
z/VM
7.3

REXX/VM Reference

IBM

SC24-6314-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
315.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-08-31
© Copyright International Business Machines Corporation 1990, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xi

Tables.. xiii

About This Document...xv
Intended Audience... xv
Syntax, Message, and Response Conventions...xv
Where to Find More Information... xviii

Links to Other Documents and Websites...xviii

How to Send Your Comments to IBM..xix

Summary of Changes for z/VM: REXX/VM Reference.. xxi
SC24-6314-73, z/VM 7.3 (September 2022)...xxi
SC24-6314-01, z/VM 7.2 (February 2022).. xxi
SC24-6314-01, z/VM 7.2 (September 2020)...xxi
SC24-6314-00, z/VM 7.1 (September 2018)..xxii

Chapter 1. REXX General Concepts.. 1
Structure and General Syntax..1

Characters...2
Comments...2
Tokens...3
Implied Semicolons..6
Continuations..6

Expressions and Operators..7
Expressions...7
Operators.. 7

Clauses and Instructions... 12
Null Clauses..12
Labels..12
Instructions.. 12
Assignments... 13
Keyword Instructions... 13
Commands..13

Assignments and Symbols.. 13
Constant Symbols.. 14
Simple Symbols..14
Compound Symbols... 14
Stems..15

Commands to External Environments...16
Environment... 17
Commands..17
The CMS Environment.. 18
The COMMAND Environment... 19
Issuing Subcommands from Your Program...20

Using the Online HELP Facility...20

Chapter 2. Keyword Instructions..23

 iii

ADDRESS..24
ARG...27
CALL..29
DO...32
Simple DO Group... 32
Repetitive DO Loops...33
Simple Repetitive Loops.. 33
Controlled Repetitive Loops.. 33
Conditional Phrases (WHILE and UNTIL)..34
DROP.. 36
EXIT..37
IF.. 38
INTERPRET.. 39
ITERATE... 41
LEAVE... 42
NOP.. 43
NUMERIC..44
OPTIONS.. 46
PARSE...48
PROCEDURE...51
PULL... 53
PUSH.. 54
QUEUE.. 55
RETURN..56
SAY... 57
SELECT... 58
SIGNAL...59
TRACE...61
UPPER.. 66

Chapter 3. Functions..67
Syntax...67
Functions and Subroutines..67

Search Order...68
Errors During Execution... 70

Built-in Functions...71
ABBREV (Abbreviation).. 71
ABS (Absolute Value)... 72
ADDRESS.. 72
APILOAD... 72
ARG (Argument)..72
BITAND (Bit by Bit AND)...73
BITOR (Bit by Bit OR)... 74
BITXOR (Bit by Bit Exclusive OR)...74
B2X (Binary to Hexadecimal)... 74
CENTER/CENTRE..75
CHARIN (Character Input)... 75
CHAROUT (Character Output)..76
CHARS (Characters Remaining)... 77
CMSFLAG.. 77
COMPARE..78
CONDITION.. 78
COPIES..79
CSL.. 79
C2D (Character to Decimal)... 79
C2X (Character to Hexadecimal)..80
DATATYPE... 80

iv

DATE..81
DBCS (Double-Byte Character Set Functions)...84
DELSTR (Delete String)...84
DELWORD (Delete Word)..84
DIAG/DIAGRC...85
DIGITS.. 85
D2C (Decimal to Character)... 85
D2X (Decimal to Hexadecimal).. 85
ERRORTEXT.. 86
EXTERNALS.. 86
FIND..86
FORM.. 86
FORMAT.. 87
FUZZ..88
INDEX... 88
INSERT..88
JUSTIFY.. 88
LASTPOS (Last Position)...88
LEFT.. 89
LENGTH...89
LINEIN (Line Input).. 89
LINEOUT (Line Output)...90
LINES (Lines Remaining)..91
LINESIZE.. 92
MAX (Maximum)... 92
MIN (Minimum)...92
OVERLAY...93
POS (Position)...93
QUEUED.. 93
RANDOM... 94
REVERSE...94
RIGHT... 95
SIGN..95
SOCKET...95
SOURCELINE.. 95
SPACE... 96
STORAGE.. 96
STSI...96
STREAM.. 96
STRIP..107
SUBSTR (Substring)... 107
SUBWORD.. 108
SYMBOL.. 108
TIME... 108
TRACE...110
TRANSLATE.. 110
TRUNC (Truncate).. 111
USERID... 111
VALUE... 111
VERIFY..112
WORD... 113
WORDINDEX.. 113
WORDLENGTH..113
WORDPOS (Word Position).. 114
WORDS... 114
XRANGE (Hexadecimal Range)..114
X2B (Hexadecimal to Binary)...115
X2C (Hexadecimal to Character)... 115

 v

X2D (Hexadecimal to Decimal)..115
Function Packages...116
Additional Built-in Functions Provided in VM... 117
EXTERNALS..117
FIND... 117
INDEX...117
JUSTIFY... 118
LINESIZE..118
USERID...118
External Functions and Routines Provided in VM... 119
APILOAD.. 119
CMSFLAG... 120
CSL... 121
DIAG...124
DIAGRC.. 125
SOCKET.. 135
STORAGE..136
STSI..137

Chapter 4. Parsing... 139
Simple Templates for Parsing into Words...139

The Period as a Placeholder.. 140
Templates Containing String Patterns.. 141
Templates Containing Positional (Numeric) Patterns...141

Combining Patterns and Parsing Into Words.. 145
Parsing with Variable Patterns.. 145
Using UPPER.. 146
Parsing Instructions Summary..147
Parsing Instructions Examples... 147
Advanced Topics in Parsing...148

Parsing Multiple Strings... 148
Combining String and Positional Patterns: A Special Case...149
Parsing with DBCS Characters... 150
Details of Steps in Parsing... 150

Chapter 5. Numbers and Arithmetic... 155
Introduction... 155
Definition..156

Numbers...156
Precision... 156
Arithmetic Operators... 156
Arithmetic Operation Rules—Basic Operators.. 157
Arithmetic Operation Rules—Additional Operators.. 158
Numeric Comparisons..160
Exponential Notation... 160
Numeric Information..162
Whole Numbers..162
Numbers Used Directly by REXX... 162
Errors.. 162

Chapter 6. Conditions and Condition Traps... 165
Action Taken When a Condition Is Not Trapped... 166
Action Taken When a Condition Is Trapped..166
Condition Information... 168

Descriptive Strings... 168
Special Variables... 168

The Special Variable RC... 168

vi

The Special Variable SIGL..169

Chapter 7. Input and Output Streams...171
Stream Formats... 171
Opening and Closing Streams... 171
Stream Names Used by the Input and Output Functions.. 172
Unit Record Device Streams..173
The Input and Output Model... 173

Character Input Streams... 173
Character Output Streams... 174
Physical and Logical Lines..174
The STREAM Function..175
External Data Queue—the General REXX SAA Model... 175
External Data Queue—VM Extensions... 176
Implementation... 176

General I/O Information..176
Errors During Input and Output...177
Examples of Input and Output.. 178
Summary of Instructions and Functions...178

Chapter 8. System Interfaces...181
Calls to and from the Language Processor..181
Calls Originating from the CMS Command Line.. 181
Calls Originating from the XEDIT Command Line... 182
Calls Originating from CMS Execs... 182
Calls Originating from EXEC 2 Programs...182
Calls Originating from Alternate Format Exec Programs..182
Calls Originating from a Clause That Is an Expression...182
Calls Originating from a CALL Instruction or a Function Call..183
Calls Originating from a MODULE..184
Calls Originating from an Application Program...184
Calls Originating from CMS Pipelines..187
The CMS EXEC Interface... 187
The Extended Parameter List.. 188

Using the Extended Parameter List... 188
The File Block... 191

Function Packages...192
Non-SVC Subcommand Invocation...192
Direct Interface to Current Variables.. 193

The Request Block (SHVBLOCK)..194
Function Codes (SHVCODE)...194
Using Routines from the Callable Services Library... 196

REXX Exits..198
Invocation of the Language Processor by an Application Program.. 198
Invocation of the Exits by the Language Processor.. 198

Additional Exit Provided in VM.. 207

Chapter 9. Debug Aids... 209
Interactive Debugging of Programs.. 209
Interrupting Execution and Controlling Tracing..210

Chapter 10. Reserved Keywords and Special Variables....................................... 213
Reserved Keywords... 213
Special Variables... 213

Chapter 11. Some Useful CMS Commands.. 215

 vii

Chapter 12. Invoking Communications Routines...217
ADDRESS CPICOMM.. 217

Chapter 13. Invoking Resource Recovery Routines..219
ADDRESS CPIRR.. 219

Chapter 14. Invoking OPENVM Routines... 221
ADDRESS OPENVM.. 221

Chapter 15. REXX Sockets Application Program Interface...................................223
Programming Hints and Tips for Using REXX Sockets..223
SOCKET External Function.. 224
Tasks You Can Perform Using REXX Sockets.. 225
REXX Socket Functions..227

Accept...227
Bind...228
Cancel... 229
Close... 230
Connect.. 230
Fcntl..231
GetClientId... 232
GetDomainName..233
GetHostByAddr.. 234
GetHostByName...234
GetHostId... 235
GetHostName...236
GetPeerName...236
GetProtoByName... 237
GetProtoByNumber..237
GetServByName...238
GetServByPort..239
GetSockName.. 239
GetSockOpt.. 240
GiveSocket..242
Initialize..243
Ioctl.. 244
Listen.. 246
Read..247
Recv.. 248
RecvFrom..249
Resolve... 250
Select..251
Send..254
SendTo..255
SetSockOpt...256
ShutDown... 258
Socket...259
SocketSet... 261
SocketSetList..261
SocketSetStatus...262
TakeSocket... 263
Terminate... 263
Trace... 264
Translate...266
Version..267
Write... 267

viii

REXX Sockets System Messages...268
REXX Sockets Return Codes..269

Chapter 16. Sample Programs..275
REXX-EXEC RSCLIENT Sample Program.. 275
REXX-EXEC RSSERVER Sample Program..277

Appendix A. Error Numbers and Messages..281

Appendix B. Double-Byte Character Set (DBCS) Support..................................... 283
General Description...283

Enabling DBCS Data Operations and Symbol Use...284
Symbols and Strings...284
Validation..284
Instruction Examples...285

DBCS Function Handling..287
Built-in Function Examples..288

DBCS Processing Functions...292
Counting Option... 292

Function Descriptions..292
DBADJUST..292
DBBRACKET... 293
DBCENTER..293
DBCJUSTIFY...293
DBLEFT... 294
DBRIGHT.. 294
DBRLEFT...295
DBRRIGHT..295
DBTODBCS... 295
DBTOSBCS..296
DBUNBRACKET.. 296
DBVALIDATE...296
DBWIDTH... 297

Appendix C. Performance Considerations...299

Appendix D. Example of a Function Package...301

Appendix E. z/VM REXX/VM Interpreter in the GCS Environment........................ 307
The Extended PLIST (EPLIST)... 307

The Standard Tokenized PLIST (PLIST)...308
The File Block (FBLOCK)..308
EXECCOMM Processing (Sharing Variables)... 308

Shared Variable Request Block (SHVBLOCK)..308
Function Codes (SHVCODE)...308

RXITDEF Processing (Assigning Values for Exits)...308
RXITPARM Processing (Mapping Parameter List for Exits).. 309

Appendix F. Input and Output Return and Reason Codes.....................................311

Notices..315
Programming Interface Information...316
Trademarks.. 316
Terms and Conditions for Product Documentation.. 316
IBM Online Privacy Statement.. 317

 ix

Bibliography.. 319
Where to Get z/VM Information.. 319
z/VM Base Library..319
z/VM Facilities and Features... 320
Prerequisite Products.. 322
Related Products... 322

Index.. 325

x

Figures

1. Concept of a DO Loop..35

2. External Routine Resolution and Execution... 70

3. Conceptual Overview of Parsing...151

4. Conceptual View of Finding Next Pattern...152

5. Conceptual View of Word Parsing...153

6. SAMPLE CALL (Part 1 of 2)..189

7. SAMPLE CALL (Part 2 of 2)..190

8. TEST EXEC... 197

9. VS FORTRAN Program—GETNXT FORTRAN...197

 xi

xii

Tables

1. Examples of Syntax Diagram Conventions...xvi

2. Stream Names Used by the Input and Output Functions.. 172

3. REXX socket functions for processing socket sets.. 225

4. REXX socket functions for creating, connecting, changing, and closing sockets................................... 225

5. REXX socket functions for exchanging data...226

6. REXX socket functions for resolving names and other identifiers...226

7. REXX socket functions for managing configurations, options, and modes... 227

8. REXX socket functions for translating data and doing tracing...227

9. List of Error Codes and CMS Messages.. 281

10. DBCS Ranges...283

11. Variables and Their Possible Values...312

 xiii

xiv

About This Document

This is a reference document containing all of the REXX/VM instructions and functions. They are listed
alphabetically in their own sections. Also included are details about general concepts you need to know
in order to program in REXX, as well as details about parsing, math functions, condition trapping, system
interfaces, and debug aids. You will need a terminal with access to IBM z/VM, and you should be
reasonably familiar with z/VM, but you need not have had any previous programming experience.

The programming language described by this document is called the REstructured eXtended eXecutor
language (abbreviated REXX). The document also describes how the z/VM REXX/VM language processor
(shortened, hereafter, to the language processor) processes or interprets the REstructured eXtended
eXecutor language.

Intended Audience
This document is intended for experienced programmers, particularly those who have used a block-
structured, high-level language (for example, PL/I, Algol, or Pascal), who need to refer to REXX/VM
instructions and functions and need to learn more details about items such as parsing.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets" the language as a program is running.

You should have read the z/VM: REXX/VM User's Guide to learn how to program in REXX. If you are new to
REXX and to programming in general, read the z/VM: REXX/VM User's Guide.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xvi.

© Copyright IBM Corp. 1990, 2022 xv

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

xvi About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

About This Document xvii

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information
You can find useful information in the z/VM: REXX/VM User's Guide and through the online z/VM HELP
Facility available with z/VM. For any program written in the REstructured eXtended eXecutor (REXX)
language, you can get information on how the language processor interprets the program or a particular
instruction by using the REXX TRACE instruction.

For more information about VM and REXX, see the documents in the “Bibliography” on page 319.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xviii z/VM: 7.3 REXX/VM Reference

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1990, 2022 xix

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xx z/VM: 7.3 REXX/VM Reference

Summary of Changes for z/VM: REXX/VM Reference

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6314-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6314-01, z/VM 7.2 (February 2022)
This information includes terminology, maintenance, and editorial changes.

Miscellaneous updates for February 2022
The following section is updated:

• The Elapsed operand on the TIME command is clarified. See “TIME” on page 108.

SC24-6314-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

z/VM Centralized Service Management (z/VM CSM) for non-SSI environments
z/VM provides support to deploy service to multiple systems, regardless of geographic location, from a
centralized primary location that manages distinct levels of service for a select group of traditional z/VM
systems. One system is designated as a principal system and uses the z/VM Shared File System (SFS) to
manage service levels for a set of defined managed systems. The principal system builds service levels
using the new service management command, SERVMGR, and existing VMSES/E SERVICE commands.
This centralized service process keeps track of available service levels and manages the files needed to
supply a customer-defined service level to a managed system.

Attention:

Before you initialize z/VM CSM, the PTF for APAR VM66428 must be:

1. Installed on the principal system and all remote systems in your z/VM CSM environment
2. Applied to any customer-defined z/VM CSM service level that is based on the BASE z/VM CSM service

level (the service level that incorporates the initial z/VM 720 RSU).

See the z/VM: Service Guide for more information.

The following section is updated:

• “DIAGRC” on page 125

Miscellaneous updates for September 2020
The following section is updated:

• “REXX Sockets Return Codes” on page 269

© Copyright IBM Corp. 1990, 2022 xxi

SC24-6314-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

xxii z/VM: 7.3 REXX/VM Reference

Chapter 1. REXX General Concepts

The REstructured eXtended eXecutor (REXX) language is particularly suitable for:

• Command procedures
• Application front ends
• User-defined macros (such as editor subcommands)
• User-defined XEDIT subcommands
• Prototyping
• Personal computing.

REXX is a general purpose programming language like PL/I. REXX has the usual structured-programming
instructions—IF, SELECT, DO WHILE, LEAVE, and so on—and a number of useful built-in functions.

The language imposes no restrictions on program format. There can be more than one clause on a line, or
a single clause can occupy more than one line. Indentation is allowed. You can, therefore, code programs
in a format that emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, as long as all variables fit into the storage
available.

Implementation Maximum: No single request for storage can exceed the fixed limit of 16MB. This limit
applies to the size of a variable plus any control information. It also applies to buffers obtained to hold
numeric results.

The limit on the length of symbols (variable names) is 250 characters.

You can use compound symbols, such as

NAME.Y.Z

(where Y and Z can be the names of variables or can be constant symbols), for constructing arrays and for
other purposes.

REXX programs can reside in CMS Shared File System (SFS) directories or on minidisks. REXX programs
usually have a file type of EXEC. These files can contain CP and CMS commands. REXX programs with a
file type of XEDIT can also contain XEDIT subcommands.

A language processor (interpreter) runs REXX programs. That is, the program is processed line-by-line
and word-by-word, without first being translated to another form (compiled). The advantage of this to the
user is that if the program fails with a syntax error of some kind, the point of error is clearly indicated;
usually, it will not take long to understand the difficulty and make a correction.

Structure and General Syntax
Programs written in the REstructured eXtended eXecutor (REXX) language must start with a comment.
(This distinguishes them from CMS EXEC and EXEC 2 language programs.)

A REXX program is built from a series of clauses that are composed of:

• Zero or more blanks (which are ignored)
• A sequence of tokens (see “Tokens” on page 3)
• Zero or more blanks (again ignored)
• A semicolon (;) delimiter that may be implied by line-end, certain keywords, or the colon (:).

Conceptually, each clause is scanned from left to right before processing, and the tokens composing it are
identified. Instruction keywords are recognized at this stage, comments are removed, and multiple blanks

REXX General Concepts

© Copyright IBM Corp. 1990, 2022 1

(except within literal strings) are converted to single blanks. Blanks adjacent to operator characters and
special characters (see “Tokens” on page 3) are also removed.

Characters
A character is a member of a defined set of elements that is used for the control or representation of data.
You can usually enter a character with a single keystroke. The coded representation of a character is its
representation in digital form. A character, the letter A, for example, differs from its coded representation
or encoding. Various coded character sets (such as ASCII and EBCDIC) use different encodings for the
letter A (decimal values 65 and 193, respectively). This book uses characters to convey meanings and
not to imply a specific character code, except where otherwise stated. The exceptions are certain built-in
functions that convert between characters and their representations. The functions C2D, C2X, D2C, X2C,
and XRANGE have a dependence on the character set in use.

A code page specifies the encodings for each character in a set. You should be aware that:

• Some code pages do not contain all characters that REXX defines as valid (for example, ¬, the logical
NOT character).

• Some characters that REXX defines as valid have different encodings in different code pages (for
example, !, the exclamation point).

For information about Double-Byte Character Set characters, see Appendix B, “Double-Byte Character Set
(DBCS) Support,” on page 283.

Comments
A comment is a sequence of characters (on one or more lines) delimited by /* and */. Within these
delimiters any characters are allowed. Comments can contain other comments, as long as each begins
and ends with the necessary delimiters. They are called nested comments. Comments can be anywhere
and can be of any length. They have no effect on the program, but they do act as separators. (Two tokens
with only a comment in between are not treated as a single token.)

/* This is an example of a valid REXX comment */

Take special care when commenting out lines of code containing /* or */ as part of a literal string.
Consider the following program segment:

01 parse pull input
02 if substr(input,1,5) = '/*123'
03 then call process
04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

01 parse pull input
02 /* if substr(input,1,5) = '/*123'
03 then call process
04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is part of the literal string /
*123 as the start of a nested comment. It would not process the rest of the program because it would be
looking for a matching comment end (*/).

You can avoid this type of problem by using concatenation for literal strings containing /* or */; line 2
would be:

if substr(input,1,5) = '/' || '*123'

You could comment out lines 2 and 3 correctly as follows:

01 parse pull input
02 /* if substr(input,1,5) = '/' || '*123'

REXX General Concepts

2 z/VM: 7.3 REXX/VM Reference

03 then call process
04 */ dept = substr(input,32,5)

For information about Double-Byte Character Set characters, see Appendix B, “Double-Byte Character Set
(DBCS) Support,” on page 283 and the OPTIONS instruction in “OPTIONS” on page 46.

Tokens
A token is the unit of low-level syntax from which clauses are built. Programs written in REXX are
composed of tokens. They are separated by blanks or comments or by the nature of the tokens
themselves. The classes of tokens are:
Literal Strings:

A literal string is a sequence including any characters and delimited by the single quotation mark (')
or the double quotation mark ("). Use two consecutive double quotation marks ("") to represent a "
character within a string delimited by double quotation marks. Similarly, use two consecutive single
quotation marks ('') to represent a ' character within a string delimited by single quotation marks. A
literal string is a constant and its contents are never modified when it is processed.

A literal string with no characters (that is, a string of length 0) is called a null string.

These are valid strings:

'Fred'
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't" */
'' /* The null string */

Note that a string followed immediately by a (is considered to be the name of a function. If followed
immediately by the symbol X or x, it is considered to be a hexadecimal string. If followed immediately
by the symbol B or b, it is considered to be a binary string. Descriptions of these forms follow.
Implementation maximum: A literal string can contain up to 250 characters. But note that the length
of computed results is limited only by the amount of storage available. See the note in Chapter 1,
“REXX General Concepts,” on page 1 for more information.

Hexadecimal Strings:
A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is
any sequence of zero or more hexadecimal digits (0–9, a–f, A–F), grouped in pairs. A single leading 0
is assumed, if necessary, at the front of the string to make an even number of hexadecimal digits. The
groups of digits are optionally separated by one or more blanks, and the whole sequence is delimited
by single or double quotation marks, and immediately followed by the symbol X or x. (Neither x nor
X can be part of a longer symbol.) The blanks, which may be present only at byte boundaries (and
not at the beginning or end of the string), are to aid readability. The language processor ignores them.
A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing the
hexadecimal digits removes blanks and converts each pair of hexadecimal digits into its equivalent
character, for example: 'C1'X to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

'ABCD'x
"1d ec f8"X
"1 d8"x

Note: A hexadecimal string is not a representation of a number. Rather, it is an escape mechanism
that lets a user describe a character in terms of its encoding (and, therefore, is machine-dependent).
In EBCDIC, '40'X is the encoding for a blank. In every case, a string of the form '.....'x is simply an
alternative to a straightforward string. In EBCDIC 'C1'x and 'A' are identical, as are '40'x and a blank,
and must be treated identically.

Also note that in Assembler language hexadecimal numbers are represented with the X in front of the
number. REXX only accepts hexadecimal numbers as was described in the previous note. In this book
you will see hexadecimal numbers represented in both ways, but when you are coding a hexadecimal
string in REXX, place the X after the number.

REXX General Concepts

Chapter 1. REXX General Concepts 3

Implementation maximum: The packed length of a hexadecimal string (the string with blanks
removed) cannot exceed 250 bytes.

Binary Strings:
A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group
may have fewer than four digits; in this case, up to three 0 digits are assumed to the left of the first
digit, making a total of four digits. The groups of digits are optionally separated by one or more blanks,
and the whole sequence is delimited by matching single or double quotation marks and immediately
followed by the symbol b or B. (Neither b nor B can be part of a longer symbol.) The blanks, which may
be present only at byte or nibble boundaries (and not at the beginning or end of the string), are to aid
readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary
digits is not a multiple of eight, leading zeros are added on the left to make a multiple of eight before
packing. Binary strings allow you to specify characters explicitly, bit by bit.

These are valid binary strings:

'11110000'b /* == 'f0'x */
"101 1101"b /* == '5d'x */
'1'b /* == '00000001'b and '01'x */
'10000 10101010'b /* == '0001 0000 1010 1010'b */
''b /* == '' */

Implementation maximum: The packed length of a hexadecimal string (the string with blanks
removed) cannot exceed 250 bytes.

Symbols:
Symbols are groups of characters, selected from the:

• English alphabetic characters (A–Z and a–z1)
• Numeric characters (0–9)
• Characters @ # $ ¢ . !2 ? and underscore.
• Double-Byte Character Set (DBCS) characters (X'41'–X'FE')—ETMODE must be in effect for these

characters to be valid in symbols.

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a–z to
uppercase A–Z) before use.

These are valid symbols:

Fred
Albert.Hall
WHERE?
<.H.E.L.L.O> /* This is DBCS */

For information about Double-Byte Character Set (DBCS) characters, see Appendix B, “Double-Byte
Character Set (DBCS) Support,” on page 283.

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a
value. If you have not assigned it a value, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase a–z to uppercase A–Z). Symbols that begin with a number or a period
are constant symbols and cannot be assigned a value.

One other form of symbol is allowed to support the representation of numbers in exponential format.
The symbol starts with a digit (0–9) or a period, and it may end with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by one or more digits (which cannot be
followed by any other symbol characters). The sign in this context is part of the symbol and is not an
operator.

1 Note that some code pages do not include lowercase English characters a–z.
2 The encoding of the exclamation point character depends on the code page in use.

REXX General Concepts

4 z/VM: 7.3 REXX/VM Reference

These are valid numbers in exponential notation:

17.3E-12
.03e+9

Implementation maximum: A symbol can consist of up to 250 characters. But note that its value, if
it is a variable, is limited only by the amount of storage available. See the note in Chapter 1, “REXX
General Concepts,” on page 1 for more information.

Numbers:
These are character strings consisting of one or more decimal digits, with an optional prefix of a
plus or minus sign, and optionally including a single period (.) that represents a decimal point. A
number can also have a power of 10 suffixed in conventional exponential notation: an E (uppercase or
lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding may occur to a
precision specified by the NUMERIC DIGITS instruction (default nine digits). See Chapter 5, “Numbers
and Arithmetic,” on page 155 - “Errors” on page 162 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign, if any) and can have trailing blanks.
Blanks may not be embedded among the digits of a number or in the exponential part. Note that
a symbol (see preceding) or a literal string may be a number. A number cannot be the name of a
variable.

These are valid numbers:

12
'-17.9'
127.0650
73e+128
' + 7.9E5 '
'0E000'

You can specify numbers with or without quotation marks around them. Note that the sequence
-17.9 (without quotation marks) in an expression is not simply a number. It is a minus operator
(which may be prefix minus if no term is to the left of it) followed by a positive number. The result of
the operation is a number.

A whole number is a number that has a zero (or no) decimal part and that the language processor
would not usually express in exponential notation. That is, it has no more digits before the decimal
point than the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in exponential notation can have
up to nine digits.

Operator Characters:
The characters: + - \ / % * | & = ¬ > < and the sequences >= <= \> \< \= >< <>
== \== // && || ** ¬> ¬< ¬= ¬== >> << >>= \<< ¬<< \>> ¬>> <<= /= /== indicate
operations (see “Operators” on page 7). A few of these are also used in parsing templates, and the
equal sign is also used to indicate assignment. Blanks adjacent to operator characters are removed.
Therefore, the following are identical in meaning:

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters may not be available in all character sets, and, if this is the case,
appropriate translations may be used. In particular, the vertical bar (|) or character is often shown
as a split vertical bar (¦).

Throughout the language, the not character, ¬, is synonymous with the backslash (\). You can use the
two characters interchangeably according to availability and personal preference.

REXX General Concepts

Chapter 1. REXX General Concepts 5

Special Characters:
The following characters, together with the individual characters from the operators, have special
significance when found outside of literal strings:

, ; :) (

These characters constitute the set of special characters. They all act as token delimiters, and blanks
adjacent to any of these are removed. There is an exception: a blank adjacent to the outside of a
parenthesis is deleted only if it is also adjacent to another special character (unless the character
is a parenthesis and the blank is outside it, too). For example, the language processor does not
remove the blank in A (Z). This is a concatenation that is not equivalent to A(Z), a function call. The
language processor does remove the blanks in (A) + (Z) because this is equivalent to (A)+(Z).

The following example shows how a clause is composed of tokens.

'REPEAT' A + 3;

This is composed of six tokens—a literal string ('REPEAT'), a blank operator, a symbol (A, which may have
a value), an operator (+), a second symbol (3, which is a number and a symbol), and the clause delimiter
(;). The blanks between the A and the + and between the + and the 3 are removed. However, one of the
blanks between the 'REPEAT' and the A remains as an operator. Thus, this clause is treated as though
written:

'REPEAT' A+3;

Implied Semicolons
The last element in a clause is the semicolon delimiter. The language processor implies the semicolon: at
a line-end, after certain keywords, and after a colon if it follows a single symbol. This means that you need
to include semicolons only when there is more than one clause on a line or to end an instruction whose
last character is a comma.

A line-end usually marks the end of a clause and, thus, REXX implies a semicolon at most end of lines.
However, there are the following exceptions:

• The line ends in the middle of a string.
• The line ends in the middle of a comment. The clause continues on to the next line.
• The last token was the continuation character (a comma) and the line does not end in the middle of a

comment. (Note that a comment is not a token.)

REXX automatically implies semicolons after colons (when following a single symbol, a label) and after
certain keywords when they are in the correct context. The keywords that have this effect are: ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /* and */, must not be split by a line-end
(that is, / and * should not appear on different lines) because they could not then be recognized correctly;
an implied semicolon would be added. The two consecutive characters forming a literal quotation mark
within a string are also subject to this line-end ruling.

Continuations
One way to continue a clause onto the next line is to use the comma, which is referred to as the
continuation character. The comma is functionally replaced by a blank, and, thus, no semicolon is
implied. One or more comments can follow the continuation character before the end of the line. The
continuation character cannot be used in the middle of a string or it will be processed as part of the string
itself. The same situation holds true for comments. Note that the comma remains in execution traces.

The following example shows how to use the continuation character to continue a clause.

say 'You can use a comma',
 'to continue this clause.'

REXX General Concepts

6 z/VM: 7.3 REXX/VM Reference

This displays:

You can use a comma to continue this clause.

Expressions and Operators
Expressions in REXX are a general mechanism for combining one or more pieces of data in various ways to
produce a result, usually different from the original data.

Expressions
Expressions consist of one or more terms (literal strings, symbols, function calls, or subexpressions)
interspersed with zero or more operators that denote operations to be carried out on terms. A
subexpression is a term in an expression bracketed within a left and a right parenthesis.

Terms include:

• Literal Strings (delimited by quotation marks), which are constants
• Symbols (no quotation marks), which are translated to uppercase. A symbol that does not begin with a

digit or a period may be the name of a variable; in this case the value of that variable is used. Otherwise
a symbol is treated as a constant string. A symbol can also be compound.

• Function calls (see Chapter 3, “Functions,” on page 67), which are of the form:

symbol (

literal_string (

,

expression

)

Evaluation of an expression is left to right, modified by parentheses and by operator precedence in the
usual algebraic manner (see “Parentheses and Operator Precedence” on page 10). Expressions are
wholly evaluated, unless an error occurs during evaluation.

All data is in the form of "typeless" character strings (typeless because it is not—as in some other
languages—of a particular declared type, such as Binary, Hexadecimal, Array, and so forth). Consequently,
the result of evaluating any expression is itself a character string. Terms and results (except arithmetic
and logical expressions) may be the null string (a string of length 0). Note that REXX imposes no
restriction on the maximum length of results. However, there is a 16MB limitation on the amount of a
single storage request available to the language processor. See the note in Chapter 1, “REXX General
Concepts,” on page 1 for more information.

Operators
An operator is a representation of an operation, such as addition, to be carried out on one or two
terms. The following pages describe how each operator (except for the prefix operators) acts on two
terms, which may be symbols, strings, function calls, intermediate results, or subexpressions. Each prefix
operator acts on the term or subexpression that follows it. Blanks (and comments) adjacent to operator
characters have no effect on the operator; thus, operators constructed from more than one character can
have embedded blanks and comments. In addition, one or more blanks, where they occur in expressions
but are not adjacent to another operator, also act as an operator. There are four types of operators:

• Concatenation
• Arithmetic
• Comparison
• Logical.

REXX General Concepts

Chapter 1. REXX General Concepts 7

String Concatenation
The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:
(blank)

Concatenate terms with one blank in between
||

Concatenate without an intervening blank
(abuttal)

Concatenate without an intervening blank
You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This can
occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they are
separated only by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then Fred'%' evaluates to
37.4%.

If the variable PETER has the value 1, then (Fred)(Peter) evaluates to 37.41.

In EBCDIC, the two adjoining strings, one hexadecimal and one literal,

'c1 c2'x'CDE'

evaluate to ABCDE.

In the case of:

 Fred/* The NOT operator precedes Peter. */¬Peter

there is no abuttal operator implied, and the expression is not valid. However,

 (Fred)/* The NOT operator precedes Peter. */(¬Peter)

results in an abuttal, and evaluates to 37.40.

Arithmetic
You can combine character strings that are valid numbers (see “Tokens” on page 3) using the arithmetic
operators:
+

Add
-

Subtract
*

Multiply
/

Divide
%

Integer divide (divide and return the integer part of the result)
//

Remainder (divide and return the remainder—not modulo, because the result may be negative)
**

Power (raise a number to a whole-number power)

REXX General Concepts

8 z/VM: 7.3 REXX/VM Reference

Prefix -
Same as the subtraction: 0 - number

Prefix +
Same as the addition: 0 + number.

See Chapter 5, “Numbers and Arithmetic,” on page 155 for details about precision, the format of valid
numbers, and the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential
notation, it is likely that rounding has occurred.

Comparison
The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator doubled. The ==,
\==, /==, and ¬== operators test for an exact match between two strings. The two strings must be
identical (character by character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple character-by-character comparison, with
no padding of either of the strings being compared. The comparison of the two strings is from left to right.
If one string is shorter than and is a leading substring of another, then it is smaller than (less than) the
other. The strict comparison operators also do not attempt to perform a numeric comparison on the two
operands.

For all the other comparison operators, if both terms involved are numeric, a numeric comparison (in
which leading zeros are ignored, and so forth—see “Numeric Comparisons” on page 160) is effected.
Otherwise, both terms are treated as character strings (leading and trailing blanks are ignored, and then
the shorter string is padded with blanks on the right).

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order may depend on the character set used for the implementation. For example, in an
EBCDIC environment, lowercase alphabetics precede uppercase, and the digits 0–9 are higher than all
alphabetics.

The comparison operators and operations are:
=

True if the terms are equal (numerically or when padded, and so forth)
\=, ¬=, /=

True if the terms are not equal (inverse of =)
>

Greater than
<

Less than
><

Greater than or less than (same as not equal)
<>

Greater than or less than (same as not equal)
>=

Greater than or equal to
\<, ¬<

Not less than
<=

Less than or equal to
\>, ¬>

Not greater than
==

True if terms are strictly equal (identical)

REXX General Concepts

Chapter 1. REXX General Concepts 9

\==, ¬==, /==
True if the terms are NOT strictly equal (inverse of ==)

>>
Strictly greater than

<<
Strictly less than

>>=
Strictly greater than or equal to

\<<, ¬<<
Strictly NOT less than

<<=
Strictly less than or equal to

\>>, ¬>>
Strictly NOT greater than

Note: Throughout the language, the not character, ¬, is synonymous with the backslash (\). You can use
the two characters interchangeably, according to availability and personal preference. The backslash can
appear in the following operators: \ (prefix not), \=, \==, \<, \>, \<<, and \>>.

Logical (Boolean)
A character string is taken to have the value false if it is 0, and true if it is 1. The logical operators take one
or two such values (values other than 0 or 1 are not allowed) and return 0 or 1 as appropriate:
&

AND

Returns 1 if both terms are true.

|
Inclusive OR

Returns 1 if either term is true.

&&
Exclusive OR

Returns 1 if either (but not both) is true.

Prefix \,¬
Logical NOT

Negates; 1 becomes 0, and 0 becomes 1.

Parentheses and Operator Precedence
Expression evaluation is from left to right; parentheses and operator precedence modify this:

• When parentheses are encountered (other than those that identify function calls) the entire
subexpression between the parentheses is evaluated immediately when the term is required.

• When the sequence:

term1 operator1 term2 operator2 term3

is encountered, and operator2 has a higher precedence than operator1, the subexpression (term2
operator2 term3) is evaluated first. The same rule is applied repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in the expression (that is, as soon as
they are encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to 13 (rather than the
25 that would result if strict left to right evaluation occurred). To force the addition to occur before the

REXX General Concepts

10 z/VM: 7.3 REXX/VM Reference

multiplication, you could rewrite the expression as (3+2)*5. Adding the parentheses makes the first
three tokens a subexpression. Similarly, the expression -3**2 evaluates to 9 (instead of -9) because the
prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

Operators Description

+ - ¬ \ (prefix operators)

** (power)

* / % // (multiply and divide)

+ - (add and subtract)

(blank) || (abuttal) (concatenation with or without blank)

= > < (comparison operators)

== >> <<

\= ¬=

>< <>

\> ¬>

\< ¬<

\== ¬==

\>> ¬>>

\<< ¬<<

>= >>=

<= <<=

/= /==

& (and)

| && (or, exclusive or)

Examples:

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value is Monday, and other
variables are uninitialized. Then:

A+5 -> '8'
A-4*2 -> '-5'
A/2 -> '1.5'
0.5**2 -> '0.25'
(A+1)>7 -> '0' /* that is, False */
' '='' -> '1' /* that is, True */
' '=='' -> '0' /* that is, False */
' '¬=='' -> '1' /* that is, True */
(A+1)*3=12 -> '1' /* that is, True */
'077'>'11' -> '1' /* that is, True */
'077' >> '11' -> '0' /* that is, False */
'abc' >> 'ab' -> '1' /* that is, True */
'abc' << 'abd' -> '1' /* that is, True */
'ab ' << 'abd' -> '1' /* that is, True */
Today is Day -> 'TODAY IS Monday'
'If it is' day -> 'If it is Monday'
Substr(Day,2,3) -> 'ond' /* Substr is a function */
'!'xxx'!' -> '!XXX!'
'000000' >> '0E0000' -> '1' /* that is, True */

REXX General Concepts

Chapter 1. REXX General Concepts 11

Note: The last example would give a different answer if the > operator had been used rather than >>.
Because '0E0000' is a valid number in exponential notation, a numeric comparison is done; thus '0E0000'
and '000000' evaluate as equal. The REXX order of precedence usually causes no difficulty because it
is the same as in conventional algebra and other computer languages. There are two differences from
common notations:

• The prefix minus operator always has a higher priority than the power operator.
• Power operators (like other operators) are evaluated left-to-right.

For example:

-3**2 == 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2**2**3 == 64 /* not 256 */

Clauses and Instructions
Clauses can be subdivided into the following types:

• Null clauses
• Labels
• Instructions
• Assignments
• Keyword instructions
• Commands.

Null Clauses
A clause consisting only of blanks or comments or both is a null clause. It is completely ignored (except
that if it includes a comment it is traced, if appropriate).

Note: A null clause is not an instruction; for example, putting an extra semicolon after the THEN or ELSE
in an IF instruction is not equivalent to using a dummy instruction (as it would be in PL/I). The NOP
instruction is provided for this purpose.

Labels
A clause that consists of a single symbol followed by a colon is a label. The colon in this context implies a
semicolon (clause separator), so no semicolon is required. Labels identify the targets of CALL instructions,
SIGNAL instructions, and internal function calls. More than one label may precede any instruction. Labels
are treated as null clauses and can be traced selectively to aid debugging.

Any number of successive clauses may be labels. This permits multiple labels before other clauses.
Duplicate labels are permitted, but control passes only to the first of any duplicates in a program. The
duplicate labels occurring later can be traced but cannot be used as a target of a CALL, SIGNAL, or
function invocation.

You can use DBCS characters. See Appendix B, “Double-Byte Character Set (DBCS) Support,” on page 283
for more information.

Note: Labels within a WHEN/THEN/DO construct will not be traced.

Instructions
An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be: assignments, keyword instructions, or commands.

REXX General Concepts

12 z/VM: 7.3 REXX/VM Reference

Assignments
A single clause of the form symbol=expression is an instruction known as an assignment. An assignment
gives a variable a (new) value. See “Assignments and Symbols” on page 13.

Keyword Instructions
A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control the external interfaces, the flow of control, and so forth. Some
keyword instructions can include nested instructions. In the following example, the DO construct (DO,
the group of instructions that follow it, and its associated END keyword) is considered a single keyword
instruction.

DO
 instruction
 instruction
 instruction
END

A subkeyword is a keyword that is reserved within the context of some particular instruction, for
example, the symbols TO and WHILE in the DO instruction.

Commands
A command is a clause consisting of only an expression. The expression is evaluated and the result is
passed as a command string to some external environment.

Assignments and Symbols
A variable is an object whose value can change during the running of a REXX program. The process of
changing the value of a variable is called assigning a new value to it. The value of a variable is a single
character string, of any length, that may contain any characters.

You can assign a new value to a variable with the ARG, PARSE, or PULL instructions, the VALUE built-in
function, or the variable pool interface, but the most common way of changing the value of a variable is
the assignment instruction itself. Any clause of the form:

symbol=expression;

is taken to be an assignment. The result of expression becomes the new value of the variable named
by the symbol to the left of the equal sign. Currently, on VM if you omit expression, the variable is
set to the null string. However, it is recommended that you explicitly set a variable to the null string:
symbol=''.

Example:

/* Next line gives FRED the value "Frederic" */
Fred='Frederic'

The symbol naming the variable cannot begin with a digit (0–9) or a period. (Without this restriction on the
first character of a variable name, you could redefine a number; for example 3=4; would give a variable
called 3 the value 4.)

You can use a symbol in an expression even if you have not assigned it a value, because a symbol
has a defined value at all times. A variable you have not assigned a value is uninitialized. Its value is
the characters of the symbol itself, translated to uppercase (that is, lowercase a–z to uppercase A–Z).
However, if it is a compound symbol (described under “Compound Symbols” on page 14), its value is the
derived name of the symbol.

Example:

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

REXX General Concepts

Chapter 1. REXX General Concepts 13

The meaning of a symbol in REXX varies according to its context. As a term in an expression (rather than
a keyword of some kind, for example), a symbol belongs to one of four groups: constant symbols, simple
symbols, compound symbols, and stems. Constant symbols cannot be assigned new values. You can
use simple symbols for variables where the name corresponds to a single value. You can use compound
symbols and stems for more complex collections of variables, such as arrays and lists.

Constant Symbols
A constant symbol starts with a digit (0–9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters of
the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

77
827.53
.12345
12e5 /* Same as 12E5 */
3D
17E-3

Simple Symbols
A simple symbol does not contain any periods and does not start with a digit (0–9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
?12
<.D.A.T.E>

Compound Symbols
A compound symbol permits the substitution of variables within its name when you refer to it. A
compound symbol contains at least one period and at least two other characters. It cannot start with
a digit or a period, and if there is only one period in the compound symbol, it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period). This is followed
by a tail, parts of the name (delimited by periods) that are constant symbols, simple symbols, or null.
The derived name of a compound symbol is the stem of the symbol, in uppercase, followed by the tail,
in which all simple symbols have been replaced with their values. A tail itself can be comprised of the
characters A–Z, a–z, 0–9, and @ # $ ¢ . ! ? and underscore. The value of a tail can be any character
string, including the null string and strings containing blanks. For example:

taila='* ('
tailb=''
stem.taila=99
stem.tailb=stem.taila
say stem.tailb /* Displays: 99 */
/* But the following instruction would cause an error */
/* say stem.* (*/

You cannot use constant symbols with embedded signs (for example, 12.3E+5) after a stem; in this case,
the whole symbol would not be a valid symbol.

These are compound symbols:

FRED.3
Array.I.J
AMESSY..One.2.
<.F.R.E.D>.<.A.B>

REXX General Concepts

14 z/VM: 7.3 REXX/VM Reference

Before the symbol is used (that is, at the time of reference), the language processor substitutes the values
of any simple symbols in the tail (I, J, and One in the examples), thus generating a new, derived name.
This derived name is then used just like a simple symbol. That is, its value is by default the derived name,
or (if it has been used as the target of an assignment) its value is the value of the variable named by the
derived name.

The substitution into the symbol that takes place permits arbitrary indexing (subscripting) of collections
of variables that have a common stem. Note that the values substituted can contain any characters
(including periods and blanks). Substitution is done only one time.

To summarize: the derived name of a compound variable that is referred to by the symbol

s0.s1.s2. --- .sn

is given by

d0.v1.v2. --- .vn

where d0 is the uppercase form of the symbol s0, and v1 to vn are the values of the constant or simple
symbols s1 through sn. Any of the symbols s1-sn can be null. The values v1-vn can also be null and can
contain any characters (in particular, lowercase characters are not translated to uppercase, blanks are not
removed, and periods have no special significance).

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3' to the variable A */
z=4 /* '4' to Z */
c='Fred' /* 'Fred' to C */
a.z='Fred' /* 'Fred' to A.4 */
a.fred=5 /* '5' to A.FRED */
a.c='Bill' /* 'Bill' to A.Fred */
c.c=a.fred /* '5' to C.Fred */
y.a.z='Annie' /* 'Annie' to Y.3.4 */

say a z c a.a a.z a.c c.a a.fred y.a.4
/* displays the string: */
/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

e = 'barney' /* sets E to lower case 'barney' */
d.barney = 6 /* sets D.BARNEY to 6 */
d.e = 7 /* sets D.barney to 7 */
f = e /* sets F to 'barney' */
say d.barney /* displays 6 , value of D.BARNEY */
say d.f /* displays 7 , value of D.barney */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering great scope for the creative programmer. A useful application is to set
up an array in which the subscripts are taken from the value of one or more variables, effecting a form of
associative memory (content addressable).

Implementation maximum: The length of a variable name, before and after substitution, cannot exceed
250 characters.

Stems
A stem is a symbol that contains just one period, which is the last character. It cannot start with a digit or
a period.

These are stems:

FRED.
A.
<.A.B>.

By default, the value of a stem is the string consisting of the characters of its symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its value is the value of that
variable.

REXX General Concepts

Chapter 1. REXX General Concepts 15

Further, when a stem is used as the target of an assignment, all possible compound variables whose
names begin with that stem receive the new value, whether they previously had a value or not. Following
the assignment, a reference to any compound symbol with that stem returns the new value until another
value is assigned to the stem or to the individual variable.

For example:

hole. = "empty"
hole.9 = "full"

say hole.1 hole.mouse hole.9

 /* says "empty empty full" */

Thus, you can give a whole collection of variables the same value. For example:

total. = 0
do forever
 say "Enter an amount and a name:"
 pull amount name
 if datatype(amount)='CHAR' then leave
 total.name = total.name + amount
 end

Note: You can always obtain the value that has been assigned to the whole collection of variables by using
the stem. However, this is not the same as using a compound variable whose derived name is the same as
the stem. For example:

total. = 0
null = ""
total.null = total.null + 5
say total. total.null /* says "0 5" */

You can manipulate collections of variables, referred to by their stem, with the DROP and PROCEDURE
instructions. DROP FRED. drops all variables with that stem (see “DROP” on page 36), and PROCEDURE
EXPOSE FRED. exposes all possible variables with that stem (see “PROCEDURE” on page 51).

1. When the ARG, PARSE, or PULL instruction or the VALUE built-in function or the variable pool interface
changes a variable, the effect is identical with an assignment. Anywhere a value can be assigned, using
a stem sets an entire collection of variables.

2. Because an expression can include the operator =, and an instruction may consist purely of an
expression (see “Commands to External Environments” on page 16), a possible ambiguity is resolved
by the following rule: any clause that starts with a symbol and whose second token is (or starts with)
an equal sign (=) is an assignment, rather than an expression (or a keyword instruction). This is not
a restriction, because you can ensure the clause is processed as a command in several ways, such
as by putting a null string before the first name, or by enclosing the first part of the expression in
parentheses.

