type link, the AXSGET routine calls DMTAXMRQ to open the file. AXSGET
then returns control to PRTGO, which issues requests to receive the data from spool. The GETBLOCK
routine calls DMTRDREP to obtain each file record. The records are packaged into a buffer with the correct
prefix already set in the buffer. All buffers are processed in the 3270 data stream format.

When the file is sent to the printer, the AXSPURGE routine purges the file from the local node. PRTGO then
receives control and continues to monitor the ECB list.

3270P

© Copyright IBM Corp. 1990, 2022 77

When a command is issued for the 3270P-type link, as indicated by an ECB, PRTGO calls the CMDPROC
routine. CMDPROC processes the following link commands: BACKSPACE, DRAIN, FREE, FWDSPACE,
HOLD, READY, START, and TRACE.

Building Data Streams
When a file arrives on the link, the AXSGET routine calls DMTAXMRQ to open the file. AXSGET then returns
control to PROGO, which in turn calls DMTRDREP to get the next file record.

The GETBLOCK routine continues to call DMTRDREP until it obtains all records in the file. GETBLOCK
prepares the buffer that is sent to the printer and places the appropriate prefix in the buffer. GETBLOCK
calls DMTSEPHD and DMTSEPTR to build any required separator pages. Each record is placed in a
transmission buffer. When the buffer is filled, the records are compressed. GETBLOCK then calls the
LINEIO routine to send the buffer to the printer. DMTPCRTR formats the records into 3270 data stream
format.

I/O Processing
LINEIO is the device I/O processing routine for the 3270P-type link. LINEIO prepares the IOTABLE with
the channel program and device information and calls XECUTE to execute the I/O request. XECUTE then
calls DMTIOTST to execute the channel program on the device. DMTIOTGE returns any resulting I/O
interrupts to RSCS. Any interrupts or errors are then evaluated and a return code is passed to the link
driver. LINEIO might also attempt to retry an I/O request if some errors occur.

Terminating the Link
3270P-type links end when a DRAIN, STOP, or SHUTDOWN command is issued. The PRTTERM routine
processes all termination requests for the link. It also performs any special processing required for IPDS
mode. PRTGO calls PRTTERM when the LTERECB is posted. PRTTERM calls DMTLOG to close the I/O
transaction log; it then returns control and a return code to GCS.

TN3270E Printer Link Driver
DMTTPT is the primary module for the TN3270E printer link driver task. DMTPCR formats individual
records into 3270 data stream format on behalf of DMTTPT. TN3270E-type links send output spool
files to printers attached in a TCP/IP network with the capability to initiate a TN3270E session, such
as emulators, capable of supporting 3270 print streams. TN3270E-type links also support Graphic Data
Display Manager (GDDM) files that are sent to 3270-type printers.

DMTTPT is very similar in processing to DMTRPT, except the printer is attached within a TCP/IP network
rather than channel attached to the host. The main differences in processing are:

• The session must be initiated from the printer side rather than by RSCS. A TN3270E session must first
be established to the VM TCP/IP stack. Once the session is successfully established, VM TCP/IP will
create a printer logical device and attach it to RSCS. Once attached to RSCS, the TN3270E-type printer
link can be started. There are configuration steps that need to be performed in the VM TCP/IP stack;
see z/VM: RSCS Networking Planning and Configuration and z/VM: TCP/IP Planning and Customization
for details on configuration steps.

• During intialization, DMTTPT will ensure the printer is attached via TN3270E; otherwise the link will
terminate.

DMTTPT performs the following functions between VM and the printer:

• Sends spool files to the remote printer
• Sends messages and responses to the remote printer
• Reads asynchronous Intelligent Printer Data Stream (IPDS) interrupts from the printer.

TN3270E

78 z/VM: 7.3 RSCS Networking Diagnosis

Initialization
The REX task attaches DMTTPT when a START command is issued for a TN3270E-type link. DMTTPTEP
is the main entry point to the link driver task. Other routines in DMTTPT and DMTPCR initialize the link,
process START parameters, process the printer data, and stop the link.

After it is attached at DMTTPTEP, the PRTINIT routine initializes the link driver task. PRTINIT obtains
storage and initializes a chain of save areas and work areas (DWAs). It then identifies the ESTAE exit for
the task and initializes the ECB list. PRTINIT also defines the read modified CCWs and initializes the write
CCW. PRTINIT reads the device characteristics and ensures the printer is attached through the VM TCP/IP
stack as a TN3270E device.

Receiving and Sending Data
After PRTINIT completes its processing, it calls the PRTGO routine. PRTGO, the main processing routine,
monitors ECBs (LMSGECB, LCMDECB, LFILECB) to determine when work arrives for the link. If applicable
to the printer, PRTGO also checks for asynchronous interrupts that can occur while a file is being
processed.

When a message is enqueued on the link, PRTINIT calls the MSGPROC routine. MSGPROC calls
DMTCOMDQ to remove each message element from the link’s message queue. Any blanks in the message
text are removed by the COMPACT routine. MSGPROC then places each message in a buffer. When the
buffer is full or all messages have been processed, MSGPROC calls the LINEIO routine to send it to the
printer. Prefix information is added to each buffer before any data is inserted.

If the printer supports intelligent printer data stream (IPDS) data streams, DMTTPT indicates the
beginning of the file in the structured field. This ensures that the messages are not mistaken to be part of
any files that might be sent to the printer. When all messages are processed, the final buffer contains an
end of file marker. If the printer does not support IPDS, LINEIO only sends messages between the files
that are being processed. After all messages are processed, PRTGO regains control.

When a file arrives on the TN3270E-type link, the AXSGET routine calls DMTAXMRQ to open the file.
AXSGET then returns control to PRTGO, which issues requests to receive the data from spool. The
GETBLOCK routine calls DMTRDREP to obtain each file record. The records are packaged into a buffer with
the correct prefix already set in the buffer. All buffers are processed in the 3270 data stream format.

When the file is sent to the printer, the AXSPURGE routine purges the file from the local node. PRTGO then
receives control and continues to monitor the ECB list.

When a command is issued for the TN3270E-type link, as indicated by an ECB, PRTGO calls the CMDPROC
routine. CMDPROC processes the following link commands: BACKSPACE, DRAIN, FREE, FWDSPACE,
HOLD, READY, START, and TRACE.

Building Data Streams
When a file arrives on the link, the AXSGET routine calls DMTAXMRQ to open the file. AXSGET then returns
control to PROGO, which in turn calls DMTRDREP to get the next file record.

The GETBLOCK routine continues to call DMTRDREP until it obtains all records in the file. GETBLOCK
prepares the buffer that is sent to the printer and places the appropriate prefix in the buffer. GETBLOCK
calls DMTSEPHD and DMTSEPTR to build any required separator pages. Each record is placed in a
transmission buffer. When the buffer is filled, the records are compressed. GETBLOCK then calls the
LINEIO routine to send the buffer to the printer. DMTPCRTR formats the records into 3270 data stream
format.

I/O Processing
LINEIO is the device I/O processing routine for the TN3270E-type link. LINEIO prepares the IOTABLE
with the channel program and device information and calls XECUTE to execute the I/O request. XECUTE
then calls DMTIOTST to execute the channel program on the device. DMTIOTGE returns any resulting I/O
interrupts to RSCS. Any interrupts or errors are then evaluated and a return code is passed to the link
driver. LINEIO might also attempt to retry an I/O request if some errors occur.

TN3270E

Chapter 7. Printer Link Drivers 79

Terminating the Link
TN3270E-type links end when a DRAIN, STOP, or SHUTDOWN command is issued. The PRTTERM routine
processes all termination requests for the link. It also performs any special processing required for IPDS
mode. PRTGO calls PRTTERM when the LTERECB is posted. PRTTERM calls DMTLOG to close the I/O
transaction log; it then returns control and a return code to GCS.

SNA 3270 Printer Session Driver
DMTSPT and DMTPCR comprise the SNA3270P session driver task. SNA3270P-type links enable RSCS to
send output spool files to 3270 printers attached to VTAM by a 3271, 3272, 3274, or 3276 control unit.
DMTSPT provides this support for LU_T0, LU_T1 and LU_T3 type sessions.

The session driver, however, does not communicate directly with the 3270 device. The device is described
to VTAM by a logmode table. It is presented to RSCS in the BIND image during session initiation; see
“Establishing a Session” on page 55 for more information about SNA flows. The session driver uses
VTAM macros to communicate with the logical unit. These macros send data to the printer, determine the
success of that transmission, and the state of the session.

To notify the SCT task that an event has affected the state of the SNA session, VTAM schedules various
exit routines defined for RSCS in DMTVXT. These exit routines are defined to VTAM during initialization
of the RSCS/VTAM interface. VTAM can schedule the following exit routines for the SNA3270P session
driver:
LOGON

Scheduled because a SIMLOGON request was issued by the SNA control task, or because a command
was issued by the VTAM operator to begin a session.

NSEXIT
Scheduled to perform cleanup when the secondary logical unit abends or abruptly stops.

RELREQ
Scheduled when another VTAM application (RSCS, IMS™, or CICS®) issues a SIMLOGON request for
logical unit currently in session with this session driver.

LOSTERM
Driven when some error occurs on a session outside the control of each logical unit (for example, a
hardware problem in the VTAM path).

These exit routines communicate with the SNA3270P session driver by posting an ECB. The session driver
then performs the appropriate processing for the ECB. For more information on these and other VTAM exit
routines for the RSCS application, see “VTAM Exit Routines” on page 57.

Initialization
The SCT task attaches DMTSPT when a START command is issued for an SNA370P-type link, or if a VTAM
operator initiates a SIMLOGON. In each case, the VTAM LOGON exit is scheduled for the session driver.
The LOGON exit, DMTVXTLG, then attaches the session driver task, which receives control at entry point
DMTSPTEP.

When the session driver task receives control, it issues an OPNDST to begin the bind process. The BIND
image that the session driver passes to the secondary logical unit is not negotiable. The secondary LU
must indicate if it accepts this BIND image by replying with a positive or negative response. If the BIND
image is rejected, the session driver does not initialize. If it is accepted, the session driver task continues
to initialize and the PRTINIT routine receives control.

PRTINIT obtains and initializes storage for various work areas (DWAs). It also processes the START
command parameters, establishes the ESTAE exit, and initializes the ECB list. Start command parameters
are processed by calling DMTPAREP and DMTPCRIN.

PRTINIT then verifies the BIND image for the SNA session; it obtains this information from the CINIT RU
request. This request is generated when the SCT task issues the SIMLOGON macro to request the SNA

SNA3270P

80 z/VM: 7.3 RSCS Networking Diagnosis

session. The BIND image indicates the type of SNA session being requested and the requested buffer size
(RU). PRTINIT then issues a OPNDST request to start the SNA session between DMTSPT and the printer.

Receiving and Sending Data
When the OPNDST request completes, the PRTGO routine receives control. PRTGO, the main processing
routine, monitors ECBs to determine when work arrives for the link. PRTGO contains routines that process
spool files for the link. This routine also monitors VTAM requests for RSCS to release its session with the
printer for another VTAM application.

Receiving Data
The LRECECB indicates when the link has received data. The SCT task posts this ECB when the RECEIVE
request, which it issues when establishing the session, completes. When this ECB is posted, PRTGO calls
the RECPROC routine.

RECPROC issues a RECEIVE SPECIFIC macro to process the data from the printer. RECPROC accepts the
following types of data:

• Valid input commands, such as: RTR, LUSTAT, CANCEL or CHASE. RECPROC accepts this data from
LU_T0, LU_T1, and LU_T3 sessions.

• Responses to an IPDS selection received over an LU_T0, LU_T1, or LU_T3 session.
• PA1 or PA2 data received over an LU_T1 session.

If RECPROC receives any other types of data, it issues a negative response. After it receives all valid data,
RECPROC issues the RESETSR macro and returns control to PRTGO.

When messages are enqueued on the session driver, PRTGO calls the MSGPROC routine. MSGPROC calls
DMTCOMDQ to obtain a message element and places the element in a buffer. When a buffer is filled or
there are no more message elements on the queue, MSGPROC calls the SENDRU routine to send the
buffer to the printer. PRTGO then regains control.

When a file is enqueued on the link, the AXSGET routine calls DMTAXMRQ to open the file. PRTGO then
issues requests for the printer to receive this file. PRTGO also calls the GETBLOCK routine, which calls
DMTRDREP to obtain each record in the file. GETBLOCK places each record into a buffer (RU) with the
correct flags and indicators set in the RPL. To send the buffer to the printer, GETBLOCK calls the SENDRU
routine, which issues SEND macro with that RPL and its associated RU. When the file is sent to the printer,
the AXSPURGE routine purges it from the local node and returns control to PRTGO.

The CMDPROC routine processes each command that is enqueued on the SNA3270P-type link. The valid
commands for this link include: BACKSPACE, DRAIN, FLUSH, FREE, FWDSPACE, HOLD, READY, START,
and TRACE. Each time these commands are issued, the link’s command ECB is posted. When CMDPROC
has completed its processing, it returns control to PRTGO.

Building Data Streams
When a file arrives in the link, the AXSGET routine calls DMTAXMRQ to open the spool file. Control returns
to PRTGO, which then calls DMTRDREP to obtain a record in the file. This record becomes the TAG record
of the file. The GETBLOCK routine continues to call DMTRDREP until all records in the file are obtained.

GETBLOCK places any appropriate SNA headers in the buffer and prepares to send the buffer to
the remote node. GETBLOCK calls DMTSEPHD and DMTSEPTR to build any required separator pages.
Each record is placed in a transmission buffer; when the buffer is filled, the records are compressed.
GETBLOCK then calls SENDRU to send the file to VTAM. DMTPCRTR formats the records into 3270 data
stream format.

I/O Processing
VTAM performs all I/O processing for the SNA3270P-type link. The DMTSPT routines issue the RECEIVE
and SEND macros to interact with VTAM. Each routine also processes any return codes issued by these
macros. The SCT task and DMTVXT process any exit routines driven by VTAM.

SNA3270P

Chapter 7. Printer Link Drivers 81

Terminating the Link
SNA3270P-type links end when a DRAIN, FLUSH, STOP, or SHUTDOWN command is issued. The
PRTTERM routine processes all termination requests for SNA3270P-type links. It receives control from
PRTGO when the LTERECB or TERMECB is posted or when RSCS must release the SNA session. PRTTERM
issues the VTAM CLSDST macro to end the session or to end and release the session.

If RSCS must release the SNA session, the SNA3270P-type link remains active and waits to re-establish
communication with the session. If the session is to reactivate, DMTSPT issues the SIMLOGON request
and attempts a new OPNDST request; the SCT task does not issue this request. If the requests are
successful, PRTGO regains control and processing on the session driver continues.

When the session driver ends, PRTTERM calls DMTLOG to close the I/O transaction log; it then returns
control and a return code to GCS.

ASCII Printer and Plotter Link Driver
ASCII printer and plotter links allow RSCS to send data streams of ASCII characters and control
sequences to ASCII printers and plotters. These ASCII devices must be connected to the z/VM system
by an IBM 7171 ASCII Device Attachment Control Unit, 9370 ASCII Subsystem Controller, or equivalent
ASCII controller.

This link driver task is made up of routines and exits in DMTAPT and customer-supplied ASCII exit
routines. The APT task uses the following exits to provide ASCII functional support for printers. These exit
points are called at various points in the processing cycle of the driver.
INIT

Performs any required initialization
TAGEX

Processes TAG information
RECEIVE

Receives each spool file record
RESET

Resets the device after any logical end of a spool file
MSGEX

Translates messages into ASCII format
ATTNEX

Processes attention interrupts generated by the 7171 ASCII Device Attachment Control Unit or 9370
ASCII Subsystem Controller

TERM
Called just before the link driver terminates.

As Figure 42 on page 82 shows, each exit in DMTAPT corresponds to an ASCII printer or plotter exit
routine. These routines can customize the way the ASCII-type link driver communicates with a specific
ASCII device. These exit routines can modify or translate the input spool data. They can also add ASCII
control sequences based on the external characteristics of the spool file.

Figure 42. Structure of an ASCII-Type Link Driver

ASCII

82 z/VM: 7.3 RSCS Networking Diagnosis

All calls to exit routines follow standard OS conventions. ASCII exit routines must also follow these
conventions when returning control to DMTAPT. See z/VM: RSCS Networking Exit Customization for more
information about ASCII exit routines.

Initialization
The APT task is attached when a START command is issued for an ASCII-type link. The task can be
attached by the REX task or by the AST task, if the link is also identified as an auto-start link. DMTAPT
contains one entry point, DMTAPTEP. Other routines in the module perform various functions for the link
driver.

When the ASCII link driver task is attached, the PRTINIT routine initializes the DWA, ECB lists, CCWs,
and target addresses. It determines the line address for the ASCII-type link from information in the link’s
LINKTABL entry.

PRTINIT then calls the APTBLD routine to load any ASCII exit routines that were specified on the START
command of the ASCII-type link. The APTBLD routine calls DMTBPLLX to dynamically load each ASCII
exit routine.

When all ASCII exit routines have been loaded, the PRTINIT routine again receives control. It, in turn,
passes control to the INIT exit.

INIT
The initialization exit routine is called when RSCS enables the ASCII device. The link is logically switched
to the hardcopy device, reset, and set to “stand by” mode. On return from the exit routine, storage is
obtained for the output TP buffer. Message DMT141I is issued and the link driver waits for the link to
connect. When the link is connected, the DMT162I message is issued and the ASCII-type link can begin to
process files.

Receiving and Sending Data
The PRTGO routine in DMTAPT is the main control routine for the ASCII-type link driver. The routine first
checks various flags to determine if it must end, hold a file on the link, or determine if a file is currently
held. PRTGO then checks if any messages are enqueued on the link.

If no messages are enqueued, PRTGO calls the AXSGET routine to get a file. If no files are available,
PRTGO checks the link driver task’s ECB list to determine if it has received other requests (commands,
termination). If no ECBs are posted, PRTGO waits to receive some work.

If the AXSGET routine obtains a file, control passes to the PROGO routine. This routine determines if any
reader commands are pending. If so, it will process the commands before the file is processed.

After any reader commands are processed, the GETBLOCK routine is called to begin file processing. The
GETBLOCK routine performs all file processing. This routine calls the TAGEX exit to process the TAG
record for the current file.

TAGEX
The TAG processing exit is called when a new spool file is opened. The TAG processing routine receives
the file’s TAG element. It uses TAG fields, supplied by the file originator, to identify the file or control
the output. When the TAG processing routine completes its processing, the RECEIVE exit routine receives
control.

RECEIVE
The record processing exit is called for each logical output record received from the input spool file. The
exit routine can translate EBCDIC code into ASCII code or perform any other processing that might be
necessary for the specific ASCII device. When the exit routine processes enough records to fill a buffer,
GETBLOCK returns control to PRTGO. The PRTGO routine then calls LINEIO to send this filled buffer to the
printer.

ASCII

Chapter 7. Printer Link Drivers 83

If GETBLOCK finds an error or the end of the file is reached, it calls the RESETEOF routine. This routine, in
turn, calls the RESET exit.

RESET
The device reset routine is called when the end of file is reached or when a file is flushed, back-spaced,
or forward-spaced. This exit routine places characters, which reset the device to print the next file, into
the print line portion of the print line vector. The exit routine then passes control to PRTGO. When PRTGO
receives control, it calls the LINEIO routine to process the buffer or complete the file processing. If a
message element is enqueued on the ASCII-type link, PRTGO passes control to the MSGPROC routine.

MSGPROC calls DMTCOMDQ to remove each enqueued message. If a message processing exit routine has
not been specified, the ASCII-type link does not process the messages. If a message processing routine is
supplied, MSGPROC passes the message element to that routine.

MSGEX
The processing exit is called when a message destined to the ASCII device is enqueued on the ASCII-type
link. This exit routine translates the EBCDIC message into ASCII code; it can also suppress the message.
The exit routine is called once for each message enqueued on the link. When all messages are processed,
the message processing routine returns control to PRTGO.

Command Processing
When a command ECB for the APT task is posted, the CMDPROC routine processes the command. These
commands include: BACKSPACE, DRAIN, FLUSH, FREE, FWDSPACE, HOLD, READY, START, and TRACE.
When the command is processed, CMDPROC returns control to PRTGO.

Processing CP File Characteristics
RSCS supplies sample ASCII exit routines for use with different types of ASCII devices. These exit
routines respond to options specified on the CP TAG, SPOOL, and CLOSE commands. For more
information about the responses from these sample ASCII exit routines, see z/VM: RSCS Networking
Exit Customization.

Building Data Streams
AXSGET calls DMTAXMRQ to request to open a spool file. If there are no files enqueued for the ASCII-type
link, AXSGET receives a nonzero return code. AXSGET returns control to the PRTGO routine.

If a file is to be processed on the link, AXSGET initializes the necessary data and work areas. AXGET then
calls DMTRDROP to get the TAG record and other information about the file. AXSGET then passes control
to PROGO, which starts to process the file. PROGO calls DMTRDREP to get the first record of the file. Each
remaining file record is obtained by calls to the GETBLOCK routine.

GETBLOCK prepares the print buffer to be sent to the ASCII printer. It places the appropriate buffer prefix
into the buffer. If a separator page is required, DMTSEPHD is called to create the page.

GETBLOCK then calls DMTRDREP to obtain each record of the file. The file records are then placed into
the buffer. When the buffer is filled, the records are compressed. The PROGO routine then receives
control again and calls LINEIO to write the buffer.

When the end of the file is reached, GETBLOCK checks if a trailer page is needed. It then calls DMTSEPTR,
as necessary. When this processing completes, PROGO regains control.

I/O Processing
The LINEIO routine initially processes all line I/O requests. LINEIO prepares all control block information
and calls XECUTE, which then calls DMTIOTST. DMTIOTST then passes the I/O request to GCS. LINEIO
also performs I/O error verification and recovery needed for the requested write operation.

ASCII

84 z/VM: 7.3 RSCS Networking Diagnosis

If the ASCII control unit generates an attention interrupt during this processing, LINEIO calls the
AIDDECOD routine. AIDDECOD, in turn, passes control to the ATTNEX exit routine.

ATTNEX
The ATTN exit routine is called when the ASCII control unit generates an attention interrupt. An attention
interrupt is usually generated after RSCS sends each data buffer.

To obtain the Attention Identifier (AID) byte, RSCS performs a “3270 Read Modified” operation each time
an attention interrupt is generated (required by the 7171). Usually, a null AID (X'8') is returned. However,
if the ASCII device has a keyboard, the value of the AID might be changed by pressing an attention
generating key (ENTER, PF key, or PA). The ASCII exit routine can examine the AID byte and optionally
pass an RSCS command to the link driver for execution.

Terminating the Link
The PRTTERM routine processes all termination requests for the ASCII-type link. It receives control when
the link’s LTERECB is posted in the LINKTABL. PRTTERM then close the log and returns control and a
return code to GCS.

TCPASCII Printer and Plotter Link Driver
The TCPASCII link driver is similar to the ASCII print driver. However, TCPASCII-type links are used to
establish connections to ASCII printer or plotters that are attached to a terminal server in a TCP/IP
network. The transport media between RSCS and the printer is via TCP/IP socket connections.

This link driver task is made up of routines and exits in DMTTAP and customer-supplied ASCII exit
routines. The TAP task uses the following exits to provide ASCII functional support for printers. These exit
points are called at various points in the processing cycle of the driver.
INIT

Performs any required initialization
TAGEX

Processes TAG information
RECEIVE

Receives each spool file record
RESET

Resets the device after any logical end of a spool file
MSGEX

Translates messages into ASCII format
ATTNEX

Processes data received from the socket
TERM

Called just before the link driver terminates

As Figure 43 on page 86 shows, each exit in DMTTAP corresponds to an ASCII printer or plotter
exit routine. These routines can customize the way the TCPASCII-type link driver communicates with a
specific ASCII device. These exit routines can modify or translate the input spool data. They can also add
ASCII control sequences based on the external characteristics of the spool file.

TCPASCII

Chapter 7. Printer Link Drivers 85

Figure 43. Structure of a TCPASCII-Type Link Driver

All calls to exit routines follow standard OS conventions. Any ASCII exit routines associated with the
TCPASCII-type link must also follow these conventions when returning control to DMTTAP. See z/VM:
RSCS Networking Exit Customization for more information about ASCII exit routines.

Initialization
The TAP task is attached when a START command is issued for a TCPASCII-type link. The task can be
attached by the REX task or by the AST task if the link is also identified as an auto-start link. DMTTAP
contains one entry point, DMTTAPEP. Other routines in the module perform various functions for the link
driver.

When the TCPASCII link driver task is attached, the PRTINIT routine initializes the DWA, ECB lists, and
target addresses. PRTINIT then calls the TAPBLD routine to load any ASCII exit routines that were
specified on the START command for the TCPASCII-type link. The TAPBLD routine calls DMTBPLLX to
dynamically load each ASCII exit routine.

When all ASCII exit routines have been loaded, the PRTINIT routine again receives control. It, in turn,
passes control to the INIT exit.

INIT
The initialization exit routine is called when RSCS connects to the ASCII device. On return from the exit
routine, storage is obtained for the output TP buffer. Message DMT181I is issued and the link driver
waits for the SOCKET CONNECT to complete. When the connection is completed, message DMT182I
is issued and a SOCKET RECEIVE is set up; the RECVECB will be posted when the RECEIVE request
completes. If the SOCKET CONNECT fails due to a network problem or because the remote host rejected
the connection, DMTTAP will retry the connect.

Receiving and Sending Sata
The PRTGO routine in DMTTAP is the main control routine for the TCPASCII-type link driver. The routine
first checks various flags to determine if it must DRAIN the link, hold a file on the link, or determine if a file
is currently held. PRTGO then checks if any messages are enqueued on the link.

If no messages are enqueued, PRTGO calls the AXSGET routine to get a file. If no files are available,
PRTGO checks the link driver task's ECB list to determine if it has received other requests (commands,
termination). If no ECBs are posted, PRTGO waits to receive some work.

If the AXSGET routine obtains a file, control passes to the PROGO routine. This routine determines if any
reader commands are pending. If so, commands will be processed before the file is processed.

After any reader commands are processed, the GETBLOCK routine is called to begin file processing. The
GETBLOCK routine performs all file processing. This routine calls the TAGEX exit to process the TAG
record for the current file.

TAGEX
The TAG processing exit is called when a new spool file is opened. The TAG processing routine receives
the file's TAG element. It uses TAG fields, supplied by the file originator, to identify the file or control

TCPASCII

86 z/VM: 7.3 RSCS Networking Diagnosis

the output. When the TAG processing routine completes its processing, the RECEIVE exit routine receives
control.

RECEIVE
The record processing exit is called for each logical output record received from the input spool file. The
exit routine can translate EBCIDIC code into ASCII code or perform any other processing that might be
necessary for the specific ASCII device. When the exit routine processes enough records to fill a buffer,
GETBLOCK returns control to PRTGO. The PRTGO routine then calls SOCKIO to send this filled buffer to
the printer.

If GETBLOCK finds an error or the end of the file is reached, it calls the RESETEOF routine. This routine, in
turn, calls the RESET exit.

RESET
The device reset routine is called when the end of file is reached or when a file is flushed, back-spaced,
or forward-spaced. This exit routine places characters, which reset the device to print the next file, into
the print line portion of the print line vector. The exit routine then passes control to PRTGO. When PRTGO
receives control, it calls the SOCKIO routine to process the buffer or complete the file processing If
a message element is enqueued on the TCPASCII-type link, PRTGO passes control to the MSGPROC
routine.

MSGPROC calls DMTCOMDQ to remove each enqueued message. If a message processing exit routine
has not been specified, the TCPACII-type link does not process the messages. If a message processing
routine is supplied, MSGPROC passes the message element to that routine.

MSGEX
The processing exit is called when a message destined to the ASCII device is enqueued on the TCPASCII-
type link. This exit routine translates the EBCDIC message into ASCII code; it can also suppress the
message. The exit routine is called once for each message enqueued on the link. When all messages are
processed, the message processing routine returns control to PRTGO.

Command Processing
When a command ECB for the TAP task is posted, the CMDPROC routine processes the command. These
commands include: BACKSPACE, DRAIN, FLUSH, FREE, FWDSPACE, HOLD, READY, START, and TRACE.
When the command is processed, CMDPROC returns control to PRTGO.

Processing CP File Characteristics
RSCS supplies sample ASCII exit routines for use with different types of ASCII devices. These exit
routines respond to options specified on the CP TAG, SPOOL, and CLOSE commands. For more
information about the responses from these sample TCPASCII exit routines, see z/VM: RSCS Networking
Exit Customization.

Building Data Streams
AXSGET calls DMTAXMRQ to request to open a spool file. If there are no files enqueued for the TCPASCII-
type link, AXSGET receives a nonzero return code. AXSGET returns control to the PRTGO routine.

If a file is to be processed on the link, AXSGET initializes the necessary data and work areas. AXGET then
calls DMTRDROP to get the TAG record and other information about the file. AXSGET then passes control
to PROGO, which starts to process the file. PROGO calls DMTRDREP to get the first record of the file. Each
remaining file record is obtained by calls to the GETBLOCK routine.

GETBLOCK prepares the print buffer to be sent to the ASCII printer. It places the appropriate buffer prefix
into the buffer. If a separator page is required, DMTSEPHD is called to create the page.

TCPASCII

Chapter 7. Printer Link Drivers 87

GETBLOCK then calls DMTRDREP to obtain each record of the file. The file records are then placed into
the buffer. When the buffer is filled, the records are compressed. The PROGO routine then receives
control again and calls LINEIO to write the buffer.

When the end of the file is reached, GETBLOCK checks if a trailer page is needed. It then calls DMTSEPTR,
as necessary. When this processing completes, PROGO regains control.

Socket Processing
The SOCKIO routine performs the socket SEND and READ functions for the TCPASCII-type link. If the
RECVECB is posted, SOCKIO calls the RDDECOD routine which, in turn, calls the ATTNEX exit to receive
the data from the socket as it arrives.

ATTNEX
The ATTN exit routine is called when a socket RECEIVE function completes and RECVECB is posted for the
TCPASCII-type link. This exit routine can examine the data and optionally pass an RSCS command to the
link driver for execution. On return from the RDDECOD routine, a new socket RECEIVE call is issued.

Terminating the Link
The PRTTERM routine processes all termination requests for the TCPASCII-type link. It receives control
when the LTERECB is posted in the LINKTABL or when a DRAIN command is issued. This routine then
issues the SOCKET CLOSE and SOCKET TERMINATE functions. PRTTERM then calls DMTLOGCL to close
the trace log file, if one was active on the link. It then returns control and a return code to GCS.

Line Printer Daemon (LPD) Link Driver
The line printer daemon (LPD) link driver receives data streams from a TCP/IP LPR client in a TCP/IP
network for distribution to a destination within the RSCS network. LPD-type links act as gateway between
the TCP/IP network and NJE nodes in the RSCS network, and can be used as a VM based print router.

The LPD link driver is designed to meet TCP/IP RFC 1179. An LPD-type link processes (receives) one file
at a time. However, to receive multiple print streams, several LPD-type links can be started on a system
all listening for connect requests on the same port number. See z/VM: RSCS Networking Operation and Use
for further information on managing LPD links.

The link driver task is made up of routines and exits in DMTLPD and customer-supplied exit routines. The
LPD task uses the following exits to build specific data streams for placement into CP spool and to control
characteristics of the spool file, such as spool device type and destination of the file. For more information
about the LPD exits, see z/VM: RSCS Networking Exit Customization.
Initialization

Called when an LPD link driver is being initialized.
Print Command Processing

Called when the LPD link driver receives a print job command from an LPR client.
Data Processing

Called when data has been read from a TCP/IP LPR client by the LPD link driver.
End of File Processing

Called when a file has been completely read from a TCP/IP LPR client by the LPD link driver.
Control File Processing

Called for each line of a control file read from a TCP/IP LPR client by the LPD link driver.
Termination

Called when the LPD link driver is terminating.

LPD

88 z/VM: 7.3 RSCS Networking Diagnosis

Initialization
DMTLPD is attached when a START command is issued for an LPD-type link. The task can be attached by
the REX task. DMTLPD contains one entry point, DMTLPDEP.

The LPD link can also be attached by the AST task if the link is identified as an auto-start link. However, no
files should ever be queued to this link type because the link will never process them. The LPD link should
always be started via the START command and not left waiting for auto-start to start it.

When the LPD link driver task is attached, the PRTINIT routine initializes the DWA, ECB lists, and target
addresses. It then calls DMTPAREP to process any parameters.

PRTINIT then calls the LPDBLD routine to load any exit routines that were specified on the START
command of the LPD-type link. The LPDBLD routine calls DMTBPLLX to dynamically load each exit routine.
If a routine is not found or cannot be loaded, message DMT820E is issued and the link is terminated.

When all the exit routines have been loaded, the PRTINIT routine again receives control. It, in turn,
passes control to the initialization exit.

Initialization Exit
The initialization exit routine is called after the exits are loaded by the LPDBLD routine in PRTINIT. The
initialization exit is not passed any link parameters and therefore is not enabled to change TCP/IP-specific
information.

Sending and Receiving Data
The INITGO routine connects to the TCP/IP stack, then establishes a socket listen request to wait for
inbound connects from LPR clients.

The INITGO routine in DMTLPD is the main control routine for the LPD-type link driver. The routine first
checks various flags to determine if it must drain the link or process a command.

It then check various ECBs (command, termination, file) to see if it has work to do. If it does not, the
routine waits until work is received.

PRTGO issues socket read requests to receive commands and data from the LPR client. Exit routines are
called to process and manage policies for the control file commands and data received.

Control File Command Processing Exit
The Control File command processing exit is called for each record of the LPR control file received. The
exit routine will determine specific characteristics of the spool file based on the control file commands.
In addition, the exit will be responsible for sending positive and negative responses to the LPR client as
required by the protocol.

On exit from this routine, the print vector might contain ASCII data to be transmitted.

Data Processing Exit
The RDATAF routine in DMTLPD is called to read data sent from the LPR client. For each chunk of
data read, up to 1024 bytes, the data processing routine will be called to handle the data. The exit is
responsible for determining correct record boundaries for each line. The routine also carries out any
appropriate translation of the print data from ASCII to EBCDIC. It can translate, ignore, or add data to
the record. When the link driver regains control from this entry point, the print vector will contain either a
record of data to be spooled including the CCW opcode or a response message in ASCII to be sent back
to the LPR client. If it contains a record of data to be spooled, the PUTBLOCK routine is called to write the
data into spool.

PUTBLOCK will call DMTAXMRQ to open a spool file for processing on the first call, then call DMTUROEP to
write the data to spool.

LPD

Chapter 7. Printer Link Drivers 89

When all data has been received, the end of file processing exit is called. The JOBCLOSE routine is then
called to complete processing. JOBCLOSE will call the PUTCLOSE routine, which calls DMTUROFL to write
any remaining data to the spool file. JOBCLOSE then calls DMTAXMRQ to close the spool file, which will
then route the file for delivery. On error conditions, the PUTPURGE routine is called to close and purge the
spool file via a call to DMTAXMRQ.

End of File Processing Exit
This routine allows for additional information to be spooled for the print file and a response to be sent
back to the LPR client. It is called after all data is received on the socket. This could be before or after the
control file has been received, depending on the order the LPR client has sent the control and data files.

Terminating the Link
The PRTTERM routine processes all termination requests for the LPD-type link. It receives control when
a DRAIN or STOP is issued. It can also receive control if a serious TCP/IP error is detected by the link.
PRTTERM issues the SOCKET CLOSE and TERMINATE functions to close the TCP/IP socket interface for
the link. It then closes the trace log file and returns control to GCS.

Line Printer Remote (LPR) Link Driver
The line printer remote (LPR) link driver sends data streams to a TCP/IP line printer daemon for
distribution or printing in a TCP/IP network. LPR-type links act as a gateway between NJE nodes in
the RSCS network and the TCP/IP network. They do so by mapping NJE routes to LPR hosts and printer
queues.

The LPR link driver is designed to meet TCP/IP RFC 1179. An LPR-type link processes one file at a time.
However, to create multiple LPR streams, several LPR-type links can be started on a system and these
links can be defined as members of a ROUTE group. See z/VM: RSCS Networking Operation and Use for
more information about ROUTE groups.

The link driver task is made up of routines and exits in DMTLPR and customer-supplied exit routines. The
LPR task uses the following exits to build specific data streams for transmission and to control the remote
host and port to which the transmission is destined. For more information about the LPR exits, see z/VM:
RSCS Networking Exit Customization.
Initialization

Called when a LPR link driver is being initialized.
TAG Processing

Called when the LPR link driver opens a new spool file.
Record Processing

Called when a record is read from the input spool file for the LPR link driver.
End of File Processing

Called when a file as been completely read from the input spool file for the LPR link driver.
Control File Processing

Called when the LPR link driver needs a control file.
Termination

Called just before link driver termination.

Initialization
The LPR task is attached when a START command is issued for an LPR-type link. The task can be attached
by the REX task or by the AST task, if the link is identified as an auto-start link. DMTLPR contains one
entry point, DMTLPREP.

When the LPR link driver task is attached, the PRTINIT routine initializes the DWA, ECB lists, and target
addresses. It then calls DMTPAREP to process any parameters.

LPR

90 z/VM: 7.3 RSCS Networking Diagnosis

PRTINIT then calls the LPRBLD routine to load any exit routines that were specified on the START
command of the LPR-type link. The LPRBLD routine calls DMTBPLLX to dynamically load each exit routine.
If a routine is not found or cannot be loaded, message DMT820E is issued and the link is terminated.

When all the exit routines have been loaded, the PRTINIT routine again receives control. It, in turn,
passes control to the initialization exit.

Initialization Exit
The initialization exit routine is called after the exits are loaded by the LPRBLD routine in PRTINIT. The
INIT routine can change TCP/IP-specific information that was defined on the PARM statement of the
LPR-type link. The routine is passed an address pointer to the following areas that contain line printer
daemon information:

• Remote host IP address
• Remote host port
• Remote printer queue name
• Link driver flag fields, including the following:

PASS=
Specifies if RSCS perform 1 or 2 passes through the file

CTL1ST
Specifies if RSCS should send the control file before sending the data in the file

• Fully qualified host name
• User defined prefix string
• User defined suffix string
• User defined filter
• User defined translate table
• User defined separator page setting

Sending and Receiving Data
The PRTGO routine in DMTLPR is the main control routine for LPR-type link driver. The routine first checks
various flags to determine if it must drain the link, hold a file on the link, or determine if a file is currently
held on the link.

It then check various ECBs (command, termination, file) to see if it has work to do. If it does not, the
routine waits until is receives work.

PRTGO calls AXSGET to get a file to process. After it obtains a file, PRTGO calls PASSUSER to read any
user defined keywords from the spool file. PASSUSER will also check if the spool file form matches a form
entry defined by the LPRXFORM exits. Fields that will be passed to the exit routines will then be initialized.
The TAG exit routine is then called.

TAG Processing Exit
The TAG processing exit examines a file's TAG element. Based on a file's characteristics, the exit routine
can create header lines or separator pages. The exit routine inserts the characters that RSCS passes to
the TCP/IP line printer daemon for processing into the print record portion of the print record vector. This
exit can be called twice if RSCS performs two passes through the file. The LPR TAG processing exit is also
called. Using this exit, an exit routine can customize where individual files are printed in a TCP/IP network
by overriding the values specified on the PARM statement for the LPR-type link, by the user, or defined
within the LPRXFORM exit.

On exit from this routine, the print vector might contain ASCII or binary data to be transmitted.

If PASS=2 was specified, PROGO will call the PASS1 routine. This routine reads the entire file and calls
the receive and end of file exits, which count the number of bytes of data that will be sent. PROGO will

LPR

Chapter 7. Printer Link Drivers 91

then issue SOCKET functions to connect to the remote port on the host. If an error occurs, the file will be
requeued in hold status or a retry attempt will be made. PROGO then determines if there are any reader
commands pending; if commands are pending, they will be processed before the file is processed.

After any reader commands are processed, the GETBLOCK routine is called to begin file processing. The
GETBLOCK routine performs all file processing. This routine calls the Record processing exit for each
record in the current file.

Record Processing Exit
The record processing routine carries out any appropriate translation the print data from EBCDIC to ASCII
or binary. This entry is called for each record of the spool file. It can translate, ignore, or add data to the
record. When the link driver regains control from this entry point, the data from the print record moves
into the link driver's output buffer. When it is full, the DMTLPR link driver calls SOCKWRT, which performs
a SOCKET SEND function to send the buffer to the TCP/IP line printer daemon.

When the end of the file is reached, the RESETEOF routine is called; this routine, in turn, calls the end of
file processing exit.

End of File Processing Exit
This routine allows for additional information to be sent to the TCP/IP line printer daemon. It is
entered after the last spool file record has been processed. At this time, any specific device-dependant
information (for example, feed paper to the top of a new page) can be transmitted.

For all files sent on an LPR-type link, a control file is also sent. The control file exit routine is called once
for each file sent on the LPR-type link. Its processing depends on the settings of the CTL1ST and PASS
parameters.

Control File Processing Exit
If the CTL1ST and PASS=1 flags are set, the control file routine exit is called before any of the spool file is
read. If CTL1ST is in effect and PASS=2,the exit is called after the first pass and before the second pass
through the file. If neither CTL1ST nor PASS=1 is set, the exit routine is called after the entire data file has
been transmitted.

Terminating the Link
The PRTTERM routine processes all termination requests for the LPR-type link. It receives control when
a DRAIN or STOP is issued. It can also receive control if a serious TCP/IP error is detected by the link.
PRTTERM issues the SOCKET CLOSE and TERMINATE functions to close the TCP/IP socket interface for
the link. It then closes the trace log file and returns control to GCS.

LPR

92 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 8. Workstation Link Drivers

This chapter describes the processing of the RSCS workstation link driver tasks. RSCS can communicate
with nonintelligent and intelligent (programmable) workstations over SNA and non-SNA links.

RJE Workstation Link Driver
DMTNPT is the primary module for the RJE link driver task. An RJE-type link can emulate the following
types of remote job entry (RJE) workstations: 2770, 2780, 3770, or 3780. DMTNPT uses the RJE protocol
defined by each device to communicate with the workstation; communication can only occur in one
direction at a time.

DMTNPT allows the remote workstations to control the link. The remote devices do not bid for control of
the link, which may require intervention by remote operators to break any contention. When a workstation
no longer needs to send data on the link, DMTNPT may gain control of the link.

DMTNPT provides the following functions between the local node and remote workstation:

• Accesses guest virtual machines, such as VM Batch, which lets users process jobs without being on the
VM host.

• Gives a remote workstation access to any node in the RSCS network.
• Processes input data from a remote workstation as real card reader input for any guest virtual machine

running in z/VM.
• Sends print or punch data to the remote workstation.
• Receives commands and returns messages to a workstation’s printer.

Initialization
DMTNPT is attached when a START command is issued for an RJE-type link. The REX task calls DMTBPL
to attach DMTNPTEP, the main entry point for the RJE link driver task (see Figure 44 on page 93).

+-------+ +--------+ +--------+ +--------+ +--------+
| START +---->| DMTREX +---->| DMTCMY +---->| DMTBPL +---->| DMTNPT |
+-------+ +--------+ +--------+ +--------+ +--------+

Figure 44. Initializing the RJE Link Driver Task

DMTNPT routines initialize and process sign-on records for the link. The sign-on card identifies the type of
RJE device and the communications protocol for the connection.

If the BUFF, CMPR, LPRT, TRS, or TYPE parameters are specified and the PASS parameter is not specified
on the START command or LINK statement for the link, the workstation does not need to send a sign-on
card. In this case, the NPTLINK routine processes the options that define the correct configuration for the
workstation and enable communication over the RJE-type link.

Receiving and Sending Data
After the RJE-type link initializes and sign-on processing completes, DMTNPT begins its main processing
cycle. The NPTGET routine monitors an ECB list to determine the type of work to be processed. When an
ECB is posted, NPTGET calls an appropriate routine.

When messages are enqueued on the link, NPTGET calls the MSGPROC routine, which bids for control
of the link. If it gains control of the link, MSGPROC sends the message. If it is unsuccessful, MSGPROC
responds to any error conditions. After the message is processed, control returns to NPTGET. If no
messages are processed, DMTNPT can then process files. Messages are not sent when a file is processed;
they are only sent between files.

RJE

© Copyright IBM Corp. 1990, 2022 93

When a file is enqueued on an RJE-type link, the NPTSTART routine is called. NPTSTART then bids for
control of the link. When it receives control, NPTSTART calls the GETBLOCK routine. This routine, in turn,
calls DMTRDREP to obtain each record from the file. The records are placed into a transmission buffer,
which can be used for a single record or multiple records, depending on options specified on the sign-on
card. When full, the buffer may be compressed or defined as a transparent data buffer. When the buffer is
sent to the remote workstation, NPTGET again receives control.

If no files are enqueued on the link, the NPTDINIT routine gains control. If TPOLL=NO has been specified
on the link, the routine puts up a prepare read CCW. If TPOLL=YES is specified, the routine polls the
remote node. In this case, this routine interacts with the workstation after it completes three consecutive
read I/O operations that end with a sensed time out. This is immediately followed by an I/O operation that
exercises a PREPARE sequence to bid for control of the line. After acknowledgement, the link is reset to
control (free) state. This returns control of the link driver to NPTGET.

To send data to the RJE-type link, the workstation can bid for control of the link at any time. When this
occurs, DMTNPT suspends any output as soon as possible and gives control to the remote workstation.
DMTNPT then prepares to receive a data buffer from the workstation. DMTNPT processes each record in
the buffer as a card image. An ID card, which identifies the file’s destination, must be the first card in each
input file stream.

Building Data Streams
GETBLOCK calls the AXSGET routine, which calls DMTAXMRQ to open the file. If the file is opened
successfully, DMTNPT attempts to send the file. Once control of the line is acknowledged, subsequent
calls to GETBLOCK are performed. GETBLOCK calls DMTRDREP to get each data record until the end
of the file is reached. When the file is sent, DMTNPT sends an EOT request to the workstation to reset
control of the link.

I/O Processing
The LINEIO routine receives all I/O requests on the RJE-type link. Each routine that calls LINEIO must
provide the correct I/O (CCW) string for each request. LINEIO passes this I/O request to the XECUTE
routine, which calls GCS to process the I/O operation. GCS then returns an I/O interrupt to LINEIO, which
in turn calls DMTLOGEP to log these transactions.

Terminating the Link
The NPTTERM, LINEDIS1, LINEDIS2 and LINEDROP routines perform termination processing for RJE-
type links. The link may end when a STOP or DRAIN command is issued. The RJE-type link may also end
if it receives three consecutive incorrect sign-on requests from the remote workstation or if a severe I/O
error occurs.

These routines may quiesce all transactions on the link or immediately disable the link. The termination
may request an automatic restart of the link or may require operator intervention. When the link ends, the
remote workstation signs off from the connection. To resume communication, the RJE-type link and the
workstation must again exchange sign-on information.

MRJE Workstation Link Driver
DMTSML is the primary module for the multi-leaving RJE workstation (MRJE) link driver task. MRJE-type
links support two-way, alternate data traffic on a BSC communications link.

MRJE-type links can function in host or remote (workstation) mode. The function is determined by the
START command options specified for the link. In host mode, MRJE-type links support programmable
workstations, which must appear as a Job Entry Subsystem (JES2) programmable workstation
(HASPRB360). In remote mode, MRJE-type links emulate a workstation and can communicate with VS1
Remote Terminal Access Method (VS1 RTAM), JES3, or JES2 systems.

MRJE

94 z/VM: 7.3 RSCS Networking Diagnosis

Two MRJE-type links can also communicate with each other, if one is in host mode and the other
is in remote mode to JES2. However, RSCS does not consider this environment to be a peer-to-peer
connection.

Initialization
As Figure 45 on page 95 shows, DMTSML is attached when the REX task receives START command for an
MRJE-type link.

+-------+ +--------+ +--------+ +--------+ +--------+
| START +---->| DMTREX +---->| DMTCMY +---->| DMTBPL +---->| DMTSML |
+-------+ +--------+ +--------+ +--------+ +--------+

Figure 45. Initializing the MRJE Link Driver Task

DMTSML contains one entry point, DMTSMLEP. Routines in the module perform functions, such as
initialization and receiving and sending data. These routines are described in the following sections.

Host Mode
When an MJRE-type link is started in host mode, the SMLINIT routine starts the line I/O process. This
routine reads the sign-on card sent by the remote workstation. After the link is enabled, a 2 byte response
(STX ENQ) must be the first buffer sent by the remote node. If DMTSML receives any other response, it
ends the link. When it receives this response, DMTSML sends an acknowledgement (ACK0) to the remote
workstation. Before processing any additional data, DMTSML must read the next sign-on buffer from the
remote node.

Remote Mode
If the MRJE-type link is started in remote mode, DMTSML builds a sign-on card (logon for VS1 RTAM).
Before sending the sign-on card in a buffer, however, DMTSML sends the response STX ENQ to the host
node. The host must acknowledge the receipt of the buffer by sending a ACK0. The link driver does not
accept any other responses. When the correct responses are received, the sign-on process may start.

Receiving and Sending Data
DMTSML contains the following subroutines, which send and receive data on the MRJE-type link:
$JRTN1

Processes input buffers, received from a workstation, as punch data.
$PRTN1

Processes input buffers, received from a host node, and writes the records to a virtual printer.
$RRTN1

Reads spool files and ensures a maximum record size is maintained for the remote workstation. It
then calls $PUT to fill a transmission buffer with these records.

$WRTN1
Writes input messages to the RSCS operator, if the link is in remote mode; if in host mode, the routine
passes commands to the REX task for processing.

$CRTN1
Processes input buffers that contain a control record, which is indicated by record control byte (RCB)
F0.

$URTN1
Processes input buffers, received from a host, a virtual punch data.

Building Data Streams
The $RRTN1 routine processes spool files on the MRJE-type link. If the link is in host mode, files must be
in print or punch format. Print records are blocked to a length of 150-bytes; punch records are forced to

MRJE

Chapter 8. Workstation Link Drivers 95

80-byte lengths. $RRTN1 then calls $PUT to place the records in transmission buffers that are sent to the
remote node.

If the link is in remote (workstation) mode, the spool files must be in punch format. Workstations can only
send card images to the host node; no other types of files are processed.

$RRTN1 calls AXSGET to open the file and obtain a record. It then calls VMDEBLOK, which in turn calls
DMTRDREP to get each remaining record until the end of the file is reached.

I/O Processing
The COMSUP routine performs all I/O processing on the MRJE-type link. COMSUP is responsible for the
recovery and processing of TP buffers. It processes the I/O interrupts that result from each transaction
that occurs on the link and calls DMTLOGEP to log these transactions.

Terminating the Link
MRJE-type links end when a DRAIN, STOP, or SHUTDOWN command is issued. When the MRJE-link ends,
the DEOJ and EOJ routines attempt to quiesce the link or immediately end it. DEOJ calls EOJ for final
termination processing after it has attempted to quiesce the link; EOJ completes the termination. If EOJ is
called directly, the link will not disable and will not restart automatically.

SNARJE Workstation Session Driver
DMTSJE, the SNARJE session driver task, provides support for a subset of the SNA LU_T1 protocol for a
System 36 MRJE workstation. SNARJE-type links can send and receive input from remote nodes to the
workstation over the SNA LU_T1 session. SNARJE-type links can also give RSCS users access to guest
virtual machines, such as VM Batch. This lets RSCS users process jobs without being locally attached to
the local node.

DMTSJE provides the following functions between VM and remote sessions:

• Receives input data streams from the remote session and spools it for any guest virtual machine
running in z/VM

• Sends spool files to the remote device
• Receives commands and messages from the remote session
• Sends messages and responses to the remote session
• Allows a remote session to access any node in a network.

A SNARJE-type link does not communicate directly with the workstations; rather, it communicates with
VTAM, which controls the devices. VTAM first processes all input from the workstations. When it verifies
the data, VTAM passes the data to DMTSJE. VTAM also processes I/O interrupts for the workstations.
DMTSJE only processes return codes and information from VTAM, which indicates the state of the SNA
session.

When a SNARJE-type link establishes an SNA session, several VTAM exit routines are scheduled. These
exit routines, include: DFASY, LOGON, LOSTERM, NSEXIT, RELREQ, RESP, SCIP, and TPEND. DMTSJE
processes the DFASY exit. DMTVXT processes the other VTAM exits and posts an ECB in DMTSJE when an
exit is scheduled (see “VTAM Exit Routines” on page 57 for more information on VTAM exits).

Initialization
DMTSJE is the primary module for the SNARJE session driver task. Unlike RJE-type and MRJE-type links,
SNARJE-type links are attached by the SCT task when a NETWORK START command is issued. After the
SCT task completes its processing to establish a SNA session for the link (see “SNA Control Task” on page
55 for more information on the SNA Control Task), DMTSJE receives control from GCS.

SNARJE

96 z/VM: 7.3 RSCS Networking Diagnosis

DMTSJE contains one entry point, DMTSJEEP. Other DMTSJE routines initialize the link and perform other
processing. The SJEINIT routine obtains storage for save areas and work areas (DWA and secondary
DWA). It also processes the START command parameters, establishes the ESTAE exit (DMTSCTCU) for this
task, and initializes the ECB list.

SJEINIT then verifies fields in the BIND image for the SNA session. It obtains this information from the
CINIT RU request. This request is generated when the SCT task issues a SIMLOGON macro to request an
SNA session. If the BIND information is acceptable, SJEINIT issues an OPNDST response to start the SNA
session with the remote node.

Receiving and Sending Data
After SJEINIT completes initialization processing, the SJEGO routine receives control. SJEGO monitors a
list of ECBs to determine when work arrives for the session driver.

Receiving Data
The LRECECB ECB identifies when the session driver has received input data from the workstation. The
SCT task posts this ECB when the RECEIVE request, which it issues when establishing the session,
completes. When LRECECB is posted, the RECPROC routine receives control.

RECPROC then issues a RECEIVE SPECIFIC macro to process the input data. This data may consist of
commands, messages, or files. RECPROC calls the AXSPUT routine or DMTCOMNQ to send the data to
its appropriate destination. RECPROC also receives return codes and feedback information from VTAM. It
then issues messages, containing this information, to the RSCS console. After processing all input data,
RECPROC issues the RESETSR VTAM macro and returns control to SJEGO.

Sending Data
If a message is enqueued on the SNARJE-type link, its LMSGECB is posted. The MSGPROC routine
receives control and verifies the status of the SNA session. If appropriate, MSGPROC calls the SENDRU
routine to issue the SEND macro for the FM header.

MSGPROC then calls DMTCOMDQ to remove the message element from the message queue. Extra blanks
are then removed from the message text and additional SNA information is placed in the message buffer.
Finally, the SENDRU routine sends the message to the remote node. When all messages are processed,
control returns to SJEGO.

The AXSGET routine receives control when a file is enqueued on the SNARJE-type link. This routine issues
VTAM SEND macros to send the data to the remote workstation. It calls DMTRDREP to obtain each record
in the file. The records are then placed in a buffer (RU), with the correct flags and indicators set in the RPL.

When the end of the file is reached, the AXSPURGE routine is called to purge the file from the local node;
control then returns to SJEGO.

The CMDPROC routine processes each command that is enqueued to the SNAJRE session driver. Valid
commands for the SNARJE session driver include: BACKSPACE, DRAIN, FLUSH, FREE, FWDSPACE, HOLD,
READY, START, and TRACE. An ECB is posted for each command. When CMDPROC has completed its
processing, it returns control to SJEGO.

Building Data Streams
When a file arrives in the link, the AXSGET routine calls DMTAXMRQ to open the spool file. Control returns
to SJEGO, which then calls DMTRDREP to obtain a record in the file. This record becomes the TAG record
of the file. The GETBLOCK routine continues to call DMTRDREP until all records in the file are obtained.

GETBLOCK places any appropriate SNA headers in the buffer and prepares to send the buffer to
the remote node. For print files, GETBLOCK calls DMTSEPHD and DMTSEPTR to build any required
separator pages. Each record is placed in a transmission buffer; when the buffer is filled, the records are
compressed. GETBLOCK then calls SENDRU to sends the file to VTAM.

SNARJE

Chapter 8. Workstation Link Drivers 97

I/O Processing
VTAM performs all I/O processing on the SNARJE-type link. DMTSJE routines issue the RECEIVE and
SEND macros to interact with VTAM. Each routine also processes any return codes issued by these VTAM
macros. DMTSJEDF and DMTVXT process any exit routines driven by VTAM.

Terminating the Link
The SJETERM routine processes all termination requests for the SNARJE-type link. It receives control
from SJEGO when the LTERECB or TERMECB is posted for the session driver or when RSCS must release
the SNA session. SJETERM issues the VTAM CLSDST macro to end the session or to end and release the
session.

If RSCS must release the SNA session, the SNARJE-type link remains active and waits to re-establish
communication with the session. If the session is to reactivate, DMTSJE issues the SIMLOGON request
and attempts a new OPNDST request; the SCT task does not issue this request. If these requests are
successful, SJEGO regains control and processing on the session driver continues.

When the session driver ends, SJETERM calls DMTLOG to close the I/O transaction log. It then returns
control and a return code to GCS.

SNARJE

98 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 9. Special Purpose Link Drivers

This chapter describes the list processor and NOTIFY, UFT, and UFTD link driver tasks. Unlike the link
drivers described in the preceding chapters, these special link drivers do not interact with a specific peer.

List Processor
The list processor task processes distribution lists and converts them into NJE headers. The list processor
also separates files that contain multiple data set headers.

The list processor is defined by a LISTPROC-type link; its parameters are similar to those supported
for NJE-type, SNANJE-type, and TCPNJE-type links. The list processor task also calls many of the
common NJE routines used by the NJE, SNANJE, and TCPNJE link driver tasks; see “Common Networking
Structures” on page 65 for more information.

Initialization
DMTLIS is the primary module of the list processor task. The REX task attaches this task, when it receives
a START command for a LISTPROC-type link (see Figure 46 on page 99).

+-------+ +--------+ +--------+ +--------+ +--------+
| START +---->| DMTREX +---->| DMTCMY +---->| DMTBPL +---->| DMTLIS |
+-------+ +--------+ +--------+ +--------+ +--------+

Figure 46. Initializing the List Processor Task

Like all link drivers, DMTLIS specifies DMTMANDE as its ESTAE routine, initializes an NDWA, and calls
DMTPAREP to process its link parameters. DMTLIS also obtains storage from GCS for a buffer, which it
uses to send and receive data. DMTLIS then calls DMTNCR to initialize the NJE-related storage areas
(RIBs and TIBs). DMTNCR also calls DMTAXMRQ with a request to initialize the transmission algorithm
specified for the LISTPROC-type link.

Receiving and Sending Files
When a file is enqueued on the link, DMTLIS calls DMTNTRSB to fill a buffer with records from the file.
DMTLIS then calls DMTNRVEB to empty this buffer. This buffer is continually filled and emptied by calls
to DMTNTRSB and DMTNRVEB, respectively. If the file contains an unprocessed distribution list, DMTNTR
creates a data set header for each entry in the distribution list.

Using Common Networking Routines
DMTLIS calls DMTNTRSB to fill a buffer to be transmitted. As part of its processing, DMTNTRSB
determines if it is being called from a list processor task. It then identifies the files it is reading from
spool by one of the following categories:

• Files originating on the local node or containing one data set header (these files contain a distribution
list).

• Files containing overflow data sets from prior distribution list processing
• Files containing multiple data set headers (these files need to be further separated).

If the file does not contain multiple data set headers, DMTLIS assumes that it contains a distribution list.
If these files do not contain a distribution list, RSCS may purge the input file. DMTLIS then calls DMTNTR
to convert each entry in the distribution list into a data set header before placing it in the transmit buffer
(see Figure 47 on page 100). When processing a SYSOUT file from a remote NJE node, DMTLIS bases the
new data set header on the original data set header that accompanied the file.

LISTPROC

© Copyright IBM Corp. 1990, 2022 99

 Input: Output:

 +-------------+ +---------------------------------+
NODEA USERA		Job Header (common)
NODEB USERB		Data Set Header for NODEA USERA
		Data Set Header for NODEB USERB
Common Data		Common Data
 +-------------+ | Job Trailer (common) |
 +---------------------------------+

Figure 47. Simple Distribution List Processed by DMTNTRSB

If the distribution record begins with a number, the specified number of records that follow the
distribution record is called the private section. The data is this section is only sent to the destination
specified in the record (see Figure 48 on page 100).

 Input: Output:

 +------------------+ +---------------------------------+
2 NODEA USERA		Job Header (common)
Private Data A		Data Set Header for NODEA USERA
3 NODEB USERB		Private Data A (2 records)
Private Data B		Data Set Header for NODEB USERB
NODEC USERC		Private Data B (3 records)
		Data Set Header for NODEA USERA
Common Data		Data Set Header for NODEB USERB
 +------------------+ | Data Set Header for NODEC USERC |
 | Common Data |
 | Job Trailer (common) |
 +---------------------------------+

Figure 48. Distribution List with Private Sections

DMTLIS may call DMTNTRSB several time to process the distribution list and transform its entries into
data set headers. Because the data set headers for NODEA (USERA) and NODEB (USERB) in Figure 48 on
page 100 must be repeated before the common data section, copies of the data set headers are kept in a
chain anchored in the TIB for the stream on which the file is being sent.

If a file already contains multiple data set headers, it is processed as if it were being sent on an NJE-type,
SNANJE-type, or TCPNJE-type link. In this case, however, DMTLIS separates more copies of the file as
part of fanout processing.

The number of unit record output devices DMTLIS obtains for each input stream determines the number
of copies it can separate from each file. This number is set for all RSCS links by the MAXURO keyword
on the OPTION statement. The number can be overridden for an individual link by the MAXURO option
in a link’s PARM statement. See z/VM: RSCS Networking Planning and Configuration for more information
about these statements.

Using List Processor Routines
When processing list processor files, DMTNTR and DMTNRV call DMTLCR to perform the following
functions:

• Validate the syntax of distribution record parameters and determining if a personal section follows.
• Copy the existing data set header and, as needed, reformatting it for use as a model for other data set

headers.
• Prepare the model data set header to receive information from the distribution list record.
• Determine if a data set should be sent based on the MAXDSH setting for the link.

The MAXDSH value for a link specifies the maximum number of distinct data sets that RSCS can
transmit in one file to a peer node. This value is not needed for processing on a LISTPROC-type link.
However, when specified on NJE-type, SNANJE-type, and TCPNJE-type links, it can prevent files, which
were created with the help of the list processor, from flooding a node that has limited capabilities for
processing many data set headers in a file.

LISTPROC

100 z/VM: 7.3 RSCS Networking Diagnosis

Terminating the Link
The list processor task ends when a STOP or DRAIN command is issued for the LISTPROC-type link. It can
also end if necessary storage and UR devices are unavailable.

NOTIFY Link Driver
The NOTIFY link driver enables RSCS to hold files sent to unknown nodes or user ID and send a note
to the originator of the file. RSCS routes all files with unknown destination to a NOTIFY-type link. The
NOTIFY link driver task can then send a note to any network user. A NOTIFY-type link can also be used for
files that are undeliverable by an LPR-type or UFT-type link.

Initialization
When a START command is issued for a NOTIFY-type link, the REX task attaches the NOTIFY link driver
task at DMTNOTEP. After processing its parameters, DMTNOT attempts to read a template file for the note
from any disk accessible to RSCS. The default file name is the link ID of the NOTIFY-type link; this can be
changed with a link parameter. The file type must be TEMPLATE. If DMTNOT cannot find the required file,
the link driver issues an error message and deactivates.

+-------+ +--------+ +--------+ +--------+ +--------+
| START +---->| DMTREX +---->| DMTCMY +---->| DMTBPL +---->| DMTNOT |
+-------+ +--------+ +--------+ +--------+ +--------+

Figure 49. Initializing the NOTIFY Link Driver

DMTNOT reads records from the note template file into storage and initially parses each record. This
enables DMTNOT to segment each record into text and variables, which are filled in when the note
is composed. Each variable begins with an ampersand (&) and ends with a period (.). See z/VM:
RSCS Networking Planning and Configuration for more information. A NOTSEG element represents each
segment of text and variable information; NOTSEGs are kept in a simple chain. A NOTSEG that represents
the last segment of a record in the template contains an end-of-line marker.