Similarly, if you unintentionally use a REXX keyword as the variable name in an assignment, this should
not cause confusion. For example, the clause:

Address='10 Downing Street';

is an assignment, not an ADDRESS instruction.
3. You can use the SYMBOL function (see “SYMBOL” on page 108) to test whether a symbol has been

assigned a value. In addition, you can set SIGNAL ON NOVALUE to trap the use of any uninitialized
variables (except when they are tails in compound variables—see Chapter 6, “Conditions and Condition
Traps,” on page 165).

Commands to External Environments
Issuing commands to the surrounding environment is an integral part of REXX.

REXX General Concepts

16 z/VM: 7.3 REXX/VM Reference

Environment
The system under which REXX programs run is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a REXX program. You
can change the environment by using the ADDRESS instruction. You can find out the name of the
current environment by using the ADDRESS built-in function. The underlying operating system defines
environments external to the REXX program.

The environment selected depends on the caller; for example if a program is called from CMS, the default
environment is CMS. If called from an editor that accepts subcommands from the language processor, the
default environment may be that editor.

You can also write a REXX program that issues editor subcommands and run your program during an
editing session. Your program can inspect the file being edited, issue subcommands to make changes,
test return codes to check that the subcommands have been processed as you expected, and display
messages to the user when appropriate. The user can call your program by entering its name on
the editor's command line. For a discussion of this mechanism see “Issuing Subcommands from Your
Program” on page 20.

Commands
To send a command to the currently addressed environment, use a clause of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null string), which is then
prepared as appropriate and submitted to the underlying system. Any part of the expression not to be
evaluated should be enclosed in quotation marks.

The environment then processes the command, which may have side-effects. It eventually returns control
to the language processor, after setting a return code. A return code is a string, typically a number, that
returns some information about the command that has been processed. A return code usually indicates
if a command was successful or not but can also represent other information. The language processor
places this return code in the REXX special variable RC. See “Special Variables” on page 168.

In addition to setting a return code, the underlying system may also indicate to the language processor if
an error or failure occurred. An error is a condition raised by a command for which a program that uses
that command would usually be expected to be prepared. (For example, a locate command to an editing
system might report requested string not found as an error.) A failure is a condition raised by a
command for which a program that uses that command would not usually be expected to recover (for
example, a command that is not executable or cannot be found).

Errors and failures in commands can affect REXX processing if a condition trap for ERROR or FAILURE is
ON (see Chapter 6, “Conditions and Condition Traps,” on page 165). They may also cause the command to
be traced if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is the default—see
“TRACE” on page 61.

Here is an example of submitting a command. If the underlying system is CMS, the sequence:

filename = "JACK"; filetype = "RABBIT"
"STATE" filename filetype "A"

results in the string STATE JACK RABBIT A being submitted to CMS. The simpler expression:

"STATE JACK RABBIT A"

has the same effect.

On return, the return code placed in RC has the value 0 if the file JACK RABBIT A exists, or 28 if it does
not.

Note: Remember that the expression is evaluated before it is passed to the environment. Enclose in
quotation marks any part of the expression that is not to be evaluated.

REXX General Concepts

Chapter 1. REXX General Concepts 17

Examples:

 "erase * listing" /* * does not mean "multiplied by" */

 "load" prog1 "(start" /* (is not unmatched parenthesis */

 a = any
 "access 192 b/a" /* / does not mean "divided by" */

The CMS Environment
When the environment selected is CMS (which is the default for execs), the command is called exactly as
if it had been entered from the command line (but cleanup after the command has completed is different).
See “Calls Originating from a Clause That Is an Expression” on page 182. The language processor creates
two parameter lists:

• The result of the expression, tokenized and translated to uppercase, is placed in a Tokenized Parameter
List.

• The result of the expression, unchanged, is placed in an Extended Parameter List.

The language processor then asks CMS to process the command. This is the same search order that
is used for a command entered from the CMS interactive command environment. The first token of the
command is taken as the command name. As soon as the command name is found, the search stops and
the command is processed.

The search order is:

1. Search for an exec with the specified command name:

a. Search for an exec in storage. If an exec with this name is found, CMS determines whether the exec
has a USER, SYSTEM, or SHARED attribute. If the exec has the USER or SYSTEM attribute, it is run.

If the exec has the SHARED attribute, the INSTSEG setting of the SET command is checked. When
INSTSEG is ON, all accessed directories and minidisks are searched for an exec with that name.
(To find a file in a directory, read authority is required on both the file and the directory.) If an exec
is found, the file mode of the EXEC is compared to the file mode of the CMS installation saved
segment. If the file mode of the saved segment is equal to or higher (closer to A) than the file mode
of the directory or minidisk, then the exec in the saved segment is run. Otherwise, the exec in the
directory or on the minidisk is run. However, if the exec is in a directory and the file is locked, the
processing fails with an error message.

b. Search the table of active (open) files for a file with the specified command name and a file type of
EXEC. If more than one open file is found, the one opened first is used.

c. Search for a file with the specified command name and a file type of EXEC on any currently
accessed disk or directory, using the standard CMS search order (A through Z).

Note: To find a file in a directory, read authority is required on both the file and the directory. If the
file is in a directory and the file is locked, the processing fails with an error message.

2. Search for a translation or synonym for the command name. If found, search for an exec with the valid
translation or synonym by repeating Step 1. (For a description of the translation tables, see the SET
TRANSLATE command in the z/VM: CMS Commands and Utilities Reference. For a description of the
synonym tables, see the SYNONYM command in the z/VM: CMS Commands and Utilities Reference.)

3. Using a CMSCALL, CMS now searches for:

a. A command installed as a nucleus extension
b. A transient module already loaded with the command name
c. A nucleus resident command
d. A MODULE.

Note: For more information on using CMSCALL, see z/VM: CMS Application Development Guide for
Assembler.

REXX General Concepts

18 z/VM: 7.3 REXX/VM Reference

For further explanation about the CMS search order, see z/VM: CMS Commands and Utilities Reference.
4. Search for a translation or synonym of the specified command name. If found, search for a module

with the valid translation or synonym by repeating Step 3.
5. If CMS does not know the command name (that is, all the above fails), it is changed to uppercase and

the language processor asks CMS to process the command as a CP command.

To call a CP command explicitly, use the CMS command prefix CP.

To illustrate these last two points, suppose your exec contains the clause:

cp spool printer class s

You may have a "cover" program, CP EXEC, which is intended to intercept all explicit CP commands. If
such a program exists, it is called. If not, the CP command SPOOL is called. You prefix your command with
the word cp if you want to avoid invoking SPOOL EXEC or SPOOL MODULE.

Notes:

1. If the command is passed to CP, it is processed as if it had been entered from the CMS command line.
(Specifically, if the password suppression facility is in use, a CP command that provides a password is
rejected. To enter such a command, use ADDRESS COMMAND CP cp_command.)

2. The searches for execs, translations, synonyms, and CP commands are all affected by the CMS SET
command (IMPEX, ABBREV, IMPCP, and TRANSLATE options). The full search order just described
assumes these are all ON.

3. Because execs are often used as "covers" or extensions to existing modules, there is one exception
to this order. A command issued from within an exec does not implicitly call that same exec and,
therefore, cause a possible recursive loop. To make your exec call itself recursively, use the CALL
instruction or the EXEC command.

4. When the environment is CMS, the language processor provides both a Tokenized Parameter List and
an Extended Parameter List. For example, the sequence:

filename=" Jack"; filetype="Assemblersource"
State filename filetype A
Myexec filename filetype A

results in both a Tokenized Parameter List and an Extended Parameter List being built for each
command and submitted to CMS. The STATE command uses the Tokenized Parameter List:

(STATE) (JACK) (ASSEMBLE) (A)

while MYEXEC (if it is a REXX EXEC) uses the Extended Parameter List:

(MYEXEC Jack Assemblersource A)

For full details of this assembler language interface, see Chapter 8, “System Interfaces,” on page 181.

The COMMAND Environment
To enter commands without searching for execs or CP commands and without any translation of the
parameter lists (without any uppercasing of the Tokenized Parameter List) you can use the environment
called COMMAND. Simply include the instruction ADDRESS COMMAND at the start of your exec (see
“ADDRESS” on page 24). Commands are passed to CMS directly, using CMSCALL (see “Calls Originating
from a Clause That Is an Expression” on page 182).

The COMMAND environment name is recommended for use in "system" execs that make heavy use of
modules and nucleus functions. This makes these execs more predictable (user execs cannot usurp
commands, and operations can be independent of the user's setting of IMPCP and IMPEX) and faster (the
exec and first abbreviation searches are avoided).

REXX General Concepts

Chapter 1. REXX General Concepts 19

Issuing Subcommands from Your Program
A command CMS is processing may accept subcommands. Usually, the command provides its own
command line, from which it takes subcommands the user enters. But this can be extended so that the
command accepts subcommands from a REXX program.

A typical example is an editor. You can write a REXX program that issues editor subcommands and
run your program during an editing session. Your program can inspect the file being edited, issue
subcommands to make changes, test return codes to check that the subcommands have been processed
as you expected, and display messages to the user when appropriate. The user calls your program by
entering its name on the editor's command line.

The editor (or any other program that is designed to accept subcommands from the language processor)
must first create a subcommand entry point, naming the environment to which subcommands may
be addressed, and then call your program. Programs that can issue subcommands are called macros.
The REXX language processor has the convention that, unless instructed otherwise, it directs commands
to a subcommand environment whose name is the file type of the macro. Usually, editors name their
subcommand entry point with their own name and claim that name as the file type to be used for their
macros.

For example, the XEDIT editor sets up a subcommand environment named XEDIT, and the file type
for XEDIT macros is also XEDIT. Macros issue subcommands to the editor (for example, NEXT 4 or
EXTRACT /ZONE/). The editor "replies" with a return code (which the language processor assigns to
the special variable RC) and sometimes with further information, which may be assigned to other REXX
variables. For example, a return code of 1 from NEXT 4 indicates that end-of-file has been reached;
EXTRACT /ZONE/ assigns the current limits of the zone of XEDIT to the REXX variables ZONE.1 and
ZONE.2. By testing RC and the other REXX variables, the macro has the ability to react appropriately, and
the full flexibility of a programmable interface is available.

You can alter the default environment (between various subcommand environments or the host
environment) by using the ADDRESS instruction.

Note: The CMS SUBCOM function creates, queries, or deletes subcommand entry points.

Only the query form of the SUBCOM function is a subcommand, in the sense that it can be entered from
the terminal (or from a REXX program). The form of this subcommand is:

SUBCOM name

This yields a return code of 0 if name is currently defined as a subcommand environment name, or 1 if it is
not.

The create, delete, and query subfunctions of the SUBCOM function are described in the z/VM: CMS
Macros and Functions Reference. Note that there is also a SUBCOM assembler language macro. The
SUBCOM macro is described in the z/VM: CMS Application Development Guide for Assembler and z/VM:
CMS Macros and Functions Reference.

Using the Online HELP Facility
You can receive online information about the commands described in this book using the z/VM HELP
Facility. For example, to display a menu of REXX functions and instructions, enter:

help rexx menu

To display information about a specific REXX function or instruction, (SAY in this example), enter:

help rexx say

You can also display information about a message by entering one of the following commands:

help msgid or help msg msgid

REXX General Concepts

20 z/VM: 7.3 REXX/VM Reference

For example, to display information about message DMSREX460E, you can enter one of the following
commands:

help dmsrex460e or help dms460e or help msg dms460e

For more information about using the HELP Facility, see z/VM: CMS User's Guide. To display the main HELP
Task Menu, enter:

help

For more information about the HELP command, see z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

REXX General Concepts

Chapter 1. REXX General Concepts 21

REXX General Concepts

22 z/VM: 7.3 REXX/VM Reference

Chapter 2. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies
the instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords; other words (such as expression) denote a collection of tokens as defined previously.
Note, however, that the keywords and subkeywords are not case dependent; the symbols if, If, and iF
all have the same effect. Note also that you can usually omit most of the clause delimiters (;) shown
because they are implied by the end of a line.

As explained in “Keyword Instructions” on page 13, a keyword instruction is recognized only if its keyword
is the first token in a clause, and if the second token does not start with an = character (implying an
assignment) or a colon (implying a label). The keywords ELSE, END, OTHERWISE, THEN, and WHEN are
recognized in the same situation. Note that any clause that starts with a keyword defined by REXX cannot
be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function. A syntax
error results if the keywords are not in their correct positions in a DO, IF, or SELECT instruction. (The
keyword THEN is also recognized in the body of an IF or WHEN clause.) In other contexts, keywords
are not reserved and can be used as labels or as the names of variables (though this is generally not
recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of individual instructions.
For example, the symbols VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions,
respectively. For details, see the description of each instruction. For a general discussion on reserved
keywords, see “Reserved Keywords” on page 213.

Blanks adjacent to keywords have no effect other than to separate the keyword from the subsequent
token. One or more blanks following VALUE are required to separate the expression from the subkeyword
in the example following:

ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following example, although it would
add to the readability:

ADDRESS VALUE'ENVIR'||number

© Copyright IBM Corp. 1990, 2022 23

ADDRESS

Note: This HELP file contains both the ADDRESS instruction and the ADDRESS function. Scroll down for
the function.

ADDRESS

environment

expression

VALUE

expression1

;

ADDRESS temporarily or permanently changes the destination of commands. Commands are strings
sent to an external environment. You can send commands by specifying clauses consisting of only an
expression or by using the ADDRESS instruction.

The concept of alternative subcommand environments is described in “The COMMAND Environment” on
page 19.

To send a single command to a specified environment, code an environment, a literal string or a single
symbol, which is taken to be a constant, followed by an expression. (The environment name is the name
of an external procedure or process that can process commands.) The environment name is limited to
eight characters. The expression is evaluated, and the resulting string is routed to the environment to be
processed as a command. (Enclose in quotation marks any part of the expression you do not want to
be evaluated.) After execution of the command, environment is set back to whatever it was before, thus
temporarily changing the destination for a single command. The special variable RC is set, just as it would
be for other commands. (See “Commands” on page 17.) Errors and failures in commands processed in
this way are trapped or traced as usual.

Example:

ADDRESS CMS 'STATE PROFILE EXEC A' /* VM */

If you specify only environment, a lasting change of destination occurs: all commands that follow (clauses
that are neither REXX instructions nor assignment instructions) are routed to the specified command
environment, until the next ADDRESS instruction is processed. The previously selected environment is
saved.

Example:

address cms
'STATE PROFILE EXEC A'
if rc=0 then 'COPY PROFILE EXEC A TEMP = ='
ADDRESS XEDIT

Similarly, you can use the VALUE form to make a lasting change to the environment. Here expression1
(which may be simply a variable name) is evaluated, and the result forms the name of the environment.
You can omit the subkeyword VALUE if expression1 does not begin with a literal string or symbol (that is, if
it starts with a special character, such as an operator character or parenthesis).

Example:

ADDRESS ('ENVIR'||number) /* Same as ADDRESS VALUE 'ENVIR'||number */

With no arguments, commands are routed back to the environment that was selected before the previous
lasting change of environment was made, and the current environment name is saved. After changing

ADDRESS

24 z/VM: 7.3 REXX/VM Reference

the environment, repeated execution of ADDRESS alone, therefore, switches the command destination
between two environments alternately.

The two environment names are automatically saved across internal and external subroutine and function
calls. See the CALL instruction (“CALL” on page 29) for more details.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function (see “ADDRESS” on page 72).

Note: In CMS, there are environment names that have special meaning. Following are three commonly
used environment names:
CMS

This environment name, which is the default for execs, implies full command resolution just as is
provided in usual interactive command (terminal) mode. (See “The CMS Environment” on page 18 for
details.)

CMSMIXED
This environment name implies full command resolution just as is provided in usual interactive
command (terminal) mode. (See “The CMS Environment” on page 18 for details). The difference
between this and ADDRESS CMS is that the input on ADDRESS CMSMIXED is not changed to
uppercase—the case is kept just as you typed it.

Also, there is only a subset of commands that you can use in this new subcommand environment.
These are: COPYFILE, DISCARD, ERASE, and RENAME. If you enter anything other than these, you will
get a return code of -7.

Here are some examples and their results:

address cmsmixed 'SENDFILE my file A'
- ADDRESS CMSMIXED 'SENDFILE my file A'
+++ RC(-7) +++
Ready(-0007);

This example did not work because SENDFILE is not a command that is allowed in this environment.

address cmsmixed 'erase my file A'
- ADDRESS CMSMIXED 'erase my fil A'
+++ RC(-7) +++
Ready(-0007);

This example did not work because erase has no meaning in lowercase.

address cmsmixed 'ERASE my file a'
DMSSTT048E Invalid filemode a
Ready;

This example did not work because the file mode has to be in uppercase.

address cmsmixed 'ERASE my file A'
Ready;

COMMAND
This implies basic CMS CMSCALL command resolution. To call an exec, prefix the command with the
word EXEC; to send a command to CP, use the prefix CP (see “The COMMAND Environment” on page
19).

''
(Null); same as COMMAND. Note that this is not the same as ADDRESS with no arguments, which
switches to the previous environment.

Note: Be aware of CMS storage management techniques if you will be using host commands.

Syntax Notes:

When using CMS or COMMAND, you can put the word in quotation marks, but it must be in uppercase. For
example, these will work:

ADDRESS

Chapter 2. Keyword Instructions 25

address cms 'STATE PROFILE EXEC A'
ADDRESS CMS
ADDRESS 'CMS' your_host_command

But this will not work:

address 'cms'

For information about using ADDRESS to call CPI Communications routines, see Chapter 12, “Invoking
Communications Routines,” on page 217.

For information about using ADDRESS to call CPI Resource Recovery routines, see Chapter 13, “Invoking
Resource Recovery Routines,” on page 219.

For information about using ADDRESS to call OPENVM-type CSL routines (such as OpenExtensions™ for
z/VM callable services), see Chapter 14, “Invoking OPENVM Routines,” on page 221.

For more information about how CMS handles commands and how it manages storage for commands
during and after processing, see the z/VM: CMS Commands and Utilities Reference.

ADDRESS

26 z/VM: 7.3 REXX/VM Reference

ARG

ARG

template_list

;

ARG retrieves the argument strings provided to a program or internal routine and assigns them to
variables. It is a short form of the instruction:

PARSE UPPER ARG

template_list

;

The template_list is often a single template but can be several templates separated by commas. If
specified, each template is a list of symbols separated by blanks or patterns or both.

Unless a subroutine or internal function is being processed, the strings passed as parameters to the
program are parsed into variables according to the rules described in the section on parsing (Chapter 4,
“Parsing,” on page 139).

If a subroutine or internal function is being processed, the data used will be the argument strings that the
caller passes to the routine.

In either case, the language processor translates the passed strings to uppercase (that is, lowercase a–z
to uppercase A–Z) before processing them. Use the PARSE ARG instruction if you do not want uppercase
translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source string or strings
(typically with different templates). The source string does not change. The only restrictions on the length
or content of the data parsed are those the caller imposes.

Example:

/* String passed is "Easy Rider" */

Arg adjective noun .

/* Now: ADJECTIVE contains 'EASY' */
/* NOUN contains 'RIDER' */

If you expect more than one string to be available to the program or routine, you can use a comma in the
parsing template_list so each template is selected in turn.

Example:

/* Function is called by FRED('data X',1,5) */

Fred: Arg string, num1, num2

/* Now: STRING contains 'DATA X' */
/* NUM1 contains '1' */
/* NUM2 contains '5' */

Note:

1. The ARG built-in function can also retrieve or check the argument strings to a REXX program or internal
routine. See “ARG (Argument)” on page 72.

2. The source of the data being processed is also made available on entry to the program. See the PARSE
instruction (SOURCE option) on “PARSE” on page 48 for details.

ARG

Chapter 2. Keyword Instructions 27

3. A string passed from CMS command level is restricted to 255 characters (including the name of the
exec being called).

Note for CMS EXEC and EXEC 2 Users: Unlike CMS EXEC and EXEC 2, the arguments passed to REXX
programs can only be used after executing either the ARG or PARSE ARG instructions (or retrieving their
value with the ARG built-in function). They are not immediately available in predefined variables as in the
other languages.

ARG

28 z/VM: 7.3 REXX/VM Reference

CALL

CALL name

,

expression

OFF ERROR

FAILURE

HALT

NOTREADY

ON ERROR

FAILURE

HALT

NOTREADY

NAME trapname

;

CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify ON
or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the specified
condition trap. ON turns on the specified condition trap. All information on condition traps is contained in
Chapter 6, “Conditions and Condition Traps,” on page 165.

To call a routine, specify name, a literal string or symbol that is taken as a constant. The name must be a
symbol, which is treated literally, or a literal string. The routine called can be:
An internal routine

A function or subroutine that is in the same program as the CALL instruction or function call that calls
it.

A built-in routine
A function (which may be called as a subroutine) that is defined as part of the REXX language.

An external routine
A function or subroutine that is neither built-in nor in the same program as the CALL instruction or
function call that calls it.

If name is a string (that is, you specify name in quotation marks), the search for internal routines is
bypassed, and only a built-in function or an external routine is called. Note that the names of built-in
functions (and generally the names of external routines, too) are in uppercase; therefore, you should
uppercase the name in the literal string.

The called routine can optionally return a result, and when it does, the CALL instruction is functionally
identical with the clause:

result=name (

,

expression

) ;

If the called routine does not return a result, then you will get an error if you call it as a function (as
previously shown).

VM supports specifying up to 20 expressions, separated by commas. The expressions are evaluated
in order from left to right and form the argument strings during execution of the routine. Any ARG or
PARSE ARG instruction or ARG built-in function in the called routine accesses these strings rather than

CALL

Chapter 2. Keyword Instructions 29

any previously active in the calling program, until control returns to the CALL instruction. You can omit
expressions, if appropriate, by including extra commas.

The CALL then causes a branch to the routine called name, using exactly the same mechanism as function
calls. (See Chapter 3, “Functions,” on page 67.) The search order is in the section on functions (see
“Search Order” on page 68) but briefly is as follows:
Internal routines:

These are sequences of instructions inside the same program, starting at the label that matches name
in the CALL instruction. If you specify the routine name in quotation marks, then an internal routine is
not considered for that search order. You can use SIGNAL and CALL together to call an internal routine
whose name is determined at the time of execution; this is known as a multi-way call (see “SIGNAL”
on page 59). The RETURN instruction completes the execution of an internal routine.

Built-in routines:
These are routines built into the language processor for providing various functions. They always
return a string that is the result of the routine. (See “Built-in Functions” on page 71.)

External routines:
Users can write or use routines that are external to the language processor and the calling program.
You can code an external routine in REXX or in any language that supports the system-dependent
interfaces. See “Function Packages” on page 192 for details. If the CALL instruction calls an external
routine written in REXX as a subroutine, you can retrieve any argument strings with the ARG or PARSE
ARG instructions or the ARG built-in function.

During execution of an internal routine, all variables previously known are generally accessible. However,
the PROCEDURE instruction can set up a local variables environment to protect the subroutine and caller
from each other. The EXPOSE option on the PROCEDURE instruction can expose selected variables to a
routine.

Calling an external program as a subroutine is similar to calling an internal routine. The external routine,
however, is an implicit PROCEDURE in that all the caller's variables are always hidden. The status of
internal values (NUMERIC settings, and so forth) start with their defaults (rather than inheriting those of
the caller). In addition, you can use EXIT to return from the routine.

When control reaches an internal routine the line number of the CALL instruction is available in the
variable SIGL (in the caller's variable environment). This may be used as a debug aid, as it is, therefore,
possible to find out how control reached a routine. Note that if the internal routine uses the PROCEDURE
instruction, then it needs to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should process a RETURN instruction, and at that point control returns to the
clause following the original CALL. If the RETURN instruction specified an expression, the variable RESULT
is set to the value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example:

/* Recursive subroutine execution... */
arg z
call factorial z
say z'! =' result
exit

factorial: procedure /* Calculate factorial by */
 arg n /* recursive invocation. */
 if n=0 then return 1
 call factorial n-1
 return result * n

During internal subroutine (and function) execution, all important pieces of information are automatically
saved and are then restored upon return from the routine. These are:

• The status of DO loops and other structures: Executing a SIGNAL while within a subroutine is safe
because DO loops, and so forth, that were active when the subroutine was called are not ended. (But
those currently active within the subroutine are ended.)

CALL

30 z/VM: 7.3 REXX/VM Reference

• Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it, and this
does not affect the tracing of the caller. Conversely, if you simply wish to debug a subroutine, you can
insert a TRACE Results at the start and tracing is automatically restored to the conditions at entry (for
example, Off) upon return. Similarly, ? (interactive debug) and ! (command inhibition) are saved across
routines.

• NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations (in “NUMERIC” on page
44) are saved and are then restored on return. A subroutine can, therefore, set the precision, and so
forth, that it needs to use without affecting the caller.

• ADDRESS settings: The current and previous destinations for commands (see “ADDRESS” on page 24)
are saved and are then restored on return.

• Condition traps: (CALL ON and SIGNAL ON) are saved and then restored on return. This means that
CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without affecting the
conditions the caller set up.

• Condition information: This information describes the state and origin of the current trapped condition.
The CONDITION built-in function returns this information. See “CONDITION” on page 78.

• Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its caller (see “TIME” on page
108), but because the time clock is saved across routine calls, a subroutine or internal function can
independently restart and use the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

• OPTIONS settings: ETMODE and EXMODE are saved and are then restored on return. For more
information, see “OPTIONS” on page 46.

Implementation maximum: The total nesting of control structures, which includes internal routine calls,
may not exceed a depth of 250.

CALL

Chapter 2. Keyword Instructions 31

DO

DO

repetitor conditional

;

instruction

END

name
;

repetitor
name=expri

TO exprt BY exprb FOR exprf

FOREVER

exprr

conditional
WHILE exprw

UNTIL expru

DO groups instructions together and optionally processes them repetitively. During repetitive execution, a
control variable (name) can be stepped through some range of values.

Syntax Notes:

• The exprr, expri, exprb, exprt, and exprf options (if present) are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or zero. If
necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

• The exprw or expru options (if present) can be any expression that evaluates to 1 or 0.
• The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in which they

are written.
• The instruction can be any instruction, including assignments, commands, and keyword instructions

(including any of the more complex constructs such as IF, SELECT, and the DO instruction itself).
• The subkeywords WHILE and UNTIL are reserved within a DO instruction, in that they cannot be used

as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt, exprb,
or exprf. FOREVER is also reserved, but only if it immediately follows the keyword DO and an equal sign
does not follow it.

• The exprb option defaults to 1, if relevant.

Simple DO Group
If you specify neither repetitor nor conditional, the construct merely groups a number of instructions
together. These are processed one time.

In the following example, the instructions are processed one time.

Example:

/* The two instructions between DO and END are both */
/* processed if A has the value "3". */
If a=3 then Do
 a=a+2

DO

32 z/VM: 7.3 REXX/VM Reference

 Say 'Smile!'
 End

Repetitive DO Loops
If a DO instruction has a repetitor phrase or a conditional phrase or both, the group of instructions forms a
repetitive DO loop. The instructions are processed according to the repetitor phrase, optionally modified
by the conditional phrase. See “Conditional Phrases (WHILE and UNTIL)” on page 34.

Simple Repetitive Loops
A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an expression that
evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the group of instructions is
nominally processed "forever", that is, until the condition is satisfied or a REXX instruction is processed
that ends the loop (for example, LEAVE).

Note: For a discussion on conditional phrases, see “Conditional Phrases (WHILE and UNTIL)” on page
34.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must result in a positive whole
number or zero), and the loop is then processed that many times.

Example:

/* This displays "Hello" five times */
Do 5
 say 'Hello'
 end

Note that, similar to the distinction between a command and an assignment, if the first token of exprr is a
symbol and the second token is (or starts with) =, the controlled form of repetitor is expected.

Controlled Repetitive Loops
The controlled form specifies name, a control variable that is assigned an initial value (the result of expri,
formatted as though 0 had been added) before the first execution of the instruction list. The variable is
then stepped (by adding the result of exprb) before the second and subsequent times that the instruction
list is processed.

The instruction list is processed repeatedly while the end condition (determined by the result of exprt) is
not met. If exprb is positive or 0, the loop is ended when name is greater than exprt. If negative, the loop
is ended when name is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated only one time, before the
loop begins and before the control variable is set to its initial value. The default value for exprb is 1. If
exprt is omitted, the loop runs indefinitely unless some other condition stops it.

Example:

Do I=3 to -2 by -1 /* Displays: */
 say i /* 3 */
 end /* 2 */
 /* 1 */
 /* 0 */
 /* -1 */
 /* -2 */

The numbers do not have to be whole numbers:

Example:

I=0.3 /* Displays: */
Do Y=I to I+4 by 0.7 /* 0.3 */
 say Y /* 1.0 */

DO

Chapter 2. Keyword Instructions 33

 end /* 1.7 */
 /* 2.4 */
 /* 3.1 */
 /* 3.8 */

The control variable can be altered within the loop, and this may affect the iteration of the loop. Altering
the value of the control variable is not usually considered good programming practice, though it may be
appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the control variable is
stepped, on the second and subsequent iterations). Therefore, if the end condition is met immediately,
the group of instructions can be skipped entirely. Note also that the control variable is referred to by
name. If (for example) the compound name A.I is used for the control variable, altering I within the loop
causes a change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In this case, you must
specify exprf, and it must evaluate to a positive whole number or zero. This acts just like the repetition
count in a simple repetitive loop, and sets a limit to the number of iterations around the loop if no other
condition stops it. Like the TO and BY expressions, it is evaluated only one time—when the DO instruction
is first processed and before the control variable receives its initial value. Like the TO condition, the FOR
condition is checked at the start of each iteration.

Example:

Do Y=0.3 to 4.3 by 0.7 for 3 /* Displays: */
 say Y /* 0.3 */
 end /* 1.0 */
 /* 1.7 */

In a controlled loop, the name describing the control variable can be specified on the END clause. This
name must match name in the DO clause in all respects except case (note that no substitution for
compound variables is carried out); a syntax error results if it does not. This enables the nesting of loops
to be checked automatically, with minimal overhead.

Example:

Do K=1 to 10
 ...
 ...
 End k /* Checks that this is the END for K loop */

Note: The NUMERIC settings may affect the successive values of the control variable, because REXX
arithmetic rules apply to the computation of stepping the control variable.

Conditional Phrases (WHILE and UNTIL)
A conditional phrase can modify the iteration of a repetitive DO loop. It may cause the termination of a
loop. It can follow any of the forms of repetitor (none, FOREVER, simple, or controlled). If you specify
WHILE or UNTIL, exprw or expru, respectively, is evaluated each time around the loop using the latest
values of all variables (and must evaluate to either 0 or 1), and the loop is ended if exprw evaluates to 0 or
expru evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of instructions. For an UNTIL loop, the
condition is evaluated at the bottom—before the control variable has been stepped.

Example:

Do I=1 to 10 by 2 until i>6
 say i
 end
/* Displays: "1" "3" "5" "7" */

Note: Using the LEAVE or ITERATE instructions can also modify the execution of repetitive loops.

DO

34 z/VM: 7.3 REXX/VM Reference

Figure 1. Concept of a DO Loop

DO

Chapter 2. Keyword Instructions 35

DROP

DROP name

(name)

;

DROP "unassigns" variables, that is, restores them to their original uninitialized state. If name is not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any other name by one or more blanks or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of variables to drop.
(Blanks are not necessary either inside or outside the parentheses, but you can add them if desired.) This
subsidiary list must follow the same rules as the original list (that is, be valid variable names, separated by
blanks) except that no parentheses are allowed.

Variables are dropped in sequence from left to right. It is not an error to specify a name more than one
time or to DROP a variable that is not known. If an exposed variable is named (see “PROCEDURE” on page
51), the variable in the older generation is dropped.

Example:

j=4
Drop a z.3 z.j
/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

Example:

mylist='c d e'
drop (mylist) f
/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period, as the last character), drops all
variables starting with that stem.

Example:

Drop z.
/* Drops all variables with names starting with Z. */

DROP

36 z/VM: 7.3 REXX/VM Reference

EXIT

EXIT

expression

;

EXIT leaves a program unconditionally. Optionally EXIT returns a character string to the caller. The
program is stopped immediately, even if an internal routine is currently being run. If no internal routine is
active, RETURN (see “RETURN” on page 56) and EXIT are identical in their effect on the program that is
being run.

If you specify expression, it is evaluated and the string resulting from the evaluation is passed back to the
caller when the program stops.

Example:

j=3
Exit j*4
/* Would exit with the string '12' */

If you do not specify expression, no data is passed back to the caller. If the program was called as an
external function, this is detected as an error—either immediately (if RETURN was used), or on return to
the caller (if EXIT was used).

"Running off the end" of the program is always equivalent to the instruction EXIT, in that it stops the
whole program and returns no result string.

Note: If the program was called through a command interface, an attempt is made to convert the returned
value to a return code acceptable by the underlying operating system. If the conversion fails, it is deemed
to be unsuccessful due to the underlying operating system and thus is not subject to trapping with
SIGNAL ON SYNTAX. The returned string must be a whole number whose value fits in a general register
(that is, must be in the range -2**31 through 2**31-1). Note also that the standard CMS ready message
displays only the last five digits of the return code (four digits for a negative return code).

EXIT

Chapter 2. Keyword Instructions 37

IF

IF expression
;

THEN
;

instruction

ELSE
;

instruction

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in 0 or 1.

The instruction after the THEN is processed only if the result is 1 (true). If you specify an ELSE, the
instruction after the ELSE is processed only if the result of the evaluation is 0 (false).

Example:

if answer='YES' then say 'OK!'
 else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before the ELSE.

Example:

if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors
and possible confusion when IF constructs are nested, as in the following example.

Example:

If answer = 'YES' Then
 If name = 'FRED' Then
 say 'OK, Fred.'
 Else
 nop
Else
 say 'Why not?'

Note:

1. The instruction can be any assignment, command, or keyword instruction, including any of the more
complex constructs such as DO, SELECT, or the IF instruction itself. A null clause is not an instruction,
so putting an extra semicolon (or label) after the THEN or ELSE is not equivalent to putting a dummy
instruction (as it would be in PL/I). The NOP instruction is provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword THEN is treated differently,
in that it need not start a clause. This allows the expression on the IF clause to be ended by the
THEN, without a ; being required. If this were not so, people who are accustomed to other computer
languages would experience considerable difficulties.

IF

38 z/VM: 7.3 REXX/VM Reference

INTERPRET

INTERPRET expression ;

INTERPRET processes instructions that have been built dynamically by evaluating expression.

The expression is evaluated and is then processed (interpreted) just as though the resulting string were a
line inserted into the program (and bracketed by a DO; and an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such as
DO…END and SELECT…END must be complete. For example, a string of instructions being interpreted
cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive DO loop) unless it also
contains the whole repetitive DO…END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Example:

data='FRED'
interpret data '= 4'
/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */

Example:

data='do 3; say "Hello there!"; end'
interpret data /* Displays: */
 /* Hello there! */
 /* Hello there! */
 /* Hello there! */

Note:

1. Label clauses are not permitted in an interpreted character string.
2. If you are new to the concept of the INTERPRET instruction and are getting results that you do not

understand, you may find that executing it with TRACE R or TRACE I in effect is helpful.

Example:

/* Here is a small REXX program. */
Trace Int
name='Kitty'
indirect='name'
interpret 'say "Hello"' indirect'"!"'

When this is run, it gives the trace:

kitty
 3 *-* name='Kitty'
 >L> "Kitty"
 4 *-* indirect='name'
 >L> "name"
 5 *-* interpret 'say "Hello"' indirect'"!"'
 >L> "say "Hello""
 >V> "name"
 >O> "say "Hello" name"
 >L> ""!""
 >O> "say "Hello" name"!""
 - say "Hello" name"!"
 >L> "Hello"
 >V> "Kitty"
 >O> "Hello Kitty"
 >L> "!"

INTERPRET

Chapter 2. Keyword Instructions 39

 >O> "Hello Kitty!"
Hello Kitty!

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages.
First the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and another
literal string. The resulting pure character string is then interpreted, just as though it were actually part
of the original program. Because it is a new clause, it is traced as such (the second *-* trace flag
under line 5) and is then processed. Again a literal string is concatenated to the value of a variable
(NAME) and another literal, and the final result (Hello Kitty!) is then displayed.

3. For many purposes, you can use the VALUE function (see “VALUE” on page 111) instead of the
INTERPRET instruction. The following line could, therefore, have replaced line 5 in the last example:

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are to be
interpreted together, or when an expression is to be evaluated dynamically.

INTERPRET

40 z/VM: 7.3 REXX/VM Reference

ITERATE

ITERATE
name

;

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other than that with a simple
DO).

Execution of the group of instructions stops, and control is passed to the DO instruction just as though the
END clause had been encountered. The control variable (if any) is incremented and tested, as usual, and
the group of instructions is processed again, unless the DO instruction ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE steps the innermost active
repetitive loop. If name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and this is the loop that is stepped. Any active loops inside the one
selected for iteration are ended (as though by a LEAVE instruction).

Example:

do i=1 to 4
 if i=2 then iterate
 say i
 end
/* Displays the numbers: "1" "3" "4" */

Note:

1. If specified, name must match the symbol naming the control variable in the DO clause in all respects
except case. No substitution for compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an INTERPRET instruction
is processed) during execution of a loop, the loop becomes inactive until the subroutine has returned
or the INTERPRET instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE selects the innermost loop.

ITERATE

Chapter 2. Keyword Instructions 41

LEAVE

LEAVE
name

;

LEAVE causes an immediate exit from one or more repetitive DO loops (that is, any DO construct other
than a simple DO).

Processing of the group of instructions is ended, and control is passed to the instruction following the END
clause, just as though the END clause had been encountered and the termination condition had been met.
However, on exit, the control variable (if any) will contain the value it had when the LEAVE instruction was
processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable of a currently active loop
(which may be the innermost), and that loop (and any active loops inside it) is then ended. Control then
passes to the clause following the END that matches the DO clause of the selected loop.

Example:

do i=1 to 5
 say i
 if i=3 then leave
 end
/* Displays the numbers: "1" "2" "3" */

Note:

1. If specified, name must match the symbol naming the control variable in the DO clause in all respects
except case. No substitution for compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an INTERPRET instruction
is processed) during execution of a loop, the loop becomes inactive until the subroutine has returned
or the INTERPRET instruction has completed. LEAVE cannot be used to end an inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects the innermost loop.

LEAVE

42 z/VM: 7.3 REXX/VM Reference

NOP

NOP ;

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE clause:

Example:

Select
 when a=c then nop /* Do nothing */
 when a>c then say 'A > C'
 otherwise say 'A < C'
end

Note: Putting an extra semicolon instead of the NOP would merely insert a null clause, which would be
ignored. The second WHEN clause would be seen as the first instruction expected after the THEN, and
would, therefore, be treated as a syntax error. NOP is a true instruction, however, and is, therefore, a valid
target for the THEN clause.

NOP

Chapter 2. Keyword Instructions 43

NUMERIC

NUMERIC DIGITS

expression1

FORM
SCIENTIFIC

ENGINEERING

VALUE

expression2

FUZZ

expression3

;

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail in Chapter 5, “Numbers and Arithmetic,” on page 155-“Errors” on page
162, but in summary:

NUMERIC DIGITS
controls the precision to which arithmetic operations and arithmetic built-in functions are evaluated.
If you omit expression1, the precision defaults to 9 digits. Otherwise, expression1 must evaluate to a
positive whole number and must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available—see the note in
Chapter 1, “REXX General Concepts,” on page 1 for more information) but note that high precisions
are likely to require a good deal of processing time. It is recommended that you use the default value
wherever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function. See “DIGITS”
on page 85.

NUMERIC FORM
controls which form of exponential notation REXX uses for the result of arithmetic operations and
arithmetic built-in functions. This may be either SCIENTIFIC (in which case only one, nonzero digit
appears before the decimal point) or ENGINEERING (in which case the power of 10 is always a
multiple of 3). The default is SCIENTIFIC. The subkeywords SCIENTIFIC or ENGINEERING set the
FORM directly, or it is taken from the result of evaluating the expression (expression2) that follows
VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE if expression2 does not begin with a symbol or a literal string (that is, if it starts
with a special character, such as an operator character or parenthesis).

You can retrieve the current NUMERIC FORM setting with the FORM built-in function. See “FORM” on
page 86.

NUMERIC FUZZ
controls how many digits, at full precision, are ignored during a numeric comparison operation. (See
“Numeric Comparisons” on page 160.) If you omit expression3, the default is 0 digits. Otherwise,
expression3 must evaluate to 0 or a positive whole number, rounded if necessary according to the
current NUMERIC DIGITS setting, and must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ value
during every numeric comparison. The numbers are subtracted under a precision of DIGITS minus
FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function. See “FUZZ” on
page 88.

NUMERIC

44 z/VM: 7.3 REXX/VM Reference

Note: The three numeric settings are automatically saved across internal and external subroutine and
function calls. See the CALL instruction (“CALL” on page 29) for more details.

NUMERIC

Chapter 2. Keyword Instructions 45

OPTIONS

OPTIONS expression ;

OPTIONS passes special requests or parameters to the language processor. For example, these may be
language processor options or perhaps define a special character set.

The expression is evaluated, and the result is examined one word at a time. The language processor
converts the words to uppercase. If the language processor recognizes the words, then they are obeyed.
Words that are not recognized are ignored and assumed to be instructions to a different processor.

The language processor recognizes the following words:
ETMODE

specifies that literal strings and symbols and comments containing DBCS characters are checked for
being valid DBCS strings. If you use this option, it must be the first instruction of the program.

If the expression is an external function call, for example OPTIONS 'GETETMOD'(), and the program
contains DBCS literal strings, enclose the name of the function in quotation marks to ensure that the
entire program is not scanned before the option takes effect. It is not recommended to use internal
function calls to set ETMODE because of the possibility of errors in interpreting DBCS literal strings in
the program.

NOETMODE
specifies that literal strings and symbols and comments containing DBCS characters are not checked
for being valid DBCS strings. NOETMODE is the default. The language processor ignores this option
unless it is the first instruction in a program.

EXMODE
specifies that instructions, operators, and functions handle DBCS data in mixed strings on a logical
character basis. DBCS data integrity is maintained.

NOEXMODE
specifies that any data in strings is handled on a byte basis. The integrity of DBCS characters, if any,
may be lost. NOEXMODE is the default.

Note:

1. Because of the language processor's scanning procedures, you must place an OPTIONS 'ETMODE'
instruction as the first instruction in a program containing DBCS characters in literal strings, symbols,
or comments. If you do not place OPTIONS 'ETMODE' as the first instruction and you use it later in
the program, you receive error messageDMSREX 488E. If you do place it as the first instruction of your
program, all subsequent uses are ignored. If the expression contains anything that would start a label
search, all clauses tokenized during the label search process are tokenized within the current setting of
ETMODE. Therefore, if this is the first statement in the program, the default is NOETMODE.

2. To ensure proper scanning of a program containing DBCS literals and DBCS comments, enter the
words ETMODE, NOETMODE, EXMODE, and NOEXMODE as literal strings (that is, enclosed in quotation
marks) in the OPTIONS instruction.

3. The EXMODE setting is saved and restored across subroutine and function calls.
4. To distinguish DBCS characters from 1-byte EBCDIC characters, sequences of DBCS characters are

enclosed with a shift-out (SO) character and a shift-in (SI) character. The hexadecimal values of the SO
and SI characters are X'0E' and X'0F', respectively.

5. When you specify OPTIONS 'ETMODE', DBCS characters within a literal string are excluded from the
search for a closing quotation mark in literal strings.

OPTIONS

46 z/VM: 7.3 REXX/VM Reference

6. The words ETMODE, NOETMODE, EXMODE, and NOEXMODE can appear several times within the
result. The one that takes effect is determined by the last valid one specified between the pairs
ETMODE-NOETMODE and EXMODE-NOEXMODE.

OPTIONS

Chapter 2. Keyword Instructions 47

PARSE

PARSE

UPPER

ARG

EXTERNAL

LINEIN

NUMERIC

PULL

SOURCE

VALUE

expression

WITH

VAR name

VERSION

template_list

;

PARSE assigns data (from various sources) to one or more variables according to the rules of parsing. (See
Chapter 4, “Parsing,” on page 139.)

The template_list is often a single template but may be several templates separated by commas. If
specified, each template is a list of symbols separated by blanks or patterns or both.

Each template is applied to a single source string. Specifying multiple templates is never a syntax error,
but only the PARSE ARG variant can supply more than one non-null source string. See “Parsing Multiple
Strings” on page 148 for information on parsing multiple source strings.

If you do not specify a template, no variables are set but action is taken to prepare the data for parsing,
if necessary. Thus for PARSE EXTERNAL and PARSE PULL, a data string is removed from the queue, for
PARSE LINEIN (and PARSE PULL if the queue is empty), a line is taken from the default input stream, and
for PARSE VALUE, expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does
not have a value, the NOVALUE condition is raised, if it is enabled.

If you specify the UPPER option, the data to be parsed is first translated to uppercase (that is, lowercase
a–z to uppercase A–Z). Otherwise, no uppercase translation takes place during the parsing.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG
parses the string or strings passed to a program or internal routine as input arguments. (See the ARG
instruction in “ARG” on page 27 for details and examples.)

Note: You can also retrieve or check the argument strings to a REXX program or internal routine with
the ARG built-in function (“ARG (Argument)” on page 72).

PARSE EXTERNAL
This is a subkeyword provided in z/VM. The next string from the terminal input buffer is parsed. This
queue may contain data that is the result of external asynchronous events—such as user console
input, or messages. If that queue is empty, a console read results. Note that this mechanism should
not be used for typical console input, for which PULL is more general, but rather it could be used for
special applications (such as debugging) when the program stack cannot be disturbed.

You can find the number of lines currently in the queue with the EXTERNALS built-in function. (See
“EXTERNALS” on page 117.)

PARSE

48 z/VM: 7.3 REXX/VM Reference

PARSE LINEIN
parses the next line from the default input stream. (See Chapter 7, “Input and Output Streams,”
on page 171 for a discussion of REXX input and output.) PARSE LINEIN is a shorter form of the
instruction

PARSE VALUE LINEIN () WITH

template_list

;

If no line is available, program execution will usually pause until a line is complete. Note that PARSE
LINEIN should be used only when direct access to the character input stream is necessary. Usual
line-by-line dialogue with the user should be carried out with the PULL or PARSE PULL instructions, to
maintain generality.

To check if any lines are available in the default input stream, use the built-in function LINES.
(See “LINES (Lines Remaining)” on page 91.) Also see “LINEIN (Line Input)” on page 89 for a
description of the LINEIN function.

PARSE NUMERIC
This is a subkeyword provided in VM. The current numeric controls (as set by the NUMERIC
instruction, see “NUMERIC” on page 44) are available. These controls are in the order DIGITS FUZZ
FORM.

Example:

Parse Numeric Var1

After this instruction, Var1 would be equal to: 9 0 SCIENTIFIC. See “NUMERIC” on page 44 and the
built-in functions “DIGITS” on page 85, “FORM” on page 86, and “FUZZ” on page 88.

PARSE PULL
parses the next string from the external data queue. If the external data queue is empty, PARSE PULL
reads a line from the default input stream (the user's terminal), and the program pauses, if necessary,
until a line is complete. You can add data to the head or tail of the queue by using the PUSH and
QUEUE instructions, respectively. You can find the number of lines currently in the queue with the
QUEUED built-in function. (See “QUEUED” on page 93.) Other programs in the system can alter the
queue and use it as a means of communication with programs written in REXX. See also the PULL
instruction in “PULL” on page 53.

Note: PULL and PARSE PULL read from the program stack. If that is empty, they read from the
terminal input buffer; and if that too is empty, a console read results. (See the PULL instruction,
“PULL” on page 53, for further details.)

PARSE SOURCE
parses data describing the source of the program running. The language processor returns a string
that is fixed (does not change) while the program is running.

The source string contains the characters CMS, followed by either COMMAND, FUNCTION, or
SUBROUTINE, depending on whether the program was called as some kind of host command (for
example, exec or macro), or from a function call in an expression, or with the CALL instruction. These
two tokens are followed by the program file name, file type, and file mode; each separated from the
previous token by one or more blanks. (The file type and file mode may be unknown if the program
is being run from storage, in which case the SOURCE string has one * for each unknown value.)
Following the file mode is the name by which the program was called (because of synonyms, this
may not be the same as the file name). It may be in mixed case and is truncated to 8 characters
if necessary. (If it cannot be determined, ? is used as a placeholder.) The final word is the initial
(default) address for commands.

If the language processor was called from a program that set up a subcommand environment, the
file type is usually the name of the default address for commands—see “Issuing Subcommands from
Your Program” on page 20 for details. Note that if a PSW is used for the default address, the PARSE
SOURCE string uses ? in the initial address for commands position.

The string parsed might, therefore, look like this:

PARSE

Chapter 2. Keyword Instructions 49

CMS COMMAND REXTRY EXEC * rext CMS

PARSE VALUE
parses the data that is the result of evaluating expression. If you specify no expression, then the null
string is used. Note that WITH is a subkeyword in this context and cannot be used as a symbol within
expression.

Thus, for example:

PARSE VALUE time() WITH hours ':' mins ':' secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the value of the variable name. The name must be a symbol that is valid as a variable name
(that is, it cannot start with a period or a digit). Note that the variable name is not changed unless it
appears in the template, so that for example:

PARSE VAR string word1 string

removes the first word from string, puts it in the variable word1, and assigns the remainder back to
string. Similarly

PARSE UPPER VAR string word1 string

in addition translates the data from string to uppercase before it is parsed.
PARSE VERSION

parses information describing the language level and the date of the language processor. This
information consists of five words delimited by blanks:

1. The string REXX370, signifying the 370 implementation
2. The language level description (for example, 4.00),
3. The language processor release date (for example, 31 May 1992).

PARSE

50 z/VM: 7.3 REXX/VM Reference

PROCEDURE

PROCEDURE

EXPOSE name

(name)

;

PROCEDURE, within an internal routine (subroutine or function), protects variables by making them
unknown to the instructions that follow it. After a RETURN instruction is processed, the original variables
environment is restored and any variables used in the routine (that were not exposed) are dropped. (An
exposed variable is one belonging to a caller of a routine that the PROCEDURE instruction has exposed.
When the routine refers to or alters the variable, the original (caller's) copy of the variable is used.) An
internal routine need not include a PROCEDURE instruction; in this case the variables it is manipulating
are those the caller "owns." If used, the PROCEDURE instruction must be the first instruction processed
after the CALL or function invocation; that is, it must be the first instruction following the label.

If you use the EXPOSE option, any variable specified by name is exposed. Any reference to it (including
setting and dropping) refers to the variables environment the caller owns. Hence, the values of existing
variables are accessible, and any changes are persistent even on RETURN from the routine. If name is not
enclosed in parentheses, it identifies a variable you want to expose and must be a symbol that is a valid
variable name, separated from any other name with one or more blanks.

If parentheses enclose a single name, then, after the variable name is exposed, the value of name is
immediately used as a subsidiary list of variables. (Blanks are not necessary either inside or outside the
parentheses, but you can add them if desired.) This subsidiary list must follow the same rules as the
original list (that is, valid variable names, separated by blanks) except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than one
time, or to specify a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some limited set
of the caller's variables can be made accessible, and these variables can be changed (or new variables in
this set can be created). All these changes are visible to the caller upon RETURN from the routine.

Example:

/* This is the main REXX program */
j=1; z.1='a'
call toft
say j k m /* Displays "1 7 M" */
exit

/* This is a subroutine */
toft: procedure expose j k z.j
 say j k z.j /* Displays "1 K a" */
 k=7; m=3 /* Note: M is not exposed */
 return

Note that if Z.J in the EXPOSE list had been placed before J, the caller's value of J would not have been
visible at that time, so Z.1 would not have been exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:

/* This is the main REXX program */
j=1;k=6;m=9
a ='j k m'
call test
exit

PROCEDURE

Chapter 2. Keyword Instructions 51

/* This is a subroutine */
test: procedure expose (a) /* Exposes A, J, K, and M */
 say a j k m /* Displays "j k m 1 6 9" */
 return

You can use subsidiary lists to more easily expose a number of variables at one time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example:

/* This is the main REXX program */
c=11; d=12; e=13
Showlist='c d' /* but not E */
call Playvars
say c d e f /* Displays "11 New 13 9" */
exit

/* This is a subroutine */
Playvars: procedure expose (showlist) f
 say word(showlist,2) /* Displays "d" */
 say value(word(showlist,2),'New') /* Displays "12" and sets new value */
 say value(word(showlist,2)) /* Displays "New" */
 e=8 /* E is not exposed */
 f=9 /* F was explicitly exposed */
 return

Specifying a stem as name exposes this stem and all possible compound variables whose names begin
with that stem. (See “Stems” on page 15 for information about stems.)

Example:

/* This is the main REXX program */
a.=11; i=13; j=15
i = i + 1
C.5 = 'FRED'
call lucky7
say a. a.1 i j c. c.5
say 'You should see 11 7 14 15 C. FRED'
exit
lucky7:Procedure Expose i j a. c.
/* This exposes I, J, and all variables whose */
/* names start with A. or C. */
A.1='7' /* This sets A.1 in the caller's */
 /* environment, even if it did not */
 /* previously exist. */
return

Variables may be exposed through several generations of routines, if desired, by ensuring that they are
included on all intermediate PROCEDURE instructions.

See the CALL instruction and function descriptions “CALL” on page 29 and Chapter 3, “Functions,” on
page 67 for details and examples of how routines are called.

PROCEDURE

52 z/VM: 7.3 REXX/VM Reference

PULL

PULL

template_list

;

PULL reads a string from the head of the external data queue. (See Chapter 7, “Input and Output
Streams,” on page 171 for a discussion of REXX input and output.) It is just a short form of the instruction:

PARSE UPPER PULL

template_list

;

The current head-of-queue is read as one string. Without a template_list specified, no further action
is taken (and the string is thus effectively discarded). If specified, a template_list is usually a single
template, which is a list of symbols separated by blanks or patterns or both. (The template_list can be
several templates separated by commas, but PULL parses only one source string; if you specify several
comma-separated templates, variables in templates other than the first one are assigned the null string.)
The string is translated to uppercase (that is, lowercase a–z to uppercase A–Z) and then parsed into
variables according to the rules described in the section on parsing (Chapter 4, “Parsing,” on page 139).
Use the PARSE PULL instruction if you do not desire uppercase translation.

Note: The VM implementation of the queue is the program stack. The language processor asks CMS to
read a line from the most recently created program stack buffer. If this buffer is empty, CMS drops it
(except for buffer 0), and reads a line from the next most recently created buffer. If the program stack
is empty, the terminal input buffer is used. If that too is empty, a console read occurs. Conversely, if
you type before an exec asks for your input, your input data is added to the end of the terminal input
buffer and is read at the appropriate time. The length of an entry in the program stack is restricted to 255
characters and the length of data in the terminal input buffer is restricted to 255 characters. For more
information on the program stack and the terminal input buffer, see z/VM: CMS Application Development
Guide.

For the GCS implementation, see note “7” on page 307 in Appendix E, “z/VM REXX/VM Interpreter in the
GCS Environment,” on page 307.

Example:

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='NO' then say 'The file will not be erased.'

Here the dummy placeholder, a period (.), is used on the template to isolate the first word the user
enters.

If the external data queue is empty, a line is read from the default input stream and the program pauses,
if necessary, until a line is complete. (This is as though PARSE UPPER LINEIN had been processed. See
“PARSE” on page 48.)

The QUEUED built-in function (see “QUEUED” on page 93) returns the number of lines currently in the
external data queue.

PULL

Chapter 2. Keyword Instructions 53

PUSH

PUSH

expression

;

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) onto the
external data queue. (See Chapter 7, “Input and Output Streams,” on page 171 for a discussion of REXX
input and output.)

If you do not specify expression, a null string is stacked.

Note: The VM implementation of the queue is the program stack. The length of an entry in the program
stack is restricted to 255 characters. If longer, the data is truncated. The program stack contains one
buffer initially, but additional buffers can be created using the CMS command MAKEBUF.

Example:

a='Fred'
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described in “QUEUED” on page 93) returns the number of lines currently
in the external data queue.

PUSH

54 z/VM: 7.3 REXX/VM Reference

QUEUE

QUEUE

expression

;

QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out). (See Chapter 7, “Input and Output Streams,” on page 171 for a discussion
of REXX input and output.)

If you do not specify expression, a null string is queued.

Note: The VM implementation of the queue is the program stack. The length of an element in the program
stack is restricted to 255 characters. If longer, the data is truncated. The program stack contains one
buffer initially, but additional buffers can be created using the CMS command MAKEBUF.

Example:

a='Toft'
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

The QUEUED built-in function (described in “QUEUED” on page 93) returns the number of lines currently
in the external data queue.

QUEUE

Chapter 2. Keyword Instructions 55

RETURN

RETURN

expression

;

RETURN returns control (and possibly a result) from a REXX program or internal routine to the point of its
invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect on
the program that is being run. (See “EXIT” on page 37.)

If a subroutine is being run (see the CALL instruction), expression (if any) is evaluated, control passes
back to the caller, and the REXX special variable RESULT is set to the value of expression. If expression is
omitted, the special variable RESULT is dropped (becomes uninitialized). The various settings saved at the
time of the CALL (tracing, addresses, and so forth) are also restored. (See “CALL” on page 29.)

If a function is being processed, the action taken is identical, except that expression must be specified on
the RETURN instruction. The result of expression is then used in the original expression at the point where
the function was called. See the description of functions in Chapter 3, “Functions,” on page 67 for more
details.

If a PROCEDURE instruction was processed within the routine (subroutine or internal function), all
variables of the current generation are dropped (and those of the previous generation are exposed) after
expression is evaluated and before the result is used or assigned to RESULT.

RETURN

56 z/VM: 7.3 REXX/VM Reference

SAY

SAY

expression

;

SAY writes a line to the default output stream (the terminal) so the user sees it displayed. See Chapter
7, “Input and Output Streams,” on page 171 for a discussion of REXX input and output. The result of
expression may be of any length. If you omit expression, the null string is written.

The SAY instruction is a shorter form of the instruction:
CALL LINEOUT ,

expression

;

except that:

• SAY does not affect the special variable RESULT
• If you use SAY and omit expression, a null string is used
• CALL LINEOUT can raise NOTREADY; SAY cannot.

See “LINEOUT (Line Output)” on page 90 for details of the LINEOUT function.

Note: When in full-screen mode, the result from the SAY instruction is formatted to the width of the virtual
screen. However, the window in which you are viewing the result may be smaller than your virtual screen.
If so, you may not immediately see the characters in the columns defined by the virtual screen but not
defined in the window. To view these characters you can scroll right. You can also reformat the data to fit
within the bounds of the window being viewed.

For more information concerning windows and virtual screens, see z/VM: CMS User's Guide.

Also, when not in full-screen mode, the data may be reformatted to fit the terminal line size (which
you can determine by using the LINESIZE built-in function), if necessary. The line size is restricted to a
maximum of 130 characters. The language processor does this reformatting, allowing any length data
to be displayed. Lines are typed on a typewriter terminal, or displayed on a display terminal. If you are
disconnected (in which case there is no real console, but data can still be written to the console log), or
CP TERMINAL LINESIZE OFF has been entered (in which case LINESIZE=0), SAY uses a default line size
of 80.

Example:

data=100
Say data 'divided by 4 =>' data/4
/* Displays: "100 divided by 4 => 25" */

SAY

Chapter 2. Keyword Instructions 57

SELECT

SELECT ; WHEN expression
;

THEN
;

instruction

OTHERWISE
;

instruction

END ;

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in 0 or 1. If the result is 1, the
instruction following the associated THEN (which may be a complex instruction such as IF, DO, or SELECT)
is processed and control then passes to the END. If the result is 0, control passes to the next WHEN
clause.

If none of the WHEN expressions evaluates to 1, control passes to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE causes an error (but note that you can
omit the instruction list that follows OTHERWISE).

Example:

 balance=100
 check=50
 balance = balance - check
 Select
 when balance > 0 then
 say 'Congratulations! You still have' balance 'dollars left.'
 when balance = 0 then do
 say 'Warning, Balance is now zero! STOP all spending.'
 say "You cut it close this month! Hope you do not have any"
 say "checks left outstanding."
 end
 Otherwise
 say "You have just overdrawn your account."
 say "Your balance now shows" balance "dollars."
 say "Oops! Hope the bank does not close your account."
 end /* Select */

Note:

1. The instruction can be any assignment, command, or keyword instruction, including any of the more
complex constructs such as DO, IF, or the SELECT instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is not
equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword THEN is treated differently,
in that it need not start a clause. This allows the expression on the WHEN clause to be ended by the
THEN without a ; (delimiter) being required.

SELECT

58 z/VM: 7.3 REXX/VM Reference

SIGNAL

SIGNAL labelname

VALUE

expression

OFF ERROR

FAILURE

HALT

NOTREADY

NOVALUE

SYNTAX

ON ERROR

FAILURE

HALT

NOTREADY

NOVALUE

SYNTAX

NAME trapname

;

SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE expression),
or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the specified
condition trap. ON turns on the specified condition trap. All information on condition traps is contained in
Chapter 6, “Conditions and Condition Traps,” on page 165.

To change the flow of control, a label name is derived from labelname or taken from the result of
evaluating the expression after VALUE. The labelname you specify must be a literal string or symbol that
is taken as a constant. If you use a symbol for labelname, the search is independent of alphabetic case.
If you use a literal string, the characters should be in uppercase. This is because the language processor
translates all labels to uppercase, regardless of how you enter them in the program. Similarly, for SIGNAL
VALUE, the expression must evaluate to a string in uppercase or the language processor does not find the
label. You can omit the subkeyword VALUE if expression does not begin with a symbol or literal string (that
is, if it starts with a special character, such as an operator character or parenthesis). All active pending
DO, IF, SELECT, and INTERPRET instructions in the current routine are then ended (that is, they cannot be
resumed). Control then passes to the first label in the program that matches the given name, as though
the search had started from the top of the program.

Example:

Signal fred; /* Transfer control to label FRED below */

Fred: say 'Hi!'

Because the search effectively starts at the top of the program, if duplicates are present, control always
passes to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of a
transfer of control to a label.

Using SIGNAL VALUE

SIGNAL

Chapter 2. Keyword Instructions 59

The VALUE form of the SIGNAL instruction allows a branch to a label whose name is determined at the
time of execution. This can safely effect a multi-way CALL (or function call) to internal routines because
any DO loops, and so forth, in the calling routine are protected against termination by the call mechanism.

Example:

fred='PETE'
call multiway fred, 7

exit
Multiway: procedure
 arg label . /* One word, uppercase */
 /* Can add checks for valid labels here */
 signal value label /* Transfer control to wherever */

Pete: say arg(1) '!' arg(2) /* Displays: "PETE ! 7" */
 return

SIGNAL

60 z/VM: 7.3 REXX/VM Reference

TRACE

TRACE

number

?

!

Normal

All

Commands

Error

Failure

Intermediates

Labels

Off

Results

Scan

;

Or, alternatively:

TRACE

string

symbol

VALUE

expression

;

TRACE controls the tracing action (that is, how much is displayed to the user) during processing of a REXX
program. (Tracing describes some or all of the clauses in a program, producing descriptions of clauses as
they are processed.) TRACE is mainly used for debugging. Its syntax is more concise than that of other
REXX instructions because TRACE is usually entered manually during interactive debugging. (This is a
form of tracing in which the user can interact with the language processor while the program is running.)
For this use, economy of key strokes is especially convenient.

If specified, the number must be a whole number.

The string or expression evaluates to:

• A numeric option
• One of the valid prefix or alphabetic character (word) options described later
• Null.

The symbol is taken as a constant, and is, therefore:

• A numeric option
• One of the valid prefix or alphabetic character (word) options described later.

The option that follows TRACE or the result of evaluating expression determines the tracing action. You
can omit the subkeyword VALUE if expression does not begin with a symbol or a literal string (that is, if it
starts with a special character, such as an operator or parenthesis).

TRACE

Chapter 2. Keyword Instructions 61

Alphabetic Character (Word) Options
Although you can enter the word in full, only the capitalized and highlighted letter is needed; all
characters following it are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:
All

Traces (that is, displays) all clauses before execution.
Commands

Traces all commands before execution. If the command results in an error or failure (see
“Commands” on page 17 for definitions of error and failure), then tracing also displays the return
code from the command.

Error
Traces any command resulting in an error or failure (see “Commands” on page 17 for definitions of
error and failure) after execution, together with the return code from the command.

Failure
Traces any command resulting in a failure (see “Commands” on page 17 for definitions of error and
failure) after execution, together with the return code from the command. This is the same as the
Normal option.

Intermediates
Traces all clauses before execution. Also traces intermediate results during evaluation of expressions
and substituted names.

Labels
Traces only labels passed during execution. This is especially useful with debug mode, when the
language processor pauses after each label. It also helps the user to note all internal subroutine calls
and transfers of control because of the SIGNAL instruction.

Normal
Traces any command resulting in a negative return code after execution, together with the return code
from the command. This is the default setting.

Off
Traces nothing and resets the special prefix options (described later) to OFF.

Results
Traces all clauses before execution. Displays final results (contrast with Intermediates, preceding)
of evaluating an expression. Also displays values assigned during PULL, ARG, and PARSE instructions.
This setting is recommended for general debugging.

Scan
Traces all remaining clauses in the data without them being processed. Basic checking (for missing
ENDs and so forth) is carried out, and the trace is formatted as usual. This is valid only if the TRACE S
clause itself is not nested in any other instruction (including INTERPRET or interactive debug) or in an
internal routine.

Prefix Options
The prefixes ! and ? are valid either alone or with one of the alphabetic character options. You can specify
both prefixes, in any order, on one TRACE instruction. You can specify a prefix more than one time, if
desired. Each occurrence of a prefix on an instruction reverses the action of the previous prefix. The
prefix(es) must immediately precede the option (no intervening blanks).

The prefixes ! and ? modify tracing and execution as follows:
?

Controls interactive debug. During usual execution, a TRACE option with a prefix of ? causes
interactive debug to be switched on. (See “Interactive Debugging of Programs” on page 209 for full
details of this facility.) While interactive debug is on, interpretation pauses after most clauses that are
traced. For example, the instruction TRACE ?E makes the language processor pause for input after
executing any command that returns an error (that is, a nonzero return code).

TRACE

62 z/VM: 7.3 REXX/VM Reference

Any TRACE instructions in the program being traced are ignored. (This is so that you are not taken out
of interactive debug unexpectedly.)

You can switch off interactive debug in several ways:

• Entering TRACE O turns off all tracing.
• Entering TRACE with no options restores the defaults—it turns off interactive debug but continues

tracing with TRACE Normal (which traces any failing command after execution) in effect.
• Entering TRACE ? turns off interactive debug and continues tracing with the current option.
• Entering a TRACE instruction with a ? prefix before the option turns off interactive debug and

continues tracing with the new option.

Using the ? prefix, therefore, switches you alternately in or out of interactive debug. (Because the
language processor ignores any further TRACE statements in your program after you are in interactive
debug, use CALL TRACE '?' to turn off interactive debug.)

Note: You can also enter interactive debug by entering the CMS immediate command TS from the
command line.

!
Inhibits host command execution. During regular execution, a TRACE instruction with a prefix of !
suspends execution of all subsequent host commands. For example, TRACE !C causes commands to
be traced but not processed. As each command is bypassed, the REXX special variable RC is set to 0.
You can use this action for debugging potentially destructive programs. (Note that this does not inhibit
any commands entered manually while in interactive debug. These are always processed.)

You can switch off command inhibition, when it is in effect, by issuing a TRACE instruction with a
prefix !. Repeated use of the ! prefix, therefore, switches you alternately in or out of command
inhibition mode. Or, you can turn off command inhibition at any time by issuing TRACE O or TRACE
with no options.

Numeric Options
If interactive debug is active and if the option specified is a positive whole number (or an expression that
evaluates to a positive whole number), that number indicates the number of debug pauses to be skipped
over. (See separate section in “Interactive Debugging of Programs” on page 209, for further information.)
However, if the option is a negative whole number (or an expression that evaluates to a negative whole
number), all tracing, including debug pauses, is temporarily inhibited for the specified number of clauses.
For example, TRACE -100 means that the next 100 clauses that would usually be traced are not, in fact,
displayed. After that, tracing resumes as before.

Tracing Tips
1. When a loop is being traced, the DO clause itself is traced on every iteration of the loop.
2. You can retrieve the trace actions currently in effect by using the TRACE built-in function (see the

TRACE function).
3. If available at the time of execution, comments associated with a traced clause are included in the

trace, as are comments in a null clause, if you specify TRACE A, R, I, or S.
4. Commands traced before execution always have the final value of the command (that is, the string

passed to the environment), and the clause generating it produced in the traced output.
5. Trace actions are automatically saved across subroutine and function calls. See the CALL instruction

(“CALL” on page 29) for more details.

TRACE

Chapter 2. Keyword Instructions 63

A Typical Example
One of the most common traces you will use is:

TRACE ?R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */

Note: You can switch tracing on, without modifying a program, by using the CMS command SET
EXECTRAC ON.

You can also turn tracing on or off asynchronously (that is, while an exec is running) by using the TS
and TE immediate commands. See “Interrupting Execution and Controlling Tracing” on page 210 for the
description of these facilities.

Format of TRACE Output
Every clause traced appears with automatic formatting (indentation) according to its logical depth of
nesting and so forth. The language processor may replace any control codes in the encoding of data (for
example, EBCDIC values less than '40'x) with a question mark (?) to avoid console interference. Results (if
requested) are indented an extra two spaces and are enclosed in double quotation marks so that leading
and trailing blanks are apparent.

A line number precedes the first clause traced on any line. If the line number is greater than 99999, the
language processor truncates it on the left, and the ? prefix indicates the truncation. For example, the line
number 100354 appears as ?00354. All lines displayed during tracing have a three-character prefix to
identify the type of data being traced. These can be:

-
Identifies the source of a single clause, that is, the data actually in the program.

+++
Identifies a trace message. This may be the nonzero return code from a command, the prompt
message when interactive debug is entered, an indication of a syntax error or thread switch when in
interactive debug, or the traceback clauses after a syntax error in the program (see below).

>>>
Identifies the result of an expression (for TRACE R) or the value assigned to a variable during parsing,
or the value returned from a subroutine call.

>.>
Identifies the value "assigned" to a placeholder during parsing (see “The Period as a Placeholder” on
page 140).

The following prefixes are used only if TRACE Intermediates is in effect:

>C>
The data traced is the name of a compound variable, traced after substitution and before use,
provided that the name had the value of a variable substituted into it.

>F>
The data traced is the result of a function call.

>L>
The data traced is a literal (string, uninitialized variable, or constant symbol).

>O>
The data traced is the result of an operation on two terms.

>P>
The data traced is the result of a prefix operation.

>V>
The data traced is the contents of a variable.

TRACE

64 z/VM: 7.3 REXX/VM Reference

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N, command inhibition (!) off, and interactive
debug (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced. Any
CALL or INTERPRET or function invocations active at the time of the error are also traced. If an attempt to
transfer control to a label that could not be found caused the error, that label is also traced. The special
trace prefix +++ identifies these traceback lines.

TRACE

Chapter 2. Keyword Instructions 65

UPPER

UPPER variable ;

UPPER translates the contents of one or more variables to uppercase. The variables are translated in
sequence from left to right.

The variable is a symbol, separated from any other variables by one or more blanks or comments. Specify
only simple symbols and compound symbols. (See “Simple Symbols” on page 14.)

Using this instruction is more convenient than repeatedly invoking the TRANSLATE built-in function.

Example:

a1='Hello'; b1='there'
Upper a1 b1
say a1 b1 /* Displays "HELLO THERE" */

An error is signalled if a constant symbol or a stem is encountered. Using an uninitialized variable is not
an error, and has no effect, except that it is trapped if the NOVALUE condition (SIGNAL ON NOVALUE) is
enabled.

UPPER

66 z/VM: 7.3 REXX/VM Reference

Chapter 3. Functions

A function is an internal, built-in, or external routine that returns a single result string. (A subroutine is
a function that is an internal, built-in, or external routine that may or may not return a result and that is
called with the CALL instruction.)

Syntax
A function call is a term in an expression that calls a routine that carries out some procedures and returns
a string. This string replaces the function call in the continuing evaluation of the expression. You can
include function calls to internal and external routines in an expression anywhere that a data term (such
as a string) would be valid, using the notation:

function_name (

,

expression

)

The function_name is a literal string or a single symbol, which is taken to be a constant.

There can be up to an implementation-defined maximum number of expressions, separated by commas,
between the parentheses. In VM, the implementation maximum is up to 20 expressions. These
expressions are called the arguments to the function. Each argument expression may include further
function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no blank in between,
or the construct is not recognized as a function call. (A blank operator would be assumed at this point
instead.) Only a comment (which has no effect) can appear between the name and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting strings are all then passed to
the function. This then runs some operation (usually dependent on the argument strings passed, though
arguments are not mandatory) and eventually returns a single character string. This string is then included
in the original expression just as though the entire function reference had been replaced by the name of a
variable whose value is that returned data.

For example, the function SUBSTR is built-in to the language processor (see “SUBSTR (Substring)” on
page 107) and could be used as:

N1='abcdefghijk'
Z1='Part of N1 is: 'substr(N1,2,7)
/* Sets Z1 to 'Part of N1 is: bcdefgh' */

A function may have a variable number of arguments. You need to specify only those that are required. For
example, SUBSTR('ABCDEF',4) would return DEF.

Functions and Subroutines
The function calling mechanism is identical with that for subroutines. The only difference between
functions and subroutines is that functions must return data, whereas subroutines need not.

The following types of routines can be called as functions:
Internal

If the routine name exists as a label in the program, the current processing status is saved, so that
it is later possible to return to the point of invocation to resume execution. Control is then passed to
the first label in the program that matches the name. As with a routine called by the CALL instruction,
various other status information (TRACE and NUMERIC settings and so forth) is saved too. See the
CALL instruction (“CALL” on page 29) for details about this. You can use SIGNAL and CALL together

Functions

© Copyright IBM Corp. 1990, 2022 67

to call an internal routine whose name is determined at the time of execution; this is known as a
multi-way call (see “SIGNAL” on page 59).

If you are calling an internal routine as a function, you must specify an expression in any RETURN
instruction to return from it. This is not necessary if it is called as a subroutine.

Example:

/* Recursive internal function execution... */
arg x
say x'! =' factorial(x)
exit

factorial: procedure /* Calculate factorial by */
 arg n /* recursive invocation. */
 if n=0 then return 1
 return factorial(n-1) * n

While searching for an internal label, syntax checking is performed and the exec is tokenized. See
Appendix C, “Performance Considerations,” on page 299 for more details. FACTORIAL is unusual
in that it calls itself (this is recursive invocation). The PROCEDURE instruction ensures that a new
variable n is created for each invocation.

Note: When there is a search for a routine, the language processor currently scans the statements
in the REXX program to locate the internal label. During the search, the language processor may
encounter a syntax error. As a result, a syntax error may be raised on a statement different from the
original line being processed.

Built-in
These functions are always available and are defined in the next section of this manual. (See “Built-in
Functions” on page 71.

External
You can write or use functions that are external to your program and to the language processor. An
external routine can be written in any language (including REXX) that supports the system-dependent
interfaces the language processor uses to call it. You can call a REXX program as a function and, in
this case, pass more than one argument string. The ARG or PARSE ARG instructions or the ARG built-in
function can retrieve these argument strings. When called as a function, a program must return data
to the caller.

Note:

1. Calling an external REXX program as a function is similar to calling an internal routine. The external
routine is, however, an implicit PROCEDURE in that all the caller's variables are always hidden and
the status of internal values (NUMERIC settings and so forth) start with their defaults (rather than
inheriting those of the caller).

2. Other REXX programs can be called as functions. You can use either EXIT or RETURN to leave the
called REXX program, and in either case you must specify an expression.

3. With care, you can use the INTERPRET instruction to process a function with a variable function
name. However, you should avoid this if possible because it reduces the clarity of the program.

Search Order
The search order for functions is: internal routines take precedence, then built-in functions, and finally
external functions.

Internal routines are not used if the function name is given as a literal string (that is, specified in
quotation marks); in this case the function must be built-in or external. This lets you usurp the name of,
say, a built-in function to extend its capabilities, yet still be able to call the built-in function when needed.

Example:

/* This internal DATE function modifies the */
/* default for the DATE function to standard date. */
date: procedure
 arg in

Functions

68 z/VM: 7.3 REXX/VM Reference

 if in='' then in='Standard'
 return 'DATE'(in)

Built-in functions have uppercase names, and so the name in the literal string must be in uppercase for
the search to succeed, as in the example. The same is usually true of external functions.

External functions and subroutines have a system-defined search order.

External functions and subroutines have a specific search order.

1. The name has a prefix of RX, and the language processor attempts to run the program of that name,
using CMSCALL.

2. If the function is not found, the function packages are interrogated and loaded if necessary (they
return RC=0 if they contained the requested function, or RC=1 otherwise). The function packages are
checked in the order RXUSERFN, RXLOCFN, and RXSYSFN. If the load is successful, step 2 is repeated
and will succeed.

3. If still not found, the name is restored to its original form, and all directories and accessed minidisks
are first checked for a program with the same file type as the currently executing program (if the file
type is not EXEC, as with XEDIT macros for example), and then checked for a file with the file type of
EXEC. If either is found, control is passed to it. (The IMPEX setting has no control over this.)

4. Finally the language processor attempts to run the function under its original name, using CMSCALL. (If
still not found, an error results.)

The name prefix mechanism, RX, allows new REXX functions to be written with little chance of name
conflict with existing MODULES.

Functions

Chapter 3. Functions 69

Prefix name

with ‘RX’

Run CMSCALL

Was function

found?

Autoload from:

1. RXUSERFN

2. RXLOCFN

3. RXSYSFN

Remove

‘RX’ prefix

Caller ftype

EXEC ?

Does EXEC

exist?

Run CMSCALL

Was function

found?

Does macro

exist?

Prepare

invocation

for macro

or EXEC

ErrorFINISH

START

Yes

No

OK

Fail

No

Yes

No

Yes

Yes

No

NoYes

Figure 2. External Routine Resolution and Execution

Errors During Execution
If an external or built-in function detects an error of any kind, the language processor is informed, and a
syntax error results. Execution of the clause that included the function call is, therefore, ended. Similarly,
if an external function fails to return data correctly, the language processor detects this and reports it as
an error.

Functions

70 z/VM: 7.3 REXX/VM Reference

If a syntax error occurs during the execution of an internal function, it can be trapped (using SIGNAL ON
SYNTAX) and recovery may then be possible. If the error is not trapped, the program is ended.

Built-in Functions
REXX provides a rich set of built-in functions, including character manipulation, conversion, and
information functions.

Other built-in and external functions are generally available—see “Additional Built-in Functions Provided
in VM” on page 117, “Function Packages” on page 116, and “External Functions and Routines Provided in
VM” on page 119.

The following are general notes on the built-in functions:

• The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no space in between.

• The built-in functions work internally with NUMERIC DIGITS 9 and NUMERIC FUZZ 0 and are unaffected
by changes to the NUMERIC settings, except where stated. Any argument named as a number is
rounded, if necessary, according to the current setting of NUMERIC DIGITS (just as though the number
had been added to 0) and checked for validity before use. This occurs in the following functions:
ABS, FORMAT, MAX, MIN, SIGN, and TRUNC, and for certain options of DATATYPE. This is not true for
RANDOM.

• Any argument named as a string may be a null string.
• If an argument specifies a length, it must be a positive whole number or zero. If it specifies a start

character or word in a string, it must be a positive whole number, unless otherwise stated.
• Where the last argument is optional, you can always include a comma to indicate you have omitted it;

for example, DATATYPE(1,), like DATATYPE(1), would return NUM. You can include any number of
trailing commas; they are ignored. (Where there are actual parameters, the default values apply.)

• If you specify a pad character, it must be exactly one character long. (A pad character extends a string,
usually on the right.) For an example, see the LEFT built-in function in “LEFT” on page 89.

• If a function has an option you can select by specifying the first character of a string, that character can
be in upper- or lowercase.

• A number of the functions described in this chapter support DBCS. A complete list and descriptions of
these functions are in Appendix B, “Double-Byte Character Set (DBCS) Support,” on page 283.

ABBREV (Abbreviation)

ABBREV (information , info

, length

)

returns 1 if info is equal to the leading characters of information and the length of info is not less than
length. Returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number of
characters in info.

Here are some examples:

ABBREV('Print','Pri') -> 1
ABBREV('PRINT','Pri') -> 0
ABBREV('PRINT','PRI',4) -> 0
ABBREV('PRINT','PRY') -> 0
ABBREV('PRINT','') -> 1
ABBREV('PRINT','',1) -> 0

Functions

Chapter 3. Functions 71

Note: A null string always matches if a length of 0 (or the default) is used. This allows a default keyword to
be selected automatically if desired; for example:

say 'Enter option:'; pull option .
select /* keyword1 is to be the default */
 when abbrev('keyword1',option) then ...
 when abbrev('keyword2',option) then ...
 ...
 otherwise nop;
end;

ABS (Absolute Value)

ABS (number)

returns the absolute value of number. The result has no sign and is formatted according to the current
NUMERIC settings.

Here are some examples:

ABS('12.3') -> 12.3
ABS(' -0.307') -> 0.307

ADDRESS

ADDRESS ()

returns the name of the environment to which commands are currently being submitted. The environment
may be a name of a subcommand environment or a PSW. See the ADDRESS instruction (“ADDRESS” on
page 24) for more information. Trailing blanks are removed from the result.

Here are some examples:

ADDRESS() -> 'CMS' /* default under VM */
ADDRESS() -> 'XEDIT' /* default under XEDIT */

APILOAD
This is a CMS external function. See “APILOAD” on page 119.

ARG (Argument)

ARG (
n

, option

)

returns an argument string or information about the argument strings to a program or internal routine.

If you do not specify n, the number of arguments passed to the program or internal routine is returned.

If you specify only n, the nth argument string is returned. If the argument string does not exist, the null
string is returned. The n must be a positive whole number.

Functions

72 z/VM: 7.3 REXX/VM Reference

If you specify option, ARG tests for the existence of the nth argument string. The following are valid
options. (Only the capitalized and highlighted letter is needed; all characters following it are ignored.)
Exists

returns 1 if the nth argument exists; that is, if it was explicitly specified when the routine was called.
Returns 0 otherwise.

Omitted
returns 1 if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Returns 0 otherwise.

Here are some examples:

/* following "Call name;" (no arguments) */
ARG() -> 0
ARG(1) -> ''
ARG(2) -> ''
ARG(1,'e') -> 0
ARG(1,'O') -> 1

/* following "Call name 'a',,'b';" */
ARG() -> 3
ARG(1) -> 'a'
ARG(2) -> ''
ARG(3) -> 'b'
ARG(n) -> '' /* for n>=4 */
ARG(1,'e') -> 1
ARG(2,'E') -> 0
ARG(2,'O') -> 1
ARG(3,'o') -> 0
ARG(4,'o') -> 1

Note:

1. The number of argument strings is the largest number n for which ARG(n,'e') would return 1 or 0 if
there are no explicit argument strings. That is, it is the position of the last explicitly specified argument
string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0 argument
strings if it is called with the name only and has 1 argument string if anything else (including blanks) is
included with the command.

3. You can retrieve and directly parse the argument strings to a program or internal routine with the ARG
or PARSE ARG instructions. (See “ARG” on page 27, “PARSE” on page 48, and Chapter 4, “Parsing,” on
page 139.)

BITAND (Bit by Bit AND)

BITAND (string1
,

string2 , pad

)

returns a string composed of the two input strings logically ANDed together, bit by bit. (The encodings of
the strings are used in the logical operation.) The length of the result is the length of the longer of the
two strings. If no pad character is provided, the AND operation stops when the shorter of the two strings
is exhausted, and the unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default for string2 is the zero length (null) string.

Here are some examples:

BITAND('12'x) -> '12'x
BITAND('73'x,'27'x) -> '23'x
BITAND('13'x,'5555'x) -> '1155'x

Functions

Chapter 3. Functions 73

BITAND('13'x,'5555'x,'74'x) -> '1154'x
BITAND('pQrS',,'BF'x) -> 'pqrs' /* EBCDIC */

BITOR (Bit by Bit OR)

BITOR (string1
,

string2 , pad

)

returns a string composed of the two input strings logically inclusive-ORed together, bit by bit. (The
encodings of the strings are used in the logical operation.) The length of the result is the length of the
longer of the two strings. If no pad character is provided, the OR operation stops when the shorter of
the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If pad is provided, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string2 is the zero length (null) string.

Here are some examples:

BITOR('12'x) -> '12'x
BITOR('15'x,'24'x) -> '35'x
BITOR('15'x,'2456'x) -> '3556'x
BITOR('15'x,'2456'x,'F0'x) -> '35F6'x
BITOR('1111'x,,'4D'x) -> '5D5D'x
BITOR('pQrS',,'40'x) -> 'PQRS' /* EBCDIC */

BITXOR (Bit by Bit Exclusive OR)

BITXOR (string1
,

string2 , pad

)

returns a string composed of the two input strings logically eXclusive-ORed together, bit by bit. (The
encodings of the strings are used in the logical operation.) The length of the result is the length of the
longer of the two strings. If no pad character is provided, the XOR operation stops when the shorter of
the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If pad is provided, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string2 is the zero length (null) string.

Here are some examples:

BITXOR('12'x) -> '12'x
BITXOR('12'x,'22'x) -> '30'x
BITXOR('1211'x,'22'x) -> '3011'x
BITXOR('1111'x,'444444'x) -> '555544'x
BITXOR('1111'x,'444444'x,'40'x) -> '555504'x
BITXOR('1111'x,,'4D'x) -> '5C5C'x
BITXOR('C711'x,'222222'x,' ') -> 'E53362'x /* EBCDIC */

B2X (Binary to Hexadecimal)

B2X (binary_string)

returns a string, in character format, that represents binary_string converted to hexadecimal.

Functions

74 z/VM: 7.3 REXX/VM Reference

The binary_string is a string of binary (0 or 1) digits. It can be of any length. You can optionally include
blanks in binary_string (at four-digit boundaries only, not leading or trailing) to aid readability; they are
ignored.

The returned string uses uppercase alphabetics for the values A–F, and does not include blanks.

If binary_string is the null string, B2X returns a null string. If the number of binary digits in binary_string is
not a multiple of four, then up to three 0 digits are added on the left before the conversion to make a total
that is a multiple of four.

Here are some examples:

B2X('11000011') -> 'C3'
B2X('10111') -> '17'
B2X('101') -> '5'
B2X('1 1111 0000') -> '1F0'

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms. For
example:

X2D(B2X('10111')) -> '23' /* decimal 23 */

CENTER/CENTRE

CENTER (

CENTRE (

string , length

, pad

)

returns a string of length length with string centered in it, with pad characters added as necessary to make
up length. The length must be a positive whole number or zero. The default pad character is blank. If the
string is longer than length, it is truncated at both ends to fit. If an odd number of characters are truncated
or added, the right-hand end loses or gains one more character than the left-hand end.

Here are some examples:

CENTER(abc,7) -> ' ABC '
CENTER(abc,8,'-') -> '--ABC---'
CENTRE('The blue sky',8) -> 'e blue s'
CENTRE('The blue sky',7) -> 'e blue '

Note: To avoid errors because of the difference between British and American spellings, this function can
be called either CENTRE or CENTER.

CHARIN (Character Input)

CHARIN (
name ,

start , length

)

returns a string of up to length single-byte characters read from the character input stream name. (To
understand the input and output functions, see Chapter 7, “Input and Output Streams,” on page 171.) The
form of name is also described in Chapter 7, “Input and Output Streams,” on page 171. If you omit name,
characters are read from default input stream. The default length is 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream starts at
the current read position by default. When the language processor completes reading, the read position

Functions

Chapter 3. Functions 75

is increased by the number of characters read. A start value of 1 (the only valid value) may be given to
specify the start of the stream.

If you specify a length of 0, then the read position is set to the value of start but no characters are read
and the null string is returned.

If the number of characters being returned causes a read of an entire line or multiple lines in the stream, a
LINEEND character is appended at the end of each line. (See “STREAM” on page 96 for more information
on the LINEEND character.) This is only for files that were opened with the TEXT option on the STREAM
function. TEXT is the default if not specified on the STREAM function or if the file is implicitly opened by
the first I/O call. This LINEEND character is counted in the number of characters returned.

In a transient stream, if there are fewer than length characters available, then execution of the program
generally stops until sufficient characters do become available. If, however, it is impossible for those
characters to become available because of an error or other problem, the NOTREADY condition is raised
(see “Errors During Input and Output” on page 177) and CHARIN returns with fewer than the requested
number of characters.

Here are some examples:

CHARIN(myfile,1,3) -> 'MFC' /* the first 3 */
 /* characters */
CHARIN(myfile,1,0) -> '' /* now at start */
CHARIN(myfile) -> 'M' /* after last call */
CHARIN(myfile,,2) -> 'FC' /* after last call */

/* Reading from the default input (here, the keyboard) */
/* User types 'abcd efg' */
CHARIN() -> 'a' /* default is */
 /* 1 character */
CHARIN(,,5) -> 'bcd e'

/* assume TEXT and LINEEND='15'x, only 1 character, A, left on */
/* the line and the next line starts with B */
CHARIN(myfile,,3) -> 'A B' /* in hex: 'C115C2'x */

CHAROUT (Character Output)

CHAROUT (
name ,

string , start

)

returns the count of single-byte characters remaining after attempting to write string to the character
output stream name. (To understand the input and output functions, see Chapter 7, “Input and Output
Streams,” on page 171.) The form of name is also described in Chapter 7, “Input and Output Streams,” on
page 171. If you omit name, characters in string are written to the default output stream. The string can
be the null string, in which case no characters are written to the stream, and 0 is always returned.

For variable-format streams with the TEXT option, the LINEEND character must be supplied to indicate
the end of the record. For fixed-format streams with the TEXT option, the LINEEND does not have to be
given, as the data will be split at the appropriate record length. If a LINEEND character is given causing
a record shorter than the logical record length, the data will be padded with blanks before being written.
The LINEEND character is never written to the stream in TEXT mode; it only serves as an indicator of the
end of a line. For fixed- or variable-format streams with the BINARY option, a full buffer indicates the end
of a record. (The size of the full buffer can be defined by the LRECL parameter on the STREAM function, or
the default will be used.)

For persistent streams, a write position is maintained for each stream. Any write to the stream starts at
the current write position by default. When the language processor completes writing, the write position
is increased by the number of characters written. When the stream is first opened, the write position is at
the end of the stream so that calls to CHAROUT will append characters to the end of the stream.

Functions

76 z/VM: 7.3 REXX/VM Reference

A start value of 1 (the only valid value) may be given to specify the start of the stream.

Note: You will get an error if you try to overwrite a record with another record that has a different length.

You can omit the string for persistent streams. In this case, the write position is set to the value of start
that was given, no characters are written to the stream, and 0 is returned. If you do not specify start or
string, nothing is written to the stream, and it is closed.

Execution of the program usually stops until the output operation is effectively complete.

For example, when data is sent to a printer, the system accepts the data and returns control to REXX, even
though the output data may not have been printed on the printer. REXX considers this to be complete,
even though the data has not been printed. If, however, it is impossible for all the characters to be written,
the NOTREADY condition is raised (see “Errors During Input and Output” on page 177) and CHAROUT
returns with the number of characters that could not be written (the residual count).

Here are some examples:

CHAROUT(myfile,'Hi') -> 0 /* typically */
CHAROUT(myfile) -> 0 /* at end of stream */
CHAROUT(,'Hi') -> 0 /* typically */
CHAROUT(,'Hello') -> 2 /* maybe */

Note: This routine is often best called as a subroutine. The residual count is then available in the variable
RESULT.

For example:

Call CHAROUT myfile,'Hello'
Call CHAROUT myfile

CHARS (Characters Remaining)

CHARS (
name

)

returns either 0 or 1 depending on whether there are characters available in the input stream. CHARS will
return 1 if there is at least one character available in the stream and 0 otherwise. (To understand the input
and output functions, see Chapter 7, “Input and Output Streams,” on page 171.)

The form of name is described in Chapter 7, “Input and Output Streams,” on page 171. If you omit name
or it is null (both signifying the default input stream), 1 is returned.

Here are some examples:

CHARS(myfile) -> 1 /* perhaps */
CHARS(nonfile) -> 0 /* perhaps */
CHARS() -> 1 /* perhaps */

Note: The LINES function may be used to return the number of partial and complete lines (rather than
individual characters) remaining in the stream.

CMSFLAG
This is a CMS external function. See “CMSFLAG” on page 120.

Functions

Chapter 3. Functions 77

COMPARE

COMPARE (string1 , string2

, pad

)

returns 0 if the strings, string1 and string2, are identical. Otherwise, returns the position of the first
character that does not match. The shorter string is padded on the right with pad if necessary. The default
pad character is a blank.

Here are some examples:

COMPARE('abc','abc') -> 0
COMPARE('abc','ak') -> 2
COMPARE('ab ','ab') -> 0
COMPARE('ab ','ab',' ') -> 0
COMPARE('ab ','ab','x') -> 3
COMPARE('ab-- ','ab','-') -> 5

CONDITION

CONDITION (

option

)

returns the condition information associated with the current trapped condition. (See Chapter 6,
“Conditions and Condition Traps,” on page 165 for a description of condition traps.) You can request
the following pieces of information:

• The name of the current trapped condition
• Any descriptive string associated with that condition
• The instruction processed as a result of the condition trap (CALL or SIGNAL)
• The status of the trapped condition.

To select the information to return, use the following options. (Only the capitalized and highlighted letter
is needed; all characters following it are ignored.)
Condition name

returns the name of the current trapped condition.
Description

returns any descriptive string associated with the current trapped condition. See Chapter 6,
“Conditions and Condition Traps,” on page 165 for the list of possible strings. If no description is
available, returns a null string.

Instruction
returns either CALL or SIGNAL, the keyword for the instruction processed when the current condition
was trapped. This is the default if you omit option.

Status
returns the status of the current trapped condition. This can change during processing, and is either:

ON - the condition is enabled
OFF - the condition is disabled
DELAY - any new occurrence of the condition is delayed or ignored.

If no condition has been trapped, then the CONDITION function returns a null string in all four cases.

Functions

78 z/VM: 7.3 REXX/VM Reference

Here are some examples:

CONDITION() -> 'CALL' /* perhaps */
CONDITION('C') -> 'FAILURE'
CONDITION('I') -> 'CALL'
CONDITION('D') -> 'FailureTest'
CONDITION('S') -> 'OFF' /* perhaps */

Note: The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine called
with CALL ON trapname has returned, the current trapped condition reverts to the condition that was
current before the CALL took place (which may be none). CONDITION returns the values it returned
before the condition was trapped.

COPIES

COPIES (string , n)

returns n concatenated copies of string. The n must be a positive whole number or zero.

Here are some examples:

COPIES('abc',3) -> 'abcabcabc'
COPIES('abc',0) -> ''

CSL
This is a CMS external function. See “CSL” on page 121.

C2D (Character to Decimal)

C2D (string
, n

)

returns the decimal value of the binary representation of string. If the result cannot be expressed as a
whole number, an error results. That is, the result must not have more digits than the current setting of
NUMERIC DIGITS. If you do not specify n, string is processed as an unsigned binary number.

If string is null, returns 0.

Here are some examples:

C2D('09'X) -> 9
C2D('81'X) -> 129
C2D('FF81'X) -> 65409
C2D('') -> 0
C2D('a') -> 129 /* EBCDIC */

If you specify n, the string is taken as a signed number expressed in n characters. The number is positive
if the leftmost bit is off, and negative, in two's complement notation, if the leftmost bit is on. In both
cases, it is converted to a whole number, which may, therefore, be negative. The string is padded on
the left with '00'x characters (note, not “sign-extended”), or truncated on the left to n characters. This
padding or truncation is as though RIGHT(string,n,'00'x) had been processed. If n is 0, C2D always
returns 0.