DMTNOT then determines if the purge period has expired for any files since the link driver was last
started. It also sets a time to ensure that the NOTIFY driver is notified of the next midnight. When all
required processing is complete, the NOTIFY link driver waits for the arrival of new files, commands,
midnight, or a termination request.

Generating a Note
When a new file is enqueued on a NOTIFY-type link, the AXM task posts DMTNOT’s file arrival ECB.
DMTNOT then calls DMTAXMRQ to request to open the input file. On this call, DMTNOT obtains the
address of the TAG element that represents the new file.

DMTNOT then calls any Exit 22 routines, which can perform the following functions:

• Suppress the note and purge the file
• Suppress the note and keep the file on the link
• Customize each record in the note (call Exit 23).

If the note is suppressed, DMTNOT calls DMTAXMRQ to close the input file. The file is also purged, if
requested. To generate the note, if it was not suppressed by Exit 22, DMTNOT calls DMTAXMRQ to open
an output device to which the note will be written.

The note template begins with one or more records in the form of origin user tags (for example, the
original tag data RSCS expects on all files spooled to it from local users). DMTNOT then calls routine
PROCLINE to create a line of text. It also scans the line to determine if it is blank. A blank line denotes the
end of the distribution list and the start of the body of the note.

When it finds the distribution list, DMTNOT determines if one or more distribution records have been
specified. If one distribution record is specified, it is parsed and the destination node and user fields are

NOTIFY

Chapter 9. Special Purpose Link Drivers 101

placed in the output TAG element. DMTNOT then calls DMTUROEP to write the content of the record into
the file (in the form of a CCW NOP). Any options on the record are accessible to networking link drivers.

If multiple distribution records are specified, DMTNOT determines if a list processor is defined. DMTNOT
only supports single entry distribution lists if no list processor is defined. If a list processor link is defined,
the output TAG is targeted to the list processor link. DMTNOT calls DMTURO to write the distribution
records (and the trailing blank record) to the output file.

When the distribution list is complete, DMTNOT calls PROCLINE to obtain records for the body of the note.
If the NETDATA=NO parameter was specified for the link, the records are written out to a punch device.
If NETDATA=YES was specified for the link, DMTNOT calls DMTDDLEP to write each record to the output
device. DMTDDLEP creates the body of the note in NETDATA (DMSDDL) format, which is also produced
by the CMS SENDFILE and TSO XMIT commands. In the NETDATA format, the note begins with control
records that contain the following information:

• Origin node and user ID
• Destination node and user ID
• Origin time.

When DMTNOT calls DMTDDLEP, it passes a zero pointer to a DDL work area to identify the beginning of
a note. DMTDDLEP obtains a work area, creates the initial control records, writes them into spool, and
returns the DDL work area address to DMTNOTEP. Each time it calls DMTDDL to format a line of the note,
DMTNOT passes the address of the DDL work area and a pointer to the record.

After processing all records in the body of the note, DMTNOT passes another zero pointer to DMTDDLEP.
DMTDDLEP then creates and writes a trailing NETDATA record to the output device, frees the DDL work
area, and returns control to DMTNOT.

When the note is complete, DMTNOT calls DMTUROFL, which removes any remaining CCWs to be written
to the output device. DMTNOT then calls DMTAXMRQ to close the output file. When the note is queued
to its destination, DMTNOT closes and holds the input file on the NOTIFY-type link. This prevents the file
from being processed again and another note being generated. At this point, DMTNOT has completed its
processing of the note.

Building Note Records
The PROCLINE routine in DMTNOT transforms NOTSEG elements into a line of text for the note.
PROCLINE is passed a pointer to the TAG element that describes the input file being processed.
PROCLINE maintains a place holder in the NOTSEG chain that allows it to continue processing the chain
where it left off on a previous call. To build a line of text, DMTNOT copies the text within the NOTSEGs and
calls routines to substitute information from the TAG and LINKTABL.

Exit 23
If the return code from Exit 22 indicates that the note should be customized, each composed line of
text is passed to Exit 23. Exit 23 routines can edit the note text and request that a blank line of text be
supplied to the exit routine the next time Exit 23 is called. This method can expand a section of the note,
as needed, for any special purposes.

When all NOTSEG elements are processed, Exit 23 is called again. At this point, Exit 23 can indicate if
additional lines should be added to the end of the note. When all records in the template have been
processed and Exit 23 does not need another blank line of text, the PROCLINE routine issues return code
4. This return code indicates that the note has been completed.

Purging Files
DMTNOT sets a timer to ensure that it checks all files enqueued on the NOTIFY-type link at midnight. Any
file that is queued on the NOTIFY-type link for the specified purge period may be purged from the link.
The default purge period, 7 days, can be modified by a parameter option.

NOTIFY

102 z/VM: 7.3 RSCS Networking Diagnosis

If a file has exceeded the time limit, DMTNOT calls Exit 36 to determine if the file should be purged. Exit
36 routines can indicate that the file should be held on the NOTIFY-type link. When all enqueued files
have been processed and purged, as needed, DMTNOT resets the timer.

Unsolicited File Transfer (UFT) Driver
The unsolicited file transfer (UFT) link driver sends data streams to a TCP/IP UFT daemon for distribution
in a TCP/IP network. UFT-type links act as a gateway between NJE nodes in the RSCS network for the
delivery of files to users in a TCP/IP network by mapping NJE routes to LPR destinations (hosts and
users).

The UFT link driver is designed to meet TCP/IP RFC 1440a. A UFT-type link processes one file at a time.
However, to create multiple UFT streams, several UFT-type links can be started on a system and these
links can be defined as members of a ROUTE group. See z/VM: RSCS Networking Operation and Use for
more information about managing UFT links.

The link driver task is made up of routines and exits in DMTUFT and customer-supplied exit routines. The
UFT task uses the following exits to build specific data streams for transmission and to control the remote
host, port, and user to which the transmission is destined. For more information about the UFT exits, see
z/VM: RSCS Networking Exit Customization.
Initialization

Called when a UFT link driver is being initialized.
TAG Processing

Called when the UFT link driver opens a new spool file and prior to when the driver connects to the
remote daemon.

Record Processing
Called when a record is read from the input spool file for the UFT link driver.

End of File Processing
Called when a file as been completely read from the input spool file for the UFT link driver.

UFT Command Processing
Called when the UFT link driver needs a command file.

Termination
Called when the UFT link driver is terminating.

Initialization
The UFT task is attached when a START command is issued for a UFT-type link. The task can be attached
by the REX task or by the AST task, if the link is identified as an auto-start link. DMTUFT contains one
entry point, DMTUFTEP.

When the UFT link driver task is attached, the UFTINIT routine initializes the DWA, ECB lists, and target
addresses. It then calls DMTPAREP to process any parameters.

UFTINIT then calls the UFTBLD routine to load any exit routines that were specified on the START
command of the UFT-type link. The UFTBLD routine calls DMTBPLLX to dynamically load each exit routine.
If a routine is not found or can not be loaded, message DMT820E is issued and the link is terminated.

When all the exit routines have been loaded, the UFTINIT routine again receives control. It, in turn,
passes control to the initialization exit.

All exit routines, except initialization and termination, are passed a UFTBLOK structure containing the
following information:

• Address of a fullword containing the remote host IP address (dotted decimal)
• Address of the 255-character remote host name (fully qualified).
• Address of a halfword containing the remote host port.
• Address of the 256-character user name the file is destined for.
• Address of the 8-character transform name.

UFTPROC

Chapter 9. Special Purpose Link Drivers 103

• Address of the 256-character translate table.
• Address of the 1-character record format (either 'V ' for variable or 'F ' for fixed) derived from an

INMR02 NETDATA control record.
• Address of a doubleword containing the file logical record length from an INMR02 NETDATA control

record.
• Address of a doubleword containing the file size, in bytes, from an INMR02 NETDATA control record.
• Address of a doubleword containing the number of files, from an INMR01 NETDATA control record.
• Address of a 23-character field containing the last change date of the file in standard (UTC) or GMT time

zone ISO format (yyyy:mm:dd hh:mm:ss), derived from an INMR02 NETDATA control record.
• Address of a 44-character field containing the file name from an INMR02 NETDATA control record.
• Address of a 1-character field containing the server's UFT level.

Initialization Exit
The initialization exit routine is called after the exits are loaded by the UFTBLD routine in UFTINIT. The
INIT routine is not passed any link options and therefore cannot change any TCP/IP specific information.

Sending and Receiving Data
The UFTGO routine in DMTUFT is the main control routine for a UFT-type link driver. The routine first
checks various flags to determine if it must drain the link, hold a file on the link, or determine if a file is
currently held on the link.

It then checks various ECBs (command, termination, file) to see if it has work to do. If it does not, the
routine waits until it receives work.

UFTGO calls AXSGET to get a file to process. UFTGO then calls the PASSUSER routine which will look for
UFT keywords contained as NOP records in the spool file. Keywords searched for include:
DESTADDR=

Specifies the name of the user to send the file to
HOSTNAME=

Specifies the fully qualified name of host to send file to
HOSTID=

Specifies the dotted decimal IP address of host to send file to
TRANSFORM=

Specifies how the file should be sent, such as ASCII, EBCDIC, BINARY, or NETDATA.
TRANSLATE=

Specifies a translate table to use if the file requires translation
UFTGO then calls the GETNETD routine to obtain NETDATA control information from the file. Then calls
GHBNCALL to translate the fully qualified hostname, if specified, into the dotted decimal format. Finally,
UFTGO calls the tag exit routine.

TAG Processing Exit
The TAG processing exit examines a file's TAG element. Using this exit, an exit routine can customize
where individual files are sent in a TCP/IP network by overriding the values specified on the PARM
statement for the UFT-type link, and as specified within the spool file.

The TAG exit does not pass back any data to DMTUFT.

UFTGO will then issue SOCKET functions to connect to the remote host and port, then read the UFT herald
to determine the level supported by the daemon. If an error occurs, the file will be requeued in hold status
or a retry attempt will be made.

After any commands are processed, UFTGO will call the UFT command processing exit to build the
command file.

UFTPROC

104 z/VM: 7.3 RSCS Networking Diagnosis

Command Processing Exit
The UFT command file routine exit is called before any of the spool file data records are read. One UFT
command will be built and passed from the exit to DMTUFT at a time. DMTUFT will send each command
and wait for a positive acknowledgement. When received, the command processing exit will be called
again. This process continues until the command processing exit indicates command file processing has
completed.

UFTGO determines if there are any commands pending; if commands are pending, they will be processed
between each call to the command processing exit.

UFTGO then calls the GETBLOCK routine to begin file processing. The GETBLOCK routine performs all file
processing. This routine calls the Record processing exit for each record in the current file. It will also look
for any trailing NETDATA control records.

Record Processing Exit
The record processing routine carries out any appropriate translation of the data from EBCDIC to ASCII
or binary. This entry is called for each record of the spool file. It can translate, ignore, or add data to the
record. The data is passed to the exit in NETDATA format. If the data is not to be sent to the UFT daemon
as NETDATA, the exit will be responsible for handling. In addition, the exit will be responsible for dealing
with boundary conditions in the NETDATA. When the link driver regains control from this entry point, the
data from the print record moves into the link driver's output buffer. When it is full, the DMTUFT link driver
calls SENDCMD which in turn calls SOCKWRT, which performs a SOCKET SEND function to send the buffer
to the TCP/IP UFT daemon.

When the end of the file is reached, the RESETEOF routine is called; this routine, in turn, calls the end of
file processing exit.

End of File Processing Exit
This routine allows for additional information to be sent to the TCP/IP UFT daemon. It is entered after the
last spool file record has been processed.

Terminating the Link
The UFTTERM routine processes all termination requests for the UFT-type link. It receives control when
a DRAIN or STOP is issued. It may also receive control if a serious TCP/IP error is detected by the link.
UFTTERM issues the SOCKET CLOSE and TERMINATE functions to close the TCP/IP socket interface for
the link. It then closes the trace log file and returns control to GCS.

Unsolicited File Transfer Daemon (UFTD) Driver
The unsolicited file transfer daemon (UFTD) link driver receives data streams from a TCP/IP UFT client
in a TCP/IP network for distribution to a destination within the RSCS network. UFTD-type links act as a
gateway between the TCP/IP network and NJE nodes in the RSCS network, and can be used as a VM
based file server.

The UFTD link driver is designed to meet TCP/IP RFC 1440A. A UFTD-type link processes (receives) one
file at a time. However, to receive multiple data streams, several UFTD-type links can be started on a
system all listening for connect requests on the same port number. See z/VM: RSCS Networking Operation
and Use for further information on managing UFTD links.

The link driver task is made up of routines and exits in DMTUFD and customer-supplied exit routines.
The UFTD task uses the following exits to build specific data streams for placement into CP spool and to
control characteristics of the spool file, such as spool device type and destination of the file. For more
information about the UFTD exits, see z/VM: RSCS Networking Exit Customization.
Initialization

Called when a UFTD link driver is being initialized.

UFTD

Chapter 9. Special Purpose Link Drivers 105

Connect Processing
Called when a connect request has been received from a TCP/IP UFT client for the UFTD link driver.

Command Processing
Called when the LPD link driver receives a UFT command from a UFT client.

Data Processing
Called when data has been read from a TCP/IP UFT client by the UFTD link driver.

End of File Processing
Called when a file has been completely read from a TCP/IP UFT client by the UFTD link driver.

Termination
Called when the UFTD link driver is terminating.

Initialization
DMTUFD is attached when a START command is issued for a UFTD-type link. The task can be attached by
the REX task. DMTUFD contains one entry point, DMTUFDEP.

The UFD link can also be attached by the AST task, if the link is identified as an auto-start link. However,
no files should ever be queued to this link type since the link will never process them. The UFTD link
should always be started via the START command and not left waiting for auto-start to start it.

When the UFTD link driver task is attached, the INIT routine initializes the DWA, ECB lists, and target
addresses. It then calls DMTPAREP to process any parameters.

INIT then calls the UFTDBLD routine to load any exit routines that were specified on the START command
of the UFTD-type link. The UFTDBLD routine calls DMTBPLLX to dynamically load each exit routine. If a
routine is not found or can not be loaded, message DMT820E is issued and the link is terminated.

The data record vector, used to pass data between RSCS and the exit, has a much different usage than for
ASCII/TCPASCII, LPR, LPD, and UFT exits. For UFTD, data is passed to the exit in the data record vector.
However, upon return, the data record vector will contain an address to the buffer containing data.

When all the exit routines have been loaded, the INIT routine again receives control. It, in turn, passes
control to the initialization exit.

Initialization Exit
The initialization exit routine is called after the exits are loaded by the UFTDBLD routine in INIT. The
initialization exit is not passed any link parameters and therefore is not enabled to change TCP/IP-specific
information.

Sending and Receiving Data
The INITGO routine connects to the TCP/IP stack then establishes a socket listen request to wait for
inbound connects from UFT clients.

The INITGO routine in DMTUFD is the main control routine for the UFTD-type link driver. The routine first
checks various flags to determine if it must drain the link or process a command.

It then checks various ECBs (command, termination, file) to see if it has work to do. If it does not, the
routine waits until it receives work.

UFDGO issues socket read requests to receive commands and data from the UFT client. Exit routines are
called to process and manage policies for the control file commands and data received.

Once a connect request from a UFT client is accepted, the connect processing exit routine is called to
determine whether the file should be received. This exit is responsible for creating the positive or negative
response to send back to the UFT client.

UFTD

106 z/VM: 7.3 RSCS Networking Diagnosis

Command Processing Exit
The command processing exit is called for each UFT command received from the client. The exit routine
will determine specific characteristics of the spool file based on the UFT commands received. In addition,
the exit will be responsible for sending positive and negative responses to the UFT client as required by
the protocol. Finally, the exit is responsible for determining how much data will be received.

On exit from this routine, the data record vector will contain a pointer to the command response, in ASCII,
to return to the client.

Data Processing Exit
The RDATAF routine in DMTUFD is called to read data sent from the LPR client. For each chunk of
data read, up to 4096 bytes, the data processing routine will be called to handle the data. The exit is
responsible for determining correct record boundaries for each line. The routine also carries out any
appropriate translation of the print data from ASCII to EBCDIC or NETDATA. It can translate, ignore, or
add data to the record. When the link driver regains control from this entry point, the print vector will
contain either a pointer to the record of data to be spooled including the CCW opcode, or a response
message in ASCII to be sent back to the UFT client. If there is data to send to spool, the PUTBLOCK
routine is called to write the data into spool. In addition, DMTUFD must be able to handle zero length
records passed back from the exit.

PUTBLOCK will call DMTAXMRQ to open a spool file for processing on the first call, then call DMTUROEP to
write the data to spool.

When all data has been received, the end of file processing exit is called. Then the PUTCLOSE routine
is called which calls DMTUROFL to write any remaining data to the spool file, then calls DMTAXMRQ to
close the spool file which will then route the file for delivery. On error conditions, the PUTPURGE routine is
called to close and purge the spool file via a call to DMTAXMRQ.

End of File Processing Exit
This routine allows for additional information to be spooled for the print file and a response to be sent
back to the UFT client. It is called after all data is received on the socket. This will be after the end of file
(EOF) UFT command is received.

Terminating the Link
The UFDTERM routine processes all termination requests for the UFTD-type link. It receives control when
a DRAIN or STOP is issued. It may also receive control if a serious TCP/IP error is detected by the link.
UFDTERM issues the SOCKET CLOSE and TERMINATE functions to close the TCP/IP socket interface for
the link. It then closes the trace log file and returns control to GCS.

UFTD

Chapter 9. Special Purpose Link Drivers 107

UFTD

108 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 10. Utility Routines

This chapter describes utility routines that provide services to many tasks at various times during RSCS
processing.

General Purpose Routines
Module DMTCOM contains utility routines that provide services to many RSCS tasks. These services
include table searches for links and routes, numeric to data conversions, and other work routines.

Table Search Routines
Tasks call entry points DMTCOMLK, DMTCOMGG, and DMTCOMGN to find information in RSCS control
blocks.

DMTCOMLK and DMTCOMGG
The AXM task and command processing tasks call DMTCOMLK when processing a link-oriented command.
DMTCOMGG is called when a ROUTE command is processed. DMTCOMLK and DMTCOMGG set up the
parameter list needed for calls to DMTHAS routines (see “Hashed Indexing Routines” on page 112). The
calling task must supply a pointer to the name of the target link or group.

DMTCOMGN
Tasks call DMTCOMGN to find the routes to a specific node. DMTCOMGN, in turn, calls DMTHASHG (see
“Finding Entries” on page 112 for further details on finding HASH entries). The NODE entry that most
closely matches the requested node is returned to the calling task.

When a NODE entry is found, DMTCOMGN searches the ROUTEGRP hierarchy for the node’s root
ROUTEGRP entry. DMTCOMGN then returns pointers to the NODE entry and root ROUTEGRP entry for
the target NODE to the calling task. For more information about ROUTEGRP hierarchies, see “Defining
Network Structure” on page 17.

Disk File Interface Routine
DMTCOMFI, the disk file interface routine, simplifies file access on any disk accessed in the RSCS virtual
machine. DMTCOMFI gives RSCS tasks and exit routines the following services:

• Access to files by ddname or file name/file type
• Conditional and unconditional support for imbed files
• Diagnostic error messages.

The calling task must give DMTCOMFI a FILREQ parameter list. The FILREQ indicates if the file is
identified by a predefined ddname or if DMTCOMFI must dynamically define a ddname to access the
file (GCS only accesses files by their ddnames).

The FILREQ also contains flags that indicate if IMBED records are to be interpreted and if the IMBED
support is conditional or unconditional. If an IMBED is unconditional and DMTCOMFI cannot successfully
access a file specified on an IMBED record, it closes all the files associated with the FILREQ block.
DMTCOMFI returns a nonzero return code to the calling task. If DMTCOMFI cannot successfully access a
file for a conditional IMBED, it ignores the IMBED record.

The calling task may also give DMTCOMFI an initialized MSGBLOK. DMTCOMFI uses this MSGBLOK to
issue messages if it finds errors while accessing a file. If it does not receive a MSGBLOK, DMTCOMFI
issues return codes to the calling task but does not issue error messages.

Utility Routines

© Copyright IBM Corp. 1990, 2022 109

When a task requests records from a file that is identified by file name and file type in the FILREQ
or by an IMBED record, RSCS dynamically runs a GCS FILEDEF command to associate a ddname with
the requested file. Unique ddnames are assigned to each request. As described in “Dynamic ddname
Allocation” on page 27, DMTRES manages the pool of dynamic ddnames available to RSCS. This pool
contains all ddnames between @F000@ through @F999@.

For each file it opens, DMTCOMFI reserves a file work area (FILWORKA). All FILWORKAs associated with
a FILREQ are placed in a queue that is anchored at the CVT. The FILWORKA for the currently active
file is anchored in the FILREQ. The DMTCOM routines add and delete FILWORKA entries from this stack
as IMBED records are processed. The stack can contain a maximum of 10 FILWORKA entries. Each
FILWORKA contains the task ID of its owning task. RSCS can then ensure that all work areas are freed
when the task terminates.

Time-of-Day Conversion Routines
This section describes the DMTCOM routines that convert time-of-day (TOD) values into the format
needed by the calling task or exit routine.

DMTCOMTE
DMTCOMTE converts a z/Architecture® TOD value into an EBCDIC string in the form mm/dd/yyhh:mm:ss.
The z/Architecture TOD is obtained by execution of a STCK instruction. STCK places the TOD value in a
64 bit doubleword aligned field. The 52 high order bits represent the number of microseconds that have
passed since the year 1900.

When a routine calls DMTCOMTE, it provides pointers to the following information:

• The TOD value to be converted
• Time zone number that indicates if the Greenwich Mean Time or the local time zone should be used
• The area where DMTCOMTE should place the converted EBCDIC TOD value
• A work area for the conversion algorithm.

DMTCOMTS
DMTCOMTS converts a human readable TOD format (mm/dd/yyhh:mm:ss) into a z/Architecture TOD value.
The calling routine gives DMTCOMTS pointers to the following information:

• Human readable TOD to be converted
• Time zone number (a nonzero value tells DMTCOMTS that the original TOD value is not supplied in GMT

time; the time is adjusted after conversion to z/Architecture TOD clock format)
• Data area where DMTCOMTS should place the converted z/Architecture TOD value
• Work area for the conversion algorithm.

Number/Data Conversion Routines
This section describes routines in DMTCOM that convert EBCDIC information into decimal values and
back.

DMTCOMDG
DMTCOMDG receives decimal values from the calling task. It determines if the value is in a specific
range and converts it into a binary number. To make this conversion, DMTCOMDG needs the following
information:

• Pointer to the decimal value to process
• Length of the decimal value to convert
• Pointer to a valid range limit (low to high).

Utility Routines

110 z/VM: 7.3 RSCS Networking Diagnosis

DMTCOMDG returns the result, a binary number, to the caller in a general register. If it finds an error,
DMTCOMDQ returns a nonzero return code to the calling task.

DMTCOMHG
DMTCOMHG receives hexadecimal values from the calling task. It determines if the value is in a specific
range and converts the value to a binary number. DMTCOMHG requires the following information:

• Pointer to the hexadecimal value to validate and convert
• Length of the hexadecimal value to convert
• Pointer to a valid range limit (low to high).

DMTCOMHG then returns the result, a binary number, to the calling task in a general register. If it finds an
error (for example, a value out of the specified range), DMTCOMHG issues a nonzero return code.

Specialized Routines
This section describes DMTBPL and DMTCOM routines that perform the following functions:

• Load exit routine code
• Validate phone numbers
• Request changes to a link’s state
• Process LINKTABL entries for inactive links
• Scan options on the origin user tag
• Identify link driver types
• Process entry points loaded by RSCS.

DMTBPLLX
Tasks call DMTBPLLX to load an exit routine module and return its address. When it is called, R1 points
to the entry point name of the exit routine module. On return, DMTBPLLX points R0 to the address of the
loaded module. It also issues a return code in R15 to indicate if the module was loaded successfully.

DMTCOMDV
DMTCOMDV validates the phone numbers specified on a link’s PARM statement and converts them
for use by the link driver. DMTCOMDV removes all blanks and dashes (-) from the number string; it
converts asterisks (*) into pause characters that are used by the dial CCW. If the phone number contains
characters that are not valid, DMTCOMDV returns a nonzero return code to the calling task.

DMTCOMLS
DMTCOMLS is called when a link changes state (for example, connect, active, or dial-queue). DMTCOMLS
determines the link’s current state and its state after the request is run. When a link changes state,
DMTCOMLS calls Exit 26, which can be used to perform accounting and recovery tasks. For more
information, see z/VM: RSCS Networking Exit Customization.

DMTCOMCL
DMTCOMCL processes the LINKTABL entries of inactive links. It also returns to GCS any storage used by
override PARM data and storage used by the active PARM data, if the active PARM differs from the default
PARM. DMTCOMCL also resets other fields in the LINKTABL to ensure the QUERY command displays
accurate information about active and inactive links.

DMTCOMTG
DMTCOMTG scans the system options specified on a file’s origin user TAG (see z/VM: RSCS Networking
Operation and Use). DMTCOMTG returns scan results to the calling task by updating flags in the TAG

Utility Routines

Chapter 10. Utility Routines 111

element provided by the calling task. RSCS only supports the ENQMSG, SENTMSG, and FINALMSG system
options.

DMTCOMGD
DMTCOMGD is the common interface routine for tasks that attach link drivers. It searches the EQUATE
entries that are anchored in the CVT for a link driver’s symbolic name (for example, NJE, SNARJE, and
TCPNJE). If DMTCOMGD finds a match, it returns a pointer to the EQUATE entry to the calling task. If it
does not find a match, DMTCOMGD returns a nonzero return code to the caller to indicate that RSCS does
not recognize the link driver type.

DMTCOMSM
Tasks call DMTCOMSM to enqueue Type L3 message or command elements on a link. As part of its
processing, DMTCOMSM also updates the LINKSTAT area for the link.

Hashed Indexing Routines
DMTHAS contains routines to build, maintain, and locate entries in hash tables. RSCS routines
DMTCOMLK, DMTCOMGN, DMTCOMGG, and DMTRERSC call DMTHAS to find LINKTABL, NODE, REROUTE,
and ROUTEGRP entries, respectively. Exit routines can also call DMTHAS to access any exit-defined data
areas.

HASHBLOK
A HASHBLOK, which is mapped by the HASHBLOK macro, defines the characteristics of a hash table. A
HASHBLOK creates a hash index for any key within any data area. When a task calls DMTHAS, it must
supply a HASHBLOK.

The HASHBLOK macro maps a HASHBLOK. Operands of the macro describe the characteristics of the
HASBLOK (see z/VM: RSCS Networking Exit Customization). The KEY, KEYLEN, and COLLIDE operands
identify the key to the hash table and a pointer to the collision chain. Each data area reserves a fullword
field for use as a collision chain.

The HASHBLOK operands also describe other characteristics. The GENERICS operand indicates if the
HASHBLOK supports searches for generic entries. The ANCHORS operand specify the size of the hash
index. The CHAIN operand specifies a global chain pointer, which DMTHASHB uses to build a hash table
for a list of data areas. Additional operands can generate an eye-catcher and determine if persistent
storage is issued for the HASHBLOK.

When DMTHASHB builds a hash table, it sets up a pointer in the HASHBLOK that points to an array of
fullword pointers. Each hashed data area is associated with a fullword in this array. The value is used as
an index to select a fullword anchor in the table. All the data areas are chained from that fullword using
the collision chain pointer in the data area.

Processing Hash Tables
DMTHAS contains several routines that process the hash table and its entries.

DMTHASHB builds a hash table for data areas. It is called by the REX task when RSCS initializes.
DMTHASHC clears a hash table and related storage when RSCS terminates. DMTHASHA adds a data area
to the hash table. It does not allocate storage nor check for duplicate keys to the hash table. DMTHASHD
deletes a data area from a hash table. The calling routine, however, must first locate the data area before
it can be deleted.

Finding Entries
DMTHAS also contains two routines that find entries within a specified hash table.

Utility Routines

112 z/VM: 7.3 RSCS Networking Diagnosis

Tasks call DMTHASHF to find a data area in the hash table. DMTHASHF then returns the address of
the data area to the calling routine. DMTHASHG finds entries (including generics) in hash tables. If the
HASHBLOK passed to the routine does not support generics, however, DMTHASHG will abend.

Storage Management Routines
DMTQSA routines manage stacks of virtual storage. Each stack represents one type of storage element;
for example, there are stacks of LINKTABL storage elements and NODE storage elements.

Each stack of storage is anchored to a QSABLOK that contains information about the length of the stack
elements. It also describes the GCS GETMAIN options to be used when acquiring and initializing the
storage. These options include:

• 4K optimization
• Persistent or nonpersistent storage
• Conditional or unconditional GETMAIN requests to acquire the storage.

DMTQSAAB
DMTQSAAB is called by any task that wants to acquire storage. Each type of storage is identified by a
QSABLOK. The calling task points R1 at the QSABLOK and calls DMTQSAAB to get a storage element. If
the QSABLOK does not indicate how the storage element should be initialized, DMTQSAAB initializes the
storage to zeros; this is similar to the way the GETMAIN macro initializes storage.

If there are elements in the stack, DMTQSAAB initializes the first element, as defined by the QSABLOK.
DMTQSAAB then moves a pointer to the storage in R1 and passes it to the calling task. If the
stack is empty, DMTQSAAB issues the GETMAIN macro to acquire more storage from a persistent or
nonpersistent subpool (as specified in the QSABLOK).

If 4K optimization is specified, DMTQSAAB requests a page of storage from GCS and subdivides this
storage into the specified length elements. All but one of these elements is placed on the stack.
DMTQSAAB initializes the remaining element and passes it to the calling routine through a pointer in
R1.

If the GETMAIN request fails when the QSABLOK specifies that an unconditional GETMAIN should be
used to acquire the storage, the calling task terminates with an 804, 80A or 878 abend. If a conditional
GETMAIN was requested and storage is unavailable, DMTQSAAB issues return code 4 to the calling task.

DMTQSAUB
When a task no longer needs a persistent piece of storage acquired by DMTQSAAB, it calls DMTQSAUB to
return the storage elements to the appropriate stack. The calling task points R1 at the storage element
and points R0 at the QSABLOK that defines the stack for that element. DMTQSAUB places the element on
the stack and returns to the calling routine.

DMTQSAFA
DMTQSAFA frees all the storage associated with a QSABLOK. If the QSABLOK manages persistent storage,
DMTQSAFA issues a GCS FREEMAIN macro to release each element on the stack. If the storage is
nonpersistent, DMTQSAFA zeros out the storage stack anchor in the QSABLOK. The GCS task termination
routines automatically free all nonpersistent storage acquired by the task.

DMTQSAFE
The QSABLOK macro builds a table that contains the addresses of all the QSABLOKs defined in a module.
Because all of the RSCS-defined QSABLOKs reside in DMTQSA, this table also resides in DMTQSA. When
RSCS terminates, DMTMAN calls DMTQSAFE to process all RSCS stack-related storage. DMTQSAFE then
calls DMTQSAFA to free each QSABLOK in the table.

Utility Routines

Chapter 10. Utility Routines 113

I/O Interface Routines
DMTIOT contains routines that translate RSCS I/O requests into GCS GENIO requests. The routines also
receive any I/O interrupts from GCS. Link drivers call the DMTIOT routines to perform I/O operations.
Module DMTURO also calls the DMTIOT routines to perform I/O requests to input/output UR devices (CP
spool).

Entry points DMTIOTST, DMTIOTHD, and DMTIOTGE perform the START, HALT, and I/O interrupt handling
functions for RSCS. To perform and evaluate an RSCS I/O operation, DMTIOTST and DMTIOTHD use an
IOTABLE. The IOTABLE contains pointers to the I/O device and to the virtual channel program to be run on
that device. Each entry point issues return code 0. Any status about the I/O operation is reflected by flags
and data areas in the IOTABLE control block.

DMTIOTST
DMTIOTST begins processing the channel program. As input, DMTIOTST needs a pointer to the IOTABLE
that describes the requested I/O and a pointer to the LINKTABL of the calling link driver task. DMTIOTST
then issues the GCS GENIO macro with the START option to begin the channel program on the specified
device. The average elapsed time required to complete the I/O operation is kept in the link’s LINKSTAT
area. This area is anchored to the LINKTABL that is supplied by the calling task.

DMTIOTHD
DMTIOTHD ends the I/O operation on a device by issuing the GCS GENIO macro with the HALT option.
DMTIOTHD uses the IOTABLE to point to the device.

DMTIOTGE
When it calls the GENIO START macro, DMTIOTST specifies DMTIOTGE as the exit routine. DMTIOTGE
then receives notification of any I/O errors, asynchronous interrupts, and the completion of the I/O
operation.

Spool Interface Routines
This section describes routines in DMTRDR and DMTURO that RSCS tasks call to process spool files.

Input Spool Routines
DMTRDR processes input spool files for RSCS. Each routine in the module (DMTRDROP and DMTRDREP)
uses the RDR control block as a parameter list. RDR contains the following information:

• Pointer to the file I/O area
• Address of the virtual reader
• Pointer to the area where a logical record is to be placed after it is read from the file I/O area (a SPLINK

in CP spool).

DMTRDROP
If a link driver task calls DMTAXMRQ to open a file, it calls DMTRDROP. This routine determines the
maximum record length of the data. If necessary, DMTRDROP calls the GETMAIN macro to acquire
another work area. DMTRDROP then converts any input from a real card reader into punch output. If
requested by a printer, except LPR, or workstation link driver, DMTRDROP also optimizes any CCWs in the
first SPLINK it retrieves when the file is opened.

DMTRDREP
As a link driver task builds a TP buffer to send a file, it calls DMTRDREP to get one data record at a time
from a SPLINK. DMTRDREP gets new SPLINKs and optimizes the CCW strings, as needed, until the end of

Utility Routines

114 z/VM: 7.3 RSCS Networking Diagnosis

the file is reached. DMTRDREP then calls the FREEMAIN macro to return any alternate work areas to GCS
and resets any flags needed for the next file.

Output Spool Routines
DMTURO contains unit record (UR) device output routines; DMTUROEP and DMTUROFL process records
being written to an output file.

DMTUROEP
Each time DMTUROEP is called, it writes one file record (a CCW and data) to an output file I/O area (FIOA).
DMTAXMRQ builds the FIOA, when requested by a calling link driver task, and passes it to DMTUROEP
with every record. The FIOA contains an IOTABLE, which contains a device address and a pointer to a
channel program that executes on that device.

DMTUROEP determines if the output FIOA can contain the CCW and the data for the CCW. If there is
space in the FIOA, DMTUROEP copies the CCW and the data into the FIOA and updates the CCW’s data
pointer. If the output FIOA cannot contain the CCW and the data, DMTUROEP points at the IOTABLE and
calls DMTIOTST to execute the channel program.

DMTUROFL
If the end of the file is not reached, the FIOA can be reused to process more file records. If the end-of-file
marker is reached or if a FLUSH command is being processed, the link driver task calls DMTUROFL. This
routine writes the remaining channel program in the FIOA.

NETDATA Conversion Routine
DMTDDL enables RSCS tasks (for example, DMTNOT) to create NETDATA formatted notes. The NETDATA
format is also created by the CMS SENDFILE and TSO XMIT commands.

The NETDATA format segments the records of the original file to create a data stream that consists of an
80 byte record. DMTDDL transforms an incoming stream of records into a stream of output records that
is compatible with the NETDATA format. Files created by DMTDDL are always written to a virtual punch
device, which the calling task must identify in an IOTABLE.

The NETDATA format consists of headers at the top of the file, records that make up the body of the
file, and a trailer. The header and trailer records are identified by the label INMR0x. DMTDDL creates the
following NETDATA records for RSCS:
INMR01

Header record, containing the following information about the file:

• Logical record length
• Origin node and user ID
• Destination node and user ID
• Origin creation time
• Number of files contained in this file (used for partitioned datasets that cannot be created by

DMTDDL).

INMR02
Header record, containing information about the file’s size and record characteristics.

INMR03
Header record, containing information about the file’s size and record characteristics.

INMR06
Trailing record.

When a routine calls DMTDDLEP, it must provide the following information:

• The IOTABLE for the device to which the NETDATA records are written

Utility Routines

Chapter 10. Utility Routines 115

• The TAG element for the file to be processed
• A pointer to, and the length of, an input record (maximum length is 255 bytes)
• A pointer to a DDL work area.

On the first call to DMTDDLEP, the pointer to the DDL work area is zero; this identifies the first record in
the new file being processed. DMTDDLEP acquires a DDL work area and creates the INMR01, INMR02,
and INMR03 header records. When a complete 80 byte record has been filled, DMTDDL calls DMTUROEP
to write the record to the device specified in the IOTABLE. This process continues for all following input
records.

DMTDDL writes records to punch devices. Because the calling routine may provide records of varying
lengths, DMTDDL segments the records into appropriate lengths for the punch device. Portions of the
previous record are often kept in the DDL work area until the calling routine provides the next record.

When the end of the file is reached, the calling routine passes a zero input record pointer to DMTDDL.
DMTDDL then generates the INMR06 trailing record and pads the rest of the record with zeros. DMTDDL
calls DMTUROEP to write the last record to the specified device. It then releases the DDL work area before
returning control to the calling routine. The calling routine must call DMTUROFL to flush any remaining
CCWs in the file I/O area.

See z/VM: CMS Macros and Functions Reference for more information on NETDATA formats.

General Parsing Routines
DMTMPT contains routines to parse text strings into individual tokens, convert decimal to binary, and
branch to a processing routine for the keyword. Because the CRV contains the addresses of these
routines, exit routines can also call DMTMPT routines.

DMTMPTGP
DMTMPTGP parses a parameter from an input string. It identifies a keyword to indicate its start address
and length in the original parameter string. DMTMPTGP can also copy up to 16 bytes into an output area
and translate this data into upper-case.

When a task calls DMTMPTGP, it supplies a four-word parameter list in R1, which contains the following
information; DMTMPTGP updates this parameter list so that it may be called to parse multiple tokens:

• Address of the 16-byte area used to store the upper-cased version of the parsed parameter
• Address of the start of the previously parsed token
• Length of the previous token parsed
• Address of the first byte after the end of the text to be parsed.

DMTMPTGP skips any initial blanks in the input string. If it does not find any text in the string, it issues
return code 4 to indicate that a parameter is missing. When it finds the start of first token, DMTMPTGP
stores that address in the second word of the parameter list. It then parses the token until it finds a blank
or the end of the input string. DMTMPTGP then places the token, upper-cased and padded on the right
with blanks, into the 16-byte area pointed to by the first word in the parameter list. If the token does not
fit in this area, DMTMPTGP issues return code 8. It then places the length of the token in the third word of
the parameter list.

DMTMPTBP
DMTMPTBP parses a parameter from an input string and compares it to a list of keywords defined in the
calling routine. Each keyword is associated with the address of a processing routine. If the parameter
matches a keyword, DMTMPTBP passes control to the associated processing routine. If it does not match,
DMTMPTGP returns control to the calling routine.

When DMTMPTBP receives control, R0 points to a table of keywords and their associated addresses. The
keywords contain 16 characters (including blanks) and a fullword address. A blank character indicates the
end of the keyword table (see Figure 50 on page 117).

Utility Routines

116 z/VM: 7.3 RSCS Networking Diagnosis

 LA R0,KEYS Address of keywords
 RCALL DMTMPTBP Branch appropriately
 BRC (BAD,MISSING,TOOLONG) Handle problems
⋮
KEYS DS 0F Fullword align
 DC C'DEFine ',A(CMDDEF)
 DC C'Query ',A(CMDQUERY)
 DC C'DELete ',A(CMDDEL)
 DC C'STArt ',A(CMDSTART)
 DC C' ' End of table

Figure 50. Sample Keyword Table

The calling routine also supplies a four-word parameter list in R1, which contains the following
information:

• Address of the 16-byte area used to store the upper-cased version of the parsed parameter
• Address of the start of the previously parsed token
• Length of the previous token parsed
• Address of the first byte after the end of the text to be parsed.

DMTMPTBP also supports keyword abbreviations. For example in Figure 50 on page 117, if DMTMPTBP
parsed the parameters DEF, DEFI, DEFIN or DEFINE, it would pass control to address CMDDEF.

DMTMPTCK
To find a matching keyword for the calling routine, DMTMPTBP calls DMTMPTCK. This routine compares
the parameter to the keyword table. If it finds a match, DMTMPTCK issues return code 0 and passes the
corresponding fullword value in R0. If not found, it issues return code of 4.

DMTMPTGD
DMTMPTGD calls DMTMPTGP to read a parameter from an input string; it then converts the value from
decimal ECBDIC to a signed binary fullword. The parameter, which must be an integer value, may be
preceded by a plus (+) or minus (-) sign.

Task Table Service Routines
DMTTAS contains routines that maintain hash indexes for TASKBLOKs. A TASKBLOK describes a type of
RSCS task (system, link driver, and auto-answer); a TASKBLOK only represents an active task.

DMTTASKA
DMTTASKA creates a TASKBLOK for an active task. The routine first calls DMTQSAAB to obtain storage for
the TASKBLOK. It then places information about the task in the TASKBLOK and adds the new TASKBLOK
to the task table.

The REX task calls DMTTASKA when it attaches a system task. DMTTASKA is also called when a link driver
(including those specified by a LINKTYPE statement) is attached. It is also called when a port is enabled
and when the DUP task transforms itself into the link driver specified by the incoming phone call.

Each calling routine must provide DMTTASKA with a flag to identify the type of task. It must also provide a
pointer to the major control block (SYSIDENT, LINKTABL, or PORT) associated with the task. Each control
block contains the task ID and entry point name. It also contains the link ID, port address (ccuu), or
system task name.

DMTTASKD
DMTTASKD deletes a TASKBLOK from the RSCS task table. It is called when a link driver task is detached,
a system task terminates, or when link driver task transfers control back to an auto-answer task. It is also
called when a port is disabled. DMTTASKD calls DMTQSAUB to deallocate storage used by the TASKBLOK.
It then clears the pointer to the deleted TASKBLOK from the task table.

Utility Routines

Chapter 10. Utility Routines 117

DMTTASKF
DMTTASKF uses a task ID to find a TASKBLOK in the RSCS task table. It is called from DMTCMZ when
the ITRACE settings for a task are set or altered. The TASKBLOK is updated to reflect any changes in the
ITRACE settings.

DMTTASKG
DMTTASKG finds a TASKBLOK in the RSCS task table, using the GCS FLS macro to find the task ID for the
calling task. DMTTASKG is called when the RSCS ITRACE macro is called. It obtains the task ID from GCS;
the TASKBLOK contains a work area.

Utility Routines

118 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 11. Parsing Commands and Statements

To process information, RSCS must parse configuration file statements and commands entered by various
users. This section describes the parsing facilities (DMTPAF) and central repositories RSCS uses for
command and statement syntax.

Defining Syntax
The syntax of all RSCS commands and configuration file statements is defined in two repositories. These
repositories are created by the RSCSCMDS and RSCSSTMT macros.

RSCSCMDS contains the syntax for all RSCS commands. The RSCSSTMT macro contains the definitions of
configuration file statements. Within each repository, the CDEF, LDEF, and PDEF macros define the syntax
of the commands and statements.

Each syntax repository also refers to the RSCSDDEF macro, which defines the valid data types that can be
specified on a command and statement. The DDEF macro defines data syntax in the RSCSDDEF macro.

CDEF Macro
Each syntax repository contains a table of CDEF macros that define each RSCS command and
configuration file statement. The CDEF macro contains the following information:

• The verb portion of the command or statement
• Minimum abbreviation
• Name of a post-processing routine, if applicable
• The command code for commands that may be run by tasks other than the REX task.

Each entry begins with a prefix that identifies the users who are authorized to issue the command or
statements. Configuration file statements defined in RSCSSTMT always contain the L prefix. The prefix has
the following meanings:
Prefix

Authorized User
L

RSCS console (local) operator or system authorized alternate operator
R

Remote workstation and link operator
U

User (local or remote).

For example, Figure 51 on page 119 shows that the SLOWDOWN command can only be issued by the
RSCS or a system authorized operator. The START command can be issued by the RSCS operator and
by a remote workstation or link operator. Finally, any RSCS user or operator can issue the TRANSFER
command.

L CDEF 'SLOWdown',CMASL
LR CDEF 'STArt ',CMYST,CCODE=STRTCMD,SCANON=YES
LR CDEF 'STOP ',CMZSO,SCANON=YES
LR CDEF 'TRace ',CMYTR,CCODE=TRACECMD,SCANON=YES
LRU CDEF 'TRANsfer',CMXTR,CCODE=TRANSCMD,SCANON=YES

Figure 51. Sample Entry in the RSCSSTMT Macro

Parsing

© Copyright IBM Corp. 1990, 2022 119

LDEF Macro
The CDEF table in RSCSCMDS and RSCSSTMT is followed by LDEF entries that define the syntax of the
command or statement. Commands may have up to three syntax variations; statements only have one
valid syntax. The following operands can be specified on the LDEF macro:

Parameter Purpose

First parameter Identifies the next LDEF that is processed. If omitted, the current LDEF is
processed until a syntax error is found, the end of the line is indicated, or a level of
transition is indicated on the PDEF macro.

INIT Determines if a special routine should be called when this state is initialized.

EOL Determines if the current state is a valid final state.

EOCL Contains the name of a routine to call when end-of-line is detected.

OPT Determines if a PDEF match is required to make a transition to the next state.

COUNT Contains the number of matches required at this state before the next state is
processed.

Command Syntax Variations
The CDEF prefix identifies the syntax variations for each command. Each CDEF entry is associated with
LDEF entries that define the command syntax. The labels on the LDEF entries identify the syntax variation.
These labels contain the first four characters of the command (or an abbreviation) and one of the
following strings:
LCL

Local RSCS console operator or system authorized operator
RMT

Remote workstation or link operator
USR

Any local or remote user.

The parser then uses the information at the appropriate LDEF entry to continue processing the command
syntax. For example, Figure 52 on page 120 shows the syntax variations for the TRANSFER command. In
this case, the abbreviation XFER identifies the command name.

 +--------------+
 | TRANSFER |
 | CDEF Prefix: |
 | LRU |
 +------+-------+
 |
 +------------------+--------------------+
 | | |
 ˅ ˅ ˅
 +-------------+ +-------------+ +-------------+
 | LDEF Label: | | LDEF Label: | | LDEF Label: |
 | XFERLCL | | XFERRMT | | XFERUSR |
 +-------------+ +-------------+ +-------------+
 Local Console Workstation Local User
 Operator Operator

Figure 52. Syntax Structure of TRANSFER Command

PDEF Macro
The PDEF entries that follow an LDEF entry define how the next parameter of a command or statement is
processed. The following operands are available to the PDEF macro:

Parsing

120 z/VM: 7.3 RSCS Networking Diagnosis

Parameter Purpose

Keyword, minimum
abbreviation

If the first parameter is in quotation marks, it is processed as a keyword with its
minimum abbreviation specified by upper case letters.

DDEF name If the first parameter is not in quotation marks, it is processed as a data definition
(DDEF) in the RSCSDDEF macro.

PROCESS Specifies the name of any special routine that is to process the parameter; it may
be used with a keyword or to process the current parameter.

DATADEF Indicates that the keyword specified in the first parameter is followed by another
parameter, which is defined by the specified DDEF.

NEXTL Overrides the default transition to the next state (LDEF) specified on the preceding
LDEF.

FLAG Overrides the default name of the lock byte that is set when the PDEF applies. The
default flag name contains the prefix "PAFL" and the first four characters of the
keyword or DDEF name.

LOCK Determines if the lock byte is set when the PDEF applies; by default, the lock is set
on unless the FILTER or QMASK options are specified.

FILTER Creates a filter program, which is later used by the specific processing routine for
the command.

QMASK Specifies a mask, which selects the columns displayed in a columnar message.

UWORD Specifies a user word whose value is passed to the command processing routine.

As Figure 53 on page 121 shows, the following LDEF and PDEF statements define the syntax of the
DISCONNECT command:

L CDEF 'DISConnect',CMZDI
⋮
DISCLCL LDEF UID,EOL=YES,
 PDEF 'LOG '
 PDEF 'NOLog '
UID LDEF EOCTX,EOL=YES
 PDEF USERID

Figure 53. Syntax Definition of the DISCONNECT Command

This example shows that the command can only be issued by the local RSCS operator. EOL=YES indicates
that the LOG and NOLOG parameters are optional; if they are specified, the userid is also optional. A DDEF
macro, which is in the RSCSDDEF macro, describes the USERID data. The parser also sets a byte in the
PAFBLOK. This tells the DISCONNECT command processing routine, DMTCMZDI, if LOG or NOLOG was
specified when the command was issued.

A PAFBLOK describes the results of parsing a line of text. It contains various locks and pointers to the
data areas that contain the node names, link IDs, and other items that are found in the command or
statement.

Figure 54 on page 122 shows an example of a PDEF macro specification that overrides the default
transition to the next state defined on the LDEF statement. The PDEF statement for the HALT operand
overrides the default transition to the next LDEF from OPT to QUIK. This example also shows keywords
used with data definitions (DDEFs).

Parsing

Chapter 11. Parsing Commands and Statements 121

L CDEF 'NETwork ',CMZNE
⋮
NETWLCL LDEF
 PDEF 'STArt ',NEXTL=OPT
 PDEF 'HALT ',NEXTL=QUIK
OPT LDEF EOL=YES
 PDEF 'APPLid ',DATADEF=APPLID
 PDEF 'Pass ',DATADEF=PASS
 PDEF 'RETry ',DATADEF=RETRY
 PDEF 'RPLs ',DATADEF=RPLS
QUIK LDEF EOL=YES
 PDEF 'QUICK '

Figure 54. Syntax Definition for NETWORK Command

The PROCESS option of the PDEF macro specifies the name of a routine in DMTPAF that processes the
parameter. For example, as Figure 55 on page 122 shows, the option defines the syntax of the CPQUERY
command.

LRU CDEF 'CPQuery ',CMZCQ
⋮
CPQULCL LDEF EOCTX,
 PDEF 'CPUid '
 PDEF 'CPLEVEL ',UWORD=DMTCMZC1
 PDEF 'INDicate',UWORD=DMTCMZC2
 PDEF 'Files ',UWORD=DMTCMZC3
 PDEF 'LOGmsg ',UWORD=DMTCMZC4,FLAG=LMSG
 PDEF 'Names ',UWORD=DMTCMZC5
 PDEF 'Users ',UWORD=DMTCMZC6,PROCESS=UIDOPTN
 PDEF 'Time ',UWORD=DMTCMZC7
CPQURMT LDEF EQU=CPQULCL
CPQUUSR LDEF EQU=CPQULCL

Figure 55. Syntax Definition for CPQUERY Command

This example also includes the UWORD parameter. In this case, the user word in the CPQUERY command
points to the actual CP command that is run by the command processor. The EQU operand on the LDEF
macro indicates that the local console operator, remote operator, and general users can use the same
CPQUERY command syntax.

Command PDEF Options
RSCS uses filter programs and column display masks to process the many operands of the QUERY
command. The QUERY command processing modules call DMTCQC to build these filter programs. Each
filter program processes data areas to determine if a data area meets the criteria of the command.

For example, for the command QUERY LINKS TYPE NJE LINE < 4F2, DMTCQC builds a filter program for
the following criteria:

• R15 points to the filter program
• If the LINKTABL passed to the filter program represents an NJE-type link with a line address over 4F2,

the filter program returns to the address specified in R14.
• If the LINKTABL does not meet the specified criteria, the filter program returns to the address specified

in R1.

DMTCQC defines many types of filter programs. Each filter program is built during repeated calls to
DMTCQC, which are specified by FILTER options on the PDEF macro.

Column Masks
Display masks identify the columns that are displayed in a columnar message (see Chapter 12, “Message
Processing,” on page 127 for more information). Because columnar messages can contain up to 64
columns, RSCS may not display all columns in a message at the same time.

The QMASK option on the PDEF macro tells the parser to copy the specified mask in to the PAFQMASK
field of the PAFBLOK. The SHOWMASK macro defines each mask, which contain 64-bit fields that map
each column defined in the message file for a message number.

Parsing

122 z/VM: 7.3 RSCS Networking Diagnosis

When the QMRESET routine is called, it resets the PAFQMASK field to zeros. The mask is then
accumulated again, based on the SHOW operands selected for a QUERY command. This mask determines
the columns to be displayed in the response message. For example, the RSCSCMDS macro contains the
following syntax statements for the QUERY LINKS SHOW NAME LUNAME command:

LRU CDEF 'Query ',CMQEP
⋮
QUERLCL LDEF ...
 PDEF 'LINKs ',UWORD=DMTCQXLK,NEXTL=LINK,QMASK=SHLFULL
⋮
LINK LDEF EOL=YES
 PDEF 'SHOW ',PROCESS=QMRESET,NEXTL=LSHO
⋮
LSHO LDEF EOL=YES,COUNT=(GT,0)
 PDEF 'NAME ',QMASK=SHLID
 PDEF 'LUName ',QMASK=SHLALUN

Figure 56. Sample QUERY Command

If a mask name is preceded by a + sign, the mask specified after the QMRESET routine is added to the
existing mask (a + is the default). The column identified by the mask is then added to the columnar
message of that QUERY command. If preceded by a - sign, the mask is removed from the existing mask.
The corresponding column is then not displayed in the columnar message.

DDEF Macro
Command and statement tokens may be considered a keyword or a parameter. Keywords in a command
or statement are identified to the command processing routines by fields in the PAFBLOK. Unless a
special routine is specified on the PROCESS operand (see Figure 55 on page 122), all parameters are
processed by data definitions.

Each DDEF entry in the RSCSDDEF macro defines the following information about a parameter:

• Type: character, hexadecimal, or decimal

– If character data, the maximum number of characters accepted
– If in hexadecimal or decimal, the valid ranges.

• Where the parameter should be stored (hexadecimal or decimal types are converted to binary before
being stored)

• If the parameter is stored in the PAFBLOK or in a work area in preparation for post-processing
• The address of a post-processing routine in DMTPAF, if post-processing is specified
• The address of a message routine in DMTPAF that is called if an error is found
• If the parameter being processed is in the current position or if the next token should be parsed and

treated as the parameter.

Given the label of a DDEF macro, DMTPAF determines if a parameter is valid and places it in the PAFBLOK.
If the parameter is not valid, DMTPAF issues an error message.

Finding Command and Statement Definitions
Before it can parse a command or statement, DMTPAF must first find its definition in the CDEF macros.
When DMTPAFCL is called to find a CDEF, it receives the following information:

• Command or statement text string
• Pointer to a syntax definition repository (RSCSCMDS or RSCSSTMT)
• Pointer to a PAFBLOK, which stores the parsed information.

DMTPAF searches the CDEF entries to find a CDEF that matches the first token of the text string. If
DMTPAF finds a CDEF, the address of the CDEFBLOK is anchored in the PAFBLOK.

If the SCANON=YES option was specified on the matching CDEF, DMTPAF parses the next token in the
string. This enables DMTPAF to process the syntax variations of commands that have multiple formats.

Parsing

Chapter 11. Parsing Commands and Statements 123

When it completes its search, DMTPAFCL issues a zero return code to the calling routine. If it does not find
a match for the command or statement, DMTPAF issues a nonzero return code.

Parsing Commands and Statements
DMTPAFCP is called after DMTPAFCL finds the specified entry. Flags in the PAFFLAG field of the
PAFBLOK indicate the command syntax variations to be checked (statements only have one syntax).
When DMTPAFCP finds the address of the first LDEF, it starts to parse the command or statement.

If the INIT operand is specified on an LDEF statement, DMTPAFCP calls the specified routine to initialize
processing for that state. DMTPAFCP then parses the next token in the text string. When it reaches the
end of a line, DMTPAF performs the following checks:

• If EOL=YES was not specified on the current LDEF, the line ended prematurely.
• If EOL=YES was specified on the current LDEF, DMTPAF determines if the COUNT parameter was also
specified:

– If COUNT was specified, DMTPAF checks if the required number of PDEFs specified under this LDEF
have been matched. If this number was not matched, the line ended prematurely.

– If COUNT was not specified or the required match count was met, DMTPAF accepts the valid end-of-
line.

If the end of the line is valid, DMTPAF calls any routine specified on the EOCL operand of the LDEF macro.
It then returns to the calling routine.

If it finds another token on the text string, DMTPAF searches the list of PDEF entries that follow the
current LDEF for a match. If the first parameter in the PDEF is in quotation marks, it is processed as a
keyword. The keyword must match the minimum abbreviation for the command or statement. If the first
parameter is not in quotation marks, DMTPAF processes it as a data definition, which must match the
criteria specified on the DDEF macro.

The first PDEF that is matched determines how DMTPAF processes the token. If the token does not match
any of the specified PDEF entries, DMTPAF performs the following checks:

• If OPT=YES was specified on the current LDEF, DMTPAF moves to the next state (LDEF).
• If not specified, the parser tells the calling routine that the token is not valid.

If a PDEF matches a token, DMTPAF performs the following processing:

• If the QMASK option is specified, the PAFQMASK field is updated with the specified mask.
• If a FILTER option is specified, DMTPAF calls DMTCQC to build part of the filter program.
• If a UWORD option is specified, the parser stores the appropriate user word value in the PAFUWORD
field in the PAFBLOK.

• If any of the following conditions are true, DMTPAF sets a byte in the PAFLOCKS field to identify the
matched PDEF:

– QMASK, FILTER, or LOCK=NO operands are not specified on the PDEF.
– QMASK or FILTER operands are specified with the LOCK=YES option.

• If the first token on the PDEF is not in quotation marks, DMTPAF processes it using the specified data
definition (DDEF).

• If the DATADEF operand is specified, DMTPAF processes the next token on the line according to the
specified DDEF.

• If the PROCESS operand is specified, DMTPAF passes control to the specified routine, which processes
the token.

If DMTPAF finds errors as it processes the token, it issues a nonzero return code to the calling routine. It
may also issue an error message to the command originator if the calling routine provided a MSGBLOK.

When the token is processed successfully, DMTPAF takes the following steps to process the next LDEF
statement:

Parsing

124 z/VM: 7.3 RSCS Networking Diagnosis

• If the NEXTL operand is specified on the matched PDEF, the specified state is processed as the next
state.

• If NEXTL is not specified, the next state specified on the LDEF is taken to be the next state.
• If neither option was specified, DMTPAF remains in the same state (LDEF). For example, this occurs

when several options can be selected for a CHANGE command.

Before DMTPAF processes the next LDEF, it checks the criteria specified on the COUNT operand. This
ensures that the criteria to leave the previous state has been met. If the criteria has not been met, the
parser issues a nonzero return code and returns to the calling routine.

DMTPAF continues processing the tokens on the input line until it reaches the end of the line in a valid
state or finds an error. DMTPAF then passes the parsed command or statement to the calling routine in
the PAFBLOK provided by the calling routine.

QUERY Command Processing
QUERY commands are initially processed by DMTCMX and parsed by DMTPAF. DMTCMQ is then called
to run the command. DMTCQX, DMTCQY, and DMTCQZ may also be called, depending on the operands
specified.

When a QUERY command is issued, it returns one or more messages containing the requested
information. The messages are issued using a MSGBLOK that is supplied by DMTCMX. QUERY response
messages are issued as if SET EMSG TEXT is in effect; the message number is not displayed.

Simple Queries
Some QUERY commands, like QUERY SYSTEM LOCAL, generate a single-line message. For these
responses, DMTCMQ places appropriate information in a MSGBLOK. It then calls DMTMGX to issue the
response message.

Some commands, like QUERY linkid FILES, issue a single-row columnar message. In this case, DMTCMQ
identifies the necessary columns for the message in the MSGBLOK. After the response message is issued,
DMTCMQ issues a message (TBEND) to identify the end of the columnar message.

Filtering and Columnar Messages
Most QUERY commands, however, create columnar messages that contain many columns. For these
QUERY commands, RSCS locates the requested information in various tables and data areas and issues a
columnar message.

For example, the command QUERY FILES CLASS M REC > 100 SHOW RSCS displays information about the
origin and destination of class M files that contain more than 100 records. DMTCQXFI, which processes
this QUERY command, scans all TAG elements to find information about all the files that RSCS is
processing.

Each QUERY command processing module runs a filter program to determine the data areas that provide
the requested information. DMTCQC builds filter programs as the QUERY operands are parsed. DMTCQC
compiles different sections of the filter programs. The FILTER operand of the PDEF macro determines the
type of filter program needed for the QUERY command.

Each section of the filter program tests a data area against specific criteria. If the data area meets this
criteria, the filter program continues. If the test fails, the filter program branches to an address, specified
by the calling routine, to perform appropriate processing (for example, indicate that no requested items
were found). When all FILTER operands are processed, DMTCQC is called to create the final section of the
filter program. The final section branches to a different address where the calling routine placed all items
that matched the filter program.

When a data area passes all filter tests, the requested information is placed in a MSGBLOK that is passed
to DMTMGX. The MSGBLOK contains a pointer to the appropriate data area and the message number.
The MSGBSHOW field contains a bit mask that identifies the columns that are displayed in the message.

Parsing

Chapter 11. Parsing Commands and Statements 125

The message building modules use information in the message conversion repository to locate data and
determine how it is displayed.

Querying Network Structure
DMTCQY processes all QUERY commands that request information about the structure of the network
(QUERY SYSTEM NODES and QUERY SYSTEM GROUPS). A filter program, built by DMTCQC, identifies the
nodes for which information is displayed.

The DISPLAY keyword on the QUERY command selects the type of information to be displayed in
the response. You cannot select the individual columns that are displayed in the message; they are
determined by the QUERY command processing module.

For example, DISPLAY LINKS generates one or more DMT636I messages. Each message has a column
for the node, five columns for primary links, and one for an alternate link. The query command processor
stores the information in each column of the message as a parameter in the MSGBLOK. If only two
primary links are defined, the other columns contain blanks. If six links are defined, the message is issued
twice. The first time, the node and the first five primary links are displayed. The second time, the node
column contains blanks, the first column displays the sixth primary link, and the other columns contain
blanks.

Propagating QUERY Commands
Some QUERY commands propagate through each node in the network to display the requested
information. These commands include the QUERY nodeid PATH and some QUERY QUEUES and QUERY
FILES commands.

After the QUERY command is processed on the local node, DMTCQXPR propagates the command to the
next node. DMTCQXPR calls DMTCOMGN to find the root group of the node toward which the command is
propagated. The command is then sent on every primary link that is connected to the node. If there are no
“connect” primary links, DMTCQXPR sends the command on the alternate link. If the alternate link state is
not defined or its state is not “connect”, a message is issued to the command originator and the command
propagation ends.

A QUERY command may be sent to a node several times by different routes. DMTCQXPR builds an
identifier for each propagating QUERY command. This identifier contains a five-digit serial number; it also
identifies the origin node of the command. When a remote node receives a propagated QUERY command,
DMTCQXFL determines if the command has been run on the node in the last minute (for a maximum of
500 commands). If the command was executed during that time, it will not be processed on the node
again.

Parsing

126 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 12. Message Processing

This chapter describes how RSCS processes messages. It also describes the modules, data structures,
and files RSCS uses to build and issue messages.

Message Structure
A message is any text that RSCS writes to its console or sends to a user in another virtual machine or on
another node. RSCS can issue text and columnar messages.

All messages are described by a MSGBLOK (see “MSGBLOK” on page 30), which the calling task provides
to the message processing modules.

A message can be sent to a combination of destinations. RSCS uses the following routing codes to
determine where it should send a message.

Code Destination Explanation

R RSCS console The message is sent to the RSCS virtual console (the RSCS
operator or the user ID specified on the DISCONNECT
command).

When sent to the RSCS operator, the message contains a time
stamp. If another user ID is specified on the DISCONNECT
command, the message is delivered by the CP MSGNOH or MSG
commands and does not contain a time stamp.