Here are some examples:

Functions

Chapter 3. Functions 79

C2D('81'X,1) -> -127
C2D('81'X,2) -> 129
C2D('FF81'X,2) -> -127
C2D('FF81'X,1) -> -127
C2D('FF7F'X,1) -> 127
C2D('F081'X,2) -> -3967
C2D('F081'X,1) -> -127
C2D('0031'X,0) -> 0

Implementation maximum: The input string cannot have more than 250 characters that are significant in
forming the final result. Leading sign characters ('00'x and 'FF'x) do not count toward this total.

C2X (Character to Hexadecimal)

C2X (string)

returns a string, in character format, that represents string converted to hexadecimal. The returned string
contains twice as many bytes as the input string. For example, on an EBCDIC system, C2X(1) returns F1
because the EBCDIC representation of the character 1 is 'F1'X.

The string returned uses uppercase alphabetics for the values A–F and does not include blanks. The string
can be of any length. If string is null, returns a null string.

Here are some examples:

C2X('72s') -> 'F7F2A2' /* 'C6F7C6F2C1F2'X in EBCDIC */
C2X('0123'X) -> '0123' /* 'F0F1F2F3'X in EBCDIC */

DATATYPE

DATATYPE (string

, type

)

returns NUM if you specify only string and if string is a valid REXX number that can be added to 0 without
error; returns CHAR if string is not a valid number.

If you specify type, returns 1 if string matches the type; otherwise returns 0. If string is null, the function
returns 0 (except when type is X, which returns 1 for a null string). The following are valid types. (Only
the capitalized and highlighted letter is needed; all characters following it are ignored. Note that for the
hexadecimal option, you must start your string specifying the name of the option with x rather than h.)
Alphanumeric

returns 1 if string contains only characters from the ranges a–z, A–Z, and 0–9.
Binary

returns 1 if string contains only the characters 0 or 1 or both.
C

returns 1 if string is a mixed SBCS/DBCS string.
Dbcs

returns 1 if string is a DBCS-only string enclosed by SO and SI bytes.
Lowercase

returns 1 if string contains only characters from the range a–z.
Mixed case

returns 1 if string contains only characters from the ranges a–z and A–Z.

Functions

80 z/VM: 7.3 REXX/VM Reference

Number
returns 1 if string is a valid REXX number.

Symbol
returns 1 if string contains only characters that are valid in REXX symbols. (See “Tokens” on page 3.)
Note that both uppercase and lowercase alphabetics are permitted.

Uppercase
returns 1 if string contains only characters from the range A–Z.

Whole number
returns 1 if string is a REXX whole number under the current setting of NUMERIC DIGITS.

heXadecimal
returns 1 if string contains only characters from the ranges a–f, A–F, 0–9, and blank (as long as
blanks appear only between pairs of hexadecimal characters). Also returns 1 if string is a null string,
which is a valid hexadecimal string.

Here are some examples:

DATATYPE(' 12 ') -> 'NUM'
DATATYPE('') -> 'CHAR'
DATATYPE('123*') -> 'CHAR'
DATATYPE('12.3','N') -> 1
DATATYPE('12.3','W') -> 0
DATATYPE('Fred','M') -> 1
DATATYPE('','M') -> 0
DATATYPE('Fred','L') -> 0
DATATYPE('?20K','s') -> 1
DATATYPE('BCd3','X') -> 1
DATATYPE('BC d3','X') -> 1

Note: The DATATYPE function tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

DATE

DATE (

output_date_format
1 Group 1

)

Group 1
, input_date

Group 2

, , output_separator_char

Group 2
,

input_date_format Group 3

Group 3
,

output_separator_char ,

input_separator_char

Notes:
1 If the Century or Julian format is specified, then no other options are permitted. These two
formats are provided for compatibility with programs written for releases prior to VM/ESA® version 2
release 1.1. It is recommended that they not be used for new programs.

Functions

Chapter 3. Functions 81

returns, by default, the local date in the format: dd mon yyyy (day, month, year—for example, 25 Dec
1996), with no leading zero or blank on the day. Otherwise, the string input_date is converted to the
format specified by output_date_format. input_date_format can be specified to define the current format
of input_date. The default for input_date_format and output_date_format is Normal.

input_separator_char and output_separator_char can be specified to define the separator character for
the input date and output date, respectively. Any single nonalphanumeric character is valid. See note “5”
on page 83 for more information.

You can use the following options to obtain specific date formats. (Only the capitalized and highlighted
letter is needed; all characters following it are ignored.)
Base

the number of complete days (that is, not including the current day) since and including the base date,
1 January 0001, in the format: dddddd (no leading zeros or blanks). The expression DATE('B')//7
returns a number in the range 0–6 that corresponds to the current day of the week, where 0 is
Monday and 6 is Sunday.

Thus, this function can be used to determine the day of the week independent of the national
language in which you are working.

Note: The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except century years
that are not divisible by 400). It does not take into account any errors in the calendar system that
created the Gregorian calendar originally.

Century
the number of days, including the current day, since and including January 1 of the last year that is
a multiple of 100 in the form: ddddd (no leading zeros). Example: A call to DATE('C') on March 13
1992 returns 33675, the number of days from 1 January 1900 to 13 March 1992. Similarly, a call to
DATE('C') on 2 January 2000 returns 2, the number of days from 1 January 2000 to 2 January 2000.

Note: When the Century option is used for input, the output may change, depending on the current
century. For example, if DATE('S','1','C') was entered on any day between 1 January 1900 and 31
December 1999, the result would be 19000101. However, if DATE('S','1','C') was entered on any day
between 1 January 2000 and 31 December 2099, the result would be 20000101. It is important to
understand the above, and code accordingly.

Days
the number of days, including the current day, so far in the current year in the format: ddd (no leading
zeros or blanks).

Julian
date in the format: yyddd (yy and ddd must have leading zeros).

European
date in the format: dd/mm/yy (dd, mm, and yy must have leading zeros).

Month
full name of the current month, in the active language. For example, August, if the active language is
American English. Only valid for output_date_format.

Normal
date in the format: dd mon yyyy. This is the default (dd cannot have any leading zeros or blanks;
yyyy must have leading zeros but cannot have any leading blanks). If the active language has an
abbreviated form of the month name, then it is used (for example, Jan, Feb, and so on). If Normal
is specified for input_date_format, the input_date must have the month (mon) specified in American
English (for example, Jan, Feb, Mar, and so on).

Ordered
date in the format: yy/mm/dd (suitable for sorting, and so forth; yy, mm, and dd must have leading
zeros).

Standard
date in the format: yyyymmdd (suitable for sorting, and so forth; yyyy, mm, and dd must have leading
zeros).

Functions

82 z/VM: 7.3 REXX/VM Reference

Usa
date in the format: mm/dd/yy (mm, dd, and yy must have leading zeros).

Weekday
the name for the day of the week, in the active language. For example, Tuesday, if the active language
is American English. Only valid for output_date_format.

Here are some examples, assuming today is 13 March 1992:

DATE() -> '13 Mar 1992'
DATE(,'19960527','S') -> '27 May 1996'
DATE('B') -> 727269
DATE('B','27 May 1996',) -> 728805
DATE('B','27*May*1996',,,'*') -> 728805
DATE('C') -> 33675
DATE('E') -> '13/03/92'
DATE('E',,,'+') -> '13+03+92'
DATE('E','081698','U',,'') -> '16/08/98'
DATE('J') -> 92073
DATE('M') -> 'March'
DATE('N') -> '13 Mar 1992'
DATE('N','35488','C') -> '28 Feb 1997'
DATE('O') -> '92/03/13'
DATE('S') -> '19920313'
DATE('S',,) -> '19920313'
DATE('S',,,'-') -> '1992-03-13'
DATE('U') -> '03/13/92'
DATE('U','96/05/27','O') -> '05/27/96'
DATE('U','97059','J') -> '02/28/97'
DATE('U','1.Feb.1998','N','+','.') -> '02+01+98'
DATE('U','1998-08-16','S','','-') -> '081698'
DATE('W') -> 'Friday'

Note:

1. The first call to DATE or TIME in one clause causes a time stamp to be made that is then used for all
calls to these functions in that clause. Therefore, multiple calls to any of the DATE or TIME functions or
both in a single expression or clause are guaranteed to be consistent with each other.

2. Input dates given in 2-digit year formats are interpreted as being within a 100 year window as
calculated by:

(current_year - 50) = low end of window
(current_year + 49) = high end of window

3. For other related routines that perform conversion operations, see the DateTimeSubtract CSL routine
in z/VM: CMS Application Multitasking, or see the CMS Pipelines DATECONVERT stage in z/VM: CMS
Pipelines User's Guide and Reference.

4. The "active language" referred to in the Month, Normal, and Weekday options is the national language
set by CMS during initial start up or by an explicit SET LANGUAGE command, for example, SET
LANGUAGE UCENG.

DATE('M') -> 'MARCH'
DATE('N') -> '13 MAR 1992'
DATE('N','35488','C') -> '28 FEB 1997'
DATE('W') -> 'FRIDAY'

5. input_separator_char and output_separator_char apply to the following formats and have the following
default values:

Format Name Format Structure Default Separator Value

European dd/mm/yy '/'

Normal dd mon yyyy ' '

Ordered yy/mm/dd '/'

Standard yyyymmdd ''

Usa mm/dd/yy '/'

Functions

Chapter 3. Functions 83

Note: Null is a valid value for input_separator_char and output_separator_char.
6. For consistency with CMS date formats ISODATE and FULLDATE, a REXX program can convert dates to

these formats by using a combination of the TRANSLATE and DATE functions:

• This example returns the current date in ISODATE format:

TRANSLATE('year-mn-dt',DATE('S'),'yearmndt')

• This example returns the current date in FULLDATE format:

TRANSLATE('mn/dt/year',DATE('S'),'yearmndt')

DBCS (Double-Byte Character Set Functions)
The following are all part of DBCS processing functions. See Appendix B, “Double-Byte Character Set
(DBCS) Support,” on page 283.

DBADJUST DBRIGHT DBUNBRACKET

DBBRACKET DBRLEFT DBVALIDATE

DBCENTER DBRRIGHT DBWIDTH

DBCJUSTIFY DBTODBCS

DBLEFT DBTOSBCS

DELSTR (Delete String)

DELSTR (string , n

, length

)

returns string after deleting the substring that begins at the nth character and is of length characters.
If you omit length, or if length is greater than the number of characters from n to the end of string, the
function deletes the rest of string (including the nth character). The length must be a positive whole
number or zero. The n must be a positive whole number. If n is greater than the length of string, the
function returns string unchanged.

Here are some examples:

DELSTR('abcd',3) -> 'ab'
DELSTR('abcde',3,2) -> 'abe'
DELSTR('abcde',6) -> 'abcde'

DELWORD (Delete Word)

DELWORD (string , n

, length

)

returns string after deleting the substring that starts at the nth word and is of length blank-delimited
words. If you omit length, or if length is greater than the number of words from n to the end of string,
the function deletes the remaining words in string (including the nth word). The length must be a positive
whole number or zero. The n must be a positive whole number. If n is greater than the number of words
in string, the function returns string unchanged. The string deleted includes any blanks following the final
word involved but none of the blanks preceding the first word involved.

Functions

84 z/VM: 7.3 REXX/VM Reference

Here are some examples:

DELWORD('Now is the time',2,2) -> 'Now time'
DELWORD('Now is the time ',3) -> 'Now is '
DELWORD('Now is the time',5) -> 'Now is the time'
DELWORD('Now is the time',3,1) -> 'Now is time'

DIAG/DIAGRC
These are CMS external functions. See “DIAG” on page 124.

DIGITS

DIGITS ()

returns the current setting of NUMERIC DIGITS. See the NUMERIC instruction in “NUMERIC” on page 44
for more information.

Here is an example:

DIGITS() -> 9 /* by default */

D2C (Decimal to Character)

D2C (wholenumber
, n

)

returns a string, in character format, that represents wholenumber, a decimal number, converted to
binary. If you specify n, it is the length of the final result in characters; after conversion, the input string
is sign-extended to the required length. If the number is too big to fit into n characters, then the result is
truncated on the left. The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the result length is as needed.
Therefore, the returned result has no leading '00'x characters.

Here are some examples:

D2C(9) -> ' ' /* '09'x is unprintable in EBCDIC */
D2C(129) -> 'a' /* '81'x is an EBCDIC 'a' */
D2C(129,1) -> 'a' /* '81'x is an EBCDIC 'a' */
D2C(129,2) -> ' a' /* '0081'x is EBCDIC ' a' */
D2C(257,1) -> ' ' /* '01'x is unprintable in EBCDIC */
D2C(-127,1) -> 'a' /* '81'x is EBCDIC 'a' */
D2C(-127,2) -> ' a' /* 'FF'x is unprintable EBCDIC; */
 /* '81'x is EBCDIC 'a' */
D2C(-1,4) -> ' ' /* 'FFFFFFFF'x is unprintable in EBCDIC */
D2C(12,0) -> '' /* '' is a null string */

Implementation maximum: The output string may not have more than 250 significant characters, though
a longer result is possible if it has additional leading sign characters ('00'x and 'FF'x).

D2X (Decimal to Hexadecimal)

D2X (wholenumber
, n

)

Functions

Chapter 3. Functions 85

returns a string, in character format, that represents wholenumber, a decimal number, converted to
hexadecimal. The returned string uses uppercase alphabetics for the values A–F and does not include
blanks.

If you specify n, it is the length of the final result in characters; after conversion the input string is
sign-extended to the required length. If the number is too big to fit into n characters, it is truncated on the
left. The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the returned result has no
leading zeros.

Here are some examples:

D2X(9) -> '9'
D2X(129) -> '81'
D2X(129,1) -> '1'
D2X(129,2) -> '81'
D2X(129,4) -> '0081'
D2X(257,2) -> '01'
D2X(-127,2) -> '81'
D2X(-127,4) -> 'FF81'
D2X(12,0) -> ''

Implementation maximum: The output string may not have more than 500 significant hexadecimal
characters, though a longer result is possible if it has additional leading sign characters (0 and F).

ERRORTEXT

ERRORTEXT (n)

returns the REXX error message associated with error number n. The n must be in the range 0–99, and
any other value is an error. Returns the null string if n is in the allowed range but is not a defined REXX
error number. See Appendix A, “Error Numbers and Messages,” on page 281 for a complete description of
error numbers and messages.

Here are some examples:

ERRORTEXT(16) -> 'Label not found'
ERRORTEXT(60) -> ''

EXTERNALS
This is a built-in function. See “EXTERNALS” on page 117 for a description.

FIND
FIND is a built-in function. See “FIND” on page 117 for a description. WORDPOS is the preferred built-in
function for this type of word search; see “WORDPOS (Word Position)” on page 114 for a complete
description.

FORM

FORM ()

returns the current setting of NUMERIC FORM. See the NUMERIC instruction in “NUMERIC” on page 44
for more information.

Functions

86 z/VM: 7.3 REXX/VM Reference

Here is an example:

FORM() -> 'SCIENTIFIC' /* by default */

FORMAT

FORMAT (number

,

before ,

after ,
expp , expt

)

returns number, rounded and formatted.

The number is first rounded according to standard REXX rules, just as though the operation number+0
had been carried out. The result is precisely that of this operation if you specify only number. If you
specify any other options, the number is formatted as follows.

The before and after options describe how many characters are used for the integer and decimal parts of
the result, respectively. If you omit either or both of these, the number of characters used for that part is
as needed.

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to an integer.

Here are some examples:

FORMAT('3',4) -> ' 3'
FORMAT('1.73',4,0) -> ' 2'
FORMAT('1.73',4,3) -> ' 1.730'
FORMAT('-.76',4,1) -> ' -0.8'
FORMAT('3.03',4) -> ' 3.03'
FORMAT(' - 12.73',,4) -> '-12.7300'
FORMAT(' - 12.73') -> '-12.73'
FORMAT('0.000') -> '0'

The first three arguments are as described previously. In addition, expp and expt control the exponent
part of the result, which, by default, is formatted according to the current NUMERIC settings of DIGITS
and FORM. The expp sets the number of places for the exponent part; the default is to use as many as
needed (which may be zero). The expt sets the trigger point for use of exponential notation. The default is
the current setting of NUMERIC DIGITS.

If expp is 0, no exponent is supplied, and the number is expressed in simple form with added zeros as
necessary. If expp is not large enough to contain the exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
exponential notation is used. If expt is 0, exponential notation is always used unless the exponent would
be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be 0 when a nonzero expp is
specified, then expp+2 blanks are supplied for the exponent part of the result. If the exponent would be 0
and expp is not specified, simple form is used. The expp must be less than 10, but there is no limit on the
other arguments.

Here are some examples:

FORMAT('12345.73',,,2,2) -> '1.234573E+04'
FORMAT('12345.73',,3,,0) -> '1.235E+4'
FORMAT('1.234573',,3,,0) -> '1.235'

Functions

Chapter 3. Functions 87

FORMAT('12345.73',,,3,6) -> '12345.73'
FORMAT('1234567e5',,3,0) -> '123456700000.000'

FUZZ

FUZZ ()

returns the current setting of NUMERIC FUZZ. See the NUMERIC instruction in “NUMERIC” on page 44 for
more information.

Here is an example:

FUZZ() -> 0 /* by default */

INDEX
INDEX is a built-in function. See “INDEX” on page 117 for a description. POS is the preferred built-in
function for obtaining the position of one string in another; see “POS (Position)” on page 93 for a
complete description.

INSERT

INSERT (new , target

,
n ,

length , pad

)

inserts the string new, padded or truncated to length length, into the string target after the nth character.
The default value for n is 0, which means insert before the beginning of the string. If specified, n and
length must be positive whole numbers or zero. If n is greater than the length of the target string, padding
is added before the string new also. The default value for length is the length of new. If length is less than
the length of the string new, then INSERT truncates new to length length. The default pad character is a
blank.

Here are some examples:

INSERT(' ','abcdef',3) -> 'abc def'
INSERT('123','abc',5,6) -> 'abc 123 '
INSERT('123','abc',5,6,'+') -> 'abc++123+++'
INSERT('123','abc') -> '123abc'
INSERT('123','abc',,5,'-') -> '123--abc'

JUSTIFY
This is a built-in function. See “JUSTIFY” on page 118 for a description.

LASTPOS (Last Position)

LASTPOS (needle , haystack

, start

)

Functions

88 z/VM: 7.3 REXX/VM Reference

returns the position of the last occurrence of one string, needle, in another, haystack. (See also the POS
function.) Returns 0 if needle is the null string or is not found. By default the search starts at the last
character of haystack and scans backward. You can override this by specifying start, the point at which
the backward scan starts. start must be a positive whole number and defaults to LENGTH(haystack) if
larger than that value or omitted.

Here are some examples:

LASTPOS(' ','abc def ghi') -> 8
LASTPOS(' ','abcdefghi') -> 0
LASTPOS('xy','efgxyz') -> 4
LASTPOS(' ','abc def ghi',7) -> 4

LEFT

LEFT (string , length

, pad

)

returns a string of length length, containing the leftmost length characters of string. The string returned is
padded with pad characters (or truncated) on the right as needed. The default pad character is a blank.
length must be a positive whole number or zero. The LEFT function is exactly equivalent to:

SUBSTR (string , 1 , length

, pad

)

Here are some examples:

LEFT('abc d',8) -> 'abc d '
LEFT('abc d',8,'.') -> 'abc d...'
LEFT('abc def',7) -> 'abc de'

LENGTH

LENGTH (string)

returns the length of string.

Here are some examples:

LENGTH('abcdefgh') -> 8
LENGTH('abc defg') -> 8
LENGTH('') -> 0

LINEIN (Line Input)

LINEIN (
name ,

line , count

)

Functions

Chapter 3. Functions 89

returns count lines read from the character input stream name. The count must be 1 or 0. (To understand
the input and output functions, see Chapter 7, “Input and Output Streams,” on page 171.) The form of
name is also described in Chapter 7, “Input and Output Streams,” on page 171. If you omit name, the line
is read from the default input stream. The default count is 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream starts at
the current read position by default. (Under certain circumstances, a call to LINEIN returns a partial line.
This can happen if the stream has already been read with the CHARIN function, and part but not all of a
line (and its termination, if any) has already been read.) When the language processor completes reading,
the read position is increased by the number of characters read. You can specify a line number to set the
read position to the start of a particular line. This line number must be positive and within the bounds of
the stream, and must not be specified for a transient stream. A value of 1 for line refers to the first line in
the stream. (This is the initial read position when the stream is used for the first time after being opened).

If you give a count of 0, then the read position is set to the start of the specified line, but no characters are
read and the null string is returned.

For transient streams, if a complete line is not available in the stream, then execution of the program
usually stops until the line is complete. If, however, it is impossible for a line to be completed because
of an error or other problem, the NOTREADY condition is raised (see “Errors During Input and Output” on
page 177) and LINEIN returns whatever characters are available.

Here are some examples:

LINEIN(myfile) -> 'MFC' /* perhaps */
LINEIN(myfile,5) -> 'Line5' /* perhaps */
LINEIN(myfile,5,0) -> ''
LINEIN(myfile) -> 'Line5' /* after last call */
LINEIN() -> 'Hello' /* would cause a */
 /* VM READ if there is */
 /* no string available */
 /* in the default input */
 /* stream */

Note: If the intention is to read complete lines from the default input stream, as in a simple dialogue with
a user, use the PULL or PARSE PULL instruction instead for simplicity. The PARSE LINEIN instruction is
also useful in certain cases. (See “PARSE” on page 48.)

LINEOUT (Line Output)

LINEOUT (
name ,

string , line

)

returns the count of lines remaining after attempting to write string to the character output stream name.
(To understand the input and output functions, see Chapter 7, “Input and Output Streams,” on page 171.)
The count is either 0 (meaning the line was successfully written) or 1 (meaning that an error occurred
while writing the line). The string can be the null string, in which case the only action is repositioning of
the write position if repositioning is specified. Otherwise, the stream is closed.

The form of name is also described in Chapter 7, “Input and Output Streams,” on page 171. If you omit
name, the line is written to the default output stream.

For persistent streams, a write position is maintained for each stream. Any write to the stream starts
at the current write position by default. (Under certain circumstances the characters written by a call
to LINEOUT may be added to a partial line previously written to the stream with the CHAROUT routine.
LINEOUT stops a line at the end of each call.) When the language processor completes writing, the write
position is increased by the number of characters written. When the stream is first opened, the write
position is at the end of the stream, so that calls to LINEOUT will append lines to the end of the stream.

Functions

90 z/VM: 7.3 REXX/VM Reference

You can specify a line number to set the write position to the start of a particular line in a persistent
stream. This line number must be positive and within the bounds of the stream (though it can specify the
line number immediately after the end of the stream). A value of 1 for line refers to the first line in the
stream.

The output of the string may have associated side effects. That is, if line is specified and there are output
characters previously written with CHAROUT to an incomplete line, this residual line is written out before
the LINEOUT operation is performed. If line is not specified and there are output characters in the I/O
buffer, which was previously written with CHAROUT, then string is appended to the existing data and
the line written to the output stream. All lines written to an F-format output stream will be padded with
blanks as necessary. If the string is too long, a NOTREADY condition will be raised. For V-format streams,
no padding or truncation is done and if the output string is null, a null line is written to the stream.

Note: You will get an error if you try to overwrite a record with another record that has a different length.

You can omit the string for persistent streams. If you specify line, the write position is set to the start
of the line that was given, nothing is written to the stream, and the function returns 0. If you specify
neither line nor string, then any incomplete line previously written with CHAROUT will first be written to
the stream with padding as appropriate, and the stream will be closed.

Execution of the program usually stops until the output operation is effectively complete. For example,
when data is sent to a printer, the system accepts the data and returns control to REXX, even though
the output data may not have been printed on the printer. REXX considers this to be complete, even
though the data has not been printed. If, however, it is impossible for a line to be written, the NOTREADY
condition is raised (see “Errors During Input and Output” on page 177), and LINEOUT returns a result of 1
(that is, the residual count of lines written).

Here are some examples:

LINEOUT(myfile,'Hi') -> 0 /* usually */
LINEOUT(myfile,'Hi',5) -> 0 /* usually */
LINEOUT(myfile,,6) -> 0 /* now at line 6 */
LINEOUT(myfile) -> 0 /* stream closed */
LINEOUT(,'Hi') -> 0 /* usually */
LINEOUT(,'Hello') -> 1 /* maybe */

LINEOUT is often most useful when called as a subroutine. The residual line count is then available in the
variable RESULT.

Here are some examples:

Call LINEOUT 'Output file','Hello'
Call LINEOUT ,'Hello'

Note: If the lines are to be written to the default output stream without the possibility of error, use the
SAY instruction instead.

LINES (Lines Remaining)

LINES (
name

)

returns the number of completed lines remaining in the character input stream name. If the stream has
already been read with the CHARIN function, this can include an initial partial line. For persistent streams
the count starts at the current read position. (To understand the input and output functions, see Chapter
7, “Input and Output Streams,” on page 171.)

The form of name is also described in Chapter 7, “Input and Output Streams,” on page 171. If you omit
name or it is null, then the default input stream is tested.

Functions

Chapter 3. Functions 91

Here are some examples:

LINES(myfile) -> 7 /* 7 lines remain */

LINES(myfile) -> 0 /* at end of the file */

LINES() -> 1 /* data remains in the */
 /* default input stream */

LINESIZE
This is a built-in function. See “LINESIZE” on page 118 for a description.

MAX (Maximum)

MAX (

,

number)

returns the largest number from the list specified, formatted according to the current NUMERIC settings.

Here are some examples:

MAX(12,6,7,9) -> 12
MAX(17.3,19,17.03) -> 19
MAX(-7,-3,-4.3) -> -3
MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,MAX(20,21)) -> 21

Implementation maximum: You can specify up to 20 numbers, and can nest calls to MAX if more
arguments are needed.

MIN (Minimum)

MIN (

,

number)

returns the smallest number from the list specified, formatted according to the current NUMERIC settings.

Here are some examples:

MIN(12,6,7,9) -> 6
MIN(17.3,19,17.03) -> 17.03
MIN(-7,-3,-4.3) -> -7
MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,MIN(2,1)) -> 1

Implementation maximum: You can specify up to 20 numbers, and can nest calls to MIN if more
arguments are needed.

Functions

92 z/VM: 7.3 REXX/VM Reference

OVERLAY

OVERLAY (new , target

,
n ,

length , pad

)

returns the string target, which, starting at the nth character, is overlaid with the string new, padded or
truncated to length length. (The overlay may extend beyond the end of the original target string.) If you
specify length, it must be a positive whole number or zero. The default value for length is the length of
new. If n is greater than the length of the target string, padding is added before the new string. The default
pad character is a blank, and the default value for n is 1. If you specify n, it must be a positive whole
number.

Here are some examples:

OVERLAY(' ','abcdef',3) -> 'ab def'
OVERLAY('.','abcdef',3,2) -> 'ab. ef'
OVERLAY('qq','abcd') -> 'qqcd'
OVERLAY('qq','abcd',4) -> 'abcqq'
OVERLAY('123','abc',5,6,'+') -> 'abc+123+++'

POS (Position)

POS (needle , haystack

, start

)

returns the position of one string, needle, in another, haystack. (See also the INDEX and LASTPOS
functions.) Returns 0 if needle is the null string or is not found or if start is greater than the length of
haystack. By default the search starts at the first character of haystack (that is, the value of start is 1).
You can override this by specifying start (which must be a positive whole number), the point at which the
search starts.

Here are some examples:

POS('day','Saturday') -> 6
POS('x','abc def ghi') -> 0
POS(' ','abc def ghi') -> 4
POS(' ','abc def ghi',5) -> 8

QUEUED

QUEUED ()

returns the number of lines remaining in the external data queue when the function is called. (See Chapter
7, “Input and Output Streams,” on page 171 for a discussion of REXX input and output.) If no lines are
remaining, a PULL or PARSE PULL reads from the terminal input buffer. If no terminal input is waiting, this
causes a console read (VM READ).

Functions

Chapter 3. Functions 93

Here is an example:

QUEUED() -> 5 /* Perhaps */

RANDOM

RANDOM (
max

min ,

, max , seed

)

returns a quasi-random nonnegative whole number in the range min to max inclusive. If you specify
max or min or both, max minus min cannot exceed 100000. The min and max default to 0 and 999,
respectively. To start a repeatable sequence of results, use a specific seed as the third argument, as
described in Note “1” on page 94. This seed must be a positive whole number ranging from 0 to
999999999.

Here are some examples:

RANDOM() -> 305
RANDOM(5,8) -> 7
RANDOM(2) -> 0 /* 0 to 2 */
RANDOM(,,1983) -> 123 /* reproducible */

Note:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a number of times, but
specify a seed only the first time. For example, to simulate 40 throws of a 6-sided, unbiased die:

sequence = RANDOM(1,6,12345) /* any number would */
 /* do for a seed */
do 39
 sequence = sequence RANDOM(1,6)
 end
say sequence

The numbers are generated mathematically, using the initial seed, so that as far as possible they
appear to be random. Running the program again produces the same sequence; using a different
initial seed almost certainly produces a different sequence. If you do not supply a seed, the first time
RANDOM is called, the microsecond field of the time-of-day clock is used as the seed; and hence your
program almost always gives different results each time it is run.

2. The random number generator is global for an entire program; the current seed is not saved across
internal routine calls.

REVERSE

REVERSE (string)

returns string, swapped end for end.

Here are some examples:

REVERSE('ABc.') -> '.cBA'
REVERSE('XYZ ') -> ' ZYX'

Functions

94 z/VM: 7.3 REXX/VM Reference

RIGHT

RIGHT (string , length

, pad

)

returns a string of length length containing the rightmost length characters of string. The string returned is
padded with pad characters (or truncated) on the left as needed. The default pad character is a blank. The
length must be a positive whole number or zero.

Here are some examples:

RIGHT('abc d',8) -> ' abc d'
RIGHT('abc def',5) -> 'c def'
RIGHT('12',5,'0') -> '00012'

SIGN

SIGN (number)

returns a number that indicates the sign of number. The number is first rounded according to standard
REXX rules, just as though the operation number+0 had been carried out. Returns -1 if number is less
than 0; returns 0 if it is 0; and returns 1 if it is greater than 0.

Here are some examples:

SIGN('12.3') -> 1
SIGN(' -0.307') -> -1
SIGN(0.0) -> 0

SOCKET
This is a CMS external function. See “SOCKET” on page 135 for a description.

SOURCELINE

SOURCELINE (
n

)

returns the line number of the final line in the program if you omit n, or returns the nth line in the program
if you specify n. If specified, n must be a positive whole number and must not exceed the number of the
final line in the program.

Here are some examples:

SOURCELINE() -> 10
SOURCELINE(1) -> '/* This is a 10-line REXX program */'

Functions

Chapter 3. Functions 95

SPACE

SPACE (string
,

n , pad

)

returns the blank-delimited words in string with n pad characters between each word. If you specify n, it
must be a positive whole number or zero. If it is 0, all blanks are removed. Leading and trailing blanks are
always removed. The default for n is 1, and the default pad character is a blank.

Here are some examples:

SPACE('abc def ') -> 'abc def'
SPACE(' abc def',3) -> 'abc def'
SPACE('abc def ',1) -> 'abc def'
SPACE('abc def ',0) -> 'abcdef'
SPACE('abc def ',2,'+') -> 'abc++def'

STORAGE
This is a CMS external function. See “STORAGE” on page 136.

STSI
This is a CMS external function. See “STSI” on page 137.

STREAM

STREAM (name

,
State

Command , stream_command

Description

)

returns a string describing the state of, or the result of an operation upon, the character stream name. The
result may depend on characteristics of the stream that you have specified in other uses of the STREAM
function. (To understand the input and output functions, see Chapter 7, “Input and Output Streams,” on
page 171.) This function requests information on the state of an input or output stream or carries out
some specific operation on the stream.

The first argument, name, specifies the stream to be accessed. The form of name is also described in
Chapter 7, “Input and Output Streams,” on page 171. The second argument can be one of the following
strings that describe the action to be carried out. (Only the capitalized and highlighted letter is needed; all
characters following it are ignored.)
Command

an operation (specified by the stream_command given as the third argument) is applied to the
selected input or output stream. The stream_command string is a command in the list in “Stream
Commands” on page 102. You can use the stream_command argument only with the Command
option. The string that is returned depends on the command performed and may be the null string.

Description
returns a string that indicates the current state of the specified stream. The first part of the result
is identical to the State option, but it returns more information: the returned string is followed by a

Functions

96 z/VM: 7.3 REXX/VM Reference

colon, along with the return code and reason code returned by the last I/O on that stream, and all
are separated by one blank. In certain cases, you will get additional information appended to the
description string from the lower level routine in the form:

llname llretcode llreascode

(where llname is the lower level program name; llretcode is the lower level return code; and llreascode
is the lower level reason code.)

You cannot specify stream_command with this option.

State
returns a string that indicates the current state of the specified stream. This is the default if no action
is specified. You cannot specify stream_command with this option.

The strings returned are as follows:

ERROR
The stream has been subject to an erroneous operation (possibly during input, output, or through
the STREAM function). See “Errors During Input and Output” on page 177. You may be able to
obtain additional information about the error by invoking the STREAM function with a request for
the description.

NOTREADY
The stream is known to be in a state such that usual input or output operations attempted upon
it would raise the NOTREADY condition. (See “Errors During Input and Output” on page 177
For example, a simple input stream may have a defined length; an attempt to read that stream
(with the CHARIN or LINEIN built-in functions, perhaps) beyond that limit may make the stream
unavailable until some operation resets the state of the stream.

READY
The stream is known to be in a state such that usual input or output operations may be attempted
(this is the usual state for a stream, though it does not guarantee that any particular operation will
succeed).

UNKNOWN
The state of the stream is unknown. That is, the stream is closed or has not yet been opened.

Here are some examples:

/* Possible results might be: */
STREAM(myfile) -> 'READY'
STREAM(readitall) -> 'NOTREADY'
STREAM(readitall,'D') -> 'NOTREADY: 8 99509'

Note: The state (and operation) of an input or output stream is global to all REXX programs; it is not saved
and restored across internal or external function and subroutine calls (including those calls that a CALL
ON condition trap causes).

Stream Commands
The following stream commands:

• Open a stream for reading or writing
• Close a stream at the end of an operation
• Move the line read or line write position within a persistent stream (for example, a file)
• Get information about a stream (its existence, format, size, last edit or use date, and read/write

position).

You must use the stream_command argument when—and only when—you select the Command operation.
The syntax is:

Functions

Chapter 3. Functions 97

STREAM (name , 'C' , stream_command)

In this form, the STREAM function itself returns a string corresponding to the given stream_command if
the command is successful. If the command is unsuccessful, STREAM returns an error message string.
For most error conditions, additional information is returned in the form of a return code and reason code.

See Appendix F, “Input and Output Return and Reason Codes,” on page 311 for a full explanation of the
return codes and reason codes generated by the CSL routines that perform the I/O. For the lower level
routine codes not listed there, see the following books:

• z/VM: CMS Callable Services Reference and z/VM: CP Messages and Codes: For SFS files, minidisk files, or
the program stack.

• z/VM: CMS Macros and Functions Reference: For spool files (reader, punch, and printer).
• z/VM: CP Programming Services: For CP diagnose codes. (The value in the reason code field is actually

the condition code.)
• z/VM: CP Commands and Utilities Reference: For CP commands.

Command Strings
The argument stream_command can be any expression that REXX evaluates as one of the following
command strings. (All capitalized letters are needed; case is insignificant.)

OPEN
1

Options

CLOSE

LINEPOS offset type

QUERY DATETIME

QUERY EXISTS

QUERY FORMAT

QUERY INFO

QUERY LINEPOS READ

QUERY LINEPOS WRITE

QUERY LINEPOS SIZE

Options

READ

WRITE

NEW

REPLACE

LRECL nnnnn RECFM V

RECFM F

TEXT

BINARY

LINEEND 15

LINEEND xx

Notes:
1 You can enter Options in any order.

Functions

98 z/VM: 7.3 REXX/VM Reference

OPEN options
opens the named stream. The stream may be opened for reading or writing by specifying an intent.
Valid values for intent are:
READ

Open for reading only, object must exist.
WRITE

Open for read/write, object will be created if it does not exist.
NEW

Open for read/write, object must not exist and will be created.
REPLACE

Open for read/write, object will be created if it does not exist or will be replaced if it does exist. A
replaced file is considered a new file, and, therefore, the record format and logical record length
may change.

If an intent is not specified, then the open type will be determined by the capability of the named
stream if known: READ for read-only streams and WRITE otherwise. If unknown, WRITE is used.

The rest of the options are described as follows:

LRECL nnnnn
used to specify the logical record length of the stream. If this parameter is not specified, the
logical record length of the stream is used, if known. Otherwise, 1024 is used.

The value of LRECL is only used if a minidisk or SFS file is being created or replaced, otherwise it is
ignored and the actual LRECL and RECFM of the stream is used.

Note: If the stream is an existing minidisk or SFS file and the open intent is not REPLACE,
the LRECL and RECFM parameter is ignored and any subsequent output behavior (padding or
truncation) will be consistent with the actual attributes of the file.

RECFM V or F
specifies the record format of a stream, V (variable) or F (fixed). If RECFM F is specified and a
minidisk or SFS file is being created, the LRECL default is 80. RECFM V will default to the length of
the file if no LRECL is specified.

The value of LRECL is only used if a minidisk or SFS file is being created or replaced, otherwise it is
ignored and the actual LRECL and RECFM of the stream is used.

Note: If the stream is an existing minidisk or SFS file and the open intent is not REPLACE,
the LRECL and RECFM parameter is ignored and any subsequent output behavior (padding or
truncation) will be consistent with the actual attributes of the file.

TEXT or BINARY
specifies if LINEEND characters are significant in character I/O operations. BINARY means that all
character codes may be present in the data stream and no indication of LINEEND characters will
be provided or searched for. TEXT means that LINEEND characters are not included in the data
stream and line ends should be noted. That is, LINEEND characters are appended to the end of
each line when passing data to the user on character input operations; data to be written to a
stream on character output operations is split at LINEEND characters. These LINEEND characters
are never written to the data stream. Line operations are not affected by this parameter. TEXT is
the default.

LINEEND xx
specifies the line end character to be used when doing character-based operations on TEXT
streams (ignored for line-based operations). The xx can be one or two hexadecimal digits that
define the character to be used as the line end indicator. A leading 0 will be supplied if only one
digit is given. These must be valid hexadecimal digits and contain no blanks. If this parameter is
not specified, 15 is used. For portability, it is recommended that a value of 3F or less be used.

The STREAM function itself returns the string READY: followed by a unique stream identifier if the
named stream is successfully opened. This unique identifier contains printable and nonprintable

Functions

Chapter 3. Functions 99

characters. If unsuccessful, the returned string consists of ERROR: followed by the return code and
reason code from the open routine that failed, and then the words Open failed.

Examples:

 stream(strinp,'c','open') /* open stream */
 stream(strout,'c','open write') /* open for write */
 /* open for read, LRECL is 80, character operations */
 /* should indicate line end as X'15' */
 stream(strinp,'c','open read lrecl 80 text lineend 15')

See “Stream Names Used by the Input and Output Functions” on page 172 for a code segment using
this unique identifier.

CLOSE
closes the named stream. The STREAM function itself returns READY: if the named stream is
successfully closed. If the close is unsuccessful, the returned string is ERROR: followed by the return
code and reason code from the failing routine and then Close failed. For an SFS file, this causes
a close with commit. If an attempt is made to close an unopened stream, then STREAM returns a null
string.

Example:

stream('MYDATA FILE','c','close') /* close the file */

LINEPOS offset type
sets the read or write line pointer to a specified offset within a persistent stream.
offset

a positive whole number that may have a modifier as follows:
= or blank

specifies that offset is forward from the beginning of the stream. This is the default if no
modifier is supplied.

<
specifies that offset is backward from the end of the stream.

+
specifies that offset is forward from the current read/write position.

-
specifies that offset is backward from the current read/write position.

type
is either READ or WRITE, specifying that the read or write position is to be changed.

In order to position the line write pointer to the position just past the end of a stream, use an offset of
<0. In order to position the line write pointer to the last record of a stream, use an offset of <1.

In order to use this command, the named stream must first be opened (with the OPEN stream
command described above or implicitly with an I/O function call).

The STREAM function itself returns the new position in the stream if the read/write position is
successfully located or an error message otherwise. This error message will include the string ERROR:
followed by the return code and reason code from the failing routine, and then followed by the
message, Point failed.

Examples:

 /* move write pointer to line 2 */
stream(name,'Command','linepos 2 write')
 /* move read pointer ahead 2 lines */
stream(name,'c','linepos +2' read)
 /* move write pointer back 7 lines */
stream(name,'c','linepos -7 write')
fromend = 125
 /* move read pointer 125 lines */

Functions

100 z/VM: 7.3 REXX/VM Reference

 /* backward from the end */
stream(name,'c','linepos <'fromend 'read')

In addition, the STREAM function returns specific information about a persistent stream when used with
the following commands. Under certain error conditions, and when a stream does not exist, a null string is
returned. (All capitalized letters are needed; case is insignificant.)

QUERY DATETIME
returns the date and time stamps of a stream (date and time when last modified). For example:

stream('* RDRFILE CMSOBJECTS.','c','query datetime')

The date is returned in the form:

mm/dd/yyyy hh:mm:ss

For a reader file, this is the date and time the file was created (punched). If the file is not open, the
year is 0000.

For an SFS file or minidisk file, this is the date and time the file was last modified.

For all other objects, zeros are returned to indicate that the date and time are undetermined.

QUERY EXISTS
returns the full name of the object if it exists, or a null string otherwise. For example:

stream('YOURDATA FILE *','c','query exists')

For a reader file, this indicates whether the file is present in the virtual reader. If an asterisk (*) was
specified for the spool ID, then this will return the full name (spool_id RDRFILE CMSOBJECTS.) of
the first file in the reader if it exists.

For SFS and minidisk files, this indicates whether the file exists. For a minidisk file or an accessed SFS
directory, if the file mode number was omitted or the file mode was specified as an asterisk (*), then
the full file name will be returned. For SFS, the fully qualified name is returned.

QUERY FORMAT
returns the record format and logical record length of a stream. For example:

stream('MYFILE DATA A','c','query format')

This information is returned in the form:

recfm lrecl

For a virtual unit record device, the device's characteristics are evaluated according to device type
such as reader, printer, and punch.

QUERY INFO
returns the record format, logical record length, number of records, date of last update, and time of
last update. For example:

stream('MYDATA FILE A','c','query info')

The information is returned in the form:

recfm lrecl #records mm/dd/yyyy hh:mm:ss

Refer to the commands in this list for the various pieces (format, size, and datetime) for information on
the content of the returned string.

QUERY LINEPOS READ
returns the value of the line read pointer for a persistent stream (or 0 if the stream cannot be read or
is not open). For example:

Functions

Chapter 3. Functions 101

stream('MYFILE DATA A','c','query linepos read')

QUERY LINEPOS WRITE
returns the value of the line write pointer for a persistent stream (or 0 if the stream cannot be written
to or is not open). For example:

stream('MYFILE DATA A','c','query linepos write')

QUERY SIZE
returns the size in lines (or records) of a stream. For example:

stream(punch,'c','query size')

For minidisk and SFS files, this is the number of records in the file.

For a reader file, this is the number of card images in the reader file.

For a virtual punch or virtual printer, this is the number of records written to the device since it was
opened if it is open and zero if it is closed.

Stream Commands
The following stream commands:

• Open a stream for reading or writing
• Close a stream at the end of an operation
• Move the line read or line write position within a persistent stream (for example, a file)
• Get information about a stream (its existence, format, size, last edit or use date, and read/write

position).

You must use the stream_command argument when—and only when—you select the Command operation.
The syntax is:

STREAM (name , 'C' , stream_command)

In this form, the STREAM function itself returns a string corresponding to the given stream_command if
the command is successful. If the command is unsuccessful, STREAM returns an error message string.
For most error conditions, additional information is returned in the form of a return code and reason code.

See Appendix F, “Input and Output Return and Reason Codes,” on page 311 for a full explanation of the
return codes and reason codes generated by the CSL routines that perform the I/O. For the lower level
routine codes not listed there, see the following books:

• z/VM: CMS Callable Services Reference and z/VM: CP Messages and Codes: For SFS files, minidisk files, or
the program stack.

• z/VM: CMS Macros and Functions Reference: For spool files (reader, punch, and printer).
• z/VM: CP Programming Services: For CP diagnose codes. (The value in the reason code field is actually

the condition code.)
• z/VM: CP Commands and Utilities Reference: For CP commands.

Command strings
The argument stream_command can be any expression that REXX evaluates as one of the following
command strings. (All capitalized letters are needed; case is insignificant.)

Functions

102 z/VM: 7.3 REXX/VM Reference

OPEN
1

Options

CLOSE

LINEPOS offset type

QUERY DATETIME

QUERY EXISTS

QUERY FORMAT

QUERY INFO

QUERY LINEPOS READ

QUERY LINEPOS WRITE

QUERY LINEPOS SIZE

Options

READ

WRITE

NEW

REPLACE

LRECL nnnnn RECFM V

RECFM F

TEXT

BINARY

LINEEND 15

LINEEND xx

Notes:
1 You can enter Options in any order.

OPEN options
opens the named stream. The stream may be opened for reading or writing by specifying an intent.
Valid values for intent are:
READ

Open for reading only, object must exist.
WRITE

Open for read/write, object will be created if it does not exist.
NEW

Open for read/write, object must not exist and will be created.
REPLACE

Open for read/write, object will be created if it does not exist or will be replaced if it does exist. A
replaced file is considered a new file, and, therefore, the record format and logical record length
may change.

If an intent is not specified, then the open type will be determined by the capability of the named
stream if known: READ for read-only streams and WRITE otherwise. If unknown, WRITE is used.

The rest of the options are described as follows:

LRECL nnnnn
used to specify the logical record length of the stream. If this parameter is not specified, the
logical record length of the stream is used, if known. Otherwise, 1024 is used.

Functions

Chapter 3. Functions 103

The value of LRECL is only used if a minidisk or SFS file is being created or replaced, otherwise it is
ignored and the actual LRECL and RECFM of the stream is used.

Note: If the stream is an existing minidisk or SFS file and the open intent is not REPLACE,
the LRECL and RECFM parameter is ignored and any subsequent output behavior (padding or
truncation) will be consistent with the actual attributes of the file.

RECFM V or F
specifies the record format of a stream, V (variable) or F (fixed). If RECFM F is specified and a
minidisk or SFS file is being created, the LRECL default is 80. RECFM V will default to the length of
the file if no LRECL is specified.

The value of LRECL is only used if a minidisk or SFS file is being created or replaced, otherwise it is
ignored and the actual LRECL and RECFM of the stream is used.

Note: If the stream is an existing minidisk or SFS file and the open intent is not REPLACE,
the LRECL and RECFM parameter is ignored and any subsequent output behavior (padding or
truncation) will be consistent with the actual attributes of the file.

TEXT or BINARY
specifies if LINEEND characters are significant in character I/O operations. BINARY means that all
character codes may be present in the data stream and no indication of LINEEND characters will
be provided or searched for. TEXT means that LINEEND characters are not included in the data
stream and line ends should be noted. That is, LINEEND characters are appended to the end of
each line when passing data to the user on character input operations; data to be written to a
stream on character output operations is split at LINEEND characters. These LINEEND characters
are never written to the data stream. Line operations are not affected by this parameter. TEXT is
the default.

LINEEND xx
specifies the line end character to be used when doing character-based operations on TEXT
streams (ignored for line-based operations). The xx can be one or two hexadecimal digits that
define the character to be used as the line end indicator. A leading 0 will be supplied if only one
digit is given. These must be valid hexadecimal digits and contain no blanks. If this parameter is
not specified, 15 is used. For portability, it is recommended that a value of 3F or less be used.

The STREAM function itself returns the string READY: followed by a unique stream identifier if the
named stream is successfully opened. This unique identifier contains printable and nonprintable
characters. If unsuccessful, the returned string consists of ERROR: followed by the return code and
reason code from the open routine that failed, and then the words Open failed.

Examples:

 stream(strinp,'c','open') /* open stream */
 stream(strout,'c','open write') /* open for write */
 /* open for read, LRECL is 80, character operations */
 /* should indicate line end as X'15' */
 stream(strinp,'c','open read lrecl 80 text lineend 15')

See “Stream Names Used by the Input and Output Functions” on page 172 for a code segment using
this unique identifier.

CLOSE
closes the named stream. The STREAM function itself returns READY: if the named stream is
successfully closed. If the close is unsuccessful, the returned string is ERROR: followed by the return
code and reason code from the failing routine and then Close failed. For an SFS file, this causes
a close with commit. If an attempt is made to close an unopened stream, then STREAM returns a null
string.

Example:

stream('MYDATA FILE','c','close') /* close the file */

Functions

104 z/VM: 7.3 REXX/VM Reference

LINEPOS offset type
sets the read or write line pointer to a specified offset within a persistent stream.
offset

a positive whole number that may have a modifier as follows:
= or blank

specifies that offset is forward from the beginning of the stream. This is the default if no
modifier is supplied.

<
specifies that offset is backward from the end of the stream.

+
specifies that offset is forward from the current read/write position.

-
specifies that offset is backward from the current read/write position.

type
is either READ or WRITE, specifying that the read or write position is to be changed.

In order to position the line write pointer to the position just past the end of a stream, use an offset of
<0. In order to position the line write pointer to the last record of a stream, use an offset of <1.

In order to use this command, the named stream must first be opened (with the OPEN stream
command described above or implicitly with an I/O function call).

The STREAM function itself returns the new position in the stream if the read/write position is
successfully located or an error message otherwise. This error message will include the string ERROR:
followed by the return code and reason code from the failing routine, and then followed by the
message, Point failed.

Examples:

 /* move write pointer to line 2 */
stream(name,'Command','linepos 2 write')
 /* move read pointer ahead 2 lines */
stream(name,'c','linepos +2' read)
 /* move write pointer back 7 lines */
stream(name,'c','linepos -7 write')
fromend = 125
 /* move read pointer 125 lines */
 /* backward from the end */
stream(name,'c','linepos <'fromend 'read')

In addition, the STREAM function returns specific information about a persistent stream when used with
the following commands. Under certain error conditions, and when a stream does not exist, a null string is
returned. (All capitalized letters are needed; case is insignificant.)

QUERY DATETIME
returns the date and time stamps of a stream (date and time when last modified). For example:

stream('* RDRFILE CMSOBJECTS.','c','query datetime')

The date is returned in the form:

mm/dd/yyyy hh:mm:ss

For a reader file, this is the date and time the file was created (punched). If the file is not open, the
year is 0000.

For an SFS file or minidisk file, this is the date and time the file was last modified.

For all other objects, zeros are returned to indicate that the date and time are undetermined.

QUERY EXISTS
returns the full name of the object if it exists, or a null string otherwise. For example:

Functions

Chapter 3. Functions 105

stream('YOURDATA FILE *','c','query exists')

For a reader file, this indicates whether the file is present in the virtual reader. If an asterisk (*) was
specified for the spool ID, then this will return the full name (spool_id RDRFILE CMSOBJECTS.) of
the first file in the reader if it exists.

For SFS and minidisk files, this indicates whether the file exists. For a minidisk file or an accessed SFS
directory, if the file mode number was omitted or the file mode was specified as an asterisk (*), then
the full file name will be returned. For SFS, the fully qualified name is returned.

QUERY FORMAT
returns the record format and logical record length of a stream. For example:

stream('MYFILE DATA A','c','query format')

This information is returned in the form:

recfm lrecl

For a virtual unit record device, the device's characteristics are evaluated according to device type
such as reader, printer, and punch.

QUERY INFO
returns the record format, logical record length, number of records, date of last update, and time of
last update. For example:

stream('MYDATA FILE A','c','query info')

The information is returned in the form:

recfm lrecl #records mm/dd/yyyy hh:mm:ss

Refer to the commands in this list for the various pieces (format, size, and datetime) for information on
the content of the returned string.

QUERY LINEPOS READ
returns the value of the line read pointer for a persistent stream (or 0 if the stream cannot be read or
is not open). For example:

stream('MYFILE DATA A','c','query linepos read')

QUERY LINEPOS WRITE
returns the value of the line write pointer for a persistent stream (or 0 if the stream cannot be written
to or is not open). For example:

stream('MYFILE DATA A','c','query linepos write')

QUERY SIZE
returns the size in lines (or records) of a stream. For example:

stream(punch,'c','query size')

For minidisk and SFS files, this is the number of records in the file.

For a reader file, this is the number of card images in the reader file.

For a virtual punch or virtual printer, this is the number of records written to the device since it was
opened if it is open and zero if it is closed.

Functions

106 z/VM: 7.3 REXX/VM Reference

STRIP

STRIP (string
,

option , char

)

returns string with leading or trailing characters or both removed, based on the option you specify. The
following are valid options. (Only the capitalized and highlighted letter is needed; all characters following
it are ignored.)
Both

removes both leading and trailing characters from string. This is the default.
Leading

removes leading characters from string.
Trailing

removes trailing characters from string.

The third argument, char, specifies the character to be removed, and the default is a blank. If you specify
char, it must be exactly one character long.

Here are some examples:

STRIP(' ab c ') -> 'ab c'
STRIP(' ab c ','L') -> 'ab c '
STRIP(' ab c ','t') -> ' ab c'
STRIP('12.7000',,0) -> '12.7'
STRIP('0012.700',,0) -> '12.7'

SUBSTR (Substring)

SUBSTR (string , n
,

length , pad

)

returns the substring of string that begins at the nth character and is of length length, padded with pad if
necessary. The n must be a positive whole number. If n is greater than LENGTH(string), then only pad
characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.

Here are some examples:

SUBSTR('abc',2) -> 'bc'
SUBSTR('abc',2,4) -> 'bc '
SUBSTR('abc',2,6,'.') -> 'bc....'

Note: In some situations the positional (numeric) patterns of parsing templates are more convenient for
selecting substrings, especially if more than one substring is to be extracted from a string. See also the
LEFT and RIGHT functions.

Functions

Chapter 3. Functions 107

SUBWORD

SUBWORD (string , n

, length

)

returns the substring of string that starts at the nth word, and is up to length blank-delimited words. The
n must be a positive whole number. If you omit length, it defaults to the number of remaining words
in string. The returned string never has leading or trailing blanks, but includes all blanks between the
selected words.

Here are some examples:

SUBWORD('Now is the time',2,2) -> 'is the'
SUBWORD('Now is the time',3) -> 'the time'
SUBWORD('Now is the time',5) -> ''

SYMBOL

SYMBOL (name)

returns the state of the symbol named by name. Returns BAD if name is not a valid REXX symbol. Returns
VAR if it is the name of a variable (that is, a symbol that has been assigned a value). Otherwise returns
LIT, indicating that it is either a constant symbol or a symbol that has not yet been assigned a value (that
is, a literal).

As with symbols in REXX expressions, lowercase characters in name are translated to uppercase and
substitution in a compound name occurs if possible.

Note: You should specify name as a literal string (or it should be derived from an expression) to prevent
substitution before it is passed to the function.

Here are some examples:

/* following: Drop A.3; J=3 */
SYMBOL('J') -> 'VAR'
SYMBOL(J) -> 'LIT' /* has tested "3" */
SYMBOL('a.j') -> 'LIT' /* has tested A.3 */
SYMBOL(2) -> 'LIT' /* a constant symbol */
SYMBOL('*') -> 'BAD' /* not a valid symbol */

TIME

TIME (

option

)

returns the local time in the 24-hour clock format: hh:mm:ss (hours, minutes, and seconds) by default, for
example, 04:41:37.

You can use the following options to obtain alternative formats, or to gain access to the elapsed-time
clock. (Only the capitalized and highlighted letter is needed; all characters following it are ignored.)
Civil

returns the time in Civil format: hh:mmxx. The hours may take the values 1 through 12, and the
minutes the values 00 through 59. The minutes are followed immediately by the letters am or pm. This

Functions

108 z/VM: 7.3 REXX/VM Reference

distinguishes times in the morning (12 midnight through 11:59 a.m.—appearing as 12:00am through
11:59am) from noon and afternoon (12 noon through 11:59 p.m.—appearing as 12:00pm through
11:59pm). The hour has no leading zero. The minute field shows the current minute (rather than the
nearest minute) for consistency with other TIME results.

Elapsed
returns sssssssss.uuuuuu, the number of seconds since the elapsed-time clock (described later) was
started or reset. The number has no leading zeros or blanks, and the setting of NUMERIC DIGITS does
not affect the number. The fractional part always has six digits.

Hours
returns up to two characters giving the number of hours since midnight in the format: hh (no leading
zeros or blanks, except for a result of 0).

Long
returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction of seconds, in microseconds).
The first eight characters of the result follow the same rules as for the Normal form, and the fractional
part is always six digits.

Minutes
returns up to four characters giving the number of minutes since midnight in the format: mmmm (no
leading zeros or blanks, except for a result of 0).

Normal
returns the time in the default format hh:mm:ss, as described previously. The hours can have the
values 00 through 23, and minutes and seconds, 00 through 59. All these are always two digits. Any
fractions of seconds are ignored (times are never rounded up). This is the default.

Reset
returns sssssssss.uuuuuu, the number of seconds.microseconds since the elapsed-time clock
(described later) was started or reset and also resets the elapsed-time clock to zero. The number
has no leading zeros or blanks, and the setting of NUMERIC DIGITS does not affect the number. The
fractional part always has six digits.

Seconds
returns up to five characters giving the number of seconds since midnight in the format: sssss (no
leading zeros or blanks, except for a result of 0).

Here are some examples, assuming that the time is 4:54 p.m.:

TIME() -> '16:54:22'
TIME('C') -> '4:54pm'
TIME('H') -> '16'
TIME('L') -> '16:54:22.123456' /* Perhaps */
TIME('M') -> '1014' /* 54 + 60*16 */
TIME('N') -> '16:54:22'
TIME('S') -> '60862' /* 22 + 60*(54+60*16) */

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On the first call in a program to
TIME('E') or TIME('R'), the elapsed-time clock is started, and either call returns 0. From then on,
calls to TIME('E') and to TIME('R') return the elapsed time since that first call or since the last call to
TIME('R').

The clock is saved across internal routine calls, which is to say that an internal routine inherits the time
clock its caller started. Any timing the caller is doing is not affected, even if an internal routine resets the
clock. An example of the elapsed-time clock:

time('E') -> 0 /* The first call */
/* pause of one second here */
time('E') -> 1.002345 /* or thereabouts */
/* pause of one second here */
time('R') -> 2.004690 /* or thereabouts */
/* pause of one second here */
time('R') -> 1.002345 /* or thereabouts */

Functions

Chapter 3. Functions 109

Note: See the note under DATE about consistency of times within a single clause. The elapsed-time clock
is synchronized to the other calls to TIME and DATE, so multiple calls to the elapsed-time clock in a single
clause always return the same result. For the same reason, the interval between two usual TIME/DATE
results may be calculated exactly using the elapsed-time clock.

Implementation maximum: If the number of seconds in the elapsed time exceeds nine digits (equivalent
to over 31.6 years), an error results.

TRACE

TRACE (

option

)

returns trace actions currently in effect and, optionally, alters the setting.

If you specify option, it selects the trace setting. It must be one of the valid prefixes ? or ! or one of the
alphabetic character options associated with the TRACE instruction (that is, starting with A, C, E, F, I, L, N,
O, R, or S) or both. (See the TRACE instruction in “Alphabetic Character (Word) Options” on page 62.) for
full details.)

Unlike the TRACE instruction, the TRACE function alters the trace action even if interactive debug is
active. Also unlike the TRACE instruction, option cannot be a number.

Here are some examples:

TRACE() -> '?R' /* maybe */
TRACE('O') -> '?R' /* also sets tracing off */
TRACE('?I') -> 'O' /* now in interactive debug */

TRANSLATE

TRANSLATE(string

,

tableo ,

tablei , pad

)

returns string with each character translated to another character or unchanged. You can also use this
function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE searches tablei for each
character in string. If the character is found, then the corresponding character in tableo is used in the
result string; if there are duplicates in tablei, the first (leftmost) occurrence is used. If the character is not
found, the original character in string is used. The result string is always the same length as string.

The tables can be of any length. If you specify neither translation table and omit pad, string is simply
translated to uppercase (that is, lowercase a–z to uppercase A–Z), but, if you include pad, the language
processor translates the entire string to pad characters. tablei defaults to XRANGE('00'x,'FF'x), and
tableo defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

Here are some examples:

TRANSLATE('abcdef') -> 'ABCDEF'
TRANSLATE('abbc','&','b') -> 'a&&c'

Functions

110 z/VM: 7.3 REXX/VM Reference

TRANSLATE('abcdef','12','ec') -> 'ab2d1f'
TRANSLATE('abcdef','12','abcd','.') -> '12..ef'
TRANSLATE('APQRV',,'PR') -> 'A Q V'
TRANSLATE('APQRV',XRANGE('00'X,'Q')) -> 'APQ '
TRANSLATE('4123','abcd','1234') -> 'dabc'

Note: The last example shows how to use the TRANSLATE function to reorder the characters in a string.
In the example, the last character of any four-character string specified as the second argument would be
moved to the beginning of the string.

TRUNC (Truncate)

TRUNC (number
, n

)

returns the integer part of number and n decimal places. The default n is 0 and returns an integer with no
decimal point. If you specify n, it must be a positive whole number or zero. The number is first rounded
according to standard REXX rules, just as though the operation number+0 had been carried out. The
number is then truncated to n decimal places (or trailing zeros are added if needed to make up the
specified length). The result is never in exponential form.

Here are some examples:

TRUNC(12.3) -> 12
TRUNC(127.09782,3) -> 127.097
TRUNC(127.1,3) -> 127.100
TRUNC(127,2) -> 127.00

Note: The number is rounded according to the current setting of NUMERIC DIGITS if necessary before the
function processes it.

USERID
USERID is a built-in function. See “USERID” on page 118 for a description.

VALUE

VALUE (name
,

newvalue , selector

)

returns the value of the symbol that name (often constructed dynamically) represents and optionally
assigns it a new value. By default, VALUE refers to the current REXX-variables environment, but CMS
global variables may be selected. If you use the function to refer to REXX variables, then name must be a
valid REXX symbol. (You can confirm this by using the SYMBOL function.) Lowercase characters in name
are translated to uppercase. Substitution in a compound name (see “Compound Symbols” on page 14)
occurs if possible.

If you specify newvalue, then the named variable is assigned this new value. This does not affect the
result returned; that is, the function returns the value of name as it was before the new assignment.

Here are some examples:

/* After: Drop A3; A33=7; K=3; fred='K'; list.5='Hi' */
VALUE('a'k) -> 'A3' /* looks up A3 */
VALUE('a'k||k) -> '7' /* looks up A33 */
VALUE('fred') -> 'K' /* looks up FRED */
VALUE(fred) -> '3' /* looks up K */

Functions

Chapter 3. Functions 111

VALUE(fred,5) -> '3' /* looks up K and */
 /* then sets K=5 */
VALUE(fred) -> '5' /* looks up K */
VALUE('LIST.'k) -> 'Hi' /* looks up LIST.5 */

The third argument, selector, is of the form:
GLOBAL

LASTING

SESSION

group_name

When this third argument is used, the VALUE function manipulates CMS global variables. The value of a
variable is always retrieved from the in-storage table, no matter which of the three forms of selector is
used. When you set the value of a variable, selector specifies which CMS global pool to use. The first form,
GLOBAL, sets the variable in the in-storage table. The second form, LASTING, sets the variable in the
in-storage table and also in the LASTING GLOBALV file. The third form, SESSION, sets the variable in the
in-storage table and also in the SESSION GLOBALV file. These are the only accepted forms for selector.
In these cases, the variable name need not be a valid REXX symbol. The argument group_name is the
GLOBALV group name containing the variable. If this is not specified, UNNAMED is assumed. When VALUE
sets or changes the value of a global variable, the new value is retained after the REXX procedure ends.

Here are some examples:

/* Given that a global variable Fred in the group MyGroup */
/* has a value of 4 */
global = 'GLOBAL MyGroup'
say VALUE('Fred',7,global) /* says '4' and assigns */
 /* Fred a new value of 7 */

say VALUE('Fred',,global) /* says '7' */

/* After this procedure ends, Fred still has a value of 7 */

Note:

1. If the VALUE function refers to an uninitialized REXX variable then the default value of the variable is
always returned; the NOVALUE condition is not raised. A reference to CMS global variables never raises
NOVALUE.

2. If you specify the name as a single literal string and omit newvalue and selector, the symbol is a
constant and so the string between the quotation marks can usually replace the whole function call.
(For example, fred=VALUE('k'); is identical with the assignment fred=k;, unless the NOVALUE
condition is being trapped. See Chapter 6, “Conditions and Condition Traps,” on page 165.)

VERIFY

VERIFY (string , reference
,

option , start

)

returns a number that, by default, indicates whether string is composed only of characters from reference;
returns 0 if all characters in string are in reference, or returns the position of the first character in string not
in reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized and highlighted letter is
needed. All characters following it are ignored, and it can be in upper- or lowercase, as usual.) If you
specify Match, the function returns the position of the first character in string that is in reference, or
returns 0 if none of the characters are found.

Functions

112 z/VM: 7.3 REXX/VM Reference

The default for start is 1; thus, the search starts at the first character of string. You can override this by
specifying a different start point, which must be a positive whole number.

If string is null, the function returns 0, regardless of the value of the third argument. Similarly, if start is
greater than LENGTH(string), the function returns 0. If reference is null, the function returns 0 if you
specify Match; otherwise the function returns the start value.

Here are some examples:

VERIFY('123','1234567890') -> 0
VERIFY('1Z3','1234567890') -> 2
VERIFY('AB4T','1234567890') -> 1
VERIFY('AB4T','1234567890','M') -> 3
VERIFY('AB4T','1234567890','N') -> 1
VERIFY('1P3Q4','1234567890',,3) -> 4
VERIFY('123','',N,2) -> 2
VERIFY('ABCDE','',,3) -> 3
VERIFY('AB3CD5','1234567890','M',4) -> 6

WORD

WORD (string , n)

returns the nth blank-delimited word in string or returns the null string if fewer than n words are in string.
The n must be a positive whole number. This function is exactly equivalent to SUBWORD(string,n,1).

Here are some examples:

WORD('Now is the time',3) -> 'the'
WORD('Now is the time',5) -> ''

WORDINDEX

WORDINDEX (string , n)

returns the position of the first character in the nth blank-delimited word in string or returns 0 if fewer
than n words are in string. The n must be a positive whole number.

Here are some examples:

WORDINDEX('Now is the time',3) -> 8
WORDINDEX('Now is the time',6) -> 0

WORDLENGTH

WORDLENGTH (string , n)

returns the length of the nth blank-delimited word in string or returns 0 if fewer than n words are in string.
The n must be a positive whole number.

Here are some examples:

WORDLENGTH('Now is the time',2) -> 2
WORDLENGTH('Now comes the time',2) -> 5
WORDLENGTH('Now is the time',6) -> 0

Functions

Chapter 3. Functions 113

WORDPOS (Word Position)

WORDPOS (phrase , string

, start

)

returns the word number of the first word of phrase found in string or returns 0 if phrase contains no
words or if phrase is not found. Multiple blanks between words in either phrase or string are treated as a
single blank for the comparison, but otherwise the words must match exactly.

By default the search starts at the first word in string. You can override this by specifying start (which must
be positive), the word at which to start the search.

Here are some examples:

WORDPOS('the','now is the time') -> 3
WORDPOS('The','now is the time') -> 0
WORDPOS('is the','now is the time') -> 2
WORDPOS('is the','now is the time') -> 2
WORDPOS('is time ','now is the time') -> 0
WORDPOS('be','To be or not to be') -> 2
WORDPOS('be','To be or not to be',3) -> 6

WORDS

WORDS (string)

returns the number of blank-delimited words in string.

Here are some examples:

WORDS('Now is the time') -> 4
WORDS(' ') -> 0

XRANGE (Hexadecimal Range)

XRANGE (

start , end

)

returns a string of all valid 1-byte encodings (in ascending order) between and including the values start
and end. The default value for start is '00'x, and the default value for end is 'FF'x. If start is greater
than end, the values wrap from 'FF'x to '00'x. If specified, start and end must be single characters.

Here are some examples:

XRANGE('a','f') -> 'abcdef'
XRANGE('03'x,'07'x) -> '0304050607'x
XRANGE(,'04'x) -> '0001020304'x
XRANGE('i','j') -> '898A8B8C8D8E8F9091'x /* EBCDIC */
XRANGE('FE'x,'02'x) -> 'FEFF000102'x

Functions

114 z/VM: 7.3 REXX/VM Reference

X2B (Hexadecimal to Binary)

X2B (hexstring)

returns a string, in character format, that represents hexstring converted to binary. The hexstring is a
string of hexadecimal characters. It can be of any length. Each hexadecimal character is converted to a
string of four binary digits. You can optionally include blanks in hexstring (at byte boundaries only, not
leading or trailing) to aid readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any blanks.

If hexstring is null, the function returns a null string.

Here are some examples:

X2B('C3') -> '11000011'
X2B('7') -> '0111'
X2B('1 C1') -> '000111000001'

You can combine X2B with the functions D2X and C2X to convert numbers or character strings into binary
form.

Here are some examples:

X2B(C2X('C3'x)) -> '11000011'
X2B(D2X('129')) -> '10000001'
X2B(D2X('12')) -> '1100'

X2C (Hexadecimal to Character)

X2C (hexstring)

returns a string, in character format, that represents hexstring converted to character. The returned string
is half as many bytes as the original hexstring. hexstring can be of any length. If necessary, it is padded
with a leading 0 to make an even number of hexadecimal digits.

You can optionally include blanks in hexstring (at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstring is null, the function returns a null string.

Here are some examples:

X2C('F7F2 A2') -> '72s' /* EBCDIC */
X2C('F7f2a2') -> '72s' /* EBCDIC */
X2C('F') -> ' ' /* '0F' is unprintable EBCDIC */

X2D (Hexadecimal to Decimal)

X2D (hexstring
, n

)

returns the decimal representation of hexstring. The hexstring is a string of hexadecimal characters. If the
result cannot be expressed as a whole number, an error results. That is, the result must not have more
digits than the current setting of NUMERIC DIGITS.

Functions

Chapter 3. Functions 115

You can optionally include blanks in hexstring (at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstring is null, the function returns 0.

If you do not specify n, hexstring is processed as an unsigned number.

Here are some examples:

X2D('0E') -> 14
X2D('81') -> 129
X2D('F81') -> 3969
X2D('FF81') -> 65409
X2D('c6 f0'X) -> 240 /* EBCDIC */

If you specify n, the string is taken as a signed number expressed in n hexadecimal digits. If the leftmost
bit is off, then the number is positive; otherwise, it is a negative number in two's complement notation.
In both cases it is converted to a whole number, which may, therefore, be negative. If n is 0, the function
returns 0.

If necessary, hexstring is padded on the left with 0 characters (note, not “sign-extended”), or truncated on
the left to n characters.

Here are some examples:

X2D('81',2) -> -127
X2D('81',4) -> 129
X2D('F081',4) -> -3967
X2D('F081',3) -> 129
X2D('F081',2) -> -127
X2D('F081',1) -> 1
X2D('0031',0) -> 0

Implementation maximum: The input string may not have more than 500 hexadecimal characters that
will be significant in forming the final result. Leading sign characters (0 and F) do not count towards this
total.

Function Packages
If an external function or subroutine that is in a function package known to the language processor is
called, the language processor automatically loads the function package before calling the function. To
the general user with adequate virtual storage, the functions that have been provided in packages seem
like ordinary built-in functions.

The language processor searches each of the function packages named below, if it is installed.
RXUSERFN

This is the name of a package that the general user may write. The package would be written in
assembler language and would contain a number of functions and their common subroutines. For
a description of assembler language interfaces to the language processor, see Chapter 8, “System
Interfaces,” on page 181. For a description of function packages, see “Function Packages” on page
192.

RXLOCFN
Similarly, this is the name of a package that system support people at your installation may write.

RXSYSFN
This is the name of the additional function package that both system support personnel and general
users can create and use.

The language processor searches for a function in the packages in the order given previously. See “Search
Order” on page 68 for the complete search order.

Functions

116 z/VM: 7.3 REXX/VM Reference

Additional Built-in Functions Provided in VM
In addition to the built-in functions REXX provides, the following functions are provided in the VM
environment.

EXTERNALS

EXTERNALS ()

returns the number of elements in the terminal input buffer (system external event queue), that is,
the number of logical typed-ahead lines, if any. See PARSE EXTERNAL in “PARSE” on page 48 for a
description of this queue.

Here is an example:

EXTERNALS() -> 0 /* Usually */

FIND
WORDPOS is the preferred built-in function for this type of word search. See “WORDPOS (Word Position)”
on page 114 for a complete description.

FIND (string , phrase)

returns the word number of the first word of phrase found in string or returns 0 if phrase is not found
or if there are no words in phrase. The phrase is a sequence of blank-delimited words. Multiple blanks
between words in phrase or string are treated as a single blank for the comparison.

Here are some examples:

FIND('now is the time','is the time') -> 2
FIND('now is the time','is the') -> 2
FIND('now is the time','is time ') -> 0

INDEX
POS is the preferred built-in function for obtaining the position of one string in another. See “POS
(Position)” on page 93 for a complete description.

INDEX (haystack , needle

, start

)

returns the character position of one string, needle, in another, haystack, or returns 0 if the string needle
is not found or is a null string. By default the search starts at the first character of haystack (start has
the value 1). You can override this by specifying a different start point, which must be a positive whole
number.

Here are some examples:

INDEX('abcdef','cd') -> 3
INDEX('abcdef','xd') -> 0
INDEX('abcdef','bc',3) -> 0

Functions

Chapter 3. Functions 117

INDEX('abcabc','bc',3) -> 5
INDEX('abcabc','bc',6) -> 0

JUSTIFY

JUSTIFY (string , length

, pad

)

returns string formatted by adding pad characters between blank-delimited words to justify to both
margins. This is done to width length (length must be a positive whole number or zero). The default pad
character is a blank.

The first step is to remove extra blanks as though SPACE(string) had been run (that is, multiple blanks
are converted to single blanks, and leading and trailing blanks are removed). If length is less than the
width of the changed string, the string is then truncated on the right and any trailing blank is removed.
Extra pad characters are then added evenly from left to right to provide the required length, and the pad
character replaces the blanks between words.

Here are some examples:

JUSTIFY('The blue sky',14) -> 'The blue sky'
JUSTIFY('The blue sky',8) -> 'The blue'
JUSTIFY('The blue sky',9) -> 'The blue'
JUSTIFY('The blue sky',9,'+') -> 'The++blue'

LINESIZE

LINESIZE ()

returns the current terminal line width (the point at which the language processor breaks lines displayed
using the SAY instruction). Returns a value of 0 if any of the following is true:

• The language processor cannot determine the terminal line size
• The virtual machine is disconnected
• The command CP TERMINAL LINESIZE OFF is in effect.

Note: You can set the terminal width with the CP TERM LINESIZE command. When not in full-screen CMS,
the terminal line width is limited to the CMS maximum of 130. When in full-screen CMS, LINESIZE always
returns a value of 999999999.

Testing for disconnect status using LINESIZE is not recommended because a connected user can enter CP
TERM LINESIZE OFF, in which case LINESIZE returns 0. A proper way of checking for disconnect status
is:

/* Returns 1 if disconnected, else returns 0 */
disc: return (substr(diag(24,-1),13,1)¬=0)

USERID

USERID ()

Functions

118 z/VM: 7.3 REXX/VM Reference

returns the system-defined User Identifier.

Here is an example:

USERID() -> 'ARTHUR' /* Maybe */

External Functions and Routines Provided in VM
The following are additional external functions and routines provided in the VM environment: APILOAD
includes a binding file in a REXX program, CMSFLAG returns the setting of certain indicators, CSL calls CSL
(callable services library) routines, DIAG and DIAGRC issue special commands to CP, SOCKET provides
access to the TCP/IP socket interface, and STORAGE inspects or alters the main storage of your virtual
machine.

APILOAD

APILOAD (binding_file_name)

includes a binding file in a REXX program. A binding file declares the external functions, constants, return
codes, and reason codes used by a set of CSL routines. The APILOAD function:

1. Takes as input the file name of a binding file (the file type of a binding file is COPY)
2. Reads the contents of the specified binding file
3. Creates and loads the variables in the invoking program.

The previous syntax shows how to call APILOAD as a function, but the preferred way is as a subroutine.
The format of that is:

CALL APILOAD ' binding_file_name '

A binding file may contain one or both of the following:

• The names of other REXX binding files
• The names of individual REXX variables.

For example, the VMREXMT binding file contains a list of all the individual CMS application multitasking
binding files.

A REXX binding file consists of comments and simple assignment statements. Simple assignment
statements are of the form variable = token. Valid tokens are:

• Literal Strings
• Hexadecimal Strings
• Numbers
• Symbols
• Operators
• Special Characters.

Note:

1. Comments in binding files are processed in the same manner as comments in a REXX program.
2. Interpretation is performed on the right-hand side of an assignment statement in a binding file.
3. Logic statements (for example, IF/THEN/ELSE, SELECT) can have unpredictable results. These should

be used with extreme care.

Functions

Chapter 3. Functions 119

CMSFLAG

CMSFLAG (flag)

returns the value 1 or 0 depending on the setting of flag. Specify any one of the following flag names. (No
abbreviations are allowed.) For more information on the following flags, see z/VM: CMS Commands and
Utilities Reference.
ABBREV

returns 1 if, when searching the synonym tables, truncations are accepted; otherwise, returns 0. Set
by SET ABBREV ON; reset by SET ABBREV OFF.

AUTOREAD
returns 1 if a console read is to be issued immediately after command execution; otherwise, returns 0.
Set by SET AUTOREAD ON; reset by SET AUTOREAD OFF.

CMSTYPE
returns 1 if console output is to be displayed (or typed) within an exec; returns 0 if console output is
to be suppressed. Set by SET CMSTYPE RT or the immediate command RT (Resume Typing). Reset by
SET CMSTYPE HT or the immediate command HT (Halt Typing).

DOS
returns 1 if your virtual machine is in the DOS environment; otherwise, returns 0. Set by SET DOS ON;
reset by SET DOS OFF.

EXECTRAC
returns 1 if EXEC Tracing is turned on (equivalent to the TRACE prefix option ?); otherwise, returns
0. Set by SET EXECTRAC ON or the immediate command TS. Reset by SET EXECTRAC OFF or the
immediate command TE. (See “Interrupting Execution and Controlling Tracing” on page 210.)

IMPCP
returns 1 if commands that CMS does not recognize are to be passed to CP; otherwise, returns 0. Set
by SET IMPCP ON; reset by SET IMPCP OFF. Applies to commands issued from the CMS command line
and also to REXX clauses that are commands to the CMS environment.

IMPEX
returns 1 you can call execs by file name; otherwise, returns 0. Set by SET IMPEX ON; reset by SET
IMPEX OFF. Applies to commands issued from the CMS command line and also to REXX clauses that
are commands to the CMS environment.

PROTECT
returns 1 if the CMS nucleus is storage-protected; otherwise, returns 0. Set by SET PROTECT ON;
reset by SET PROTECT OFF.

RELPAGE
returns 1 if pages are to be released after certain commands have completed execution; otherwise,
returns 0. Set by SET RELPAGE ON; reset by SET RELPAGE OFF.

SUBSET
returns 1 if you are in the CMS subset; otherwise, returns 0. Set by SUBSET (some editors issue this
command); reset by RETURN. (For details, see "CMS subset" in the reference manual of the editor you
are using).

XA
returns 1 if the program is executing in an XA, XC, or Z virtual machine; returns 0 if the program is
executing in a 370 virtual machine.

XC
returns 1 if the program is executing in an XC virtual machine; returns 0 if the program is executing in
an XA or 370 virtual machine.

Note: The XA flag also returns a value of 1 if the program is running in an XC virtual machine.

Functions

120 z/VM: 7.3 REXX/VM Reference

YEAR2000
returns 1 if both CP and CMS have the support for the year 2000 and beyond; returns 0 (zero) if either
CP or CMS does not have the support for the year 2000 and beyond.

Z
returns 1 if the program is executing in an XA or Z virtual machine and running ZCMS.

370
returns 1 if the program is executing in a 370 virtual machine; returns 0 if the program is executing in
an XA or XC virtual machine.

Note: Only CMS levels prior to CMS Level 12 will execute in a 370 virtual machine.

For more complete information, see the z/VM: REXX/VM Reference.

CSL

CSL (' rtnname retcode

parm

')

calls a routine that resides in a callable services library (CSL). Unlike other REXX functions (which use
commas to separate expressions), the CSL function uses blanks to separate the parameters.

The previous syntax shows how to call CSL as a function, but the preferred way is as a subroutine. The
format of that is:

CALL CSL ' rtnname retcode

parm

'

rtnname
is the name of the CSL routine to be called.

retcode
is the name of a variable to receive the return code from the CSL routine. This return code value is also
returned as the value of the function call.

parm
is the name of one or more parameters to be passed to the communications routine. The number and
type of these parameters are routine-dependent. A parameter being passed must be the name of a
variable.

Usage Notes
1. Use CSL in a REXX program to call:

• Routines in the z/VM-supplied VMLIB callable services library that do tasks such as:

– Perform CMS file system management or file pool administration functions
– Call the CMS extract/replace facility
– Use the CMS program stack

See z/VM: CMS Callable Services Reference for more information about these routines.
• Routines in the z/VM-supplied VMMTLIB callable services library that do tasks such as:

Functions

Chapter 3. Functions 121

– Perform CMS application multitasking functions. See z/VM: CMS Application Multitasking for more
information.

– Get the value set for the workstation display address. See z/VM: CMS Callable Services Reference
for more information.

However, do not use CSL to call:

• z/VM-supplied routines that perform program-to-program communications. These routines are part
of CPI Communications and must be called in a REXX program by using the ADDRESS CPICOMM
instruction. For more information, see Chapter 12, “Invoking Communications Routines,” on page
217.

• z/VM-supplied routines that perform resource recovery. These routines are part of the CPI resource
recovery interface and must be called in a REXX program by using the ADDRESS CPIRR instructions.
For more information, see Chapter 13, “Invoking Resource Recovery Routines,” on page 219.

• OPENVM-type CSL routines, such as OpenExtensions callable services. These routines may not
follow the usual syntax conventions for CSL routines and must be called in a REXX program by
using the ADDRESS OPENVM instruction. For more information, see Chapter 14, “Invoking OPENVM
Routines,” on page 221.

2. Before using CSL to call CMS application multitasking routines, the WorkstationGetAddress routine, or
routines from VMLIB that have names longer than eight characters (such as StackBufferCreate), you
should use the APILOAD function to include the appropriate programming language binding files into
your program. Binding files declare the external functions, constants, return codes, reason codes, and
other values used by the routines. For more information about APILOAD, see “APILOAD” on page 119.

For information about the binding files for CMS application multitasking routines, see z/VM: CMS
Application Multitasking. For information about the binding files for the WorkstationGetAddress routine
and VMLIB routines, see z/VM: CMS Callable Services Reference.

3. Only character string and signed binary data can be passed to a CSL routine. If a CSL parameter is
defined as a signed binary number, the REXX CSL interface makes the necessary translations to and
from the CSL routine. However, the CSL interface cannot translate a number in exponential notation to
signed binary. Use the NUMERIC DIGITS instruction to ensure that numbers used in your program will
not be represented in exponential form.

4. You cannot call CSL routines asynchronously from a REXX program.
5. Some CSL routine descriptions state that the previous values of the output parameters are not

changed for certain input combinations. This is true when the calls are made from languages other
than REXX. When a call to a CSL routine is made, REXX creates a buffer for each output parameter
and initializes the buffer to blanks. After completing the CSL routine call, REXX saves each buffer
value into the corresponding REXX variable. Therefore, if the CSL routine does not change one or more
output parameter values, the corresponding REXX variable values will be set to blanks when the call is
completed.

Returned Values
The list below shows the possible returned values from the CSL interface of REXX. These are in addition
to any values returned from the specific CSL routine being called. If CSL was called as a function, then
the returned values replace the function call in the expression evaluation, the same as any function call. If
CSL was called as a subroutine, then the variable RESULT has the returned value.
0

Routine was run and control returned to the REXX exec
-7

Routine was not loaded from a callable services library
-8

Routine was dropped from a callable services library
-9

Insufficient storage was available (See Chapter 1, “REXX General Concepts,” on page 1.)

Functions

122 z/VM: 7.3 REXX/VM Reference

-10
More parameters than allowed were specified

-11
Fewer parameters than required were specified

-20
Invalid call

-22
Invalid REXX argument

-23
Subpool create failure

-24
REXX fetch failure

-25
REXX set failure

-26nnn
Incorrect data length for parameter number nnn. Possible reasons are:

• The passed length parameter was greater than the maximum allowed for the parameter
• A length value greater than 65535 was supplied for a variable-length character or bit string
• The length specified for an output variable-length character or bit string parameter is greater than

the size the variable was initialized to before the call
• A binary or length input variable is too big.

-27nnn
Incorrect data or data type for parameter number nnn. Possible reasons are:

• A binary value was passed that contained a non-numeric character or had an initial character that
was not numeric, +, -, or ' '

• A parameter defined as unsigned binary (with a length of 4, 3, 2, or 1) was supplied a negative value
• A value was supplied for a bit string parameter that contained characters other than 0 or 1
• At least one of the stemmed variables containing values for an input column was not defined.

-28nnn
Incorrect variable name for parameter number nnn. Possible reasons are:

• An incorrect variable name was specified for an output variable
• A quoted literal value was supplied as the name for an output variable
• A quoted literal value was supplied as the name for a table column stemmed variable name
• No second quote character was passed for a quoted literal
• The second quote character for a quoted literal was followed by a character that was not a blank.

-29nnn
Incorrect length value (for example, a negative value) was specified for length parameter, parameter
number nnn.

Note: For the last four return codes, parameters are numbered serially, corresponding to the order
in which they are coded. The rtnname is always parameter number 001, retcode is always parameter
number 002, the next parameter is 003, and so forth.

Examples

The following example program section shows the CSL function of REXX calling a routine DMSEXIFI to
check if a given shared file exists.

/* Portion of Example REXX Program that Uses CSL function */

fileid = 'SAMPLE FILE .subdir1.subdir2'

Functions

Chapter 3. Functions 123

f_len = length(fileid)
commit = 'COMMIT'
c_len = length(commit)
CALL csl 'DMSEXIFI rtnc rsnc fileid f_len commit c_len'

if rtnc = 0 /* RESULT and rtnc are always the same */
 then say 'File Exists'
 else Do
 Say 'File does not exist as specified.'
 Say 'Return code is ' rtnc
 Say 'Reason code is ' rsnc
 End

Exit rtnc

/* --- End of Example --- */

In the preceding example

fileid = 'SAMPLE FILE .subdir1.subdir2'

identifies the directory where SAMPLE FILE is located. Using a period as the first character indicates that
the user's top directory in the default file pool is searched.

To search for SAMPLE FILE located on another user's directory, specify the user ID before the first period.
For example, to see if SAMPLE FILE exists in a directory SMITH owns, use the following statement:

fileid = 'SAMPLE FILE SMITH.subdir1.subdir2'

For more complete information, see the z/VM: REXX/VM Reference.

DIAG

DIAG (n

?

, data

)

communicates with CP through a dummy DIAGNOSE instruction and returns data as a character string.
(This interface is described in the discussion on the DIAGNOSE Instruction in z/VM: CP Programming
Services.)

The n is the hexadecimal diagnose code to be run. You can omit leading zeros. The ? indicates that
diagnostic messages are to be displayed if appropriate. The optional item, data, is dependent upon the
specific diagnose code being run; it is generally the input data for the given diagnose.

Note: A DIAGNOSE function with incorrect parameters may in some cases result in a specification
exception or a protection exception.

The data returned is in binary format; that is, it is precisely the data that the DIAGNOSE returns; no
conversion is performed.

Note: The REXX built-in functions C2X and C2D can convert the returned data. Samples of the use of
these functions are included in the descriptions of DIAGRC codes 0C and 60.

Codes are the same as for DIAGRC.

Functions

124 z/VM: 7.3 REXX/VM Reference

DIAGRC

DIAGRC (n

? , data)

is similar to the DIAG function. The n is the hexadecimal diagnose code to be run. You can omit leading
zeros. The use of quotation marks is optional but recommended. This is especially true for DIAGNOSE
codes C, C8, and CC. The ? indicates that diagnostic messages are to be displayed if appropriate. The
optional item, data, is dependent upon the specific diagnose code being run; it is generally the input data
for the given diagnose.

In contrast to the DIAG function, the data returned in this function has a prefix of:

Character position Contents

1 to 9 Return code from CP

10 A blank

11 Condition code from CP

12 to 16 Five blanks

The input and the returned data for each supported diagnose follow. If a diagnose code is not in this list, it
is not supported.

DIAG(00)
— Store Extended-Identification Code

DIAGRC(00)
The value returned is a string, at least 40 characters in length, depending on the level of nesting
of z/VM. The maximum amount of data returned is 200 bytes, but ordinarily 40 bytes of data are
returned.

DIAG(08,cpcommand[,sizebuf])
— Virtual Console Function

DIAGRC(08,cpcommand[,sizebuf])

Input is cpcommand (CP command) to be issued (240 bytes maximum), followed (optionally) by a
third argument, sizebuf, which specifies the size (in bytes) of the buffer that will contain the result.
This buffer size must be a nonnegative whole number; the default is 4096. When sizebuf is 0 then the
command is not run.

Any command response is returned as the function value. If the response contains multiple lines, the
character '15'X delimits them in the returned data.

Note that the command is passed to CP without any translation to uppercase. Thus commands
specified as a quoted string (a good idea) must be in uppercase or CP does not recognize them. For
example:

Diag(8,'query rdr all') /* fails because CP has no */
 /* "query" command (only */
 /* "QUERY"). */

Diag(8,query rdr all) /* ordinarily works, but will*/
 /* fail if "query", "rdr" or */
 /* "all" are variables that */
 /* have been assigned values */
 /* other than their own names*/

Diag(8,'QUERY RDR ALL') /* is the best and safest. */

Functions

Chapter 3. Functions 125

DIAG(0C)
— Pseudo Timer

DIAGRC(0C)
The value returned is a 32-byte string containing the date, time, virtual time used, and total time used.

For example, to display the virtual time:

Say 'Virtual time =' c2x(substr(diag('C'),17,8)) '(Hex)'

/* This results in a display of the form */

Virtual time = 00000000004BF959 (Hex)

You can display the virtual time as a decimal value by using the C2D function:

Say 'Virtual time =' c2d(substr(diag('C'),17,8))

/* This results in a display of the form */

Virtual time = 4979033

DIAG(14,acronym,rdrvaddr,addvals)
— Input File Spool Manipulation

DIAGRC(14,acronym,rdrvaddr,addvals)

The acronym is one of those described following. The rdrvaddr is the address of the virtual reader. The
addvals are one or more additional and sometimes optional values associated with a given acronym.
Acronym descriptions (following) include any additional, associated values as well.

The value returned is:

Character position Contents

1 Condition code

2 A blank

3 to 6 Four bytes from register y+1

7 to 8 Two blanks

9 onwards A return string (if any) whose length and content depend upon
the function being performed.

Note: The PARSE instruction can assign these operands to suitable variables, as in the examples
shown.

Acronym Descriptions:

The hexadecimal diagnose codes are in parentheses after the acronym name.

RNSB,rdrvaddr
— Read Next Spool Buffer; data record (X'0000')

There are no additional values associated with this acronym.

The return string is the 4096-byte spool file buffer. For example,

 Parse value diag(14,'RNSB','00C'),
 with cc 2 . 3 Ryp1 7 . 9 buffer

 /* will read the next spool buffer from the */
 /* card reader at address X'00C' and assign: */
 /* CC = the condition code */
 /* RYP1 = the contents of register y+1 */
 /* BUFFER = the 4096-byte spool buffer */

Functions

126 z/VM: 7.3 REXX/VM Reference

RNPRSFB,rdrvaddr[,readnum]
— Read Next PRint Spool File Block (X'0004')

The readnum may be used to specify the number of doublewords of the spool file block to be read.
(See Note “3” on page 129.)

The return string is the next spool file block of type PRT. Thus to read the next spool file block of
type PRT from device X'00C':

Parse value diag(14,'RNPRSFB','00C',18),
 with cc 2 . 3 Ryp1 7 . 9 SFB

/* will read the next print spool file block from */
/* the card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 144-byte spool file block */

RNPUSFB,rdrvaddr[,readnum]
— Read Next PUnch Spool File Block (X'0008')

The readnum may be used to specify the number of doublewords of the spool file block to be read.
(See Note “3” on page 129.)

The return string is the next spool file block of type PUN.

Thus to read the next spool file block of type PUN from device X'00C':

Parse value diag(14,'RNPUSFB','00C',18),
 with cc 2 . 3 Ryp1 7 . 9 SFB

/* will read the next punch spool file block from */
/* the card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 144-byte spool file block */

SF,rdrvaddr,spfileid
— Select a File for processing (X'000C')

The spfileid specifies the spool file id.

There is no return string other than the condition code and Ry+1 value.

Thus to select spool file number 8159 for processing from device X'00C':

Parse value diag(14,'SF','00C',8159),
 with cc 2 . 3 Ryp1 7

/* will select a file for processing from the */
/* card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */

RPF,rdrvaddr,newcopy
— RePeat active File nnn times (X'0010')

The newcopy specifies the new copy count, the maximum being 255. If the count is greater than
255, it is set to 255.

There is no return string other than the condition code and Ry+1 value.

Thus to change the copy count for the active file on device X'00C' to 5:

Parse value diag(14,'RPF','00C',5),
 with cc 2 . 3 Ryp1 7

/* will repeat active file 5 times on the */
/* card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */

Functions

Chapter 3. Functions 127

RSF,rdrvaddr
— ReStart active File at beginning (X'0014')

There are no additional values associated with this acronym.

The return string is the first 4096-byte spool file buffer.

Thus to reset the active file on device X'00C' to the beginning and read the first spool buffer:

Parse value diag(14,'RSF','00C'),
 with cc 2 . 3 Ryp1 7 . 9 buffer

BS,rdrvaddr
— BackSpace one record (X'0018')

There are no additional values associated with this acronym.

The return string is the 4096-byte spool file buffer.

Thus to read the previous spool buffer from the file active on device X'00C':

Parse value diag(14,'BS','00C'),
 with cc 2 . 3 Ryp1 7 . 9 buffer

/* will read the previous spool file buffer from */
/* the card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* BUFFER = the first 4096 bytes of the file */

RLSFB,rdrvaddr
— Read Last Spool File Buffer (X'0024')

There are no additional values associated with this subcode.

The specified device is checked for an already active file. The return string is the last 4096-byte
spool file buffer if there is an active file. If there is no active file, cc=2 is set.

Thus to read the last spool file buffer from the card reader at address X'00C':

Parse value diag(14,'RLSFB','00C'),
 with cc 2 . 3 Ryp1 7 . 9 buffer

/* will read the last full page buffer from the card */
/* the card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* buffer = the last 4096 byte spool buffer */

SFPRNSB,rdrvaddr,spfileid
— Select a File for Processing and Read Next Spool Buffer (X'002C')

This subcode is a combination of an SF subcode followed by an RNSB.

The return string is a 4096-byte spool file buffer. Held files are skipped.