C CP operator The message is sent to the OPERATOR virtual machine (CP
operator).

O Any user ID on any node MSGBLOK fields indicate the destination. If sent to a local user,
the message is delivered by the CP MSGNOH, MSG, or SMSG
commands. If sent to a remote user, the message is sent through
the RSCS network before being delivered to its final destination.

V Any user ID at the local
node

This routing code is similar to the O code. However, here, RSCS
ignores the remote node field in the MSGBLOK and the message
is always routed to a local user.

P Same as the R, O, and V
routing codes

The message is private and cannot be part of a SET or SETMSG
subscription. The message can be routed to any user.

Messages are identified by a message number (between DMT000 and DMT999) for the RSCS server
and a severity code (I, W, E, S, and T). Each message also contains fixed text, controlled by message
repositories, and substitution fields, which are controlled by values in the MSGBLOK. To issue a message,
RSCS takes the following steps:

1. Looks for the format of the message in repositories, using the message number in the MSGBLOK as an
index.

These repositories (translation and conversion) issue messages in different languages. Two execs,
MCONV and MCOMP, compile the repositories into TEXT decks that can be linked into RSCS load
module or into an exit routine package. See “Message Repositories” on page 134 for more information.

2. Builds the message using the format identified in the repositories. Any substitution parameters,
passed in the MSGBLOK by the calling task, are also included in the message.

3. Issues the message to all destinations identified by the routing codes.

Message Structure

© Copyright IBM Corp. 1990, 2022 127

Text Messages
Text messages indicate that an event has occurred (for example, RSCS has initialized or received a file).
Text messages are also issued as responses to some RSCS commands; they are the most commonly-
issued type of RSCS messages.

Columnar Messages
RSCS and exit routines can also issue columnar messages (also called table displays) in response to
QUERY and EXIT commands. These messages can contain many rows and columns of related information.
Columnar messages are also used to display information for some single-line command responses.

Each columnar message contains a header and body text. The header contains one or more lines of
column heading text; some headings may apply to more than one column. The body of the message
contains the information placed under each item in the header. Each item in the body is represented by
one line of message text.

Most QUERY commands have SHOW options to let you select the columns that RSCS displays in the
message. For some QUERY commands, however, you cannot change the columns that are displayed
by using the SHOW options. For example, the ACTIVE keyword in the QUERY linkid ACTIVE command
determines the information RSCS displays. For the QUERY SYSTEM NODES command, the DISPLAY
keyword determines the contents of the multiple-line responses. See z/VM: RSCS Networking Operation
and Use for more information about the QUERY command.

EMSG Settings
When RSCS issues a message, the CP EMSG setting of the user ID receiving the message determines how
the message is displayed. For QUERY command responses in columnar format, however, RSCS edits the
message as if EMSG TEXT is the current setting.

National Language Support
RSCS messages can be translated into any language that uses a 256 code-point EBCDIC character set.
Using the LANGUAGE configuration file statement, you can select the local and network language used
to issue messages. The local language is used for all messages issued to the local node. RSCS uses the
network language for all messages issued to remote nodes.

The translation repository contains all the message elements that can be translated into a national
language. These elements include:

• Fixed message text (the part of the text that does not change)
• Dictionary terms that are inserted in the message text (for example, "active" or "transferred")
• TOD clock formats
• Columnar message headers (for single and multiple columns).

The translation repository does not contain routing codes or information about message severity or
type. Also, the translation repository does not support multiple-format messages that were introduced in
Version 2.3 of RSCS.

Command Response Interface
The command response interface (CRI), which may also be called the application programming interface
(API), allows execs to associate commands with the response messages they receive from RSCS. z/VM:
RSCS Networking Operation and Use describes the format of CRI prefixes.

When a command contains a CRI prefix (for example, smsg rscs (mv.123456) query system
links), the command processor sets flags and fields in the MSGBLOK. This information determines the
format of the message response.

When a message is built, the specified CRI prefix can override the local or network language specified on
the LANGUAGE statement. As the message is issued, RSCS then adds the CRI prefix to the message.

Message Structure

128 z/VM: 7.3 RSCS Networking Diagnosis

The first character of the CRI prefix determines how the message is issued to the local node (using the
MSGNOH, SMSG, or MSG commands).

When the language-independent form of the CRI is specified, RSCS does not use any information from
the translation repository to build the message. Rather, all of the message information is taken from the
conversion repository. The conversion repository contains all nontranslatable formatting information and
the default routing and severity codes for each message.

If the language independent form of the CRI is specified on a columnar message, RSCS does not display
column headers or fixed text in the message. Substitution fields are issued in the order they are defined in
the conversion repository. Dictionary items (preceded by the letter D) are referred to by their index value.
All TOD clock values in the message are issued in the format: yyyymmddhhmmssuuuzzzzzz

Message Subscriptions
Subscriptions for specific messages can be entered using the SETMSG command or statement and the
SET command. These messages may be about a link or may include all RSCS console messages. RSCS
uses MONITENT entries to identify each message subscription. See “Message Subscriptions” on page 30
for more information about MONITENT entries. z/VM: RSCS Networking Planning and Configuration and
z/VM: RSCS Networking Operation and Use contain more information.

Processing Messages
To issue a message, an RSCS task calls DMTMGXEP, directly or by invoking the RMSG macro (see z/VM:
RSCS Networking Exit Customization). As Figure 57 on page 130 shows, the DMTMGXEP entry point works
with the following modules to process and format the message:
DMTMGXEP

Accepts a message request from an RSCS task, gets any needed work areas, and calls DMTMGIAR to
issue the message to the correct destinations. Before returning control to the caller, DMTMGXEP frees
any work areas it obtained.

DMTMGIAR
Issues the message according to its routing codes and subscriptions. Before a message is issued to a
destination, DMTMGIAR calls DMTMGFFM to format the message.

Every 100th time a message that is part of a SETMSG subscription is not received, DMTMGIAR
issues message DMT616E to the command originator. Here, it calls the RMSG macro to enqueue an
appropriate MSGBLOK on the message queue (DMTREXMQ) of the REX task. The REX task then calls
DMTMGX to start processing the DMT616E message.

DMTMGFFM
Formats all lines of the message, according to the type of message and the language specified. It calls
DMTMGSUB to process any substitutions.

DMTMGSUB
Processes individual substitutions in a message.

Message Processing

Chapter 12. Message Processing 129

 +------+ +--------+
 | Task |<------------------>|DMTMGXEP|
 +------+ ^ +--+-----+
 | | ^
 | ˅ |
 +---+----+ +-----+--+ +-----------+
 |DMTREXMQ|<-------+DMTMGIAR+------>|Destination|
 +--------+ (616) +--+-----+ +-----------+
 | ^
 ˅ |
 +-----+--+
 |DMTMGFFM|
 +--+-----+
 | ^
 ˅ |
 +-----+--+
 |DMTMGSUB|
 +--------+

Figure 57. Overview of Message Processing

Preparing to Issue Messages
When a task calls DMTMGXEP, it points R1 to a MSGBLOK that contains all the information about the
message to be issued. The information includes the message number and the repositories where the
message resides. Because it is reentrant, many concurrently-executing tasks can call DMTMGXEP if each
task provides its own MSGBLOK.

Before calling DMTMGIAR, DMTMGXEP ensures that a message work area (MSGWA) is available. If
a MSGWA is unavailable, DMTMGXEP obtains one before calling DMTMGIAR and releases it before
returning control to the calling task. Because some tasks may keep an allocated MSGWA, DMTMGXEP
only allocates and deallocates a MSGWA as needed.

DMTMGXEP also attempts to find the MCNMSG entry for the requested message in the conversion
repository. If this message is not in the repository, DMTMGXEP issues message DMT099E and returns
control to the calling routine.

If less than 10 save areas are allocated when DMTMGXEP is called, it calls DMTQSAAB to allocate 10
additional save areas. DMTMGXEP calls DMTQSAUB to free those save areas before it returns control to
the calling task.

Processing Columnar Messages
To issue the first line of a columnar message, DMTMGXEP calls DMTMGIAR twice. The first call formats
the header; the second call formats the first row of information in the message body. To build the
remaining lines of the message, DMTMGXEP only calls DMTMGIAR once.

Between each call to DMTMGIAR, information about the columnar message is kept in the MSGWA and
an extension data area called a table display work area (TABWA). RSCS does not free the MSGWA or
TABWA while the columnar message is being processed, even if DMTMGXEP called DMTQSAAB to obtain
the MSGWA.

All columnar messages end with a text message. When the text message is detected, the TABWA is
deallocated immediately and the MSGWA may be deallocated before DMTMGXEP returns control. Some
commands that issue columnar messages do not end with a text message. Rather, these columnar
messages are ended by a message containing the special message number, TBEND. When the TBEND
message is specified, DMTMGXEP continues the usual end-of-table processing, but does not call
DMTMGIAR to issue a message.

Unlike text messages, information required for columnar messages must be carried from one call to the
next. Here, DMTMGXEP uses the same MSGBLOK supplied by the calling task to build each line of the
columnar message.

Message Processing

130 z/VM: 7.3 RSCS Networking Diagnosis

Exit 27
DMTMGXEP calls Exit 27, which can inspect or change fields in the MSGBLOK before the message is
issued. Exit 27 routines can also change the language in which a message is issued by specifying a
translation repository and calling DMTMGXEP again. DMTMGXEP ensures, however, that Exit 27 is not
called recursively. See z/VM: RSCS Networking Exit Customization for more information.

Returning Control to the Calling Task
When DMTMGXEP returns control to the calling task, register 15 contains one of the following return code
values:
0

Message issued successfully
12

Message is not defined in the conversion repository
Other

Indicates an error condition occurred when the message is delivered by a CP command (for example,
45 if the user ID is not logged on).

Issuing Messages to All Destinations
When DMTMGXEP complete its initial processing of the message request, it calls DMTMGIAR with the
following entry conditions:
R7

Points to the MCNMSG information about the message in the conversion repository.
R8

Points to the MSGBLOK.
R9

Points to the MSGWA, which contains MWAFLAG flags that identify the type of message being
formatted (the MSGBWA field in the MSGBLOK also points to the MSGWA).

DMTMGIAR processes this information to ensure the message is sent to the destinations specified by its
routing codes and subscriptions. DMTMGIAR contains the following processing sections:

• Code that checks the message routing codes (R, C, O, and V) and subscriptions and calls an issuing
routine. CRI options, such as incrementing the response counter, are also processed.

After the routing codes are determined, the routines check for any message subscriptions (SETMSG,
SET *, and SET linkid). The MGIMONIT routine processes messages that are part of a subscription.

• Routing code routines (MGIRSS, MGICP, and MGIORIG), which process the routing codes and
subscriptions.

Each of these routines calls DMTMGFFM to format the message in the appropriate language. The
message language is chosen according to the following criteria:

– If a language is specified on a CRI prefix, RSCS issues the message in that language.
– If a user language is specified in the MSGBLOK, the message is issued in that language
– If Exit 28 is enabled and an exit routine issues a return code to indicate an alternate language, the

specified language is used
– If no other languages are specified, RSCS issues the message in the local or network language

specified on the LANGUAGE statement.

When DMTMGFFM returns the formatted message, the routing code routines call an issuing routine
(described below) to issue the message to the specified destination.

• Issuing routines, which send the formatted message to its destination. These routines append EMSG
headers, time stamps, and CRI headers, as appropriate, to the message before sending the message.

Message Processing

Chapter 12. Message Processing 131

Two routines (MGICONS and MGILOCAL) process messages sent to the RSCS console and to users on
the local node. A third routine (MGINET) sends messages to users on remote nodes. DMTCOMGN is
called to identify all links to the specified node. The routine then calls DMTCOMNQ to enqueue the
message on the first available, connected link to that node.

• Utility routines (MGIAPIHR and MGIMONIT) to process subscriptions and CRI information.

MGIAPIHR formats the CRI header, if relevant, for messages sent to local or remote users.

MGIMONIT issues subscription messages to the specified users. It also ensures that the message is not
duplicated to the destination specified by its routing codes.

If a message that was subscribed to by a SET command is not received, RSCS cancels the subscription.
It enqueues a SET … OFF command on the command queue for the REX task. However, RSCS does
not cancel subscriptions entered by the SETMSG command. Rather, it issues message DMT616E to the
console every 100th time the subscribed message is not received. To do so, it invokes the RMSG macro
to enqueue the message request to the REX task. In turn, the REX task calls DMTMGXEP to issue the
message (see Figure 57 on page 130).

Exit 28
DMTMGIAR calls Exit 28, which can change the language in which a message is formatted. Exit 28
routines can also suppress the message. See z/VM: RSCS Networking Exit Customization for more
information.

Formatting Messages
After a DMTMGIAR routing code routine determines the message’s destination, it calls DMTMGFFM.

DMTMGFFM formats the message in the language specified by the MWAFLAG field. Each line of the
formatted message is placed in a MSGLINE area. These areas are chained together in the order the
message is displayed. Before formatting the message, DMTMGFFM checks if the current MSGLINE chain
has already been formatted. If it has, DMTMGFFM returns a pointer to DMTMGIAR and does not continue
processing.

If the chain has not been formatted, DMTMGFFM calls one of six formatting routines, which process the
translated and language-independent forms of each type of message:

• Text message (MGFTTEXT and MGFITEXT)
• Columnar message header (MGFTHEAD and MGFIHEAD)
• Columnar message body lines (MGFTBODY and MGFIBODY).

Message Formatting Routines
Each of the DMTMGFFM formatting routines is called with the following entry conditions:
R1

Points to the MWALTEXT field of the MSGWA, which points to the start of the chain of MSGLINE
entries for the message.

R6
Points to conversion information about the message, which is mapped by the MCNMSG DSECT in the
conversion repository.

R7
Points to translation information about the message, which is mapped by the MGRMSG DSECT in the
translation repository.

R8
Points to the MSGBLOK.

R9
Points to the MSGWA. The MWAFLAG field indicates the language in which the message is formatted.

Message Processing

132 z/VM: 7.3 RSCS Networking Diagnosis

When formatting a text message that requires translation, the formatting routine (MGFTTEXT) allocates
a MSGLINE for each line of the message text. The routine calls DMTMGSUB to process each substitution
value in the message text. Each line of the formatted message is then placed in a MSGLINE.

If the language-independent form of a text message was specified, the formatting routine (MGFITEXT)
only allocates one MSGLINE. Substitution values are processed, in the order they appear in the conversion
repository, by individual calls to DMTMGSUB and placed in the MSGLINE.

Two DMTMGFFM routines process columnar message headers. The MGFTHEAD routine processes the
message headers that require translation. This routine acquires a TABWA area to store information about
the columns in the header it is processing. The routine checks the MSGBSHOW bit mask to find the
columns, defined in the translation repository entry for the message, that should be displayed in the
message. It then stores the starting column and the length of the body lines in the TABWA.

The second routine, MGFIHEAD, processes columnar message headers in language-independent form.
Because the language-independent does not contain headers, this routine returns control to DMTMGIAR
with a null MSGLINE chain.

DMTMGFFM also contains two routines that process body lines of a columnar message. The first routine,
MGFTBODY, formats a columnar message line that requires translation. This routine uses the columnar
header information calculated by the MGFTHEAD routine to determine where each substitution value
should be placed. The routine then calls DMTMGSUB to process each substitution.

The second routine, MGFIBODY, processes the language independent form for each line in the body of a
columnar message. This routine also checks the MSGBSHOW bit mask to determine which columns are
needed for the message. It then calls DMTMGSUB to process any substitution values and places them in a
MSGLINE.

Utility Formatting Routines
DMTMGFFM also contains several utility routines that assist in the message formatting process.

The MGFNEWLN routine allocates a MSGLINE by calling DMTQSAAB and adds it to the MSGLINE chain for
the message. This MSGLINE is usually added to the end of the MSGLINE chain to ensure that the each line
of the message is displayed in the correct order. For columnar message headers, however, MGFNEWLN
adds the new MSGLINE to the start of the chain.

CHECKFLD determines the columns to be included in a columnar message by checking the MSGBSHOW
bit mask. The MOVETEXT routine moves text into its correct location in the MSGLINE and updates the
pointer to the end of the message text. If there is not enough space in the MSGLINE for the substitution
text, the text is truncated.

Returning Control to DMTMGIAR
When all lines of the message are processed, DMTMGFFM returns control to DMTMGIAR with the
following conditions:
R1

Points to a fullword field in the MSGWA, which in turns, points to the head of the MSGLINE chain.
If the MSGLINE chain has already been formatted when DMTMGFFM is called, R1 points to a chain
header. If the MSGLINE was not previously formatted, R1 points to the MWACCHED field.

R8
Points to the MSGBLOK

R9
Points to the MSGWA.

Processing Substitution Values
Any substitution values provided in the MSGBLOK must be formatted in the message. Each formatting
routine in DMTMGF (excluding MGFIHEAD) calls DMTMGSUB with the following entry conditions:

Message Processing

Chapter 12. Message Processing 133

R2
Points to the start of the available space in MSGLINE area for the message line being processed.

R3
Contains the length of the available space in the MSGLINE.

R5
Points to the contents of the message line, which is mapped by the MGRLINE DSECT in the translation
repository. When processing the body of a columnar message, R5 points to a TABWA.

R6
Points to the message contents, which is mapped by the MCNMSG DSECT in the conversion
repository.

R7
Points to additional translation information, which is mapped by the MGRMSG DSECT in the
translation repository.

R8
Points to the MSGBLOK.

R9
Points to the MSGWA.

R11
Points, indirectly, to the information that is used for the substitution. The MGRSUB DSECT in the
translation repository maps this information. For the language-independent form of a message, R11
contains the field number of the substitution.

DMTMGSUB formats one substitution and adds it to the message text accumulated in the MSGLINE. It
then returns an updated MSGLINE pointer and the remaining length of the MSGLINE to DMTMGFFM.

Substitutions are processed in two ways. For translated messages, some leading text is transferred,
followed by the substitution. The substitution may be padded with leading or trailing blanks or truncated
according to the justification and output field width specified in the conversion repository.

For language-independent messages, the field is converted and then transferred, without justification. A
three-digit prefix indicate the field length. However, dictionary terms are represented by the letter “D”.
They are followed by two digits that indicate the index number into a dictionary.

When converting a field, DMTMGSUB uses indirection chains to find the address and length of the data. It
then calls the appropriate routine in DMTMGS to convert the data. DMTMGSUB then pads the converted
data with the number of blanks specified by the output width and justification fields. Finally, DMTMGSUB
appends this field to the text of the MSGLINE. If the language-independent form is specified on a CRI
prefix, DMTMGSUB ignores the width and justification fields. Rather, it appends a 3-byte length prefix and
the text to the MSGLINE.

Returning Control to DMTMGFFM
When a message substitution is complete, DMTMGSUB returns control to DMTMGFFM with the following
conditions:
R2

Points to the next available byte in the MSGLINE.
R3

Contains the number of bytes remaining in the MSGLINE.

Message Repositories
Each message that RSCS issues is contained in a conversion repository. If issued in a national language,
the message is also contained in a translation repository. Each repository file consists of fixed-length,
80-byte records, which are sequence numbered to support the CMS UPDATE facility. A compiler converts
each source file into object code, which issues a message. z/VM: RSCS Networking Exit Customization
contains more information about the structure of message repositories.

Message Repositories

134 z/VM: 7.3 RSCS Networking Diagnosis

Conversion Repository
The conversion repository has the MCONV file type. Repository statements contain the following
information about each message; other statements in the repository support symbolic references:

• One or more default routing codes
• If it is a private message (one that cannot be part of a SETMSG subscription)
• Conversion information for any message fields, including:

– MSGBLOK parameter used to find the data
– How to access the data using this parameter
– How to convert and justify the data.

As Figure 58 on page 135 shows, the MCONV exec transforms all data in the source file of the conversion
repository into object form. The compiled conversion repository also contains an index based on the
message numbers of all messages. DMTMGXEP uses this index to find the correct repository entry for a
message number.

 MCONV
 xxxmmm MCONV ----------> xxxmmm TEXT
 EXEC
 +---------------------+
 | $xxxmmmm |
 | |
 | |
 | Compiled entries |
 | |
 | |
 | |
 +---------------------+
 | xxxmmmNX |
 | |
 | 1000 word index |
 | |
 +---------------------+

Figure 58. Compiling a Conversion Repository

Format of Compiled Repository Entries
Within the compiled repository (xxxmmm TEXT), each part of a message is mapped by DSECTs in the
MSGCONV macro. The DSECTs map the format of the entire message, substitution fields, and special
dictionary items.

The first 2 fullwords of MCNMSG contain general information about the message, including: its number,
type (text or columnar), default routing and severity codes, header text, and the number of substitutions
needed. As Figure 59 on page 135 shows, MCNMSG also contains an index to the substitution fields,
mapped by MCNFIELD.

 MCNMSG
 +---------------+
 | general | MCNFIELD
 | message | +---------------+
 | information | +-->| |
 +---------------+ | | |
 | index field 1 +------+ +---------------+
 +---------------+
 | index field 2 +------+ MCNFIELD
 +---------------+ | +---------------+
 +-->| |
 | |
 +---------------+

Figure 59. A Message in the Conversion Repository

MCNFIELD contains the parameter number, its input and output length, and flags that indicate the type of
substitution and justification needed. Indirection locates the values for the substitution. If one indirection
is needed, MCNFIELD points to the location of the information. If many indirections are needed to find

Message Repositories

Chapter 12. Message Processing 135

information, MCNFIELD contains a pointer to an indirection list. This list, in turn, points to the value for the
substitution. Bit 0 in MCNFIELD indicates if an indirection list is to be used.

Translation Repository
The translation repository has a MSGS file type. This repository contains all message elements that can
be translated, including numbered dictionary entries and TOD clock formats. For text messages, the
translation repository contains fixed text and substitution values, which include a field reference, TOD, or
dictionary items.

For columnar messages, the translation repository contains the following information:

• Substitution values needed in the message
• Bottom-level headings associated with the substitutions
• Higher-level groupings of headings.

Like the conversion repository, the message repository is also compiled into object form that contains the
message formats and an index (see Figure 60 on page 136). The two names for the index allow translation
repositories to be loaded dynamically or hard-linked into a load module.

 MCOMP
 xxxnnnnn MSGS ----------> xxxnnnnn TEXT
 EXEC
 +---------------------+
 | $xxxnnnn |
 | |
 | Compiled entries |
 | |
 | Numbered DICT |
 | and TOD values |
 | |
 +---------------------+
 | xxxnnnnn |
 | xxxMSGNX |
 | |
 | 1000 word index |
 | |
 +---------------------+

Figure 60. Compiling a Translation Repository

Format of Text Message Entries
DSECTs in the MSGTRANS macro map all of the translatable portions of the message in the compiled
repository. This information includes: the format of the entire message, single lines, substitution values,
and dictionary and TOD items.

The MGRMSG area contains information about the message format (text or columnar). For text messages,
MGRMSG indicates the number of lines needed for the message and an index to the message lines, which
are represented by MGRLINE (see Figure 61 on page 136).

 MGRMSG MGRLINE
 +---------------+ +---------------+
 | message | | | |
 | format | +-->| |
 | information | | | |
 +---------------+ | +---------------+
 | index line 1 +------+
 +---------------+
 | index line 2 +------+ MGRLINE
 +---------------+ | +---------------+
 | | |
 +-->| |
 | |
 +---------------+

Figure 61. Structure of a Text Message

Message Repositories

136 z/VM: 7.3 RSCS Networking Diagnosis

Each MGRLINE represents one line of the message. It contains the fixed message text and a pointer to
an index for the substitutions. The index points to MGRSUB areas; each represents one substitution. If a
dictionary item is needed for the substitution, the MGRSUB, in turn, points to a MGRDICT area. Figure 62
on page 137 shows the how these areas interact to build a line of message text.

 MGRLINE
 +---------------+
 | fixed text |
 +---------------+
 | index pointer |
 +------+--------+
 |
 ↓ +---------------+
 +---------------+ +->| MGRSUB |
 | index sub. 1 +-----+ +---------------+
 +---------------+
 | index sub. 2 +-----+ +---------------+ +---------------+
 +---------------+ +->| MGRSUB +------>| MGRDICT |
 +---------------+ +---------------+

Figure 62. Building the Message Text

TOD and dictionary substitutions are encoded as pointers to literal or numbered items. If a TOD or
dictionary item is numbered, its number will be greater than 1000.

Format of Columnar Message Entries
When building a columnar message, the MGRMSG area points to substitution and header indexes for each
column of information to be displayed (see Figure 63 on page 137). MGRHEAD maps information about
each column heading.

 MGRMSG
 +---------------+ +---------------+
 | message | +---------------+ +->| MGRSUB |
 | format | | substitution +----+ +---------------+
 | information | +-->| |
 +---------------+ | | index +----+ +---------------+
 | index pointer +---+ +---------------+ +->| MGRSUB |
 +---------------+ +---------------+
 | | +---------------+ +---------------+
 | pointers to +------>| MGRHEAD +------>| MGRHEAD |
 | bottom-level | +---------------+ +---------------+
 | header index |
 | | +---------------+
 | +------>| MGRHEAD |
 +---------------+ +---------------+

Figure 63. Building a Columnar Message

For example, message DMT696I, issued in response to the QUERY SYSTEM EXITS command, can produce
the following bottom-level column headers:

 696 TABLE: <#
 Exit \Number$(1)#
 # Entry Point \Name Address <#
 EP Name $(2)#
 EP\Address $(3)#
 >#
 Status$(4 DICT <on\off>)#
 # Base\ Address$(5)#
 >

 +--------+ +------+ +---------+ +--------+ +---------+
 | Exit | | EP | | EP | | Status | | Base |
 | Number | | Name | | Address | | | | Address |
 +--------+ +------+ +---------+ +--------+ +---------+

Figure 64. Bottom Level Column Headers

Message Repositories

Chapter 12. Message Processing 137

When the entry point name and address are displayed in the response message, their column headers
point to a higher level header. The columnar message response from the QUERY command produces the
following display (the high-level column header is highlighted). The exit number and address values are
substitution values. The “Status” column contains dictionary terms.

 Exit Entry Point Base
 Number Name Address Status Address

 11 EXITPT11 000A9D78 on 0000C1E0
 29 EXITPT29 000C6DF6 off 0000C1D0
 2 exits found

Message Compilers
RSCS supplies two execs that compile the message repositories:
MCONV

Compiles conversion repositories from source files with the file type of MCONV.
MCOMP

Compiles translation repositories from source files with the file type of MSGS.

Each compiler transforms the syntax in the source file into object format. The compilers produce
assembler code and invoke the system assembler to create a TEXT deck. The compilers also issue
messages if processing errors occur.

You should compile the repositories if you alter the repositories supplied with RSCS. See z/VM: RSCS
Networking Exit Customization for more information about the message compilers.

Each compiler contains the following processing sections:

• Lexical, listing, and error processing routines.

The lexical analysis routines open the input file, using the CMS UPDATE facility, read each token, and
close the file.

The listing and error processing routines find and record any errors that may occur as the file is
compiled.

• Assembler output routines, which generate assembler labels, opcodes, operands, and comment lines.
The system assembler uses this information to create the processed TEXT file.

• Main compiler routines that verify the syntax of the messages in each repository. They also convert this
data into the format mapped by macros in MSGCONV (for the conversion repository) and MSGTRANS
(for the translation repository).

When processing the data, the compiler routines call the lexical routines to get input, the error routines
to reflect errors, and assembler routines to generate the appropriate output.

Message Repositories

138 z/VM: 7.3 RSCS Networking Diagnosis

Part 2. Diagnostic Aids

This part contains information to help you detect and diagnose problems that may occur in the RSCS
virtual machine.

© Copyright IBM Corp. 1990, 2022 139

140 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 13. Debugging Considerations

At various times, you may need to analyze a dump or trace to identify and correct a problem in RSCS.
Errors may occur because of exit routines, programming errors, or hardware devices. This chapter
describes some of the facilities you can use to diagnose and identify problems.

Abend Processing
This section describes facilities and techniques for gathering information from abend dumps. z/VM: RSCS
Networking Messages and Codes describes the RSCS abend codes. z/VM: CP Messages and Codes contains
information about GCS abend codes.

Console Abend Messages
To obtain reference material about an abend, such as messages, you should spool the RSCS console. You
can then use the RSCS SCHEDULE command to close the console log at specified times, for example at
midnight. For more information, see z/VM: RSCS Networking Operation and Use. See z/VM: CP Commands
and Utilities Reference for information about the CP SPOOL command.

If an abend occurs, RSCS attempts to send messages to the operator’s console. These messages can
indicate the type of abend that occurred, the RSCS task that is involved, and the register contents at the
time of the abend. Often, you can use this information to find the problem without reviewing additional
dump information.

For example, if an 0C5 abend occurs in the REX task, RSCS may issue the console message shown in
Figure 65 on page 141.

16:05:40 DMTMAN010I RSCS Networking loaded at 00019000-000A4F90, CVT at 0001AFF8
COMMAND COMPLETE
16:05:44 DMTMAN090T ABEND S0C5 in supervisor task DMTREX -- task terminated
16:05:44 DMTMAN082I Program Status Word = FFE00005 C0C1C606
16:05:44 DMTMAN082I R0 - R3 = 01002000 A001B3B4 00040000 0001A7D8
16:05:44 DMTMAN082I R4 - R7 = 0001AAA8 0001AAA0 0001AAA8 0001ADC0
16:05:44 DMTMAN082I R8 - R11 = 000B8E88 0001AFF8 0001B000 0001C270
16:05:44 DMTMAN082I R12 - R15 = 0001B270 0000B058 4001B3C8 D7C1C600
16:05:44 DMTMAN082I RSCS was loaded from 00019000 to 000A4F90

DMKMSG057W BUB2 not receiving; disconnected
16:08:16
MSG FROM BUB2 : CSIABD226E Application 'RSCS' failed - System abend 0C5-0000

16:08:16 DMTMAN092T Supervisor failure -- RSCS Networking terminated
Ready;

Figure 65. Sample Console Abend Message

The first message, DMT010I, identifies the address at which the RSCS load module was loaded in virtual
storage. This message appears in this example because RSCS had started to initialize; it may not be
issued if an abend occurs in another task. The next message, DMT090T, identifies the type of abend that
occurred.

The DMT082I messages that follow display the contents of the program status word (PSW) at the time
of the abend. The PSW generally points to the instruction that immediately follows the last instruction
that ran successfully. The DMT082I messages then display the register contents at the time of the abend,
which can help you to isolate the error. The last DMT082I message contains the load address and virtual
storage limit for the RSCS virtual machine. The DMT092T message displays the current status of the RSCS
virtual machine.

Debugging RSCS

© Copyright IBM Corp. 1990, 2022 141

Abend Dumps
If the console messages are not sufficient to isolate a problem, you should examine the dump that
is associated with the error. Dumps are produced when GCS detects an error. They are sent to the
user ID specified on the DUMP configuration file statement (see z/VM: RSCS Networking Planning and
Configuration).

If you specify the VM operand on the DUMP statement, any resulting dumps will be in the VMDUMP
format type, RSCSV2. You can then process the dump with the Dump Viewing Facility. See z/VM: Dump
Viewing Facility for more information.

Reading Dumps
If you specify VM on the DUMP statement, you can process the RSCS dump with the Dump Viewing
Facility. Chapter 14, “Examining Dumps,” on page 157 contains more information about using these
facilities. For example, you can issue the DUMPSCAN DISPLAY subcommand to display various locations
in the dump.

Subcommand Function

dumpscan nnnnn nnnnn is the problem number of the PRBnnnnn DUMP file.

display 298 Displays the address of the abend work area at location X'298'.

display addr.20 Displays the contents of the abend work area at address addr. This area
contains the registers (displacement X'0' to X'3C') and the PSW (displacement
X'40') at the time of the problem. This is the same information provided by the
RSCS console dump.

display 5C4 Displays the GCS NUCON extension (SIE).

display nnnn Displays the actual SIE address from the preceding operation.

display xxxx Displays the address from the preceding operation plus X'14' bytes; this is the
address of the first task block in dispatch queue.

At this point, you can follow the task block chain to find the task block for the abending task. You can then
locate the state block for the task and determine the routine that was called when the abend occurred.
See z/VM: Group Control System for information about verifying the contents of the task and state blocks.

System Abend Considerations
If a system abend occurs, the dump will contain an abend code that identifies the error. z/VM: CP
Messages and Codes lists the abend codes for GCS.

RSCS also provides abend information in dumps. Register 12 is the base register for the modules within
the RSCS load library. You should verify that this address is within the load range of the RSCS virtual
machine. The console dump messages (see Figure 65 on page 141) contain this information.

Program Checks
Program checks always produce an abend; however, all abends are not caused by program checks. When
a program check occurs, you should examine the PSW. The last byte of the first word of the PSW can
identify the type of error that occurred. z/Architecture Principles of Operation (publibfi.boulder.ibm.com/
epubs/pdf/dz9zr011.pdf) contains more information about the types of program checks that may occur.
The contents of the registers at the time of the problem may also identify the cause of the program check.

Finding RSCS Data Areas
You can use the communication vector table (CVT) to locate other RSCS data areas in a dump. To find the
address of the CVT, issue the QUERY SYSTEM LOADADDRESS command. As Figure 65 on page 141 shows,

Debugging RSCS

142 z/VM: 7.3 RSCS Networking Diagnosis

http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr011.pdf
http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr011.pdf

the command response identifies the location of the CVT. For more information about the CVT format, see
“CVT” on page 202.

GCS Considerations
If the RSCS dump is a VMDUMP-type dump, you can use Dump Viewing Facility commands to
find information about tasks before the problem occurred. For example, you can issue the TACTIVE
subcommand to display task blocks and state blocks.

However, if the dump cannot be processed or it is not in the VMDUMP format, you can still find information
in the dump. The following sections describe how to find GCS information if you cannot use the TACTIVE
subcommand.

Active Tasks
To find the address of the current active task for RSCS, find the address at location X'214' in the dump.
After finding this address, you should then determine if the task was a parent task or a subtask.

To do so, verify the address at displacement X'88' into the active task address obtained from location
X'214'. If you find a valid address, the active task is a subtask. To find its parent task, use this address
from displacement X'88'. If no address is at this position, this is the parent task.

After the parent task is displayed, you can find the first state block for the task. The state block address
in the task block points to the last program called by the task. It does not point to the first task that GCS
gave control. The first 8 bytes of a state block contains the program name. The first state block in the
chain contains the name “INIT”, which identifies the GCS program that gives control to RSCS. The second
state block from the bottom of the chain will contain the DMTBPL module name.

Tracing State Blocks
State blocks are chained together; the task block points to the most active state block. A state block also
contains pointers at the following displacements. By tracing the state blocks, you can follow the activity of
an RSCS task.
X'10'

Points to the next state block in the chain.
X'14'

Points to the preceding state block in the chain.

The state blocks also contain the PSW (displacement X'08') and registers (displacement X'30' through
X'6C'). However, these values refer to the task that is running under the preceding state block in the chain;
they do not refer to this state block. The next state block, pointed to at displacement X'10', would contain
this information about this state block.

Trace Data Format
If errors occur on a link, you may need to trace the transactions on the link. Errors may include lost data
during transmission, protocol violations, or hardware errors. To start tracing transactions, issue the TRACE
command for the link on which the problem occurs. See z/VM: RSCS Networking Operation and Use for
more information about the TRACE command. Link tracing can also be turned on via the DEFINE and
START commands. The following sections show examples of trace formats for several types of links.

Sample CTC Trace (RECORDS Option)
This example shows trace data from a networking channel-to-channel (CTC) link at line address 700. The
link is receiving data from a remote node. The example shows the format of TRACE command when the
RECORDS parameter is specified. The data from the transmission buffers is decompressed before being
added to the trace. Each trace record is identified by its contents (NJE headers or data).

Debugging RSCS

Chapter 13. Debugging Considerations 143

 RSCS LINE TRANSACTION LOG FOR LINK RSCS3 , TYPE NJE , LINE 700 ON 4/04/07 AT 9:07:57 EST
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=RECEIVE TIME= 9:07:57.202
 NMR 015CA8C4 9A80 0000 0077043A D9E2C3E2 F1404040 40000041 00000000 00D9E2C3 E2F34040 4000C4D4
....RSCS1 RSCS3 .DM
 0020 E3D5C3D9 F9F0F5C9 40E28987 95969540 96864093 89959240 D9E2C3E2 F1408396 *TNCR905I Signon of
link RSCS1 co*
 0040 94979385 A3856B40 82A48686 859940A2 89A9857E F4F0F9F6 *mplete, buffer
size=4096 *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:07:57.204
 NMR 01201AE4 9A80 0000 0077043A D9E2C3E2 F3404040 40000041 00000000 00D9E2C3 E2F14040 4000C4D4
....RSCS3 RSCS1 .DM
 0020 E3D5C3D9 F9F0F5C9 40E28987 95969540 96864093 89959240 D9E2C3E2 F3408396 *TNCR905I Signon of
link RSCS3 co*
 0040 94979385 A3856B40 82A48686 859940A2 89A9857E F4F0F9F6 *mplete, buffer
size=4096 *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.310
 RIF 015D1634 9099
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=RECEIVE TIME= 9:08:32.357
 PERM 015CA8C4 A099
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.360
 JOBH 015D1634 99C0 0000 00CC0000 00C80000 05ADC1C1 00070101 FF000000 00000000 00000000 D9E2C3E2
.....H....AA................RSCS
 0020 F1F4F5F3 D4C1C9D5 E3404040 00000000 00000000 00000000 00000000 AADEF5B8
1453MAINT 5.
 0040 F1800000 D9E2C3E2 F1404040 D4C1C9D5 E3404040 D9E2C3E2 F1404040 D4C1C9D5 *1...RSCS1 MAINT
RSCS1 MAIN*
 0060 E3404040 D9E2C3E2 F3404040 D4C1C9D5 E3404040 D9E2C3E2 F3404040 D4C1C9D5 *T RSCS3 MAINT
RSCS3 MAIN*
 0080 E3404040 00000000 00000000 00000000 00000000 00000000 00000000 D4C1C9D5
T MAIN
 00A0 E3404040 40404040 40404040 40404040 E2E8E2D7 D9D6C740 00000000 00000000 *T
SYSPROG*
 00C0 00000000 00000000 0000000F
*............ *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.360
 DSH 015D1634 99E0 0000 01000080 00700000 D9E2C3E2 F3404040 D4C1C9D5 E3404040 D7D9D6C6 C9D3C540 *........RSCS3
MAINT PROFILE *
 0020 C5E7C5C3 40404040 40404040 40404040 000000C1 0000000F 00420089 01000000
EXEC ...A.......i....
 0040 E2E3C1D5 C4C1D9C4 40404040 40404040 00000000 00000000 00000000 00000000
STANDARD
 0060 00000000 00000000 A0000000 40404040 40404040 00B88700 00C14100 E2E8E2D7
............ ..g..A..SYSP
 0080 D9D6C740 D7D9D6C6 C9D3C540 40404040 C5E7C5C3 40404040 40404040 00320202 *ROG PROFILE
EXEC *
 00A0 D9E2C3E2 F3404040 40D4C1C9 D5E34040 4040F5F0 40404040 40404040 40404040 *RSCS3 MAINT
50 *
 00C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
* *
 00E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
* *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.382
 DSH 015D1634 99E0 0000 00300001 40404040 40404040 40404040 40404040 40404040 40404040 40404040
*.... *
 0020 40404040 40404040 40404040 00000000
* *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.382
 REC 015D1634 9990 0000 028B40
*.. *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.382
 REC 015D1634 9990 0000 7801C6C9 D3C57A40 D7D9D6C6 C9D3C540 40C5E7C5 C3404040 4040C1F1 40404040 *..FILE: PROFILE
EXEC A1 *
 0020 40404040 40404040 40404040 E5D461C5 E2C140C3 9695A585 99A281A3 89969581 * VM/ESA
Conversationa*
 0040 9340D496 9589A396 9940E2A8 A2A38594 40404040 40404040 40404040 40404040 *l Monitor
System *
 0060 40404040 40D7C1C7 C540F0F0 F0F0F140 40404040 40404040 40 * PAGE
00001 *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.382
 REC 015D1634 9990 0000 021B40

Debugging RSCS

144 z/VM: 7.3 RSCS Networking Diagnosis

*.. *
--

 .
 . (additional data records)
 .
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.397
 REC 015D1634 9990 0000 0F097DC1 C3C3C5E2 E240F2F9 F140E97D *..'ACCESS 291
Z' *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.398
 REC 015D1634 9990 0000 16097DE2 C5E340C6 C9D3C5D7 D6D6D340 E5D4E2E8 E27A7D *..'SET FILEPOOL
VMSYS:' *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.398
 REC 015D1634 9990 0000 11097DE2 C5E340C3 D4E2E3E8 D7C540D9 E37D *..'SET CMSTYPE
RT' *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=SEND TIME= 9:08:32.413
 JOBT 015D1634 99D0 0000 003C0000 002C0000 00C10000 00000000 00000000 00000000 00000000 00000000
.........A......................
 0020 0000000F 00000000 00000000 07070707 000C8900 00000000 00000163
*..................i......... *
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=RECEIVE TIME= 9:08:32.631
 FCMP 015CA8C4 C099
--

 TYPE TANKADDR CTLB DISP TANKDATA DIRECTION=RECEIVE TIME= 9:08:32.631
 NMR 015CA8C4 9A80 0000 20770454 D9E2C3E2 F1404040 01D4C1C9 D5E34040 40D9E2C3 E2F34040 4000C4D4 *....RSCS1 .MAINT
RSCS3 .DM*
 0020 E3C1E7D4 F1F0F4C9 40C68993 85404DF1 F4F5F35D 40A29796 96938584 40A39640 *TAXM104I File (1453)
spooled to *
 0040 D4C1C9D5 E3406060 40969989 87899540 D9E2C3E2 F14DD4C1 C9D5E35D 40F0F461 *MAINT -- origin
RSCS1(MAINT) 04/*
 0060 F0F461F0 F740F0F9 7AF0F87A F3F140C5 E2E3 *04/07 09:08:31
EST *

Sample CTC Trace (ALL Option)
The following example shows a trace (TRACE ALL) of a networking CTC link at line address 700. This
example shows how I and J sign-on records may appear in a trace.

 RSCS LINE TRANSACTION LOG FOR LINK RSCS3 , TYPE NJE , LINE 700 ON 4/04/07 AT 8:20:14 EST
--

 ADDR TYPE DISP SCSW=01884411 000A0400 90000001 SENSE=00 TIME= 8:20:14.168
 C 000A03F8 CCW ---- 43200001 00000000
 00000000 DATA 0000 00
*. *
--

 ADDR TYPE DISP SCSW=00884007 015C9CA0 0C000000 SENSE=00 TIME= 8:20:14.172
 S 015C9C98 CCW ---- 14200001 015C9D82
 015C9D82 DATA 0000 07
*. *
--

 ADDR TYPE DISP SCSW=00884007 015C9CB8 0C00002D SENSE=00 TIME= 8:20:14.175
 W 015C9CA0 CCW ---- 01600002 000A0408
 000A0408 DATA 0000 323D
*.. *
 C 015C9CA8 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 R 015C9CB0 CCW ---- 0220002F 015BA018
 015BA018 DATA 0000 012D
*.. *
--

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000001 SENSE=00 TIME= 8:20:14.182
 S 015C9C48 CCW ---- 14600001 015C9D82
 015C9D82 DATA 0000 07
*. *
 TW 015C9C60 CCW ---- 01600002 000A040A
 000A040A DATA 0000 1070
*.. *
 TC 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 0220002F 015BA018

Debugging RSCS

Chapter 13. Debugging Considerations 145

 015BA018 DATA 0000 1002808F CFF0C929 D9E2C3E2 F3404040 01000000 00000010 00404040 40404040
*.....0I.RSCS3 *
 0020 40404040 40404040 40009C00 0000
* *
--

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000F9D SENSE=00 TIME= 8:20:14.216
 S 015C9C48 CCW ---- 14600001 015C9D82
 015C9D82 DATA 0000 07
*. *
 TW 015C9C60 CCW ---- 01600030 015DE008
 015DE008 DATA 0000 1002808F CFF0D129 D9E2C3E2 F1404040 01FFFFFF FF000010 00404040 40404040
*.....0J.RSCS1 *
 0020 40404040 40404040 40009C00 00000000
* *
 TC 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 02201002 015DA008
 015DA008 DATA 0000 1002818F CF9A80FF 0077043A D9E2C3E2 F1404040 40000041 00000000 00D9E2C3
..a.........RSCS1 RSC
 0020 E2F34040 4000C4D4 E3D5C3D9 F9F0F5C9 40E28987 95969540 96864093 89959240 *S3 .DMTNCR905I
Signon of link *
 0040 D9E2C3E2 F14083D9 96949793 85A3856B 4082A486 86859940 A289A985 7EF4F0F9 *RSCS1 cRomplete,
buffer size=409*
 0060 F6000010 26
*6.... *
--

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000FFA SENSE=00 TIME= 8:20:14.240
 S 015C9C48 CCW ---- 14600001 015C9D82
 015C9D82 DATA 0000 07
*. *
 TW 015C9C60 CCW ---- 01600065 015E0008
 015E0008 DATA 0000 1002818F CF9A80FF 0077043A D9E2C3E2 F3404040 40000041 00000000 00D9E2C3
..a.........RSCS3 RSC
 0020 E2F14040 4000C4D4 E3D5C3D9 F9F0F5C9 40E28987 95969540 96864093 89959240 *S1 .DMTNCR905I
Signon of link *
 0040 D9E2C3E2 F34083D9 96949793 85A3856B 4082A486 86859940 A289A985 7EF4F0F9 *RSCS3 cRomplete,
buffer size=409*
 0060 F6000010 26
*6.... *
 TC 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 02201002 015DC008
 015DC008 DATA 0000 1002828F CF001026
*..b..... *
--

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000FFA SENSE=00 TIME= 8:20:14.243
 S 015C9C48 CCW ---- 14600001 015C9D82
 015C9D82 DATA 0000 07
*. *
 TW 015C9C60 CCW ---- 01600008 015C93A0
 015C93A0 DATA 0000 1002828F CF001026
*..b..... *
 TC 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 02201002 015DC008
 015DC008 DATA 0000 1002838F CF001003
*..c..... *
--

 ADDR TYPE DISP SCSW=00884007 015C9C68 0C000000 SENSE=00 TIME= 8:20:14.284
 S 015C9C48 CCW ---- 14600001 015C9D82
 015C9D82 DATA 0000 07
*. *
 TW 015C9C60 CCW ---- 01200008 015C93B7
 015C93B7 DATA 0000 1002838F CF001003
*..c..... *
--

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000FFA SENSE=00 TIME= 8:24:49.975
 C 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 02201002 015DC008
 015DC008 DATA 0000 1002848F CF001026
*..d..... *
--

 ADDR TYPE DISP SCSW=01000011 00000000 90000000 SENSE=00 TIME= 8:24:49.977
 S 015C9C48 CCW ---- 14600001 015C9D82
--

 ADDR TYPE DISP SCSW=00884007 015C9CA0 0C000000 SENSE=00 TIME= 8:24:49.980
 S 015C9C98 CCW ---- 14200001 015C9D82
 015C9D82 DATA 0000 07
*. *
--

Debugging RSCS

146 z/VM: 7.3 RSCS Networking Diagnosis

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000FF7 SENSE=00 TIME= 8:24:49.985
 W 015C9C60 CCW ---- 0160000B 015DE008
 015DE008 DATA 0000 1002848F CF909900 001026
*..d...r.... *
 TC 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 02201002 015DC008
 015DC008 DATA 0000 1002858F CFA09900 001026
*..e...r.... *
--

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000F80 SENSE=00 TIME= 8:24:50.406
 S 015C9C48 CCW ---- 14600001 015C9D82
 015C9D82 DATA 0000 07
*. *
 TW 015C9C60 CCW ---- 01600413 015E0008
 015E0008 DATA 0000 1002858F CF99C0FF 00CC0000 00C80000 05ABC1C1 00070101 FF000000 00000000
..e..r.......H....AA............
 0020 00000000 D9E2C3E2 F1F4F5F1 D4C1C9D5 E3404040 00000000 00000000 00000000
....RSCS1451MAINT
 0040 00000000 AADEEBFF F374A400 00D9E2C3 E2F14040 40D4C1C9 D5E34040 40D9E2C3 *........3.u..RSCS1
MAINT RSC*
 0060 E2F14040 40D4C1C9 D5E34040 40D9E2C3 E2F34040 40D4C1C9 D5E34040 40D9E2C3 *S1 MAINT RSCS3
MAINT RSC*
 0080 E2F34040 40D4C1FF C9D5E340 40400000 00000000 00000000 00000000 00000000 *S3
MA.INT *
 00A0 00000000 0000D4C1 C9D5E340 40404040 40404040 40404040 4040E2E8 E2D7D9D6
......MAINT SYSPRO
 .
 . (additional data)
 .
 0380 405C40F2 F9F17D00 9990D00F 097DC1C3 C3C5E2E2 40F2F9F1 40E97D00 9990D716 * * 291'.r....'ACCESS
291 Z'.r.P.*
 03A0 097DE2C5 E340C6C9 D3C5D7D6 D6D340E5 D4E2E8E2 7A7D0099 90D21109 7DE2C5E3 *.'SET FILEPOOL
VMSYS:'.r.K..'SET*
 03C0 40C3D4E2 E3E8D7C5 40D9E37D 0099D0FC 003C0000 002C0000 00C10000 00000000 * CMSTYPE
RT'.r...........A......*
 03E0 00000000 00000000 00000000 00000000 0000000F 00000000 00000000 07070707
................................
 0400 000C8900 00000000 00000163 00998000 001026
*..i..........r..... *
 TC 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 02201002 015DA008
 015DA008 DATA 0000 1002868F CFC09900 9A80FF20 770454D9 E2C3E2F1 40404001 D4C1C9D5 E3404040
*..f...r........RSCS1 .MAINT *
 0020 D9E2C3E2 F3404040 00C4D4E3 C1E7D4F1 F0F4C940 C6899385 404DF1F4 F5F15D40 *RSCS3 .DMTAXM104I
File (1451) *
 0040 A2979696 93858440 A396F340 D4C1C9D5 E3406060 40969989 87899540 D9E2C3E2 *spooled to3 MAINT --
origin RSCS*
 0060 F14DD4C1 C9D5E35D 40F0F461 F0F461F0 F740F0F8 7AF2F47A F4F840C5 E2E30000 *1(MAINT) 04/04/07
08:24:48 EST..*
 0080 1026
*.. *
--

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000FFA SENSE=00 TIME= 8:24:50.500
 S 015C9C48 CCW ---- 14600001 015C9D82
 015C9D82 DATA 0000 07
*. *
 TW 015C9C60 CCW ---- 01600008 015C93CE
 015C93CE DATA 0000 1002868F CF001026
*..f..... *
 TC 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 02201002 015DC008
 015DC008 DATA 0000 1002878F CF001026
*..g..... *
--

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000FFA SENSE=00 TIME= 8:24:50.571
 S 015C9C48 CCW ---- 14600001 015C9D82
 015C9D82 DATA 0000 07
*. *
 TW 015C9C60 CCW ---- 01600008 015C93E5
 015C93E5 DATA 0000 1002878F CF001003
*..g..... *
 TC 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 02201002 015DC008
 015DC008 DATA 0000 1002888F CF001003
*..h..... *
--

 ADDR TYPE DISP SCSW=00884007 015C9C98 0C000FFA SENSE=00 TIME= 8:25:00.983
 C 015C9C80 CCW ---- 07600001 00000000
 00000000 DATA 0000 00
*. *
 TR 015C9C90 CCW ---- 02201002 015DC008

Debugging RSCS

Chapter 13. Debugging Considerations 147

 015DC008 DATA 0000 1002898F CF001026
*..i..... *
--

 ADDR TYPE DISP SCSW=00884007 015C9C68 0C000000 SENSE=00 TIME= 8:25:01.000
 S 015C9C48 CCW ---- 14600001 015C9D82
 015C9D82 DATA 0000 07
*. *
 TW 015C9C60 CCW ---- 01200009 015C93FC
 015C93FC DATA 0000 1002908F CFF0C20000
*.....0B.. *

Sample SNANJE Trace
This example trace shows several VTAM requests on an SNANJE-type link.

 RSCS LINE TRANSACTION LOG FOR LINK RSCS2 , TYPE SNANJE , LU MBM3B ON 4/04/07 AT 8:30:27 EST
--

 ADDR TYPE DISP REQ TYPE=OPNDST R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=
8:30:27.203
 015C9A5C RPL 0000 00201770 800AC5B6 00000000 00000000 00001024 00800000 0006B898 00000000
......E....................q....
 0020 015C9C1C 0100002E 20800000 00000000 00000000 00000000 10308450 00000000
.........................d&;...*
 0040 80800000 40000000 00000000 00000000 00000000 00000000 00000000 00000000
....
 0060 80008012 00000000 00000000 00000000
*................ *
 015C9C1C DATA --
--

 ADDR TYPE DISP REQ TYPE=SEND R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=
8:30:27.211
 015C9ACC RPL 0000 00202270 800ACA6E 015C9D94 00000000 00041024 80800000 0006B898 00000000
.......>..m...............q....*
 0020 015C9DA8 0100002E 29800000 00000000 00000008 00000000 10309450 00000000
..y......................m&;...*
 0040 80800001 42000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0060 80008013 00000000 00000000 00000000
*................ *
 015C9DA8 DATA 0000 08040400 0000C080
*........ *
--

 ADDR TYPE DISP REQ TYPE=RECEIVE R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=
8:30:27.224
 015C9B3C RPL 0000 00202370 800ACC68 015C9D98 00000000 00001024 00800000 0006B898 0B800000
..........q...............q....*
 0020 015BF020 0100002E 29800000 00000000 00000008 0000002A 10309450 00000000 *.
$0.......................m&;...*
 0040 80800001 42000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0060 80008013 00000000 00000000 00000000
*................ *
 015BF020 DATA 0000 08040400 0000C080
*........ *
--

 ADDR TYPE DISP REQ TYPE=SEND R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=
8:30:27.226
 015C9ACC RPL 0000 00202270 800AECA0 00000000 00000000 008A1024 80800000 0006B898 00000000
...........................q....
 0020 015C9DA8 0100002E 20800000 00000000 00000000 00000000 10309450 00000000
..y......................m&;...*
 0040 80800001 42000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0060 80008012 00000000 00000000 00000000
*................ *
 015C9DA8 DATA --
--

 ADDR TYPE DISP REQ TYPE=RECEIVE R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=
8:30:27.258
 015C9B3C RPL 0000 00202370 800AD2D8 015C9D98 00000000 00001024 04800000 0006B898 03900000
......KQ..q...............q....*
 0020 015BF020 0100002E 29800000 00000000 0000002A 0000002A 10309450 00000000 *.
$0.......................m&;...*
 0040 80800002 42000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0060 80008012 00000000 00000000 00000000
*................ *
 015BF020 DATA 0000 29F0C929 D9E2C3E2 F2404040 01000000 00000004 00404040 40404040 40404040
*.0I.RSCS2 *
 0020 40404040 40001C00 0000
* *
--

 ADDR TYPE DISP REQ TYPE=RESETSR R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=

Debugging RSCS

148 z/VM: 7.3 RSCS Networking Diagnosis

8:30:27.259
 015C9B3C RPL 0000 00202470 800AD498 00000000 00000000 00001024 04800000 0006B898 03900000
......Mq...................q....
 0020 015BF020 0100002E 20800000 00000000 0000002A 0000002A 10309450 00000000 *.
$0.......................m&;...*
 0040 80800002 42000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0060 80008012 00000000 00000000 00000000
*................ *
 015BF020 DATA --
--

 ADDR TYPE DISP REQ TYPE=SEND R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=
8:30:27.295
 015C9ACC RPL 0000 00202270 800AD0B2 015C9D94 00000000 00041024 84800000 0006B898 00000000
..........m........d......q....*
 0020 01214040 0100002E 29800000 00000000 0000002A 00000000 10309450 00000000
.. m&;...
 0040 80800002 42000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0060 80008012 00000000 00000000 00000000
*................ *
 01214040 DATA 0000 29F0D129 D9E2C3E2 F1404040 01FFFFFF FF000004 00404040 40404040 40404040
*.0J.RSCS1 *
 0020 40404040 40001C00 0000
* *
--

 ADDR TYPE DISP REQ TYPE=RECEIVE R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=
8:30:27.326
 015C9B3C RPL 0000 00202370 800ADF02 015C9D98 00000000 00001024 04800000 0006B898 03900000
..........q...............q....*
 0020 015CA1EA 0100002E 29800000 00000000 0000005A 00000400 90309450 00000000
..................!......m&;...*
 0040 80800003 42000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0060 80008012 00000000 00000000 00000000
*................ *
 015CA1EA DATA 0000 039A8057 09007704 3AD9E2C3 E2F18403 000041C5 003FD9E2 C3E2F240 404000C4
.........RSCS1d....E..RSCS2 .D
 0020 D4E3D5C3 D9F9F0F5 C940E289 87959695 40968640 93899592 40D9E2C3 E2F14083 *MTNCR905I Signon of
link RSCS1 c*
 0040 96949793 85A3856B 4082A486 86859940 A289A985 7E04F1F0 F2F4 *omplete, buffer
size=.1024 *
--

 ADDR TYPE DISP REQ TYPE=SEND R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=
8:30:27.337
 015C9ACC RPL 0000 00202270 800ADAB6 015C9D94 00000000 00041024 84800000 0006B898 00000000
..........m........d......q....*
 0020 015D17EA 0100002E 29800000 00000000 0000005A 00000000 90309450 00000000
.).................!......m&;...
 0040 80800003 42000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0060 80008012 00000000 00000000 00000000
*................ *
 015D17EA DATA 0000 039A8057 09007704 3AD9E2C3 E2F28403 000041C5 003FD9E2 C3E2F140 404000C4
.........RSCS2d....E..RSCS1 .D
 0020 D4E3D5C3 D9F9F0F5 C940E289 87959695 40968640 93899592 40D9E2C3 E2F24083 *MTNCR905I Signon of
link RSCS2 c*
 0040 96949793 85A3856B 4082A486 86859940 A289A985 7E04F1F0 F2F4 *omplete, buffer
size=.1024 *
--

 ADDR TYPE DISP REQ TYPE=CLSDST R15=00 R0=00 RTNCD-FDBK2=0000 SSENSEI-MI=0000 USENSEI=0000 TIME=
8:30:35.671
 015C9A5C RPL 0000 00201F70 800AE0FE 00000000 00000000 00001024 00800000 0006B898 00000000
...........................q....
 0020 015C9C1C 0100002E 20800000 00000000 00000000 00000000 10308450 00000000
.........................d&;...*
 0040 80800000 40000000 00000000 00000000 00000000 00000000 00000000 00000000
....
 0060 80008012 00000000 00000000 00000000
*................ *
 015C9C1C DATA --

Sample TCPNJE Trace
This example shows excerpts of a trace (TRACE ALL) on a TCPNJE-type link. This example includes
trace data from IUCV calls for TCP/IP socket function calls (INITIALIZE, GETHOSTID, GETCLIENTID,
GETHOSTBYNAME, SOCKET, SETSOCKOPT, BIND, CONNECT, SEND, and RECV).