Thus to select and read the next spool file buffer from the card reader at address X'00C' for spool
file 8159:

Parse value diag(14,'SFPRNSB','00C', 8159),
 with cc 2 . 3 Ryp1 7 . 9 buffer

/* will select and read the next 4096 page buffer */
/* from the card reader X'00C' buffer for spool */
/* ID 8159. */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* BUFFER = the next 4096-byte spool buffer */

RSFDNPR,n[,numwords[,3800]]
— Retrieve Subsequent File Descriptor Not Previously Retrieved (X'0FFE')

Functions

128 z/VM: 7.3 REXX/VM Reference

The n is either 0 (to retrieve subsequent file descriptor not previously retrieved) or 1 (to reset
the previously retrieved flags for all the file descriptors; then retrieve the first file descriptor). The
optional numwords specifies the number of doublewords of spool file block data to be returned.
(See Note “3” on page 129.) You can specify 3800, which is also optional, to cause 40 bytes of
3800 information to be included between the spool file block and the tag.

See Notes “1” on page 129 and “2” on page 129 for additional information.

Thus to obtain information about the next not previously retrieved file without regard to type,
class, and so forth:

 Parse value diag(14,'RSFDNPR',0,18),
 with cc 2 . 3 Ryp1 7 . 9 SFB 153 . 205 tag

/* will read the spool file block */
/* from the card reader at address X'00C' and */
/* assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 144-byte spool file block */
/* TAG = the tag data */

RSFD,spfilenum[,numwords[,3800]]
— Retrieve Subsequent File Descriptor (X'0FFF')

The spfilenum specifies the spool file number at which the search for the next file begins; it
may be 0 to start at the beginning of the queue. The optional numwords specifies the number
of doublewords of spool file block data to be returned. (See Note “3” on page 129.) 3800, also
optional, may be specified to cause 40 bytes of 3800 information to be included between the
spool file block and tag.

See Notes “1” on page 129 and “2” on page 129 for additional information.

Thus to obtain information about the next spool file without regard to type, class, and so forth:

Parse value diag(14,'RSFD',0,18,3800),
 with cc 2 . 3 Ryp1 7 . 9 SFB,
 153 data_3800 193 . 205 tag

/* will read the spool file block */
/* from the card reader at address X'00C' and */
/* assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 144-byte spool file block */
/* DATA_3800 = the 3800 data */
/* TAG = the tag data */

Notes on Diagnose X'14'

1. Because only one bit is provided to indicate that the length of return data is being explicitly stated
and that 3800 data is being requested, if either is specified (on RSFD or RSFDNPR calls), 40 bytes
of 3800 data are returned.

2. RSFD and RSFDNPR wait for a file being used by a system function. If, however, the file does not
become available in the 250 millisecond time limit, the function returns a null string for DIAG,
usual return code information for DIAGRC. For a discussion of possible causes for this condition,
see the notes on "DIAGNOSE Code X'14'" in z/VM: CP Programming Services.

3. For RNPRSFB, RNPUSFB, RSFD, and RSFDNPR, the default number of doublewords of spool file
block is 13; however, the length of the spool file in the current release of z/VM can be found in
z/VM: CP Programming Services. The maximum number of doublewords that can be returned is 63;
if a larger number is specified, only 504 bytes will be returned. The preceding examples do not
necessarily return the entire spool file block. If readnum or numwords is changed in the preceding
examples, the template on the parse instruction must also be changed.

DIAG(24,devaddr)
— Device Type and Features

Functions

Chapter 3. Functions 129

DIAGRC(24,devaddr)
The input, devaddr, is the device address or number (or -1 for virtual console).

Note: DIAGNOSE X'24' is not valid for a 3390 DASD. Use DIAGNOSE X'210' instead.

The value returned is a 13-byte string of virtual and real device information:

Position Contents

1 through 4 Virtual device information from Register y

5 through 8 Real device information from Register y+1

9 through 12 If -1 was specified, virtual console information from
Register x

13 Condition code

DIAG(5C,editstring[,headerlen])
— Error Message Editing

DIAGRC(5C,editstring[,headerlen])
The editstring is a string to be edited according to the current EMSG setting. The headerlen is the
length of the header used for the editing. If you do not specify headerlen, the default length is 10. The
headerlen may not be longer than editstring.

The value returned is the edited message, which is a null string, the message code, the message text,
or the entire input string, depending on the EMSG setting.

DIAG(60)
— Determine Virtual Storage Size

DIAGRC(60)
The value returned is the 4-byte virtual storage size.

You can display this value in hexadecimal with:

Say 'Virtual storage =' c2x(Diag(60))

resulting (for example) in display of the line:

Virtual storage = 00100000

Alternatively, you can display storage size in terms of K.However, depending on the virtual storage
size, numeric digits may need to be set greater than the default of 9.

Say 'Virtual storage =' c2d(diag(60))/1024'K'

resulting (for example) in display of the line:

Virtual storage = 512K

You can compare the virtual storage size to a hexadecimal value:

Say diag(60) > '00100000'x

results in display of 1 for virtual machines greater than 1M in size and 0 for those 1M or less. You can
express the same comparison in terms of megabytes:

Say c2d(diag(60))/(1024*1024) > 1

with the same results.

DIAG(64,subcode,name[,subfunction])
— Named Saved Segment Manipulation

Functions

130 z/VM: 7.3 REXX/VM Reference

DIAGRC(64,subcode,name[,subfunction])
The input subcode is a 1-character code indicating the function to perform, followed by a third
argument, name, the name of the segment. Specify a fourth argument, subfunction, only with the X
subcode. The subfunction is one of the following: FINDSPACE, FINDSKEL, or FINDSEGA.

For subcodes F, L, O, P, and S, the value returned is a 9-byte string consisting of the returned Rx and
Ry values, and a single byte condition code. For subcode X, the value returned is a 1064-byte string.
(The number of bytes is a decimal number.)

Note: For X, the returned buffer includes output and input buffers. The returned buffer contains: 4
bytes for Rx; 4 bytes for Ry; 1 byte for the condition code; 7 bytes reserved; and the input to the
subcode, followed by the output.

The subcodes are:
F

Find starting and ending address of the named saved segment.
L

Load a saved segment in nonshared mode.
O

Load a saved segment in shared mode only if no overlay condition exists.
P

Release a saved segment from storage.
S

Load a saved segment in shared mode.
X

Call the subfunction FINDSPACE, FINDSKEL, or FINDSEGA.

For example, to find the load address of the segment SPFSEG and display the starting and ending
addresses and the condition code:

spfsegaddr=diag(64,'F','SPFSEG')
Say 'Start:' c2x(substr(spfsegaddr,1,4)),
 ' End:' c2x(substr(spfsegaddr,5,4)),
 ' CC:' substr(spfsegaddr,9,1)

/* which displays:
 Start: 00230000 End: 0024FFFF CC: 0 */

indicating that the segment loads from 230000 to 24FFFF, and is already loaded (cc=0).

Attention: The L and S functions should be used with care. It is the coder's responsibility to ensure
that the loaded segment will not overlap virtual storage (see DIAG 60 preceding). CP will load a
segment in the middle of your virtual storage if requested, so code carefully.

Note: You can use the CMS SEGMENT command instead of this function to load and purge a named
segment. (See z/VM: CMS Commands and Utilities Reference for a description of the SEGMENT
command.)

However, SEGMENT PURGE is not interchangeable with DIAG(64,P) or DIAGRC(64,P). This means you
must purge a segment the same way you loaded it; for example, if you use DIAG(64,S,SEGONE) to
load segment SEGONE, use DIAGRC(64,P,SEGONE) to purge segment SEGONE.

DIAG(8C)
— Access 3270 Display Device Information

DIAGRC(8C)
The value returned is a string that is variable in length. The string contains device-dependent
information about the device (the virtual console). If the device is LAN attached to the host,
then additional data may be appended by other LAN-attached devices. If the virtual machine is
disconnected or the virtual console is a TTY device, then the returned string is null. You can determine
the length of the returned string using the LENGTH(string) function.

Functions

Chapter 3. Functions 131

The value returned is:

Byte Contents

0 Flags:

 X'01'
14-bit addressing is available

 X'20'
programmed symbol sets are available

 X'40'
device has extended highlighting

 X'80'
device has extended color

1 Number of partitions

2-3 Number of columns on the terminal

4-5 Number of rows on the terminal

6-n Information returned to CP by the initial Write Structured
Field Query Reply

Note: If the evaluation of a clause containing DIAGRC(8C) has as its target a disconnected device or
a TTY type device, a NULL string will be returned with a return code of '0' and a condition code of '2'.
This is instead of having a return code of '2' set in a register and a condition code of '0', as would be
set if submitted directly to CP. Since the DIAG(8C) and DIAGRC(8C) are intended to obtain information
about 3270-type devices, when we evaluate DIAG(8C) and DIAGRC(8C) within the REXX code we first
issue a DIAG(24) to determine the console type. If the device is disconnected, we receive a cc=2,
Rx+1 is not updated by CP, and we skip issuing the DIAG(8C) and DIAGRC(8C). We then preserve the
condition code and return a NULL string.

DIAG(A0)
— Obtain ACI Information: ESM Product Information

DIAGRC(A0)
Only the Obtain ESM Product Information subcode, subcode 72, is supported. For subcode 72, a
277-byte buffer is returned, which contains the following ESM product information:
ESM name

An 8-byte character string.
ESM version

A 4-byte character string.
ESM is active

A flag byte (bit 0 indicates that ESM is active).
Vendor name

An 8-byte character string.
ESM product information

A 1-byte length of the variable-length character string that follows.

An example of displaying this information follows:

/* Obtain and Display ACI Information: ESM Product Information */
out = Diag(A0)
parse var out name 9 vers 13 flag 14 vend 22 descl 23 desc
say 'ESM Name ' name
say 'ESM Version ' vers
say 'ESM Flag ' x2b(c2x(flag))
say 'ESM Vendor ' vend
say 'ESM Desc Length ' x2d(c2x(descl))

Functions

132 z/VM: 7.3 REXX/VM Reference

descl = x2d(c2x(descl))
say 'ESM Description ' Substr(desc,1,descl)

DIAG(BC,subcode,device)
— Open and Query Spool File Characteristics

DIAGRC(BC,subcode,device)
The subcode is CHAR or BIN. CHAR meaning return information in character format only. BIN meaning
return information in character format where appropriate or binary format for numeric information.

The value returned is:

Character position Contents

1 Condition code

2 A blank

3 to 6 Four bytes from register y+1

7 to 8 Two blanks

9 onwards The return string from CP for DIAGNOSE Code X'BC'.
See z/VM: CP Programming Services for details on
the returned information. The REXX subcode CHAR
corresponds to the CP X'00' subcode. The REXX subcode
BIN corresponds to the CP X'04' subcode.

DIAG('C8',langid)
— SET CP's language

DIAGRC('C8',langid)
The value returned is a 5-byte string containing the langid that CP set.

If this DIAGNOSE code is issued from an exec and CMS is on an earlier version of CP, error message
DMSREX475E (Incorrect call to routine) is issued and the exec terminates.

DIAG('CC',langid,addr)
— SAVE CP’s language repository at address addr

DIAGRC('CC',langid,addr)
The value returned for the DIAG function is a null string. The addr must be on a page boundary.

If this DIAGNOSE code is issued from an exec and CMS is on an earlier version of CP, error message
DMSREX475E (Incorrect call to routine) is issued and the exec terminates.

Message DMSREX475E also results if an unauthorized user ID tries to enter DIAGNOSE code X'CC'.
Return code 20040 is set.

DIAG('F8',spoolid)
— Read Spool File Origin Data

DIAGRC('F8',spoolid)
The four-character spoolid identifies the spool file in question.

The value returned is a character string consisting of:

• A 2-byte version code (binary 0)
• A 2-byte spool ID (in binary)
• An 8-byte node ID
• An 8-byte user ID.

For example, assume the spool ID is 4321, the associated node ID is NODE7, and the user ID is
SMITH. Then the statements:

ANS=DIAG('F8',4321)
say 'VERSION: ' C2D(SUBSTR(ANS,1,2))

Functions

Chapter 3. Functions 133

say 'SPOOLID: ' C2D(SUBSTR(ANS,3,2))
say 'NODEID: ' SUBSTR(ANS,5,8)
say 'USERID: ' SUBSTR(ANS,13,8)

Would display:

VERSION: 0
SPOOLID: 4321
NODEID: NODE7
USERID: SMITH

For another example, assume the return code is 000000000, the condition code is 1, the spool ID is
4321, the associated node ID is NODE7, and the user ID is SMITH. Then the statements:

ANS=DIAGRC('F8',4321)
say 'RC: ' STRIP(SUBSTR(ANS,1,9))
say 'CC: ' SUBSTR(ANS,11,1)
say 'VERSION: ' C2D(SUBSTR(ANS,17,2))
say 'SPOOLID: ' C2D(SUBSTR(ANS,19,2))
say 'NODEID: ' SUBSTR(ANS,21,8)
say 'USERID: ' SUBSTR(ANS,29,8)

Would display:

RC: 0
CC: 1
VERSION: 0
SPOOLID: 4321
NODEID: NODE7
USERID: SMITH

If your system supports DIAGNOSE X'F8', the system obtains the spool file’s origin data. If your
system does not support DIAGNOSE X'F8', any such request terminates and results in error message
DMSREX475E (Incorrect call to routine).

DIAG(210,devaddr)
— Retrieve Device Information

DIAGRC(210,devaddr)
The input, devaddr, is the device address or number. Although DIAGNOSE X'24' is valid for many
device types, if your device address is a 3390 you should use this DIAGNOSE X'210' rather than
DIAGNOSE X'24'.

The value returned is as follows:

Position Contents

1 through 4 Virtual device information from word 1 of the VRDCB

5 through 8 Real device information from word 2 of the VRDCB

9 through 12 Device number or device address

13 Condition code (not applicable for other than DASD that
supports RDC data)

DIAG(218)
— Retrieve Real CPU ID Information

DIAGRC(218)
The value returned is an 8-byte string containing the CPU ID of the processor where the diagnose run.

For example, to display the real CPU ID from a processor:

SAY 'Real CPU ID =' c2x(diag(218))

Which displays:

Real CPU ID = 6512032890210000

Functions

134 z/VM: 7.3 REXX/VM Reference

Here is another way to look at it:

DIAG(270)
— Pseudo Timer Extended

DIAGRC(270)
The value returned is a string that is variable in length. The string contains identical information that
would be obtained from the DIAGNOSE X'0C' (the date, time, virtual time used, and total time used)
plus the date in the FULLDATE format followed by the ISODATE format.

The value returned is as follows:

Position Contents

1 through 8 The date (MM/DD/YY)

9 through 16 The time of day (HH:MM:SS)

17 through 24 The virtual CPU time used

25 through 32 The total CPU time used

33 through 42 The date in FULLDATE format (MM/DD/YYYY)

43 through 48 6 X'00's (reserved)

49 through 58 The date in ISODATE format (YYYY-MM-DD)

59 X'01'

60 The user's date format

61 The system's date format

62 through 64 3 X'00's (reserved)

SOCKET

SOCKET (subfunction

, arg

)

provides access to the TCP/IP socket interface. This allows you to use REXX to implement and test TCP/IP
applications.

subfunction is the name of a REXX socket function and arg is a parameter on that socket function.

REXX socket functions are provided to:

• Process socket sets
• Initialize, change, and close sockets
• Exchange data
• Resolve names for sockets

Functions

Chapter 3. Functions 135

• Manage configurations, options, and modes for sockets
• Translate data and do tracing

See “Tasks You Can Perform Using REXX Sockets” on page 225 and “REXX Socket Functions” on page
227.

A character string is returned from the SOCKET call that contains several values separated by blanks, so
the string can be parsed using REXX. The first value in the string is the return code. If the return code is
zero, the values following the return code are returned by the socket function (subfunction). If the return
code is not zero, the second value is the name of an error, and the rest of the string is the corresponding
error message.

Here are some examples:

SOCKET('GetHostId') -> '0 9.4.3.2'
SOCKET('Recv',socket) -> '35 EWOULDBLOCK Operation would block'

During initialization of the REXX Sockets module or when doing certain REXX socket functions, system
messages may also be issued.

For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

STORAGE

STORAGE (

address
,

length , data

)

returns the current virtual machine size expressed as a hexadecimal string if no arguments are specified.
Otherwise, returns length bytes from the user's memory starting at address. The length is in decimal; the
default is 1 byte. The maximum length is 16 MB minus the length of the control information associated
with an EVALBLOK. The address is a hexadecimal number. In an ESA/390 or ESA/XC virtual machine,
the high-order bit of address is ignored. In an ESA or XA virtual machine that has been switched into
z/Architecture mode, address can be 16 hexadecimal digits.

If you specify data, after the current value has been retrieved storage starting at address is overwritten
with data (the length argument has no effect on this).

If length would imply returning storage beyond the virtual machine size, only those bytes up to the virtual
machine size are returned. If an attempt is made to alter any bytes outside the virtual machine size, they
are left unaltered.

Attention: The STORAGE function allows any location in your virtual machine to be altered. Do not
use this function without due care and knowledge.

Examples:

/* After DEF STOR 20M */
STORAGE() -> '1400000'
/* Note that the following results vary from system to system. */
STORAGE(200,32) -> 'z/VM V7.2.0 09/17/20 12:58'

Functions

136 z/VM: 7.3 REXX/VM Reference

STSI

STSI (
0

function code , selector 1 , selector 2

)

If no arguments or a value of zero are specified, then the current configuration level is returned as
the first four bytes of a 4K byte hexadecimal string. If a function code and two selector codes are
specified, then information related to the component or components of the configuration is returned as a
4K byte hexadecimal string. Refer to the z/Architecture Principles of Operation (publibfi.boulder.ibm.com/
epubs/pdf/dz9zr011.pdf) for descriptions of the valid function and selector codes and for information on
the contents of the data returned.

The syntax of the STSIUSE SAMPEXEC is:

STSIUSE

STSIUSE SAMPEXEC is delivered as a sample exec. Its purpose is to demonstrate possible parsings of the
data returned by various calls to the CMS REXX STSI function. Some sample output may appear as:

stsiuse

STSI(0,0,0)..0.0.0.
Current-config-level number: 30000000

STSI(1,1,1)..1.1.1.
Manufacturer: IBM
Type: 2094
Model-Capacity Identifier: 738
Sequence Code: 0000000000029B9E
Plant of Manufacture: 02
Model: S38

STSI(1,2,1)..1.2.1.
Sequence Code: 0000000000029B9E
Plant of Manufacture: 02
CPU Address: 0000

Functions

Chapter 3. Functions 137

http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr011.pdf
http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr011.pdf

Functions

138 z/VM: 7.3 REXX/VM Reference

Chapter 4. Parsing

The parsing instructions are ARG, PARSE, and PULL (see “ARG” on page 27, “PARSE” on page 48, and
“PULL” on page 53).

The data to parse is a source string. Parsing splits up the data in a source string and assigns pieces of it
into the variables named in a template. A template is a model specifying how to split the source string.
The simplest kind of template consists of only a list of variable names. Here is an example:

variable1 variable2 variable3

This kind of template parses the source string into blank-delimited words. More complicated templates
contain patterns in addition to variable names.
String patterns

Match characters in the source string to specify where to split it. (See “Templates Containing String
Patterns” on page 141 for details.)

Positional patterns
Indicate the character positions at which to split the source string. (See “Templates Containing
Positional (Numeric) Patterns” on page 141 for details.)

Parsing is essentially a two-step process.

1. Parse the source string into appropriate substrings using patterns.
2. Parse each substring into words.

Simple Templates for Parsing into Words
Parsing Value Instruction Example:

parse value 'time and tide' with var1 var2 var3

The template in this instruction is: var1 var2 var3. The data to parse is between the keywords PARSE
VALUE and the keyword WITH, the source string time and tide. Parsing divides the source string into
blank-delimited words and assigns them to the variables named in the template as follows:

var1='time'
var2='and'
var3='tide'

In this example, the source string to parse is a literal string, time and tide. In the next example, the
source string is a variable.

/* PARSE VALUE using a variable as the source string to parse */
string='time and tide'
parse value string with var1 var2 var3 /* same results */

(PARSE VALUE does not convert lowercase a–z in the source string to uppercase A–Z. If you want
to convert characters to uppercase, use PARSE UPPER VALUE. See “Using UPPER” on page 146 for a
summary of the effect of parsing instructions on case.)

All of the parsing instructions assign the parts of a source string into the variables named in a template.
There are various parsing instructions because of differences in the nature or origin of source strings. For
more information about parsing instructions, see “Parsing Instructions Summary” on page 147.

The PARSE VAR instruction is similar to PARSE VALUE except that the source string to parse is always a
variable. In PARSE VAR, the name of the variable containing the source string follows the keywords PARSE
VAR.

Parsing

© Copyright IBM Corp. 1990, 2022 139

In the next example, the variable stars contains the source string. The template is star1 star2
star3.

/* PARSE VAR example */
stars='Sirius Polaris Rigil'
parse var stars star1 star2 star3 /* star1='Sirius' */
 /* star2='Polaris' */
 /* star3='Rigil' */

All variables in a template receive new values. If there are more variables in the template than words in
the source string, the leftover variables receive null (empty) values. This is true for all parsing: for parsing
into words with simple templates and for parsing with templates containing patterns. Here is an example
using parsing into words.

/* More variables in template than (words in) the source string */
satellite='moon'
parse var satellite Earth Mercury /* Earth='moon' */
 /* Mercury='' */

If there are more words in the source string than variables in the template, the last variable in the template
receives all leftover data. Here is an example:

/* More (words in the) source string than variables in template */
satellites='moon Io Europa Callisto...'
parse var satellites Earth Jupiter /* Earth='moon' */
 /* Jupiter='Io Europa Callisto...'*/

Parsing into words removes leading and trailing blanks from each word before it is assigned to a variable.
The exception to this is the word or group of words assigned to the last variable. The last variable in a
template receives leftover data, preserving extra leading and trailing blanks. Here is an example:

/* Preserving extra blanks */
solar5='Mercury Venus Earth Mars Jupiter '
parse var solar5 var1 var2 var3 var4
/* var1 ='Mercury' */
/* var2 ='Venus' */
/* var3 ='Earth' */
/* var4 =' Mars Jupiter ' */

In the source string, Earth has two leading blanks. Parsing removes both of them (the word-separator
blank and the extra blank) before assigning var3='Earth'. Mars has three leading blanks. Parsing
removes one word-separator blank and keeps the other two leading blanks. It also keeps all five blanks
between Mars and Jupiter and both trailing blanks after Jupiter.

Parsing removes no blanks if the template contains only one variable. For example:

parse value ' Pluto ' with var1 /* var1=' Pluto '*/

The Period as a Placeholder
A period in a template is a placeholder. It is used instead of a variable name, but it receives no data. It is
useful:

• As a “dummy variable” in a list of variables
• Or to collect unwanted information at the end of a string.

The period in the first example is a placeholder. Be sure to separate adjacent periods with spaces;
otherwise, an error results.

/* Period as a placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars . . brightest . /* brightest='Sirius' */

/* Alternative to period as placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars drop junk brightest rest /* brightest='Sirius' */

Parsing

140 z/VM: 7.3 REXX/VM Reference

A placeholder saves the overhead of unneeded variables.

Templates Containing String Patterns
A string pattern matches characters in the source string to indicate where to split it. A string pattern can
be a:
Literal string pattern

One or more characters within quotation marks.
Variable string pattern

A variable within parentheses with no plus (+) or minus (-) or equal sign (=) before the left
parenthesis. (See “Parsing with Variable Patterns” on page 145 for details.)

Here are two templates: a simple template and a template containing a literal string pattern:

var1 var2 /* simple template */
var1 ', ' var2 /* template with literal string pattern */

The literal string pattern is: ', '. This template:

• Puts characters from the start of the source string up to (but not including) the first character of the
match (the comma) into var1

• Puts characters starting with the character after the last character of the match (the character after the
blank that follows the comma) and ending with the end of the string into var2.

A template with a string pattern can omit some of the data in a source string when assigning data
into variables. The next two examples contrast simple templates with templates containing literal string
patterns.

/* Simple template */
name='Smith, John'
parse var name ln fn /* Assigns: ln='Smith,' */
 /* fn='John' */

Notice that the comma remains (the variable ln contains 'Smith,'). In the next example the template is
ln ', ' fn. This removes the comma.

/* Template with literal string pattern */
name='Smith, John'
parse var name ln ', ' fn /* Assigns: ln='Smith' */
 /* fn='John' */

First, the language processor scans the source string for ', '. It splits the source string at that point. The
variable ln receives data starting with the first character of the source string and ending with the last
character before the match. The variable fn receives data starting with the first character after the match
and ending with the end of string.

A template with a string pattern omits data in the source string that matches the pattern. (There is
a special case (“Combining String and Positional Patterns: A Special Case” on page 149) in which a
template with a string pattern does not omit matching data in the source string.) We used the pattern
', ' (with a blank) instead of ',' (no blank) because, without the blank in the pattern, the variable fn
receives ' John' (including a blank).

If the source string does not contain a match for a string pattern, then any variables preceding the
unmatched string pattern get all the data in question. Any variables after that pattern receive the null
string.

A null string is never found. It always matches the end of the source string.

Templates Containing Positional (Numeric) Patterns
A positional pattern is a number that identifies the character position at which to split data in the source
string. The number must be a whole number.

Parsing

Chapter 4. Parsing 141

An absolute positional pattern is

• A number with no plus (+) or minus (-) sign preceding it or with an equal sign (=) preceding it
• A variable in parentheses with an equal sign before the left parenthesis. (See “Parsing with Variable

Patterns” on page 145 for details.)

The number specifies the absolute character position at which to split the source string.

Here is a template with absolute positional patterns:

variable1 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers to the 11th position in the
input string, 21 to the 21st position. This template:

• Puts characters 1 through 10 of the source string into variable1
• Puts characters 11 through 20 into variable2
• Puts characters 21 to the end into variable3.

Positional patterns are probably most useful for working with a file of records, such as: The following
example uses this record structure.

/* Parsing with absolute positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
 parse var record.n lastname 11 firstname 21 pseudonym
 If lastname='Evans' & firstname='Mary Ann' then say 'By George!'
end /* Says 'By George!' after record 2 */

The source string is first split at character position 11 and at position 21. The language processor assigns
characters 1 to 10 into lastname, characters 11 to 20 into firstname, and characters 21 to 40 into
pseudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym

instead of

 lastname 11 firstname 21 pseudonym

Specifying the 1 is optional.

Optionally, you can put an equal sign before a number in a template. An equal sign is the same as no sign
before a number in a template. The number refers to a particular character position in the source string.
These two templates work the same:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus (+) or minus (-) sign preceding it. (It can also be a
variable within parentheses, with a plus (+) or minus (-) sign preceding the left parenthesis; for details
see “Parsing with Variable Patterns” on page 145.)

The number specifies the relative character position at which to split the source string. The plus or minus
indicates movement right or left, respectively, from the start of the string (for the first pattern) or from the

Parsing

142 z/VM: 7.3 REXX/VM Reference

position of the last match. The position of the last match is the first character of the last match. Here is
the same example as for absolute positional patterns done with relative positional patterns:

/* Parsing with relative positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
 parse var record.n lastname +10 firstname + 10 pseudonym
 If lastname='Evans' & firstname='Mary Ann' then say 'By George!'
end /* same results */

Blanks between the sign and the number are insignificant. Therefore, +10 and + 10 have the same
meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable (except in the special case (“Combining
String and Positional Patterns: A Special Case” on page 149) when a string pattern precedes a variable
name and a positional pattern follows the variable name). The templates from the examples of absolute
and relative positional patterns give the same results.

Only with positional patterns can a matching operation back up to an earlier position in the source string.
Here is an example using absolute positional patterns:

/* Backing up to an earlier position (with absolute positional) */
string='astronomers'
parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4
say string 'study' var1||var2||var3||var4
/* Displays: "astronomers study stars" */

The absolute positional pattern 1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to an earlier position. Here
is the same example using relative positional patterns:

/* Backing up to an earlier position (with relative positional) */
string='astronomers'
parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4
say string 'study' var1||var2||var3||var4 /* same results */

In the previous example, the relative positional pattern -3 backs up to the first character in the source
string.

The templates in the last two examples are equivalent.

Parsing

Chapter 4. Parsing 143

You can use templates with positional patterns to make multiple assignments:

/* Making multiple assignments */
books='Silas Marner, Felix Holt, Daniel Deronda, Middlemarch'
parse var books 1 Eliot 1 Evans
/* Assigns the (entire) value of books to Eliot and to Evans. */

When the value of a positional pattern evaluates to an integer less than 1 and the character position
would be less than the string start, the effect is as if the value were equal to 1. That is, parsing cannot
begin before the first character in a string.

When the value of a positional pattern evaluates to a position less than or equal to the previous character
position, the parsed value is set to be from the previous character position to string end.

/* Combination absolute and relative positional patterns */
string = 'abcdefghij'
parse var string 3 p1 -5 p2 +0 p3 6 p4 =2 p5
say p1 p2 p3 p4 p5
/* Displays: "cdefghij abcdefghij abcde fghij bcdefghij" */

Here is how this template works:

Parsing

144 z/VM: 7.3 REXX/VM Reference

Combining Patterns and Parsing Into Words
What happens when a template contains patterns that divide the source string into sections containing
multiple words? String and positional patterns divide the source string into substrings. The language
processor then applies a section of the template to each substring, following the rules for parsing into
words.

/* Combining string pattern and parsing into words */
name=' John Q. Public'
parse var name fn init '.' ln /* Assigns: fn='John' */
 /* init=' Q' */
 /* ln=' Public' */

The pattern divides the template into two sections:

• fn init
• ln

The matching pattern splits the source string into two substrings:

• ' John Q'
• ' Public'

The language processor parses these substrings into words based on the appropriate template section.

John had three leading blanks. All are removed because parsing into words removes leading and trailing
blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps the rest because init is
the last variable in that section of the template.

For the substring ' Public', parsing assigns the entire string into ln without removing any blanks. This
is because ln is the only variable in this section of the template. (For details about treatment of blanks,
see “Simple Templates for Parsing into Words” on page 139.)

/* Combining positional patterns with parsing into words */
string='R E X X'
parse var string var1 var2 4 var3 6 var4 /* Assigns: var1='R' */
 /* var2='E' */
 /* var3=' X' */
 /* var4=' X' */

The pattern divides the template into three sections:

• var1 var2
• var3
• var4

The matching patterns split the source string into three substrings that are individually parsed into words:

• 'R E'
• ' X'
• ' X'

The variable var1 receives 'R'; var2 receives 'E'. Both var3 and var4 receive ' X' (with a blank
before the X) because each is the only variable in its section of the template. (For details on treatment of
blanks, see “Simple Templates for Parsing into Words” on page 139.)

Parsing with Variable Patterns
You may want to specify a pattern by using the value of a variable instead of a fixed string or number.
You do this by placing the name of the variable in parentheses. This is a variable reference. Blanks are not
necessary inside or outside the parentheses, but you can add them if you wish.

Parsing

Chapter 4. Parsing 145

The template in the next parsing instruction contains the following literal string pattern '. '.

parse var name fn init '. ' ln

Here is how to specify that pattern as a variable string pattern:

strngptrn='. '
parse var name fn init (strngptrn) ln

If no equal, plus, or minus sign precedes the parenthesis that is before the variable name, the value of the
variable is then treated as a string pattern. The variable can be one that has been set earlier in the same
template.

Example:

/* Using a variable as a string pattern */
/* The variable (delim) is set in the same template */
SAY "Enter a date (mm/dd/yy format). =====> " /* assume 11/15/90 */
pull date
parse var date month 3 delim +1 day +2 (delim) year
 /* Sets: month='11'; delim='/'; day='15'; year='90' */

If an equal, a plus, or a minus sign precedes the left parenthesis, then the value of the variable is treated
as an absolute or relative positional pattern. The value of the variable must be a positive whole number or
zero.

The variable can be one that has been set earlier in the same template. In the following example, the first
two fields specify the starting character positions of the last two fields.

Example:

/* Using a variable as a positional pattern */
dataline = '12 26Samuel ClemensMark Twain'
parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym
/* Assigns: realname='Samuel Clemens'; pseudonym='Mark Twain' */

Why is the positional pattern 6 needed in the template? Remember that word parsing occurs after the
language processor divides the source string into substrings using patterns. Therefore, the positional
pattern =(pos1) cannot be correctly interpreted as =12 until after the language processor has split the
string at column 6 and assigned the blank-delimited words 12 and 26 to pos1 and pos2, respectively.

Using UPPER
Specifying UPPER on any of the PARSE instructions converts characters to uppercase (lowercase a–z to
uppercase A–Z) before parsing. The following table summarizes the effect of the parsing instructions on
case.

Converts alphabetic characters to uppercase
before parsing

Maintains alphabetic characters in case entered

ARG

PARSE UPPER ARG

PARSE ARG

PARSE UPPER EXTERNAL PARSE EXTERNAL

PARSE UPPER NUMERIC PARSE NUMERIC

PARSE UPPER LINEIN PARSE LINEIN

PULL

PARSE UPPER PULL

PARSE PULL

PARSE UPPER SOURCE PARSE SOURCE

PARSE UPPER VALUE PARSE VALUE

Parsing

146 z/VM: 7.3 REXX/VM Reference

Converts alphabetic characters to uppercase
before parsing

Maintains alphabetic characters in case entered

PARSE UPPER VAR PARSE VAR

PARSE UPPER VERSION PARSE VERSION

The ARG instruction is simply a short form of PARSE UPPER ARG. The PULL instruction is simply a short
form of PARSE UPPER PULL. If you do not desire uppercase translation, use PARSE ARG (instead of ARG
or PARSE UPPER ARG) and use PARSE PULL (instead of PULL or PARSE UPPER PULL).

Parsing Instructions Summary
Remember: All parsing instructions assign parts of the source string into the variables named in the
template. The following table summarizes where the source string comes from.

Instruction Where the source string comes from

ARG

PARSE ARG

Arguments you list when you call the program or arguments in the call to a
subroutine or function.

PARSE EXTERNAL Next line from terminal input buffer

PARSE LINEIN Next line in the default input stream.

PULL

PARSE PULL

The string at the head of the external data queue. (If queue empty, uses
default input, typically the terminal.)

PARSE SOURCE System-supplied string giving information about the executing program.

PARSE VALUE Expression between the keyword VALUE and the keyword WITH in the
instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION System-supplied string specifying the language, language level, and (three-
word) date.

Parsing Instructions Examples
All examples in this section parse source strings into words.

ARG

/* ARG with source string named in REXX program invocation */
/* Program name is PALETTE. Specify 2 primary colors (yellow, */
/* red, blue) on call. Assume call is: palette red blue */
arg var1 var2 /* Assigns: var1='RED'; var2='BLUE' */
If var1<>'RED' & var1<>'YELLOW' & var1<>'BLUE' then signal err
If var2<>'RED' & var2<>'YELLOW' & var2<>'BLUE' then signal err
total=length(var1)+length(var2)
SELECT;
 When total=7 then new='purple'
 When total=9 then new='orange'
 When total=10 then new='green'
 Otherwise new=var1 /* entered duplicates */
END
Say new; exit /* Displays: "purple" */

Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of ARG with the arguments
in the CALL to a subroutine is in “Parsing Multiple Strings” on page 148.

Parsing

Chapter 4. Parsing 147

PARSE ARG works the same as ARG except that PARSE ARG does not convert alphabetic characters to
uppercase before parsing.

PARSE EXTERNAL

Say "Enter Yes or No =====> "
parse upper external answer 2 .
If answer='Y'
 then say "You said 'Yes'!"
 else say "You said 'No'!"

PARSE NUMERIC

parse numeric digits fuzz form
say digits fuzz form /* Displays: '9 0 SCIENTIFIC' */
 /* (if defaults are in effect) */

PARSE LINEIN

parse linein 'a=' num1 'c=' num2 /* Assume: 8 and 9 */
sum=num1+num2 /* Enter: a=8 b=9 as input */
say sum /* Displays: "17" */

PARSE PULL

PUSH '80 7' /* Puts data on queue */
parse pull fourscore seven /* Assigns: fourscore='80'; seven='7' */
SAY fourscore+seven /* Displays: "87" */

PARSE SOURCE

parse source sysname .
Say sysname /* Displays: "CMS" */

A PARSE VALUE example can be found in “Simple Templates for Parsing into Words” on page 139.

PARSE VAR examples are throughout the chapter, starting in “Simple Templates for Parsing into Words”
on page 139.

PARSE VERSION

parse version . level .
say level /* Displays: "3.48" */

PULL works the same as PARSE PULL except that PULL converts alphabetic characters to uppercase
before parsing.

Advanced Topics in Parsing
This section includes parsing multiple strings and flow charts depicting a conceptual view of parsing.

Parsing Multiple Strings
Only ARG and PARSE ARG can have more than one source string. To parse multiple strings, you can specify
multiple comma-separated templates. Here is an example:

parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated templates. (For an ARG
instruction, the source strings to parse come from arguments you specify when you call a program or
CALL a subroutine or function.) Each comma is an instruction to the parser to move on to the next string.

Example:

/* Parsing multiple strings in a subroutine */
num='3'
musketeers="Porthos Athos Aramis D'Artagnon"

Parsing

148 z/VM: 7.3 REXX/VM Reference

CALL Sub num,musketeers /* Passes num and musketeers to sub */
SAY total; say fourth /* Displays: "4" and " D'Artagnon" */
EXIT

Sub:
parse arg subtotal, . . . fourth
total=subtotal+1
RETURN

Note that when a REXX program is started as a command, only one argument string is recognized. You can
pass multiple argument strings for parsing:

• When one REXX program calls another REXX program with the CALL instruction or a function call.
• When programs written in other languages start a REXX program.

If there are more templates than source strings, each variable in a leftover template receives a null string.
If there are more source strings than templates, the language processor ignores leftover source strings. If
a template is empty (two commas in a row) or contains no variable names, parsing proceeds to the next
template and source string.

Combining String and Positional Patterns: A Special Case
There is a special case in which absolute and relative positional patterns do not work identically. We have
shown how parsing with a template containing a string pattern skips over the data in the source string that
matches the pattern (see “Templates Containing String Patterns” on page 141). But a template containing
the sequence:

• string pattern
• variable name
• relative positional pattern

does not skip over the matching data. A relative positional pattern moves relative to the first character
matching a string pattern. As a result, assignment includes the data in the source string that matches the
string pattern.

/* Template containing string pattern, then variable name, then */
/* relative positional pattern does not skip over any data. */
string='REstructured eXtended eXecutor'
parse var string var1 3 junk 'X' var2 +1 junk 'X' var3 +1 junk
say var1||var2||var3 /* Concatenates variables; displays: "REXX" */

Here is how this template works:

Parsing

Chapter 4. Parsing 149

Parsing with DBCS Characters
Parsing with DBCS characters generally follows the same rules as parsing with SBCS characters. Literal
strings and symbols can contain DBCS characters, but numbers must be in SBCS characters. See “PARSE”
on page 286 for examples of DBCS parsing.

Details of Steps in Parsing
The three figures that follow are to help you understand the concept of parsing. Please note that the
figures do not include error cases.

The figures include terms whose definitions are as follows:
string start

is the beginning of the source string (or substring).
string end

is the end of the source string (or substring).
length

is the length of the source string.
match start

is in the source string and is the first character of the match.
match end

is in the source string. For a string pattern, it is the first character after the end of the match. For a
positional pattern, it is the same as match start.

match position
is in the source string. For a string pattern, it is the first matching character. For a positional pattern, it
is the position of the matching character.

token
is a distinct syntactic element in a template, such as a variable, a period, a pattern, or a comma.

value
is the numeric value of a positional pattern. This can be either a constant or the resolved value of a
variable.

The following figure shows a conceptual overview of parsing.

Parsing

150 z/VM: 7.3 REXX/VM Reference

START

Token is first one in template.

Length=length(source string)

March start=1. Match end=1.

End of template?

CALL Find Next

Pattern.

CALL Word Parsing.

Step to next token.

Token a comma?

Parsing complete.

Set next source

string and template.

yes

yes

no

no

Figure 3. Conceptual Overview of Parsing

The next figure shows a conceptual view of finding the next pattern.

Parsing

Chapter 4. Parsing 151

START:

End of

template?

String start=match end.

Match start=length + 1.

Match end=length + 1. Return

Token period

or variable?
Step to next token.

Token a plus?
Variable

form?

Resolve

its value.

Token a

minus?

Token an

equal?
String start=match end.

Match start=min(length+1, value).

Match end= . Returnmatch start

String start=match start.

Match start=max(1, match

start - value).

Match end= . Returnmatch start

String start=match start.

Match start=min(length + 1,

match start + value).

Match end= . Returnmatch start

Token a

number?
String start=match end.

Match start=min(length+1, value).

Match end= . Returnmatch start

Token a lit-

eral string?

Token a var-

iable string?

Match found in

rest of string?

String start=match end.

Match start=match position.

Match end=

. Return

match position +

pattern length

String start=match end.

Match start=length + 1.

Match end=length + 1. Return

Match start=length + 1.

Match end=length + 1. ReturnToken a

comma?

Variable

form?

Resolve

its value.

Variable

form?

Resolve

its value.

Resolve

its value.

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

no

yes

yes

yes yes

no

no

no

yes

no

Figure 4. Conceptual View of Finding Next Pattern

Parsing

152 z/VM: 7.3 REXX/VM Reference

The next figure shows a conceptual view of word parsing.

START: Match end <=

string start?

String end=length + 1.

Substring=substr(source string,string start,(string end-string start))

Token=previous pattern.

Any more tokens?

Step to next token.

Token a variable or a

period?

Any more tokens?

Next token a variable

or a period?

Any substring left?

Strip any leading

blanks.

Any substring left?

Blank found in

substring?

Assign word from substring to variable and step past blank.

String end=match start.

Return.

Assign rest of substring

to variable.

Assign null string to

variable.

Assign null string to

variable.

Assign rest of substring

to variable.

no

no

no

no

no

yes

yes

yes

yes

yes

no

no

no

yes

yes

Figure 5. Conceptual View of Word Parsing

Parsing

Chapter 4. Parsing 153

Parsing

154 z/VM: 7.3 REXX/VM Reference

Chapter 5. Numbers and Arithmetic

REXX defines the usual arithmetic operations (addition, subtraction, multiplication, and division) in
as natural a way as possible. What this really means is that the rules followed are those that are
conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the rules vary considerably
(indeed much more than generally appreciated) from person to person and from application to application
and in ways that are not always predictable. The arithmetic described here is, therefore, a compromise
that (although not the simplest) should provide acceptable results in most applications.

Introduction
Numbers (that is, character strings used as input to REXX arithmetic operations and built-in functions)
can be expressed very flexibly. Leading and trailing blanks are permitted, and exponential notation can be
used. Some valid numbers are:

 12 /* a whole number */
 '-76' /* a signed whole number */
 12.76 /* decimal places */
' + 0.003 ' /* blanks around the sign and so forth */
 17. /* same as "17" */
 .5 /* same as "0.5" */
 4E9 /* exponential notation */
 0.73e-7 /* exponential notation */

In exponential notation, a number includes an exponent, a power of ten by which the number is multiplied
before use. The exponent indicates how the decimal point is shifted. Thus, in the preceding examples,
4E9 is simply a short way of writing 4000000000, and 0.73e-7 is short for 0.000000073.

The arithmetic operators include addition (+), subtraction (-), multiplication (*), power (**), division (/),
prefix plus (+), and prefix minus (-). In addition, there are two further division operators: integer divide (%)
divides and returns the integer part; remainder (//) divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to definite rules. The
most important of these rules are as follows (see the "Definition" section for full details):

• Results are calculated up to some maximum number of significant digits (the default is 9, but you can
alter this with the NUMERIC DIGITS instruction to give whatever accuracy you need). Thus, if a result
requires more than 9 digits, it would usually be rounded to 9 digits. For example, the division of 2 by 3
would result in 0.666666667 (it would require an infinite number of digits for perfect accuracy).

• Except for division and power, trailing zeros are preserved (this is in contrast to most popular
calculators, which remove all trailing zeros in the decimal part of results). So, for example:

2.40 + 2 -> 4.40
2.40 - 2 -> 0.40
2.40 * 2 -> 4.80
2.40 / 2 -> 1.2

This behavior is desirable for most calculations (especially financial calculations).

If necessary, you can remove trailing zeros with the STRIP function (see “STRIP” on page 107), or by
division by 1.

• A zero result is always expressed as the single digit 0.
• Exponential form is used for a result depending on its value and the setting of NUMERIC DIGITS (the

default is 9). If the number of places needed before the decimal point exceeds the NUMERIC DIGITS

Numbers and Arithmetic

© Copyright IBM Corp. 1990, 2022 155

setting, or the number of places after the point exceeds twice the NUMERIC DIGITS setting, the number
is expressed in exponential notation:

1e6 * 1e6 -> 1E+12 /* not 1000000000000 */
1 / 3E10 -> 3.33333333E-11 /* not 0.0000000000333333333 */

Definition
A precise definition of the arithmetic facilities of the REXX language is given here.

Numbers
A number in REXX is a character string that includes one or more decimal digits, with an optional decimal
point. (See “Exponential Notation” on page 160 for an extension of this definition.) The decimal point may
be embedded in the number, or may be a prefix or suffix. The group of digits (and optional decimal point)
constructed this way can have leading or trailing blanks and an optional sign (+ or -) that must come
before any digits or decimal point. The sign can also have leading or trailing blanks.

Therefore, number is defined as:

blanks sign

blanks

digits

digits . digits

. digits

digits .

blanks

blanks
are one or more spaces

sign
is either + or -

digits
are one or more of the decimal digits 0–9.

Note that a single period alone is not a valid number.

Precision
Precision is the maximum number of significant digits that can result from an operation. This is controlled
by the instruction:

NUMERIC DIGITS

expression

;

The expression is evaluated and must result in a positive whole number. This defines the precision
(number of significant digits) to which calculations are carried out. Results are rounded to that precision, if
necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS instruction has been
processed since the start of a program, the default precision is used. The REXX standard for the default
precision is 9.

Note that NUMERIC DIGITS can set values below the default of nine. However, use small values with
care—the loss of precision and rounding thus requested affects all REXX computations, including, for
example, the computation of new values for the control variable in DO loops.

Arithmetic Operators
REXX arithmetic is performed by the operators +, -, *, /, %, //, and ** (add, subtract, multiply, divide,
integer divide, remainder, and power), which all act on two terms, and the prefix plus and minus

Numbers and Arithmetic

156 z/VM: 7.3 REXX/VM Reference

operators, which both act on a single term. This section describes the way in which these operations
are carried out.

Before every arithmetic operation, the term or terms being operated upon have leading zeros removed
(noting the position of any decimal point, and leaving only one zero if all the digits in the number are
zeros). They are then truncated (if necessary) to DIGITS + 1 significant digits before being used in the
computation. (The extra digit is a “guard” digit. It improves accuracy because it is inspected at the end
of an operation, when a number is rounded to the required precision.) The operation is then carried out
under up to double that precision, as described under the individual operations that follow. When the
operation is completed, the result is rounded if necessary to the precision specified by the NUMERIC
DIGITS instruction.

Rounding is done in the traditional manner. The digit to the right of the least significant digit in the result
(the “guard digit”) is inspected and values of 5 through 9 are rounded up, and values of 0 through 4 are
rounded down. Even/odd rounding would require the ability to calculate to arbitrary precision at all times
and is, therefore, not the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point if otherwise there would be no digit before it.
Significant trailing zeros are retained for addition, subtraction, and multiplication, according to the rules
that follow, except that a result of zero is always expressed as the single digit 0. For division, insignificant
trailing zeros are removed after rounding.

The FORMAT built-in function (see “FORMAT” on page 87) allows a number to be represented in a
particular format if the standard result provided does not meet your requirements.

Arithmetic Operation Rules—Basic Operators
The basic operators (addition, subtraction, multiplication, and division) operate on numbers as follows.

Addition and Subtraction
If either number is 0, the other number, rounded to NUMERIC DIGITS digits, if necessary, is used as the
result (with sign adjustment as appropriate). Otherwise, the two numbers are extended on the right and
left as necessary, up to a total maximum of DIGITS + 1 digits (the number with the smaller absolute value
may, therefore, lose some or all of its digits on the right) and are then added or subtracted as appropriate.