 RSCS LINE TRANSACTION LOG FOR LINK GDLVML00, TYPE TCPNJE , ON 8/07/06 AT 16:52:02 EDT
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5CD6 IPTRGCLS=00000000
 IPBFADR1=0001A1A0 IPBFLN1F=00000014 IPSRCCLS=00000000 IPMSGTAG=00000000

Debugging RSCS

Chapter 13. Debugging Considerations 149

 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5CD6

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CD6 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=INITIALIZE DISP RETURN CODE=00000000 ERROR NUMBER=0000 CALLID=008C5CD600000000 TIME=16:52:02.660
 000198AC ARG1 0000 C7C4D3E5 D4D3F0F0
*GDLVML00 *
 0001672C ARG2 0000 00000031
*.... *
 0001670C ARG3 0000 E3C3D7C9 D7404040
*TCPIP *
 00016730 ARG4 0000 0000000A
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=008C5CDB IPTRGCLS=00070000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5CDB

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CDB IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=GETHOSTID DISP RETURN CODE=09822848 ERROR NUMBER=0000 CALLID=008C5CDB00070000 TIME=16:52:02.664

--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=008C5CDC IPTRGCLS=001E0000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000030 RSVD=008C5CDC

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CDC IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=GETCLIENTID DISP RETURN CODE=00000000 ERROR NUMBER=0000 CALLID=008C5CDC001E0000 TIME=16:52:02.667
 00016748 ARG1 0000 00000002
*.... *
 000167DC ARG2 0000 00000002 C7C5C5D9 F3404040 C7C4D3E5 D4D3F0F0 40404040 40404040 40404040 *....GEER3
GDLVML00 *
 0020 40404040 40404040
* *
--

 IPARML after IUCV CALL SOCKBLOK=006BFCD0 SOCKCBLK=006BFB88
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=2817D6D1 IPTRGCLS=00030000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=006BFC28 IPBFLN2F=00000008 RSVD=2817D6D1

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=2817D6D1 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=GETHOSTBYNAM DISP RETURN CODE=0938D669 ERROR NUMBER=0000 CALLID=2817D6D100030000 TIME=16:52:02.670
 00019960 ARG1 0000 C7C4D3E5 D4F74BC5 D5C4C9C3 D6E3E34B C9C2D44B C3D6D400
*GDLVM7.ENDICOTT.IBM.COM *
 00019A60 ARG2 0000 00000018
*.... *
 00019A66 ARG3 0000 384
*.. *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=08 IPRCODE=00 IPMSGID=008C5CDD IPTRGCLS=00190000
 IPBFADR1=0001A1A0 IPBFLN1F=00000010 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5CDD

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CDD IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000001

 FUNC=SOCKET DISP RETURN CODE=00000000 ERROR NUMBER=0000 CALLID=008C5CDD00190000 TIME=16:52:02.672
 00016748 ARG1 0000 00000002
*.... *
 0001674C ARG2 0000 00000001
*.... *
 00016750 ARG3 0000 00000000
*.... *
 00000000 ARG4
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5CE5 IPTRGCLS=00170000
 IPBFADR1=0001A1A0 IPBFLN1F=0000000C IPSRCCLS=00000000 IPMSGTAG=00000000

Debugging RSCS

150 z/VM: 7.3 RSCS Networking Diagnosis

 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5CE5

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CE5 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=SETSOCKOPT DISP RETURN CODE=00000000 ERROR NUMBER=0000 CALLID=008C5CE500170000 TIME=16:52:02.700
 00016738 ARG1 0000 00000000
*.... *
 00016754 ARG2 0000 0000FFFF
*.... *
 00016758 ARG3 0000 00000008
*.... *
 000CD8CC ARG4 0000 00000001
*.... *
 000CD8D0 ARG5 0000 00000004
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5CE6 IPTRGCLS=00020000
 IPBFADR1=0001A1A0 IPBFLN1F=00000010 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5CE6

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CE6 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=BIND DISP RETURN CODE=00000000 ERROR NUMBER=0000 CALLID=008C5CE600020000 TIME=16:52:02.703
 00016738 ARG1 0000 00000000
*.... *
 000167CC ARG2 0000 00020000 09822848 00000000 00000000
*.....b.......... *
 000CD8DC ARG3 0000 00000010
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5CE7 IPTRGCLS=00040000
 IPBFADR1=0001A1A0 IPBFLN1F=00000010 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5CE7

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CE7 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=CONNECT DISP RETURN CODE=00000000 ERROR NUMBER=0000 CALLID=008C5CE700040000 TIME=16:52:02.709
 00016738 ARG1 0000 00000000
*.... *
 000167AC ARG2 0000 000200B1 09822848 00000000 00000000
*.....b.......... *
 000CD8DC ARG3 0000 00000010
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5CF0 IPTRGCLS=00140000
 IPBFADR1=0001A1A0 IPBFLN1F=00000035 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5CF0

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CF0 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=SEND DISP RETURN CODE=00000021 ERROR NUMBER=0000 CALLID=008C5CF000140000 TIME=16:52:02.715
 00016738 ARG1 0000 00000000
*.... *
 00016958 ARG2 0000 D6D7C5D5 40404040 C7C4D3C7 C5C5D940 09822848 C7C4D3E5 D4D3F0F0 09822848 *OPEN
GDLGEER .b..GDLVML00.b..*
 0020 00
*. *
 0001678C ARG3 0000 00000021
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=008C5CF3 IPTRGCLS=00100000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000039 RSVD=008C5CF3

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CF3 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=09822848

 FUNC=RECV DISP RETURN CODE=00000021 ERROR NUMBER=0000 CALLID=008C5CF300100000 TIME=16:52:02.719
 00016738 ARG1 0000 00000000

Debugging RSCS

Chapter 13. Debugging Considerations 151

*.... *
 00016958 ARG2 0000 C1C3D240 40404040 C7C4D3E5 D4D3F0F0 09822848 C7C4D3C7 C5C5D940 09822848 *ACK
GDLVML00.b..GDLGEER .b..*
 0020 00
*. *
 00016784 ARG3 0000 00000021
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5CF4 IPTRGCLS=00140000
 IPBFADR1=0001A1A0 IPBFLN1F=00000020 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5CF4

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CF4 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=SEND DISP RETURN CODE=0000000C ERROR NUMBER=0000 CALLID=008C5CF400140000 TIME=16:52:02.730
 00016738 ARG1 0000 00000000
*.... *
 0001697C ARG2 0000 00000012 00000000 00000002
*............ *
 000CD8D4 ARG3 0000 0000000C
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5CF8 IPTRGCLS=00140000
 IPBFADR1=0001A1A0 IPBFLN1F=00000016 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5CF8

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5CF8 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=SEND DISP RETURN CODE=00000002 ERROR NUMBER=0000 CALLID=008C5CF800140000 TIME=16:52:02.735
 00016738 ARG1 0000 00000000
*.... *
 000CD93C ARG2 0000 323D
*.. *
 0001678C ARG3 0000 00000002
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 .
 . (Additional SEND and RECV Data)
 .
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=008C5D0E IPTRGCLS=00100000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000024 RSVD=008C5D0E

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D0E IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=09822848

 FUNC=RECV DISP RETURN CODE=0000000C ERROR NUMBER=0000 CALLID=008C5D0E00100000 TIME=16:52:02.819
 00016738 ARG1 0000 00000000
*.... *
 00016988 ARG2 0000 0000003E 00000000 0000002E
*............ *
 00016784 ARG3 0000 0000000C
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=008C5D0F IPTRGCLS=00100000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000046 RSVD=008C5D0F

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D0F IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=09822848

 FUNC=RECV DISP RETURN CODE=0000002E ERROR NUMBER=0000 CALLID=008C5D0F00100000 TIME=16:52:02.829
 00016738 ARG1 0000 00000000
*.... *
 00017038 ARG2 0000 1002808F CFF0C929 C7C4D3E5 D4D3F0F0 01000000 00000010 00404040 40404040

Debugging RSCS

152 z/VM: 7.3 RSCS Networking Diagnosis

*.....0I.GDLVML00......... *
 0020 40404040 40404040 40001C00 0000
* *
 00016784 ARG3 0000 0000002E
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=008C5D12 IPTRGCLS=00100000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=0000001C RSVD=008C5D12

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D12 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=09822848

 FUNC=RECV DISP RETURN CODE=00000004 ERROR NUMBER=0000 CALLID=008C5D1200100000 TIME=16:52:02.833
 00016738 ARG1 0000 00000000
*.... *
 00016990 ARG2 0000 00000000
*.... *
 00016784 ARG3 0000 00000004
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5D13 IPTRGCLS=00140000
 IPBFADR1=0001A1A0 IPBFLN1F=00000020 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5D13

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D13 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=SEND DISP RETURN CODE=0000000C ERROR NUMBER=0000 CALLID=008C5D1300140000 TIME=16:52:02.853
 00016738 ARG1 0000 00000000
*.... *
 0001697C ARG2 0000 0000003E 00000000 0000002E
*............ *
 0001678C ARG3 0000 0000000C
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5D16 IPTRGCLS=00140000
 IPBFADR1=0001A1A0 IPBFLN1F=00000042 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5D16

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D16 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=SEND DISP RETURN CODE=0000002E ERROR NUMBER=0000 CALLID=008C5D1600140000 TIME=16:52:02.857
 00016738 ARG1 0000 00000000
*.... *
 00698028 ARG2 0000 1002808F CFF0D129 C7C4D3C7 C5C5D940 01FFFFFF FF000010 00404040 40404040
*.....0J.GDLGEER *
 0020 40404040 40404040 40001C00 0000
* *
 0001678C ARG3 0000 0000002E
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5D18 IPTRGCLS=00140000
 IPBFADR1=0001A1A0 IPBFLN1F=00000018 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5D18

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D18 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=SEND DISP RETURN CODE=00000004 ERROR NUMBER=0000 CALLID=008C5D1800140000 TIME=16:52:02.862
 00016738 ARG1 0000 00000000
*.... *
 000CD8C4 ARG2 0000 00000000
*.... *
 0001678C ARG3 0000 00000004
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *

Debugging RSCS

Chapter 13. Debugging Considerations 153

--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5D21 IPTRGCLS=00140000
 IPBFADR1=0001A1A0 IPBFLN1F=00000020 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5D21

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D21 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=RECV DISP RETURN CODE=0000000C ERROR NUMBER=0000 CALLID=008C5D1400100000 TIME=16:52:02.902
 00016738 ARG1 0000 00000000
*.... *
 00016988 ARG2 0000 0000006A 00000000 0000005A
*...........! *
 00016784 ARG3 0000 0000000C
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=008C5D23 IPTRGCLS=00100000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000072 RSVD=008C5D23

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D23 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=09822848

 FUNC=SEND DISP RETURN CODE=0000000C ERROR NUMBER=0000 CALLID=008C5D2100140000 TIME=16:52:02.906
 00016738 ARG1 0000 00000000
*.... *
 0001697C ARG2 0000 00000076 00000000 00000066
*............ *
 0001678C ARG3 0000 0000000C
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5D24 IPTRGCLS=00140000
 IPBFADR1=0001A1A0 IPBFLN1F=0000007A IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5D24

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D24 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=RECV DISP RETURN CODE=0000005A ERROR NUMBER=0000 CALLID=008C5D2300100000 TIME=16:52:02.913
 00016738 ARG1 0000 00000000
*.... *
 00696008 ARG2 0000 1002818F CF9A80FF 00770431 C7C4D3C7 C5C5D940 00000041 00000000 00C7C4D3
..a.........GDLGEERGDL
 0020 E5D4D3F0 F000E289 87959695 40968640 93899592 40C7C4D3 C7C5C5D9 40839694 *VML00.Signon of link
GDLGEER com*
 0040 979385A3 856B40D0 82A48686 859940A2 89A9857E F4F0F9F6 0000 *plete, .buffer
size=4096.. *
 00016784 ARG3 0000 0000005A
*...! *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=008C5D26 IPTRGCLS=00100000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=0000001C RSVD=008C5D26

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D26 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=09822848

 FUNC=SEND DISP RETURN CODE=00000066 ERROR NUMBER=0000 CALLID=008C5D2400140000 TIME=16:52:02.917
 00016738 ARG1 0000 00000000
*.... *
 00699030 ARG2 0000 1002818F CF9A80FF 0077043D C7C4D3E5 D4D3F0F0 40000041 00000000 00C7C4D3
..a.........GDLVML00GDL
 0020 C7C5C5D9 4000C4D4 E3D5C3D9 F9F0F5C9 40E28987 95969540 96864093 89959240 *GEER .DMTNCR905I
Signon of link *
 0040 C7C4D3E5 D4D3F0DC F0408396 94979385 A3856B40 82A48686 859940A2 89A9857E *GDLVML0.0 complete,
buffer size=*
 0060 F4F0F9F6 0000
*4096.. *
 0001678C ARG3 0000 00000066
*.... *
 000CD8C4 ARG4 0000 00000000

Debugging RSCS

154 z/VM: 7.3 RSCS Networking Diagnosis

*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=48 IPRCODE=00 IPMSGID=008C5D30 IPTRGCLS=00140000
 IPBFADR1=0001A1A0 IPBFLN1F=00000018 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000008 RSVD=008C5D30

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D30 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=RECV DISP RETURN CODE=00000004 ERROR NUMBER=0000 CALLID=008C5D2600100000 TIME=16:52:02.947
 00016738 ARG1 0000 00000000
*.... *
 00016990 ARG2 0000 00000000
*.... *
 00016784 ARG3 0000 00000004
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *
--

 IPARML after IUCV CALL SOCKBLOK=0001A290 SOCKCBLK=0001A148
 IPPATHID=0002 IPFLAGS1=88 IPRCODE=00 IPMSGID=008C5D35 IPTRGCLS=00100000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=0001A1E8 IPBFLN2F=00000024 RSVD=008C5D30

 IPARML at INTERRUPT
 IPPATHID=0002 IPFLAGS1=00 IPRCODE=07 IPMSGID=008C5D30 IPTRGCLS=00000000
 IPBFADR1=00000000 IPBFLN1F=00000000 IPSRCCLS=00000000 IPMSGTAG=00000000
 IPBFADR2=00000000 IPBFLN2F=00000000 RSVD=00000000

 FUNC=SEND DISP RETURN CODE=00000004 ERROR NUMBER=0000 CALLID=008C5D3000140000 TIME=16:52:02.952
 00016738 ARG1 0000 00000000
*.... *
 000CD8C4 ARG2 0000 00000000
*.... *
 0001678C ARG3 0000 00000004
*.... *
 000CD8C4 ARG4 0000 00000000
*.... *

Debugging RSCS

Chapter 13. Debugging Considerations 155

Debugging RSCS

156 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 14. Examining Dumps

This chapter contains information to help you examine RSCS dumps. It also describes the subcommands
that RSCS provides for use in DUMPSCAN sessions.

The Dump Viewing Facility is an online facility of z/VM that can help you diagnose and report system
failures. You can use these facilities to interactively find and examine information from RSCS dumps.

Getting Dump Information
To process an RSCS dump with one of these facilities, the dump must be in a VMDUMP format with the
type RSCSV2. Unless an enabled Exit 35 routine suppresses dumps, this dump is created automatically
when an RSCS task abends.

You can also enter the VMDUMP command to create a dump. For more information on the VMDUMP
command, see z/VM: CP Commands and Utilities Reference. However, you only need to use this command
if RSCS produces unpredictable results, but does not abend. The appropriate VMDUMP command format
for RSCS is described in the following section.

VMDUMP 0:END
SYSTEM

TO userid

FORMAT RSCSV2 DSS *

dumpid

userid
is the user ID to receive the dump.

SYSTEM
the default value, sends the dump to the user ID specified in the DUMP operand of the
SYSTEM_USERIDs configuration statement.

*dumpid
up to 100 characters that describe the dump.

Checking for a Compressed Load Map
When a dump is produced, you should check for a compressed load map. The compressed load map
contains the names of the module, CSECT, and entry points. It also contains their load address; entry
point addresses are sorted into ascending order.

If a compressed load map is present, you can also create various files associated with the dump
(PRBnnnnn DUMP, PRBnnnnn REPORT, and SYMPTOM SUMMARY).

If a compressed load map is not produced, you should enter the MAP command to create this load map.
You should also use this command if GCS has been updated after a compressed load map is generated.
You must specify RSCSV2 as the name of the load map. For more information, see z/VM: Dump Viewing
Facility.

Using RSCS-Supplied Subcommands
You can use the DUMPSCAN command to interactively locate, display, or print data in the dump. If you
do not specify any required parameters, you will be prompted for information. To save the display output
from the processing session for later use, you should also enter the CP SPOOL command (see z/VM: CP
Commands and Utilities Reference).

Subcommands

© Copyright IBM Corp. 1990, 2022 157

When you enter these processing environments, you can use the common subcommands for each facility
and the subcommands provided by RSCS. The RSCS-supplied subcommands, described in the following
sections, let you view data areas, tables, and queues that are specific to RSCS.

CVT

CVT

Purpose
The CVT subcommand displays the contents of the communications vector table.

Sample Output

Figure 66 on page 158 shows sample output from the CVT subcommand. In this example, h is
hexadecimal data and e is EBCDIC data.

 CVT
 TLINKS = hhhhhhhh TROUTEGE = hhhhhhhh
 TPORTS = hhhhhhhh TTAGQ = hhhhhhhh
 TVMID = hhhhhhhh TAUTH = hhhhhhhh
 TREROUTE = hhhhhhhh TREROUTX = hhhhhhhh
 TCHANNEL = hhhhhhhh TDEST = hhhhhhhh
 TEXITS = hhhhhhhh TLISTPTR = hhhhhhhh
 TUSER = hhhhhhhh hhhhhhhh TPTHECNT = hhhhhhhhhhhhhhhh
 TLCA = hhhhhhhhhhhhhhhh TLCASNA = hhhhhhhhhhhhhhhh
 TMAXHOPS = hhhh TGLOBAL1 = hhhhhhhh
 TCPFEAT = hhhhhhhe TMONITOR = hhhhhhhh
 TMONIMSG = hhhhhhhh TFORMTAB = hhhhhhhh
 TCRVTAB = hhhhhhhh TFILWRKS = hhhhhhhh
 TDDNMVEC = hhhhhhhh TEVENTS = hhhhhhhh
 TTANQ = hhhhhhhh TSHIFT = hhhhhhhh
 TEQUATE = hhhhhhhh TRESOURC = hhhhhhhh
 TFCBTABA = hhhhhhhh TRECOVER = hhhhhhhh
 TITRACEA = hhhhhhhh TTASKTAB = hhhhhhhh
 TTRACEN = eeeeeeee eeeeeeee TIREND = hhhhhhhh
 TIVERSN = e TIMAINTL = eeee
 TILASTCM = eeeeeeee TICOMPID = eeeeeeeee
 TISLVLR = eeeeeeee TILASTMS = eeeeeeeee

Figure 66. Output of the CVT Subcommand

Messages
• DMT985I Page 'nnnnnnnn' not found in dump

DWA

DWA linkid

Purpose
The DWA subcommand formats and displays the dynamic work area (DWA) for any RSCS link. The DWA
contains all the storage areas that are modified when the link is run.

Operands
linkid

is the 1- to 8-character link identifier of the link for which you want to display the DWA.

CVT

158 z/VM: 7.3 RSCS Networking Diagnosis

Sample Output

Figure 67 on page 159 shows the output from the DWA subcommand. In this example:
linkid

identifies the link
aaaaaaaa

is the address of the DWA in hexadecimal
000, 010, 020...

are displacement values
hhhhhhhh

is the DWA data in hexadecimal
eeeeee ...

is the EBCDIC representation of the DWA.

The DWA for link 'linkid' is:
aaaaaaaa 000 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 010 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 020 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 .
 .
 .
The Secondary DWA or NDWA for link 'linkid' is:
aaaaaaaa 000 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 010 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 020 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 .
 .
 .
End of DWA for link 'linkid'

Figure 67. Output of DWA Subcommand

Messages
• DMT982E Link 'linkid' not found
• DMT985I Page 'nnnnnnnn' not found in dump
• DMT991E Invalid command format -- unable to execute subcommand
• DMT992I No DWA for link 'linkid' available in dump
• DMT993I No secondary DWA or NDWA for link 'linkid' available in dump

IOTABLE

IOTABLE linkid rcb

Purpose
The IOTABLE subcommand formats and displays a link’s RSCS I/O table (IOTABLE) chain for a specified
record control byte (RCB). The IOTABLE control block defines an I/O request to write output to line or
spool.

Operands
linkid

is the 1- to 8-character link identifier of the link for which you want to display IOTABLE information.
rcb

is the hexadecimal record control byte for the specified IOTABLE chain.

IOTABLE

Chapter 14. Examining Dumps 159

Sample Output

Figure 68 on page 160 shows the output from the IOTABLE subcommand. In this example:
linkid

identifies the link
rcb

is the stream identifier of the IOTABLE being displayed
aaaaaaaa

is the address of the IOTABLE in hexadecimal
000, 010, 020...

are displacement values
hhhhhhhh

is the IOTABLE data in hexadecimal
eeeeee ...

is the EBCDIC representation of the IOTABLE.

IOTABLE chain for link 'linkid', RCB 'rcb':

Begin IOTABLE element for link 'linkid', RCB 'rcb':
aaaaaaaa 000 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 010 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 020 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 .
 .
 .
End IOTABLE element for link 'linkid', RCB 'rcb'

Begin IOTABLE element for link 'linkid', RCB 'rcb':
aaaaaaaa 000 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 010 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 020 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 .
 .
 .
End IOTABLE element for link 'linkid', RCB 'rcb'

Figure 68. Output of the IOTABLE Subcommand

Messages
• DMT982E Link 'linkid' not found
• DMT985I Page 'nnnnnnnn' not found in dump
• DMT989I RCB 'rcb' for link 'linkid' not found in dump
• DMT991E Invalid command format -- unable to execute subcommand
• DMT992I No DWA for link 'linkid' available in dump
• DMT993I No secondary DWA or NDWA for link 'linkid' available in dump
• DMT994E Requested link 'linkid' is not a networking link
• DMT995I IOTABLE for link 'linkid', RCB 'rcb' not found in dump

IOTABLE

160 z/VM: 7.3 RSCS Networking Diagnosis

ITRACE

ITRACE
FOR ALL

FOR nnnnnn

FROM START

FROM nnnnnn LAST nnnnnn

FORMAT nnnn TASKID taskid LINKID linkid

Purpose
The ITRACE subcommand formats and displays the RSCS internal wrap-around trace table. The contents
of the trace table will vary, depending on the options you selected when you entered the RSCS ITRACE
command.

Operands
FOR

indicates the number of trace entries to display from a starting point, which is specified by the FROM
operand.
nnnnnn

is the number of the trace table entries to process. This value may range from 1 to 999999,
depending on the value specified on the SIZE operand of the ITRACE command or configuration
file statement.

ALL
(the default) displays all of the trace table entries.

FROM
displays the trace table entries starting from a specified entry number.
nnnnnn

is the number of the trace entry, which may range from 1 to 999999.
START

(the default) displays the trace table entries, beginning with the first entry in the table.
LAST nnnnnn

displays the last entries in the trace table. The nnnnnn value is the number of entries, from the last
entry, that you want to display. This value may range from 1 to 262000, depending on the value
specified on the SIZE operand of the ITRACE command or statement.

FORMAT nnnn
displays ITRACE records that were created by specifying the TYPE=nn operand of the ITRACE macro.

TASKID taskid
displays ITRACE records created by a specific task; the taskid is the GCS task ID number.

LINKID linkid
displays ITRACE records created by a specific RSCS link; the linkid is the 1- to 8-character identifier of
the requested link.

Usage Notes
1. If you do not specify any options, ITRACE displays all of the entries in the trace table, starting with the

first entry.
2. You cannot use the ITRACE subcommand on dumps created by the ITRACE TABLE DUMP YES

command because RSCS low storage is not included in these types of dumps.

ITRACE

Chapter 14. Examining Dumps 161

Sample Output

1. The following example is created by issuing the command:

itrace format 1a linkid rscs3

The ITRACE TYPE=1A call traces the TIB and TANK areas on NJE Request_Initiate_Function
transmissions. The TIB control block is traced beneath the eye catcher, RIF TIB; the data buffer
follows the eye catcher, RIF TANK. The first control block listed is the ITRACE header followed by the
ITRACE record.

ITRACE for ALL from START format 1A taskid ALL linkid ...RSCS3 .
0121E000 0000 AB14036A 3FCD1802 0121E040 0392CFFF k..
 0010 0151CBE0 0151CD00 01217F00 01217E00 "...=.
 0020 01217D00 270F0000 00000000 00000000 '.............
 0030 00000000 00000000 00000000 00000000

01271080 0000 001A000A C4D4E3D5 C5E34040 D3C9D5D2 DMTNET LINK
 0010 40D9E2C3 E2F34040 40404040 40404040 RSCS3
 0020 AB1405AB 51FFE701 01204380 000005E0 X.........
 0030 01271660 01270FA0 001A0014 0018027C -...........@
 0040 03CDA610 00190003 03CE502D 00000000 w.......&;....
 0050 00000000 00000000 00000000 00000000
 0060 00000000 00000000 00000000 00000000
 .
 . (additional trace records)
 .
 0200 00000000 00000000 00000000 00000000
 0210 00000000 00000000 00000000 00000000
 0220 00180280 0220D9C9 C640E3C9 C2404040 RIF TIB
 0230 00000000 03CE5020 03CE5030 00000000 &;..&;....
 0240 00000000 00000000 00000000 00000000
 0250 00990000 00000000 0000D9E2 C3E2F240 r........RSCS2
 0260 404040C3 D4E2F140 40404040 F0F14040 CMS1 ... 01
 0270 40404040 40404040 40404040 40404040
 0280 40404040 40404040 40404040 40404040
 0290 40404040 40404040 40404040 40404040
 0300 40404040 40404040 40404040 40404040
 0310 40404040 40404040 40404040 40404040
 0320 40404040 40400000 00000000 00000000
 0330 00000000 00000000 00000000 00000000
 0340 00000000 00000000 00000000 00000000
 0350 00000000 00000000 00000000 00000000
 0360 03CCE368 01000102 00000000 00000000 T.............
 0370 00000204 F0F9F9F1 0000049D 00000000 0991........
 0380 00000000 00000000 00000000 00000000
 0390 00000000 00000000 00000000 00000000
 03A0 00000000 00000000 00000000 00000000
 03B0 00000000 00000000 00000000 00000000
 03C0 00000000 00000000 00000000 00000000
 03D0 00000000 00000000 00000000 00000000
 03E0 0392E008 03CEA000 012165B0 03CEA0A8 k.............y
 03F0 00000017 03CDA63A 03CDA63A 00880000 w...w..h..
 0400 03000088 C8080000 D9E2C3E2 F2404040 hH...RSCS2
 0410 40C3D4E2 F1404040 4040F0F1 40404040 CMS1 ... 01
 0420 40404040 40404040 40404040 40404040
 0430 40404040 40404040 40404040 40404040
 0440 40404040 40404040 40404040 40404040
 0450 40404040 40404040 40404040 40404040
 0460 40404040 40404040 40404040 40404040
 0470 40404040 40404040 40404040 40404040
 0480 40404040 40404040 40404040 40404040
 0490 00000000 00000000 00000000 00000000
 04A0 00000000 00000000 00000000 00000000
 04B0 00190110 04B0D9C9 C640E3C1 D5D24040 RIF TANK
 04C0 90990000 00000000 00000000 00000000 r..............
 04D0 00000000 00000000 00000000 00000000
 .
 . (additional trace records)
 .
 05B0 00000000 00000000 00000000 00000000
 05C0 00000000 00000000 00000000 00000000
 05D0 00000000 00000000 00000000 00000000

End ITRACE for ALL from START format 1A taskid ALL linkid ...
RSCS3 .

ITRACE

162 z/VM: 7.3 RSCS Networking Diagnosis

2. The next example is produced by the following command:

itrace format 15 taskid 0004

This example shows ITRACE data from the Spool Manager task; the TYPE=15 option of the ITRACE
macro was specified.

ITRACE for ALL from START format 15 taskid 0004 linkid ALL
0121E000 0000 AB14036A 3FCD1802 0121E040 0392CFFF k..
 0010 0151CBE0 0151CD00 01217F00 01217E00 "...=.
 0020 01217D00 270F0000 00000000 00000000 '.............
 0030 00000000 00000000 00000000 00000000

013ED880 0000 00150004 C4D4E3C1 E7D44040 E2E8E2E3 DMTAXM SYST
 0010 C5D440C1 E7D44040 40404040 40404040 EM AXM
 0020 AB140718 DA80C401 01204CE0 00000280 D...<.....
 0030 013EDB00 013ED5E0 0015003C 00110004 N.........
 0040 03CCA6FC 001500A0 00068B58 001D0004 w.............
 0050 03CCA700 001F0004 03CCA704 00200004 x.......x.....
 0060 03CCA708 00210001 03CCA70C 00220003 x.......x.....
 0070 03CCA6F8 00000000 00000000 00000000 w8............
 0080 00000000 00000000 00000000 00000000
 0090 001D0010 0090D9E7 40D7C1D9 D4404040 RX PARM
 00A0 00068B58 00000000 00000000 00000000
 00B0 00000000 00000000 00000000 00000000
 00C0 00000000 00000000 00000000 00000000
 00D0 001F0010 00D0D9E8 40D7C1D9 D4404040 RY PARM
 00E0 00000000 00000000 00000000 00000000
 00F0 00200010 00F0D9E8 4EF140D7 C1D9D440 0RY+1 PARM
 0100 94000FFE 00000000 00000000 00000000 ...m...............
 0110 00210010 0110C4C9 C1C740C3 C3404040 DIAG CC
 0120 10000000 00000000 00000000 00000000
 0130 00110010 0130C4C9 C1C740D9 C3404040 DIAG RC
 0140 94000FFE 00000000 00000000 00000000 ...m...............
 0150 00220010 0150C4C9 C1C740C3 D6C4C540 &DIAG CODE
 0160 140FFE00 00000000 00000000 00000000
 0170 00150100 0170C4C9 C1C740D7 D3C9E2E3 DIAG PLIST
 0180 00000000 00891C00 D9E2C3E2 F1404040 i..RSCS1
 0190 C3D4E2F1 40404040 00000015 008403FC CMS1 d..
 01A0 00410000 00000000 E3C5E2E3 40404040 TEST
 01B0 40404040 C6C9D3C5 40404040 40404040 FILE
 01C0 F0F561F1 F661F0F7 F1F47AF0 F87AF2F7 ...05/16/0714:08:27
 01D0 00000000 0001C120 C3D4E2E3 E2E34040 A.CMSTST
 01E0 40404040 01220010 E2E3C1D5 C4C1D9C4 STANDARD
 01F0 E2E3C1D5 C4C1D9C4 00000000 00000000 ...STANDARD........
 0200 40404040 40404040 00000000 00000000
 0210 000008D8 00000000 00000000 00000000 Q............
 0220 00000000 00000000 00000000 00000000
 0230 00000000 00000000 00000000 00000000
 0240 00000000 00000000 00000000 00000000
 0250 00000000 00000000 00000000 00000000
 0260 00000000 00000000 00000000 00000000
 0270 00000000 00000000 00000000 00000000

End ITRACE for ALL from START format 15 taskid 0004 linkid ...ALL .

3. The following example shows the output when the ITRACE table is dumped before wrapping. The
ITRACE subcommand cannot be used because the RSCS load address is not included. Only commands
supported by the Dump Viewing Facility can be used to view the data. Register 9 at the time of the
dump contains the address of the start of the ITRACE table. The first 64 bytes is the ITRACHDR, which
contains the pointer to the current entry (last used). The ITRRCBCK field points to the previous entry.

HCSDSS200I PROCESSING FILE RSCSITRA DUMP0030 B1 10/17/06 ... 17:03:43
HCSDSS401I READY, DUMP TYPE IS VM
DMTYDS987I RSCS LOAD ADDRESS INVALID
----> regs
REGS
CPU ADDRESS - 0000 PREFIX REGISTER - 00000000
GENERAL REGS 0 - 15
 002BCE00 002BCF80 002B9040 002B92E0 00019300 00077003 ...00000074 01204E70
 00036710 002B9000 000195C8 000195C8 00076860 012017E0 ...800768B2 00000000
CONTROL REGS 0 - 15
 000008E2 00000000 00000000 00000000 00000000 00000000 ...FF000000 00000000
 00000002 00000000 00000000 00000000 00000000 00000000 ...D2000000 00000000
ACCESS REGS 0 - 15
 00000000 00000000 00000000 00000000 00000000 00000000 ...00000000 00000000
 00000000 00000000 00000000 00000000 00000000 00000000 ...00000000 00000000

ITRACE

Chapter 14. Examining Dumps 163

FLOATING POINT REGS 0 - 6
 00000000 00000000 00000000 00000000 00000000 00000000 ...00000000 00000000

TOD CLOCK AAD77A48 A4759402 PSW 00EC1000 ...80076A1C
CLOCK COMPARATOR AAD831CA 4EAFB000
CPU TIMER FFFFFC6A EB724900

----> d 2b9000
DISPLAY 2B9000
 002B9000 AAD776DF 28A95A02 002B9040 002BCFFF EE ...*.P...z.....*
 002B9010 002BCE00 002B9040 01217C00 01217B00 *.......@...#.*
 002B9020 01217A00 00044000 00000000 00000000 *..:...*
 002B9030 00000000 00000000 00000000 00000000 ...*................*
 002B9040 00080003 C4D4E3D9 C5E74040 E2E8E2E3 ...*....DMTREX SYST*
 002B9050 C5D440D9 C5E74040 40404040 40404040 *EM REX ... *
 002B9060 AAD77A42 F871A101 01204E70 000002A0 ...*.P:.8.....+.....*
 002B9070 002B92E0 00000000 00080014 00100030 ...*..k.............*
 002B9080 012015D4 00150100 01217B00 00000000 ...*...M......#.....*
 002B9090 00000000 00000000 00000000 00000000 ...*................*
 002B90A0 00000000 00000000 00000000 00000000 ...*................*
 002B90B0 00000000 00000000 00000000 00000000 ...*................*
 002B90C0 00000000 00000000 00000000 00000000 ...*................*
 002B90D0 00100030 0090D8E2 C140C1D5 C3C84040 *......QSA ...ANCH *
 002B90E0 00020718 0000000C 01201570 01201640 ...*............... *
 002B90F0 800768B2 0001B9B4 00000100 012015B8 ...*................*
 002B9100 01217B00 00000100 00020748 00000000 ...*..#.............*
 002B9110 001501C0 00D0D8E2 C140C1C4 C4D94040 *......QSA ...ADDR *
 002B9120 00000000 00000000 00000000 00000000 ...*................*
 002B9130 00000000 00000000 00000000 00000000 ...*................*
 002B9140 00000000 00000000 00000000 00000000 ...*................*
 002B9150 00000000 00000000 00000000 00000000 ...*................*
 002B9160 00000000 00000000 00000000 00000000 ...*................*
 002B9170 00000000 00000000 00000000 00000000 ...*................*
 002B9180 00000000 00000000 00000000 00000000 ...*................*
 002B9190 00000000 00000000 00000000 00000000 ...*................*
 002B91A0 00000000 00000000 00000000 00000000 ...*................*
 002B91B0 00000000 00000000 00000000 00000000 ...*................*
 002B91C0 00000000 00000000 00000000 00000000 ...*................*
----> d 2bce00
DISPLAY 2BCE00
 002BCE00 00070003 C4D4E3D9 C5E74040 E2E8E2E3 EE ...*....DMTREX SYST*
 002BCE10 C5D440D9 C5E74040 40404040 40404040 *EM REX ... *
 002BCE20 AAD77A48 9A5AEC02 01204E70 00000180 ...*.P:.......+.....*
 002BCE30 00000000 002BCD20 0007000C 000700D0 ...*................*
 002BCE40 00036710 00000000 00000000 00000000 ...*................*
 002BCE50 00000000 00000000 00000000 00000000 ...*................*
 002BCE60 00000000 00000000 00000000 00000000 ...*................*
 002BCE70 00000000 00000000 00000000 00000000 ...*................*
 002BCE80 00000000 00000000 00000000 00000000 ...*................*
 002BCE90 000700D0 0090D4E2 C740D7C1 D9D4E240 *......MSG ...PARMS *
 002BCEA0 C9C3D8E7 02A50000 00000000 40510007 ...*ICQX.v...... ...*
 002BCEB0 D9E2C3E2 F1404040 40404040 40404040 *RSCS1 ... *
 002BCEC0 40404040 40400000 00036800 02000000 * *
 002BCED0 40404040 40404040 FD000000 00000000 * *
 002BCEE0 00000000 00000000 00000000 00000000 ...*................*
 002BCEF0 01216088 40404040 40404040 40404040 *..-h ... *
 002BCF00 40404040 40404040 40404040 40404040 * ... *
 002BCF10 40404040 40404040 40404040 40404040 * ... *
 002BCF20 40404040 40404040 40404040 40404040 * ... *
 002BCF30 40404040 40404040 40404040 40404040 * ... *
 002BCF40 40404040 40404040 40404040 40404040 * ... *
 002BCF50 40404040 40404040 40404040 40404040 * ... *
 002BCF60 40404040 40404040 40404040 40404040 * ... *
 002BCF70 00000000 00000000 00000000 00000000 ...*................*
 002BCF80 00000000 00000000 00000000 00000000 ...*................*
 002BCF90 00000000 00000000 00000000 00000000 ...*................*
 002BCFA0 00000000 00000000 00000000 00000000 ...*................*
 002BCFB0 00000000 00000000 00000000 00000000 ...*................*
 002BCFC0 00000000 00000000 00000000 00000000 ...*................*
DMTYDS987I RSCS LOAD ADDRESS INVALID

Messages
• DMT984E There are only 'nnnnnn' records in the ITRACE table
• DMT985I Page 'nnnnnnnn' not found in dump
• DMT990I Internal trace table is empty
• DMT991E Invalid command format -- unable to execute subcommand

ITRACE

164 z/VM: 7.3 RSCS Networking Diagnosis

LINKS

Links
ALL

linkid

Purpose
The LINKS subcommand displays the RSCS link queue.

Operands
linkid

is the 1-to 8-character identifier for a link in the queue.
ALL

the default value, displays the characteristics of all the links within the link table.

Sample Output

Figure 69 on page 165 shows the output from the LINKS subcommand for each link in the RSCS link
queue. In this example:
linkid

is the link name or the local node name
aaaaaaaa

is the address of the entry in hexadecimal
000, 010, 020...

are displacement values
hhhhhhhh

is the link entry in hexadecimal
eeeeee ...

is the EBCDIC representation of the link entry.

THE LINK TABLE ENTRY FOR LINK 'linkid' IS:
aaaaaaaa 000 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 010 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 020 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 .
 .
 .
END OF LINK TABLE ENTRY FOR LINK 'linkid'

Figure 69. Output of the LINKS Subcommand

Messages
• DMT982E Link 'linkid' not found
• DMT985I Page 'nnnnnnnn' not found in dump

NDWA

NDWA linkid

LINKS

Chapter 14. Examining Dumps 165

Purpose
NDWA formats and displays the network dynamic work area (NDWA) for a specific networking link. The
NDWA contains all the storage areas that a networking link driver can modify when it is called.

Operands
linkid

is the 1- to 8-character link identifier of the link for which you want to display the NDWA.

Messages
• DMT982E Link 'linkid' not found
• DMT985I Page 'nnnnnnnn' not found in dump
• DMT991E Invalid command format -- unable to execute subcommand
• DMT993I No secondary DWA or NDWA for link 'linkid' available in dump
• DMT994E Requested link 'linkid' is not a networking link

RIB

RIB linkid

rcb

Purpose
The RIB subcommand displays the contents of receiving information blocks (RIBs). The networking link
drivers use these data areas to receive data streams from remote systems.

Operands
linkid

is the 1- to 8-character link identifier of the link for which you want to display RIB information.
rcb

is the hexadecimal record control byte for the specified RIB chain.

Sample Output

Figure 70 on page 167 shows the output from the RIB subcommand. In this example:
linkid

identifies the link
rcb

is the stream identifier of the RCB displayed
aaaaaaaa

is the address of the RIB in hexadecimal
000, 010, 020...

are displacement values
hhhhhhhh

is RIB data in hexadecimal
eeeeee ...

is the EBCDIC representation of the RIB.

RIB

166 z/VM: 7.3 RSCS Networking Diagnosis

RIB for link 'linkid', RCB 'rcb':
aaaaaaaa 000 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 010 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 020 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 .
 .
 .
End of RIB for link 'linkid', RCB 'rcb'

Figure 70. Output of RIB Subcommand

Messages
• DMT982E Link 'linkid' not found
• DMT985I Page 'nnnnnnnn' not found in dump
• DMT989I RCB 'rcb' for link 'linkid' not found in dump
• DMT993I No secondary DWA or NDWA for link 'linkid' available in dump
• DMT994E Requested link 'linkid' is not a networking link

ROUTES

ROUtes

Purpose
The ROUTES subcommand displays the contents of the RSCS routing table.

Sample Output

Route Group Name Link ID LINKTABL Address Type of Route
 groupid linkid aaaaaaaa primary
 linkid aaaaaaaa primary
 linkid aaaaaaaa secondary
 linkid aaaaaaaa secondary
 groupid linkid aaaaaaaa primary
 linkid aaaaaaaa primary
 linkid aaaaaaaa secondary
 linkid aaaaaaaa secondary

Figure 71. Output of the ROUTES Subcommand

In this example:
groupid

identifies the routing group associated with this link entry
linkid

identifies the link
aaaaaaaa

is the address of the LINKTABL entry for this link
primary

is a primary link in the routing group
secondary

is the alternate link for the routing group.

Messages
• DMT981I ROUTEGRP table is empty

ROUTES

Chapter 14. Examining Dumps 167

• DMT985I Page 'nnnnnnnn' not found in dump

TAGQUE

TAGque linkid
ALL

Input

Output

Purpose
The TAGQUE subcommand displays tag queue information for a specified link. The information is
displayed in dump format.

You can display data from the input and output queues or both. If an inactive file is enqueued on a link, its
tag shadow element is displayed before the actual tag element.

Operands
linkid

is the 1- to 8-character link identifier of the tag queue to be displayed.
ALL

displays the input (including tag shadow elements for any inactive files) and output queues for the
specified link. ALL is the default value.

Input
displays the input tag queue, including tag shadow elements, for the specified link.

Output
displays the output tag queue for the specified link.

Sample Output

Figure 72 on page 169 shows the possible output from the TAGQUE subcommand for each link in the tag
queue. This example shows the information you will see when the tag queue is empty, when there are
tag shadow elements, and when there are tag queue elements. The following symbols are used in these
examples:
status

is the status of the link, either ACTIVE or INACTIVE
type

is the type of link, either INPUT or OUTPUT
linkid

identifies the link
aaaaaaaa

is the address of the entry in hexadecimal
000, 010, 020...

are displacement values
hhhhhhhh

is the link entry in hexadecimal
eeeeee ...

is the EBCDIC representation of the link entry.

TAGQUE

168 z/VM: 7.3 RSCS Networking Diagnosis

DMTYTG980I Link 'linkid' 'status' 'type' TAG queue is empty

TAG shadow element for 'status' 'type' TAG on link 'linkid':

aaaaaaaa 000 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeee ...
 010 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeee ...
 020 hhhhhhhh hhhhhhhh eeeee ...
 .
 .
 .
End of TAG shadow element for 'status' 'type' TAG on link 'linkid'

'status' 'type' TAG on link 'linkid':

aaaaaaaa 000 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeee ...
 010 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeee ...
 020 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeee ...
 .
 .
 .
End of 'status' 'type' TAG on link 'linkid'

Figure 72. Output of the TAGQUE Subcommand

Messages
• DMT980I Link 'linkid' 'status' 'type' TAG queue is empty
• DMT982E Link 'linkid' not found
• DMT985I Page 'nnnnnnnn' not found in dump
• DMT986E Invalid TAGQUE parameter 'parameter' found, 'ALL' assumed

TIB

TIB linkid

rcb

Purpose
The TIB subcommand displays the contents of transmitting information blocks (TIBs), which are data
areas the networking link drivers use to transmit data streams to remote systems.

The TIB subcommand is valid only for GATEWAY-type, LISTPROC-type, NJE-type, NOTIFY-type, SNANJE-
type, and TCPNJE-type links.

Operands
linkid

is the 1- to 8-character link identifier of the link for which you want to display TIB information.
rcb

is the hexadecimal record control byte for the specified TIB chain.

Sample Output

Figure 73 on page 170 shows the output from the TIB subcommand. In this example:
linkid

is the link name for which the TIBs are being displayed
rcb

is the stream identifier of the TIB being displayed

TIB

Chapter 14. Examining Dumps 169

aaaaaaaa
is the address of the TIB in hexadecimal

000, 010, 020...
are displacement values

hhhhhhhh
is the TIB data in hexadecimal

eeeeee ...
is the EBCDIC representation of the TIB.

TIB for link 'linkid', RCB 'rcb':
aaaaaaaa 000 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 010 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 020 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh eeeeee ...
 .
 .
 .
End of TIB for link 'linkid', RCB 'rcb'

Figure 73. Output of TIB Subcommand

Messages
• DMT982E Link 'linkid' not found
• DMT985I Page 'nnnnnnnn' not found in dump
• DMT989I RCB 'rcb' for link 'linkid' not found in dump
• DMT994E Requested link 'linkid' is not a networking link
• DMT996I TIB for link 'linkid', RCB 'rcb' not found in dump

TIB

170 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 15. Solving Problems in RSCS Interchange

This chapter contains helpful information for debugging and tracing problems in RSCS Interchange.

Using REXX Traces
You can use a REXX trace for analysis of problems within the program code of the RSCS Interchange
server. z/VM: REXX/VM Reference may be helpful when you want to trace server activity.

By using the RSCS Interchange DEBUG command (see z/VM: RSCS Networking Operation and Use), you
can analyze the code on the server. For example, Figure 74 on page 171 shows an example of the output
that may be displayed when you enter the command:

debug command all

ACHAMA801I Requested tracing set
debug all off
 2140 *-* ArgumentsMixedCase=Arguments
 2141 *-* Upper UserCmd Arguments
 2142 *-* call ExitPoint Cmd, 16, CmdUser UserCmd Arguments
 4464 *-* ExitPoint:
 4465 *-* arg Name, Maxrc, Args
 4466 *-* if words(Exit.Name) = 0
 4467 *-* then
 - return 0
⋮
 2178 *-* when UserCmd="DEBUG"
 - then
 2179 *-* call ProcessDebug Arguments
 3301 *-* ProcessDebug:
 3302 *-* parse upper arg Area RxTrace TOKywd ToUser
 3303 *-* /*! Validate area */
 3304 *-* select
 3305 *-* when abbrev('ALL',Area,1)
 - then
⋮
 4623 *-* /*! Edit message using Diag X'5C' and issue
 */
 4624 *-* msgtext = diag(5c,msgtext)
 4625 *-* if ¬verify('C',routcode)
 4627 *-* if ¬verify('T',routcode)
 4628 *-* then
 - say msgtext
ACHAMA801I Requested tracing set
 4629 *-* if ¬verify('A',routcode)
 4637 *-* if ¬verify('L',routcode)
 4639 *-* if (¬verify('U',routcode)) & (touser ¬= '')
 4641 *-* return
 2208 *-* return
 3380 *-* return 1
 2197 *-* return /* end of processing the command */

Figure 74. Sample DEBUG Output

Using a Log File
You also can use a log file to review server activity. Figure 75 on page 172 is an example of a log file.

RSCS Interchange Problem Solving

© Copyright IBM Corp. 1990, 2022 171

yyyymmdd 11:23:52 ACHAMA000I RSCS Data Interchange Manager Function Level nnn-0000 ready
yyyymmdd 11:26:40 ACHAMA501I Temporary nickname XX000004 added for SMTP address MATT@HURRAH.TCPIP.COL.EDU
yyyymmdd 11:36:20 ACHAMA501I Temporary nickname XX000005 added for SMTP address DOUG@HURRAH.TCPIP.COL.EDU
yyyymmdd 11:42:00 ACHAMA100I RSCS Interchange Terminated
yyyymmdd 11:42:22 ACHAMA000I RSCS Data Interchange Manager Function Level nnn-0000 ready
yyyymmdd 12:09:16 ACHAMA148I Sent file to ABC(JONES) from SMTP user matt@hurrah.tcpip.col.edu
yyyymmdd 12:10:06 ACHAMA005I Location *(SMTP) executing: MSG ABC I1 * UNABLE TO DELIVER MAIL TO: <U2@XYZ>
yyyymmdd 12:11:03 ACHAMA147I Sent file 7162 from ABC(JONES) through SMTP to MATT@HURRAH.TCPIP.COL.EDU
yyyymmdd 14:19:25 ACHAMA005I Location *(DOUG) executing: Q NICK ALL
yyyymmdd 14:22:26 ACHAMA005I Location *(DOUG) executing: NICK ADD MARK USER2ABC.TCPIP.COL.EDU
yyyymmdd 14:23:39 ACHAMA005I Location *(DOUG) executing: Q NICK ALL
yyyymmdd 14:24:26 ACHAMA005I Location *(DOUG) executing: CHANGE MARK USER2@ABC.TCPIP.COL.EDU
yyyymmdd 14:24:42 ACHAMA005I Location *(DOUG) executing: Q NICK ALL
yyyymmdd 14:29:24 ACHAMA005I Location *(DOUG) executing: NICK ADD PAUL USER1@ABC.TCPIP.COL.EDU
yyyymmdd 14:43:49 ACHAMA147I Sent file 7289 from XYZ(DOUG) through SMTP to USER1@ABC.TCPIP.COL.EDU
yyyymmdd 14:48:47 ACHAMA147I Sent file 7298 from ABC(DRB) through SMTP to USER1@ABC.TCPIP.COL.EDU
yyyymmdd 14:50:50 ACHAMA005I Location *(DOUG) executing: Q NICK ALL
yyyymmdd 14:51:54 ACHAMA005I Location *(DOUG) executing: NICK ADD DRB DRB@ABC.TCPIP.COL.EDU
yyyymmdd 15:06:30 ACHAMA005I Location *(DOUG) executing: Q NICK ALL
yyyymmdd 15:07:57 ACHAMA147I Sent file 7311 from ABC(DRB) through SMTP to DRB@ABC.TCPIP.COL.EDU
yyyymmdd 15:11:39 ACHAMA005I Location *(DOUG) executing: Q SYSTEM
yyyymmdd 15:17:36 ACHAMA005I Location *(DOUG) executing: Q NICK ALL
yyyymmdd 15:21:39 ACHAMA147I Sent file 7327 from ABC(JONES) through SMTP to JONES@ABC.TCPIP.COL.EDU
yyyymmdd 15:51:55 ACHAMA147I Sent file 7358 from ABC(DRB) through SMTP to DRB@ABC.TCPIP.COL.EDU
yyyymmdd 15:51:59 ACHAMA005I Location *(SMTP) executing: MSG ABC I2 * MAIL DELIVERED TO: <U1@TCPIP.COL.EDU>
yyyymmdd 15:55:19 ACHAMA147I Sent file 7365 from ABC(DRB) through SMTP to DOUG@HURRAH.TCPIP.COL.EDU
yyyymmdd 16:00:28 ACHAMA108E Invalid destination address on file 7367
yyyymmdd 16:04:18 ACHAMA147I Sent file 7370 from ABC(USER1) through SMTP to DOUG@HURRAH.TCPIP.COL.EDU
yyyymmdd 18:02:28 ACHAMA147I Sent file 7416 from ABC(USER1) through SMTP to DRB@ABC.TCPIP.COL.EDU
yyyymmdd 18:02:34 ACHAMA147I Sent file 7418 from ABC(RSCS) through SMTP to MATT@HURRAH.TCPIP.COL.EDU
yyyymmdd 18:02:41 ACHAMA147I Sent file 7417 from ABC(RSCS) through SMTP to MATT@HURRAH.TCPIP.COL.EDU

Figure 75. Sample RSCS Interchange Server Log File

Using Incoming and Outgoing Mail Files
If a mail file is handled correctly, the original incoming mail file, MAIL MAIL A, is read in by the
Interchange server and converted to MAIL NOTE A for the outgoing note. These files exist on the disk,
until the next file arrives, and can be used for problem determination.

Using RSCS Diagnosis Commands
Any problems with RSCS Interchange code residing in the RSCS machine should be diagnosed with RSCS
diagnosis aids.

RSCS Interchange Problem Solving

172 z/VM: 7.3 RSCS Networking Diagnosis

Part 3. Reference Directories

This part contains directories to the RSCS modules and important data areas. Use this section to identify
the structure and contents of the data areas described in Part 1, “Functional Overview,” on page 1 and
Part 2, “Diagnostic Aids,” on page 139.

© Copyright IBM Corp. 1990, 2022 173

174 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 16. Module Directory

This chapter contains reference information about the RSCS modules and entry points. The modules are
listed alphabetically; however, their executable entry points are listed in the order they appear in the
module.

RSCS Modules
The following tables describe the modules that are part of the RSCS load library.

DMTAPT
DMTAPT, a printer link driver task, contains routines that are used by ASCII printer and plotter exit
routines to communicate with various ASCII output devices. DMTAPT and the exit routines, which are
supplied by the installation, create ASCII-type links. See “ASCII Printer and Plotter Link Driver” on page
82 and z/VM: RSCS Networking Exit Customization for more information.

Entry Point Attribute Description

DMTAPTEP Reentrant Provides the interface between ASCII printer and
plotter exit routines and RSCS.

DMTAST
DMTAST, the auto-start task, manages all BSC auto-start links on all auto-dial ports defined to RSCS.
It also manages the inactivity timeout and RETRY functions for all links that specify the ITO or RETRY
parameters, respectively. See “Auto-Start Task” on page 52 for more information.

Entry Point Attribute Description

DMTASTEP Serially reusable Main entry point of the auto-start task.

DMTASTTX Serially reusable Tells the auto-start task when it should check for
activity on a an auto-start link; also called the
STIMER interrupt exit.

DMTAXA
DMTAXA contains the transmission algorithms supplied by IBM; for compatibility, it also contains
the initial code for additional internal transmission algorithms. The spool manager task calls a
transmission algorithm when a networking link requests to process a file. See z/VM: RSCS Networking
Exit Customization for more information.

Entry Point Attribute Description

DMTAXAG0 Serially reusable Contains transmission algorithm 0.

DMTAXAG1 Serially reusable Contains transmission algorithm 1.

DMTAXAG2- DMTAXAGF Serially reusable Contains entry code for optional transmission
algorithms 2 through F.

DMTAXM
DMTAXM, the spool manager task, controls the interface between RSCS link driver tasks and the spool
system. DMTAXM also enqueues files for transmission on links, processes spool file-related commands,
and calls transmission algorithms. See “Spool Manager Task” on page 46 for more information.

RSCS Modules

© Copyright IBM Corp. 1990, 2022 175

Entry Point Attribute Description

DMTAXMEP Serially reusable Initializes the spool manager task and monitors
ECBs to determine when files and commands need
to be processed.

DMTAXMGE Reentrant Notifies the spool manager task when RSCS
receives an I/O interrupt from GCS because a file
has arrived in RSCS’s virtual reader.

DMTAXMRQ Reentrant Processes requests from link driver tasks to open
or close an input or output file.

DMTAXMSE Serially reusable Traps specification exceptions when the AXM task
determines if the system on which RSCS is running
supports certain features (for example, Diagnose
codes).

DMTAXM calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 2 Serially reusable Creates an accounting record for each spool file
RSCS receives from a local user.

Exit 3 Serially reusable Creates or modifies an accounting record for each
file RSCS sends on a link.

Exit 4 Serially reusable Creates an accounting record for each file RSCS
purges.

Exit 5 Serially reusable Creates or modifies an accounting record for each
file RSCS receives on a link.

Exit 6 Serially reusable Ensures a file’s TAG priority is used correctly.

Exit 21 Serially reusable Establishes criteria to accept or reject an incoming
spool file.

Exit 24 Serially reusable Examines or modifies a CP command executed by
the spool manager task.

Exit 25 Serially reusable Examines or modifies the return code from a CP
command executed by the spool manager task.

Exit 31 Serially reusable Changes the sort priority of a file’s TASHADOW
elements.

Exit 34 Serially reusable Determines if the spool manager task should
execute or modify a command element.

DMTBOX
DMTBOX contains the data to print the VM-style separator page; it does not contain any executable entry
points.

DMTBPL
DMTBPL contains routines, which are called by many RSCS tasks and user exit routines, to attach and load
links, transmission algorithms, and exit routines. If errors occur in this process, the task or exit routine
that called DMTBPL will not abend.

RSCS Modules

176 z/VM: 7.3 RSCS Networking Diagnosis

Entry Point Attribute Description

DMTBPLEP Reentrant Calls DMTBPLLX to load the link driver or exit
routine code; it then transfers control to the link
driver task or exit routine.

DMTBPLAL Reentrant Attaches a stub task at DMTBPLEP, which transfers
control to the link driver task or exit routine.

DMTBPLLX Reentrant Loads the specified link driver task or exit routine.

DMTCMA
DMTCMA works with DMTCMX to process commands. Each entry point runs a specific RSCS command.
See z/VM: RSCS Networking Operation and Use for information about each command.

Entry Point Attribute Description

DMTCMAPO Serially reusable Processes the PORT command.

DMTCMAXT Serially reusable Processes the EXIT command.

DMTCMARO Serially reusable Processes the ROUTE command.

DMTCMASL Serially reusable Processes the SLOWDOWN command.

DMTCMB
DMTCMB works with DMTCMX to process RSCS commands, which are executed by the following entry
points. See z/VM: RSCS Networking Operation and Use for information about each command.

Entry Point Attribute Description

DMTCMBSC Serially reusable Executes the SCHEDULE command.

DMTCMBSH Serially reusable Executes the SHIFT command.

DMTCMBRE Serially reusable Executes the RESETCOUNTERS command.

DMTCMBDE Serially reusable Executes the DEST command.

DMTCMQ
DMTCMQ is the primary module to process the QUERY command. Each entry point processes an operand
specified the QUERY SYSTEM command. See z/VM: RSCS Networking Operation and Use for information
about the QUERY command.

Entry Point Attribute Description

DMTCMQEP Reentrant Initially processes the QUERY command and calls
the appropriate entry point to run the specific
command.

DMTCMQLV Serially reusable Processes QUERY SYSTEM LEVEL.

DMTCMQLO Serially reusable Processes QUERY SYSTEM LOCAL.

DMTCMQLA Serially reusable Processes QUERY SYSTEM LOADADDRESS.

DMTCMQNE Serially reusable Processes QUERY SYSTEM NETWORK.

DMTCMQTC Serially reusable Processes QUERY SYSTEM TCPIP.

DMTCMQSQ Serially reusable Processes QUERY SYSTEM QUEUES.

RSCS Modules

Chapter 16. Module Directory 177

Entry Point Attribute Description

DMTCMQDE Serially reusable Processes QUERY SYSTEM DESTS.

DMTCMQEX Serially reusable Processes QUERY SYSTEM EXITS.

DMTCMQSH Serially reusable Processes QUERY SYSTEM SHIFT.

DMTCMQSO Serially reusable Processes QUERY SYSTEM OPTIONS.

DMTCMQPO Serially reusable Processes QUERY SYSTEM PORTS.

DMTCMQRR Serially reusable Processes QUERY SYSTEM REROUTES.

DMTCMQSL Serially reusable Processes QUERY SYSTEM SLOWDOWN.

DMTCMQSZ Serially reusable Processes QUERY SYSTEM ZONE.

DMTCMX
DMTCMX, which operates as part of the communications task, is the primary command processor.
DMTCMX receives command input strings and processes some RSCS commands at its entry points.
DMTCMX calls DMTCMA, DMTCMQ, DMTCMY, and DMTCMZ to process other RSCS commands

Entry Point Attribute Description

DMTCMXEP Serially reusable Primary command processor.

DMTCMX calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 19 Serially reusable Determines if RSCS should process a command.

Exit 29 Serially reusable Examines or processes a command that RSCS does
not recognize.

DMTCMY
DMTCMY works with DMTCMX to process RSCS commands; each entry point executes a specific
command. See z/VM: RSCS Networking Operation and Use for information about RSCS commands.

Entry Point Attribute Description

DMTCMYBA Serially reusable Executes the BACKSPACE command.

DMTCMYDE Serially reusable Executes the DEFINE command.

DMTCMYDL Serially reusable Executes the DELETE command.

DMTCMYDR Serially reusable Executes the DRAIN command.

DMTCMYFO Serially reusable Executes the FORCE command.

DMTCMYFR Serially reusable Executes the FREE command.

DMTCMYFW Serially reusable Executes the FWDSPACE command.

DMTCMYHO Serially reusable Executes the HOLD command.

DMTCMYRE Serially reusable Executes the READY command.

DMTCMYSE Serially reusable Executes the SET and SETMSG commands.

DMTCMYST Serially reusable Executes the START command.

RSCS Modules

178 z/VM: 7.3 RSCS Networking Diagnosis

Entry Point Attribute Description

DMTCMYTR Serially reusable Executes the TRACE command.

DMTCMY calls the following IBM-defined exit point; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 33 Serially reusable Processes UPARM values on the DEFINE command.

DMTCMZ
DMTCMZ works with DMTCMX to process various RSCS commands; each entry point in the module
processes a specific command. See z/VM: RSCS Networking Operation and Use for information about each
command.

Entry Point Attribute Description

DMTCMZCP Serially reusable Processes the CP command and sends the
associated command to the control program for
processing.

DMTCMZCQ Serially reusable Processes the CPQ command.

DMTCMZDA Serially reusable Processes the DISABLE command for
telecommunication ports.

DMTCMZDI Serially reusable Processes the DISCONNECT command to
disconnect the RSCS virtual machine.

DMTCMZEN Serially reusable Processes the ENABLE command for
telecommunication ports.

DMTCMZEX Serially reusable Receives the EXEC command and passes it to
DMTEXE for processing.

DMTCMZIT Serially reusable Processes the GTRACE command.

DMTCMZLO Serially reusable Processes the LOOPING command.

DMTCMZRC Serially reusable Processes the RECONNECT command.

DMTCMZNE Serially reusable Processes the NETWORK command.

DMTCMZRE Serially reusable Processes the REORDER command.

DMTCMZRR Serially reusable Processes the REROUTE command.

DMTCMZSH Serially reusable Processes the SHUTDOWN command.

DMTCMZSO Serially reusable Processes the STOP command.

DMTCMZTC Serially reusable Processes the TCPIP command.

DMTCOM
DMTCOM contains utility routines that are used by most RSCS tasks and exit routines. For more
information, see “General Purpose Routines” on page 109.

Entry Point Attribute Description

DMTCOMLK Reentrant Finds LINKTABL entries.

DMTCOMLU Reentrant Finds LINKTABL entries for LUNAME

RSCS Modules

Chapter 16. Module Directory 179

Entry Point Attribute Description

DMTCOMLD Reentrant Finds LINKTABL entries for DEF LUNAME

DMTCOMLC Reentrant Finds LINKTABL entries for communications
identifier (LCID)

DMTCOMGG Reentrant Finds the ROUTEGRP entries for a group name.

DMTCOMGN Reentrant Finds NODE and ROUTEGRP entries for a node
name.

DMTCOMNQ Reentrant Enqueues an element from a task’s general
purpose queue.

DMTCOMDQ Reentrant Dequeues an element from a task’s general
purpose queue.

DMTCOMTE Reentrant Converts z/Architecture TOD clock values to
EBCDIC.

DMTCOMTS Reentrant Converts EBCDIC TOD clock values into z/
Architecture values.

DMTCOMDG Reentrant Validates and converts EBCDIC values into decimal.

DMTCOMHG Reentrant Validates and converts EBCDIC values into
hexadecimal.

DMTCOMDV Reentrant Validates and converts phone numbers.

DMTCOMTG Reentrant Scans the origin user tag of a file.

DMTCOMLS Reentrant Tests for changes in the state of a link.

DMTCOMCL Reentrant Processes PARM values for a deactivating link.

DMTCOMGD Reentrant Finds a link driver entry point name using its type.

DMTCOMSM Reentrant Sends messages on a link.

DMTCOMFI Reentrant Disk file interface routine; reads records from files
and returns then to the calling task.

DMTCQC
DMTCQC compiles filter programs to display specific data area information for some RSCS commands,
including QUERY, CHANGE, and PURGE. DMTCQC produces a compiled subroutine, which the command
processing module uses when running a command. The entry points in DMTCQC perform the specific
functions to compile the filter.

Entry Point Attribute Description

DMTCQCIN Reentrant Initializes compiler.

DMTCQCIS Reentrant Initializes compiler for short programs.

DMTCQCEN Reentrant Finishes compiling with a BR R14.

DMTCQCPT Reentrant Loads and allocates register with pointer.

DMTCQCGE Reentrant Provides a generic test.

DMTCQCRR Reentrant Provides a single RROUTE-TO operand.

DMTCQCLC Reentrant Provides a link class filter.

RSCS Modules

180 z/VM: 7.3 RSCS Networking Diagnosis

Entry Point Attribute Description

DMTCQCFL Reentrant Tests a flag (boolean AND mode).

DMTCQCFO Reentrant Tests a flag (boolean OR mode).

DMTCQCFW Reentrant Compares against fullword.

DMTCQCHW Reentrant Compares against halfword.

DMTCQCFR Reentrant Compares register against fullword.

DMTCQCZE Reentrant Tests field for zero.

DMTCQCPR Reentrant Tests for a primary link.

DMTCQCAL Reentrant Tests for an alternate link.

DMTCQCCH Reentrant Tests for a generic in a chain of items.

DMTCQCGF Reentrant Tests for a group filter.

DMTCQX
DMTCQX is a logical extension of the DMTCMQ. It contains entry points that process the QUEUES and FILE
operands of the QUERY command. DMTCQX also contains routines that propagate these commands.

Entry Point Attribute Description

DMTCQXQU Serially reusable Processes QUERY QUEUES.

DMTCQXFI Serially reusable Processes QUERY FILES.

DMTCQXLK Serially reusable Processes QUERY (SYSTEM) LINKS.

DMTCQXPR Serially reusable Performs command propagations.

DMTCQXFL Serially reusable Checks for flooding conditions.

DMTCQXSC Serially reusable Processes QUERY SYSTEM SCHEDULE.

DMTCQXCO Serially reusable Processes QUERY SYSTEM COUNTS.

DMTCQY
DMTCQY, a logical extension of DMTCMQ, processes the GROUP, SYSTEM, and NODE operands of the
QUERY command. See z/VM: RSCS Networking Operation and Use for more information about the QUERY
command.

Entry Point Attribute Description

DMTCQYGG Serially reusable Processes QUERY GROUP groupid <option>.

DMTCQYGH Serially reusable Processes QUERY GROUP groupid HIERARCHY.

DMTCQYSG Serially reusable Processes QUERY SYSTEM GROUPS.

DMTCQYNO Serially reusable Processes QUERY NODE nodeid <option>.

DMTCQYNH Serially reusable Processes QUERY NODE nodeid HIERARCHY.

DMTCQYSN Serially reusable Processes QUERY SYSTEM NODES.

DMTCQYSE Serially reusable Processes QUERY SYSTEM SET.

DMTCQYSM Serially reusable Processes QUERY SYSTEM SETMSG.

RSCS Modules

Chapter 16. Module Directory 181

DMTCQZ
DMTCQZ, an extension of DMTCMQ, processes invocations of the QUERY ITRACE command. See z/VM:
RSCS Networking Operation and Use for more information about the QUERY command.

Entry Point Attribute Description

DMTCQZIT Serially reusable Processes QUERY SYSTEM ITRACE.

DMTCVT
DMTCVT calls the CVT macro to build the communications vector table (CVT) when RSCS initializes. It
does not contain executable entry points.

DMTDDL
DMTDDL converts data records, passed to it by the calling routine, into NETDATA format, which is used to
generate a note. DMTDDL is called by DMTNOT and can also be called by an exit routine. See “NETDATA
Conversion Routine” on page 115 and “NOTIFY Link Driver” on page 101 for more information.

Entry Point Attribute Description

DMTDDLEP Reentrant Converts individual records into the NETDATA
format.

DMTDUP
DMTDUP, the auto-answer (dial-up) task, monitors all dial-up ports for incoming sign-on requests from
remote workstations or BSC NJE nodes. See “Auto-Answer Tasks” on page 62 for more information.

Entry Point Attribute Description

DMTDUPEP Reentrant Main entry point for the auto-answer task.

DMTDUP calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 7 Reentrant Creates an accounting record when a sign-on time
out expires for an auto-answer port.

Exit 8 Reentrant Creates an accounting record when an auto-answer
port receives unrecognizable data.

Exit 9 Reentrant Validates the sign-on card from an auto-answer
port.

Exit 10 Reentrant Processes a sign-on card that was rejected by a link
associated with an auto-answer port.

DMTEND
DMTEND identifies the end of the RSCS load module and the RSU level; it does not contain executable
entry points.

DMTEQU
DMTEQU contains the RSCS equate table, which relates each link driver and system task with its task
entry point address. The equate table also describes the characteristics of each RSCS task. DMTEQU does
not contain executable entry points.

RSCS Modules

182 z/VM: 7.3 RSCS Networking Diagnosis

DMTEVE
DMTEVE, the event scheduler task, manages all events scheduled for the RSCS virtual machine. See
“Event Manager Task” on page 53 for more information.

Entry Point Attribute Description

DMTEVEEP Serially reusable Main entry point of the RSCS event scheduler task.

DMTEXE
DMTEXE, the exec processor task, calls the GCS command processor to run any RSCS execs.

Entry Point Attribute Description

DMTEXEEP Serially reusable Main entry point of the RSCS exec processor task.

DMTGPI
DMTGPI, the GATEWAY link driver task, contains routines that are called when a gateway program issues
an RSCS gateway service macro. See “GATEWAY Link Driver” on page 73 and z/VM: RSCS Networking Exit
Customization for more information.

Entry Point Attribute Description

DMTGPIEP Reentrant Initializes networking data areas and prepares the
call to the gateway program.

DMTGPICM Reentrant Processes commands for the link driver.

DMTGPIOP Reentrant Processes NJEOPEN requests, issued by the
gateway exit routine, to open an NJE file or job.

DMTGPICL Reentrant Processes NJECLOSE requests, issued by the
gateway exit routine, to close an NJE file or job.

DMTGPIGT Reentrant Processes NJEGET requests, issued by the gateway
exit routine, to acquire an NJE file or job.

DMTGPIPT Reentrant Processes NJEPUT requests to place an NJE record
into a file.

DMTGPIAB Reentrant Processes NJEABORT requests to stop sending an
NJE record.

DMTGPIRJ Reentrant Processes NJERJECT requests to reject a file that
has been received.

DMTGPICN Reentrant Processes NJECONCT requests, which tell the
gateway exit routine to begin processing.

DMTGPIDS Reentrant Processes NJEDSCON requests, which mark the
GATEWAY-type link as ACTIVE.

DMTGPI calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 37 Reentrant Examines job headers before a store-and-forward
file is sent on the link.

RSCS Modules

Chapter 16. Module Directory 183

Exit Point Attribute Description

Exit 38 Reentrant Examines dataset headers before a store-and-
forward file is sent on the link.

Exit 39 Reentrant Examines job trailers before a store-and-forward
file is sent on the link.

Exit 40 Reentrant Examines records, other than NJE headers, as
RSCS receives a file on the link.

DMTHAS
DMTHAS contains routines that build and maintain hash tables, which contain information about various
RSCS data structures. RSCS tasks call DMTHAS routines to find, add, or delete entries in the hash tables.

Entry Point Attribute Description

DMTHASHB Reentrant Builds the initial RSCS hash table.

DMTHASHC Reentrant Deallocates a hash table after it is used.

DMTHASHA Reentrant Adds entries to the hash table.

DMTHASHD Reentrant Deletes entries from the hash table.

DMTHASHF Reentrant Locates entries in the hash table.

DMTHASHG Reentrant Locates hash table entries that may contain generic
values (asterisks).

DMTHASHS Reentrant Updates counters for the hash table, which include
the number of chain anchors in use and the length
of the longest chain.

DMTIOT
DMTIOT processes all RSCS I/O requests to GCS. See “I/O Interface Routines” on page 114 for more
information.

Entry Point Attribute Description

DMTIOTST Reentrant Performs OPEN and START processing on I/O
requests.

DMTIOTHD Reentrant Performs HALT and CLOSE processing on I/O
requests.

DMTIOTGE Serially reusable Contains the general I/O exit routine to GCS.

DMTITR
DMTITR copies trace records into the RSCS internal wrap around trace table. DMTITREP, the only
executable entry point, is only called by expansions of the ITRACE macro.

Entry Point Attribute Description

DMTITREP Reentrant Obtains logical record formats from the trace table
and formats data supplied by the calling routine
into trace records.

RSCS Modules

184 z/VM: 7.3 RSCS Networking Diagnosis

DMTIRW
DMTIRW contains prototype AUTHBLOK, FORM, LINKTABL, PORT, and ROUTE tables, which are used by
DMTIRX when RSCS initializes. It does not contain executable entry points.

DMTIRX
DMTIRX processes each statement in the configuration file when RSCS initializes. It then uses this
information to build the data areas that describe the RSCS virtual machine and network structure.

Entry Point Attribute Description

DMTIRXEP Serially reusable Processes the configuration file; initializes and
builds data areas tables.

DMTLAX
DMTLAX determines if a valid port address is specified on a link and if the link is available.

Entry Point Attribute Description

DMTLAXEP Serially reusable Validates the port address specified on a link and
allocates if it is available.

DMTLCR
DMTLCR contains routines that are used by the list processor task, DMTLIS, and other networking link
driver tasks. See “Using List Processor Routines” on page 100 for more information.

Entry Point Attribute Description

DMTLCRNG Reentrant Determines if the data set header currently be
processed should be included in a transmission.

DMTLCRDP Reentrant Scans and formats an existing data set header for
later use by the list processor task.

DMTLCRTS Reentrant Scans the origin user tag in a file’s distribution list.

DMTLCRCD Reentrant Copies a data set header into an AUXTANK area.

DMTLIS
DMTLIS is the primary module of the list processor task. See “List Processor” on page 99 for more
information.

Entry Point Attribute Description

DMTLISEP Reentrant Main entry point for the RSCS list processor task.

DMTLOG
DMTLOG generates and processes output trace logs for RSCS link driver tasks.

Entry Point Attribute Description

DMTLOGEP Reentrant Writes trace records in to the specified output
spool device.

DMTLOGCL Reentrant Closes the output spool device to which the trace
records are written.

RSCS Modules

Chapter 16. Module Directory 185

DMTLPD
DMTLPD is the primary module for the LPD link driver task, which receives datastreams from a TCP/IP
UFT client in a TCP/IP network for distribution to a destination within the RSCS network. See “Line Printer
Daemon (LPD) Link Driver” on page 88 for more information.

Entry Point Attribute Description

DMTLPDEP Reentrant Main entry point of the LPD link driver task.

DMTLPR
DMTLPR is the primary module for the LPR link driver task, which provides an interface between RSCS
and a TCP/IP line printer daemon. See “Line Printer Remote (LPR) Link Driver” on page 90 for more
information.

Entry Point Attribute Description

DMTLPREP Reentrant Main entry point of the LPR link driver task.

DMTMAN
DMTMAN, the console input task, accepts commands entered from the console and passes them to
DMTREX for processing. DMTMAN also contains ESTAE exit routine that are called when RSCS tasks
abend.

Entry Point Attribute Description

DMTMANEP Serially reusable Receives commands entered at the RSCS console
or by an exec; attaches DMTREX when an INIT
command is issued.

DMTMANEX Reentrant Common ESTAE exit routine for all RSCS tasks.

DMTMANSE Reentrant Contains the ESTAE exit routine for all system
tasks.

DMTMANDE Reentrant Contains the ESTAE exit routine for all link driver
tasks.

DMTMANPE Reentrant Contains the ESTAE exit routine for all auto-answer
tasks.

DMTMAN calls the following IBM-defined exit point; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 35 Serially reusable Determines if RSCS should request a dump when a
task abends.

DMTMGF
DMTMGF, part of the message builder, formats each line of a message.

Entry Point Attribute Description

DMTMGFFM Reentrant Formats each line of a message in the specified
language.

RSCS Modules

186 z/VM: 7.3 RSCS Networking Diagnosis

DMTMGI
DMTMGI issues a message, after it is formatted by DMTMGF, to all destinations specified by its routing
code.

Entry Point Attribute Description

DMTMGIAR Reentrant Sends messages to their specified destinations and
subscriptions.

DMTMGI calls the following IBM-defined exit point; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 28 Reentrant Changes the language in which RSCS issues a
message.

DMTMGS
DMTMGS performs any substitutions needed within a line of message text.

Entry Point Attribute Description

DMTMGSUB Reentrant Processes each substitution in message text.

DMTMGX
DMTMGX, which is called by any RSCS task, is the main message building module. It formats the message
work area (MSGWA) with information about the requested message and calls DMTMGI to start the
process of formatting and issuing the message. See Chapter 12, “Message Processing,” on page 127 for
more information about building and issuing messages.

Entry Point Attribute Description

DMTMGXEP Reentrant Prepares the MSGBLOK and MSGWA for use by
DMTMGI.

DMTMGX calls the following IBM-defined exit point; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 27 Reentrant Modifies or suppresses an RSCS message.

DMTMPT
DMTMPT contains general parsing routines that are used by RSCS and user exit routines.

Entry Point Attribute Description

DMTMPTGP Reentrant Parses a token from an input string.

DMTMPTBP Reentrant Reads an input parameter and, if it is a keyword,
branches to the appropriate processing routine.

DMTMPTCK Reentrant Determines if a keyword has been parsed.

DMTMPTGD Reentrant Converts decimal values into binary.

RSCS Modules

Chapter 16. Module Directory 187

DMTNCR
DMTNCR is called by the networking link drivers to initialize storage and process commands and sign-on
records.

Entry Point Attribute Description

DMTNCRIN Reentrant Initializes and obtains storage for networking data
areas (NDWA, RIB, and TIB).

DMTNCRSG Reentrant Processes incoming sign-on records.

DMTNCRTC Reentrant Counts successful time outs on a link.

DMTNCREC Reentrant Counts the number of error that occur on a link.

DMTNCRTO Reentrant Counts the number of time outs that occur on a
link.

DMTNCRCD Reentrant Processes commands issued for networking link
drivers.

DMTNET
DMTNET is the primary module for the BSC and CTC link driver tasks. It performs initialization functions
and processes I/O requests for NJE-type link driver tasks. For more information, see “BSC and CTC Link
Driver” on page 71.

Entry Point Attribute Description

DMTNETEP Reentrant Main entry point to the NJE link driver tasks.

DMTNHD
DMTNHD is called by the networking link drivers to process NJE job headers when RSCS receives files,
messages, and commands from a remote node. See “Receiving NJE Headers” on page 66 for more
information.

Entry Point Attribute Description

DMTNHDMR Reentrant Processes incoming messages and commands.

DMTNHDMT Reentrant Creates and sends nodal message records to
remote nodes.

DMTNHDHR Reentrant Assembles segments of incoming NJE headers.

DMTNHDJH Reentrant Processes incoming job headers and places
information from the headers into TAG elements.

DMTNHDSH Reentrant Processes incoming data set headers.

DMTNHDJT Reentrant Processing incoming job trailers.

DMTNHD calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 14 Reentrant Processes the NJE job header for an incoming file
before RSCS updates the TAG element.

Exit 15 Reentrant Processes the NJE data set header for an incoming
file before RSCS updates the TAG element.

RSCS Modules

188 z/VM: 7.3 RSCS Networking Diagnosis

Exit Point Attribute Description

Exit 16 Reentrant Processes the NJE job trailer for an incoming file
before RSCS updates the TAG element.

Exit 41 Reentrant Processes the NJE job header for an incoming file
after RSCS updates the TAG element.

Exit 42 Reentrant Processes the NJE data set header for an incoming
file after RSCS updates the TAG element.

Exit 43 Reentrant Processes the NJE job trailer for an incoming file
after RSCS updates the TAG element.

DMTNHE
DMTNHE produces NJE job header records for networking links. See “Building NJE Headers” on page 65
for more information.

Entry Point Attribute Description

DMTNHEJH Reentrant Builds a job header for a file to be transmitted.

DMTNHEDH Reentrant Builds a data set header for a file to be transmitted.

DMTNHEJT Reentrant Builds a job trailer for a file to be transmitted.

DMTNHE calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 11 Reentrant Processes NJE job headers created by RSCS.

Exit 12 Reentrant Processes NJE data set headers created by RSCS.

Exit 13 Reentrant Processes NJE job trailers created by RSCS.

DMTNOT
DMTNOT is the primary module for the NOTIFY link driver task. It initializes the NOTIFY-type link driver
task. DMTNOT also reads and initially parses the message template used to send notes to various users.
See “NOTIFY Link Driver” on page 101 for more information.

Entry Point Attribute Description

DMTNOTEP Reentrant Main entry point to the NOTIFY link driver task.

DMTNOT calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 22 Reentrant Determines if the NOTIFY-type link driver issues a
note to originator of a misdirected file.

Exit 23 Reentrant Modifies the note sent to the originator of a
misdirected file.

Exit 36 Reentrant Determines if RSCS should purge a file on a
NOTIFY-type link.

RSCS Modules

Chapter 16. Module Directory 189

DMTNPT
DMTNPT is the primary module for the BSC (RJE) workstation link driver task. It performs initialization
functions and performs I/O requests for the RJE link driver tasks. See “RJE Workstation Link Driver” on
page 93 for more information.

Entry Point Attribute Description

DMTNPTEP Reentrant Main entry point of the RJE link driver task.

DMTNRV
DMTNRV is called by the networking link driver tasks (DMTGPI, DMTLIS, DMTNET, and DMTSNE) to empty
a TP buffer from a remote node. See “Receiving Buffers” on page 69 for more information.

Entry Point Attribute Description

DMTNRVEB Reentrant Empties the contents of a TP buffer received on a
networking link.

DMTNRV calls the following IBM-defined exit point; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 40 Reentrant Examines records, other than NJE headers, as
RSCS receives a file on the link.

DMTNTR
DMTNTR is called by the networking link drivers to fill and send data buffers. See “Transmitting Buffers”
on page 69 for more information.

Entry Point Attribute Description

DMTNTRSB Reentrant Fills a transmission buffer with data.

DMTNTR calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 37 Reentrant Examines job headers before a store-and-forward
file is sent on the link.

Exit 38 Reentrant Examines dataset headers before a store-and-
forward file is sent on the link.

Exit 39 Reentrant Examines job trailers before a store-and-forward
file is sent on the link.

DMTNUS
DMTNUS contains utility routines that are called by the networking link driver tasks. See “General Purpose
Routines” on page 67 for more information.

Entry Point Attribute Description

DMTNUSCP Reentrant Compresses spool file records into TP buffers.

DMTNUSDC Reentrant Decompresses records from an incoming TP buffer.

RSCS Modules

190 z/VM: 7.3 RSCS Networking Diagnosis

Entry Point Attribute Description

DMTNUSCN Reentrant Processes any data that can not be accepted by the
spool system into segmented NOP records.

DMTNUSDN Reentrant Decodes segmented NOPs read from spool and
prepares to send the data to a remote node.

DMTPAF
DMTPAF contains routines that parse and validate commands and configuration file statements. See
Chapter 11, “Parsing Commands and Statements,” on page 119 for more information.

Entry Point Attribute Description

DMTPAFCL Serially reusable Validates the command name in text string.

DMTPAFCP Serially reusable Parses and validates the syntax of a text string.

DMTPAR
DMTPAR verifies the syntax of parameter strings that include keyword and option information.

Entry Point Attribute Description

DMTPAREP Reentrant Validates the syntax of an input string.

DMTPCR
DMTPCR contains the RSCS networking printer common routines support for the 3270P, SNA3270P, and
TN3270E link drivers.

Entry Point Attribute Description

DMTPCRIN Reentrant Initialization routine for processing the FEATURE
and TRANS parameters for DMTRPT and DMTSPT.

DMTPCRDT Reentrant Verification routine for the optional parts of the TAG
command for the 3270P and SNA3270P drivers.

DMTPCRTR Reentrant Translates the individual records that have been
obtained from the spool file block 4K increments
(SPLINKS) by DMTRDR into the printer data stream.

DMTPRD
DMTPRD, the port redirector task, handles requests from tasks to listen for connect requests on TCP ports
for a specific host. See “Port Redirector Task” on page 60 for more information.

Entry Point Attribute Description

DMTPRDEP Reentrant Main entry point for the RSCS TCP port redirector
task.

DMTPRDDQ Reentrant Dequeues a message PRDBLOK for a task.

DMTPRDNQ Reentrant Enqueues a message PRDBLOK for a task.

RSCS Modules

Chapter 16. Module Directory 191

DMTQSA
DMTQSA contains routines that allocate and deallocate storage buffers for reentrant RSCS tasks. The
characteristics of the storage are defined by a QSABLOK. See “Storage Management Routines” on page
113 for more information.

Entry Point Attribute Description

DMTQSAAB Reentrant Allocates a buffer to the calling task.

DMTQSAFA Reentrant Frees all buffers associated with a QSABLOK.

DMTQSAFE Reentrant Frees all buffers associated with all QSABLOKs.

DMTQSAUB Reentrant Deallocates a buffer.

DMTRDR
DMTRDR is the RSCS unit record input routine. It processes files that arrive in the RSCS virtual machine’s
virtual reader and presents individual file records to the calling routine. See “Input Spool Routines” on
page 114 for more information.

Entry Point Attribute Description

DMTRDREP Reentrant Reads individual records from input files in RSCS’s
virtual reader.

DMTRDROP Reentrant Initializes the input file after it has been opened
and reads the first SPLINK of the file from spool.

DMTRER
DMTRER performs all functions specified on the REROUTE command and configuration file statement.

Entry Point Attribute Description

DMTRERIN Serially reusable Initializes hash tables that describe the RSCS
network structure (LINKTABL, NODE, REROUTE).

DMTRERAD Serially reusable Adds information specified on the REROUTE
command and configuration file statement to the
REROUTE table.

DMTRERSC Reentrant Scans the REROUTE table to determine if a
REROUTE request is applicable to the specified
node or user ID.

DMTRERDL Serially reusable Deletes entries from the REROUTE table.

DMTRER calls the following IBM-defined exit point; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 30 Reentrant Establishes criteria for routing data.

DMTRES
DMTRES manages RSCS’s spool and file resources; each resource is described by a RESBLOCK. See
“DMTRES” on page 42 for more information.

RSCS Modules

192 z/VM: 7.3 RSCS Networking Diagnosis

Entry Point Attribute Description

DMTRESLO Reentrant Locks a resource for exclusive use by one task.

DMTRESUN Reentrant Unlock a resource that is no longer needed by a
task.

DMTRESCL Reentrant Process RESBLOCKs for a task that has terminated.

DMTREX
DMTREX, the communications task, attaches other mandatory RSCS system tasks (spool manager, exec
processor, auto-start, and event scheduler). It also monitors ECBs and notifies tasks when they must
process a command or file. See “Communications Task” on page 43 for more information.

Entry Point Attribute Description

DMTREXEP Reentrant Initializes and acquires storage for RSCS; it also
attaches the mandatory RSCS system tasks.

DMTREXIU Serially reusable Tells DMTREX when an IUCV interrupt is generated
when the RSCS virtual machine receives a CP SMSG
command.

DMTREX calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 0 Serially reusable Performs additional initialization processing.

Exit 1 Serially reusable Performs additional termination processing.

DMTRGX
DMTRGX processes command and routing elements received from a remote node.

Entry Point Attribute Description

DMTRGXEP Reentrant Processes command and message elements
received on networking links.

DMTRGX calls the following IBM-defined exit point; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 32 Reentrant Processes or modifies an incoming command or
message element.

DMTRPT
DMTRPT is the primary module for the 3270P link driver task. See “3270P Printer Link Driver” on page 77
for more information.

Entry Point Attribute Description

DMTRPTEP Reentrant Main entry point to the RSCS 3270P link driver
task.

RSCS Modules

Chapter 16. Module Directory 193

DMTRPT calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 44 Reentrant Perform special processing (accounting, link clean
up) when a printer link terminates.

Exit 45 Reentrant Perform accounting of output pages from a printer
link.

Exit 46 Reentrant Adjust any output page accounting on a printer link.

DMTSCT
DMTSCT, the primary module in the SNA control task, initializes and maintains the RSCS/VTAM interface.
See “SNA Control Task” on page 55 for more information.

Entry Point Attribute Description

DMTSCTEP Serially reusable Main entry point for the RSCS SNA control task.

DMTSCTCU Reentrant Called by DMTMANEX to perform end of task
processing when a session driver task is detached.

DMTSEP
DMTSEP contains routines to generate header and trailer separator pages for print files.

Entry Point Attribute Description

DMTSEPBL Reentrant Formats block letters for separator pages.

DMTSEPHD Reentrant Creates the header page.

DMTSEPTR Reentrant Creates the trailer page.

DMTSEP calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 17 Reentrant Determines a separator page style.

Exit 18 Reentrant Creates an alternate style separator page.

DMTSJE
DMTSJE is the primary module for the SNARJE session driver task. See “SNARJE Workstation Session
Driver” on page 96 for more information.

Entry Point Attribute Description

DMTSJEEP Reentrant Main entry point for the RSCS SNARJE session
driver task.

DMTSJEDF Reentrant Processes DFASY requests from VTAM.

DMTSLO
DMTSLO builds and maintains the vectors used for processing of the SLOWDOWN command.

RSCS Modules

194 z/VM: 7.3 RSCS Networking Diagnosis

Entry Point Attribute Description

DMTSLOBL Serially reusable Builds initial slowdown vectors.

DMTSLONE Serially reusable Adds new entries to the slowdown vector.

DMTSLORE Serially reusable Builds a new entry or exit vector, using a new base
value.

DMTSLOFI Reentrant Finds a values in a slowdown vector.

DMTSML
DMTSML is the primary module for the MRJE workstation link driver task. See “MRJE Workstation Link
Driver” on page 94 for more information.

Entry Point Attribute Description

DMTSMLEP Reentrant Main entry point of the MRJE link driver task.

DMTSNE
DMTSNE is the primary module for the SNA networking session driver. See “SNA LU_T0 NJE Session
Driver” on page 70 for more information.

Entry Point Attribute Description

DMTSNEEP Reentrant Main entry point for the SNANJE session driver
task.

DMTSNEDF Reentrant Processes DFASY requests.

DMTSNERP Reentrant Detects positive and negatives responses to SNA
requests.

DMTSOK
DMTSOK is the RSCS TCP/IP socket function interface.

Entry Point Attribute Description

DMTSOKET Reentrant Main entry point to the RSCS TCP/IP socket
interface.

DMTSPT
DMTSPT is the primary module for the SNA3270P session driver. See “SNA 3270 Printer Session Driver”
on page 80 for more information.

Entry Point Attribute Description

DMTSPTEP Reentrant Main entry point to the SNA3270P session driver
task.

DMTSPTDF Reentrant Processes DFASY requests.

DMTSPT calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

RSCS Modules

Chapter 16. Module Directory 195

Exit Point Attribute Description

Exit 44 Reentrant Perform special processing (accounting, link clean
up) when a printer link terminates.

Exit 45 Reentrant Perform accounting of output pages from a printer
link.

Exit 47 Reentrant Perform any special initialization processing
needed for output page accounting on an
SNA3270-type printer link.

Exit 48 Reentrant Perform any special processing needed for if an
error occurs while printing output on an SNA3270-
type printer link.

DMTTAP
DMTTAP, the TCPASCII link driver task, communicates with ASCII printers and plotters that are attached
to a terminal server in a TCP/IP network. See “TCPASCII Printer and Plotter Link Driver” on page 85 for
more information.

Entry Point Attribute Description

DMTTAPEP Reentrant Provides an interface between RSCS and terminal
servers attached to TCP/IP.

DMTTAS
DMTTAS contains routines that build and maintain the RSCS task table. It is also called to find entries in
the task table.

Entry Point Attribute Description

DMTTASKA Reentrant Adds entry to the RSCS task table.

DMTTASKD Reentrant Deletes entries from the task table.

DMTTASKF Reentrant Finds entries in the task table.

DMTTASKG Reentrant Locates entries in the task table using a task ID
provided by GCS.

DMTTNE
DMTTNE, the TCPNJE link driver task, provides support that enables RSCS to communicate with a remote
NJE peer system using TCP/IP as the transport mechanism. See “TCPNJE Link Driver” on page 72 for
more information.

Entry Point Attribute Description

DMTTNEEP Reentrant Main entry point to the TCPNJE link driver task.

DMTTPT
DMTTPT is the primary module for the TN3270E link driver task. See “TN3270E Printer Link Driver” on
page 78 for more information.

Entry Point Attribute Description

DMTTPTEP Reentrant Main entry point to the RSCS TN3270E link driver
task.

RSCS Modules

196 z/VM: 7.3 RSCS Networking Diagnosis

DMTTPT calls the following IBM-defined exit points; see z/VM: RSCS Networking Exit Customization for
more information.

Exit Point Attribute Description

Exit 44 Reentrant Perform special processing (accounting, link clean
up) when a printer link terminates.

Exit 45 Reentrant Perform accounting of output pages from a printer
link.

Exit 46 Reentrant Adjust any output page accounting on a printer link.

DMTUFD
DMTUFD is the primary module for the UFTD link driver task, which receives datastreams from a TCP/IP
Unsolicited File Transfer (UFT) client in a TCP/IP network for distribution to a destination within the RSCS
network. See “Unsolicited File Transfer Daemon (UFTD) Driver” on page 105 for more information.

Entry Point Attribute Description

DMTUFDEP Reentrant Main entry point of the UFTD link driver task.

DMTUFT
DMTUFT is the primary module for the LPR link driver task, which sends datastreams to a TCP/IP
Unsolicited File Transfer (UFT) daemon for distribution in a TCP/IP network. See “Unsolicited File Transfer
(UFT) Driver” on page 103 for more information.

Entry Point Attribute Description

DMTUFTEP Reentrant Main entry point of the UFT link driver task.

DMTURO
DMTURO builds, sends, and flushes output buffers to unit record devices. See “Output Spool Routines” on
page 115 for more information.

Entry Point Attribute Description

DMTUROEP Reentrant Builds CCWs and data in a buffer that is sent to the
unit record device when full.

DMTUROFL Reentrant Flushes the buffer built by DMTUROEP.

DMTVXT
Part of the SNA control task, DMTVXT contains VTAM exit routines. VTAM calls these routines when it
needs to inform RSCS about specific events or errors that affect the RSCS application or a session driver
task. See “VTAM Exit Routines” on page 57 for more information.

Entry Point Attribute Description

DMTVXTLG Reentrant Scheduled when a VTAM SIMLOGON request is
issued because the RSCS operator started an
SNA link, or because the VTAM operator issued a
VTAM VARY LOGON command for a remote printer.
DMTVXTLG examines the information supplied
from VTAM and attempts to attach a session driver
for this session.

RSCS Modules

Chapter 16. Module Directory 197

Entry Point Attribute Description

DMTVXTLT Reentrant Scheduled when an SNA session abends or is
disrupted.

DMTVXTNS Reentrant Scheduled when RSCS receives certain Network
Services Request Units on the SSCP-LU session.

DMTVXTRL Reentrant Scheduled when another VTAM application issues a
RELREQ request to request a logical unit that is in
session with RSCS.

DMTVXTSC Reentrant Scheduled when RSCS receives a SCIP session
control request (CLEAR, SDT, RQR, STSN, BIND,
and UNBIND). If a BIND request is received,
DMTVXTSC tries to start a session driver for the
session (unless a session driver is already active).

DMTVXTTP Reentrant Scheduled when VTAM terminates from a HALT
command, abend, or VTAM-detected error.

Exit Points
The following table provides a cross-reference from the IBM-defined exit points to the RSCS modules
from which they are called.

Exit Point Name Module

0 Initialization DMTREX

1 Termination DMTREX

2 Spool File Accept Accounting DMTAXM

3 Spool File Send Accounting DMTAXM

4 Spool File Purge Accounting DMTAXM

5 Spool File Receive Accounting DMTAXM

6 TAG Priority Change DMTAXM

7 Auto-answer Sign-on Time Out DMTDUP

8 Auto-answer Unrecognizable Data DMTDUP

9 Auto-answer Sign-on Validation DMTDUP

10 Auto-answer Sign-on Reject DMTDUP

11 NJE Job Header Creation DMTNHE

12 NJE Data Set Header Creation DMTNHE

13 NJE Job Trailer Creation DMTNHE

14 NJE Job Header Reception DMTNHD

15 NJE Data Set Header Reception DMTNHD

16 NJE Job Trailer Reception DMTNHD

17 Separator Page Selection DMTSEP

18 Separator Page Generation DMTSEP

19 Command Screening DMTCMX

21 Spool File Accept/Reject DMTAXM

Exit Points

198 z/VM: 7.3 RSCS Networking Diagnosis

Exit Point Name Module

22 NOTIFY Driver Note Selection DMTNOT

23 NOTIFY Driver Note Editing DMTNOT

24 Spooling CP Command Screening DMTAXM

25 Post-CP Command Screening DMTAXM

26 Link State Change Accounting DMTCOM

27 Message Request Screening DMTMGX

28 Message Language Selection DMTMGI

29 Unknown Command DMTCMX

30 Reroute Interception DMTRER

31 Sort Priority Change DMTAXM

32 NMR Reception DMTRGX

33 User Parm Processing DMTCMY

34 Spool Manager Command DMTAXM

35 Dump Processing DMTMAN

36 NOTIFY Driver Purge DMTNOT

37 NJE Job Header Transmission DMTGPI, DMTNTR

38 NJE Data Set Header Transmission DMTGPI, DMTNTR

39 NJE Job Trailer Transmission DMTGPI, DMTNTR

40 NJE Record Reception DMTGPI, DMTNRV

41 NJE Job Header Post-Processing DMTNHD

42 NJE Data Set Header Post-Processing DMTNHD

43 NJE Job Trailer Post-Processing DMTNHD

44 Link Termination DMTRPT, DMTSPT

45 Output Page Accounting DMTRPT, DMTSPT

46 Verification of Page Accounting DMTRPT, DMTSPT

47 Driver Initialization DMTSPT

48 Verification of Output Page Error DMTSPT

Dump Formatting Routines
RSCS provides the following modules to interact with the Dump Viewing Facility to format various data
areas from an RSCS dump. These modules run on CMS and are not link-edited into the RSCS load
library. See Chapter 14, “Examining Dumps,” on page 157 for more information about the corresponding
subcommands.

DMTYCV
DMTYCV locates the CVT in the RSCS-formatted dump and displays its contents as hexadecimal data. Its
executable entry point, DMTYCV, is serially reusable.

Dump Formatting Routines

Chapter 16. Module Directory 199

DMTYDS
The Dump Viewing Facility calls DMTYDS to determine which RSCS formatting routine is needed to display
the data area specified on the corresponding subcommand. DMTYDS validates the RSCS load address
passed by the calling component and calls the appropriate formatting routine. Its one executable entry
point, DMTYDS, is serially reusable.

DMTYEX
DMTYEX extracts data from the RSCS-formatted dump and adds it to the problem report created by the
Dump Viewing Facility. Its executable entry point, DMTYEX, is serially reusable.

DMTYIO
DMTYIO locates the specified IOTABLE in the RSCS-formatted dump and displays its contents as
hexadecimal data. Its executable entry point, DMTYIO, is serially reusable.

DMTYIT
DMTYIT finds the RSCS internal trace table in the RSCS-formatted dump. It then displays the trace
records specified on the ITRACE subcommand. Its executable entry point, DMTYIT, is serially reusable.

DMTYLI
DMTYLI finds the LINKTABL entry for the specified link and displays its contents in hexadecimal format.
Its executable entry point, DMTYLI, is serially reusable.

DMTYND
DMTYND finds the networking dynamic work area (NDWA) for the specified networking link and displays
its contents in hexadecimal format. Its executable entry point, DMTYND, is serially reusable.

DMTYRI
DMTYRI finds the specified receive information block (RIB) in the RSCS-formatted dump and displays its
contents in hexadecimal format. Its executable entry point, DMTYRI, is serially reusable.

DMTYRO
DMTYRO finds the specified ROUTE table and displays its contents in hexadecimal format. Its executable
entry point, DMTYRO, is serially reusable.

DMTYTG
DMTYTG finds the specified TAG element in the RSCS-formatted dump and displays its contents in
hexadecimal format. Its executable entry point, DMTYTG, is serially reusable.

DMTYTI
DMTYTI finds the specified transmit information block (TIB) in the RSCS-formatted dump and displays its
contents in hexadecimal format. Its executable entry point, DMTYTI, is serially reusable.

Dump Formatting Routines

200 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 17. Control Blocks

This chapter describes the primary control blocks used by many of the RSCS tasks. These data areas are
presented for diagnostic purposes only.

Offsets are shown in hexadecimal notation at the left of each diagram. Following each diagram is a table
that presents the hexadecimal offset, name, type, and description of each field.

Primary Data Areas
The primary RSCS data areas, CRV and CVT, are accessed by all RSCS tasks and exit routines. For more
information about these data areas, see “Primary Data Areas” on page 16.

CRV
 PI

The CRV (common routines vector table) contains pointers to various RSCS routines, some of which can
be used by exit routines.

Attention: Some fields in this data area are not supported as programming interfaces.

X'000' CAXMRQ DC V(DMTAXMRQ) Spool manager request processor
X'004' CBPLLX DC V(DMTBPLLX) Load an exit (bomb-proof)
X'008' CCOMDG DC V(DMTCOMDG) EBCDIC (decimal) -> binary
X'00C' CCOMDQ DC V(DMTCOMDQ) (DEQUEUE) Get entry from queue
X'010' CCOMFI DC V(DMTCOMFI) Disk file interface routine
X'014' CCOMGG DC V(DMTCOMGG) (GETGROUP) Get routing group address
X'018' CCOMGN DC V(DMTCOMGN) (GETNODE) Get route for a node
X'01C' CCOMHG DC V(DMTCOMHG) EBCDIC (hex) -> binary
X'020' CCOMLK DC V(DMTCOMLK) (GETLINK) Get a LINKTABL address
X'024' CCOMNQ DC V(DMTCOMNQ) (ENQUEUE) Put entry on queue
X'028' CCOMSM DC V(DMTCOMSM) Send a msg/cmd down a link
X'02C' CCOMTE DC V(DMTCOMTE) S/370 TOD clock -> EBCDIC
X'030' CCOMTS DC V(DMTCOMTS) EBCDIC -> S/370 TOD clock
X'034' CDDLEP DC V(DMTDDLEP) Convert CMS file to NETDATA
X'038' CHASHA DC V(DMTHASHA) Add an element to a hash table
X'03C' CHASHB DC V(DMTHASHB) Build a hash table
X'040' CHASHC DC V(DMTHASHC) Unallocate (Freemain) a hash table
X'044' CHASHD DC V(DMTHASHD) Delete an element from a hash table
X'048' CHASHF DC V(DMTHASHF) Find an element in a hash table
X'04C' CHASHG DC V(DMTHASHG) Find an element in a hash table
 * ... with support for generic keys
X'050' CHASHS DC V(DMTHASHS) Update hash table statistical counts
X'054' CIOTHD DC V(DMTIOTHD) General I/O halt routine
X'058' CIOTST DC V(DMTIOTST) General I/O start routine
X'05C' CLOGCL DC V(DMTLOGCL) Link driver trace close routine
X'060' CLOGEP DC V(DMTLOGEP) Link driver trace routine
X'064' CMANDE DC V(DMTMANDE) Link driver ESTAE
X'068' CMGFFM DC V(DMTMGFFM) Format message lines
X'06C' CMGXEP DC V(DMTMGXEP) Issue a message
X'070' CMPTBP DC V(DMTMPTBP) Branch on parameter
X'074' CMPTCK DC V(DMTMPTCK) Check keyword
X'078' CMPTGD DC V(DMTMPTGD) Get decimal
X'07C' CMPTGP DC V(DMTMPTGP) Get parameter
X'080' CPAREP DC V(DMTPAREP) Parameter parsing routine
X'084' CPRDDQ DC V(DMTPRDDQ) DEQ a message PRDBLOK
X'088' CPRDNQ DC V(DMTPRDNQ) ENQ a message PRDBLOK
X'08C' CQSAAB DC V(DMTQSAAB) Quick storage allocate buffer
X'090' CQSAFA DC V(DMTQSAFA) Quick storage free all buffers
X'094' CQSAUB DC V(DMTQSAUB) Quick storage unallocate buffer
X'098' CRDREP DC V(DMTRDREP) Spool record read routine
X'09C' CRDROP DC V(DMTRDROP) Spool record read open routine
X'0A0' CRERSC DC V(DMTRERSC) Reroute scanning routine
X'0A4' CRESLO DC V(DMTRESLO) Claim a lock
X'0A8' CRESUN DC V(DMTRESUN) Release a lock
X'0AC' CSEPBL DC V(DMTSEPBL) Block letter routine
X'0B0' CSOKET DC V(DMTSOKET) START SOCKET function
X'0B4' CTASKA DC V(DMTTASKA) Add a TASKBLOK entry

CRV

© Copyright IBM Corp. 1990, 2022 201

X'0B8' CTASKD DC V(DMTTASKD) Delete a TASKBLOK entry
X'0BC' CTASKF DC V(DMTTASKF) Find a TASKBLOK entry
X'0C0' CTASKG DC V(DMTTASKG) Find a TASKBLOK entry - FLS
X'0C4' CUROEP DC V(DMTUROEP) Spool record write routine
X'0C8' CUROFL DC V(DMTUROFL) Spool record flush routine

NOT Programming Interface Information

X'0CC' CCOMLS DC V(DMTCOMLS) (LINKSTATE) Exit for link state change
X'0D0' CRGXEP DC V(DMTRGXEP) Remote message and command handler

End of NOT Programming Interface Information

X'0D4' CAXMCM DC V(DMTAXMCM) Spool manager command ECB
X'0D8' CAXMCQ DC V(DMTAXMCQ) Spool manager command anchor
X'0DC' CBOXPR DC V(DMTBOXPR) Printer box image
X'0E0' CCOMTN DC V(DMTCOMTN) Local time zone abbreviation
X'0E4' CCOMTO DC V(DMTCOMTO) Addr of time zone offset (TOD form)
X'0E8' CEVECM DC V(DMTEVECM) Event manager command ECB
X'0EC' CEVECQ DC V(DMTEVECQ) Event manager command anchor
X'0F0' CIRWLK DC V(DMTIRWLK) Prototype LINKTABL image
X'0F4' CIRWTA DC V(DMTIRWTA) Prototype TAG entry image
X'0F8' CIRXHL DC V(DMTIRXHL) HASHBLOK for LINKTABLs
X'0FC' CIRXHN DC V(DMTIRXHN) HASHBLOK for NODEs
X'100' CIRXHR DC V(DMTIRXHR) HASHBLOK for ROUTEGRPs
X'104' CQSAAU DC V(DMTQSAAU) Anchor for auth block
X'108' CQSAEC DC V(DMTQSAEC) QSABLOK for conditional 256 bytes
X'10C' CQSAEU DC V(DMTQSAEU) QSABLOK for unconditional 256 bytes
X'110' CQSAEV DC V(DMTQSAEV) Anchor for event block
X'114' CQSAMB DC V(DMTQSAMB) Anchor for message block
X'118' CQSAML DC V(DMTQSAML) Anchor for message line area
X'11C' CQSAMW DC V(DMTQSAMW) Anchor for message work area
X'120' CREXCM DC V(DMTREXCM) Internal command ECB
X'124' CREXCQ DC V(DMTREXCQ) Internal command anchor
X'128' CREXME DC V(DMTREXME) Asynchronous message ECB
X'12C' CREXMQ DC V(DMTREXMQ) Asynchronous message anchor
X'130' CREXTE DC V(DMTREXTE) REX termination ECB
X'134' CSCTAC DC V(DMTSCTAC) ACB for VTAM interface

NOT Programming Interface Information

X'138' CIRWAU DC V(DMTIRWAU) Prototype AUTH entry image
X'13C' CITRFT DC V(DMTITRFT) Pointer to the ITRACE format table index

End of NOT Programming Interface Information

X'140' CASTCM DC V(DMTASTCM) Retry/ITO timer task command ECB
X'144' CASTCQ DC V(DMTASTCQ) Retry/ITO timer task command queue
 CRVLEN EQU *-&LABEL Length of CRV

 PI end

CVT
 PI

The CVT (communications vector table) contains information about some RSCS data structures and
queues.

Attention: Some fields in this data area are not supported as programming interfaces.

X'000' TLINKS DC A(0) Anchor for LINKTABL entries
X'004' TROUTEGP DC A(0) Anchor for final ROUTEGP entries
X'008' TPORTS DC A(0) Address of PORT table
X'00C' TTAGQ DC A(0) Address of TAG slot queue
X'010' TVMID DC A(0) Address of RSCS virtual machine ID
X'014' TAUTH DC A(0) Address of authorization table
X'018' TREROUTE DC A(0) Address of REROUTE table
X'01C' TREROUTX DC A(0) End of global REROUTE chain
X'020' TCHANNEL DC A(0) Address of unit record pool vector
X'024' TDEST DC A(0) Address of DEST table
X'028' TEXITS DC A(0) Address of EXIT table
X'02C' TLISTPR DC A(0) Address of *LIST LINKTABL

CVT

202 z/VM: 7.3 RSCS Networking Diagnosis

X'030' TUSER DC XL8'00' For user exit usage
 * DC 0D'0' Align for counters
X'038' TPTHECNT DC F'0',F'0' Curr. active dial-up ports
X'040' TLCA DC F'0',F'0' Currently active links
X'048' TLCASNA DC F'0',F'0' Currently active SNA links

X'050' TMAXHOPS DC H'64' Maximum number of node hops
 * ... a file is allowed to make
X'052' TQMSGLIM DC H'0' Q message limit - 1-32700
 * 0 is default - means no limit
X'054' TGLOBAL1 DC XL1'00' Global status switch 1
 *
 * Bits defined in TGLOBAL1
 *
 TGSSNAUP EQU X'80' RSCS/VTAM interface is active
 TGSSIP EQU X'40' SHUTDOWN in progress
 TGSVSIP EQU X'20' RSCS/VTAM interface stop in progress
 TGSVSUIP EQU X'10' RSCS/VTAM interface startup in progress
 TGSREADY EQU X'08' RSCS ready (initialization complete)
 TGSCACB EQU X'04' RSCS/VTAM interface ACB is being closed
 TGSNOGO EQU X'02' RSCS must be reloaded
 TITRACE EQU X'01' ITRACEing is active

X'055' TGLOBAL2 DC XL1'00' Global status switch 2
 *
 * Bits defined in TGLOBAL2
 *
 TGSACTIV EQU X'80' RSCS is active
 TGSEE EQU X'40' RSCS exec-in-execution state
 TGDIALAC EQU X'10' Link timeout scan active
 TGSTCPUP EQU X'08' Port redirector task is up
 TCPZVM EQU X'01' Identify z/VM 3.1 & above

X'056' TGLOBAL3 DC AL1(TGCOA+TLOOPH+TLOOPI)
 Global status switch 3
 *
 * Bits defined in TGLOBAL3
 *
 TGCOF EQU X'80' Forwarding messages
 TGCOA EQU X'40' Final messages
 TGENQM EQU X'20' Enqueued messages
 * Additional flags:
 TGACCM EQU X'10' Accept messages
 TLOOPI EQU X'08' Immediate loop detection
 TLOOPH EQU X'04' Hop count monitoring
 TGLISTP EQU X'02' Remote sys's have LISTPROC

X'057' TGLOBAL4 DC XL1'00' Global status switch 4
 *
 * Bits defined in TGLOBAL4
 *
 TJNAMUSR EQU X'80' Use origin user ID as jobname
 * ... on NJE type links

X'058' TCPFEAT DC AL1(TCPVAFP) VM feature flags
 * SET DEFAULT TO VAFP YES
 * Bits defined in TCPFEAT
 *
 TCPSOIDY EQU X'20' SECO=YES was specified on
 * ... the OPTION statement
 TCPSOIDN EQU X'10' SECO=NO was specified on
 * ... the OPTION statement
 TCP5DIG EQU X'08' Use 5-digit device addrs on CP commands
 TCPVAFP EQU X'04' VAFP devices allowed
 TCPSTOP EQU X'02' STOP commands may be passed
 * to the SCT task that will
 * use the TERMQ option on the
 * CLSDST to seek and destroy
 * queued SIMLOGON requests.

X'059' TMAXDSH DC AL1(10) Global MAXDSH value
X'05A' TMSGSKIP DC AL1(2) Global MSGSKIP value
X'05B' THIDECHR DC C'\' Character used to hide things

X'05C' TMONITOR DC A(0) Anchor for '*' monitoring
X'060' TMONIMSG DC A(0) Anchor for msg monitoring
 * ... by message numbers

X'064' TFORMTAB DC A(0) Address of FORM table
X'068' TCRVTAB DC V(DMTCRVEP) Address of CRV table

X'06C' TFILWRKS DC A(0) Anchor for file work areas

CVT

Chapter 17. Control Blocks 203

 TFILDDEF EQU 10 Default maximum depth of imbeds
X'070' TDDNMVEC DC A(0) Anchor for ddname usage vector
 TMAXOPEN EQU 1000 Max. number of dynamic ddnames

X'074' TEVENTS DC A(0) Anchor for EVEBLOK chain
X'078' TTANQ DC A(0) Anchor for TANBLOK chain
X'07C' TSHIFT DC A(0) Number last set by SHIFT cmd

NOT Programming Interface Information

X'080' TEQUATE DC V(DMTEQUEP) Anchor for EQUATE chain

End of NOT Programming Interface Information

X'084' TRESOURC DC A(0) Anchor for resource chain
X'088' TFCBTABA DC A(0) Anchor for the FCB table
X'08C' TRECOVER DC A(0) Pointer to recovery command
X'090' TITRACEA DC A(0) Anchor for ITRACE table
X'094' TTASKTAB DC A(0) Anchor for TASK table

X'098' TTRACEN DC CL8' ' Default node ID for trace files
X'0A0' TTRACEU DC CL8' ' Default user ID for trace files

X'0A8' TIPCSA DC 0F'0' Dump Viewing Facility area
X'0A8' TIREND DC V(DMTEND) Address of end of the RSCS module
X'0AC' TIVERSN DC CL8'FLnnn' Version number
X'0B4' TIMAINTL DC CL8'-0000' Maintenance level
X'0BC' TILASTCM DC CL8' ' Last command
X'0C4' TICOMPID DC CL9'568409601' Component ID
X'0CD' TISLVLR DC CL2' ' z/VM release number
X'0CF' TISLVLM DC CL2' ' z/VM modification level
X'0D1' TISLVLP DC CL4' ' z/VM PLC number
X'0D5' TILASTMS DC CL10' ' Last RSCS message issued
X'0DF' TIPLTIME DC CL8' ' IPL date and time
X'0E7' TISLVER DC CL2' ' Version number of product
 TCVTLEN EQU *-&LABEL Length of CVT area

 PI end

SYSIDENT
 PI

The SYSIDENT table contains information about each RSCS system task.

 X'000' SYSECB DC F'0' Task terminated ECB
 X'004' SYSTAID DC F'0' Task ID
 X'008' SYSNAME DC CL8 Task name
 SYSNAME3 EQU SYSNAME+3,3 Important part of task name
 X'010' SYSFLAG1 DC X'00',X'000000' First flag (plus reserved)
 X'014' SYSITRAO DC A(0) Pointer to override byte
 * map for ITRACE settings
 SYSIDLEN EQU *-&LABL Length of a SYSIDENT

 PI end

Network and Task Structure
The DEST, EQUATE, LINKTABL, PORT, and ROUTE data areas contain information that define the network
structure to RSCS. See Chapter 2, “RSCS Structure,” on page 11 for more information.

DEST
 PI

The DEST (destination table) contains a list of PSF destination names. Each entry is chained to the next;
the end of the chain indicated by a word of zeros in the DESTNEXT field. The TDEST field in the CVT
contains the address of the first destination table entry. See “DEST” on page 20 for more information.

SYSIDENT

204 z/VM: 7.3 RSCS Networking Diagnosis

X'000' DESTNEXT DC A(0) Address of next destination table entry
X'004' DESTRESV DC A(0) Reserved
X'008' DESTNAME DC CL8' ' Destination name
 DESTLEN EQU *-&LABEL Destination table entry length

 PI end

EQUATE
The Equate Table, found in DMTEQU, contains information about RSCS tasks. The table has an entry
for each link driver and system task and a last, empty, entry that contains blanks in the EQUEP field.
The system tasks have blanks in the EQUSYM field. See “System Task Equates” on page 28 for more
information.

X'000' EQUNEXT DC A(0) Chain pointer
X'004' EQUEPLOC DC A(0) Entry point address
X'008' EQUSYM DC CL8' ' Symbolic name
X'010' EQUEP DC CL8' ' Entry point name
X'018' EQUFLAG DC XL1'00' Entry point type flags
X'019' EQUSTAT DC XL1'00' Equate status flags
X'01A' EQUFLAG2 DC XL1'00' Driver type flags
 *
 * Bits defined in EQUSTAT
 *
 EQUDSTOR EQU X'80' Storage for entry was allocated dynamically
 EQUNOLIN EQU X'40' Line address not used for this link type

X'01B' EQURSVD1 DC XL5'00' Reserved

 EQULEN EQU *-&LABEL Length of table entry

LINKTABL
 PI

The LINKTABL describes all the characteristics of an RSCS link. Each link table entry describes one link in
the network.

NOT Programming Interface Information

See “LINKTABL” on page 17 for more information.

End of NOT Programming Interface Information

Attention: Some fields in this data area are not supported as programming interfaces.

X'000' LINKID DC CL8' ' EBCDIC link ID
X'008' LINKNEXT DC A(0) Address of next link table entry
X'00C' LINKHASH DC A(0) Link ID hash chain
X'010' LINKHLUA DC A(0) Active/default LU hash chain
X'014' LINKHLUD DC A(0) Default LU hash chain if link
 * started with different LUname
X'018' LINKHCID DC A(0) CID hash chain

NOT Programming Interface Information

X'01C' DC A(0) Reserved

End of NOT Programming Interface Information

 LINKINFO EQU * Here begins the real info
 *

NOT Programming Interface Information

 * Note: To streamline many parts of RSCS operation that require
 * checking active fields as opposed to default fields when a
 * link is active, it is hereby guaranteed that when a link is
 * inactive, all active fields shall contain the same information

EQUATE

Chapter 17. Control Blocks 205

 * as the corresponding default fields. The code to do this
 * resides in CMY, IRX and MAN.

End of NOT Programming Interface Information

 *
 * Active fields
 *
 LACTFLD EQU * Active fields
X'020' LACTSYM DC CL8'UNDEFIND' Type

NOT Programming Interface Information

X'028' LACTDRVR DC CL8' ' EPname of driver

End of NOT Programming Interface Information

X'030' LACTLUN DC CL8' ' LUname
X'038' LACTLOG DC CL8' ' Logmode
X'040' LACTCLS1 DC CL1' ' Class 1
X'041' LACTCLS2 DC CL1' ' Class 2
X'042' LACTCLS3 DC CL1' ' Class 3
X'043' LACTCLS4 DC CL1' ' Class 4
X'044' LACTPARM DC A(0) Address of active parm
X'048' LACTDP DC H'5' Dispatching priority
X'04A' LACTLINE DC AL2(0) Line address
X'04C' LACTTYP1 DC XL1'00' Link type
X'04D' LACTTYP2 DC XL1'00' Link type2 flags

NOT Programming Interface Information

X'04E' DC XL2'00' Filler

End of NOT Programming Interface Information

 LACTFLEN EQU *-LACTFLD Active fields length
 *
 * Default fields
 *
 LDEFFLD EQU * Default fields
X'050' LDEFSYM DC CL8'UNDEFIND' Default driver symbolic name

NOT Programming Interface Information

X'058' LDEFDRVR DC CL8' ' Default EPname of driver

End of NOT Programming Interface Information

X'060' LDEFLUN DC CL8' ' Default logical unit name
X'068' LDEFLOG DC CL8' ' Default logmode table name
X'070' LDEFCLS1 DC CL1'*' Default spool file class 1
X'071' LDEFCLS2 DC CL1' ' Default spool file class 2
X'072' LDEFCLS3 DC CL1' ' Default spool file class 3
X'073' LDEFCLS4 DC CL1' ' Default spool file class 4
X'074' LDEFPARM DC A(0) Address of default parm
X'078' LDEFDP DC H'5' Default dispatching priority
X'07A' LDEFLINE DC AL2(0) Default virtual line address
X'07C' LDEFTYP1 DC XL1'00' Default link type flag
 *
 * Bits defined in LDEFTYP1/LACTTYP1
 *
 LNET EQU X'80' Networking link identifier
 LSNA EQU X'40' SNA link identifier
 LPRT EQU X'20' 3270 printer link identifier
 LLIS EQU X'10' List Processor Identifier
 LASCII EQU X'08' ASCII link identifier
 LGPI EQU X'04' Gateway link identifier
 LTCP EQU X'02' TCP link identifier
 LNOT EQU X'01' Notify link identifier

X'07D' LDEFTYP2 DC XL1'00' Default link type2 flag
 *
 * Bits defined in LDEFTYP2/LACTTYP2
 *

LINKTABL

206 z/VM: 7.3 RSCS Networking Diagnosis

 LDEFORM EQU X'80' Forms control for link
 LDEFTRC EQU X'40' Trace specified in LINKDEF

NOT Programming Interface Information

X'07E' DC XL2'00' Filler
 *
X'080' DC CL4' ' Reserved

End of NOT Programming Interface Information

X'084' LOLDPARM DC A(0) Override parms
X'088' LUSRPARM DC A(0) Address of user parms
 *
 LST CMORIG DSECT=NO Start command origin
X'08C' LSTQUAL DC AL1(0) Origin qualifier
X'08D' LSTFLAG DC X'00' Flags (bits as MSGBFLAG)
X'08E' LSTRSPC DC H'0' Response counter
X'090' LSTNODE DC CL8' ' Origin node
X'098' LSTUSER DC CL8' ' And user ID
X'0A0' LSTSIG DC CL6' ' Response signature

 LCM CMORIG DSECT=NO Command origin (active link)
X'0A6' LCMQUAL DC AL1(0) Origin qualifier
X'0A7' LCMFLAG DC X'00' Flags (bits as MSGBFLAG)
X'0A8' LCMRSPC DC H'0' Response counter
X'0AA' LCMNODE DC CL8' ' Origin node
X'0B2' LCMUSER DC CL8' ' And user ID
X'0BA' LCMSIG DC CL6' ' Response signature

X'0C0' LCURFORM DC CL8'STANDARD' Current form name
X'0C8' LCID DC F'0' SNA CID
X'0CC' LCMDECB DC F'0' Command ECB
X'0D0' LMSGECB DC F'0' Message ECB
X'0D4' LFILECB DC F'0' File available ECB
X'0D8' LETXECB DC F'0' End-of-task ECB
X'0DC' LTERECB DC F'0' Driver terminate ECB
X'0E0' LRELECB DC F'0' Relreq exit ECB
X'0E4' LRECECB DC F'0' Receive any ECB
 LPRDECB EQU LRECECB,4 Port redirector ECB
X'0E8' LSCPECB DC F'0' SCIP exit ECB
 LFLAGF DS 0XL4 Fullword flags for easy msgs
X'0EC' LFLAG DC XL1'00' Link table status flag byte

NOT Programming Interface Information

 * *** IMPORTANT ***
 *
 * NOTE: The LFLAG macro acts as an interface to the LFLAG bits.
 * Thus, all changes/additions/deletions to to LFLAGs MUST be
 * reflected to the LFLAG macro.
 *
 * *** IMPORTANT ***

End of NOT Programming Interface Information

 *
 * Bits defined in LFLAG
 *
 LACTIVE EQU X'80' Link active
 LRPLWAIT EQU X'40' Indicate that a SNA link is
 * waiting for a SIMLOGON RPL
 * to become available for the
 * start command being
 * processed by the SCT task.
 LHOLD EQU X'20' Link HOLD set
 LDRAIN EQU X'10' Link DRAIN in progress
 LCONNECT EQU X'08' Link CONNECTed
 LABEND EQU X'04' Link has abended
 LSTART EQU X'02' START command issued for inactive link
 LHALT EQU X'01' Link was forced
 *
 L4STA EQU LSTART*16777216 Word-aligned LSTART
 L4ACT EQU X'80000000' Word-aligned LACTIVE
 L4CON EQU LCONNECT*16777216 Word-aligned LCONNECT
 L4HOLD EQU LHOLD*16777216 Word-aligned LHOLD
 L4RPLWT EQU LRPLWAIT*16777216 Word-aligned LRPLWAIT

LINKTABL

Chapter 17. Control Blocks 207

X'0ED' LFLAG1 DC XL1'00' Link table status flag byte
 *
 * Bits defined in LFLAG1
 *
 LLOGWAIT EQU X'80' SIMLOGON complete
 LTRLOG EQU X'40' Link transaction tracing (log)
 LTRALL EQU X'20' Link transaction tracing (all)
 LTRREC EQU X'10' Link transaction tracing (record)
 LDIALED EQU X'08' Link dialed to dial-up task
 LINTREQ EQU X'04' Intervention required on printer
 LRELSD EQU X'02' SNA session has been released
 LDIALOUT EQU X'01' Link has dialed out
 L4INT EQU LINTREQ*65536 Word-aligned LINTREQ
 L4REL EQU LRELSD*65536 Word-aligned LRELSD
 L4LOGWT EQU LLOGWAIT*65536 Word-aligned LLOGWAIT

X'0EE' LFLAG2 DC XL1'00' Link table status flag byte
 *
 * Bits defined in LFLAG2
 *
 LPROMPTD EQU X'80' Mount has been issued
 LAUTO EQU X'40' Auto specified on start
 LSETUP EQU X'20' Setup specified on start
 LSEC EQU X'10' SNA NJE secondary link identifier
 LWAITM EQU X'08' Waiting for form mount
 LDOSET EQU X'04' Performing setup operation
 LFORMP EQU X'02' Form control allowed
 LPUNOK EQU X'01' Punch files accepted
 L4AUTO EQU LAUTO*256 Word-aligned LAUTO
 L4SETUP EQU LSETUP*256 Word-aligned LSETUP

X'0EF' LFLAG3 DC XL1'00' Link table status flag byte
 *
 * Bits defined in LFLAG3
 *
 LASISTRT EQU X'80' Queued for AUTOSTART
 LASIDLM EQU X'40' Attached by dialing manager
 LASIELIG EQU X'20' Link eligible for auto start
 LOPARM EQU X'10' Override parm specified
 LRETRY EQU X'08' Link eligible for start retry
 LRETRING EQU X'04' Link is retrying start
 LHOLDOUT EQU X'02' Other side has input slowdown
 LHOLDINP EQU X'01' Input streams are held
 L4DQU EQU LASISTRT Word-aligned LASISTRT
 L4RET EQU LRETRING Word-aligned LRETRING
 L4HINP EQU LHOLDINP Word-aligned LHOLDINP
 L4HOUT EQU LHOLDOUT Word-aligned LHOLDOUT

X'0F0' LFLAG4 DC XL1'00' Link table status flag byte
 *
 * Bits defined in LFLAG4
 *
 LFCBDYNA EQU X'80' FCB=<fcbname> DYNAMIC
 LFCBNAME EQU X'40' FCB=fcbname
 LSTOP EQU X'20' Stop CMD issued for SNANJE
 LSLOUNIQ EQU X'10' Unique slowdown entry/exit
 LORDERED EQU X'08' Shadow was ordered on this link
 * (used for CHANGE cmd processing in AXM)
 LDORTRY EQU X'04' Indicate RETRY upon link
 * deactivation
 LALERT EQU X'02' Link to be alerted when file
 * arrives
 LSHUTIP EQU X'01' Link shutdown in progress

 LFLAGLEN EQU *-LFLAG Length (bytes) of flags
 LFLAGS EQU LFLAGF,5 All the LFLAGS
X'0F1' LITODEF DC AL1(0) Default dial-out max time
X'0F2' LITOCUR DC AL1(0) Current dial-out time left
 *
X'0F3' LQUEFLAG DC X'00' Flag used for link queueing info
 *
 * Bits defined in LQUEFLAG
 *
 LFIFO EQU X'80' Queueing on FIFO basis
 LSIZE EQU X'40' Queueing on SIZE basis
 LQCHANGE EQU X'20' Queueing has just been changed
 LQWCHANG EQU X'10' Queueing changes when link deactivates
 LHLDINPQ EQU X'08' A HOLD INPUT CMD was queued

LINKTABL

208 z/VM: 7.3 RSCS Networking Diagnosis

NOT Programming Interface Information

 *
 * Note: The following 10 pointers must remain together; they are
 * treated by AXM as a single vectorand are used to speed
 * up the process of placing a shadow element on a queue.
 *

End of NOT Programming Interface Information

X'0F4' LINPUTQ DC A(0) Input file shadow element queue
X'0F8' LINPUTQI DC 8A(0) Intermediate ptrs for fast access
 LINPUTQL EQU LINPUTQI+7*4,4 Address of last of the pointers
 LINPQLEN EQU *-LINPUTQI Number of bytes pointers reside in
 LINQFORK EQU LINPQLEN/4 Number of 'fork tines' we use
X'118' LINPUTQE DC A(0) End of shadow element queue
X'11C' LINPUTPO DC 8H'0' Position counters for the pointers
 LINPUTPL EQU LINPUTPO+7*2,2 Address of last position counter
 LINPPLEN EQU *-LINPUTPO Number of bytes counters reside in
 *
X'12C' LRECRPLA DC A(0) Address of receive (any) RPL copy
X'130' LCMDQ DC A(0) Command queue anchor
X'134' LMSGQ DC A(0) Message queue anchor
X'138' LUWORD DC A(0) User word (defined by link driver)
X'13C' LSTATPTR DC A(0) Pointer to LINKSTAT element
X'140' LUSER DC XL8'00' For user exit usage
 *
 * Multi-streaming control fields
 *
X'148' LMSSMAX DC AL1(0) Maximum no. of active streams

X'149' LMSTAFLG DC X'00' TA related flag byte
 *
 * Flags defined in LMSTAFLG
 *
 LMSTAINT EQU X'80' Using internal TA
 LMSTAEXT EQU X'40' Using external TA

NOT Programming Interface Information

X'14A' LFNUMBER DC PL2'0' RFC1179 Job number

End of NOT Programming Interface Information

X'14C' LMSSACT DC XL4'00000000' Active stream mask
X'150' LMSSAVL DC XL4'00000000' Available file mask
X'154' LMSTAEP DC A(0) Address of transmission algorithm
X'158' LMSTAP DC A(0) Address of TA parm text
 *
 * The shadow counters follow
 *
X'15C' LSHADCNT DC H'0' Count of primary shadows +
 * ... eligible alternate shadows
X'15E' LALTSCNT DC H'0' Count of alternate shadows
 * ... not eligible for transmission
X'160' LLOOPCNT DC H'0' Count of looping shadow elements
X'162' LACTICNT DC H'0' Count of active input files
X'164' LACTOCNT DC H'0' Count of active output files
 * (does not include TRACE file)
X'166' LORDECNT DC H'0' Number of ORDERed files
X'168' LHOLDCNT DC H'0' Count of held files
 *
X'16A' LTRNSCNT DC H'0' Link transaction count
X'16C' LERRCNT DC H'0' Error count
X'16E' LTOCNT DC H'0' Timeout count
X'170' LTASKID DC H'0' Task ID
X'172' LSEQNO DC H'0' File sequence number
X'174' LRETNO DC AL1(0) Number retries done
X'175' LRETLEFT DC AL1(0) Number mins to next retry
X'176' LINVECTG DC AL2(0) Init vector length
X'178' LINVECTA DC AL4(0) and address
X'17C' LMONITOR DC A(0) Anchor for link monitoring entries
X'180' LNODEID DC CL8' ' Nodeid on other side of link
X'188' LFANOUT DC CL8' ' Fanout linkid
 *
X'190' LSLOWDIF DC H'0' Difference from base slowdown point

LINKTABL

Chapter 17. Control Blocks 209

X'192' LSLOWEN DC H'0' Unique slowdown entry
X'194' LSLOWEX DC H'0' Unique slowdown exit

NOT Programming Interface Information

X'196' DC H'0' Reserved

End of NOT Programming Interface Information

X'198' LINKDWA DC A(0) Address of DWA for link
X'19C' LENDWA DC F'0' Length of DWA
X'1A0' LINKDWA2 DC A(0) Address of secondary DWA
X'1A4' LENDWA2 DC F'0' Length of secondary DWA

X'1A8' LFCBADDR DC A(0) Anchor for FCB table list
X'1AC' LITRACEO DC A(0) Anchor for ITRACE overrides

X'1B0' LBUFSIZE DC X'80000000' Size of buffer used by link
 *
 LINKLEN EQU *-&LABEL Length of link table entry
 LINIKLEN EQU *-LINKINFO Length of LINKTABL - chains

 PI end

PORT
The PORT (Port table) area describes the line ports available to RSCS. The TPORTS field of the CVT
contains the address of the first entry of the port table queue. Each entry is chained to the next; the end of
the queue indicated by a word of zeros in the PORTNEXT field.