Example:

 xxx.xxx + yy.yyyyy

becomes:

 xxx.xxx00
 + 0yy.yyyyy

 zzz.zzzzz

The result is then rounded to the current setting of NUMERIC DIGITS if necessary (taking into account any
extra “carry digit” on the left after addition, but otherwise counting from the position corresponding to the
most significant digit of the terms being added or subtracted). Finally, any insignificant leading zeros are
removed.

The prefix operators are evaluated using the same rules; the operations +number and -number are
calculated as 0+number and 0-number, respectively.

Multiplication
The numbers are multiplied together ("long multiplication") resulting in a number that may be as long as
the sum of the lengths of the two operands.

Example:

 xxx.xxx * yy.yyyyy

Numbers and Arithmetic

Chapter 5. Numbers and Arithmetic 157

becomes:

 zzzzz.zzzzzzzz

The result is then rounded, counting from the first significant digit of the result, to the current setting of
NUMERIC DIGITS.

Division
For the division:

yyy / xxxxx

the following steps are taken: First the number yyy is extended with zeros on the right until it is larger
than the number xxxxx (with note being taken of the change in the power of ten that this implies).
Thus, in this example, yyy might become yyy00. Traditional long division then takes place. This might be
written:

Basic Operator Examples
Following are some examples that illustrate the main implications of the rules just described.

/* With: Numeric digits 5 */
12+7.00 -> 19.00
1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20*3 -> 3.60
7*3 -> 21
0.9*0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1
8.0/2 -> 4

Note: With all the basic operators, the position of the decimal point in the terms being operated upon is
arbitrary. The operations may be carried out as integer operations with the exponent being calculated and
applied afterward. Therefore, the significant digits of a result are not in any way dependent on the position
of the decimal point in either of the terms involved in the operation.

Arithmetic Operation Rules—Additional Operators
The operation rules for the power (**), integer divide (%), and remainder (//) operators follow.

Power
The ** (power) operator raises a number to a power, which may be positive, negative, or 0. The power
must be a whole number. (The second term in the operation must be a whole number and is rounded
to DIGITS digits, if necessary, as described under “Numbers Used Directly by REXX” on page 162.) If
negative, the absolute value of the power is used, and then the result is inverted (divided into 1). For
calculating the power, the number is effectively multiplied by itself for the number of times expressed by
the power, and finally trailing zeros are removed (as though the result were divided by 1).

In practice (see Note “1” on page 159 for the reasons), the power is calculated by the process of
left-to-right binary reduction. For a**n: n is converted to binary, and a temporary accumulator is set to
1. If n = 0 the initial calculation is complete. (Thus, a**0 = 1 for all a, including 0**0.) Otherwise each
bit (starting at the first nonzero bit) is inspected from left to right. If the current bit is 1, the accumulator
is multiplied by a. If all bits have now been inspected, the initial calculation is complete; otherwise the

Numbers and Arithmetic

158 z/VM: 7.3 REXX/VM Reference

accumulator is squared and the next bit is inspected for multiplication. When the initial calculation is
complete, the temporary result is divided into 1 if the power was negative.

The multiplications and division are done under the arithmetic operation rules, using a precision of
DIGITS + L + 1 digits. L is the length in digits of the integer part of the whole number n (that is, excluding
any decimal part, as though the built-in function TRUNC(n) had been used). Finally, the result is rounded
to NUMERIC DIGITS digits, if necessary, and insignificant trailing zeros are removed.

Integer Division
The % (integer divide) operator divides two numbers and returns the integer part of the result. The
result returned is defined to be that which would result from repeatedly subtracting the divisor from the
dividend while the dividend is larger than the divisor. During this subtraction, the absolute values of both
the dividend and the divisor are used: the sign of the final result is the same as that which would result
from regular division.

The result returned has no fractional part (that is, no decimal point or zeros following it). If the result
cannot be expressed as a whole number, the operation is in error and will fail—that is, the result must not
have more digits than the current setting of NUMERIC DIGITS. For example, 10000000000%3 requires 10
digits for the result (3333333333) and would, therefore, fail if NUMERIC DIGITS 9 were in effect. Note
that this operator may not give the same result as truncating regular division (which could be affected by
rounding).

Remainder
The // (remainder) operator returns the remainder from integer division and is defined as being the
residue of the dividend after the operation of calculating integer division as previously described. The sign
of the remainder, if nonzero, is the same as that of the original dividend.

This operation fails under the same conditions as integer division (that is, if integer division on the same
two terms would fail, the remainder cannot be calculated).

Additional Operator Examples
Following are some examples using the power, integer divide, and remainder operators:

/* Again with: Numeric digits 5 */
2**3 -> 8
2**-3 -> 0.125
1.7**8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1
3.6//1.3 -> 1.0

Note:

1. A particular algorithm for calculating powers is used, because it is efficient (though not optimal)
and considerably reduces the number of actual multiplications performed. It, therefore, gives better
performance than the simpler definition of repeated multiplication. Because results may differ from
those of repeated multiplication, the algorithm is defined here.

2. The integer divide and remainder operators are defined so that they can be calculated as a by-product
of the standard division operation. The division process is ended as soon as the integer result is
available; the residue of the dividend is the remainder.

Numbers and Arithmetic

Chapter 5. Numbers and Arithmetic 159

Numeric Comparisons
The comparison operators are listed in “Comparison” on page 9. You can use any of these for comparing
numeric strings. However, you should not use ==, \==, ¬==, >>, \>>, ¬>>, <<, \<<, and ¬<< for comparing
numbers because leading and trailing blanks and leading zeros are significant with these operators.

A comparison of numeric values is effected by subtracting the two numbers (calculating the difference)
and then comparing the result with 0. That is, the operation:

A ? Z

where ? is any numeric comparison operator, is identical with:

(A - Z) ? '0'

It is, therefore, the difference between two numbers, when subtracted under REXX subtraction rules, that
determines their equality.

A quantity called fuzz affects the comparison of two numbers. This controls the amount by which two
numbers may differ before being considered equal for the purpose of comparison. The FUZZ value is set
by the instruction:

NUMERIC FUZZ

expression

;

Here expression must result in a positive whole number or zero. The default is 0.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ value for each numeric
comparison. That is, the numbers are subtracted under a precision of DIGITS minus FUZZ digits during
the comparison. Clearly the FUZZ setting must be less than DIGITS.

Thus if DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8 significant digits, just as though
NUMERIC DIGITS 8 had been put in effect for the duration of the operation.

Example:

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5 /* Displays "0" */
say 4.9999 < 5 /* Displays "1" */
Numeric fuzz 1
say 4.9999 = 5 /* Displays "1" */
say 4.9999 < 5 /* Displays "0" */

Exponential Notation
The preceding description of numbers describes "pure" numbers, in the sense that the character strings
that describe numbers can be very long. For example:

10000000000 * 10000000000

would give

100000000000000000000

and

.00000000001 * .00000000001

would give

0.0000000000000000000001

Numbers and Arithmetic

160 z/VM: 7.3 REXX/VM Reference

For both large and small numbers some form of exponential notation is useful, both to make long
numbers more readable, and to make execution possible in extreme cases. In addition, exponential
notation is used whenever the "simple" form would give misleading information.

For example:

numeric digits 5
say 54321*54321

would display 2950800000 in long form. This is clearly misleading, and so the result is expressed as
2.9508E+9 instead.

The definition of numbers is, therefore, extended as:

blanks sign

blanks

digits

digits . digits

. digits

digits .

E

sign

digits blanks

The integer following the E represents a power of ten that is to be applied to the number. The E can be in
uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be numeric to the user.
Specifically, because of the format of numbers in exponential notation, strings, such as 0E123 (0 times
10 raised to the 123 power) and 1E342 (1 times 10 raised to the 342 power), are numeric. In addition,
a comparison such as 0E123=0E567 gives a true result of 1 (0 is equal to 0). To prevent problems when
comparing nonnumeric strings, use the strict comparison operators.

Here are some examples:

12E7 = 120000000 /* Displays "1" */
12E-5 = 0.00012 /* Displays "1" */
-12e4 = -120000 /* Displays "1" */
0e123 = 0e456 /* Displays "1" */
0e123 == 0e456 /* Displays "0" */

The preceding numbers are valid for input data at all times. The results of calculations are returned in
either conventional or exponential form, depending on the setting of NUMERIC DIGITS. If the number
of places needed before the decimal point exceeds DIGITS, or the number of places after the point
exceeds twice DIGITS, exponential form is used. The exponential form REXX generates always has a sign
following the E to improve readability. If the exponent is 0, then the exponential part is omitted—that is,
an exponential part of E+0 is never generated.

You can explicitly convert numbers to exponential form, or force them to be displayed in long form, by
using the FORMAT built-in function (see page “FORMAT” on page 87).

Scientific notation is a form of exponential notation that adjusts the power of ten so a single nonzero
digit appears to the left of the decimal point. Engineering notation is a form of exponential notation in
which from one to three digits (but not simply 0) appear before the decimal point, and the power of ten is
always expressed as a multiple of three. The integer part may, therefore, range from 1 through 999. You
can control whether Scientific or Engineering notation is used with the instruction:

NUMERIC FORM
SCIENTIFIC

ENGINEERING

VALUE

expression

;

Numbers and Arithmetic

Chapter 5. Numbers and Arithmetic 161

Scientific notation is the default.

/* after the instruction */
Numeric form scientific

123.45 * 1e11 -> 1.2345E+13

/* after the instruction */
Numeric form engineering

123.45 * 1e11 -> 12.345E+12

Numeric Information
To determine the current settings of the NUMERIC options, use the built-in functions DIGITS, FORM, and
FUZZ. These functions return the current settings of NUMERIC DIGITS, NUMERIC FORM, and NUMERIC
FUZZ, respectively.

Whole Numbers
Within the set of numbers REXX understands, it is useful to distinguish the subset defined as whole
numbers. A whole number in REXX is a number that has a decimal part that is all zeros (or that has
no decimal part). In addition, it must be possible to express its integer part simply as digits within the
precision set by the NUMERIC DIGITS instruction. REXX would express larger numbers in exponential
notation, after rounding, and, therefore, these could no longer be safely described or used as whole
numbers.

Numbers Used Directly by REXX
As discussed, the result of any arithmetic operation is rounded (if necessary) according to the setting of
NUMERIC DIGITS. Similarly, when REXX directly uses a number (which has not necessarily been involved
in an arithmetic operation), the same rounding is also applied. It is just as though the number had been
added to 0.

In the following cases, the number used must be a whole number, and the largest number you can use is
999999999.

• The positional patterns in parsing templates (including variable positional patterns)
• The power value (right hand operand) of the power operator
• The values of exprr and exprf in the DO instruction
• The values given for DIGITS or FUZZ in the NUMERIC instruction
• Any number used in the numeric option in the TRACE instruction.

Errors
Two types of errors may occur during arithmetic:

• Overflow or Underflow

This error occurs if the exponential part of a result would exceed the range that the language processor
can handle, when the result is formatted according to the current settings of NUMERIC DIGITS and
NUMERIC FORM. The language defines a minimum capability for the exponential part, namely the
largest number that can be expressed as an exact integer in default precision. Because the default
precision is 9, VM supports exponents in the range -999999999 through 999999999.

Because this allows for (very) large exponents, overflow or underflow is treated as a syntax error.
• Insufficient storage

Storage is needed for calculations and intermediate results, and on occasion an arithmetic operation
may fail because of lack of storage. This is considered a terminating error as usual, rather than an
arithmetic error.

Numbers and Arithmetic

162 z/VM: 7.3 REXX/VM Reference

Numbers and Arithmetic

Chapter 5. Numbers and Arithmetic 163

Numbers and Arithmetic

164 z/VM: 7.3 REXX/VM Reference

Chapter 6. Conditions and Condition Traps

A condition is a specified event or state that CALL ON or SIGNAL ON can trap. A condition trap can
modify the flow of execution in a REXX program. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (see “CALL” on page 29 and “SIGNAL” on page 59).

CALL

SIGNAL

OFF condition

ON condition

NAME trapname

;

condition and trapname are single symbols that are taken as constants. Following one of these
instructions, a condition trap is set to either ON (enabled) or OFF (disabled). The initial setting for all
condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to the routine or label
trapname if you have specified trapname. Otherwise, control passes to the routine or label condition.
CALL or SIGNAL is used, depending on whether the most recent trap for the condition was set using CALL
ON or SIGNAL ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in function, or an external routine. If
you use SIGNAL, the trapname can be only an internal label.

The conditions and their corresponding events that can be trapped are:

ERROR
raised if a command indicates an error condition upon return. It is also raised if any command
indicates failure and neither CALL ON FAILURE nor SIGNAL ON FAILURE is active. The condition is
raised at the end of the clause that called the command but is ignored if the ERROR condition trap is
already in the delayed state. The delayed state is the state of a condition trap when the condition has
been raised but the trap has not yet been reset to the enabled (ON) or disabled (OFF) state. See note
“3” on page 167.

CALL ON ERROR and SIGNAL ON ERROR trap all positive return codes, and negative return codes
only if CALL ON FAILURE and SIGNAL ON FAILURE are not set. See “Exit Definitions” on page 199 for
information about ERROR and the RXCMD exit.

FAILURE
raised if a command indicates a failure condition upon return. The condition is raised at the end of the
clause that called the command but is ignored if the FAILURE condition trap is already in the delayed
state.

CALL ON FAILURE and SIGNAL ON FAILURE trap all negative return codes from commands. See “Exit
Definitions” on page 199 for information about FAILURE and the RXCMD exit.

HALT
raised if an external attempt is made to interrupt and end execution of the program. The condition
is usually raised at the end of the clause that was being processed when the external interruption
occurred. For example, the CMS immediate command, HI (Halt Interpretation), creates a halt
condition. See “Interrupting Execution and Controlling Tracing” on page 210.

See “Exit Definitions” on page 199 for information about halting and the RXHLT exit.

NOTREADY
raised if an error occurs during an input or output operation. See “Errors During Input and Output” on
page 177. This condition is ignored if the NOTREADY condition trap is already in the delayed state.

NOVALUE
raised if an uninitialized variable is used:

• As a term in an expression

Conditions and Condition Traps

© Copyright IBM Corp. 1990, 2022 165

• As the name following the VAR subkeyword of a PARSE instruction
• As a variable reference in a parsing template, a PROCEDURE instruction, or a DROP instruction.

Note: SIGNAL ON NOVALUE can trap any uninitialized variables except tails in compound variables.

/* The following does not raise NOVALUE. */
signal on novalue
a.=0
say a.z
say 'NOVALUE is not raised.'
exit

novalue:
say 'NOVALUE is raised.'

You can specify this condition only for SIGNAL ON.

SYNTAX
raised if any language processing error is detected while the program is running. This includes all
kinds of processing errors, including true syntax errors and “run-time” errors, such as attempting an
arithmetic operation on nonnumeric terms. You can specify this condition only for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF, or DELAY, and any
trapname) of that condition trap. Thus, a CALL ON HALT replaces any current SIGNAL ON HALT (and a
SIGNAL ON HALT replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a new trap name
replaces any previous trap name, any OFF reference disables the trap for CALL or SIGNAL, and so on.

Action Taken When a Condition Is Not Trapped
When a condition trap is currently disabled (OFF) and the specified condition occurs, the default action
depends on the condition:

• For HALT and SYNTAX, the processing of the program ends, and a message (see Appendix A, “Error
Numbers and Messages,” on page 281) describing the nature of the event that occurred usually
indicates the condition.

• For all other conditions, the condition is ignored and its state remains OFF.

Action Taken When a Condition Is Trapped
When a condition trap is currently enabled (ON) and the specified condition occurs, instead of the usual
flow of control, a CALL trapname or SIGNAL trapname instruction is processed automatically. You can
specify the trapname after the NAME subkeyword of the CALL ON or SIGNAL ON instruction. If you do not
specify a trapname, the name of the condition itself (ERROR, FAILURE, HALT, NOTREADY, NOVALUE, or
SYNTAX) is used.

For example, the instruction call on error enables the condition trap for the ERROR condition. If the
condition occurred, then a call to the routine identified by the name ERROR is made. The instruction call
on error name commanderror would enable the trap and call the routine COMMANDERROR if the
condition occurred.

The sequence of events, after a condition has been trapped, varies depending on whether a SIGNAL or
CALL is processed:

• If the action taken is a SIGNAL, execution of the current instruction ceases immediately, the condition is
disabled (set to OFF), and the SIGNAL takes place in exactly the same way as usual (see “SIGNAL” on
page 59).

If any new occurrence of the condition is to be trapped, a new CALL ON or SIGNAL ON instruction for
the condition is required to re-enable it when the label is reached. For example, if SIGNAL ON SYNTAX
is enabled when a SYNTAX condition occurs, then, if the SIGNAL ON SYNTAX label name is not found, a
usual syntax error termination occurs.

Conditions and Condition Traps

166 z/VM: 7.3 REXX/VM Reference

• If the action taken is a CALL (which can occur only at a clause boundary), the CALL is made in the usual
way (see “CALL” on page 29) except that the call does not affect the special variable RESULT. If the
routine should RETURN any data, then the returned character string is ignored.

Because these conditions (ERROR, FAILURE, and HALT) can arise during execution of an INTERPRET
instruction, execution of the INTERPRET may be interrupted and later resumed if CALL ON was used.

As the condition is raised, and before the CALL is made, the condition trap is put into a delayed state.
This state persists until the RETURN from the CALL, or until an explicit CALL (or SIGNAL) ON (or OFF)
is made for the condition. This delayed state prevents a premature condition trap at the start of the
routine called to process a condition trap. When a condition trap is in the delayed state it remains
enabled, but if the condition is raised again, it is either ignored (for ERROR, FAILURE, or NOTREADY)
or (for the other conditions) any action (including the updating of the condition information) is delayed
until one of the following events occurs:

1. A CALL ON or SIGNAL ON, for the delayed condition, is processed. In this case a CALL or SIGNAL
takes place immediately after the new CALL ON or SIGNAL ON instruction has been processed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is processed. In this case the condition trap is
disabled and the default action for the condition occurs at the end of the CALL OFF or SIGNAL OFF
instruction.

3. A RETURN is made from the subroutine. In this case the condition trap is no longer delayed and the
subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed (that is, the flow is not affected by
the CALL).

Notes:

1. You must be extra careful when you write a syntax trap routine. Where possible, put the routine near
the beginning of the program. This is necessary because the trap routine label might not be found if
there are certain scanning errors, such as a missing ending comment. Also, the trap routine should
not contain any statements that might cause more of the program in error to be scanned. Examples
of this are calls to built-in functions with no quotation marks around the name. If the built-in function
name is in uppercase and is enclosed in quotation marks, REXX goes directly to the function, rather
than searching for an internal label.

2. In all cases, the condition is raised immediately upon detection. If SIGNAL ON traps the condition,
the current instruction is ended, if necessary. Therefore, the instruction during which an event
occurs may be only partly processed. For example, if SYNTAX is raised during the evaluation of the
expression in an assignment, the assignment does not take place. Note that the CALL for ERROR,
FAILURE, HALT, and NOTREADY traps can occur only at clause boundaries. If these conditions arise
in the middle of an INTERPRET instruction, execution of INTERPRET may be interrupted and later
resumed. Similarly, other instructions, for example, DO or SELECT, may be temporarily interrupted by
a CALL at a clause boundary.

3. The state (ON, OFF, or DELAY, and any trapname) of each condition trap is saved on entry to a
subroutine and is then restored on RETURN. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions set up by the caller. See
the CALL instruction (“CALL” on page 29) for details of other information that is saved during a
subroutine call.

4. The state of condition traps is not affected when an external routine is called by a CALL, even if the
external routine is a REXX program. On entry to any REXX program, all condition traps have an initial
setting of OFF.

5. While user input is processed during interactive tracing, all condition traps are temporarily set OFF.
This prevents any unexpected transfer of control—for example, should the user accidentally use
an uninitialized variable while SIGNAL ON NOVALUE is active. For the same reason, a syntax error
during interactive tracing does not cause exit from the program but is trapped specially and then
ignored after a message is given.

6. The system interface detects certain execution errors either before execution of the program starts
or after the program has ended. SIGNAL ON SYNTAX cannot trap these errors.

Conditions and Condition Traps

Chapter 6. Conditions and Condition Traps 167

Note that a label is a clause consisting of a single symbol followed by a colon. Any number of successive
clauses can be labels; therefore, multiple labels are allowed before another type of clause.

Condition Information
When any condition is trapped and causes a SIGNAL or CALL, this becomes the current trapped condition,
and certain condition information associated with it is recorded. You can inspect this information by using
the CONDITION built-in function (see “CONDITION” on page 78).

The condition information includes:

• The name of the current trapped condition
• The name of the instruction processed as a result of the condition trap (CALL or SIGNAL)
• The status of the trapped condition
• Any descriptive string associated with that condition.

The current condition information is replaced when control is passed to a label as the result of a condition
trap (CALL ON or SIGNAL ON). Condition information is saved and restored across subroutine or function
calls, including one because of a CALL ON trap. Therefore, a routine called by a CALL ON can access the
appropriate condition information. Any previous condition information is still available after the routine
returns.

Descriptive Strings
The descriptive string varies, depending on the condition trapped.
ERROR

The string that was processed and resulted in the error condition.
FAILURE

The string that was processed and resulted in the failure condition.
HALT

Any string associated with the halt request. This can be the null string if no string was provided.
NOTREADY

The fully-qualified name of the stream being manipulated when the error occurred and the NOTREADY
condition was raised.

NOVALUE
The derived name of the variable whose attempted reference caused the NOVALUE condition. The
NOVALUE condition trap can be enabled only using SIGNAL ON.

SYNTAX
Any string the language processor associated with the error. This can be the null string if you did
not provide a specific string. Note that the special variables RC and SIGL provide information on the
nature and position of the processing error. You can enable the SYNTAX condition trap only by using
SIGNAL ON.

Special Variables
A special variable is one that may be set automatically during processing of a REXX program. There are
three special variables: RC, RESULT, and SIGL. None of these has an initial value, but the program may
alter them. (For information about RESULT, see “RETURN” on page 56.)

The Special Variable RC
For ERROR and FAILURE, the REXX special variable RC is set to the command return code, as usual,
before control is transferred to the condition label.

For SIGNAL ON SYNTAX, RC is set to the syntax error number.

Conditions and Condition Traps

168 z/VM: 7.3 REXX/VM Reference

The Special Variable SIGL
Following any transfer of control because of a CALL or SIGNAL, the program line number of the clause
causing the transfer of control is stored in the special variable SIGL. Where the transfer of control is
because of a condition trap, the line number assigned to SIGL is that of the last clause processed (at the
current subroutine level) before the CALL or SIGNAL took place. This is especially useful for SIGNAL ON
SYNTAX when the number of the line in error can be used, for example, to control a text editor. Typically,
code following the SYNTAX label may PARSE SOURCE to find the source of the data, then call an editor to
edit the source file positioned at the line in error. Note that in this case you may have to run the program
again before any changes made in the editor can take effect.

Alternatively, SIGL can be used to help determine the cause of an error (such as the occasional failure of a
function call) as in the following example:

signal on syntax
a = a + 1 /* This is to create a syntax error */
say 'SYNTAX error not raised'
exit

/* Standard handler for SIGNAL ON SYNTAX */
syntax:
 say 'REXX error' rc 'in line' sigl':' "ERRORTEXT"(rc)
 say "SOURCELINE"(sigl)
 trace ?r; nop

This code first displays the error code, line number, and error message. It then displays the line in error,
and finally drops into debug mode to let you inspect the values of the variables used at the line in error.
This may be followed, in CMS, by the following lines, so that by pressing ENTER you are placed in XEDIT
as suggested previously:

call trace 'O'
address command 'DROPBUF 0'
parse source . . fn ft fm .
push 'Command :'sigl; push 'Command EMSG' errormsg
address cms 'Xedit' fn ft fm
exit rc

Conditions and Condition Traps

Chapter 6. Conditions and Condition Traps 169

Conditions and Condition Traps

170 z/VM: 7.3 REXX/VM Reference

Chapter 7. Input and Output Streams

REXX defines only simple, character-oriented forms of input and output. In general, communication to or
from the user is in the form of a stream of characters. You can manipulate these streams either character
by character or line by line. These streams can be several things: minidisk files, SFS files, spool files
(reader, printer, and punch), or the program stack. In addition to these character streams, an external
data queue is defined for inter-program communication. You can access this queue only on a line-by-line
basis. (The VM implementation of the queue is the program stack.)

In this discussion, input and output are described as though communicating with a human user. A
character stream might, in fact, have a variety of sources or destinations. These may include files or
displays. A character stream can be one of the following:

• Transient or dynamic, for example, the default input stream or the program stack
• Persistent, in a static form, for example, a file or data object.

Housekeeping for the character streams (opening and closing files, for example) is not explicitly part
of the language because in most environments these operations are automatic; however, the STREAM
built-in function is provided for miscellaneous stream commands for those operating environments that
require them.

One default input stream and one default output stream are assumed.

Stream Formats
The I/O functions can read or write both variable-format and fixed-format streams. For minidisk and SFS
files, new streams can be specified as variable or fixed depending on the characteristics of the stream. For
example, SFS and minidisk files can be either variable or fixed, while printer, reader, and punch files can
only be fixed. (See Table 2 on page 172.)

When writing to a fixed-format stream, the record being written will be padded with blanks if it is shorter
than the logical record length of the output stream. If the record being written is longer than the logical
record length of the output stream, the function will not write the line, and an appropriate error message
will be returned.

Opening and Closing Streams
The STREAM function is provided as a means to explicitly open or close a stream. However, there are
other ways of accomplishing an open or close. Any line or character I/O function will implicitly open a
stream if it is not already open:

• CHARS and LINES will implicitly open the stream for WRITE if possible, READ otherwise.
• CHARIN and LINEIN will implicitly open the stream for READ.
• CHAROUT and LINEOUT will implicitly open the stream for WRITE.
• The STREAM function can be used to explicitly open a stream for READ or WRITE.

Each time an SFS file is opened, it is associated with a new work unit ID. This also applies to multiple
opens of the same file. The stream will then remain open for subsequent I/O as long as an explicit close
is not issued. A close can be done with the STREAM function or specific forms of CHAROUT and LINEOUT
(as described in “CHAROUT (Character Output)” on page 76 and “LINEOUT (Line Output)” on page 90).
If you do not explicitly close the stream, it remains open until the completion of the last active REXX
program, at which time it is automatically closed. Prior to closing the stream, any remaining buffered data
from character output operations is written out.

Note: The only files that can be opened multiple times are SFS and minidisk files.

Input and Output

© Copyright IBM Corp. 1990, 2022 171

Stream Names Used by the Input and Output Functions
All the input and output functions described in REXX may specify a name. This name defines the data
stream or file that will be read from or written to. The following table shows the supported data streams
and the associated stream name to be used in the REXX function call:

Table 2. Stream Names Used by the Input and Output Functions

Data Stream Type Length Stream Name and Description

Reader file Transient Fixed 80 nnnn RDRFILE CMSOBJECTS.

where nnnn is the spool ID of the file. An asterisk
(*) in the nnnn field can be used to specify the first
file in the reader.

Punch Transient Fixed 80 VIRTUAL PUNCH CMSOBJECTS.

Printer Transient Variable 132 VIRTUAL PRINTER CMSOBJECTS.

SFS file Persistent Fixed or Variable filename filetype dirname

Asterisks may not be used anywhere in the file
name or file type.

Minidisk or
accessed SFS
directory file

Persistent Fixed or Variable filename filetype

or

filename filetype filemode

For an input operation, if no file mode or a file
mode of asterisk (*) is supplied, the first instance
of the file in the CMS search order will be used. For
an output operation, filemode must be specified.
Asterisks may not be used anywhere in the file
name or file type.

Program Stack Transient Variable 255 PROGRAM STACK CMSOBJECTS. PROGRAM
STACK CMSOBJECTS.LIFO PROGRAM STACK
CMSOBJECTS.FIFO

(Also referred to as the "external data queue".)
LIFO and FIFO may be appended, to designate
LIFO or FIFO stacking on output. If neither is
specified, FIFO is the default and will be appended
to the name of the stream when it is returned
by the STREAM and CONDITION functions. When
reading from the stack, lines are always read from
the top. If the program stack has been opened
LIFO, it cannot be used FIFO unless it is closed
and reopened FIFO. Similarly, if the program stack
has been opened FIFO, it cannot be used LIFO
unless it is closed and reopened LIFO.

Default Stream Transient Variable 255 "" (null string)

For input, this reads from the terminal input buffer
or from user input if the buffer is empty. For
output, this displays on the user's console. The
default stream is always open, therefore, you do
not need to open it.

Input and Output

172 z/VM: 7.3 REXX/VM Reference

One or more blanks must separate the tokens of any stream name. If a stream name contains more
than 254 characters, only the first 254 characters are kept. When doing I/O on a stream, certain error
conditions will prevent any further I/O operations from succeeding. In these cases, you should close the
stream, fix the error condition, and then you can continue processing.

In addition to the above names, all functions, except STREAM(name,'c','open'), accept one additional form
of name. This is the unique identifier that is returned when the stream is opened with the STREAM
function. This identifier is unique for each opening of the same named stream, provided that the stream
can be opened more than one time. An example of obtaining and using this unique identifier is:

/* Open the file for write. */
parse value stream('TEST FILE A','C','OPEN WRITE') with ok file_handle
if ok ¬= 'READY:' then signal open_error
number_of_lines = lines(file_handle)

The file name, file type, and file mode for a minidisk file or for an SFS file are used exactly as supplied, so
they should usually be given in uppercase. For all other pieces of any object name, case is insignificant.

Unit Record Device Streams
The unit record devices (virtual reader, virtual printer, and virtual punch) are accessed as transient
streams. This means that you cannot specify a start position or line number for these streams. You can
only write to the end of the stream (for printer or punch), or read from the next line (for the reader). The
following information is specific to each device:
READER

Both LINEIN and CHARIN may be used to get characters from the reader; LINES may be used to get
the number of card images in the file, and CHARS may be used to determine if more characters exist.
The reader must be defined at address '00C'.

PRINTER
Both LINEOUT and CHAROUT are supported, and will write a line to the virtual printer of 132
characters or more. You may write out lines that have a length less than the width of the printer
(padding to the printer size is not necessary). The printer must be defined at address '00E'.

PUNCH
Both LINEOUT and CHAROUT are supported, and will write a line to the virtual punch of 80 characters.
If the output line is more than 80 characters, nothing will be written, and an error will be indicated. If
you write fewer than 80 characters, blanks will be added on the right to complete the card image. The
punch must be defined at address '00D'.

Note: You should be aware of how CP handles spool files. In particular, if you open a reader file and
do not read any records or only partially read the file, CP will discard the entire file when the spool file
is closed. In order to prevent this, you can send a hold command to CP, using the SPOOL, CHANGE, or
CLOSE commands. See z/VM: CP Commands and Utilities Reference for details.

The Input and Output Model
The model of input and output for REXX consists of three logically distinct parts, namely:

1. One or more character input streams
2. One or more character output streams
3. One external data queue.

REXX instructions and built-in routines manipulate these three elements as follows:

Character Input Streams
A character input stream is a serial character stream generated by user interaction, or having the
characteristics of a stream so generated. Characters or lines or both can be read from a character input
stream. Characters may be added to the end of some streams.

Input and Output

Chapter 7. Input and Output Streams 173

Here are the instructions that govern the use of input streams:

• The CHARIN function or the LINEIN function can directly read any named input stream as characters or
lines, respectively.

• The instructions PULL and PARSE PULL can read the default input stream as lines if the external data
queue is empty. (PULL is the same as PARSE PULL except that with PULL uppercase translation takes
place).

• The PARSE LINEIN instruction can read lines from the default input stream regardless of the state of
the external data queue. Usually, however, you would use PULL or PARSE PULL to read the default input
stream.

The read position in a character input stream is the position from which the next character or line will be
read. In a persistent stream, the language processor knows the current read position. You can modify the
read position by using the STREAM function, however, you can only set it to the beginning of a line in the
stream. You cannot position to a specific character offset in the stream.

• The CHARS function returns 1 if there are more characters currently available in an input character
stream from the read position through the end of the stream. Returns 0 if no more characters are
available.

• The LINES function returns the number of lines that remain between the current read position and the
end of the stream. The number returned may include a partial line if CHARIN has been used to read
some of the characters in the line.

In a transient stream, the CHARS and LINES functions can determine only if data is present in the stream.

Character Output Streams
A character output stream is a serial character stream to which characters or lines or both can be written.
Character output streams provide for output from a REXX program. The:

• CHAROUT function can write any output stream in character form
• LINEOUT function can write any output stream as lines
• SAY instruction can write the default output stream as lines.

The write position in a character output stream is the position at which the next character or line will be
written. The language processor knows the current write position in a stream. This is independent of the
read position. You can modify the write position by using the STREAM function, however, you can only set
it to the beginning of a line in the stream. You cannot position to a specific character offset in the stream.

The write position is usually the end of the stream (for example, when the stream is first opened) so that
data can be appended to the end of the stream. For persistent streams, however, the STREAM function
can direct sequential output starting at some arbitrary write position.

Note: After data has been placed in a transient character output stream, it is no longer accessible to
REXX.

Physical and Logical Lines
CMS is not a character-based system, so some conventions have had to be adopted to support character-
based input and output. The character functions are useful, however, and do allow CMS files and other
data to be handled as character streams, even though actual (physical) input and output operations take
place line by line.

Files in CMS have physical lines, each of which may contain arbitrary data (that is, all 256 character
codes). Line operations read complete physical lines from the stream and write complete passed output
data without any regard to the contents of the data. However, in order to properly support character
operations, some manipulation of the data is necessary. REXX must know if line end characters are
significant to the user or if they are not. An option on the OPEN command of the STREAM function, TEXT
or BINARY, tells REXX if data contents are significant.

Input and Output

174 z/VM: 7.3 REXX/VM Reference

The BINARY option signifies that any character code could be in the stream and therefore, character
operations will not manipulate the data in any way. Data read in is passed to the user without regard for or
indication of line ends. Data to be written out is accumulated until enough characters are obtained to fill
the output buffer (size can be defined by the LRECL parameter on OPEN), and then a line is written.

The TEXT option signifies that LINEEND characters are not included in the data stream, and line ends
should be noted. Line end characters (as defined by the LINEEND parameter on OPEN) will be inserted
at line ends in the data passed to the user on character input operations. On character output, the data
to be written is scanned for the LINEEND character, and physical lines are written as appropriate. The
LINEEND character is never written to the output stream. If a LINEEND character is not found, characters
are accumulated until LRECL characters have been given and then the line is written out. For fixed length
streams, lines will be padded with blanks as necessary.

When streams are either written and read with the line functions or with the character functions, the
scheme of reading and writing LINEEND characters will work correctly. In general, problems may arise
only when line and character functions are mixed. In this case, there is one problem to be aware of:
a stream can be written (with the LINEOUT function, or with other CMS tools) that has LINEEND
characters embedded within lines. If the stream is copied with the character functions, and the
BINARY option is not specified, such lines will be split at those characters.

If part of a line has been read with the CHARIN function, then a subsequent call to the LINEIN function
will return the remainder of that line. Similarly, if a line has been partly written with the CHAROUT
function, then a call to LINEOUT will add to and complete the line. The general rule is that any call to a line
function will treat the data manipulated as a unit and will affect a single physical line only.

The STREAM Function
The STREAM function determines the state of an input or output stream or carries out specific operations,
described by stream commands. This stream command mechanism allows REXX programs to open and
close selected streams for read-only or read and write operations, to move the read and write positions
within a stream, and to access specific information about the stream.

The z/VM operating system, unlike some other systems, allows certain data streams to be opened
multiple times. The recommended procedure on z/VM is to explicitly open the stream so that the user is
able to obtain the unique identifier for that particular opening of the stream. This is especially important
when a named data stream can be opened more than one time, and the unique identifier is needed to
reference the different stream openings. When a stream is implicitly opened, the user is unable to obtain
the unique identifier.

See “STREAM” on page 96 for details.

External Data Queue—the General REXX SAA Model
The external data queue is a list of character strings that only line operations can access. It is external to
REXX programs in that other programs can have access to the queue whenever REXX relinquishes control.
The VM implementation of the queue is the program stack.

The external data queue, therefore, forms a language-defined channel of communication between
programs. Data in the queue is arbitrary: no characters have any special meaning or effect.

Apart from the explicit REXX operations described here, no detectable change to the queue occurs during
the execution of a REXX program, except when control leaves the program (for example, when an external
command or routine is called). Here are the REXX queuing operations:

• The PULL or PARSE PULL instructions can remove lines from the queue. When the queue is empty, these
instructions read lines from the default input stream. In this way, the external data queue can be a
source of user input, provided that PULL or PARSE PULL reads the input as lines.

• The PUSH instruction can stack lines at the head of the queue.
• The QUEUE instruction can add lines to the tail of the queue.
• The QUEUED function returns the number of lines currently in the queue.

Input and Output

Chapter 7. Input and Output Streams 175

External Data Queue—VM Extensions
In addition to the general model, VM allows access to the program stack through the I/O functions
CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, and LINES. This means that character operations are
possible on the external data queue. The REXX keyword commands listed in the preceding section do
indeed support only line operations, but CHARIN and CHAROUT can be used to read or write portions of
a line. Also unlike the general REXX model, line end characters are significant when using CHARIN and
CHAROUT on the external data queue (the program stack).

Implementation
Usually, the dialog between a REXX program and a user takes place on a line-by-line basis and is,
therefore, carried out with the SAY and PULL (or PARSE PULL) instructions. This technique considerably
enhances the usability of many programs, because they can be converted to programmable dialogs by
using the external data queue to provide the input the user usually types. You should use the PARSE
LINEIN instruction only when it is necessary to bypass the external data queue.

When a dialog is not on a line-by-line basis, use the explicitly serial interfaces the CHARIN and CHAROUT
functions provide. These functions are especially important for input and output in transient character
streams, such as keyboards or printers.

General I/O Information
Opening and closing of persistent streams, such as files, is largely automatic. Generally speaking, a
stream is opened upon the first call of a line or character function and remains open until explicitly closed
with the CHAROUT, LINEOUT or STREAM functions, or until all REXX programs end. A stream can also be
opened or closed explicitly. This can be done with the STREAM function, or through specific use of the
other I/O functions. For example, invoking the LINEOUT function with just the name of a stream (and no
output line) closes the named stream.

All input and output to a given stream should be done exclusively with REXX or exclusively with the CMS
supplied routines. REXX needs to maintain its own control blocks that are different from the ones CMS
maintains. Mixing types of I/O can cause unpredictable results. One situation in particular, however, could
happen under usual circumstances. A stream could get closed by CMS while REXX is actively doing I/O on
the stream. This would occur when a shared file system file is being used, and a rollback happens. The file
will no longer be open to REXX, and any attempted I/O on that file will generate an error with a special
reason code. In this case, REXX will release the control block for that file and consider the file closed.

REXX uses data buffering while doing I/O, and, therefore, you must understand the implications of this.
Data written with the CHAROUT function is placed in the I/O buffer (a temporary storage area for data
being transferred to, or from, a stream) and perhaps not immediately written to the output stream.
Several things can cause the data to be written immediately:

• A line end character is given
• Either I/O pointer is moved
• The stream is closed
• The I/O buffer is needed for an input operation
• A full buffer of data is accumulated.

You must pay particular attention to this buffering concept when using the Shared File System and
coordinating the update of resources. Before you start any commit or rollback processing, you should
ensure that all data in appropriate buffers is written out. Data remaining in a buffer during commit or
rollback processing will be ignored for that operation.

It is also important to note that there is only one buffer for input and output. This is especially important
when requesting both input from and output to the same stream. If the buffer contains data because of
an input operation and an output operation is requested, the output data will replace the input data in
the buffer. A subsequent read would first cause the output data to be written (if this had not already been
done) and then the input record would be re-read. As mentioned earlier, there are several things that

Input and Output

176 z/VM: 7.3 REXX/VM Reference

cause buffered output data to be written. This flip-flop of input and output data can cause performance
degradation.

The z/VM implementation of input and output uses CSL routines to perform the actual I/O. The return
codes and reason codes generated by the CSL routines that perform the I/O are documented in Appendix
F, “Input and Output Return and Reason Codes,” on page 311. For the lower level routine codes not listed
there, see the following books:

• z/VM: CMS Callable Services Reference and z/VM: CP Messages and Codes: For SFS files, minidisk files, or
the program stack.

• z/VM: CMS Macros and Functions Reference: For spool files (reader, punch, and printer).
• z/VM: CP Programming Services: For CP diagnose codes. (The value in the reason code field is actually

the condition code.)
• z/VM: CP Commands and Utilities Reference: For CP commands.

Errors During Input and Output
REXX offers considerable flexibility in the handling of errors during input or output. This is provided in the
form of a NOTREADY condition, which CALL ON and SIGNAL ON instructions can trap, and by the STREAM
function, which can elicit further information. (See Chapter 6, “Conditions and Condition Traps,” on page
165 for a more detailed discussion of SIGNAL ON and CALL ON.)

When an error occurs during an input or output operation, the function being called continues without
interruption (for example, an output function returns a nonzero count). Depending on the nature of the
operation, a program has the option of raising the NOTREADY condition. The NOTREADY condition is
similar to the ERROR and FAILURE conditions associated with commands in that it does not cause a
terminating error if the condition is raised but is not trapped.

After NOTREADY has been raised, the following possibilities exist:

NOTREADY condition is not
being trapped

Execution continues without interruption. The NOTREADY condition
remains in the OFF state.

SIGNAL ON NOTREADY is
trapping the NOTREADY
condition

The NOTREADY condition is raised, execution of the current clause
ceases immediately, and the SIGNAL takes place as usual for
condition traps.

CALL ON NOTREADY is trapping
the NOTREADY condition

The NOTREADY condition is raised, but execution of the current clause
is not halted—the NOTREADY condition is put into the delayed state,
and execution continues until the end of the current clause.

While execution continues, input functions that refer to the same
stream may return the null string, and output functions may return
an appropriate count, depending on the form and timing of the error.
At the end of the current clause, the CALL takes place as usual for
condition traps.

NOTREADY condition is in the
DELAY state

(This occurs when CALL ON NOTREADY is trapping the NOTREADY
condition, which has already been raised.) Execution continues, and
the NOTREADY condition remains in the DELAY state.

After the NOTREADY condition has been raised and is in DELAY state, the CONDITION function (with the
Description option) returns the name of the stream being processed when the stream error occurred. If
the stream is a default stream and has no defined name, then the null string is returned.

The STREAM function then shows that the state of the stream is ERROR or NOTREADY, and you can get
additional information on the state of the stream by specifying the Description option on the STREAM
function.

Input and Output

Chapter 7. Input and Output Streams 177

Examples of Input and Output
In most circumstances, communication with a user running a REXX program is through the default input
and output streams. For a question and answer dialog, the recommended technique is to use the SAY and
PULL instructions (use PARSE PULL if case-sensitive input is required).

More generally, though, it is necessary to write to or read from streams other than the default. For
example, to copy the contents of one file to another, one might use the following program:

/* This routine copies the stream or file named by */
/* the first argument to the stream or file named */
/* by the second, as lines. */
parse arg inputname, outputname

do while lines(inputname)>0
 call lineout outputname, linein(inputname)
 end

As long as lines remain in the named input stream, a line is read and is then immediately written to the
named output stream. It is easy to modify this program so that it filters the lines in some way before
writing them.

To illustrate how character and line operations might be mixed in a communications program, this
example converts a character stream into lines:

/* This routine collects characters from the stream */
/* named by the first argument until a line is */
/* complete, and then places the line on the */
/* external data queue. */
/* The second argument is the single character that */
/* identifies the end of a line. */
parse arg inputname, lineendchar

buffer='' /* zero-length character accumulator */
do forever
 nextchar=charin(inputname)
 if nextchar=lineendchar then leave
 buffer=buffer||nextchar /* add to buffer */
 end
queue buffer /* place it on the external data queue */

Here each line is built in a variable called BUFFER. When the line is complete (for example, when the user
presses Enter) the loop is ended and the contents of BUFFER are placed on the external data queue. The
program then ends.

Summary of Instructions and Functions
CHARIN

This function reads zero or more single-byte characters from a character input stream. You can
specify a start position of 1 to read from the beginning of a persistent stream. (See “CHARIN
(Character Input)” on page 75.)

CHAROUT
This function writes zero or more single-byte characters to a character output stream. You can specify
a start position of 1 to write from the beginning of a persistent stream. (See “CHAROUT (Character
Output)” on page 76.)

CHARS
This function returns an indication if characters currently remain in a character input stream. (See
“CHARS (Characters Remaining)” on page 77.)

LINEIN
This function reads zero lines or one line from a character input stream. You can specify a line number
for persistent streams. (See “LINEIN (Line Input)” on page 89.)

LINEOUT
This function writes zero lines or one line to a character output stream. You can specify a line number
for persistent streams. (See “LINEOUT (Line Output)” on page 90.)

Input and Output

178 z/VM: 7.3 REXX/VM Reference

LINES
This function returns the number of lines currently remaining in a character input stream. (See “LINES
(Lines Remaining)” on page 91.)

PARSE LINEIN
This instruction reads one line from the default input stream. (See “PARSE” on page 48.)

PARSE PULL
This instruction reads one line from the external data queue. If the queue is empty it reads a line from
the default input stream instead. (See “PARSE” on page 48.)

PULL
This instruction is the same as PARSE PULL except that the string read is translated to uppercase.
(See “PULL” on page 53.)

PUSH
This instruction writes one line to the head of the external data queue, as in a stack. (See “PUSH” on
page 54.)

QUEUE
This instruction writes one line to the tail of the external data queue. (See “QUEUE” on page 55.)

QUEUED
This function returns the number of lines currently available in the external data queue. (See
“QUEUED” on page 93.)

SAY
This instruction writes one line to the default output stream. (See “SAY” on page 57.)

STREAM
This function returns a string describing the state of, or the result of an operation upon, a named
character stream. (See “STREAM” on page 96.)

Input and Output

Chapter 7. Input and Output Streams 179

Input and Output

180 z/VM: 7.3 REXX/VM Reference

Chapter 8. System Interfaces

This chapter is addressed mainly to assembler language programmers and system programmers. It
describes:

1. Calls to and from the language processor. A general description of calls to and from the REXX
programs (from the CMS command line, from another exec, and so on) with an indication of the type of
parameter list used in each case.

2. The CMS EXEC interface that receives calls to exec programs and passes them to the appropriate
language processor.

3. Parameter lists. Details, at assembler language level, of the parameter lists used for calls to and from
the language processor.

4. Function Packages. How to write a function or subroutine that the language processor can call and how
to put it into a Function Package.

5. The EXECCOMM subcommand, which allows other programs to read and alter REXX variables and
extract other information.

6. How the language processor sets and tests the flags in the exec flag control byte so as to obey the CMS
immediate commands HI (Halt Interpretation), TS (Trace Start), and TE (Trace End).

Calls to and from the Language Processor
When called, the language processor can process either the Tokenized PLIST (Parameter List) or an
Extended PLIST. When calling, the language processor generates both PLISTs. The language processor
uses a special parameter list (subsequently referred to in this manual as the six-word Extended PLIST) for
function calls and subroutine calls. The contents of the General Register 1 high order byte (Byte 0) define
the format of the PLIST the caller passes.

Note: The general formats for CMS PLISTs (parameter lists) are described in the z/VM: CMS Application
Development Guide for Assembler. The Extended PLIST and the six-word Extended PLIST are described
later in this chapter.

Calls Originating from the CMS Command Line
To call a REXX language program, you can enter on the command line:

• Just the name of the program (execname) and the argument string. In this case, if IMPEX is ON (the
default) and if the file execname EXEC exists, CMS issues the command EXEC, using the original
command line as the argument string. If IMPEX is OFF, you cannot call the exec this way and must
specify the word exec explicitly.

Note: If ABBREV is ON (the default), CMS Command Line Processing searches the synonym tables.
• The command EXEC followed by the name of the REXX language exec (and the argument string, if any).