 X'000' PORTNEXT DC A(0) Address of next port table entry
 X'004' PORTLINK DC V(DMTIRWLK) Address port's link
 X'008' PORTCUU DC XL2'00' Port address
 X'00A' PORTFLAG DC XL1'00' Flags
 X'00B' PORTFLG1 DC XL1'00' More flags
 *
 * Bits defined in PORTFLAG
 *
 PORTUSED EQU X'80' Port in use
 PORTENAB EQU X'40' Port enabled for use
 PORTDISA EQU X'20' Port being disabled
 PORTREEN EQU X'10' Port being reenabled
 PORTDIAL EQU X'08' Port has autodial device for autostart usage
 PORTABND EQU X'04' Port has abended
 *
 * Bits defined in PORTFLG1
 *
 PTRALL EQU X'80' Trace all (like LTRALL)
 PTRLOG EQU X'40' Trace log (like LTRLOG)
 PTRREC EQU X'20' Trace records (like LTRREC)
 PITRACE EQU X'10' ITRACE is on for this port

 X'00C' PORTECB DC A(0) Terminate ECB for dial-up
 X'010' PORTETX DC A(0) Task terminate ECB
 X'014' PORTFSAT DC AL2(0) Number of failed signons
 X'016' PORTTSK DC H'0' Taskid using this port
 PORTEORG DS 0CL26 ENABLE port cmnd originator
 X'018' POENQUAL DC AL1(0) Origin qualifier
 X'019' POENFLAG DC X'00' Flags (bits as MSGBFLAG)
 X'01A' POENRSPC DC H'0' Response counter
 X'01C' POENNODE DC CL8' ' Origin node
 X'024' POENUSER DC CL8' ' and userid
 X'02C' POENSIG DC CL6' ' Response signature
 X'032' PORTINVL DC AL1(0) Leng of auto-ans init vector
 X'034' PORTINVA DC AL4(0) Addr of auto-ans init vector
 PORTTTO DS 0CL16 ENABLE port trace to user
 X'038' PORTTLOC DC CL8' ' ENABLE trace to locid
 X'040' PORTTVM DC CL8' ' ENABLE trace to vmid
 X'048' PITRACEO DC A(0) Anchor for ITRACE overrides
 PORTLEN EQU *-LABEL Port table entry length

REROUTE
A REROUTE entry describes a reroute definition in the network. Each entry is chained to the next; the
last entry in the chain is identified by zeros in the RERNEXT field. See “REROUTE” on page 20 for more
information.

PORT

210 z/VM: 7.3 RSCS Networking Diagnosis

X'000' RERNEXT DC A(0) Next in global chain
X'004' RERPREV DC A(0) Previous in global chain
X'008' RERHASH DC A(0) Next in RERFNODE hash chain
X'00C' RERSAME DC A(0) Next in same fornode/foruser chain
 *
X'010' RERTYPE DC AL1(0) Type of reroute
X'011' RERFLAG DC AL1(0) Other flags
X'012' DC XL6'00' Reserved
 *
X'018' RERFNODE DC CL8' ' For node
X'020' RERFUSER DC CL8' ' For user
X'028' RERTNODE DC CL8' ' To node
X'030' RERTUSER DC CL8' ' To user

 * Bits defined in RERTYPE *

 RERNTRCV EQU X'01' Not-received messages
 RERFILES EQU X'02' Files
 RERMSGS EQU X'04' Messages
 RERCMDS EQU X'08' Commands
 RERALL EQU RERMSGS+RERFILES Messages and files
 RERTYPES EQU RERCMDS+RERMSGS+RERFILES+RERNTRCV All types

 * Bits defined in RERFLAG *

 RERQUIET EQU X'80' No message please
 RERFLAGS EQU RERQUIET All flags
 *
 * Note: bits in RERFLAG and RERTYPE must not be the same,
 * that is, RERTYPES .AND. RERFLAGS must equal B'00000000'
 *

 RERLEN EQU *-&LABEL Length of REROUTE element

ROUTEGRP
A route group (ROUTEGRP) entry describes a group of nodes or a collection of groups in the RSCS
network. See “ROUTEGRP” on page 18 for more information.

X'000' ROUTNEXT DC A(0) Address of next ROUTEGRP entry
X'004' ROUTHASH DC A(0) Address of colliding ROUTEGRP
X'008' ROUTNAME DC CL8' ' Name of this routing group
*
X'010' ROUTPREV DC A(0) Address of previous ROUTEGRP entry
X'014' ROUTFLAG DC X'00' Routing flag byte

 * Bits defined in ROUTFLAG

 ROUTHONR EQU X'80' This is an 'honorary' group
 ROUTCHLD EQU X'40' This is just a child group
*
X'015' DC AL1(0) Spare byte
X'016' ROUTLNUM DC H'0' Number of links in ROUTLNKS vector
X'018' ROUTLNKS DC A(0) Pointer to LINKTABLs vector
X'01C' ROUTALNK DC A(0) Pointer to alternate LINKTABL
 ROUTGDAD EQU ROUTLNKS Pointer to father group
X'020' ROUTNODA DC A(0) Pointer to first NODE in this group entry
X'024' ROUTGRPA DC A(0) Pointer to first ROUTEGRP child of this ROUTEGRP
X'028' ROUTGNXT DC A(0) Pointer to next ROUTEGRP sibling
X'02C' ROUTGPRV DC A(0 Pointer to previous ROUTEGRP sibling
X'030' ROUTSEND DC H'0' Number of files being sent
X'032' ROUTRECV DC H'0' Number of files being received
X'034' ROUTQUEU DC H'0' Number of inactive files for this routing group
X'036' ROUTHOLD DC H'0' Number of file in hold state
X'038' ROUTLOOP DC H'0' Number of files in hop-count loop
 ROUTCNTL EQU *-ROUTSEND Length of counter section
 DS 6X Pad to double-word
 ROUTGLEN EQU *-&LABEL ROUTEGRP table entry length

TASKBLOK
A task block (TASKBLOK) describes a type of RSCS task (system, link driver, and auto answer); a
TASKBLOK only represents an active task.

ROUTEGRP

Chapter 17. Control Blocks 211

X'000' TASKCOLL DC A(0) Collision chain pointer for hashing
* algorithim
X'004' Reserved
X'008' TASKTOD DC D'0' Creation time stamp.
X'010' TASKID DC H'0' Task ID of the task being described
X'012' TASKNAME DC CL8' ' Module name + EP (ie. DMTAXMEP,
* DMTNETP, DMTDUPEP)
X'01A' TASKDESC DC CL20' ' Short description of task (ie. SYSTEM
* SPOOL, LINK 'linkid', PORT 'ccuu')
X'02E' Reserved
X'030' TASKDATA DC A'0' Pointer to data area inherent to this
 task (LINKTABL, PORT, SYSIDENT)
X'034' TASKFLAG DC AL1(0) Miscellaneous flag bits

 * Bits defined in TASKFLAG

 TASKSYS EQU X'80' This is a system task
 TASKLINK EQU X'40' This is a link driver task
 TASKPORT EQU X'20' This is a PORT task
 X'10' spare bit
 X'08' spare bit
 X'04' spare bit
 X'02' spare bit
 X'01' spare bit
*
X'038' TASKITPL DS OF
X'038' DC XL(4+8*10)'00' Generate parm list
 TASKITLN EQU *-TASKITPL Length of the plist

X'08C' TASKITR DC CL256'00' Byte map of ITRACE settings for this task
 TASKBLEN EQU *-TASKBLOK Length of the sucker

Accounting Structures
RSCS uses the following structures to create accounting records and identify the users who are authorized
to issue various commands.

ACNTBUFF
 PI

The ACNTBUFF macro maps the format of the standard RSCS accounting record.

NOT Programming Interface Information

The AXM task creates an accounting record when RSCS receives or sends a file.

End of NOT Programming Interface Information

 * Local network userid fixed by CP
 X'000' ACNTUSER DC CL8' ' Originating location user ID
 X'008' ACNTDATE DC CL12' ' Date + time record cut (mmddyyhhmmss)
 X'014' ACNTOID DC XL2'00' Origin spool file ID
 X'016' ACNTID DC XL2'00' Local spool file ID
 X'018' ACNTILOC DC CL8' ' Originating location ID
 X'020' ACNTDEST DC CL8' ' Destination location ID
 X'028' ACNTCLAS DC CL1' ' Class
 X'029' ACNTINDV DC XL1'00' Origin device type ('8N'=PUN/'4N'=PRT)
 X'02A' DC CL2' ' Filler
 X'02C' ACNTRECS DC XL4'00' Number of records in file
 X'030' ACNTTOVM DC CL8' ' Destination location user ID
 X'038' DC CL8' ' Filler
 X'040' ACNTSYS DC CL5' ' System ID (serial + model)
 X'045' ACNTCODE DC XL1'01' Transmission code ('01'=SEND/'02'=RECV)
 * Record identifier ('C0') fixed by CP
 ACNTLEN EQU *-ACNTBUFF Account work area length
 END

 PI end

AUTHBLOK
The AUTHBLOK (authorization table) lists users who are authorized to act as an alternate RSCS operator
or as a link operator. DMTIRX builds this table when RSCS is initialized. Each AUTHBLOK is chained to the
next; the end of the chain indicated by a word of zeros in the AUTHNEXT field. See “AUTHBLOK” on page
32 for more information.

ACNTBUFF

212 z/VM: 7.3 RSCS Networking Diagnosis

X'000' AUTHNEXT DC A(0) Address of next authorization table entry
X'004' AUTHFLG1 DC XL1'00' Authorization flags

 * Bits defined in AUTHFLG1:

 AUTHCP EQU X'80' User authorizes for CP command

X'005' AUTHORGQ DC XL1'00' Authorized node qualifier
X'006' AUTHRESV DC XL2'00' Reserved
X'008' AUTHNODE DC CL8' ' Authorized node ID
X'010' AUTHUSER DC CL8' ' Authorized user ID
X'018' AUTHLINK DC CL8' ' Authorized target link
 AUTHLEN EQU *-AUTHBLOK

Printer-Related Structures
This section describes the data areas RSCS uses when processing print files.

FORM
The FORM table describes the characteristics of a print form. DMTIRX builds the table when RSCS
initializes. Each entry is chained to the next; the end of the chain is indicated by a fullword of zeros in the
FORMNEXT field. The TFORMTAB field in the CVT contains the address of the first form table entry.

X'000' FORMNEXT DC A Address of next form table entry
X'004' FORMWDTH DC F'0' Width of form in spaces
X'008' FORMLNTH DC F'0' Length of form in lines
X'00C' FORMLPI DC F'0' Lines per inch of form
X'010' FORMFLAG DC XL1'00' Flag byte
 *
 * Bits defined in FORMFLAG
 *
 FORMVM EQU X'80' Generate VM-style separator
 FORMSHRT EQU X'40' Generate short-style separator
 FORMNOSP EQU X'20' Generate no separator
*
X'011' FORMRESV DC XL3'00' Reserved
X'014' FORMNAME DC CL8' ' User name of form
 FORMLEN EQU *-&LABEL Form table entry length

RFCBTAB
The RFCBTAB contains printer form information specified on FCB statements. See “FCB Table” on page 32
for more information.

X'000' RFCBNEXT DC A(0) Address of next FCB table entry
X'004' RFCBNAME DC CL4' ' Name of the FCB image
X'008' RFCBLICH DC CL256' ' Array of line/channel pairs
 RFCBEND DS 0H Mark the end of the structure
 RFCBLEN EQU *-&LABEL FCB table entry length

SEPBLOK
SEPBLOK contains input parameters and work areas used by DMTSEP when it produces a separator page
for a print file.

X'000' SEPLINK DC A(0) Link table pointer
X'004' SEPRDEV DC A(0) RDEVBLOK pointer
X'008' SEPTAG DC A(0) TAG pointer
X'00C' SEPWORK DC A(0) Pointer to workarea
X'010' SEPUSER DC D'0' Pointer to user workarea
X'018' SEPFLAG DC XL1'00' Separator flag
 * Bits defined in SEPFLAG
 SEPBEFOR EQU X'80' Page eject before header
 SEPAFTER EQU X'40' Page eject after header
 SEPPUNCH EQU X'20' Treat punch headers differently
 SEPLEN EQU *-SEPBLOK Length of request block

File Queueing Structures
The following sections describe the data areas RSCS uses to process files. See “Processing Files” on page
21 for more information.

FORM

Chapter 17. Control Blocks 213

SAFTAG
The SAFTAG describes the tag element for store-and-forward files.

 X'000' SAFFLAG DS 4C Store and forward indicator
 X'004' SAFTOLOC DS CL8 Destination location ID
 X'00C' DS CL1 Space
 X'00D' SAFTOVM DS CL8 Destination VM userid
 X'015' DS CL1 Space
 X'016' SAFPRIOR DS CL2 Transmission priority
 X'018' DS CL1 Space
 X'019' SAFINLOC DS CL8 Originating location ID
 X'021' DS CL1 Space
 X'022' SAFINVM DS CL8 Originating VM userid
 X'02A' DS CL1 Space
 X'02B' SAFINTOD DS CL16 Originating TOD
 X'03B' DS CL1 Space
 X'03C' SAFORGID DS CL4 Originating spoolid
 X'040' DS CL1 Space
 X'041' SAFCNTRL DS CL4 Tag control record format
 X'045' DS CL1 Space
 X'046' SAFFORMN DS CL8 Tag form name
 X'04E' DS CL1 Space
 X'04F' SAFKEY DS CL6 NJE key (hex)
 X'055' DS CL1 Space

 X'056' SAFFLAG2 DS CL2 Flag byte (hex)
 X'058' DS CL1 Space
 X'059' SAFRECNM DS CL8 Logical record count (hex)
 X'061' DS CL1 Space
 X'062' SAFFLAG3 DS CL2 Flag byte (hex)
 X'064' SAFJULN1 DS CL1 Nibble 1 of day in epoch
 X'065' SAFDSHNO DS CL4 Number of dshs processed
 X'069' SAFJULN2 DS CL1 Nibble 2 of day in epoch
 X'06A' SAFRECDS DS CL8 Record count for dataset
 X'072' SAFFLAGU DS CL2 Flag for user exits kept in TAGFLAGU
 X'074' SAFINNOD DS CL8 Previous node for file
 X'07C' SAFORLOC DS CL8 Override 'to' location
 X'084' SAFFLAG4 DS CL2 Flag byte (hex)
 X'086' SAFJULN3 DS CL2 Last byte of day in epoch

 *
 * Alternate definition of SAFTAG for local retagged files:
 *
 ORG SAFFLAG Go back to the start
 X'000' SAFRR DS CL1 C'r' marker
 X'001' SAFRHEX DS CL2 Local flag byte
 X'003' DS CL1 Space
 X'004' SAFRJULN DS CL4 Epoch day
 X'008' DS CL1 Space
 X'009' SAFRTLOC DS CL8 Destination location id
 X'011' DS CL1 Space
 X'012' SAFRTOVM DS CL8 Destination VM userid
 X'01A' DS CL1 Space
 X'01B' SAFRPRIO DS CL2 Transmission priority
 X'01D' DS CL1 Space
 X'01E' SAFRUSER DS C Start of user tag text

TAG
A TAG element describes each file enqueued for processing by RSCS. See “TAG Element” on page 23 for
more information.

 X'000' TAGNEXT DC A(0) Addr of next TAG slot entry
 X'004' TAGPREV DC A(0) Addr of previous TAG slot entry
 * The following offset and bit map MUST always remain in this order
 * in contiguous bytes.

 *
 X'008' TAFOFFAL DC H'0' Offset into allocation map
 X'00A' TAGBITMP DC X'00' Bitmap into the allocation map
 *
 X'00B' TAGFLAGU DC X'00' Flag byte for user exits kept in SAFFLAGU
 X'00C' TAGUSER DC XL8'00' Doubleword for user usage
 *
 * The information after this point is contained in TAGDATA and will be
 * overwritten with a prototype when the TAG slot is reassigned to a new file
 *
 X'014' TAGBLOCK DC A(0) Address of associated I/O area
 TAGINADR DS 0CL16 Originating network address
 X'018' TAGINLOC DC CL8' ' Originating location
 X'020' TAGINVM DC CL8' ' Originating userid (SFBORIG)
 X'028' TAGINNOD DC CL8' ' Previous node file was on
 X'030' TAGLINK DC CL8' ' File active on this link
 X'038' TAGINTOD DC CL8' ' Time of file origin
 X'040' TAGRECNM DC 0F'0',X'80000000' Number of records in file (SFBRECNO)

SAFTAG

214 z/VM: 7.3 RSCS Networking Diagnosis

 X'044' TAGRECLN DC H'0' Max possible rec length (SFBRECSZ)
 X'046' TAGINDEV DC X'00' Device code of orig dev (SFBTYPE)
 X'047' TAGCLASS DC C' ' File output class (SFBCLAS)
 X'048' TAGID DC H'0' Current spool file ID (SFBFILID)
 X'04A' TAGCOPY DC H'1' Number of copies requested (SFBCOPY)
 *
 * Fullword status flag to allow for easy message and filter processing
 *
 TAGFFLG DS 0F Fullword flags
 X'04C' TAGFLAG DC X'00' Same bits as SFBFLAG
 X'04D' TAGSFLAG DC X'00' Same bits as TASFLAG in TASHADOW
 X'04E' TAGFLAG9 DC X'00' Another flag byte (SAFFLAG4)
 *
 * Bits defined in TAGFLAG9
 *
 TAGSPHLD EQU X'80' Special hold (used with NOTIFY)
 TAGNBURN EQU X'40' File to be purged (used with
 NOTIFY)
 TAGNNEWJ EQU X'20' Give file a new day number
 (used with NOTIFY)
 TAGHEX EQU X'10' SAFORGID field is in hex
 TAGASYNC EQU X'08' File is being read via *SPL

 X'04F' TAGFLAG8 DC X'00' TAG flag byte number 8 ...
 *
 * Bits defined in TAGFLAG8
 *
 TAGLOOPH EQU X'80' Maximum hop count reached
 TAGHSALT EQU X'40' File has alternate routing shadows
 TAGRXING EQU X'20' File is being received
 TAGTXING EQU X'10' File is being sent
 TAGATRAC EQU X'08' This is an active trace file
 TAGTLOPI EQU X'04' Temporary immed loop for fan-out
 TAGDS2ND EQU X'02' 2nd dataset found in file
 *
 * Bits defined in above four flag bytes, fullword-aligned
 *
 TAG4UHLD EQU SFBUHOLD*16777216 User hold
 TAG4SHLD EQU SFBSHOLD*16777216 System hold
 TAG4SPHL EQU TAGSPHLD*256 Special held
 TAG4RX EQU TAGRXING Receiving
 TAG4TX EQU TAGTXING Sending
 TAG4TRAC EQU TAGATRAC Tracing

 X'050' TAGFLAG2 DC X'00' VM SFBLOK flag (SFBFLAG2)
 TAGREQUE EQU X'20' Indicates file has been requeued
 X'051' TAGFLAG3 DC X'00' 3800 SPLINK flag (SFBFLAG1)
 X'052' TAGFLAG4 DC X'00' VM SFBLOK flag (SFBFLAG3)
 X'053' TAGFLAG6 DC X'00' VM SFBLOK flag (SFBFLAG4)

 X'054' TAGFLAG5 DC X'00' TAG flag byte (SAFFLAG2)
 *
 * Bits defined in TAGFLAG5
 *
 TAGXFERD EQU X'80' Transfer or change done
 TAGFREEZ EQU X'40' Cannot transfer or change
 TAGN3800 EQU X'20' No 3800 section

 TAGCPDS EQU X'10' File contains CPDS records
 TAGSAF EQU X'08' File is store-and-forward
 TAGREROD EQU X'04' File has been rerouted
 TAGSPLIT EQU X'02' File has been split/spun
 TAGOVFLW EQU X'01' File is MAXURO overflow

 X'055' TAGFLAG7 DC X'00' TAG flag byte (SAFFLAG3)
 *
 * Bits defined in TAGFLAG7
 *
 TAGCOF EQU X'80' SENT message to origin
 TAGCOA EQU X'40' FINAL message to origin
 TAGENQM EQU X'20' Enqueued message to origin
 TAGACCM EQU X'10' Accept message to origin
 TAGLISTL EQU X'08' Locally created list file
 TAGLISTP EQU X'04' List processor created file
 TAGDLOPH EQU X'02' File hop count maximum exceeded
 TAGLOOPM EQU X'01' Looping message issued to origin user

 X'056' TAGNTJUL DC AL2(0) Notify day number in epoch
 (unsigned - set for files on NOTIFY)
 X'058' TAGLCTOD DC F'0' Top 32 bits of local time origin for sorting FIFO
queues

TAG

Chapter 17. Control Blocks 215

 X'05C' TAGORGID DC H'0' VM spoolid at origin location
 X'05E' TAGPRIOR DC H'50' Transmission priority
 TAGDSN DS 0CL24 File name/file type, dataset name
 X'060' TAGNAME DC CL12' ' File name (SFBFNAME)
 TAGNAME8 EQU TAGNAME,8 Define equate for filters
 X'06C' TAGTYPE DC CL12' ' File type (SFBFTYPE)
 TAGTYPE8 EQU TAGTYPE,8 Define equate for filters
 X'078' TAGDIST DC CL8' ' File distribution code (SFBDIST)
 X'080' TAGORLOC DC CL8' ' Override 'TO' location
 X'088' TAGTOADR DS 0CL16 Destination network address
 X'088' TAGTOLOC DC CL8' ' Destination location ID
 X'090' TAGTOVM DC CL8' ' Destination virtual machine ID
 X'098' TAGDEST DC CL8' ' PSF destination (SFBDEST)
 X'0A0' TAGDEV DC AL2(0) Active file's virtual dev address
 X'0A2' TAGWORK1 DC C' ' Work Area
 X'0A3' TAGFMQUL DC X'00' From node qualifier
 X'0A4' TAGCNTRL DC CL4' ' Network control record format
 X'0A8' TAGRECDN DC F'0' Number of records done (xmit & rcv)
 X'0AC' TAGWORK DS F Incoming NJE file record count accumulator (NHD)
 *
 * The following five fields shall be kept together to ease
 * the process of initializing them.
 *
 X'0B0' TAGFORMN DC CL8' ' User form name (SFBUFORM)
 X'0B8' TAGFLSHN DC CL4' ' 3800 flash name (SFBFLASH)
 X'0BC' TAGMODN DC CL4' ' 3800 copy mod name (SPCMOD)
 X'0C0' TAGCHARN DC CL4' ' 3800 CHARS name 0 (SPCHAR)
 X'0C4' TAGFCBN DC CL4' ' 3800 FCB name (SPFCB)
 TAG38NML EQU *-TAGFORMN Length of this section

 X'0C8' TAGFLC DC X'00' 3800 FLASH count (SPFLSHC)
 X'0C9' TAGKEY DC XL3'00' Pseudo-random number for NJE
 TAGCHARX DS 0CL12 3800 CHARS names 1-3
 X'0CC' TAGCHAR1 DC CL4' ' 3800 CHARS name 1 (SPCHAR1)
 X'0D0' TAGCHAR2 DC CL4' ' 3800 CHARS name 2 (SPCHAR2)
 X'0D4' TAGCHAR3 DC CL4' ' 3800 CHARS name 3 (SPCHAR3)
 X'0D8' TAGFORMO DC CL8' ' Operator form name (SFBOFORM)
 X'0E0' TAGMODTR DC C' ' 3800 MODIFY TRC (SPCMCHR)
 X'0E1' TAGPGLEN DC X'00' Virtual 3800 page length (SPPGLEN)
 X'0E2' TAGFCBNL DC H'0' Maximum FCB length (SFBFCBNL)
 X'0E4' TAGFCBXL DC H'0' Maximum extend FCB length (SFBFCBXL)
 X'0E6' TAGXABL DC H'0' XAB length (SFBXABL)
 X'0E8' TAGRCMAX DC H'0' Longest trunc rec (SPRECMAX)
 X'0EA' TAGDSHNO DC H'0' Number of DSHs sent
 X'0EC' TAGSPLNM DC 0F'0',X'80000000' Number of SPLINKS (SPSPLNKC)
 X'0F0' TAGOPTOD DC D'0' Open time-of-day for file
 X'0F8' TAGSPLDN DC F'0' Number of SPLINKS done
 X'0FC' TAGRECDS DC F'0' Rec number for *LIST dsh
 X'100' TAGSHPTR DC A(0) Anchor for shadow elements fot this TAG slot

 X'104' TAGSTRID DC X'00' Stream ID for this TAG slot
 X'105' DS 3X Round out to a double word
 X'108' TAGPRLNK DC CL8' ' Preferred print link (multi-copy)
 X'110' TAGJOBID DC H'0' Origin job number
 X'112' DC H'0',F'0' Reserved/dbl wrd bdry
 X'118' TAGXWRT DC CL8' ' External writer name
 TAGTLEN EQU *-TAGBLOCK Length of the TAG w/o pointer area
 TAGLEN EQU *-TAG Length of the TAG slot
 TAGDATA EQU TAGBLOCK,TAGTLEN TAG slot data area alias with length

TAGAREA
The Tag Queue Area (TAGAREA) contains data about the active TAG queue, pointers, and other tag control
information. For more information, see “TAGAREA” on page 21.

TAGAREA

216 z/VM: 7.3 RSCS Networking Diagnosis

X'000' TAGACIN DC A(0) Active input queue
X'004' TAGACOUT DC A(0) Active output queue

X'008' TAGATSTO DC A(0) Pointer to TASTORAG for TAG slots
X'00C' TAGASSTO DC A(0) Pointer to TASTORAG for TASHADOWs

X'010' TAGASVEC DC A(0) Address of 10000 word spool ID vector
X'014' TAGASHCN DC A(0) Address of 10000 byte vector that
* ... maintains shadow use by spids
X'018' TAGASHND DC A(0) Address of 10000 byte vector that
* ... maintains shadow needs by spids
X'01C' TAGASLOT DC A(0) Anchor for the TAG slots (global)
X'020' TAGASMAX DC AL1(255) Maximum number of shadows
X'021' DC X'00' Spare byte
X'022' TAGASCNT DC H'0' Skip count for degraded message
 TAGASKIP EQU 100 Issue degraded msg every 100 times
X'024' TAGAFRSH DC F'0' Count of free shadows (kept in
* ... degraded mode only)
 TAGAFRMX EQU 1000 Here's where we get generous
 TAGAFRMN EQU 500 Here's where we get stingy
X'028' TAGASLVE DC A(0) Anchor for the slowdown entry vector
X'02C' TAGASLVX DC A(0) Anchor for the slowdown exit vector
X'030' TAGANUMU DC A(0) Number of TAG slots in use
X'034' TAGASLEB DC H'0' Base entry to slowdown
X'036' TAGASLEX DC H'0' Base exit to slowdown
 TAGALEN EQU *-LABEL TAG area length

TASHADOW
A TAG shadow element (TASHADOW) represents an inactive file on each link that can send the file. For
more information, see “TASHADOW” on page 23.

X'000' TASNEXT DC A(0) Address of next shadow element
X'004' TASPREV DC A(0) Address of previous shadow element
 * The following two pointers chain all TASHADOW elements for a
 * given spoolid together (the queue is anchored in the TAG slot).
X'008' TASPLNXT DC A(0) Address of next shadow element
X'00C' TASPLPRV DC A(0) Address of previous shadow element
 *
X'010' TASLKPTR DC A(0) Pointer to owning LINKTABL
X'014' TASSPID DC H'0' Spoolid represented by this element
X'016' TASFLAG DC X'00' Flag byte for the element
 *
 * Bits defined in TASFLAG (also used in TAGSFLAG in TAG)
 *
 TASLOOPH EQU X'80' File in hop count loop
 TASLOOPI EQU X'40' Shadow element in immediate loop
 TASORDER EQU X'20' This shadow element has been ORDERed
 TASNOSTR EQU X'10' File is not eligible for any stream
 TASEXHLD EQU X'08' File held by user exit
 TASMCOPY EQU X'04' Non-first copy of multicopy file
 *
 * Note: As TAGSFLAG is the second byte in TAGFFLG, 4 byte
 * equates are defined by multiplying by 2**8
 *
 TAS4LOPH EQU TASLOOPH*65536 Set up for TAGFFLG definition
 TAS4LOPI EQU TASLOOPI*65536 Set up for TAGFFLG definition
 TAS4ORD EQU TASORDER*65536 Set up for TAGFFLG definition
 TAS4NSTR EQU TASNOSTR*65536 Set up for TAGFFLG definition
 TAS4EHLD EQU TASEXHLD*65536 Set up for TAGFFLG definition
 *
X'017' TASFLAG2 DC X'00' Flag byte #2 for the element
 *
 * Bits defined in TASFLAG2
 *
 TASHOLD EQU X'80' File is in HOLD state
 TASALTER EQU X'40' This is an alternate routing shadow
 TASALTNS EQU X'20' Alternate routing shadow not
 TASPULL EQU X'10' Shadow will be pulled (CHANGE/XFER)
 * eligible for transmission
 TASSPHLD EQU X'08' File is in special HOLD.
 * Used by notify link driver.
 *
X'018' TASSORT DC XL8'00' Queue order based on this field
 TASSORTV EQU TASSORT,4 Primary value used for queueing
 TASSORTB EQU TASSORT+4,4 Queueing tie-breaker
 *
 * The following offset and bitmap MUST remain in this order in
 * contiguous bytes and MUST be after TASSORTB.
 *
X'020' TASOFFAL DC H'0' Offset to byte into bit map
X'022' TASBTMAP DC X'00' Bit mask in byte in the bit map
X'023' TASCLASS DC C' ' Class for the file being sent
X'024' TASSTRID DC XL4'00000000' Stream file is eligible for (NJE)
 TASLEN EQU *-&LABEL Length of TASHADOW element

TASTORAG
The TASTORAG area is used to manage storage needed for TAG and TASHADOW elements. See
“TASTORAG” on page 22 for more information.

TASHADOW

Chapter 17. Control Blocks 217

X'000' TASTIPPG DC H'0' Number of items per page
X'002' TASTPPCH DC H'0' Number of pages per chunk
X'004' TASTIPCH DC H'0' Number of items per chunk
X'006' TASTILEN DS H'0' Length of each item
X'008' TASTBPTR DC A(0) Address of 'origin' byte in
* ... the allocation map
X'00C' TASTBLEN DC F'0' Length of allocation map after
* ... the 'origin' byte
X'010' TASTEYEC DC CL8' ' Eyecatcher to use at top of page
X'018' TASTFEYE DC CL8' ' Eyecatcher to use with free items
X'020' TASTBITM DC A(0) Pointer to bitmap for these items
X'024' TASTTLEN DC F'0' Total length of bit map (bytes)
X'028' TASTCVEC DC A(0) Pointer to vector of chunk addresses
X'02C' TASTOOFF DC H'0' Offset from beginning of item to hword
* ... bitmap offset and bit pattern
X'02E' TASTEOFF DC H'0' Offset from beginning of item to
* ... eyecatcher
X'030' TASTIALL DC F'0' Number of items allocated
X'034' TASTCALL DC F'0' Number of chunks allocated
* TASTLEN EQU *-&LABEL TAG area length

TCP/IP-Related Structures
This section describes the control blocks used by the TCPNJE-type link drivers. It also describes the
DSECTs created by the SOCKET macro.

PRDBLOK
A PRDBLOK (TCP/IP port redirector block) is built and sent to the port redirector task, DMTPRD, for each
host/port pair that a TCPNJE link driver task wants to listen for. It is also used to cancel these listen
requests. DMTPRD sends a PRDBLOK to the TCPNJE link driver task when an incoming connect request
matches or when an error prevents DMTPRD from listening for a request. See “Port Redirector Task” on
page 60 for more information.

X'000' PRDLENG DC XL1'00' Length of total element - 1
X'001' PRDTYPE DC XL1'00' Function code
X'002' PRDFLAG DC XL1'00' Flags
X'003' DC XL1'00' Reserved
 *
 * Values defined in PRDTYPE
 PRDADD EQU 1 Add request
 PRDDEL EQU 2 Delete request
X'000' PRDERR EQU 3 Error reply
 PRDGIVE EQU 4 Giving socket
 *
 * Bits defined in PRDFLAG
 PRDSOKA EQU X'80' This block owns a socket
 PRDESENT EQU X'40' We've sent an error msg

X'004' PRDNEXT DC A(0) Address of next PRDBLOK
X'008' PRDSOCKN DC F'0' Socket number
X'00C' PRDERRNO DC F'0' Error number

X'010' PRDTCPID DC CL8' ' TCP ID
X'018' PRDTASK DC CL8' ' RSCS task ID

X'020' PRDSOCKA DC XL16'00' SOCKADDR structure
 PRD_FAM EQU PRDSOCKA,2 Addressing family
 PRD_PORT EQU PRDSOCKA+2,2 TCP Port number
 PRD_ADDR EQU PRDSOCKA+4,4 IP address

X'030' PRDCLIEN DC XL40'00' CLIENTID structure
 PRD_DOM EQU PRDCLIEN,4 Domain
 PRD_NAME EQU PRDCLIEN+4,8 User name
 PRD_TASK EQU PRDCLIEN+12,8 Subtask name

X'058' PRDSMASK DS 8X Select mask
 DS 0D
 PRDLEN EQU *-&LABEL Length of data area

SOCKBLOK
The SOCKBLOK (socket set descriptor block) maps a control that is used by DMTSOK. There is one
SOCKBLOK for each socket.

PRDBLOK

218 z/VM: 7.3 RSCS Networking Diagnosis

*---
* This area MUST remain at the head of the macro ... it is necessary
* to place it here 'cause GCS STIMER macro has no UWORD support.
*---
X'000' SOCKTIME EQU *
 NI SOCKFLAG-SOCKTIME(R15),X'FF'-SOCKTIMR
 * Say timer no longer set
 L R1,SOCKTECB-SOCKTIME(0,R15)
 * Get address of ECB to post
 L R0,SOCKCODE-SOCKTIME(0,R15)
 * Get ECB completion code
 POST (R1),(0) Post the timer ecb
 BR R14 And return to GCS
*---
* Here beginneth the actual data
*---
X'014' SOCKTECB DC A(0) Address of ECB to post from
 * ... timer routine
X'018' SOCKCODE DC F'0' Code to post timer ECB with

X'01C' SOCKMAXD DC H'0' Maximum socket descriptors
X'01E' SOCKPATH DC H'0' IUCV pathid used by link
X'020' SOCKVMID DC CL8' ' VMid I want to talk to
X'028' SOCKTASK DC CL8' ' Task ID

X'030' SOCKALST DC A(0) List of active call blocks

X'034' SOCKFLAG DC X'00' Flag for use with IUCV stuff
 *
 * Bits defined in SOCKFLAG
 *
 SOCKDECL EQU X'80' IUCVINI has been issued
 SOCKOINI EQU X'40' Outstanding initialize request
 SOCKCON EQU X'20' Path is connect
 SOCKTIMR EQU X'10' Timer is set

X'035' SOCKKEY DC X'E0' Mainline storage access key
X'036' SOCKMAXC DS H Maximum active socket calls
X'038' SOCKMAP DS XL256 Bitmap of sockets in use
X'138' SOCKCLST RCALL ,(,,,,,,),MF=L Space for RCALL plists
 DS 0D
 SOCKLEN EQU *-SOCKBLOK Length of data area

SOCKCBLK
SOCKCBLK (active socket call block) is used by DMTSOK to handle active socket calls. There is one
SOCKCBLK for each concurrent socket call. The maxcall parameter of the SOCKET INITIALIZE function
determines the maximum number of calls. See z/VM: RSCS Networking Exit Customization for more
information about the SOCKET macro parameters.

*** SOCKCBLK - Active socket call block

X'000' SOCKCFWD DC A(0) Pointer to next SOCKCBLK

X'004' SOCKICOD DC A(0) Code to call at interrupt

X'008' SOCKIPMS DS XL(IPSIZE*8) Space to build an IPARML
X'030' SOCKIPMI DS XL(IPSIZE*8) Space for interrupt IPARML

X'058' SOCKBUF1 DS 9D Buffer/list for IPPBADR1
 ORG SOCKBUF1
 SOCKB1A1 DS A Address 1
 SOCKB1L1 DS F Length 1
 SOCKB1A2 DS A Address 2
 SOCKB1L2 DS F Length 2
 SOCKB1A3 DS A Address 3
 SOCKB1L3 DS F Length 3
 SOCKB1A4 DS A Address 4
 SOCKB1L4 DS F Length 4
 SOCKB1A5 DS A Address 5
 SOCKB1L5 DS F Length 5
 SOCKB1A6 DS A Address 6
 SOCKB1L6 DS F Length 6

SOCKCBLK

Chapter 17. Control Blocks 219

 SOCKB1A7 DS A Address 7
 SOCKB1L7 DS F Length 7
 SOCKB1A8 DS A Address 8
 SOCKB1L8 DS F Length 8
 SOCKB1A9 DS A Address 9
 SOCKB1L9 DS F Length 9
 ORG ,
X'0A0' SOCKBUF2 DS 9D Buffer/list for IPBFADR2
 ORG SOCKBUF2
 SOCKB2A1 DS A Address 1
 SOCKB2L1 DS F Length 1
 SOCKB2A2 DS A Address 2
 SOCKB2L2 DS F Length 2
 SOCKB2A3 DS A Address 3
 SOCKB2L3 DS F Length 3
 SOCKB2A4 DS A Address 4
 SOCKB2L4 DS F Length 4
 SOCKB2A5 DS A Address 5
 SOCKB2L5 DS F Length 5
 SOCKB2A6 DS A Address 6
 SOCKB2L6 DS F Length 6
 SOCKB2A7 DS A Address 7
 SOCKB2L7 DS F Length 7
 SOCKB2A8 DS A Address 8
 SOCKB2L8 DS F Length 8
 SOCKB2A9 DS A Address 9
 SOCKB2L9 DS F Length 9
 ORG ,
X'0E8' SOCKZRC DS F Place for RC when null
X'0EC' SOCKZERN DS F Place for ERRNO when null

X'0F0' SOCKPRMS DS 0A Copy of parameter list
 SOCKFCDE DS F Function code
 SOCKBLKA DS A Copy of address of SOCKBLOK
 SOCKECB DS A Address of ECB to post
 SOCKRC DS A Address of RC
 SOCKERRN DS A Address of errno
 SOCKCID DS A Address of Call ID
 SOCKPM1 DS A Address of parm 1
 SOCKPM2 DS A Address of parm 2
 SOCKPM3 DS A Address of parm 3
 SOCKPM4 DS A Address of parm 4
 SOCKPM5 DS A Address of parm 5
 SOCKPM6 DS A Address of parm 6

X'120' SOCKIUCL IUCVCOM ,MF=L Space for IUCVCOM plist

 DS 0D
 SOCKCLEN EQU *-SOCKCBLK Length of data area

SOCKET
The following equates are generated when the DSECT keyword is specified on the SOCKET macro.

 DMTSOKET function call number equates

 Socket Macro IUCV Socket
 Function # Function #
SOKINIT EQU 0 Initialize -
SOKTERM EQU 1 Terminate -
SOKSOCK EQU 2 Socket 25
SOKCONN EQU 3 Connect 4
SOKIOCTL EQU 4 IOCTL 12
SOKSSOKO EQU 5 SetSockOpt 23
SOKSELEC EQU 6 Select 19
SOKRECV EQU 7 Recv 16
SOKRECVF EQU 8 Recvfrom 16
SOKSEND EQU 9 Send 20
SOKSHUT EQU 10 Shutdown 24
SOKCLOSE EQU 11 Close 3
SOKACCEP EQU 12 Accept 1
SOKBIND EQU 13 Bind 2
SOKFCNTL EQU 14 Fcntl 5
SOKGETCL EQU 15 GetClientID 30
SOKGETHB EQU 28 GetHostByName -
SOKGETHI EQU 16 GetHostID 7
SOKGETHN EQU 17 GetHostName 8
SOKGETPN EQU 18 GetPeerName 9
SOKGETSN EQU 19 GetSockName 10
SOKGETSO EQU 20 GetSockOpt 11
SOKGIVES EQU 21 GiveSocket 31
SOKLISTE EQU 22 Listen 13
SOKREAD EQU 23 Read 14
SOKSENDT EQU 24 SendTo 22
SOKTAKES EQU 25 TakeSocket 32
SOKWRITE EQU 26 Write 26
SOKCANCE EQU 27 Cancel 42

SOCKET

220 z/VM: 7.3 RSCS Networking Diagnosis

 Socket types

SOCK_STR EQU 1 stream socket
SOCK_DGM EQU 2 datagram socket
SOCK_RAW EQU 3 raw-protocol interface
SOCK_RDM EQU 4 reliably-delivered message
SOCK_SQP EQU 5 sequenced packet stream

 Option flags per-socket

SO_DEBUG EQU X'0001' turn on debugging info recording
SO_ACCEP EQU X'0002' socket has had listen
SO_REUSE EQU X'0004' allow local address reuse
SO_KEEPA EQU X'0008' keep connections alive
SO_DONTR EQU X'0010' just use interface addresses
SO_BROAD EQU X'0020' permit sending of broadcast msgs
SO_USELO EQU X'0040' bypass hardware when possible
SO_LING EQU X'0080' linger on close if data present
SO_OOBIN EQU X'0100' leave received OOB data in line

 Additional options, not kept in so_options

SO_SNDBF EQU X'1001' send buffer size
SO_RCVBF EQU X'1002' receive buffer size
SO_SNDLO EQU X'1003' send low-water mark
SO_RCVLO EQU X'1004' receive low-water mark
SO_SNDTI EQU X'1005' send timeout
SO_RCVTI EQU X'1006' receive timeout
SO_ERROR EQU X'1007' get error status and clear
SO_TYPE EQU X'1008' get socket type

 Level number for Get/Set SockOpt

SOL_SOCK EQU X'FFFF'

 Address families

AF_UNSPC EQU 0 unspecified
AF_UNIX EQU 1 local to host (pipes, portals)
AF_INET EQU 2 internetwork: UDP, TCP, etc.
AF_IMPLI EQU 3 arpanet imp addresses
AF_PUP EQU 4 pup protocols: e.g. BSP
AF_CHAOS EQU 5 mit CHAOS protocols
AF_NS EQU 6 XEROX NS protocols
AF_NBS EQU 7 nbs protocols
AF_ECMA EQU 8 european computer manufacturers
AF_DATAK EQU 9 datakit protocols
AF_CCITT EQU 10 CCITT protocols, etc
AF_SNA EQU 11 IBM SNA
AF_DECNE EQU 12 DECnet
AF_DLI EQU 13 Direct data link interface
AF_LAT EQU 14 LAT
AF_HYLIN EQU 15 NSC Hyperchannel
AF_APPLE EQU 16 Apple Talk
AF_IUCV EQU 17 IBM IUCV

 Protocol families, same as address families for now.

PF_UNSPC EQU AF_UNSPC unspecified
PF_UNIX EQU AF_UNIX local to host (pipes, portals)
PF_INET EQU AF_INET internetwork: UDP, TCP, etc.
PF_IMPLI EQU AF_IMPLI arpanet imp addresses
PF_PUP EQU AF_PUP pup protocols: e.g. BSP
PF_CHAOS EQU AF_CHAOS mit CHAOS protocols
PF_NS EQU AF_NS XEROX NS protocols
PF_NBS EQU AF_NBS nbs protocols
PF_ECMA EQU AF_ECMA european computer manufacturers
PF_DATAK EQU AF_DATAK datakit protocols
PF_CCITT EQU AF_CCITT CCITT protocols, etc
PF_SNA EQU AF_SNA IBM SNA
PF_DECNE EQU AF_DECNE DECnet
PF_DLI EQU AF_DLI Direct data link interface
PF_LAT EQU AF_LAT LAT
PF_HYLIN EQU AF_HYLIN NSC Hyperchannel
PF_APPLE EQU AF_APPLE Apple Talk
PF_IUCV EQU AF_IUCV IBM IUCV

 Flags for Send and Recv

MSG_OOB EQU 1 process out-of-band data
MSG_PEEK EQU 2 peek at incoming message

SOCKET

Chapter 17. Control Blocks 221

MSG_DONT EQU 4 send without using routing tables

 Request equates for IOCTL

FIONBIO EQU X'8004A77E' Set/clear non-blocking I/O
FIONREAD EQU X'4004A77F' Get # of bytes to read
SIOCADDR EQU X'8030A70A' Add route
SIOCATMA EQU X'4004A707' At OOB mark?
SIOCDELR EQU X'8030A70B' Delete route
SIOCGIFA EQU X'C020A70D' Get ifnet address
SIOCGIFB EQU X'C020A712' Get broadcast address
SIOCGIFC EQU X'C008A714' Get ifnet list
SIOCGIFD EQU X'C020A70F' Get p-p address
SIOCGIFF EQU X'C020A711' Get ifnet flags
SIOCGIFM EQU X'C020A717' Get IF metric
SIOCGIFN EQU X'C020A715' Get net address mask
SIOCSIFD EQU X'8020A70E' Set p-p address
SIOCSIFF EQU X'8020A710' Set ifnet flags
SIOCSIFM EQU X'8020A718' Set IF metric

 Request equates for FCNTL

F_GETFL EQU 3 Get file flags
F_SETFL EQU 4 Set file flags

 Flags for F_GETFL and F_SETFL

FNDELAY EQU X'00000004' Non-blocking reads

 SOCKADDR structure

SOCKADDR DSECT
SIN_FAM DS H Addressing family
SIN_PORT DS H Port number
SIN_ADDR DS F Address
SIN_ZERO DS XL8 reserved zeros

 TIMEVAL structure

TIMEVAL DSECT
TV_SEC DS F Seconds
TV_USEC DS F Microseconds

 Linger structure

LINGER DSECT
L_ONOFF DS F Option on/off
L_LINGER DS F Linger time

 Client identification structure

CLIENTID DSECT
C_DOMAIN DS F Domain
C_NAME DS CL8 User name
C_TASK DS CL8 Subtask name
C_RESV1 DS XL20 reservered zeroes

 Error codes

EPERM EQU 1 Not owner
ENOENT EQU 2 No such file or directory
ESRCH EQU 3 No such process
EINTR EQU 4 Interrupted system call
EIO EQU 5 I/O error
ENXIO EQU 6 No such device or address
E2BIG EQU 7 Arg list too long
ENOEXEC EQU 8 Exec format error
EBADF EQU 9 Bad file number
ECHILD EQU 10 No children
EAGAIN EQU 11 No more processes
ENOMEM EQU 12 Not enough core
EACCES EQU 13 Permission denied
EFAULT EQU 14 Bad address
ENOTBLK EQU 15 Block device required
EBUSY EQU 16 Mount device busy
EEXIST EQU 17 File exists
EXDEV EQU 18 Cross-device link
ENODEV EQU 19 No such device
ENOTDIR EQU 20 Not a directory
EISDIR EQU 21 Is a directory
EINVAL EQU 22 Invalid argument

SOCKET

222 z/VM: 7.3 RSCS Networking Diagnosis

ENFILE EQU 23 File table overflow
EMFILE EQU 24 Too many open files
ENOTTY EQU 25 Not a typewriter
ETXTBSY EQU 26 Text file busy
EFBIG EQU 27 File too large
ENOSPC EQU 28 No space left on device
ESPIPE EQU 29 Illegal seek
EROFS EQU 30 Read-only file system
EMLINK EQU 31 Too many links
EPIPE EQU 32 Broken pipe
EDOM EQU 33 Argument too large
ERANGE EQU 34 Result too large

 Non-blocking and interrupt I/O

EWOULDBL EQU 35 Operation would block
EINPROGR EQU 36 Operation now in progress
EALREADY EQU 37 Operation already in progress

 IPC/network software

 Argument errors

ENOTSOCK EQU 38 Socket operation on non-socket
EDESTADD EQU 39 Destination address required
EMSGSIZE EQU 40 Message too long
EPROTOTY EQU 41 Protocol wrong type for socket
ENOPROTO EQU 42 Protocol not available
EPROTONO EQU 43 Protocol not supported
ESOCKTNO EQU 44 Socket type not supported
EOPNOTSU EQU 45 Operation not supported on socket
EPFNOSUP EQU 46 Protocol family not supported
EAFNOSUP EQU 47 Address family not supported by
* protocol family
EADDRINU EQU 48 Address already in use
EADDRNOT EQU 49 Can't assign requested address

 Operational errors

ENETDOWN EQU 50 Network is down
ENETUNRE EQU 51 Network is unreachable
ENETRESE EQU 52 Network dropped connection on reset
ECONNABO EQU 53 Software caused connection abort
ECONNRES EQU 54 Connection reset by peer
ENOBUFS EQU 55 No buffer space available
EISCONN EQU 56 Socket is already connected
ENOTCONN EQU 57 Socket is not connected
ESHUTDOW EQU 58 Can't send after socket shutdown
ETOOMANY EQU 59 Too many references: can't splice
ETIMEDOU EQU 60 Connection timed out
ECONNREF EQU 61 Connection refused
ELOOP EQU 62 Too many levels of symbolic links
ENAMETOO EQU 63 File name too long
EHOSTDOW EQU 64 Host is down
EHOSTUNR EQU 65 No route to host
ENOTEMPT EQU 66 Directory not empty

 Quotas & mush

EPROCLIM EQU 67 Too many processes
EUSERS EQU 68 Too many users
EDQUOT EQU 69 Disc quota exceeded

 Network File System

ESTALE EQU 70 Stale NFS file handle
EREMOTE EQU 71 Too many levels of remote in path

 Streams

ENOSTR EQU 72 Device is not a stream
ETIME EQU 73 Timer expired
ENOSR EQU 74 Out of streams resources
ENOMSG EQU 75 No message of desired type
EBADMSG EQU 76 Trying to read unreadable message

 SystemV IPC

EIDRM EQU 77 Identifier removed

SOCKET

Chapter 17. Control Blocks 223

 SystemV Record Locking

EDEADLK EQU 78 Deadlock condition.
ENOLCK EQU 79 No record locks available.

 RFS

ENONET EQU 80 Machine is not on the network
ERREMOTE EQU 81 Object is remote
ENOLINK EQU 82 the link has been severed
EADV EQU 83 advertise error
ESRMNT EQU 84 srmount error
ECOMM EQU 85 Communication error on send
EPROTO EQU 86 Protocol error
EMULTIHO EQU 87 multihop attempted
EDOTDOT EQU 88 Cross mount point (not an error)
EREMCHG EQU 89 Remote address changed

 Error codes unique to VM socket implementation

EIBMBADC EQU 1000 A bad socket-call constant was found in
* the IUCV header
EIBMBADP EQU 1001 Other IUCV header error, bad length, etc.
EIBMSCKO EQU 1002 Socket number assigned by client
* interface code (for socket() and
* accept()) is out of range
EIBMSCKI EQU 1003 Socket number assigned by client
* interface code is already in use
EIBMIUCV EQU 1004 Request failed due to IUCV error. This
* error is generated by the client stub
* code.
EOFFLERR EQU 1005 Offload box error
EOFFLRST EQU 1006 Offload box restart
EOFFLDWN EQU 1007 Offload box down
EIBMCONF EQU 1008 There's already a conflicting call
* outstanding on the socket
EIBMCANC EQU 1009 Call cancelled via SOCKET CANCEL
EIBMTFAI EQU 1010 Actually for offload only. Returned
* by offload box if _beginthread fails

Tracing Structures
RSCS uses the following structures in the internal trace record table. This data is produced when you use
the ITRACE command or macro to trace data and specific events.

ITRACFRM
ITRACFRM describes the 16-byte prefix for each sub-entry in each ITRACE record.

X'000' ITRACFRM DSECT
X'000' FIELDID DC H'0' Field ID
X'002' FIELDLEN DC H'0' Length of this field
X'004' FIELDOFF DC H'0' Offset of this field within the
 * trace table entry
X'006' FIELDEYE DC CL10' ' Eyecatcher - brief description
 * this field
 ITRACFLN EQU *-ITRACFRM Length of format table entry

ITRACHDR
ITRACHDR defines the structure of the entire ITRACE table, which is pointed to by the CVT.

ITRACFRM

224 z/VM: 7.3 RSCS Networking Diagnosis

X'000' ITRACHDR DSECT
X'000' ITRAHTOD DC D'0' Time stamp - last created/updated
X'008' ITRACTOP DC A(0) Pointer to the top of the table
X'00C' ITRACEND DC A(0) Pointer to the end of the table
X'010' DS 0D Double-align the next fields
 * as they are subject of a CDS
X'010' ITRACCUR DC A(0) Pointer to the current entry
X'014' ITRACNXT DC A(0) Pointer to the next entry
X'018' ITRACSYS DC A(0) Pointer to the default system task
 * ITRACE settings
X'01C' ITRACLNK DC A(0) Pointer to the default line/session
 * driver ITRACE settings
X'020' ITRACPOR DC A(0) Pointer to the default auto-answer
 * port ITRACE settings
X'024' ITRACSIZ DC H'0' Size of the internal trace table
X'026' ITRACFLG DC X'00' Miscellaneous Flag Byte
X'027' DC XL1'00' Filler for alignment
 *
 * Bits defined in ITRACFLG
 *
 ITRACGTR EQU X'80' Copy to GTRACE as well
 ITRACDMP EQU X'40' Dump when table wraps
 * EQU X'20' spare bit
 * EQU X'10' spare bit
 * EQU X'08' spare bit
 * EQU X'04' spare bit
 * EQU X'02' spare bit
 * EQU X'01' spare bit
 ITR0007 EQU (((*-ITRACHDR)+31)/32)*32
X'028' ORG ITRACHDR+ITR0007 Round to 32_Byte boundary
 ITRACHDL EQU *-ITRACHDR ITRACE table header length

ITRACREC
The ITRACREC area defines the prefix for each ITRACE record in the internal trace table.

X'000' ITRREC DSECT
X'000' ITRRCID DC H'0' Entry type identifyer
X'002' ITRRCTID DC H'0' Taskid that generated the entry
X'004' ITRRCNAM DC CL8' ' RSCS task name
X'00C' ITRRCDSC DC CL20' ' Short description of task (ie.
 * linkid, ccuu, spool, ast)
X'020' ORG ITRRCDSC+5 Position to LINKID
X'011' ITRRCLNK DC CL8' ' LINKID of this task
X'019' ORG , Restore location counter
X'020' ITRRCTOD DC D'0' Time stamp - last created/updated
X'028' ITRRTBLK DC F'0' Pointer to the RSCS TASKBLOK
 * (not the GCS TASKBLOK)
X'02C' ITRRCLEN DC F'0' Length of this entire entry -
 * including TOD and this length field
X'030' ITRRCFWD DC F'0' Pointer to the next entry
X'034' ITRRCBCK DC F'0' Pointer to the previous entry
X'038' ITRRPLST DS 0F
X'038' DC XL(4+8*10)'00' Generate parm list
 ITRRPLEN EQU *-ITRRPLST Length of the plist
 ITRRRECX EQU *-ITRREC Length of fixed portion of X
 a trace table record.
 ITRRRECL EQU (((ITRRRECX+15)/16)*16) Round to left side of X
 a line of the dump.
X'08C' DS (ITRRRECL-ITRRRECX)XL1'00' Pad to entry data
X'090' ITRRCDAT DS 0X Start of this entry's data

Miscellaneous Structures
This section describes the data areas RSCS uses at various times during its processing.

EVEBLOK
An EVEBLOK represents each request to schedule an event to the EVE task (see “EVEBLOK” on page 31).
The different forms of the EVEBLOK are described in the following sections.

ITRACREC

Chapter 17. Control Blocks 225

General Format
X'000' EVELENG DC XL1'00' Length of total element - 1
 EVEFLAGM DS 0XL3 Three byte flag for messages
X'001' EVETYPE DC XL1'00' Function code
X'002' EVEQUAL DC XL1'00' Function qualifiers
X'003' EVEMOD DC XL1'00' Function modifiers
 *
 * Bits defined in EVETYPE
 *
 EVECMDEX EQU X'80' Command execution event
 EVERCALL EQU X'40' Internal module call
 EVEENQUE EQU X'20' Internal call to DMTCOMNQ
 EVEPOST EQU X'10' Internal POST of an ECB
 EVEMIDKT EQU X'08' This is the event Midnight
 EVEALTER EQU X'04' Element to do internal alter
 *
 * Bits defined in EVEQUAL
 *
 EVEFILE EQU X'80' Source of event was EVENT file
 EVESCHED EQU X'40' Source of event was SCHEDULE cmd
 *

 * Bits defined in EVEMOD for command elements
 *
 EVESUSPN EQU X'80' This event is in suspense
 EVEREQUE EQU X'40' This event is repetitive
 EVEIMMED EQU X'20' This event to occur immediately
 EVEDAILY EQU X'10' This event to occur daily
 *
 * Bits defined in EVEMOD for alter elements
 *
 EVEALTDE EQU X'80' Delete event
 EVEALTSU EQU X'40' Suspend event
 EVEALTRE EQU X'20' Resume event
 EVEALTDL EQU X'10' Perform DISKLOAD
 EVEALTID EQU X'08' Alter is for a particular task
 *
 * Bits defined in EVEFLAGM for messages
 *
 E4RCALL EQU EVERCALL*65536 3 byte version of EVERCALL
 E4MIDN EQU EVEMIDKT*65536 3 byte version of EVEMIDKT
 E4FILE EQU EVEFILE*256 3 byte version of EVEFILE
 E4SCHED EQU EVESCHED*256 3 byte version of EVESCHED
 E4SUSPN EQU EVESUSPN 3 byte version of EVESUSPN

X'004' EVENEXT DC A(0) Pointer to next EVEBLOK
X'008' EVEDATE DC CL8' ' Date associated with event
 EVEYEAR EQU EVEDATE+0,2 Year sub-field
 EVEMONTH EQU EVEDATE+3,2 Month sub-field
 EVEDAY EQU EVEDATE+6,2 Day sub-field

X'010' EVETIME DC CL8' ' Time associated with event
 EVEHOUR EQU EVETIME+0,2 Hour sub-field
 EVEMIN EQU EVETIME+3,2 Minute sub-field

X'018' EVEDOFW DC CL8' ' Days of week associated with event
 EVERANGE DS 0CL16 Label for following two fields
X'020' EVERNGLO DC CL8' ' Start of time range
X'028' EVERNGHI DC CL8' ' End of time range
X'030' EVETASK DC CL8' ' Event task name
X'038' EVETASKN DC F'0' Event task ID
X'03C' DS 4X Reserved
X'040' EVELRTU DC F'0' Event low range in STIMER units
X'044' EVEHRTU DC F'0' Event high range in STIMER units
X'048' EVEDELTU DC F'0' Cycle time for repetitive events
 * ... in STIMER units
X'04C' EVEGOTU DC F'0' Next execution time for event
 * ... today in STIMER units
X'050' EVEGOTOD DC D'0' Next execution time for event
 * ... today in TOD clock units
X'058' EVEINLID DC CL8' ' Link ID
X'060' EVEINLNK DC A(0) Pointer to incoming LINKTABL,
 * ... -1 if local SMSG, 0 if console
 EVEC CMORIG DSECT=NO Command origin info
X'064' EVECQUAL DC AL1(0) Origin qualifier
X'065' EVECFLAG DC X'00' Flags (bits as MSGBFLAG)
X'066' EVECRSPC DC H'0' Response counter
X'068' EVECNODE DC CL8' ' Origin node
X'070' EVECUSER DC CL8' ' And user ID
X'078' EVECSIG DC CL6' ' Response signature
X'07E' DS XL2 Reserved slack bytes
 EVEHDRL EQU *-&LABEL Length of fixed part of EVEBLOK
X'080' EVEPROTO DS 0D Beginning of variable format area

Command Execution Event
 ORG EVEPROTO
X'080' EVECMD DS CL128 Event command text

EVEBLOK

226 z/VM: 7.3 RSCS Networking Diagnosis

Internal Module Call Event
 ORG EVEPROTO
X'080' EVEENTRY DC A(0) Module entry point address
X'084' EVEREG0 DC F'0' REG0 passed to entry point
X'088' EVEPLIST DS 0A Beginning of parm list

Internal Call to Enqueue an Element or POST an ECB
 ORG EVEPROTO
X'080' EVEADELM DC A(0) Address of element to COMNQ
X'084' EVEADANC DC A(0) Address of the COMNQ anchor
X'088' EVEADECB DC A(0) Address of the ECB to be POSTed
X'08C' EVEPOSTC DC F'0' The POST code to be used
 ORG , Back to the future
 EVEBLOKL EQU 256 Maximum length of an EVEBLOK
 MEND

HASHBLOK
A HASHBLOK defines the characteristics of a hash table. See “HASHBLOK” on page 112 for more
information.

X'000' HATCATCH DC CL8'&CATCH' Hash table eye catcher
X'008' HATADTOD DC D'0' Time of the last add or delete
 * ... (time in TOD clock format)
X'010' HATSCTOD DC D'0' Time of the last statistical update
 * ... (time in TOD clock format)
X'018' HATSLOTS DC A(&ANCHORS) Number of hash table anchors
X'01C' HATCHPOF DC A(&CHAIN) Chain pointer offset
X'020' HATCLPOF DC A(&COLLIDE) Collision pointer offset
X'024' HATKEYOF DC A(&KEY) Key field offset
X'028' HATKEYL DC A(&KEYLEN) Key field length (in bytes)
X'02C' HATSIZE DC F'0' Size of the hash table (in bytes)
X'030' HATBASE DC A(0) Address of hash table storage
X'034' HATGANCH DC A(0) Address of the generic key length
 * ... counter array
X'038' HATFIOPS DC F'0' Number of find requests
X'03C' HATFIPRO DC F'0' Number of find probes
X'040' HATNUMCH DC F'0' Number of anchors in use
X'044' HATMAXCL DC F'0' Length of the longest chain(s)
X'048' HATCNTCL DC XL(4*6)'00000000' Number of chains of length 1,...,6
X'060' HATOFLAG DC AL1(&OFLAGS) Hash option flags
X'061' DC XL3'000000' Filler
X'064' HATGKEAT DC A(0) Addr of generic key-eating area
X'068' DC ((*-&LABEL+7)/8*8-(*-&LABEL))X'00'
 Pad with zeros to Dword boundary
 HATBLEN EQU *-&LABEL Length of hashing descriptor block
 *
 * Bits defined in HATOFLAG
 *
 HATLOCK EQU X'80' Hash functions are to run disabled
 HATUANCH EQU X'40' For Build call, unconditionally use
 ... the anchor value in the HDB
 HATPSTOR EQU X'20' Get hash table storage from SP 243
 HATGSUPP EQU X'10' Generic key support is active

IOTABLE
RSCS tasks use the IOTABLE to define a request to write output, either to a line or to the spool. When
writing a file to spool, the IOTABLE is defined at the start of the output file I/O area (FIOA).

 X'000' IOSYNCH DC F'0' I/O complete ECB
 X'004' IOSYNCHA DC F'0' Asynchronous I/O event ECB
 X'008' IODEVCUU DC XL2'00' Device address (CUU)
 X'00A' IODRSVD1 DC XL1'00' Reserved
 X'00B' IODEVCOD DC XL1'00' VM device type
 X'00C' IODEVCAW DC A(0) Address of channel program
 X'010' IODSIOCC DC 0XL1'00' SIO condition code
 X'010' IODVSCSW DC XL12'00' Ending subchannel status word
 X'01C' IODVSCSA DC XL12'00' Asynchronous subchannel status word
 X'028' IODSENSE DC XL1'00' Sense byte 0
 X'029' IODRSVD2 DC XL1'00' Reserved
 X'02A' IODFLAG1 DC XL1'00' Device flag 1
 X'02B' IODFLAG2 DC XL1'00' Device flag 2 (NJE only)
 X'02C' DS F Filler
 X'030' IOTIME1 DS 1D STCK value at start of I/O
 X'038' IOTIME2 DS 1D STCK value at end of I/O

 * BITS DEFINED IN IODFLAG1
 IODGOPEN EQU X'80' Device is open for general I/O
 IODSTART EQU X'40' I/O has been started for this device
 IODURIO EQU X'20' I/O is for unit record device
 IODASYIO EQU X'10' I/O is asynchronous
 IODSPERR EQU X'08' Spooling error occurred

HASHBLOK

Chapter 17. Control Blocks 227

 * BITS DEFINED IN IODFLAG2
 IODACTIV EQU X'80' Device is active
 IODNOP EQU X'20' Store all records as NOPs
 IODHOLD EQU X'10' File on this device is to be held
 IODSTUB EQU X'08' Stub for re-enqueue
 IODSUSP EQU X'04' Suspended device
 IODFNREN EQU X'02' Renamed to fanout *MULTI*
 IODKEEPH EQU X'01' Hdrs being retained on device

 * GENIO MF=L GENIO parameter list
 X'040' IODGLIST DS 0F
 X'040' DC CL8'GENIO' Macro name
 X'048' DC X'00' Function requested
 X'049' DC X'00' Reserved flag
 X'04A' DC X'0000' Device address
 X'04C' DC F'0' CCW address
 X'050' DC F'0' Data address
 X'054' DC F'0' Exit address
 X'058' DC F'0' UWORD address
 IODGLLEN EQU *-IODGLIST GENIO parameter list length
 X'05C' IODNEXT DC A(0) Address of next device table (NJE)
 X'060' IODRLINK DC A(0) Address of LINKTABl for ROUTE (NJE)
 X'064' IONFS DC A(0) Address of next free slot in FIOA
 X'068' IOEBA DC A(0) Address of current end of buffer
 X'06C' IODEVXAB DC A(0) Address of XAB
 X'070' IODEVXL DC H'0' Length of XAB
 X'072' DC XL2'00' Reserved
 X'074' IODEVTAG DC A(0) Active device TAG slot (NJE only)
 X'078' IOCHANPG DC 0D'0' Start of unit record channel pgm.
 IOTABLEN EQU *-IOTABLE Length of table

MONITENT
MONITENT entries represent message subscriptions. For more information, see “Message Subscriptions”
on page 30.

X'000' MONNEXT DS A Pointer to next chained entry
X'004' MONNQUAL DS CL1 Node qualifier for MONNODE
X'005' MONCQUAL DS CL1 Node qualifier for MONCNODE
X'006' MONAPIFL DS X API flag byte ... for bit settings see MSGBFLAG

X'007' MONFLAG DS X Flag byte for MONITENT
 *
 * Bits defined in MONFLAG
 *
 MONLINK EQU X'80' This is a link monitoring entry
 MONDISAB EQU X'40' Entry disabled (MONLINK only)

X'008' MONNODE DS CL8 Nodeid for send messages
X'010' MONUSER DS CL8 Userid for send messages
X'018' MONCNODE DS CL8 Command originator's node
X'020' MONCUSER DS CL8 Command originator's userid
X'028' MONSIGN DS CL6 Signature for CRI response

 MONLNKLN EQU *-MONITENT Length of link monitoring entry
X'02D' MONSMCNT DS H Counter for error message
 MONSMMAX EQU 100 Message every 100th time
X'030' MONBITS DS XL125 Bitmap for message based monitoring entries
 MONBITSL EQU *-MONBITS Length of the bitmap in bytes
 MONMSGLN EQU *-MONITENT Length of msg monitoring entry

SAVEAREA
The SAVEAREA macro generates the mapping DSECT for the RSCS register save area and extension.

MONITENT

228 z/VM: 7.3 RSCS Networking Diagnosis

X'000' SAVEPOOL DS X Subpool of storage in stack
X'001' SAVESTOL DS 2X Length of storage in stack (used in first SAVEAREA only)
X'003' SAVEDPTH DS X Number of saveareas (including this one) remaining in stack
X'004' SAVEPREV DS A Address of previous save area
X'008' SAVENEXT DS A Address of next save area
X'00C' SAVER14 DS F Register 14
X'010' SAVER15 DS F Register 15
X'014' SAVER0 DS F Register 0
X'018' SAVER1 DS F Register 1
X'01C' SAVER2 DS F Register 2
X'020' SAVER3 DS F Register 3
X'024' SAVER4 DS F Register 4
X'028' SAVER5 DS F Register 5
X'02C' SAVER6 DS F Register 6
X'030' SAVER7 DS F Register 7
X'034' SAVER8 DS F Register 8
X'038' SAVER9 DS F Register 9
X'03C' SAVER10 DS F Register 10
X'040' SAVER11 DS F Register 11
X'044' SAVER12 DS F Register 12
X'048' SAVEWRK1 DS F Work area word 1
X'04C' SAVEWRK2 DS F Work area word 2
X'050' SAVEWRK3 DS F Work area word 3
X'054' SAVEWRK4 DS F Work area word 4
X'058' SAVEWRK5 DS F Work area word 5
X'05C' SAVEWRK6 DS F Work area word 6
X'060' SAVEWRK7 DS F Work area word 7
X'064' SAVEWRK8 DS F Work area word 8
 SAVEALEN EQU *-SAVEAREA Length of the save area

SAVEAREA

Chapter 17. Control Blocks 229

SAVEAREA

230 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 18. Command and Request Elements

This chapter describes the format of the command and request elements that RSCS uses to notify tasks to
perform work.

CMNDAREA
 PI

The CMNDAREA macro maps the internal command formats, which are used when sending and queueing
commands and messages to modules. The specific format of the structure depends on the command
type:
Type A

Spool manager task.
Type C

Auto-start task.
Type E

EXEC processor task.
Type L

Link driver tasks.
Type V

SNA control task.

Basic Structure
Each type of command element format contains a common format. The origin of each command is
described by the CMORIG DSECT.

X'000' CMNDLEN DC XL1'00' Length of total element, minus 1

NOT Programming Interface Information

 * Required by DMTCOMNQ/DQ

End of NOT Programming Interface Information

X'001' CMNDTYPE DC XL1'00' Type of command

NOT Programming Interface Information

 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.

End of NOT Programming Interface Information

X'002' CMNDMOD DC XL1'00' Command modifier

 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings

X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE

CMNDAREA

© Copyright IBM Corp. 1990, 2022 231

Type A0 (REORDER)
NOT Programming Interface Information

The A0 element is used to pass REORDER commands from the command processing modules of the REX
task to the spool manager task.

End of NOT Programming Interface Information

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifiers
 *
 REORDCMD EQU X'01' REORDER command
 A0REORIN EQU X'00' - full internal reorder
 A0REORRL EQU X'80' - full real reorder
 A0REORDF EQU X'40' - DEFINE command, new link
 A0REORST EQU X'20' - link started
 A0REORNT EQU X'10' - NETWORK START completes
 A0REORRD EQU X'08' - DEFINE command, old link
 A0REORLP EQU X'04' - LOOPING command issued
 A0REORRO EQU X'02' - ROUTE command
 A0REORDA EQU X'01' - link deactivated
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' A0LINKAD DC A(0) Address of effected LINKTABL
X'024' A0REFLAG DC X'00' Reorder command flag byte
X'025' DC XL3'00' Reserved
 A0CMDLEN EQU *-&LABEL-1 Length of whole minus one
 *
 * Bits defined in A0REFLAG byte
 *
 A0SUPQRM EQU X'80' Signal spool manager to suppress
 ... the 'queue reordered' message

Type A1 (CLOSE, ORDER, PURGE)
NOT Programming Interface Information

The REX task, link drivers, and DMTMANEX use the Type A1 element to pass ORDER, PURGE and CLOSE
commands to the spool manager task.

End of NOT Programming Interface Information

CMNDAREA

232 z/VM: 7.3 RSCS Networking Diagnosis

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command types/modifiers
 *
 ORDERCMD EQU X'10' ORDER command
 PURGECMD EQU X'11' PURGE command
 PURGEFLT EQU X'80' - filter program included
 PURGNFIL EQU X'40' - no file around, but clean up data areas
 CLOSECMD EQU X'12' CLOSE command
 CLSALL EQU X'40' - all files
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' A1OBJLNK DC CL8' ' Link concerned
X'028' A1COUNT DC H'0' Number of spool IDs involved
 A1SPIDL DS 0CL134 Max length of spool ID string
 A1SPIDS DS 0H Spool IDs
 A1FILTER DS 0XL(SHTFLTLN) Filter program

Type A1 (TRANSFER)
NOT Programming Interface Information

The REX task passes the spool manager task a modified version of the A1 element for the TRANSFER
command.

End of NOT Programming Interface Information

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifier
 *
 TRANSCMD EQU X'13' TRANSFER command
 TRANSFLT EQU X'80' - filter specified
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' A1TOBLNK DC CL8' ' Link concerned
X'028' A1NEWLOC DC CL8' ' New destination node
X'030' A1NEWVM DC CL8' ' And user ID

CMNDAREA

Chapter 18. Command and Request Elements 233

For filter version
X'038' A1TFILTR DC XL(SHTFLTLN)'00' Filter program
 A1TSCMDL EQU *-&LABEL-1 "Short" length minus one

For non-filter version
 ORG A1TFILTR For non-filter versions,
X'038' A1TCOUNT DC H'0' Count of spool IDs
 A1TSPIDL DS 0CL134 Max length of spool ID string
 A1TSPIDS DS 0H Spool IDs
 A1TCMDLN EQU *-&LABEL-1 Length of element minus one

Type A2 (CHANGE)
The REX task (command processor) passes the Type A2 element to the spool manager task to represent
the CHANGE command.

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifier
 *
 CHANGCMD EQU X'20' CHANGE command
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter

X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' A2LINK DC CL8' ' Link concerned
 A2TEXT EQU * Stuff we move in from prototype
X'028' A2NOLOOP DC XL1'00' NOLOOP indicator
X'029' A2NOPREF DC XL1'00' NOPREFLINK indicator
X'02A' A2PRIOR DC XL2'0000' New priority
 *
 * Note: from HO to DEST must correspond with VCHCNTRL in DMTAXM
 *
X'02C' A2HO DC XL1'00' New HOLD/NOHOLD state
X'02D' A2CL DC XL1'00' New class
X'02E' A2COPY DC XL2'0000' New copy count
X'030' A2DIST DC CL8' ' New distribution code
X'038' A2DSN DS 0CL24 New dsname
X'038' A2FN DC CL12' ' Filename
X'044' A2FT DC CL12' ' Filetype
X'050' A2FORMN DC CL8' ' New form name
X'058' A2FLSHN DC CL4' ' New flash name
X'05C' A2MODN DC CL4' ' New copy mod name
X'060' A2CHARS DS 0CL16 New chars names - 0-3
X'060' A2CHARN DC CL4' ' 0
X'064' A2CHARX DS 0CL12 1-3
X'064' A2CHAR1 DC CL4' ' 1
X'068' A2CHAR2 DC CL4' ' 2
X'06C' A2CHAR3 DC CL4' ' 3
X'070' A2FCBN DC CL4' ' New FCB name
X'074' A2FLC DC XL1'00' New flash count
X'075' A2FLAG1 DC XL1'00' New copy group flag
X'076' A2MODTR DC CL1' ' New modify TRC
X'077' A2RESV DC XL1'00' Reserved
X'078' A2DEST DC CL8' ' New DEST name
 *
 * Note: from HO to DEST must correspond with VCHCNTRL in DMTAXM
 *
X'080' A2JULN DC XL2'0000' NOTIFY processing day number
 A2VLEN EQU *-A2TEXT Length of command text section
X'082' A2FILTER DC XL(SHTFLTLN)'00'
 Filter to select files to be
 ... changed
 A2LEN EQU *-&LABEL-1 Length of whole, minus one

CMNDAREA

234 z/VM: 7.3 RSCS Networking Diagnosis

Type C0 (FORCE)
The REX task (command processor DMTCMYFO) passes a Type C0 element to the auto-start task to
request it to FORCE a link that it attached.

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifier
 *
 FORCECMD EQU X'C0' FORCE command
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' C0LINKID DC CL8' ' Link to be forced
 C0ALTLEN EQU *-&LABEL-1 Length of whole, minus one

Type C1 (ITO)
After they initialize, link drivers pass the Type C1 element for the ITO command to the auto-start task.
This indicates that the links are enrolling in the ITO process.

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifier
 *
 ITOCMD EQU X'C1' Enroll-in-ITO command
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' C1LINKID DC CL8' ' Link which wants to enroll
 C1ALTLEN EQU *-&LABEL-1 Length of whole, minus one

Type C2 (RETRY)
The Type C2 element is passed from the REX or AST task (DMTMANEX) to the auto-start task to start retry
processing for a link that has deactivated.

CMNDAREA

Chapter 18. Command and Request Elements 235

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifier
 *
 RETRYCMD EQU X'C2' Start-retrying command
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' C2LINKID DC CL8' ' Link to retry
 C2ALTLEN EQU *-&LABEL-1 Length of whole, minus one

Type E0 (Execs)
Type E0 elements pass exec requests to the EXE task. E0 requests are issued by the EXEC command
processor, DMTCMZEX, running under REX task. They can also be issued for non-SNA links by
DMTMANEX, running under the REX or AST tasks.

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' E0INLINK DC AL4(0) Incoming link ID for EXEC
X'024' E0TYPE DC XL1'00' X'FF' if restart from MAN
X'025' DS 3X Pad to fullword
 E0HDRLEN EQU *-&LABEL Length excluding name/parms
X'028' E0EXPARM DC CL132' ' EXEC name and parameters
 E0ALTLEN EQU *-&LABEL-1 Length-1 of whole

Type L0 (DRAIN, FREE, HOLD, READY, START, and TRACE)
The L0 element is used to pass START, DRAIN, FREE, HOLD and TRACE commands from the REX task
(DMTCMY) to active link driver tasks. For the TRACE command, this element contains the destination node
and user ID to receive the trace file.

CMNDAREA

236 z/VM: 7.3 RSCS Networking Diagnosis

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command types/modifiers
 *
 STRTCMD EQU X'80' START command
 STACLASS EQU X'80' - reset class
 DRCMD EQU X'81' DRAIN command
 FREECMD EQU X'82' FREE command
 HOLDCMD EQU X'83' HOLD command
 HOLDIMM EQU X'80' - immediate
 HOLDINP EQU X'40' - input files
 TRACECMD EQU X'84' TRACE command
 TRACNLOG EQU X'10' - finish tracing (OFF/NOLOG etc)
 TRACTO EQU X'04' - TO node/user ID specified
 - other modifiers from LTRxxx
 fields, see LINKTABL MACRO
 READYCMD EQU X'85' READY command
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' L0TTOLOC DC CL8' ' Node to send trace to
X'028' L0TTOVM DC CL8' ' User ID to send trace to
 L0ALTLEN EQU *-&LABEL-1 Length of this format

Type L1 (BACKSPACE, FWDSPACE)
The REX task (DMTCMY) uses the Type L1 element to pass BACKSPACE and FWDSPACE commands to
active printer links.

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command types/modifiers
 *
 BACKCMD EQU X'90' BACKSPACE command
 BACKFILE EQU X'00' - by whole file
 BACKCNT EQU X'80' - by # records in L1COUNT
 FWDCMD EQU X'91' FWDSPACE command
 (always by # recs in L1COUNT)
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' L1COUNT DC F'0' BACKSPAC/FWDSPACE count
 L1ALTLEN EQU *-&LABEL-1 Length of this format

CMNDAREA

Chapter 18. Command and Request Elements 237

Type L2 (FLUSH)
The REX task (DMTCMY) uses the Type L3 element to pass a FLUSH command to active links that also
have active files.

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifiers
 *
 FLUSHCMD EQU X'A0' FLUSH command
 FLUSHCPY EQU X'00' - just single copy
 FLUSHALL EQU X'80' - all copies
 FLUSHOLD EQU X'40' - hold flushed file
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' L2COUNT DC H'0' Number of spool IDs to flush
 L2SPIDS DS 0H Each spool ID mentioned

Type L3 (Commands, Messages)
The L3 type element is used for passing commands and messages from task to task.

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifiers
 *
 CMDCMD EQU X'B0' Command flavor
 MSGCMD EQU X'B1' Message flavor
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' L3TOLOC DC CL8' ' Destination node
X'028' L3TOVM DC CL8' ' And user ID
 *
X'030' L3NOUT DC XL8'00' NMR local output information
X'038' L3NFLAG DC XL1'00' NMR flag byte

CMNDAREA

238 z/VM: 7.3 RSCS Networking Diagnosis

X'039' L3NLEVEL DC XL1'77' NMR importance level
X'03A' L3NTYPE DC XL1'00' NMR type byte
X'03B' L3NTOQUL DC XL1'00' NMR TO node qualifier
X'03C' L3NFMQUL DC XL1'00' NMR FROM node qualifier
X'03D' L3NDCTR DC XL1'00' NMR indicator field
 L3NMRSF EQU X'80' Indicates NMR is S&F
 L3NMRLEN EQU *-L3NOUT Define NMR data length
X'03E' DS XL2 Fill out to end of L3NOUT
 *
X'040' L3INLINK DC A(0) Pointer to input link
 * ... or 0 for SMSG-type command
 * ... or -1 for console command
 L3HDRLEN EQU *-&LABEL Length excluding command
X'044' L3TEXT DC CL140' ' Command text
 L3TOTLEN EQU *-&LABEL-1 Length of whole minus 1

Type V1 (START)
The REX and AST tasks use the Type V1 element to pass a START command for a SNA-type link to the SCT
task.

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifiers
 *
 V1STCMND EQU X'40' START command for SNA link
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' V1LINKID DC CL8' ' Link to start
X'028' V1ACTLUN DC CL8' ' LUname
X'030' V1ACTLOG DC CL8' ' Logmode
 V1ALTLEN EQU *-&LABEL-1 Length of whole, minus one

Type V2 (STOP)
The REX and AST tasks use the Type V2 element to pass a STOP command for a SNA-type link to the SCT
task.

CMNDAREA

Chapter 18. Command and Request Elements 239

 ORG CMNDTEXT
X'000' CMNDLEN DC XL1'00' Length of total element, minus 1
 * Required by DMTCOMNQ/DQ
X'001' CMNDTYPE DC XL1'00' Type of command
 * Command types are defined in RSSEQU and are
 * used by requester and server to distinguish
 * between different types of a command.
X'002' CMNDMOD DC XL1'00' Command modifier
 * This byte is used to define extra
 * refinements on the basic command
 * type, eg, the reason for a reorder
X'003' DS XL1 Filler
 *
 * Command type/modifiers
 *
 V2STPCMD EQU X'40' STOP command for SNA link
 *

 *
 CMND CMORIG DSECT=NO Origin of command
 * Includes origin node, user ID, qual
 * and various CRI settings
X'004' CMNDQUAL DC AL1(0) Origin qualifier
X'005' CMNDFLAG DC X'00' Flags (bits as MSGBFLAG)
X'006' CMNDRSPC DC H'0' Response counter
X'008' CMNDNODE DC CL8' ' Origin node
X'010' CMNDUSER DC CL8' ' and user ID
X'018' CMNDSIG DC CL6' ' Response signature
X'01E' DS XL2 Filler
X'020' CMNDTEXT DS 0D Text of command: from here, the
 * ... format depends on CMNDTYPE
X'020' V2LINKID DC CL8' ' LINKID
X'028' V2ACTLUN DC CL8' ' LUname
 V2ALTLEN EQU *-&LABEL-1 Length of whole, minus one

MSGBLOK
 PI

A message request parameter list (MSGBLOK) contains information about a message request. It is built by
any module that needs to issue a message.

MSGBLOK

240 z/VM: 7.3 RSCS Networking Diagnosis

X'000' MSGBACT DC C' ' Action code (length for RF=REX)

NOT Programming Interface Information

X'001' MSGBMOD DC CL3'&MODID' Calling module identifier

End of NOT Programming Interface Information

X'004' MSGBNUM DC AL2(0) Message number
X'006' MSGBRCOD DC XL1'00' Routing code override
X'007' MSGBSCOD DC XL1'00' Severity code override
X'008' MSGBQCNT DC H(0) Q message limit counter

NOT Programming Interface Information

X'00A' DC AL2(0) Filler
 *
 * The following fields should be kept in order,
 * to correspond with CMORIG

End of NOT Programming Interface Information

X'00C' MSGBQAL DC AL1(0) Destination qualifier
X'00D' MSGBFLAG DC X'00' Flag byte for MSGBLOK
 *
 * Bits defined in MSGBFLAG

NOT Programming Interface Information

 * (CRI-related from PAFAPIFL).
 * These bit settings are also used in MONAPIFL in MONITENT
 * and xxxxFLAG in CMORIG

End of NOT Programming Interface Information

 MSGBAPI EQU X'80' Using the CRI
 MSGBMSG EQU X'40' Use MSG, not SMSG (CRI)
 MSGBTEXT EQU X'20' Deliver with text (CRI)
 MSGBCMDP EQU X'10' Message from command proc
 MSGBNTXT EQU X'08' Network language text (CRI)
 MSGBLTXT EQU X'04' Local language text (CRI)
 MSGBRDYN EQU X'02' RMSG-dynamic call to message builder
 MSGBQRY EQU X'01' Query response
 *
X'00E' MSGBRSPC DC H'0' CRI response counter
X'010' MSGBLOC DC CL8' ' Destination node
X'018' MSGBVM DC CL8' ' Destination userid
X'020' MSGBSIGN DC CL6' ' CRI signature
 *
 MSGBORIG EQU &MSGBQAL,*-&MSGBQAL Origin fields altogether

NOT Programming Interface Information

 * End of CMORIG bits
X'026' DC AL2(0) Filler

End of NOT Programming Interface Information

MSGBLOK

Chapter 18. Command and Request Elements 241

X'028' MSGBWA DC A(0) Pointer to MSGWA
X'02C' MSGBFUN DC XL1'02' Function code
X'02D' MSGBFLG2 DC XL1'00' Second flag byte
 *
 * Bits defined in MSGBFLG2
 *
 MSGBSVDY EQU X'80' Dynamic saveareas allocated
 MSGBCHOP EQU X'40' Columns have been chopped
 MSGBNORR EQU X'20' Don't try to reroute again
 MSGCAPI EQU X'10' API responses for console, not
 orig routing
 MSGBNORC EQU X'08' Indicates not Recv rer done -
 * don't try again
 MSGBQLIM EQU X'04' Query message limit reached

NOT Programming Interface Information

X'02E' DC AL2(0) Filler

End of NOT Programming Interface Information

X'030' MSGBALNK DC CL8' ' Associated link
X'038' MSGBSHOW DC XL8'00' SHOW mask
X'040' MSGBUSER DC D'0' User exit work area
X'048' MSGBCONV DC A(0) User conversion repository
X'04C' MSGBTRAN DC A(0) User translation repository
 *
 MSGBHLEN EQU *-MSGBLOK Header length
X'050' MSGBVARS DS 0CL8 Start of variables
 DC &VARS.CL8' ' Number of variables
 MEND

 PI end

RDEVBLOK
RSCS tasks pass a file request element (RDEVBLOK) to the AXM task to open or close a spool file.
Networking link driver tasks also use the RDEVBLOK to initialize transmission algorithms.

RDEVBLOK

242 z/VM: 7.3 RSCS Networking Diagnosis

 X'000' RDEVRLEN DC AL1(0) Request length
 X'001' RDEVFUN DC XL1'00' Request function
 *
 * Bits Defined in RDEVFUN
 *
 RDEVOIN EQU X'01' Open input
 RDEVOOUT EQU X'11' Open output
 RDEVOTA EQU X'21' Open transmission algorithm
 RDEVCIN EQU X'02' Close input
 RDEVCOUT EQU X'12' Close output

 X'002' RDEVFLG1 DC XL1'00' Flags
 X'003' RDEVSOPT DC XL1'00' Sub-option
 *
 * Bits Defined in RDEVSOPT
 *
 RDEVSPHL EQU X'80' Open input (no special hold)
 RDEVRXAB EQU X'40' Open input (read XAB)
 *
 RDEVHOLD EQU X'80' Close input/output (hold)
 RDEVALL EQU X'40' Close input (all copies)
 RDEVRENQ EQU X'20' Close input (Reenqueue)
 RDEVRTAG EQU X'10' Close input (reenqueue and rewrite SAFTAG)
 RDEVSPHD EQU X'08' Close input (special hold)
 RDEVKEEP EQU X'04' Close input (keep)

 RDEVMOP EQU X'80' Open output (multiple files)
 RDEVOSAV EQU X'20' Open output (save partial files)
 RDEVLOG EQU X'10' Open output (trace file)

 RDEVPUR EQU X'40' Close output (purge)

 RDEVINTA EQU X'80' Openin ta (internal TA)
 RDEVEXTA EQU X'40' Openin ta (external TA)

 X'004' RDEVTAG DC A(0) Address of TAG
 X'008' RDEVFIOA DC A(0) Address of file I/O area
 X'00C' RDEVLINK DC A(0) Address of link table
 X'010' RDEVXAB DC A(0) Address of XAB area
 X'014' RDEVXABL DC H(0) Length of XAB area
 X'016' RDEVSPFL DC X'00' Separator page flags
 X'017' RDEVSPFD DC X'00' Default separator page flags
 *
 * Bits Defined in RDEVSPFL and RDEVSPFD
 *
 RDEVSPVM EQU X'80' Write VM separator pages
 RDEVSPSH EQU X'40' Write short separator pages
 RDEVSPNO EQU X'20' Write no separator pages
 RDEVSPUS EQU X'10' Write user defined pages
 *
 X'018' RDEVSPLN DC H'0' Form length (number lines)
 X'01A' RDEVSPWI DC H'0' Form width (number of chars)
 X'01C' RDEVSPPI DC H'0' Lines per inch

 X'01E' RDEVSPLD DC H'0' Default form length
 X'020' RDEVSPWD DC H'0' Default form width
 X'022' RDEVSPPD DC H'0' Default lines per inch
 X'024' RDEVFCBA DC A(0) Address of FCB image to use

 RDEVRDR EQU RDEVTAG,8 Address of TAG and FIOA
 *
 * Alternate Definition for OPEN TA Request
 *
 RDEVSTR EQU RDEVSPFL,1 Number of streams
 RDEVATAN EQU RDEVTAG,4 Address of transmission algorithm
 RDEVTAP EQU RDEVFIOA,4 Transmission algorithm parm addr

 RDEVLEN EQU *-RDEVBLOK Length of request block

RDEVBLOK

Chapter 18. Command and Request Elements 243

RDEVBLOK

244 z/VM: 7.3 RSCS Networking Diagnosis

Chapter 19. Networking Data Areas and Record
Formats

This section describes some of the data areas and equates used by the RSCS networking link drivers. It
also describes the format of various NJE records. For more information about NJE records and protocols,
see z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf).

Data Areas and Equates
The following sections describe the format of data areas and equates used by the networking link drivers.

BUFFER
The BUFFER macro maps the telecommunication buffer for the networking link drivers. The format of the
BUFFER area differs for non-SNA link drivers (DMTNET, DMTLIS) and SNA session drivers (DMTSNE).

Non-SNA Telecommunications Buffer
X'000' BUFCHAIN DS A Buffer chain field
X'004' BUFCOUNT DS 1H Number of bytes in buffer (data field)
X'006' BUFSTAT DS XL1 Buffer status byte
 *
 * Bit defined in BUFSTAT
 *
 BUFSMALL EQU X'01' Small size buffer

X'007' BUFRSVD DS XL1 Reserved field

 BUFBCLEN EQU *-BUF Length of buffer control
X'008' BUFTCTL DS XL2 Transmission control bytes (non-SNA)
X'00A' BUFBCB DS 1C Block control byte (non-SNA)
X'00B' BUFFCS DS XL2 Function control sequence information (non-SNA)
 BUFBXLEN EQU *-BUFTCTL Length of non-SNA buffer special data fields

X'00D' BUFDATA DS 0C Data portion of buffer (non-SNA)
 BUFBXTRA EQU BUFBXLEN+1+2 Length of extra buffer fields,
* (non-SNA) including end of buffer
* 2 more for "XETBSEQ"(1026).

SNA Telecommunications Buffer
 X'000' BUFCHAIN DS A Buffer chain field
 X'004' BUFCOUNT DS 1H Number of bytes in buffer data field
 X'006' BUFSTAT DS XL1 Buffer status byte
 *
 * Bits defined in BUFSTAT
 *
 BUFSMALL EQU X'01' Small size buffer

 X'007' BUFRSVD DS XL1 Reserved field

 X'00D' ORG BUFTCTL
 X'008' BUFSDCT DS 1H * SNA decompress count (RECEIVE)
 BUFSCLEN EQU *-BUF * Length of SNA control fields
 X'00A' BUFSDATA DS 0C * Start of data area for SNA information

HDRTRL
The HDRTRL macro maps a data area that holds an NJE header or trailer while it is stored by RSCS. The
length field contains the total length of the header after all transmission segments are combined.

First Segment

 +---+

BUFFER

© Copyright IBM Corp. 1990, 2022 245

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

X'00' | HDRTLEN | HDRRES | HDRGEN |
 +---+

Second Segments

* General Mapping of Each Incoming NJE Header/Trailer Transmission Segment. *

 HDR DSECT
 X'000' HDRTLEN DS AL2 Total size of header
 X'002' HDRRES DS AL2 Reserved
 X'004' HDRGEN DS 0F Start of general section
 * (followed by other sections)
 SEG DSECT
 X'000' SEGLEN DS AL2 Length of segment
 X'002' SEGFLAGS DS XL1 Flags
 X'003' SEGSEQ DS XL1 Sequence indicator
 *
 * Bit(S) defined in SEGSEQ
 *
 NOTLAST EQU X'80' "Not last segment" indicator
 *
 X'004' SEGDATA DS 0F Data part of segment
 *

NCC
Networking link drivers use the network connection control area (NCC) to build a SIGNON record to send
to a remote system.

 X'000' NCCRID DS 0XL3 SNA record identifier
 X'000' NCCRCB DC X'F0' General record control byte
 X'001' NCCSRCB DC C'I' Sub-record control byte
 *
 * Initial signon control record (may be discarded by RTAM)
 * Response signon control record
 *
 * Possibilities for NCCSRCB
 *
 NCCI EQU C'I' Initial signon character
 NCCJ EQU C'J' Response signon character
 *
 X'002' NCCIDL DC AL1(NCCIL) Length of logical record
 X'003' NCCINODE DC CL8' ' Node identification
 X'00B' NCCIQUAL DC X'01' Qualifier if shared spool
 X'00C' NCCIEVNT DC FL4'0' Event sequence number
 X'010' NCCIREST DC H'0' Part node to node resistance
 X'012' NCCIBFSZ DC H'400' Maximum transmission block size
 X'014' NCCILPAS DC CL8' ' Line password
 X'01C' NCCINPAS DC CL8' ' Node password
 X'024' NCCIFLG DC X'00' Feature flags
 *
 * Bits set in NCCIFLG
 *
 NCCIFLGM EQU X'80' Multiple trunk (response)
 NCCIOLDL EQU *-NCCRCB
 X'025' NCCIFEAT DC AL1 (NCCIPREP+NCCIPACK+NCCIRIF+NCCIMRCB)
 Signon concurrence features mask
 X'026' DC XL3'00' Reserved
 NCCFEAT1 EQU NCCIFEAT,1 First byte in signon concurrence mask
 NCCIL EQU *-NCCRCB Length of element
 X'029' NCCIEND DC X'0' End RCB
 *
 * Bits defined in NCCFEAT1
 *
 NCCIPREP EQU X'80' Prepare protocol for
 ... quiescence to be used
 NCCIPACK EQU X'10' Supporting packed buffers
 NCCIRIF EQU X'08' Supporting RIF omission
 NCCIMRCB EQU X'04' Supporting mixed RCBs

NJEEQU
The NJEEQU macro establishes the networking equates used by all networking link drivers.

 *
 * SRCBS used in data records
 *
 NOCC EQU X'80' No carriage control in rec.
 PMACH EQU X'90' Machine carriage control
 PASA EQU X'A0' ASA carriage control in rec.
 SOMECC EQU X'30' Test for machine or ASA or CC
 CPDSM EQU X'B0' CPDS (stream mode) record
 *
 * Spanned record bits in SRCB

NCC

246 z/VM: 7.3 RSCS Networking Diagnosis

 *
 FSPAN EQU X'08' First segment of spanned rec
 MSPAN EQU X'04' Middle segment of span rec.
 LSPAN EQU X'0C' Last segment of spanned rec.

 --
 * Abnormal termination by sender *
 --

 ABORT EQU X'40' Abort transmission

 --
 * Record format bit settings *
 --

 RFVAR EQU X'40' Variable format
 RFFIX EQU X'80' Fixed format
 RFUNDEF EQU X'C0' Undefined format
 RFASA EQU X'04' ASA carriage control
 RFMC EQU X'02' Machine carriage control

 --
 * Masks for stream RCBS and FCS mask checks *
 --

 TSYSOUT EQU X'01' SYSOUT bit identifier (for RCB)
 MSYSIN EQU X'80' SYSIN mask (for FCS)
 MSYSOUT EQU X'01' SYSOUT mask (for FCS)

 --
 * Coded NOP codes *
 --

 NJEHDR EQU X'01' Network protocol header code
 DATAREC EQU X'02' Data record (non-NJE header)

 --
 * SCB equates *
 --

 RIDSCB EQU X'03' SCB used for RID (SNA only)
 SNAASIS EQU X'00' SNA noncompressible char. string
 SCBASIS EQU X'C0' BSC noncompressible char. string

 --
 * CCW operation codes *
 --

 NOP EQU X'03' No operation code
 PREP EQU X'06' Prepare code
 PUNCHOP EQU X'41' Punch operation code

 --
 * I/O completion information *
 --

 TO EQU X'01' Time out

 --
 * RSCS control block lengths *
 --

 LTAGR EQU 136 Length of user tag record

 --
 * Other equates used frequently *
 --

 HEX00 EQU X'00'
 HEX01 EQU X'01'
 HEX04 EQU X'04'
 HEX07 EQU X'07'
 HEX10 EQU X'10'
 HEX80 EQU X'80'
 HEX7F EQU X'7F'
 HEXF0 EQU X'F0'
 HEXFF EQU X'FF'
 EMPTY EQU X'BF'
 BLNK EQU C' '

NJEEQU

Chapter 19. Networking Data Areas and Record Formats 247

 --
 * Below are storage allocation lengths used in *
 * obtaining storage for various data areas and *
 * control blocks used in networking modules. *
 --

 CTCBFSZE EQU 4096 Default buffer size for CTCA
 SNEBFSZE EQU 1024 SNE default buffer size
 TCPBFSZE EQU 4096 TCP default buffer size
 BSCBFSZE EQU 800 BSC default buffer size
 SMSBFLEN EQU 18 Length of small buffer for SNA
 SMBBFLEN EQU 23 Length of small buffer for BSC
 SMTBFLEN EQU 23 Length of small buffer for TCP
 IJHSZE EQU 260 Size of RIB job header BUILD area
 * ... for incoming job headers
 IJTSZE EQU 260 Size of RIB job trailer BUILD area
 * ... for incoming job trailers
 IDHSZE EQU 516 Size of RIB data set hdr BUILD area
 * ... for incoming dataset headers

 IAXTSZE EQU 516 Initial size of TIBAXTNK (used
 * ... for transmitting files)
 BMPHSZE EQU 512 Increment for RIB header BUILD area
 JHDHSZ EQU IJHSZE*2+IDHSZE*2 Total size of storage to get in
 * Initialization for headers in RIBs

NMR
Networking link drivers use a nodal message record (NMR) to transmit messages and commands to
remote nodes.

 X'000' NMRFLAG DC X'0' Flag byte
 X'001' NMRLEVEL DC 0X'0' Importance level (high 4 bits)
 X'001' NMRPRIO DC X'0' Output priority (low 4 bits)
 X'002' NMRTYPE DC X'0' Type byte
 X'003' NMRML DC X'0' Length of message
 X'004' NMRTO DC 0CL9' ' To node
 X'004' NMRTONOD DC CL8' ' To node name
 X'00C' NMRTOQUL DC X'0' To node qualifier
 X'00D' NMROUT DC XL8'0' Local output information
 X'015' NMRFM DC 0CL9' ' From node
 X'015' NMRFMNOD DC CL8' ' From node name
 X'01D' NMRFMQUL DC X'0' From node qualifier
 X'01E' NMRMSG DC CL140' ' Message
 NMRL EQU *-NMR
 NMRA EQU NMR,NMRL Alias for NMR DSECT with length
 *
 * Formatted command definitions
 *
 ORG NMRMSG
 X'01E' NMRFNORM DC 0XL20'0' Formatted area for normal command
 X'01E' NMRFRTE DC 0XL36'0' Formatted area for route command
 X'01E' NMRFOP DC X'0' Opcode
 X'01F' NMRFFLG DC X'0' Flags or opcode modifier
 X'020' NMRFJID DC XL2'0' Initial job number
 X'022' NMRFORGN DC CL8' ' Origin node name
 X'02A' NMRFJNAM DC CL8' ' Job name

 X'032' NMRFD DC CL8' ' Destination for route command
 X'03A' NMRFR DC CL8' ' Remote if not implied by NMRFD
 *
 * NMROUT format for UCMID messages
 *
 ORG NMROUT
 X'00D' NMRUCM DC X'0' MCS console ID
 X'00E' NMRUCMA DC X'0' MCS console area
 X'00F' NMRLINET DC XL2'0' Line type for MLWTO
 X'011' DC XL4'0' Spacer
 *
 * NMROUT format for logical routed msgs
 *
 ORG NMROUT
 X'00D' NMRDESC DC XL2'0' MCS descriptor codes
 X'00F' NMRROUT DC XL2'0' MCS console routings
 X'011' NMRDOMID DC XL4'0' MCS DOM ID
 *
 * NMROUT format for remote messages
 *

NMR

248 z/VM: 7.3 RSCS Networking Diagnosis

 ORG NMROUT
 X'00D' NMRRMT DC CL8' ' Remote name 'RNNN '
 *
 * NMROUT format for user messages (NMRFLAGT on and NMRFLAGC off)
 *
 ORG NMROUT
 X'00D' NMRUSER DC CL8' ' Receiving user ID
 *
 * For commands (NMRFLAGC on) and NMRFLAGT on
 * NMRUSER contains the sending user ID

 *
 * NMRMSG format if NMRTYPE4 bit is on and NMRFLAGC is off
 *
 ORG NMRMSG
 X'01E' NMRECSID DC CL8' ' Sending user ID
 *
 * NMFLAG definitions
 *
 NMRFLAGC EQU B'10000000' NMRMSG contains a command
 NMRFLAGW EQU B'01000000' NMROUT has JES2 RMT number
 NMRFLAGT EQU B'00100000' NMROUT has user ID
 NMRFLAGU EQU B'00010000' NMROUT has UCMID information
 NMRFLAGR EQU B'00001000' Console is only remote authorized
 NMRFLAGJ EQU B'00000100' Console not job authorized
 NMRFLAGD EQU B'00000010' Console not device authorized
 NMRFLAGS EQU B'00000001' Console not system authorized
 *
 * NMRTYPE definitions
 *
 NMRTYPEX EQU B'11110000' Reserved bits
 NMRTYPED EQU B'00000001' DOM (not supported)
 NMRTYPEF EQU B'00000010' Formatted command in NMRMSG
 NMRTYPET EQU B'00000100' Msg text only in NMRMSG
 NMRTYPE4 EQU B'00001000' Msg text contains control info
 *
 * NMRFOP definitions
 *
 NMRFOPD EQU 1 Display job command
 NMRFOPC EQU 2 Cancel job command
 NMRFOPA EQU 3 Release job command
 NMRFOPH EQU 4 Hold job command
 NMRFOPR EQU 5 Route job command
 *
 * NMRFFLG definitions
 *
 NMRFFLGO EQU X'80' Cancel or route output
 NMRFFLGD EQU X'40' Cancel execution with dump

RIB
Networking link drivers use receiver information blocks (RIB) when they receive information from a
remote node. Each RIB is chained to another by an address in the RIBNEXT field, which contains zeros in
the last RIB in the chain. A RIB can vary in length, depending on if it receives a message or a file.

RIB

Chapter 19. Networking Data Areas and Record Formats 249

For Messages
 X'000' RIBNEXT DS 1F Chain pointer to next RIB
 X'004' RIBBUFF DS 1F Buffer assigned to RIB
 X'008' RIBSBUFA DS 1F Address of the next record
 ... in buffer to decompress
 X'00C' RIBGPIPT DS 1F Pointer to NJEFILE
 RIBCNTRL DS 0XL2
 X'010' RIBRCB DS XL1 RCB for RIB
 X'011' RIBSRCB DS XL1 SRCB for RIB
 X'012' RIBSEQ DS XL1 Segseq for RIB
 X'013' RIBTYPE DS XL1 RIB type
 *
 * Bits defined in RIBTYPE
 *
 RIBCONS EQU X'80' Console type processor
 RIBCTLR EQU X'40' Control record processor
 RIBPERM EQU X'20' Stream is permanently open
 *
 X'014' RIBSTAT DS XL1 Status flags
 *
 * Bits defined in RIBSTAT
 *
 RIBOPEN EQU X'80' Stream open
 RIBRJECT EQU X'40' Receiver cancel(file rejected)
 RIBCKBUF EQU X'20' Check buffer for more data
 RIBCKMOR EQU X'10' Check more buffers for EOF

 X'015' RIBFLAG1 DS XL1 Flag
 *
 * Bits defined in RIBFLAG1
 *
 RIBPUNCH EQU X'80' Punch SYSOUT file (if off print)
 RIBSYSIN EQU X'40' SYSIN (job) file
 RIBNOP EQU X'20' Special - store as NOP
 RIBNJSAF EQU X'10' NJE store and forward
 RIBSPIN EQU X'08' Split file
 RIBTAGRB EQU X'04' Tag record indicator
 RIBOPCDJ EQU X'02' OPTCD=J specified
 RIBM971 EQU X'01' Msg 971 has been issued

 RIBMLEN EQU *-RIB RIB length for message receiver

For Files
 X'000' RIBNEXT DS 1F Chain pointer to next RIB
 X'004' RIBBUFF DS 1F Buffer assigned to RIB
 X'008' RIBSBUFA DS 1F Address of the next record
 ... in buffer to decompress
 X'00C' RIBGPIPT DS 1F Pointer to NJEFILE
 RIBCNTRL DS 0XL2
 X'010' RIBRCB DS XL1 RCB for RIB
 X'011' RIBSRCB DS XL1 SRCB for RIB
 X'012' RIBSEQ DS XL1 Segseq for RIB
 X'013' RIBTYPE DS XL1 RIB type
 *
 * Bits defined in RIBTYPE
 *
 RIBCONS EQU X'80' Console type processor
 RIBCTLR EQU X'40' Control record processor
 RIBPERM EQU X'20' Stream is permanently open
 *
 X'014' RIBSTAT DS XL1 Status flags
 *
 * Bits defined in RIBSTAT
 *
 RIBOPEN EQU X'80' Stream open
 RIBRJECT EQU X'40' Receiver cancel(file rejected)
 RIBCKBUF EQU X'20' Check buffer for more data
 RIBCKMOR EQU X'10' Check more buffers for EOF
 RIBEOF EQU X'08' EOF has been received

 X'015' RIBFLAG1 DS XL1 Flag
 *
 * Bits defined in RIBFLAG1
 *
 RIBPUNCH EQU X'80' Punch SYSOUT file (if off print)
 RIBSYSIN EQU X'40' SYSIN (job) file
 RIBNOP EQU X'20' Special - store as NOP
 RIBNJSAF EQU X'10' NJE store and forward

 RIBSPIN EQU X'08' Split file
 RIBTAGRB EQU X'04' Tag record indicator
 RIBOPCDJ EQU X'02' OPTCD=J specified
 RIBM971 EQU X'01' Msg 971 has been issued

RIB

250 z/VM: 7.3 RSCS Networking Diagnosis

 RIBMLEN EQU *-RIB RIB length for message receiver

 X'016' RIBFLAG2 DS XL1 Another flag byte
 *
 * Bits defined in RIBFLAG2
 *
 RIBVM EQU X'80' RSCS section in data set header
 RIBJOBH EQU X'20' Job header processed
 RIBDSH EQU X'10' Dataset header processed
 RIBJOBT EQU X'08' Job trailer processed
 RIBFAN EQU X'04' Possible fan out
 RIBHOLD EQU X'02' Indicates file is held
 RIBSKCH1 EQU X'01' Ind. skip for skip CH 1

 X'017' RIBFLAG3 DS XL1 And another one yet
 *
 * Bits defined in RIBFLAG3
 *
 RIBDEVOP EQU X'80' Device opened had rc=0
 RIBSDSH EQU X'40' Spanned flag data set header
 RIBSJOBH EQU X'20' Spanned flag job header
 RIBSJTRL EQU X'10' Spanned job trailer flag
 RIBMAXUR EQU X'08' We are at max UR level
 RIBDSHCO EQU X'04' Current DSH is a companion
 ... dataset header
 RIBDSDMY EQU X'02' Current DSH is a not to be forwarded
 RIBFANOU EQU X'01' DSH is taking fanout link

 X'018' RIBCRTRC DS XL1 Current TRC for 3800
 X'019' RIBFCSM DS XL1 FCS stream mask
 X'01A' RIBTRC DS XL1 Number of TRCs for 3800 file
 X'01B' RIBFLAG4 DS XL1 More flags
 *
 * Bits defined in RIBFLAG4
 *
 RIBSELFL EQU X'80' Write out SELECT CCWs for
 ... multiple destinations
 RIBKEEPH EQU X'40' Keep headers in file
 RIBDVCH1 EQU X'20' RIBDVCHN first device

 X'01C' RIBORGID DS XL2 Origin spool ID for messages
 X'01E' DS XL2 Reserved
 X'020' RIBSPADR DS 1F Address of spanned record area
 X'024' RIBJHDR DS 1F Address of job header area
 X'028' RIBDSHD DS 1F Address of dataset header area
 X'02C' RIBJTRL DS 1F Address of job trailer area
 X'030' RIBHWORK DS 1F Work area for HDRBUILD
 X'03C' DS CL4 Reserved
 X'038' RIBUSER DS XL8 User field for exit routines
 X'040' RIBFULL DS 1F Full word work area
 X'044' RIBXAB DS 1F Address of XAB
 X'048' RIBXABL DS 1H Length of XAB
 X'04A' RIBSPANS DS 1H Size of spanned record area
 X'04C' RIBSPZE1 DS 1H Size of spanned record
 X'04E' RIBJHSZ DS 1H Size of job header area
 X'050' RIBDHSZ DS 1H Size of dataset header area
 X'052' RIBJTSZ DS 1H Size of job trailer area
 X'054' RIBHALF DS 1H Half word work area
 X'056' RIBDVNUM DS 1H Number of devices in chain
 X'058' RIBDVCHN DS 1F Anchor of device chain
 X'05C' RIBDVSTB DS 1F Pointer to stub device
 X'060' RIBPDTAG DS (TAGLEN)X Prototype device tag for RIB
 RIBLEN EQU *-RIB Length of RIB for file processors

TANK
Networking link drivers use TANKS as an intermediate buffer to hold a deblocked output record. The TANK
macro maps the data areas for the different forms of the tanks. These forms are described in the following
sections.

TANK

Chapter 19. Networking Data Areas and Record Formats 251

Unit Record Tank
 X'000' TANKCNT DS 1H Count of data bytes in tank
 X'002' TANKRCB DS XL1 Tank record control byte
 X'003' TANKSRCB DS XL1 Tank sub-record control byte
 TANKCLEN EQU *-TANK Length of tank control information
 X'004' TANKDATA DS CL256 Data area in the tank
 X'104' TANKEND DS 1F Compression work area
 TANKLEN EQU *-TANK Length of tank

Network SYSOUT Record Tank
 X'000' TANKCNT DS 1H Count of data bytes in tank
 X'002' TANKRCB DS XL1 Tank record control byte
 X'003' TANKSRCB DS XL1 Tank sub-record control byte
 TANKCLEN EQU *-TANK Length of tank control information
 X'004' TANKDATA DS CL256 Data area in the tank

 ORG TANKDATA
 X'004' TANKLRCL DS XL1 Original record length
 X'005' TANKCCTL DS XL1 Carriage control
 X'006' TANKTRC DS XL1 3800 TRC byte

Network SYSOUT Spanned Record Tanks

First Record Segment
 X'000' TANKCNT DS 1H Count of data bytes in tank
 X'002' TANKRCB DS XL1 Tank record control byte
 X'003' TANKSRCB DS XL1 Tank sub-record control byte
 TANKCLEN EQU *-TANK Length of tank control information
 X'004' TANKDATA DS CL256 Data area in the tank

 ORG TANKDATA
 X'004' TANKSGL1 DS CL1 Segment length
 X'005' TANKSRLL DS CL2 Total record length
 X'007' TANKSGCC DS CL1 Carriage control
 X'008' TANKSGD1 DS CL252 Segment data

Middle and End Record Segments
 X'000' TANKCNT DS 1H Count of data bytes in tank
 X'002' TANKRCB DS XL1 Tank record control byte
 X'003' TANKSRCB DS XL1 Tank sub-record control byte
 TANKCLEN EQU *-TANK Length of tank control information
 X'004' TANKDATA DS CL256 Data area in the tank

 ORG TANKDATA
 X'004' TANKSGL2 DS CL1 Segment length
 X'005' TANKSGD2 DS CL252 Segment data

TIB
Transmitter information blocks (TIBs) are used for streams sent to remote systems. Each TIB is chained
to another by an address in the TIBNEXT field, which contains zeros in the last TIB in the chain. A TIB can
vary in length, depending on if receives a message or a file.

TIB

252 z/VM: 7.3 RSCS Networking Diagnosis

For Messages
 X'000' TIBNEXT DS 1F Chain pointer
 X'004' TIBBUFF DS 1F Buffer assigned to TIB
 X'008' TIBSBUFA DS 1F Addr. to start next record in buffer
 X'00C' TIBUSER DS XL8 User field for exit routines
 X'014' TIBXAB DS 1F Address of XAB
 X'018' TIBXABL DS 1H Length of XAB
 X'01A' TIBREAS DS 1H Receiver cancel reason code
 X'01C' TIBGPIPT DS 1F NJEFILE pointer
 X'020' TIBTYPE DS XL1 Type flags

 --
 * Bits defined in TIBTYPE *
 --
 *
 * NOTE: TIBTYPE is the flag which is not changed for each new file
 *
 TIBCONS EQU X'80' Console type processor
 TIBTHROT EQU X'40' Using message throttle (console TIB only)
 TIBPRIN EQU X'20' SYSIN stream permanently opened
 TIBPROUT EQU X'10' SYSOUT stream permanently opened

 X'021' TIBRCB DS XL1 RCB for active file
 X'022' TIBSTAT DS XL1 Status flags

 --
 * Bits defined in TIBSTAT *
 --
 *
 TIBINACT EQU X'80' TIB not active
 TIBRJECT EQU X'40' Reject perm or receiver cancel
 TIBABORT EQU X'20' Abort sent for file
 TIBWAITS EQU X'10' Wait-a-bit stream on
 TIBWAITR EQU X'08' Waiting for reply
 TIBWOSYS EQU X'04' TIB waiting for other systems RECV
 TIBUNUSE EQU X'02' TIB is unusable (other side
 * ... has issued a permanent reject
 TIBTCOMP EQU X'01' Transmission complete

 X'023' TIBFLAG1 DS XL1 Flag1

 --
 * Bits defined in TIBFLAG1 *
 --

 TIBPUNCH EQU X'80' Punch SYSOUT file
 TIB3800 EQU X'40' Virtual 3800 SYSOUT file
 TIBSYSIN EQU X'20' SYSIN (job) file
 TIBSAF EQU X'10' Store and forward file
 TIBSAVR EQU X'08' Uncompressed record saved in tank
 TIBMSGIN EQU X'04' Message in buffer (CONS TIB only)
 TIBPUNCC EQU X'02' PUNCC=YES specified on tag
 TIBOPCDJ EQU X'01' OPTCD=J specified on tag

 X'024' TIBTANK DS XL(TANKLEN) Tank for TIB
 TIBMLEN EQU *-TIB Length of TIB for message processor

For Files
 X'000' TIBNEXT DS 1F Chain pointer
 X'004' TIBBUFF DS 1F Buffer assigned to TIB
 X'008' TIBSBUFA DS 1F Addr. to start next record in buffer
 X'00C' TIBUSER DS XL8 User field for exit routines
 X'014' TIBXAB DS 1F Address of XAB
 X'018' TIBXABL DS 1H Length of XAB
 X'01A' TIBREAS DS 1H Receiver cancel reason code
 X'01C' TIBGPIPT DS 1F NJEFILE pointer
 X'020' TIBTYPE DS XL1 Type flags

 --
 * Bits defined in TIBTYPE *
 --
 *
 * NOTE: TIBTYPE is the flag which is not changed for each new file
 *
 TIBCONS EQU X'80' Console type processor
 TIBTHROT EQU X'40' Using message throttle (console TIB only)
 TIBPRIN EQU X'20' SYSIN stream permanently opened
 TIBPROUT EQU X'10' SYSOUT stream permanently opened

 X'021' TIBRCB DS XL1 RCB for active file
 X'022' TIBSTAT DS XL1 Status flags

 --
 * Bits defined in TIBSTAT *
 --
 *

TIB

Chapter 19. Networking Data Areas and Record Formats 253

 TIBINACT EQU X'80' TIB not active
 TIBRJECT EQU X'40' Reject perm or receiver cancel
 TIBABORT EQU X'20' Abort sent for file
 TIBWAITS EQU X'10' Wait-a-bit stream on
 TIBWAITR EQU X'08' Waiting for reply
 TIBWOSYS EQU X'04' TIB waiting for other systems RECV
 TIBUNUSE EQU X'02' TIB is unusable (other side
 * ... has issued a permanent reject
 TIBTCOMP EQU X'01' Transmission complete

 X'023' TIBFLAG1 DS XL1 Flag1

 --
 * Bits defined in TIBFLAG1 *
 --

 TIBPUNCH EQU X'80' Punch SYSOUT file
 TIB3800 EQU X'40' Virtual 3800 SYSOUT file
 TIBSYSIN EQU X'20' SYSIN (job) file
 TIBSAF EQU X'10' Store and forward file
 TIBSAVR EQU X'08' Uncompressed record saved in tank
 TIBMSGIN EQU X'04' Message in buffer (CONS TIB only)
 TIBPUNCC EQU X'02' PUNCC=YES specified on tag
 TIBOPCDJ EQU X'01' OPTCD=J specified on tag

 X'024' TIBTANK DS XL(TANKLEN) Tank for TIB
 TIBMLEN EQU *-TIB Length of TIB for message processor

 X'12C' TIBTANKX DS XL4 Extra for length of 260 byte FCBS
 *
 X'130' TIBAXTNK DS 1F Address of auxiliary tank
 X'134' TIBSTRM DS XL1 NJI stream number
 X'135' TIBTRCV DS XL1 Current TRC value for 3800
 X'136' TIBFCSM DS XL1 FCSMASK for active file
 X'137' TIBFLAG2 DS XL1 Flag2

 --
 * Bits defined in TIBFLAG2 *
 --

 TIBFIRST EQU X'80' First entry to transmitter
 TIBFLUSH EQU X'40' FLUSH command issued for file
 TIBNOCC EQU X'20' SYSOUT file - send without carriage control

 TIBFIX EQU X'10' Fix length records
 TIBEOF EQU X'08' EOF sent
 TIBXABA EQU X'04' Valid XAB indicator
 TIBWPERM EQU X'02' Awaiting permission to RIF
 TIBALTMV EQU X'01' Record in aux tank

 X'138' TIBFLAG3 DS XL1 Flag byte 3

 --
 * Bits defined in TIBFLAG3 *
 --
 *
 * TIBFLAG3 is not reset until file is closed
 *
 TIBFHD EQU X'80' Hold file at close time
 TIBRENQ EQU X'40' Reenqueue the file at close time
 TIBGWJH EQU X'20' Job Header sent on GPI
 TIBGWDSH EQU X'10' Dataset Header sent on GPI
 TIBGWJT EQU X'08' Job Trailer sent on GPI
 TIBINTRC EQU X'04' TRC's MUST BE SENT
 TIBHAVE EQU X'02' Have record on GPI
 TIBTAG1 EQU X'01' Have looked at first TAG
 * record of file
 X'139' DS XL1 Reserved
 X'13A' TIBLFLAG DS XL1 Flag byte for *LIST process

 --
 * Bits defined in TIBLFLAG *
 --
 *
 TIBLISTP EQU X'80' TIB pertains to *LIST link
 TIBDISTL EQU X'40' In process of handling unprocessed headers
 TIBLSAF EQU X'20' This is really a S&F file
 TIBLDHDR EQU X'10' Headers already generated
 TIBLNOCN EQU X'08' Remember no counter allowed
 TIBDLDON EQU X'04' Remember we did headers

TIB

254 z/VM: 7.3 RSCS Networking Diagnosis

 TIBLSYSI EQU X'02' Imbedded SYSIN hdrs in file
 TIBLJTRL EQU X'01' Already processed trailer

 X'13B' TIBFLEN DS XL1 Fixed length for file
 X'13C' DS 6X Reserved
 X'142' TIBAXSZ DS 1H Size of auxiliary tank
 X'144' TIBSPID DS CL4 EBCDIC spool ID of active file
 X'148' TIBCOSTV DS F Cost value for stream disp
 *
 * The following fields are intended for the list processing function
 *
 X'14C' TIBLRECS DS F Number of records to skip
 * ... until next *LIST entry
 TIBLSSAV EQU TIBLRECS,4 Use for work area, also
 X'150' TIBTRECS DS F Number of records for trailer
 X'154' TIBDSANC DS F Anchor for dataset headers
 X'158' TIBFREDS DS F Anchor for free elements
 X'15C' TIBLTLEN DS H Prospective length of DSH
 X'15E' TIBAXLSV DS H Use this for TNKLEN savearea
 X'160' TIBAXTSV DS F Use this for AUXTNK savearea
 X'164' TIBOVDSH DS F Address of overflow DSH
 X'168' TIBOVTNK DS F Pointer to temporary tank
 X'16C' TIBRMBER DS F Remember the recs in DSH
 X'170' TIBOVSIZ DS H Size of overflow DSH
 *
 * The following fields are intended to facilitate
 * implementation of neighborly behavior
 *
 X'172' TIBLDSNO DS H Dataset Header number
 X'174' TIBSNDSH DS F Pointer to area containing
 * ..list of dshs currently sent
 TIBLSTAG EQU TIBSNDSH,4 Also doubles as area with
 * *LIST TAG slot prototype
 X'178' TIBSNDNO DS H Number of dshs being sent
 X'17A' TIBNGFLG DS AL1 Flag for neighborly behavior

 --
 * Bits defined in TIBNGFLG *
 --
 *
 TIBNDOIT EQU X'80' Do neighborly behavior
 TIBNSKIP EQU X'40' Skipping datasets mode
 TIBNSDSH EQU X'20' Sent DSH but waiting for matching data
 TIBNSDAT EQU X'10' Sending data to matching DSH
 TIBNSKDS EQU X'08' Skipped a DSH, re-enqueue
 TIBCUSEC EQU X'04' Current DSH is a companion
 *
 X'17B' TIBSFLAG DS AL1 Flag that S&F DSH status

 --
 * Bits defined in TIBSFLAG *
 --
 *
 TIBGENER EQU X'80' General Section Processed
 TIBVMSEC EQU X'40' RSCS section processed
 TIBS3800 EQU X'20' 3800 Section processed
 TIBSOTHR EQU X'10' Other sections present
 TIBOVFLO EQU X'08' Sending distlist overflow

 X'17C' TIBAGENE DS F Address of GENERAL Section
 X'180' TIBAVMSE DS F Address of RSCS section
 X'184' TIBA3800 DS F Address of 3800 section
 X'188' TIBAOTHR DS F Address of other sections
 X'18C' TIBREGS DS 7F Register SAVEAREA
 X'1A8' TIBNPAGE DS F Number of 'begin page' sent
 X'1AC' TIBNBYTE DS F Number of bytes sent
 * RDR DSECT=NO,LABELS=YES RDR parm block for TIB
 X'1B0' TIBRDR RDR DSECT=NO,LABELS=YES RDR parm block for TIB
 *
 * Spool input table
 *
 X'1B0' RDRTAG DC A(0) Address of input tag
 X'1B4' RDRFIOA DC A(0) Address of file I/O area
 X'1B8' RDRLINK DC A(0) Addr of link table (non-NJE)
 X'1BC' RDRSPNXT DC A(0) Next CCW in page buffer
 X'1C0' RDRSPNUM DC A(0) No. of recs in page buffer
 X'1C4' RDRDAREA DC A(0) Addr of default input area
 X'1C8' RDRAREA DC A(0) Address of input area
 X'1CC' RDRLRECL DC AL2(0) Logical record length
 X'1CE' RDRMAX DC AL2(0) Max logical record length
 X'1D0' RDRCCWOP DC AL1(0) CCW opcode

TIB

Chapter 19. Networking Data Areas and Record Formats 255

 X'1D1' RDRIFLG2 DC AL1(0) Second input flag
 *
 * Bits defined in RDRIFLG2
 *
 RDRSPECO EQU X'80' Special case to OPTIMIZE
 RDRCALWT EQU X'40' Caller wants to wait for *SPL
 ... reads to complete

 X'1D2' RDROMAX DC AL2(0) Previous max record length
 X'1D4' RDRIFLG DC AL1(0) Input flags
 *
 * Bits defined in RDRIFLG
 *
 RDRFILLD EQU X'80' Spool buffer present in FIOA
 RDRNOP EQU X'40' Tag rec converted for real reader
 RDRDCIP EQU X'20' Data chained CCW process in progress
 RDROPT EQU X'10' CCW optimization indicator
 RDRUNTRN EQU X'08' Original untruncated length
 RDRWSIN EQU X'04' Workstation input
 RDRLDFCB EQU X'02' 3211-Type load FCB acceptable
 RDREOF EQU X'01' EOF encountered on last read
 X'1D5' RDROFLG DC AL1(0) Output flags
 *
 * Bits defined in RDROFLG
 *
 IGNORNXT EQU X'80' Data chained and at max
 DCMRGAHD EQU X'40' Look to merge a CD CCW

 OVOPT EQU X'20' Override printer (RJE)
 RDR1SPLK EQU X'08' 1st splk of file indicator
 RDRALT EQU X'04' Alternate input area in use
 RDRDATAS EQU X'02' Data encountered in spool buffer
 RDRIMCMD EQU X'01' CCW is an immediate command
 RDRRDR EQU RDRTAG,8 Address of tag and FIOA
 X'1D6' RDRCOUNT DC AL2(0) CCW Data count
 RDRLEN EQU *-TIBRDR Length of RDRPARMs

 X'1D8' TIBTAGR DS CL(LTAGR) Contains the tag record
 X'260' DMT0120O DS 0H Command origin (half-word aligned)
 X'260' TIBCQUAL DC AL1(0) Origin qualifier
 X'261' TIBCFLAG DC X'00' Flags (bits as MSGBFLAG)
 X'262' TIBCRSPC DC H'0' Response counter
 X'264' TIBCNODE DC CL8' ' Origin node
 X'26C' TIBCUSER DC CL8' ' and userid
 X'274' TIBCSIG DC CL6' ' Response signature
 TIBCORIG EQU DMT0102O,*-DMT0102O Symbol and length of whole thing
 X'27C' DS 0F Pad to multiple of fullword
 TIBLEN EQU *-TIB Length of TIB

XABHDR
The Print Services Facility™/VM (PSF) uses an external attribute buffer (XAB) when it processes output
files that are destined for an all-points-addressable printer.

If a file contains an Output Processing Section or a nonblank PRMODE indicator (field NDHGPMDE in the
General Section of the Data Set Header), an XAB must be associated with it. RSCS creates a header for the
XAB; its format is shown below. See z/VM: CP Programming Services for more information about the XAB
format.

 X'000' XABDATL DS XL2 Length of entire XAB
 X'002' XABRSVD DS XL2 Reserved
 X'004' XABHDRL DS XL2 Length of XAB header
 X'006' XABHDRV DS 0XL34 Data area within XAB header

XABDATL
Contains the length of the entire block (the header and data for this XAB section, including the
reserved field and two-byte length field).

XABHDRL
Contains the length of the header and the two-byte header length field.

XABHDRV
Contains the header PSF places into the front of the XAB. The value of that header is: IBM - PSF/VM
- TEXT UNITS BLOCK - LEVEL 0.0.0

XABHDR

256 z/VM: 7.3 RSCS Networking Diagnosis

XAB data
Contains the variable length data contents of the XAB as created by PSF.

NJE Header Formats
The following sections describe the format of NJE job headers, data set headers, and job trailers. The
NHDTR macro creates mapping DSECTs for NJE header, trailer, and data set headers. The following pages
describe the format of each NJE header record created by RSCS.

 --
 * Type Codes Used for Subsystem Sections and Special *
 * Sections in All Headers and Trailers *
 --

 NTYPGEN EQU X'00' General section
 NTYPSUB EQU X'80' Subsystem section
 NTYPASP EQU X'81' ASP subsystem section
 NTYPHASP EQU X'82' HASP subsystem section
 NTYPJES1 EQU X'83' JES/RES subsystem section
 NTYPJES2 EQU X'84' JES2 subsystem section
 NTYPJES3 EQU X'85' JES3 subsystem section
 NTYPPOWR EQU X'86' POWER/VS subsystem section
 NTYPVNET EQU X'87' RSCS subsystem section
 NTYPDSTM EQU X'89' Data stream section (data set header only)
 NTYPTACT EQU X'89' Accounting section (job trailer only)
 NTYPJHSC EQU X'8A' Scheduling section (job header only)
 NTYPUSER EQU X'C0' User section

Job Header Format
 NJH DSECT Network job header record
 *
 * Block control information
 *
X'000' NJHLEN DC AL2(NJHLLEN) Length of entire block
X'002' NJHFLAGS DC X'00' Flags
X'003' NJHSEQ DC BL.1'0',AL.7(0) Transmission sequence indicator
 NJHLBCI EQU *-NJH Length of block control information
 *
 * General Section
 *
X'004' NJHG DS 0F Start of general section

NJE Job Header

Chapter 19. Networking Data Areas and Record Formats 257

X'004' NJHGLEN DC AL2(NJHGLLEN) Length of general section
X'006' NJHGFLGS DS 0XL2 Section type flags
X'006' NJHGTYPE DC AL1(NTYPGEN) ID for general section

X'007' NJHGMOD DC AL1(NJHG$MOD) Modifier
 NJHG$MOD EQU X'00' Value of modifier

X'008' NJHGJID DC Y(0) Job identifier
X'00A' NJHGJCLS DC C'A' Job class
X'00B' NJHGMCLS DC C'A' Message class
X'00C' NJHGFLG1 DC X'00' Flags
X'00D' NJHGPRIO DC AL1(0) Selection priority
X'00E' NJHGORGQ DC AL1(0) Origin node system qualifier
X'00F' NJHGJCPY DC AL1(0) Job copy count
X'010' NJHGLNCT DC AL1(0) Job line count
X'011' DC X'00' Reserved
X'012' NJHGOPS DC AL2(0) Hop count
X'014' NJHGACCT DC CL8' ' Networking account number
X'01C' NJHGJNAM DC CL8' ' Job name
X'024' NJHGUSID DC CL8' ' Originating user ID
X'02C' NJHGPASS DS CL8 Password
X'034' NJHGNPAS DS CL8 New password
X'03C' NJHGETS DC FL8'0' Entry time/date stamp
X'044' NJHGORGN DC CL8' ' Origin node name
X'04C' NJHGORGR DC CL8' ' Origin remote name
X'054' NJHGXEQN DC CL8' ' Execution node name
X'05C' NJHGXEQU DC CL8' ' Execution user ID(VM)
X'064' NJHGPRTN DC CL8' ' Default print node name
X'06C' NJHGPRTR DC CL8' ' Default print remote name
X'074' NJHGPUNN DC CL8' ' Default punch node name
X'07C' NJHGPUNR DC CL8' ' Default punch remote name
X'084' NJHGFORM DC CL8' ' Job forms
X'08C' NJHGICRD DC F'0' Input card count
X'090' NJHGETIM DC F'0' Estimated execution time
X'094' NJHGELIN DC F'0' Estimated output lines
X'098' NJHGECRD DC F'0' Estimated output cards
X'09C' NJHGPRGN DC CL20' ' Programmer's name
X'0B0' NJHGROOM DC CL8' ' Programmer's room number
X'0B8' NJHGDEPT DC CL8' ' Programmer's department
X'0C0' NJHGBLDG DC CL8' ' Programmer's building number
X'0C8' NJHGNREC DC F'0' Record count on output xmission
X'0CC' NJHGEND DS 0F End of general section
 NJHGLLEN EQU *-NJHG Length of general section
 NJHLLEN EQU *-NJH Length of entire block
 *
 * Recommended format for a user section
 *
X'0CC' NJHU DS 0F Start of user section
X'0CC' NJHULEN DC AL2(NJHULLEN) Length of user section
X'0CE' NJHUFLGS DS 0BL2 Section type flags
X'0CE' NJHUTYPE DC AL1(NTYPUSER) ID for user section --
 * Bits 0-1 must be B'11'
 * Bits 2-7 can be anything
X'0CF' NJHUMOD DC AL1(NJHU$MOD) Modifier --
 NJHU$MOD EQU X'00' Mod value can be anything

X'0D0' NJHUCODE DC CL4' ' SHARE/GUIDE installation code
 * Place user information fields
 * between 'NJHUCODE' & 'NJHUEND'
X'0D4' NJHUEND DS 0F End of user section
 NJHULLEN EQU *-NJHU Length of user section
 *
 * Bits defined in general section, NJHGFLG1
 *
 NJHGF1PR EQU X'80' Do not recompute priority
 NJHGF1JN EQU X'40' NJHGJID field is set
 NJHGF1CF EQU X'08' Suppress forwarding msg
 NJHGF1CA EQU X'04' Suppress acceptance msg

NJE Job Header

258 z/VM: 7.3 RSCS Networking Diagnosis

Job Trailer Format
 NJT DSECT Network job trailer record
X'000' NJTLEN DC AL2(NJTLLEN) Length of entire block
X'002' NJTFLAGS DC X'00' Flags
X'003' NJTSEQ DC BL.1'0',AL.7(0) Transmission sequence indicator
 NJTLBCI EQU *-NJT Length of block control information
 *
 * General section
 *
X'004' NJTG DS 0F Start of general section
X'004' NJTGLEN DC AL2(NJTGLLEN) Length of general section
X'006' NJTGFLGS DS 0XL2 Section type flags
X'006' NJTGTYPE DC AL1(NTYPGEN) ID for general section
X'007' NJTGMOD DC AL1(NJTG$MOD) Modifier
 NJTG$MOD EQU X'00' Value of modifier

X'008' NJTGFLG1 DC X'00' Flags
X'009' NJTGXCLS DC C'A' Actual execution class
X'00A' DC XL2'0' Reserved
X'00C' NJTGSTRT DC FL8'0' Execution start time/date
X'014' NJTGSTOP DC FL8'0' Execution stop time/date
X'01C' NJTGACPU DC F'0' Actual CPU time
X'020' NJTGALIN DC F'0' Actual output lines
X'024' NJTGACRD DC F'0' Actual output cards
X'028' NJTGEXCP DC F'0' EXCP count
X'02C' NJTGIXPR DC AL1(0) Initial XEQ selection priority
X'02D' NJTGAXPR DC AL1(0) Actual XEQ selection priority
X'02E' NJTGIOPR DC AL1(0) Initial output selection priority
X'02F' NJTGAOPR DC AL1(0) Actual output selection priority
X'030' NJTGEND DS 0F End of general section
 NJTGLLEN EQU *-NJTG Length of general section
 *
 * Recommended format for an accounting section
 *
 NJTS DS 0F Start of accounting section
X'030' NJTSLEN DC AL2(NJTSLLEN) Length of accounting section
 NJTSFLGS DS 0XL2 Section type flags
X'032' NJTSTYPE DC AL1(NTYPTACT) ID for accounting section
X'033' NJTSMOD DC AL1(NJTS$MOD) Modifier
 NJTS$MOD EQU X'00' Value of modifier
X'034' NJTSAPAG DC F'0' Page data page count

X'038' NJTSABYT DC F'0' Number of bytes transmitted
 NJTSEND DS 0F End of accounting section
 NJTLLEN EQU *-NJT Length of entire block
 *
 * Recommended format for a user section
 *
X'03C' NJTU DS 0F Start of user section
X'03C' NJTULEN DC AL2(NJTULLEN) Length of user section
X'03E' NJTUFLGS DS 0XL2 Section type flags
X'03E' NJTUTYPE DC AL1(NTYPUSER) ID for user section --
 * Bits 0-1 must be B'11'
 * Bits 2-7 can be anything
X'03F' NJTUMOD DC AL1(NJTU$MOD) Modifier --
 NJTU$MOD EQU B'00' Mod value can be anything
X'040' NJTUCODE DC CL4' ' SHARE/GUIDE installation code
 * Place user information fields
 * between 'NJTUCODE' & 'NJTUEND'
X'044' NJTUEND DS 0F End of user section
 NJTULLEN EQU *-NJTU Length of user section

Data Set Header Format
 NDH DSECT Network data set header record
X'000' NDHLEN DC AL2(NDHLLEN) Length of entire block
X'002' NDHFLAGS DC X'00' Flags
X'003' NDHSEQ DC BL.1'0',AL.7(0) Transmission sequence indicator
 NDHLBCI EQU *-NDH Length of block control information
 *
 * General section
 *
X'004' NDHG DS 0F Start of general section
X'004' NDHGLEN DC AL2(NDHGLLEN) Length of general section
X'006' NDHGFLGS DS 0XL2 Section type flags
X'006' NDHGTYPE DC AL1(NTYPGEN) ID for general section
X'007' NDHGMOD DC AL1(NDHG$MOD) Modifier
 NDHG$MOD EQU B'00000000' Value of modifier

X'008' NDHGNODE DC CL8' ' Destination node name
X'010' NDHGRMT DC CL8' ' Destination remote name
X'018' NDHGPROC DC CL8' ' PROC invocation name
X'020' NDHGSTEP DC CL8' ' Step name
X'028' NDHGDD DC CL8' ' DDNAME
X'030' NDHGDSNO DC H'0' Data set number
X'032' NDHGSEC DC AL1(0) Security level
X'033' NDHGCLAS DC C'A' Output class
X'034' NDHGNREC DC F'0' Record count

NJE Job Trailer

Chapter 19. Networking Data Areas and Record Formats 259

X'038' NDHGFLG1 DC X'00' Flags
 *
 * Bits defined in general section, NDHGFLG1
 *
 NDHGF1SP EQU X'80' Spin data set
 NDHGF1HD EQU X'40' Hold data set at destination
 NDHGF1LG EQU X'20' Job log indicator
 NDHGF1OV EQU X'10' Page overflow indicator
 NDHGF1IN EQU X'08' Punch interpret indicator

X'039' NDHGRCFM DC X'00' RECFM
X'03A' NDHGLREC DC H'0' Max logical record length
X'03C' NDHGDSCT DC AL1(1) Data set copy count
X'03D' NDHGFCBI DC AL1(0) 3211 FCB index
X'03E' DC XL2'00' Reserved
X'040' NDHGFORM DC CL8' ' Forms ID
X'048' NDHGFCB DC CL8' ' FCB ID
X'050' NDHGUCS DC CL8' ' UCS ID
X'058' NDHGXWTR DC CL8' ' External writer ID
X'060' NDHGDESU DC CL8' ' Reserved
X'068' NDHGFLG2 DC X'00' Second flag byte
 *
 * Bits defined in general section, NDHGFLG2
 *
 NDHGF2PR EQU X'80' Dataset is to be printed
 NDHGF2PU EQU X'40' Dataset is to be punched
 NDHGF2NM EQU X'20' File name/type can be taken
 * ... from NDHGPROC/STEP

X'069' NDHGUCSO DC X'00' UCS option byte
 *
 * Bits defined in general section, NDHGUCSO
 *
 NDHGUCSD EQU X'80' Block data check option
 NDHGUCSF EQU X'40' UCS fold option

X'06A' DC XL2'00' Reserved
X'06C' NDHGPMDE DC CL8' ' Process mode specified by user
X'074' NDHGEND DS 0F End of general section
 NDHGLLEN EQU *-NDHG Length of general section
 NDHLLEN EQU *-NDH Length of entire block
 *
 * RSCS subsystem section
 *
X'074' NDHV DS 0F Start of RSCS section
X'074' NDHVLEN DC AL2(NDHVLLEN) Length of RSCS section
X'076' NDHVFLGS DS 0XL2 Section type flags

X'076' NDHVTYPE DC AL1(NTYPVNET) ID for RSCS section
X'077' NDHVMOD DC AL1(NDHV$MOD) Modifier
 NDHV$MOD EQU X'00' Value of modifier
X'078' NDHVFLG1 DC X'00' Flags
X'079' NDHVCLAS DC C'A' VM/CP spool file class
X'07A' NDHVIDEV DC X'00' VM/CP origin device type
X'07B' NDHVPGLE DC X'00' VM/CP virt 3800 page length
X'07C' NDHVDIST DC CL8' ' VM/CP distribution code
X'084' NDHVFNAM DC CL12' ' VM/CP file name
X'090' NDHVFTYP DC CL12' ' VM/CP file type
X'09C' NDHVPRIO DC AL2(0) VM/CP transmission priority
X'09E' NDHVVRSN DC X'00' RSCS version number of
 * system creating header
X'09F' NDHVRELN DC X'00' RSCS release number of
 * system creating header
X'0A0' NDHVTAGR DC CL136' ' User supplied tag record
X'128' NDHVDSNO DC AL2(0) List proc dataset counter
X'12C' NDHVEND DS 0F End of RSCS section
 NDHVLLEN EQU *-NDHV Length OF RSCS section
 *
 * Bits defined in RSCS section, NDHVFLG1
 *
 NDHVLIST EQU X'80' File created by *LIST processor
 NDHVFIRS EQU X'40' First DSH of its kind
 NDHVPERS EQU X'20' Personalized section
 NDHVF1CF EQU X'08' Suppress forwarding msgs
 NDHVF1CA EQU X'04' Suppress acceptance msgs
 *
 * NOTE: The following two flags are only for use within the
 * list processor and must not be forwarded.
 *
 NDHVF1SP EQU X'02' Suspend all active datasets
 * and open an overflow dataset

NJE Data Set Header

260 z/VM: 7.3 RSCS Networking Diagnosis

 NDHVF1RS EQU X'01' Resume all suspended output
 *
 * 3800 printer characteristics general section (optional)
 *
X'12C' NDHA DS 0F Start of 3800 char section
X'12C' NDHALEN DC Y(NDHALLEN) Length of 3800 char section
X'12E' NDHAFLGS DS 0XL2 Flags and modifier
X'12E' NDHATYPE DC AL1(NTYPGEN) ID for general section
X'12F' NDHAMOD DC AL1(NDHA$MOD) Modifier
 NDHA$MOD EQU X'80' Value of modifier (3800 char)
X'130' NDHAFLG1 DC X'00' Flags
 *
 * Bits defined in 3800 characteristics general section, NDHAFLG1
 *
 NDHAF1J EQU X'80' 'OPTCD=J' specified
 NDHAF1BR EQU X'40' 'BURST=YES' specified
 NDHAF1BN EQU X'20' 'BURST=NO' specified
 NDHAF1BD EQU X'00' Take default burst setting
 *
X'131' NDHAFLCT DC AL1(0) Flash count
X'132' NDHATREF DC X'00' Table reference character
X'133' DC X'00' Reserved
X'134' NDHATAB1 DC CL8' ' Translate table 1
X'13C' NDHATAB2 DC CL8' ' Translate table 2
X'144' NDHATAB3 DC CL8' ' Translate table 3
X'14C' NDHATAB4 DC CL8' ' Translate table 4
X'154' NDHAFLSH DC CL8' ' Flash cartridge ID
X'15C' NDHAMODF DC CL8' ' Copy modification ID
X'164' NDHACPYG DC XL8'00' Copy groups
X'16C' NDHAEND DS 0F End of 3800 char section
 NDHALLEN EQU *-NDHA Length of 3800 char section
 *
 * Data stream characteristics section
 *
X'16C' NDHS DS 0F Start of data stream section
X'16C' NDHSLEN DC AL2(NDHSLEN1) Length of data stream section
X'16E' NDHSFLGS DS 0BL2 Flags and modifiers
X'16E' NDHSTYPE DC AL1(NTYPDSTM) ID for stream section
X'16F' NDHSMOD DC AL1(NDHS$OUT) Modifier

 NDHS$OUT EQU B'00000000' Value of modifier (output SWBS)
X'170' NDHSFLEN DC Y(NDHSLEN1) Subsection fixed length
X'172' NDHSFLG1 DC X'00' Data stream flag
 *
 * Bits defined in stream section, NDHSFLG1
 *
 NDHSCPDS EQU X'80' Data set contains at least one CPDS record
 *
X'173' DC X'00' Reserved
X'174' NDHSJDVT DC XL8'00' JDVT name
X'17C' NDHSNSTR DC XL4'00' Page data page count
X'180' NDHSGPID DC XL8'00' Output name for data set
 NDHSLEN1 EQU *-NDHS Length of fixed data stream
X'188' NDHSOPTB DS 0H Start of prefix area
X'188' NDHSPRID DC CL4'SJPF' Prefix identifier
X'18C' NDHSVERS DC X'02' Version of prefix
X'18D' NDHSPLEN DS AL1(NDHSLEN2) Length of prefix = NDHSLEN2
X'18E' NDHSDLEN DS XL2 Length of variable section
X'190' NDHSVERB DC CL8'OUTPUT' Constant
X'198' NDHSVRBL DS CL8 Diagnostic field
X'1A0' NDHSFLG2 DS XL1 Second flag byte
 NDHSCONT EQU X'80' Indicates this is a continuation
 * of the previous OPTB
X'1A1' NDHSPARM DS XL1 Processed fields byte
X'1A2' DS XL2 Reserved
 NDHSLEN2 EQU *-NDHSOPTB Length of prefix area
 NDHSTXTU EQU * Start of text unit area
 *
 * Record characteristics change general section
 *
X'1A4' NDHC DS 0F Start of char change general section
X'1A4' NDHCLEN DC AL2(NDHCLLEN) Length of char change general sect
X'1A6' NDHCFLGS DS 0XL2 Section type flags
X'1A6' NDHCTYPE DC AL1(NTYPGEN) ID for general section
X'1A7' NDHCMOD DC AL1(NDHC$MOD) Modifier
 NDHC$MOD EQU X'40' Value of modifier (char change)
X'1A8' NDHCFLG1 DC X'00' Flags
X'1A9' NDHCRCFM DC X'00' RECFM
X'1AA' NDHCLREC DC AL2(0) Maximum LRECL
X'1AC' NDHCEND DS 0F End of char change general section
 NDHCLLEN EQU *-NDHC Length of char change general sect

NJE Data Set Header

Chapter 19. Networking Data Areas and Record Formats 261

 *
 * Recommended format for a user section
 *
X'1AC' NDHU DS 0F Start of user section
X'1AC' NDHULEN DC AL2(NDHULLEN) Length of user section
X'1AE' NDHUFLGS DS 0XL2 Section type flags
X'1AE' NDHUTYPE DC AL1(NTYPUSER) ID for user section --
 * Bits 0-1 must be B'11'
 * BITS 2-7 can be anything
X'1AF' NDHUMOD DC AL1(NDHU$MOD) Modifier --
 NDHU$MOD EQU X'00' Mod value can be anything
X'1B0' NDHUCODE DC CL4' ' SHARE/GUIDE installation code
 * place user information fields
 * between 'NDHUCODE' & 'NDHUEND'
X'1B4' NDHUEND DS 0F End of user section
 NDHULLEN EQU *-NDHU Length of user section

Record Formats
The following sections describe the format of NOP, spanned, and segmented records.

Coded NOP Records
RSCS uses coded NOPs to place certain records from store-and-forward files into CP spool. The link
drivers call DMTNUSCN to produce the Coded NOP records.

CODE
Is a 1-byte code that identifies the record:
X'01'

Network headers
X'02'

All others
X'80'

Last segment
LENGTH

Is the length of data in this segment.
KEY

Is a 3-byte field, randomly generated, that matches the contents of the TAGKEY field in the TAG
record. It identifies the record as a Coded NOP record.

Record Formats

262 z/VM: 7.3 RSCS Networking Diagnosis

SRCB
Is the SRCB with which the record was originally received.

Segmented Header Formats
NJE headers for the DMTNET link driver and the DMTSNE session driver can be up to 32,767 bytes long.
Headers longer than 256 bytes are transmitted as segmented headers, with each segment a maximum of
256 bytes long.

When segmented headers are transmitted, each segment contains a 4-byte control section that contains
the length of that segment, a segment number, and a flag indicating if this is the last segment. The
following is an example of segmented header formats.

 0 2 3 4
+--+
| Segment Length | Unused | Seq. number |
| | | and flag bit |
+--+

The remaining 252 bytes contain the actual header data.

For example, assume that you have a 600-byte header in the following format:

RSCS would send this header in the following form:

Spanned Record Format
Spanned record segments for NJE-type and SNANJE-type links have the following format:

Record Formats

Chapter 19. Networking Data Areas and Record Formats 263

First Segment

Remaining Segments

SEGL
Contains the length of segment sent (field is 1 byte long)

LRECL
Contains the logical record length of record after it is unspanned (field is 2 bytes long)

RSCS places the machine operation code or carriage control character for records that it is originating
into the first byte of the data area in the first segment (as it does for unspanned records). The format of
spanned records differs from that of unspanned records. Unspanned records contain a one-byte record
length preceding the data or machine operation code.

TCPNJE Record Formats
The following sections describe the format of the TCPNJE control record and data block headers.

Control Record Format
Control records are exchanged between both sides of a TCPNJE-type link. After the TCP/IP connection is
established, these records must be the first data exchanged by the TCPNJE links.

TCPNJE Record Formats

264 z/VM: 7.3 RSCS Networking Diagnosis

Type
Type of request specified with 8 EBCDIC characters that are left-justified and padded with blanks.
Acceptable values are: OPEN, ACK, and NAK.

RHost
Name of the host sending the control record; this is the name specified on the LOCAL statement for
the RSCS virtual machine associated with this link. This field contains 8 EBCDIC characters that are
left-justified and padded with blanks.

RIP
Hexadecimal value of the IP address that is sending the control record. For example, the IP address
128.112.14.1 has the value X'80700E01'.

OHost
Name of the host that is expected to receive the control record. This field contains 8 EBCDIC
characters that are left-justified and padded with blanks.

OIP
Hexadecimal value of the IP address that is expected to receive the control record. It has the same
format as the RIP field.

R
A binary reason code that is used to return additional information with NAK request types. Valid
values are:
X'01'

No link could be found
X'02'

Link found in active state and will be reset
X'03'

Link found attempting an active open
X'04'

Remote side is not ready to accept a sign-on record.

Data Block Header (TTB)
The TTB is a fixed length header that begins each data block that is created by a TCPNJE-type link.

+-------+--------+---------------+---------------------+
| F | R | LN | RESRV |
+-------+--------+---------------+---------------------+

F
Flags; no current values are defined.

R
Reserved

LN
Length of the data block; this is a binary 16-bit value. This value is the total length of the data block; it
includes the length of the TTB itself and each TTR, including the end-of-buffer TTR.

RESRV
Reserved

Data Block Record Header (TTR)
The TTR is a fixed length header, built by the TCPNJE link driver, that precedes each record in the data
block.

 +-------+--------+---------------+
X'000' | F | R | LN |
 +-------+--------+---------------+

TCPNJE Record Formats

Chapter 19. Networking Data Areas and Record Formats 265

F
Flags used to pass information about this record.

R
Reserved

LN
Length of data record, binary 16-bit value. The length does not include the length of the TTR header
itself. If the length in a TTR is zero, this is the end-of-block marker.

TCPNJE Record Formats

266 z/VM: 7.3 RSCS Networking Diagnosis

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1990, 2022 267

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This book primarily documents information that is NOT intended to be used as Programming Interfaces of
z/VM.

This book also documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of z/VM. This information is identified where it occurs, either by an introductory
statement to a chapter or section or by the following marking:

 PI

<...Programming Interface information...>

 PI end

Within such marked sections, information that is NOT intended to be used as Programming Interfaces of
z/VM is identified by the following marking:

NOT Programming Interface Information

End of NOT Programming Interface Information

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

268 z/VM: 7.3 RSCS Networking Diagnosis

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)

Notices 269

https://www.ibm.com/privacy

• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

270 z/VM: 7.3 RSCS Networking Diagnosis

https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1990, 2022 271

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

272 z/VM: 7.3 RSCS Networking Diagnosis

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 273

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

274 z/VM: 7.3 RSCS Networking Diagnosis

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Additional Publications
• IBM 7171 ASCII Device Attachment Control Unit Reference Manual and Programming Guide, GA37-0021
• IPDS Reference, S544-3417
• Systems Network Architecture: Formats, GA27-3136
• Systems Network Architecture: Sessions Between Logical Units, GC20-1868
• Systems Network Architecture: Technical Overview, GC30-3073
• Systems Network Architecture: Transaction Programmer's Reference Manual for LU Type 6.2, GC30-3084
• VTAM: Programming, SC31-6496
• VTAM: Resource Definition Reference, SC31-6498
• z/OS: MVS JCL Reference, SA22-7597

Bibliography 275

276 z/VM: 7.3 RSCS Networking Diagnosis

Index

Special Characters
*MSG system service 44
&-symbols 101

Numerics
3270P printer link driver

command processing 78
description 77
initialization 77
processing 77
terminating 78

4K optimization, storage 113
7171 ASCII device attachment control unit 82
9370 ASCII subsystem controller 82

A
abend

capturing 38
console messages 141
dump processing 142
ESTAE routines 38

access method control block (ACB) 57
accounting

data structures 212
routines, networking links 68

ACNTBUFF format 212
AID byte 85
ASCII printer and plotter link driver

command processing 84
description 82
initialization 83
processing 83
terminating 85

assembling spanned record segments 69
attention identifier (AID) byte 85
attention interrupt processing 85
AUTHBLOK

description 32
format 212

authorization table 212
auto-answer task

exit points 63
initialization 62
invoking links 63
processing sign-on records 63

auto-start task
allocating ports 52
initialization 52
ITO processing 53
RETRY processing 53
termination 53

B
BACKSPACE command

command element format 237
processing routine 178

bind image 55
BSC

networking links
initialization 71
record compression 67
terminating 72

protocols 63
buffer

output, management 69
transmitting 69

BUFFER macro 245

C
capturing task abends 38
CDEF macro 119
CHANGE command

command element format 234
processing 48

changing link states 111
channel table 28
checks, program 142
child group 18
CID (communication identifier) 57
CLOSE command

command element format 232
processing 49

CLOSEIN requests 50
CLOSEOUT requests 50
CMNDAREA

basic format 231
element formats

Type A0 232
Type A1 232, 233
Type A2 234
Type C0 235
Type C1 235
Type C2 235
Type E0 236
Type L0 236
Type L1 237
Type L2 238
Type L3 238
Type V1 239
Type V2 239

coded NOP records
creating 68
format 262
NJE header reconstruction 68

column masks 122
command

authorization table 32, 212

Index 277

command (continued)
defining syntax 119
finding definitions 123
identifying syntax variations 120
parsing 124
processing

3270P link driver 78
ASCII printer and plotter link driver 84
auto-start task 52
communications task 45
event scheduler task 54
networking link driver tasks 68
SNA3270P session driver 81
SNARJE workstation task 97
spool manager task 48
TCPASCII printer and plotter link driver 87
TN3270E link driver 79

task, GCS 33
communication identifier (CID) 57
communications task

command processing 45
configuration file processing 43
creating system tasks 44
exit 0 (initialization) 35
exit 1 (termination) 46
initialization 43
termination 46

compilers, message 138
compressed load maps 157
compressing records 67
configuration file

processing 43
configuration file processing 43
console

abend messages 141
spooling 141
task, GCS 33

control record format, TCPNJE 264
control records, processing 70
control units, ASCII device 82
conversion repositories

structure 135
conversion repository, message 135
conversion routines, data and numeric 110
CRV table

description 17
format 201

CTC networking links
initialization 71
record compression 67
sample trace data 143, 145
terminating 72

CVT
description 16
format 202
subcommand, debugging 158

D
data areas

command and request elements 231
control blocks 201
locating in dumps 142
networking 245

data areas (continued)
overview 15

data block header, TCPNJE 265
data block record header, TCPNJE 265
data conversion routines 110
data record format, trace 225
data set headers, NJE

building 65
combining 67
distribution list processing 100
format 259
receiving 66
trace example 144

data tracing structures 224
DDEF macro 123
ddname

allocation 27, 110
destination file 44

debugging considerations
abend processing 141
compressed load map 157
forcing a dump 157
output example 171
using subcommands 157, 169

decompressing records 68
defining command and statement syntax 119
definitions, finding 123
degraded mode 25
DEST

description 20
format 204
statement, processing 44

destination identifier file 44
destinations, message 131
Diagnose codes

testing if supported 38
X'00' 43
X'08' 46, 51
X'14' 50
X'B4' 51

disk file interface routine 109
distribution lists, processing 99
DRAIN command

command element format 236
processing routine 178

dump formatting routines 199
Dump Viewing Facility

dump processing 142
DUMPSCAN subcommands 157, 169
DWA subcommand 158
dynamic port allocation 52

E
ECB

structure 40
use with RPLs 57

EMSG setting 128
ENABLE command

command processing 62
ENABLE command processing 62
EQUATE

description 28
finding entries 112

278 z/VM: 7.3 RSCS Networking Diagnosis

EQUATE (continued)
format 205

ESTAE exit routines 38
EVEBLOK

description 31
format 225

event scheduler task
command queue 15
initialization 53
SCHEDULE command processing 54

EXEC processor task
command queue 15
exec request format 236
initialization 55

exit points cross-reference to calling modules 198
exit points, processing

auto-answer task 63
command processing

exit 19 (command screening) 45
exit 29 (unknown command) 45

communications task
exit 0 (initialization) 44
exit 1 (termination) 46

exit 26 (link state change accounting) 111
exit 35 (dump processing) 38
message processing

exit 27 (message request screening) 131
exit 28 (message language selection) 132

NJE header processing
exit 11 (NJE job header creation) 65
exit 12 (NJE data set header creation) 66
exit 13 (NJE job trailer creation) 66
exit 14 (NJE job header reception) 66
exit 15 (NJE data set header reception) 66
exit 16 (NJE job trailer reception) 67
exit 41 (NJE job header post-processing) 66
exit 42 (NJE data set header post-processing) 67
exit 43 (NJE job trailer post-processing) 67

NOTIFY link driver
exit 22 (NOTIFY driver note selection) 101
exit 23 (NOTIFY driver note editing) 102
exit 36 (NOTIFY driver purge) 102

EXITBLOK 29
external attribute buffer (XABHDR) 256

F
fanout processing 100
FCB table structure 32
file processing

data areas 213
overview 21
spool manager task 50

file request block 26
file work area 26
FILREQ

description 26
use in disk file interface routine 109

filtering columnar messages 125
FILWORKA

description 26
use in disk file interface routine 110

finding command and statement definitions 123
FLUSH command

FLUSH command (continued)
command element format 238
processing routine 45

FORCE command
command element format 235
command processing 52
processing routine 178

forcing a dump 157
FORM table

description 32
format 213

format table entry, ITRACE 224
formatting

messages 132
routines, dump 199

FREE command
command element format 236
processing routine 178

FWDSPACE command
command element format 237
processing routine 178

G
GATEWAY link driver

gateway service macros 74
initialization 74
structure 73

GCS
command task 33
console task 33
dump processing

considerations 143
finding active tasks 143
tracing state blocks 143

macros 34
program management 33
task management 33

generics, locating 109
GENIO requests, GCS 114

H
HASHBLOK

description 112
format 227
indexing routines 112

HDRTRL 245
header formats

data block 265
data block record 265
segmented 263

header record format, trace 224
header/trailer data area 245
HOLD command

command element format 236
processing routine 178

honorary group, definition 18
host mode, MRJE link driver 95

I
I/O processing

Index 279

I/O processing (continued)
input spool routines 114
interface routines 114
output spool routines 115

indexing routines, HASHBLOK 112
indirection 135
initializing

3270P link driver 77
ASCII printer and plotter link driver 83
auto-answer task 62
auto-start task 52
BSC and CTC link drivers 71
communications task 43
event scheduler task 53
EXEC processor task 55
GATEWAY link driver 74
LISTPROC link driver 99
LPD daemon links 89
LPR links 90
MRJE workstation link driver 95
NOTIFY link driver 101
port redirector task 60
RJE link driver 93
SCT task 57
SNA3270P session driver 80
SNANJE session driver 70
SNARJE workstation session driver 96
spool manager task 47
TCPASCII printer and plotter link driver 86
TCPNJE link driver 72
TN3270E link driver 79
UFT links 103
UFTD daemon links 106

input spool routines, I/O 114
interrupt handling, I/O 114
IOTABLE

format 227
subcommand, debugging 159
use with I/O interface routines
114

issuing messages 131
ITO

command element format 235
command processing 52
enrollment process 53

ITRACE format table entry 224
ITRACE subcommand 161
ITRACFRM format 224
ITRACHDR format 224
ITRACREC format 225
IUCV

*MSG system service 44
interrupt processing 44
use with port redirector task 61

J
job headers, NJE

building 65
format 257
receiving 66
trace example 144

job trailers, NJE
building 66

job trailers, NJE (continued)
format 259
receiving 67
trace example 144

K
keyword

command processing 124
table, sample 116

L
LDEF macro 120
Line Printer Daemon (LPD) Link Driver

description 88
initialization 89
terminating 90

line trace formats 143
link driver tasks

equate entries 28
LISTPROC 99
networking 65
NOTIFY 101
summary table 5
workstation 93

link state changes 111
LINKS subcommand 165
LINKTABL

description 17
format 205

LISTEN request processing 61
LISTPROC link driver

initialization 99
processing 99
terminating 101

load map, compressed 157
loading exit routines 111
locating generics 109
log file, RSCS Interchange server 171
logical units 55
LOGON request 58
LOSTERM exit routine 57
LPR link driver

description 90
initialization 90
terminating 92

M
macros

gateway service 74
GCS

IUCVCOM 44
IUCVINI 44
SCHEDEX 33

parsing and syntax
CDEF 119
DDEF 123
LDEF 120
PDEF 120
RSCSCMDS 119
RSCSSTMT 119

280 z/VM: 7.3 RSCS Networking Diagnosis

macros (continued)
summary table 34
VTAM

RECEIVE 59
SCIP 58
TPEND 59

management routines, storage 113
MCOMP exec 138
MCONV exec 138
message

columnar
processing 130
QUERY command responses 125
repository entries 137

compilers 138
console abend 141
conversion repository 135
CRI support 128
data structures 30
exit points

exit 27 (message request screening) 131
exit 28 (message language selection) 132

formatting 132
indirection 135
issuing 131
national language support 128
preparing to issue 130
processing 129
request element 240
routing codes 127
structure 127
subscriptions 30, 129
substitutions, processing 133
text

description 128
structure 136

translation repository 136
message examples, notation used in xxi
midnight event 54
mixed RCB feature 69
module summary, RSCS 175
modules that call exit points 198
MONITENT

description 30
format 228

MRJE workstation link driver
description 94
initialization

host mode 95
remote mode 95

processing 95
terminating 96

MSGBLOK
description 30
format 240
use in command processing 124
use in disk file interface routine 109
use with CRI prefix 128

MSGLINE 31
MSGSKIP parameter 69
MSGWA

acquiring 130
description 31

multiple data set headers 67

N
national language support 128
NCC area 246
NDWA

subcommand, debugging 165
use in networking links 65

NETDATA
conversion routines 115
records supported by RSCS 115
use in NOTIFY link driver 102

network connection control area 246
Network Job Entry (NJE)

common data structures 65
header and trailer formats 257

networking equates (NJEEQU) 246
networking link drivers

accounting routines 68
BSC and CTC link driver 71
command processing 68
common data structures 65
GATEWAY link driver 73
LISTPROC link driver 99
processing control records 70
processing sign-on records 68
receiving buffers 69
record compression 67
SNANJE session driver 70
TCPNJE link driver 72
transmitting buffers 69

NIB (node initialization block) 57
NJE headers

formats 257
processing 65

NJEEQU 246
NMR

format 248
processing 67

node initialization block (NIB) 57
NODE, description 20
nonintelligent workstations 93
NOP records 262
notation used in message and response examples xxi
NOTIFY link driver

generating notes 101
initializing 101
purging files 102
use of NETDATA format routines 102

NSEXIT request 58
numeric conversion routines 110

O
obtaining record segments 70
OPENIN requests 50
OPENINTA request 51
OPENOUT requests 50
operating requirements 3
ORDER command

command element format 232
output spool routines, I/O 115
overview

command processing 9
data structures 15

Index 281

overview (continued)
establishing links 8
establishing SNA sessions 8
file processing 7
message processing 10, 129
RSCS initialization 4
task communication 11
task descriptions 3

P
PAFBLOK 46, 121
parent group, definition 18
parsing

commands and statements 124
general routines (DMTMPT) 116
macros

CDEF 119
DDEF 123
LDEF 120
PDEF 120

syntax variations 120
pause characters 111
PDEF macro 120
phone numbers, validating 111
PORT

description 21
format 210

port redirector task
initialization 60
receiving LISTEN requests 61
termination 62

PRDBLOK
format 218
use with port redirector task 61

PRDTYPE field values 61
preface xix
primary LU

SNA control task 55
SNANJE session driver 71

printer link drivers
3270P link driver 77
ASCII printer and plotter link driver 82
LPR 90
LPR client 88
SNA3270 session driver 80
TCPASCII printer and plotter link driver 85
TN3270E link driver 78
UFT 103
UFTD Daemon 105

private messages 127
private section, distribution record 100
processing message substitutions 133
processing sockets 88
program checks 142
programmable workstations 93
programs, filter 125
propagating QUERY commands 126
PURGE command

command element format 232
processing 49

Q
QBLOCK 39
QSABLOK 113
QUERY command

columnar messages 125, 128
PDEF options 122
processing 125
propagating 126

R
RCB

mixed, feature 69
processing 70

RDEVBLOK
format 242
use in file requests 50

reader interrupts, processing 47
READY command

command element format 236
processing routine 178

real group, definition 18
RECEIVE request 59
reconstructing headers 66
record characteristics change section (RCCS) 65
record format

accounting 212
coded NOP 262
control record, TCPNJE 264
data block header, TCPNJE 265
data block record header, TCPNJE 265
segmented header 263
spanned 263

register save area 228
RELREQ request 58
remote mode, MRJE link driver 95
REORDER command

command element format 232
processing 49

repositories, message
conversion 135
syntax 119
translation 136

request parameter list
starvation mode 60
use in SNA control task 57
use in SNANJE session driver 71

requirements, operational 3
RERNBLOK 20
REROUTE

description 20
format 210

RESBLOK
description 25
spool manager task processing 51

response examples, notation used in xxi
RESQBLOK 25
RETRY

command element format 235
command processing 52
enrollment processing 53

RIB
format 249

282 z/VM: 7.3 RSCS Networking Diagnosis

RIB (continued)
subcommand, debugging 166
use in networking links 65

RJE workstation link driver
description 93
initialization 93
processing 93
terminating 94

root group, description 18
ROUTEGRP

description 18
format 211

ROUTES subcommand 167
routines, dump formatting 199
routing codes, message 127
RSCS Data Interchange Manager

problem solving
using DEBUG 171
using REXX traces 171
using server log file 171

RSCSCMDS macro 119
RSCSDDEF macro 119, 123
RSCSSTMT macro 119

S
SAFTAG format 214
SAVEAREA format 228
SCB (string control bytes) 67, 68
SCHEDULE command

EVEBLOK format 225
processing 54

SCIP request 58
searching control blocks 109
secondary LU

SNA control task 55
SNANJE session driver 71

segmented header formats 263
SEPBLOK format 213
session control request 58
session driver tasks

SNA3270P printer session driver 80
SNANJE session driver 70
SNARJE workstation session driver 96
summary table 6

SHOWMASK macro 122
sign-on records

auto-start task processing 63
BTC and CTC link driver processing 71
I records

description 68
trace sample 145

J records
description 68
trace sample 145

MRJE link driver 95
processing, networking links 68

SIMLOGON macro 56
SMSG command 44
SNA

establishing sessions 55
SNA control task

attaching SNA3270P driver 80
attaching SNARJE driver 96

SNA control task (continued)
establishing SNA sessions 55
initializing 57
maintaining RSCS/VTAM interface 59
session cleanup 60
VTAM exit routines 57

SNA3270P printer session driver
command processing 81
description 80
initializing 80
processing 81
RECEIVE ANY request 59
terminating 82

SNANJE session driver
initialization 70
sample trace trace 148
termination 71

SNARJE workstation session driver
initialization 96
processing 97
RECEIVE ANY request 59
terminating 98

SOCKBLOK format 218
SOCKCBLK format 219
SOCKET format 220
socket processing 88
spanned records

format 263
segments, assembling 69

special messages, trapping 44
special purpose link drivers

LISTPROC link driver 99
NOTIFY link driver 101

SPLINK, CP 114
spool interface routines 114
spool manager task

accepting files 47
command processing 48
exit points

exit 2 (spool file accept accounting) 48
exit 21 (spool file accept/reject) 48
exit 3 (spool file send accounting) 50
exit 31 (sort priority change) 48
exit 4 (spool file purge accounting) 49
exit 5 (spool file receive accounting) 51
exit 6 (TAG priority change) 48

initialization 47
managing unit record devices 51
processing reader interrupts 47

spooling the console 141
START command

command element format 236, 239
processing routine 178

starvation mode, RPL 60
state blocks

description 33
tracing 143

statements, configuration file
finding definitions 123
parsing 124
syntax, defining 119

STOP command
command element format 239
processing routine 179

Index 283

storage
initialization, NJE link drivers 68
management routines 113

store-and-forward
command processing 9
file processing 7
tag element 214

string control bytes 67, 68
subcommands

CVT 158
DWA 158
IOTABLE 159
ITRACE 161
LINKS 165
NDWA 165
RIB 166
ROUTES 167
TAGQUE 168
TIB 169

substitutions, message 133
summary

dump format routines 199
GCS macros 34
link driver tasks 5
NETDATA format records 115
RCB processing 70
routing codes, message 127
RSCS modules 175
session driver tasks 6
system tasks 4

supporting national languages 128
synchronized tasks 13
syntax diagrams, how to read xix
syntax, defining 119
SYSIDENT format 204
SYSIN job headers 65
SYSOUT

record tank 252
spanned record 252

system events 54
system tasks

auto-start task 52
communications task 43
creation 44
event manager task 53
EXEC processor task 55
port redirector task 60
SNA control task 55
spool manager task 46
summary table 4

T
table display work area 130
TABWA area 130
TACTIVE subcommand 143
TAG element

description 23
format 214

TAGAREA
description 21
format 216

TAGQUE subcommand 168
TANBLOK 31, 53

TASHADOW element
description 23
format 217

task abends, capturing 38
task communication

direct interface 13
queued interface 14

task control block 33
task management

starting system tasks 35
use of GCS facilities 33

task number block 31
task overview 3
task table service routines 117
TASKBLOK

creating 117
description 27, 117
format 211
locating 118
removing 117

TASTORAG element
description 22
format 217

TCP/IP
command processing routine 179
connections

LPD link driver 88
LPR link driver 90
TCPASCII link driver 85
TCPNJE link driver 72
UFD link driver 105
UFT link driver 103

port redirector task 60
related control blocks 218

TCPASCII link driver
command processing 87
description 85
initialization 86
processing 86
socket processing 88
terminating 88

TCPNJE link driver
initialization 72
record formats 264
sample trace data 149
termination 73

telecommunications buffer 245
TEMPLATE file 101
terminating

3270P link driver 78
ASCII printer and plotter link driver 85
auto-start task 53
BSC and CTC networking links 72
GATEWAY-type links 75
LISTPROC link driver 101
LPD link driver 90
LPR link driver 92
MRJE workstation link 96
port redirector task 62
RJE link driver 94
RSCS 46
SNA control task 60
SNA3270P session driver 82
SNANJE session driver 71

284 z/VM: 7.3 RSCS Networking Diagnosis

terminating (continued)
SNARJE workstation session driver 98
TCPASCII link driver 88
TCPNJE link driver 73
TN3270E link driver 80
UFT link driver 105
UFTD link driver 107

TIB
format 252
subcommand, debugging 169
use in networking links 65

time-of-day clock conversion routines 110
TN3270E Printer Link Driver

command processing 79
description 78
initialization 79
processing 79
terminating 80

TOD
clock conversion routines 110

TOD clock conversion routines 110
top-level group, definition 18
TPEND request 59
TRACE command

command element format 236
processing routine 179

trace data format 143
trace data record format 225
trace header record format 224
trace structures 224
tracing RSCS Interchange problems 171
tracing state blocks 143
TRANSFER command

command element format 233
processing 49
syntax structure, example 120

translation repositories
structure 136

translation repository 136
transmission algorithms 48, 51
trapping special messages 44
TTB, data block header 265
TTR, data block record header 265

U
unique connections, identifying 72
unit record devices

input spool routines 114
output spool routines 115

Unsolicited File Transfer (UFT) Driver
description 103
initialization 103
terminating 105

Unsolicited File Transfer Daemon (UFTD) Driver
description 105
initialization 106
terminating 107

user events 54

V
validating phone numbers 111

variations, command syntax 120
VM Batch 96
VMDUMP command 157
VTAM

exit routines 57
RSCS/VTAM interface 59

W
workstation link drivers

MRJE link driver 94
RJE link driver 93
SNARJE session driver 96

X
XABHDR (external attribute buffer) 256

Index 285

286 z/VM: 7.3 RSCS Networking Diagnosis

IBM®

Product Number: 5741-A09

Printed in USA

GC24-6316-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: RSCS Networking Diagnosis
	GC24-6316-73, z/VM 7.3 (September 2022)
	GC24-6316-01, z/VM 7.2 (September 2020)
	GC24-6316-00, z/VM 7.1 (September 2018)

	Part 1. Functional Overview
	Chapter 1. Introduction to RSCS
	Operating Requirements
	Task Overview
	System Tasks
	Link Driver Tasks
	Link Driver Tasks
	Session Driver Tasks

	Auto-Answer Task

	Task Interaction
	Processing Files
	Sending Files to Remote Users
	Receiving Files from Remote Users
	Handling Store-and-Forward Files

	Establishing SNA Connections
	Establishing Auto-Dial and Auto-Answer Links
	Processing Commands
	Commands Issued By a Local User for the Local Node
	Commands Issued to Remote Nodes
	Commands Issued to the Local Node
	Commands Issued by a Remote User for a Remote Node

	Processing Messages

	Chapter 2. RSCS Structure
	Communication Between Tasks
	Direct Task Interfaces
	REX Task Command Interface
	STOP Command Interface to Link Drivers
	VTAM Event Interface to Session Drivers

	Queued Command Interfaces
	REX Task IUCV and Command Queue
	System Task Command Queue
	EXE Command Queue
	EVE Task Command Queue

	Link Driver Command and Message Queues

	Data Structures
	Primary Data Areas
	Communications Vector Table
	Common Routines Vector

	Defining Network Structure
	LINKTABL
	ROUTEGRP
	NODE
	REROUTE
	DEST
	PORT

	Processing Files
	TAGAREA
	TASTORAG
	TAG Element
	TASHADOW
	TASHADOW Queue

	Sharing RSCS Resources
	RESBLOK
	RESQBLOK

	Disk File Interface
	FILREQ
	FILWORKA
	Dynamic ddname Allocation

	Defining Tasks
	TASKBLOK
	System Task Equates
	Link Driver Equates

	Managing Unit Record Devices
	Channel Table

	Exit Facility
	EXITBLOK

	Message Subscriptions
	MONITENT (Short Version)
	MONITENT (Long Version)

	Message Request and Work Areas
	MSGBLOK
	MSGWA
	MSGLINE

	Event Scheduler
	EVEBLOK
	TANBLOK

	Command Authorization
	AUTHBLOK

	Printer Related Areas
	FCB Table
	FORM Table

	Chapter 3. Task Management
	Using GCS Facilities
	Task Management Facilities
	GCS Console Task
	GCS Command Task

	GCS Macros

	Attaching System Tasks
	Starting the Communications Task
	Starting System Tasks
	Starting the SNA Control Task and Auto-Answer Tasks
	SNA Control Task
	Auto-Answer Tasks

	Starting Link Driver Tasks
	Link Driver Tasks
	Session Driver as Primary LU
	Session Driver as Secondary LU
	Auto-Start Links
	Auto-Answer Links

	Capturing Task Abends
	End of Task Exit Processing

	Chapter 4. Inter-Task Communication
	Using GCS Services
	Task Synchronization
	Task Queues
	Event Control Blocks
	POST and WAIT Macros
	Processing Several ECBs

	DMTCOMNQ and DMTCOMDQ
	Issuing a Work Request
	Receiving Work Requests
	Request Element Format

	Task Serialization
	DMTRES
	Locking a Resource
	Unlocking a Resource
	Clearing a Lock

	Disabling Interrupts
	ENQ and DEQ Macros

	Chapter 5. System Tasks
	Communications Task
	Initialization
	Reading the Configuration File
	Exit 0
	Processing DEST Statements
	Error Processing

	Creating System Tasks
	Trapping Special Messages
	Processing Commands
	Issuing Return Codes

	Shutting Down RSCS

	Spool Manager Task
	Initialization
	Setting Up Virtual Devices
	Storage Requirements

	Processing Reader Interrupts
	Getting Information About New Files
	Exit 2 and Exit 21
	Updating File Queue Structures
	Exit 6 and Exit 31
	Informing Link Drivers About Files

	Processing Spool File Commands
	CHANGE Command
	CLOSE Command
	PURGE Command
	REORDER Command
	TRANSFER Command

	Managing File Routines for Link Drivers
	OPENIN Requests
	CLOSEIN Requests
	OPENOUT Requests
	CLOSEOUT Requests
	OPENINTA Requests

	Serializing Resources
	Managing the Unit Record Device Pool

	Auto-Start Task
	Initialization
	Dynamic Port Allocation
	Processing Commands
	Free Ports
	Timer ECB
	Termination

	Event Manager Task
	Initialization
	Allocating Task IDs
	Event Types
	System Events
	User Events
	Midnight Event

	Timer Management
	Processing SCHEDULE Commands
	DISKLOAD Operand
	DELETE Operand
	SUSPEND Operand
	RESUME Operand

	EXEC Processor Task
	Initialization
	Processing Exec Queues

	SNA Control Task
	Establishing a Session
	Logical Units
	SIMLOGON

	Initializing the SNA Control Task
	Request Parameter Lists
	Access Method Control Block

	VTAM Exit Routines
	LOSTERM
	LOGON
	NSEXIT
	RELREQ
	SCIP
	TPEND

	Maintaining the RSCS/VTAM Interface
	RECEIVE Processing
	Command and SIMLOGON Processing
	Termination
	SNA Session Cleanup

	Port Redirector Task
	Initialization
	Processing LISTEN Requests
	Starting and Canceling LISTEN Requests
	Receiving a Reply

	Termination

	Auto-Answer Tasks
	Initialization
	Identifying Callers
	Processing Sign-On Records
	Invoking Links
	Error Processing
	Calling Exit Points

	Chapter 6. Networking Link Drivers
	Common Networking Structures
	Data Areas
	Building NJE Headers
	Building the Job Header
	Building the Data Set Header
	Building the Job Trailer

	Receiving NJE Headers
	Reconstructing Headers
	Receiving the Job Header
	Receiving Data Set Headers
	Multiple Data Set Headers
	Receiving the Job Trailer

	Receiving and Transmitting NMRs
	General Purpose Routines
	Compressing Records
	Decompressing Records
	Creating Coded NOPs
	Creating NJE Headers from NOPs

	Initializing Storage
	Processing Sign-on Records
	Processing Commands
	Accounting
	Transmitting Buffers
	Managing Output Buffers
	Processing Message Streams
	Dispatching File Streams
	Processing Streams

	Receiving Buffers
	Managing Input Buffers
	Processing Message Streams
	Processing Control Records
	Processing File Streams

	SNA LU_T0 NJE Session Driver
	Initialization
	Processing

	Terminating the Link

	BSC and CTC Link Driver
	Initialization
	Error Processing
	Preparing Protocols

	Terminating the Link

	TCPNJE Link Driver
	Initialization
	Identifying Unique Connections
	Processing

	Terminating the Link

	GATEWAY Link Driver
	Initialization
	Gateway Service Macros
	NJEOPEN
	NJECLOSE
	NJEGET
	NJEPUT
	NJERJECT
	NJEABORT
	NJECONCT
	NJEDSCON

	Terminating the Link

	Chapter 7. Printer Link Drivers
	3270P Printer Link Driver
	Initialization
	Receiving and Sending Data
	Building Data Streams
	I/O Processing

	Terminating the Link

	TN3270E Printer Link Driver
	Initialization
	Receiving and Sending Data
	Building Data Streams
	I/O Processing

	Terminating the Link

	SNA 3270 Printer Session Driver
	Initialization
	Receiving and Sending Data
	Receiving Data
	Building Data Streams
	I/O Processing

	Terminating the Link

	ASCII Printer and Plotter Link Driver
	Initialization
	INIT

	Receiving and Sending Data
	TAGEX
	RECEIVE
	RESET
	MSGEX

	Command Processing
	Processing CP File Characteristics
	Building Data Streams
	I/O Processing
	ATTNEX

	Terminating the Link

	TCPASCII Printer and Plotter Link Driver
	Initialization
	INIT

	Receiving and Sending Sata
	TAGEX
	RECEIVE
	RESET
	MSGEX

	Command Processing
	Processing CP File Characteristics
	Building Data Streams
	Socket Processing
	ATTNEX

	Terminating the Link

	Line Printer Daemon (LPD) Link Driver
	Initialization
	Initialization Exit

	Sending and Receiving Data
	Control File Command Processing Exit
	Data Processing Exit
	End of File Processing Exit

	Terminating the Link

	Line Printer Remote (LPR) Link Driver
	Initialization
	Initialization Exit

	Sending and Receiving Data
	TAG Processing Exit
	Record Processing Exit
	End of File Processing Exit
	Control File Processing Exit

	Terminating the Link

	Chapter 8. Workstation Link Drivers
	RJE Workstation Link Driver
	Initialization
	Receiving and Sending Data
	Building Data Streams
	I/O Processing

	Terminating the Link

	MRJE Workstation Link Driver
	Initialization
	Host Mode
	Remote Mode

	Receiving and Sending Data
	Building Data Streams
	I/O Processing

	Terminating the Link

	SNARJE Workstation Session Driver
	Initialization
	Receiving and Sending Data
	Receiving Data
	Sending Data
	Building Data Streams
	I/O Processing

	Terminating the Link

	Chapter 9. Special Purpose Link Drivers
	List Processor
	Initialization
	Receiving and Sending Files
	Using Common Networking Routines
	Using List Processor Routines

	Terminating the Link

	NOTIFY Link Driver
	Initialization
	Generating a Note
	Building Note Records
	Exit 23

	Purging Files

	Unsolicited File Transfer (UFT) Driver
	Initialization
	Initialization Exit

	Sending and Receiving Data
	TAG Processing Exit
	Command Processing Exit
	Record Processing Exit
	End of File Processing Exit

	Terminating the Link

	Unsolicited File Transfer Daemon (UFTD) Driver
	Initialization
	Initialization Exit

	Sending and Receiving Data
	Command Processing Exit
	Data Processing Exit
	End of File Processing Exit

	Terminating the Link

	Chapter 10. Utility Routines
	General Purpose Routines
	Table Search Routines
	DMTCOMLK and DMTCOMGG
	DMTCOMGN

	Disk File Interface Routine
	Time-of-Day Conversion Routines
	DMTCOMTE
	DMTCOMTS

	Number/Data Conversion Routines
	DMTCOMDG
	DMTCOMHG

	Specialized Routines
	DMTBPLLX
	DMTCOMDV
	DMTCOMLS
	DMTCOMCL
	DMTCOMTG
	DMTCOMGD
	DMTCOMSM

	Hashed Indexing Routines
	HASHBLOK
	Processing Hash Tables
	Finding Entries

	Storage Management Routines
	DMTQSAAB
	DMTQSAUB
	DMTQSAFA
	DMTQSAFE

	I/O Interface Routines
	DMTIOTST
	DMTIOTHD
	DMTIOTGE

	Spool Interface Routines
	Input Spool Routines
	DMTRDROP
	DMTRDREP

	Output Spool Routines
	DMTUROEP
	DMTUROFL

	NETDATA Conversion Routine
	General Parsing Routines
	DMTMPTGP
	DMTMPTBP
	DMTMPTCK
	DMTMPTGD

	Task Table Service Routines
	DMTTASKA
	DMTTASKD
	DMTTASKF
	DMTTASKG

	Chapter 11. Parsing Commands and Statements
	Defining Syntax
	CDEF Macro
	LDEF Macro
	Command Syntax Variations

	PDEF Macro
	Command PDEF Options
	Column Masks

	DDEF Macro

	Finding Command and Statement Definitions
	Parsing Commands and Statements
	QUERY Command Processing
	Simple Queries
	Filtering and Columnar Messages
	Querying Network Structure
	Propagating QUERY Commands

	Chapter 12. Message Processing
	Message Structure
	Text Messages
	Columnar Messages
	EMSG Settings
	National Language Support
	Command Response Interface
	Message Subscriptions

	Processing Messages
	Preparing to Issue Messages
	Processing Columnar Messages
	Exit 27
	Returning Control to the Calling Task

	Issuing Messages to All Destinations
	Exit 28

	Formatting Messages
	Message Formatting Routines
	Utility Formatting Routines
	Returning Control to DMTMGIAR

	Processing Substitution Values
	Returning Control to DMTMGFFM

	Message Repositories
	Conversion Repository
	Format of Compiled Repository Entries

	Translation Repository
	Format of Text Message Entries
	Format of Columnar Message Entries

	Message Compilers

	Part 2. Diagnostic Aids
	Chapter 13. Debugging Considerations
	Abend Processing
	Console Abend Messages
	Abend Dumps
	Reading Dumps
	System Abend Considerations
	Program Checks

	Finding RSCS Data Areas

	GCS Considerations
	Active Tasks
	Tracing State Blocks

	Trace Data Format
	Sample CTC Trace (RECORDS Option)
	Sample CTC Trace (ALL Option)
	Sample SNANJE Trace
	Sample TCPNJE Trace

	Chapter 14. Examining Dumps
	Getting Dump Information
	Checking for a Compressed Load Map

	Using RSCS-Supplied Subcommands
	CVT
	DWA
	IOTABLE
	ITRACE
	LINKS
	NDWA
	RIB
	ROUTES
	TAGQUE
	TIB

	Chapter 15. Solving Problems in RSCS Interchange
	Using REXX Traces
	Using a Log File
	Using Incoming and Outgoing Mail Files
	Using RSCS Diagnosis Commands

	Part 3. Reference Directories
	Chapter 16. Module Directory
	RSCS Modules
	DMTAPT
	DMTAST
	DMTAXA
	DMTAXM
	DMTBOX
	DMTBPL
	DMTCMA
	DMTCMB
	DMTCMQ
	DMTCMX
	DMTCMY
	DMTCMZ
	DMTCOM
	DMTCQC
	DMTCQX
	DMTCQY
	DMTCQZ
	DMTCVT
	DMTDDL
	DMTDUP
	DMTEND
	DMTEQU
	DMTEVE
	DMTEXE
	DMTGPI
	DMTHAS
	DMTIOT
	DMTITR
	DMTIRW
	DMTIRX
	DMTLAX
	DMTLCR
	DMTLIS
	DMTLOG
	DMTLPD
	DMTLPR
	DMTMAN
	DMTMGF
	DMTMGI
	DMTMGS
	DMTMGX
	DMTMPT
	DMTNCR
	DMTNET
	DMTNHD
	DMTNHE
	DMTNOT
	DMTNPT
	DMTNRV
	DMTNTR
	DMTNUS
	DMTPAF
	DMTPAR
	DMTPCR
	DMTPRD
	DMTQSA
	DMTRDR
	DMTRER
	DMTRES
	DMTREX
	DMTRGX
	DMTRPT
	DMTSCT
	DMTSEP
	DMTSJE
	DMTSLO
	DMTSML
	DMTSNE
	DMTSOK
	DMTSPT
	DMTTAP
	DMTTAS
	DMTTNE
	DMTTPT
	DMTUFD
	DMTUFT
	DMTURO
	DMTVXT

	Exit Points
	Dump Formatting Routines
	DMTYCV
	DMTYDS
	DMTYEX
	DMTYIO
	DMTYIT
	DMTYLI
	DMTYND
	DMTYRI
	DMTYRO
	DMTYTG
	DMTYTI

	Chapter 17. Control Blocks
	Primary Data Areas
	CRV
	CVT
	SYSIDENT

	Network and Task Structure
	DEST
	EQUATE
	LINKTABL
	PORT
	REROUTE
	ROUTEGRP
	TASKBLOK

	Accounting Structures
	ACNTBUFF
	AUTHBLOK

	Printer-Related Structures
	FORM
	RFCBTAB
	SEPBLOK

	File Queueing Structures
	SAFTAG
	TAG
	TAGAREA
	TASHADOW
	TASTORAG

	TCP/IP-Related Structures
	PRDBLOK
	SOCKBLOK
	SOCKCBLK
	SOCKET

	Tracing Structures
	ITRACFRM
	ITRACHDR
	ITRACREC

	Miscellaneous Structures
	EVEBLOK
	General Format
	Command Execution Event
	Internal Module Call Event
	Internal Call to Enqueue an Element or POST an ECB

	HASHBLOK
	IOTABLE
	MONITENT
	SAVEAREA

	Chapter 18. Command and Request Elements
	CMNDAREA
	Basic Structure
	Type A0 (REORDER)
	Type A1 (CLOSE, ORDER, PURGE)
	Type A1 (TRANSFER)
	For filter version
	For non-filter version

	Type A2 (CHANGE)
	Type C0 (FORCE)
	Type C1 (ITO)
	Type C2 (RETRY)
	Type E0 (Execs)
	Type L0 (DRAIN, FREE, HOLD, READY, START, and TRACE)
	Type L1 (BACKSPACE, FWDSPACE)
	Type L2 (FLUSH)
	Type L3 (Commands, Messages)
	Type V1 (START)
	Type V2 (STOP)

	MSGBLOK
	RDEVBLOK

	Chapter 19. Networking Data Areas and Record Formats
	Data Areas and Equates
	BUFFER
	Non-SNA Telecommunications Buffer
	SNA Telecommunications Buffer

	HDRTRL
	First Segment
	Second Segments

	NCC
	NJEEQU
	NMR
	RIB
	For Messages
	For Files

	TANK
	Unit Record Tank
	Network SYSOUT Record Tank
	Network SYSOUT Spanned Record Tanks
	First Record Segment
	Middle and End Record Segments

	TIB
	For Messages
	For Files

	XABHDR

	NJE Header Formats
	Job Header Format
	Job Trailer Format
	Data Set Header Format

	Record Formats
	Coded NOP Records
	Segmented Header Formats
	Spanned Record Format
	First Segment
	Remaining Segments

	TCPNJE Record Formats
	Control Record Format
	Data Block Header (TTB)
	Data Block Record Header (TTR)

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products
	Additional Publications

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