Note: In this case synonyms are not recognized.

In both cases, CMS uses CMSCALL to call the exec. Register 0 points to the Extended PLIST and the user
call-type information is a X'0B', indicating that:

• This is a CMS environment.
• CMS used the full CMS search order.
• An Extended PLIST is available.

CMS passes control to the language processor through the EXEC command handler (described under “The
CMS EXEC Interface” on page 187).

System Interfaces

© Copyright IBM Corp. 1990, 2022 181

Calls Originating from the XEDIT Command Line
To call a REXX macro that is stored in a file with a file type of XEDIT, you can enter on the XEDIT command
line:

• Just the name of the macro and the argument string (if any). In this case, XEDIT runs the subcommand
MACRO, using the original command line as the argument string. Note that if the macro has the same
name as an XEDIT built-in command, the macro is not called unless MACRO is set ON (which is not the
default).

• The command MACRO followed by the name of the REXX macro (and the argument string, if any). This
always calls the specified macro, if it exists.

In both cases XEDIT checks to see if the macro is already loaded into storage. If not, it loads the
macro if it exists, constructing an Extended PLIST, a File Block, and a Program Descriptor List. (For more
information on Program Descriptor List, see “The File Block” on page 191.) Word 4 of the Extended PLIST
points to the File Block and the user call-type information is a X'01'. CMS passes control to the language
processor through the EXEC command handler (see “The CMS EXEC Interface” on page 187).

If you enter the name of the macro (macroname ...) on the XEDIT command line and the file macroname
XEDIT is not found and IMPCMSCP is set ON, XEDIT assumes that an exec or a CMS command is being
called and tries the full CMS search order for the command, as though the command had been entered
from the CMS command line. In this case, the user call-type information is a X'0B' as usual.

Calls Originating from CMS Execs
Calls from CMS execs must explicitly call the exec, for example, EXEC name. Only the Tokenized PLIST
is available. If the called exec is written in REXX, the CMS EXEC interface constructs an argument string
from the Tokenized PLIST. The user call-type information is dependent upon the setting of the &CONTROL
statement—X'0D' if MSG was specified (default), and X'0E' if NOMSG was specified.

Calls Originating from EXEC 2 Programs
Calls originating from EXEC 2 programs must explicitly call the exec, for example, EXEC name. However,
EXEC 2 provides both the Tokenized PLIST and the Extended PLIST. The user call-type information
is a X'01', which signifies that the Extended PLIST is available. An EXEC 2 program may also use
&SUBCOMMAND CMS to simulate a call originating from the CMS command line.

Calls Originating from Alternate Format Exec Programs
When processing a call to a REXX exec, an alternate format exec processor may pass a Tokenized
PLIST to the CMS EXEC interface, or it may pass both Tokenized and Extended PLISTS. On entry to the
language processor, both PLISTS are available and the call-type information is X'01'. If the alternate
format exec processor only passed a Tokenized PLIST, the Extended PLIST will point to an argument
string constructed from data in the Tokenized PLIST.

Alternate format exec processors may also simulate the calls originating from the CMS command line by
using the CMS SUBCOM environment.

Calls Originating from a Clause That Is an Expression
For a REXX clause that is an expression, the resulting string is issued as a command to whichever
environment is currently selected (See “Commands to External Environments” on page 16). The PLIST
format used depends on the environment selected (by default or by the ADDRESS instruction).

If the environment is COMMAND (or null), the command is issued directly: CMSCALL is issued with a
CALLTYP of EPLIST (X'01'). (Note to EXEC 2 users: this is the way that EXEC 2 issues commands.)

If the environment is a valid PSW, the call is handled as described in “Non-SVC Subcommand Invocation”
on page 192.

System Interfaces

182 z/VM: 7.3 REXX/VM Reference

For all other environments, such as CMS, XEDIT, and so on, the call is handled using CMSCALL with a
CALLTYP of SUBCOM (X'02'). For CMS, this results in the command being handled the same as from
the CMS command line (same search order, same PLIST structure). In all cases, Register 1 points to a
Tokenized PLIST that contains:

• The name of the subcommand entry point that is to be given control (8 characters long), such as CMS,
XEDIT, and so on

• Two fullwords containing -1 (that is, X'FFFFFFFF').

Register 0 points to the Extended PLIST, containing the following pointers:

• To the environment name
• To the beginning of the argument string
• To the character after the end of the argument string
• A zero (indicating no File Block is given).

For example, if the following statement is in a REXX program:

address gkb 'calculate inverse'

then:

• R1 would point to the area containing an 8 character string 'GKB ' followed by two fullwords of -1
• R0 would point to an area containing all of the following:

– A pointer to the string 'GKB '
– A pointer to the string 'calculate inverse'
– A pointer to the character after the e in inverse
– A zero

Note that whether the environment is CMS or COMMAND, CMS Command Line Processing performs no
cleanup after the command has been run, and interrupts are not canceled.

Calls Originating from a CALL Instruction or a Function Call
The language processor does not issue a command when processing a CALL instruction or function call
to an external routine. The called routine may be a MODULE, a Nucleus Extension, or a REXX program;
all use the same PLIST, but the language processor provides an FBLOCK only when the routine is called
through the EXEC interface. The search order for external routines is described in “Search Order” on page
68.

In XA and XC virtual machines, the language processor can call modules above the 16MB line. The
module can also pass data residing above the 16MB line back to the language processor because, in XA
and XC virtual machines, REXX execs and XEDIT macros can reside above the 16MB line. AMODE 31 and
ANY programs are called in 31-bit mode if they are called from the language processor in an XA or XC
virtual machine. The following apply in an XA and XC virtual machine:

• REXX modules run in 31-bit addressing mode.
• REXX allocates REXX control blocks above the 16MB line.
• REXX handles interfaces between REXX programs and applications, regardless of their addressing

mode.

If the module the language processor is calling has an AMODE of 24, the language processor calls the
module in 24-bit mode and the following are copied below the 16MB line:

• The six-word extended PLIST.
• The argument list pointed to by the fifth word in the six-word extended PLIST.
• The strings the argument list points to.
• The sixth word in the PLIST.

System Interfaces

Chapter 8. System Interfaces 183

In all cases, the user call-type information is a X'05', indicating that the six-word Extended PLIST is used.
Word 5 of this PLIST points to the argument list (see Figure 6 on page 189). Word 6 points to a fullword
location in USER storage, which is zero on entry and stores the address of an EVALBLOK if a result is
returned. A routine that does not return a result must leave this location unchanged.

A routine called as a function must return a result, but a routine called as a subroutine need not. The caller
sets Register 0 Bit 0 to:

0 if the routine is called as a function
1 if the routine is called as a subroutine.

(If the called routine is an exec written in REXX, you can obtain this information by using the PARSE
SOURCE instruction, described in “PARSE” on page 48.)

If the REXX program is being called as a function, it must end with a RETURN or EXIT instruction with
an expression, and the resulting string is returned in the form of an EVALBLOK. This EVALBLOK will be a
24-bit address if the caller is in 24-bit mode.

Calls Originating from a MODULE
REXX may be called from a user MODULE using any of the standard forms of PLIST:

• Only the Tokenized PLIST: The user call-type information is a X'00'. Register 0 is not used.
• The Extended PLIST: The user call-type information is a X'01'. Register 1 must point to a doubleword-

aligned 16-byte field, containing

CL8'EXEC'
CL8'execname'

The rest of the Tokenized PLIST is not inspected. Register 0 must point to an Extended PLIST. The
FBLOCK may be provided if desired (see “The File Block” on page 191).

• The six-word Extended PLIST: The user call-type information is X'05'. Other conditions are the same as
for the Extended PLIST. You should use this form if more than one argument string is to be passed to the
exec or if the exec is being called as a function. (Note that if the exec returns data in an EVALBLOK, it is
the responsibility of the caller to free that storage.)

Note: You should use the CMSCALL macro to make your calls. CMSCALL has parameters that allow
you to set up your PLISTs and your user call-type information. For example, if you use the COPY
option, CMSCALL lets you pass a PLIST that resides above the 16MB line back to REXX. See z/VM: CMS
Application Development Guide for Assembler for more information on the CMSCALL macro.

Calls Originating from an Application Program
An application program written in a language such as VS FORTRAN or OS/VS COBOL can call REXX using a
callable services library (CSL) routine. Calling this routine is useful when the application program needs to
call a CMS or CP command.

An application program can call a REXX exec through the CSL routine DMSCCE. The following is an
example of the general call format for DMSCCE:

CALL DMSCSL DMSCCE , retcode , execname , number_of_args

, inarg , inarg_length

, return_area , return_area_length

System Interfaces

184 z/VM: 7.3 REXX/VM Reference

call to DMSCSL
is the language-dependent format for invoking a callable services library (CSL) routine. The following
list shows the general call format for calling DMSCCE using DMSCSL in the languages3 that support
CSL.
Assembler

CALL DMSCSL , (DMSCCE , retcode
, parm

) , VL

C

DMSCSL (DMSCCE , retcode
, parm

) ;

OS/VS COBOL or VS COBOL II

CALL "DMSCSL" USING DMSCCE , retcode
, parm

.

VS FORTRAN

CALL DMSCSL (DMSCCE , retcode
, parm

)

VS Pascal

DMSCSL (DMSCCE , retcode
, parm

) ;

PL/I

CALL DMSCSL (DMSCCE , retcode
, parm

) ;

Additional language-specific statements may be necessary so that language compilers can provide
the proper assembler interface. Other programming notation, such as variable declarations, is also
language-dependent.

DMSCCE
is the name of the CSL routine being called. The value DMSCCE can be passed directly or in a
variable. Note that you must pad two blanks on the right because the CSL routine name must be eight
characters in length.

retcode
is a signed 4-byte binary variable to hold the return code from DMSCCE.

3 It is not appropriate to use this CSL routine, DMSCCE, in a REXX program.

System Interfaces

Chapter 8. System Interfaces 185

execname
is the name of the REXX EXEC being called. This field must be an 8-byte character string padded with
blanks on the right if necessary, and it is used for input only.

number_of_args
is the number of input argument character strings being passed to the REXX exec. A maximum of 10
input character strings is allowed on a call. (See Usage Note “3” on page 186.) This field must be a
4-byte binary number, and it is used for input only.

inarg1 ... inargn
are the character string arguments passed to the REXX exec. These fields are used for input only.

inarg1_length ... inargn_length
are the lengths of the corresponding character string arguments. These fields must be 4-byte binary
numbers, and they are used for input only.

return_area
is a buffer area to receive data from the REXX exec. This field must be a fixed-length character string,
and it is used for output only.

return_area_length
on input, this is the length of return_area; on output, this is the length of the data returned in
return_area. (See Usage Note “4” on page 186.) It must be a 4-byte binary integer.

For more information on calling REXX using a callable services library routine, see z/VM: CMS Callable
Services Reference.

Usage Notes:

1. This routine is useful when the application needs to call some CMS or CP command. The REXX exec
issues the CP or CMS command and passes the results back to the application program.

2. An example of a good way to use DMSCCE is to issue a FILEDEF command from an application
program. A REXX exec named DATADEF issues the FILEDEF command. The following code fragment
from a PL/I program shows an example of this:

⋮
/* Declares for parameters of CALL statement */
 DCL DMSCCE CHAR(8) INIT('DMSCCE'),
 RETCODE FIXED BIN(31) INIT(0),
 DATADEF CHAR(8) INIT('DATADEF'),
 ONE FIXED BIN(31) INIT(1),
 ARG CHAR(37) INIT('INFILE DISK FILENAME FILETYPE A (PERM'),
 ARGL FIXED BIN(31) INIT(37),
 RET CHAR(10) INIT(' '),
 RETL FIXED BIN(31) INIT(10);

/* Call statement to DATADEF EXEC */
 CALL DMSCSL (DMSCCE,RETCODE,DATADEF,ONE,ARG,ARGL,RET,RETL);
⋮

After the application program issues the preceding CALL statement, the FILEDEF command is run
using the arguments supplied in the "ARG" parameter.

Note: Using DMSCCE to issue a FILEDEF command is especially useful if your application program
calls the SAA file-related functions OPEN, READ, WRITE, or CLOSE. Your program can be portable
across different IBM systems when you use SAA functions; however, a program must issue a FILEDEF
before calling an SAA file-related function.

An application program can use the VM-specific shared file system routines to perform an OPEN,
READ, WRITE, or CLOSE, but the program would not be portable across systems.

3. Although you cannot specify more than 10 arguments on a call to DMSCCE, an argument string can
represent multiple variables. For example, you could pass ‘var1 var2 var3 var4 var5’ as a
single argument string, and this single string can be parsed into five separate variables.

4. If the data returned from the REXX exec is longer than the length of return_area, the data is truncated
and a return code of 200 is issued.

Return Codes:

System Interfaces

186 z/VM: 7.3 REXX/VM Reference

0
Usual completion.

20
Incorrect CMS character in EXEC name.

28
The REXX exec specified on the call does not exist.

112
The number of parameters passed on the call was incorrect.

118
The parameter list passed to the routine was not in a valid format.

123
The number of arguments passed to the REXX exec exceeded the number specified in
number_of_args.

200
The data returned in return_area has been truncated. (The return_area_length variable contains the
length of the data before it was truncated.)

10nn
The data type for parameter nn is incorrect.

20nn
The length for parameter nn is incorrect.

Calls Originating from CMS Pipelines
CMS Pipelines can call a REXX program to process and transport data in a pipeline. This program is
called a user-written stage and has a file type of REXX to distinguish it from other exec procedures. You
can store a user-written stage using the EXECLOAD command or install a user-written stage in a shared
segment like all other REXX programs.

When a user-written stage is called from CMS Pipelines, the default environment to which commands are
passed is CMS Pipelines, not the CMS environment. To issue CMS or CP commands from a user-written
stage, use the REXX ADDRESS instruction.

The CMS EXEC Interface
All calls to the CMS command EXEC are first processed by the CMS EXEC interface, which builds any
necessary argument strings and also selects the language processor that is to process the program.

This selection is done by inspecting the call-type and PLISTs, and reading up to 255 bytes of the first line
of the program file.

1. If a six-word PLIST is available (call-type X'05'), the first line of the program is read to determine
whether the program should be passed to an alternate format exec processor or to the language
processor.

If the program is not an alternate format exec, it is assumed to be a REXX exec.
2. If an Extended PLIST containing an FBLOCK pointer is available (call-type X'01' or X'0B' and word 4 of

the Extended PLIST is not 0), the first line of the program is read to determine whether the program
should be passed to an alternate format processor, the language processor, or the EXEC 2 processor.

If the program is not an alternate format exec and not a REXX exec, it is assumed to be an EXEC 2
exec.

3. If an Extended PLIST containing an FBLOCK is not available, the first line of the program is read to
determine whether the program should be passed to an alternate format exec processor, the language
processor, the EXEC 2 processor, or the CMS EXEC processor.

If the program is not an alternate format exec, not a REXX exec, and not an EXEC 2 exec, it is assumed
to be a CMS EXEC exec.

System Interfaces

Chapter 8. System Interfaces 187

The forms of the different kinds of execs are mutually exclusive.

• REXX execs must begin with a begin-comment delimiter /*.
• EXEC 2 execs must begin with the string &TRACE.
• CMS EXEC execs must begin with a comment delimiter *.
• Alternate format execs cannot begin with a REXX or CMS EXEC comment and must contain the string
EXECPROC in positions 5 through 12. The string in positions 13 through 20 is assumed to be the
name the alternate format exec processor.

Once the exec type (alternate format, REXX, EXEC 2, or CMS EXEC) has been determined, the CMS
EXEC interface calls the appropriate language processor. For alternate format execs, this is done using
CMSCALL.

The Extended Parameter List
The language processor may be called with an Extended PLIST (in addition to the 8-byte Tokenized PLIST)
that allows the following possibilities:

• One or more arbitrary parameter strings (mixed case and untokenized) may be passed to the language
processor, and one string may be returned from it when execution ends.

• A file other than that defined in the Tokenized PLIST may be used. (The file type, for example, need not
be EXEC).

• A default target for commands (other than CMS) can be specified. If a file type other than EXEC
or blanks is specified, then it is stored in the File Block. The language processor can then use the
information in the File Block to send commands to the appropriate environment.

• A program that exists in storage may be run (instead of first being read from a file). This in-storage
execution option may be used for improved performance when a REXX program is being run repeatedly.

• A default target for commands may be specified that overrides the default derived from the file type.

Using the Extended Parameter List
To use the Extended PLIST, both Register 1 and Register 0 are used. Register 1 points to the Tokenized
PLIST. The first token of this PLIST must be CL8'EXEC', and the second token must contain the name of
the exec or macro to be processed unless a FBLOCK that specifies the name is provided.

The user call-type information may have the following values:
X'01' or X'0B'

Extended PLIST available. The argument string defined by words 2 and 3 (BEGARGS and ENDARGS)
of the Extended PLIST finds the called name of the program and the argument string passed to the
language processor. The first two tokens of the Tokenized PLIST are used.

X'05'
A language processor call (for example, originating from a CALL instruction or a function call to a REXX
external routine). The six-word Extended PLIST is available. The argument list pointed to by Word 5
of the PLIST is used for the strings accessed by the ARG instruction and the ARG function. Only the
first token of the Tokenized PLIST is used. If the argument list is specified, only the first word of the
BEGARGS/ENDARGS string is used (for the called name of the program).

Any other value
(for example, X'00') Only the Tokenized PLIST is available.

Note: You should use the CMSCALL macro to make your calls. CMSCALL has parameters that allow you to
set up your user call-type information. Register 0 points to the Extended PLIST. The Extended PLIST has
the form:

EPLIST DS 0F PLIST with pointers:
 DC A(COMVERB) -> CL5'EXEC '
 DC A(BEGARGS) -> start of Argstring
 DC A(ENDARGS) -> character after end of
* the Argstring

System Interfaces

188 z/VM: 7.3 REXX/VM Reference

 DC A(FBLOCK) -> File Block, described following.
* (if there is no File Block,
* this pointer must be 0)

The six-word Extended PLIST (which exists only if the user call-type information is X'05') is the previous
four pointers followed by two additional pointers:

 DC AL4(ARGLIST) -> Argument list.
* If there is no argument
* list, this pointer is 0,
* and BEGARGS/ENDARGS are
* used for the ARG string.
 DC A(SYSFUNRT) -> RETURN location. This location:
* - contains a zero on entry;
* - will be unchanged if
* no result is returned;
* - will contain the address of an
* EVALBLOK if a result is returned.

The following example shows the use of the Extended PLIST.

************* This is the sample assembler program used to call
************* the REXX function using the six-word extended PLIST

* Sample program to call a REXX function
CALLFUN CSECT
 USING *,R12
 STM R14,R12,0(R13) Save registers
 ST R13,R13SAVE Keep address of save area
*
 CMSCALL PLIST=PLIST,EPLIST=EPLIST,CALLTYP=FUNCTION
* Call the REXX program
 LINEWRT DATA=MESSAGE Type message line
 L R10,SYSFUNRT Get the address of the EVALBLOK
 USING EVALBLOK,R10 Get addressability to it
 LA R2,EVDATA Get address of the result
 L R3,EVLEN Get result length
 DROP R10
 LINEWRT DATA=((R2),(R3)) Display the result
 L R13,R13SAVE Get address of save area
 LM R14,R12,0(R13) Restore registers
 XR R15,R15 Give zero return code
 BR R14 Return to caller
*
* PLIST, EPLIST and constants
*
 DS 0D
PLIST DC CL8'EXEC' Declare the Tokenized PLIST
 DC CL8'MYEXEC'
* Declare the Extended PLIST
EPLIST DC A(COMVERB)
 DC A(BEGARGS)
 DC A(ENDARGS)
 DC F'0'
 DC A(ARGLIST)
 DC A(SYSFUNRT)
*
COMVERB DC CL5'EXEC '
BEGARGS EQU *
 DC CL7'MYEXEC '
ARG1 DC C'This is the 1st arg string '
ARG2 DC C'This is the 2nd '
ARG3 DC C'This is the 3rd string.'
ARG4 DC C'This is the 4th '
ENDARGS EQU *

Figure 6. SAMPLE CALL (Part 1 of 2)

System Interfaces

Chapter 8. System Interfaces 189

*
ARGLIST DS 0F Adlen pairs for the arguments
 DC A(ARG1,L'ARG1)
 DC A(ARG2,L'ARG2)
 DC A(ARG3,L'ARG3)
 DC A(ARG4,L'ARG4)
 DC F'-1' fence
 DC F'-1'
SYSFUNRT DC F'0' RETURN area
R13SAVE DS F pointer to save area
MESSAGE DC C'+++This is the returned string from MYEXEC:'
*
EVALBLOK DSECT
EVNEXT DS F Reserved
EVSIZE DS F size in DW's
EVLEN DS F length of data in bytes
EVPAD DS F (reserved)
*
LEVALBLO EQU *-EVALBLOK length of basic area
EVDATA DS C **** Start of data...
 REGEQU register equates
 END CALLFUN

*************** This is the REXX function

/* MYEXEC EXEC - sample function program */
say 'In MYEXEC'
parse arg in1,in2,in3,in4
say 'Arg string 1 = *'in1'*'
say 'Arg string 2 = *'in2'*'
say 'Arg string 3 = *'in3'*'
say 'Arg string 4 = *'in4'*'
say 'Leaving MYEXEC....'
exit 'This is the exit string'

*************** this is the console log

callfun
In MYEXEC
Arg string 1 = *This is the 1st arg string *
Arg string 2 = *This is the 2nd *
Arg string 3 = *This is the 3rd string.*
Arg string 4 = *This is the 4th *
Leaving MYEXEC....
+++This is the returned string from MYEXEC:
This is the exit string
Ready; T=0.01/0.01 14:23:54

Figure 7. SAMPLE CALL (Part 2 of 2)

The argument list consists of an Adlen (Address/Length) pair for each argument string. The final value
pair is followed by two fullwords containing -1 (that is, X'FFFFFFFF'). There is no limit to the number of
strings when the language processor is called, but note that the language processor itself provides only
from zero to 20 argument strings.

If the argument list is given, the simple argument string (as defined by BEGARGS and ENDARGS) is not
used for the ARG instruction or the ARG built-in function.

Note: The argument list and the strings it defines must be in privately owned storage. This means that
the language processor need not copy the data strings before using them (as is done for the BEGARGS/
ENDARGS string, when it is used).

The result of a subroutine or function call using the six-word Extended PLIST is returned in a block of
USER storage allocated by CMS Storage Management; this has the following storage assignments and
values:

-- DSECT for the returned data block -----------------
EVALBLOK DSECT
EVNEXT DS F Reserved
EVSIZE DS F Total block size in DW's

System Interfaces

190 z/VM: 7.3 REXX/VM Reference

EVLEN DS F Length of Data (in bytes)
EVPAD DS F Reserved -- should be set to 0
EVDATA DS C... The returned character string

A result may only be returned if the called routine ends cleanly, with a Register 15 return code of 0.

Note: The EVALBLOK can be either above or below the 16MB line if the caller is AMODE 31 (31-bit
addressing). The EVALBLOK must be below the 16MB line if the caller is AMODE 24 (24-bit addressing).

The File Block
Word 4 of the Extended PLIST described previously points to the FBLOCK. It is only needed if the
language processor is to run a non-EXEC file or is to run from storage, or is to have an address
environment that is not the same as its file type. If it is not required, word 4 of the Extended PLIST should
be set to 0. For the format of the FBLOCK macro, refer to the data areas and control blocks information in
the IBM z/VM Internet Library at IBM: z/VM Internet Library (https://www.ibm.com/vm/library).

Note: GCS does not support the FBLENAME portion of the FBLOCK extension. The GCS FBLOCK macro
reserves the fifth and sixth fullwords.

The descriptor list for an in-storage program looks like this:

** Descriptor list for in-storage program
PROG DS 0F ** In storage program **
 DC A(line1),F'len1' Address, length of line 1
 DC A(line2),F'len2' Address, length of line 2

 DC A(lineN),F'lenN' Address, length of line N
PGEND EQU *

Note:

1. The in-storage program lines need not be contiguous, because each is separately defined in the
descriptor list.

2. For in-store execution, the filename is still required in the File Block, because this determines the
logical program name. The filetype similarly sets the default command environment, unless the name
in the extension block explicitly overrides it.

3. If the extension length is >= 4 fullwords, the 3rd and 4th fullwords (FBLPREF) form an 8-character
environment address that overrides the default address set from the filetype in the File Block and thus
forms the initial ADDRESS to which commands are issued. This new address may be all characters (for
example, blank, CMS, or some other environment name), or it may be a PSW for non-SVC subcommand
execution—described in “Non-SVC Subcommand Invocation” on page 192. It may be cleared to 8X'00'
if not required.

4. If the extension length is >= 6 fullwords, the 5th and 6th fullwords (FBLENAME) form an 8-character
environment name that is used for the default address unless this is a non-SVC command execution.
In this case, the 3rd and 4th fullwords (FBLPREF) are used as a PSW for non-SVC subcommand
execution—described in “Non-SVC Subcommand Invocation” on page 192. PARSE SOURCE and the
ADDRESS built-in function return the environment name, and the PSW in the 4th and 5th fullwords
calls subcommands.

5. Exits are defined at language processor invocation by means of a specified FBLOCK extension. The
FBLOCK extension contains a pointer in the seventh fullword of the extension block that points to
the exit. The eighth fullword of the extension block passes a user word value that is returned to the
parameter list when an exit is entered. See “REXX Exits” on page 198 for a description of exits.

6. When an EXEC or XEDIT macro has been loaded into storage through the EXECLOAD command and the
EXEC or XEDIT macro is invoked through a CMSCALL on which a FBLOCK is supplied, the high-order
bit of the FBLOCK address (Word 4 of the Extended PLIST) must be set on in order for the usage count
reported by the EXECMAP command to be incremented. A high-order bit of 1 in the address of the
FBLOCK indicates that the EXEC is in storage as a result of an EXECLOAD command.

System Interfaces

Chapter 8. System Interfaces 191

https://www.ibm.com/vm/library/

Function Packages
Functions and subroutines can be written in REXX or in any other language that has an interface that
conforms to the six-word Extended PLIST described previously. Those routines not written in REXX may
be supplied simply as a file with a file type of MODULE. For a further improvement in performance,
routines that are called frequently may be loaded as Nucleus Extensions, or placed in a Function Package.

A function package contains the code for functions that are candidates for loading as nucleus extensions.
The first time a function in one of the three packages known to the language processor (RXUSERFN and
RXLOCFN and RXSYSFN) is called, a call to the package with a LOAD request causes the package to load
itself as a Nucleus Extension (if it is not already in storage). The entry point to the particular function
required is then declared as a Nucleus Extension by the package. On subsequent calls, the code for the
function is directly available using CMSCALL and the extra processing for loading the package MODULE
is avoided. The functions in a package usually share common code and subroutines. For an example of a
function package, see Appendix D, “Example of a Function Package,” on page 301.

See “Search Order” on page 68 for the full search order of external routines.

All external routines are called using the six-word Extended PLIST defined previously in “Using the
Extended Parameter List” on page 188. If the called routine is not an exec or macro (that is, EXEC does
not process it), then word 4 is zero. Word 5 points to the list of arguments, and word 6 points to a
location that may be used to return the address of an EVALBLOK that will contain the result of the function
or subroutine. If the routine is being called as a subroutine (rather than as a function), so that it need
not return a result, then the top bit of R0 is set to indicate this. Otherwise the routine should return a
result—the language processor raises an error if it does not.

During calculation of the result, the routine may use the argument strings (which reside in USER storage
the language processor owns) as work areas, without fear of corrupting internal REXX values.

External function packages must be able to respond to a call of the form:

RXnameFN LOAD RXfname

(which is issued using just the Tokenized PLIST, with the user call-type information being X'00').

When the package RXnameFN is called with this request, if RXfname is contained within the package,
RXnameFN:

• Loads itself, if necessary
• Installs the nucleus extension entry point for the function
• Returns with a return code 0.

Otherwise, the return code is 1. This allows the language processor to automatically load the function
packages and entry points when necessary.

Non-SVC Subcommand Invocation
When a command is issued to an environment, there is an alternative non-SVC fast path available
for issuing commands. This mechanism may be used if an environment wishes to support a minimum-
overhead subcommand call.

The fast path is used if the current eight-character environment address has the form of a PSW (signified
by the fourth byte being X'00'). This address may be set using the Extended PLIST (see previous
description) or by using the ADDRESS instruction if the PSW has been made available to the exec in
some other way. Note that if a PSW is used for the default address, the PARSE SOURCE string uses ? as
the name of the environment unless an environment name has also been provided. The PSW must be in a
correct format for the addressing mode you are running in: a 370 PSW for 24-bit addressing, and an XA or
XC PSW for 31-bit addressing.

The definition of the interface follows:

System Interfaces

192 z/VM: 7.3 REXX/VM Reference

1. The language processor passes control to the routine by executing an LPSW instruction to load the
eight-byte environment address. On entry to the called program the following registers are defined:
Register 0

Extended PLIST as per usual subcommand call. First word contains a pointer to the PSW used;
second and third words define the beginning and end of the command string; and the fourth word
is 0.

Register 1
Tokenized PLIST. First doubleword contains the PSW used; second doubleword is 2F'-1'. Note that
the top byte of Register 1 does not have a flag.

Register 2
is the original Register 2 as encountered on the initial entry to the language processor's
external interface. This register is intended to allow for the passing of private information to the
subcommand entry point, typically the address of a control block or data area. This register is
safe only if the exec is called with a BALR to the entry point contained at label AEXEC in NUCON;
otherwise the SVC processor alters this register.

Register 13
points to an 18 fullword save area.

Register 14
contains the return address.

(All other registers are undefined.)
2. It is the called program's responsibility to save Registers 9 through 12 and to restore them before

returning to the language processor. All other registers may be used as work registers.
3. On return to the language processor, Registers 9 through 12 must be unchanged (see Note 2

preceding), and Register 15 should contain the return code (which is placed in the variable RC as
usual). Contents of other registers are undefined. The language processor sets the storage key and
mask that it requires.

Note: The EXECCOMM subcommand entry point is always set up when execution of a REXX program
begins, even if the exec is called through BALR. This results in a subcommand block being added to the
SUBCOM chain.

Direct Interface to Current Variables
The language processor provides an interface whereby called commands can easily access and
manipulate the current generation of REXX variables. Variables may be inspected, set, or dropped, and if
required all active variables can be inspected in turn. The language processor's own routines manipulate
internal work areas: therefore, user programs do not need to know anything of the structure of the
variables' access method. The interface code checks names for validity, and optionally substitution into
compound symbols is carried out according to usual REXX rules. Certain other information about the
program that is running is also made available through the interface.

The EXECCOMM interface to REXX is 31-bit capable. That is, the address in the parameter list can be
above the 16MB line. However, programs supporting calls from both EXEC 2 and REXX need to ensure
that all areas reside below the 16MB line.

The interface works as follows:

When the language processor starts to process a new program, the program first sets up a subcommand
entry point called EXECCOMM. When the language processor calls a program (command, subcommand,
or external routine), the program may in turn use the current EXECCOMM entry point to set, fetch, or
drop REXX variables, using the language processor's internal mechanisms. Part of the language processor
carries out all changes to pointers, allocation of storage, substitution of variables in the name, and so
forth, and therefore isolates user programs from the internal mechanisms of the language processor.

To access variables, EXECCOMM is called using both the Tokenized and the Extended PLIST (see also
“The Extended Parameter List” on page 188). CMSCALL is issued with R1 pointing to the usual Tokenized
PLIST, and the user call-type information set to X'02', as this is a subcommand call.

System Interfaces

Chapter 8. System Interfaces 193

The R1 PLIST: Register 1 must point to a PLIST which consists of the 8-byte string EXECCOMM .

The R0 PLIST: Register 0 must point to an Extended PLIST. The first word of the PLIST must contain the
value of Register 1 (without the user call-type information in the high-order byte). No argument string can
be given, so the second and third words must be identical (for example, both 0). The fourth word in the
PLIST must point to the first of a chain of one or more request blocks; see the following.

On return from the CMSCALL, Register 15 contains the return code from the entire set of requests. The
possible return codes are:
POSITIVE

Entire PLIST was processed. Register 15 is the composite OR of bits 0-5 of the SHVRET bytes of the
Request Block (SHVBLOCK).

0
Entire PLIST processed successfully.

-1
Incorrect entry conditions (for example, BEGARGS ¬= ENDARGS, or EXECCOMM is being called when
the language processor is active).

-2
Insufficient storage was available for a requested SET. (See the note in Chapter 1, “REXX General
Concepts,” on page 1.) Processing was ended (some of the request blocks may remain unprocessed—
their SHVRET bytes are unchanged).

-3
(from SUBCOM). No EXECCOMM entry point found; for example, not called from inside a REXX
program.

The Request Block (SHVBLOCK)
Each request block in the chain must be structured as the SHVBLOCK macro. For the format of the
SHVBLOCK macro, refer to the data areas and control blocks information in the IBM z/VM Internet Library
at IBM: z/VM Internet Library (https://www.ibm.com/vm/library).

A typical calling sequence using fully relocatable and read-only code might be:

 LA R0,EPLIST -> Extended PLIST, same format as
 the R0 PLIST described previously.
 -> Set up the call using CMSCALL.
 CMSCALL will take care of the
 user call-type information,
 set up the address of the
 Extended PLIST and Tokenized
 PLIST and set up the
 error routine address.
 CMSCALL EPLIST=(R0),PLIST=EXNAME,CALLTYP=SUBCOM,ERROR=DISASTER
 BM DISASTER Where to go if return code not equal to 0
 .
 .
 .
EXNAME DC CL8'EXECCOMM' Tokenized PLIST
 DC XL8'FFFFFFFFFFFFFFFF' Fence for PLIST copy

Function Codes (SHVCODE)
Three function codes (D, F, and S) may be given in either lowercase or uppercase:
Lowercase

(The Symbolic interface). The names must be valid REXX symbols (in mixed case if desired), and
usual REXX substitution occurs in compound variables.

Uppercase
(The Direct interface). No substitution or case translation takes place. Simple symbols must be valid
REXX variable names (that is, in uppercase, and not starting with a digit or a period), but in compound

System Interfaces

194 z/VM: 7.3 REXX/VM Reference

https://www.ibm.com/vm/library/

symbols any characters (including lowercase, blanks, and so forth) are permitted following a valid
REXX stem.

Note: The Direct interface, which is also provided (in part) by EXEC 2, should be used in preference to the
Symbolic interface whenever generality is desired.

The other function codes, N and P, must always be given in uppercase. The specific actions for each
function code are as follows:
D and d

Drop variable. The SHVNAMA/SHVNAML adlen describes the name of the variable to be dropped.
SHVVALA/SHVVALL are not used. The name is validated to ensure that it does not contain incorrect
characters, and the variable is then dropped, if it exists. If the name given is a stem, all variables
starting with that stem are dropped.

F and f
Fetch variable. The SHVNAMA/SHVNAML adlen describes the name of the variable to be fetched.
SHVVALA specifies the address of a buffer into which the data is to be copied, and SHVBUFL contains
the length of the buffer. The name is validated to ensure that it does not contain incorrect characters,
and the variable is then located and copied to the buffer. The total length of the variable is put into
SHVVALL, and, if the value was truncated (because the buffer was not big enough), the SHVTRUNC bit
is set. If the variable is shorter than the length of the buffer, no padding takes place. If the name is a
stem, the initial value of that stem (if any) is returned.

SHVNEWV is set if the variable did not exist before the operation, and in this case the value copied
to the buffer is the derived name of the variable (after substitution and so forth); see “Compound
Symbols” on page 14.

N
Fetch Next variable. This function can search through all the variables known to the language
processor (that is, all those of the current generation, excluding those hidden by PROCEDURE
instructions). The order in which the variables are revealed is not specified.

The language processor maintains a pointer to its list of variables: this is reset to point to the first
variable in the list whenever a host command is issued, or any function other than N or P is run
through the EXECCOMM interface.

Whenever an N (Next) function is run, the name and value of the next variable available are copied to
two buffers supplied by the caller.

SHVNAMA specifies the address of a buffer into which the name is to be copied, and SHVUSER
contains the length of that buffer. The total length of the name is put into SHVNAML, and if the name
was truncated (because the buffer was not big enough) the SHVTRUNC bit is set. If the name is
shorter than the length of the buffer, no padding takes place. The value of the variable is copied to the
user's buffer area using exactly the same protocol as for the Fetch operation.

If SHVRET has SHVLVAR set, the end of the list of known variables has been found, the internal
pointers have been reset, and no valid data has been copied to the user buffers. If SHVTRUNC is set,
either the name or the value has been truncated.

By repeatedly executing the N function (until the SHVLVAR flag is set) a user program can locate all
the REXX variables of the current generation.

P
Fetch private information. This interface is identical with the F fetch interface, except that the name
refers to certain fixed information items that are available. Only the first letter of each name is
checked (though callers should supply the whole name), and the following names are recognized:
ARG

Fetch primary argument string. The first argument string that would be parsed by the ARG
instruction is copied to the user's buffer.

PARM
Fetch the number of argument strings. The number of argument strings supplied to the program is
placed in the caller's buffer. The number is formatted as a character string.

System Interfaces

Chapter 8. System Interfaces 195

Note: When specifying PARM, each letter must be supplied.

PARM.n
Fetch the nth argument string. Argument string n is placed in the caller's buffer. Returns a null
string if argument string n cannot be supplied (whether omitted, null, or fewer than n argument
strings specified). Parm.1 returns the same result as ARG.

Note: When specifying PARM.n, 'PARM.' must be supplied.

SOURCE
Fetch source string. The source string, as described for PARSE SOURCE in “PARSE” on page 48, is
copied to the user's buffer.

VERSION
Fetch version string. The version string, as described for PARSE VERSION in “PARSE” on page 48,
is copied to the user's buffer.

S and s
Set variable. The SHVNAMA/SHVNAML adlen describes the name of the variable to be set, and
SHVVALA/SHVVALL describes the value to be assigned to it. The name is validated to ensure that it
does not contain incorrect characters, and the variable is then set from the value given. If the name is
a stem, all variables with that stem are set, just as though this was a REXX assignment. SHVNEWV is
set if the variable did not exist before the operation.

Note:

1. EXEC 2 supports only the S (Set) and F (Fetch) functions. Other requests are rejected.
2. The interface is enabled only during the execution of commands (including CMS subcommands)

and external routines (functions and subroutines). An attempt to call the EXECCOMM entry point
asynchronously results in a return code of -1 (Invalid entry conditions).

3. While the EXECCOMM request is being serviced, interrupts are enabled for most of the time.

Using Routines from the Callable Services Library
When REXX calls another program that is written in another programming language (Assembler, OS/VS
COBOL, VS FORTRAN, VS Pascal, PL/I, C), that program can access and manipulate the current generation
of REXX variables by using routines that reside in z/VM’s supplied callable services library. The following
list describes these CSL routines:

• DMSCDR—causes REXX to drop a REXX variable or group of variables.
• DMSCGR—gets the value of a variable known to an active REXX procedure.
• DMSCGS—gets special REXX values.
• DMSCGX—gets the names and values of all variable known to an active REXX procedure one at a time.
• DMSCSR—sets the value of a variable for an active REXX procedure.

These CSL routines use the EXECCOMM interface described earlier in this section. See z/VM: CMS Callable
Services Reference for more information about coding these CSL routines.

Example:

The following example shows a REXX exec named TEST invoking a VS FORTRAN program named GETNXT.
Once called, GETNXT calls the CSL routine DMSCGX to get the value of all the REXX variables from the
TEST EXEC and then displays those values.

System Interfaces

196 z/VM: 7.3 REXX/VM Reference

/* This is a sample REXX exec that sets some variables and
 then calls a FORTRAN program called GETNXT */
A = 12
B.1 = 0.5
C = 3.5E6
D. = -2
D.1 = 5
D.2 = -4
E = '123456789ABCDEF'
LAST_GET_NEXT_VAR = 'CHAR STRING'
'LOAD GETNXT'
'START'

Figure 8. TEST EXEC

 C This is the VS FORTRAN program GETNXT to get the values of all
 C REXX variables from the TEST EXEC, store them in an array,
 C and then display the variables with their values.
 C GETNXT calls the CSL routine 'DMSCGX' to get the values.
 C
 PROGRAM GETNXT
 C
 C DMSCSL - external interface routine to call CSL routine
 EXTERNAL DMSCSL
 C
 C Declare all parameters for the CSL call.
 C This accommodates 20 variables with names + values up to 25 characters
 INTEGER RTCODE,VARLEN,BUFLEN,ACVLEN,ACBLEN
 CHARACTER*25 VARNAM(20)
 CHARACTER*25 BUFFER(20)
 C
 C Input length of buffer and variable length for all variables
 BUFLEN = 25
 VARLEN = 25
 C
 C Initialize the return code
 RTCODE = 0
 J = 20
 C
 C Keep getting the next variable until they are all depleted
 C (RC=206) or until you get 20 variables.
 DO 10 I = 1, J
 C
 C Initialize the next variable and value
 VARNAM(I) = ' '
 BUFFER(I) = ' '
 C
 C Make the call to 'DMSCGX'
 CALL DMSCSL('DMSCGX ',RTCODE,VARNAM(I),VARLEN,BUFFER(I),
 1 BUFLEN,ACVLEN,ACBLEN)
 C
 C Display results
 IF (RTCODE .EQ. 206) THEN
 WRITE (6,31) ' RTCODE = ',RTCODE
 GO TO 40
 END IF
 WRITE (6,30) ' ',VARNAM(I), ' = ',BUFFER(I)
 10 CONTINUE
 40 CONTINUE
 30 FORMAT (A1,A25,A3,A25)
 31 FORMAT (A10, I4)
 END

Figure 9. VS FORTRAN Program—GETNXT FORTRAN

After executing the TEST EXEC, here is the output that is displayed at your terminal:

DMSLIO740I Execution begins...
A = 12
E = 123456789ABCDEF
C = 3.5E6
RC = 0
D.2 = -4

System Interfaces

Chapter 8. System Interfaces 197

D.1 = 5
LAST_GET_NEXT_VAR = CHAR STRING
B.1 = 0.5
RTCODE = 206

REXX Exits
This set of exits to the z/VM REXX/VM Interpreter allows applications to tailor the REXX environment. The
exits fall into two categories:
Initialization/Termination

routines called at startup and termination of a program
System services

routines called to provide host environment services to the language processor.

These exits are provided in both CMS and GCS. For the most part, the interfaces are identical between the
two. The following description focuses on CMS, with the GCS differences noted.

Invocation of the Language Processor by an Application Program
The exits are defined at language processor invocation by means of a specified FBLOCK extension. See
“The File Block” on page 191 for a description of the format of the file block. The FBLOCK extension
contains a pointer in the seventh fullword of the extension block that points to the exit. The eighth
fullword of the extension block passes a user word value that is copied from the FBLOCK to the exit
routines parameter list (RXIUSER field).

The exit vector is a list of doubleword tokens, with a doubleword fence signaling the end of the list. Each
token consists of a code in the first halfword identifying an exit and the address in the second fullword
indicating the address of the exit. The second halfword of the doubleword token is reserved.

You can specify the following exits in the list. The RXITDEF macro establishes the equated values for each
of these exit names and for their associated subfunctions.
RXFNC

Process external functions
RXCMD

Process host commands
RXMSQ

Manipulate session queue
RXSIO

Session I/O
RXMEM

Memory services
RXHLT

Halt processing
RXTRC

Test external trace indicator
RXINI

Initialization processing
RXTER

Termination processing.

Invocation of the Exits by the Language Processor
This section explains the three parts to the exits:

• How invocation is handled
• The return conditions

System Interfaces

198 z/VM: 7.3 REXX/VM Reference

• Exit definitions.

Call Conditions
Note: If a GCS problem state application calls the language processor, then the exit routines are entered
in a problem state, enabled for interrupts, and enabled with the storage key of the original application
program. If a GCS supervisor state application calls the language processor, then the exits are entered
in a supervisor state, key zero, enabled for interrupts. If a CMS application calls the language processor,
then the exits are called in supervisor state, nucleus key, and enabled for interrupts. In an XA or XC virtual
machine, the exit will be called in AMODE 31.

The following registers are defined on entry:
Register 1

A pointer to the exit parameter list. This parameter list varies with each entered exit. Details on the
format of this parameter list for each exit are described later.

Register 13
A pointer to a 20 fullword register save area.

Register 14
The return address.

Register 15
The entry point address.

The exit parameter list consists of several fields that all the exits commonly use, followed by fields that
are specific to each exit. The common information includes:

• RXIEXIT - the exit being called
• RXISUBFN - the subfunction requested for that exit
• RXIUSER - the optional fullword of user data
• RXICFLAG - a flag byte used to control exit processing
• RXIFFLAG - a flag byte used for exit specific communication
• RXIPLEN - the length of the parameter list.

See “Exit Definitions” on page 199 for the format of the control blocks.

Return Conditions
On return from the exit, register 15 contains the exit return code and the parameter list is updated with
the appropriate results. The return code in register 15 signals one of three actions:
RC=0

Successful handling of the service. The parameter list has been updated as appropriate for that exit.
RC=1

Exit chooses not to handle the service request. The language processor handles the request by the
default means.

RC=-1
An irrecoverable error occurred during processing of this request. REXX error 48 (Failure in
system service) is raised.

The exit routines must save registers 0-14 upon invocation and restore them before returning to their
caller.

Exit Definitions
The RXITDEF macro establishes the equated values for each of the exit names and for their associated
subfunction names. The RXITPARM macro establishes the mapping DSECT for these parameter lists. The
EPLIST and EVALBLOK mapping is further described in “Using the Extended Parameter List” on page

System Interfaces

Chapter 8. System Interfaces 199

188. Also, you can use the EPLIST and the EVALBLOK macros to provide the mapping for each of these
DSECTS.
RXFNC

Process external functions.
RXFNCCAL

Call an external function

RXIEXIT DS H Exit code = 2
RXISUBFN DS H Exit subfunction = 1
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXFFERR EQU X'80' Incorrect call to routine
RXFFNFND EQU X'40' Routine not found
RXFFSUB EQU X'20' Subroutine call
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXFFNC DS A Pointer to the routine name
RXFFNCL DS F Length of the routine name
RXFARGS DS A Pointer to argument list
RXFRET DS A Pointer to EVALBLOK for
* function RETURN result

On entry to the exit, the fields RXFFNC and RXFFNCL define the name of the called function. The
field RXFARGS points to the arguments to the function. The flag RXFFSUB is on if the routine is
called by means of a CALL rather than as a function.

On return from the exit, values in RXIFFLAG indicate the status of the function processing. If
neither RXFFERR nor RXFFNFND is on, then the routine has been successfully called and has run
successfully. The field RXFRET may have the address of an EVALBLOK containing the returned
result. The flag RXFFERR indicates that the parameters supplied to the routine are somehow
incorrect. The language processor returns error 40, Incorrect call to routine.

The flag RXFFNFND in RXIFFLAG indicates that the exit could not locate the routine with the given
name. The language processor returns error 43, Routine not found. If the routine is called as
a function and a result is not returned, then the language processor returns error 44, Function
did not return data. If the routine is called as a subroutine, then the returned result is
optional.

The exit allocates the EVALBLOK containing the result, and the language processor returns the
storage. The maximum size for an EVALBLOK is 16MB.

Note: The EXECCOMM interface is enabled during calls to the RXFNC exits.

RXCMD
Process host commands.
RXCMDHST

Call a host command.

RXIEXIT DS H Exit code = 3
RXISUBFN DS H Exit subfunction = 1
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXCFFAIL EQU X'80' Command FAILURE occurred
* (trappable with SIGNAL ON
 or CALL ON FAILURE)
RXCFERR EQU X'40' Command ERROR occurred
* (trappable with SIGNAL ON
 or CALL ON ERROR)
RXIFEVAL EQU X'01' Return code returned in EVALBLOK
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXCADDR DS CL8 Current ADDRESS setting
RXCCMD DS A Pointer to the command
RXCCMDL DS F Length of the command
RXCRETC DS A Pointer to return code buffer
RXCRETCL DS F Length of return code buffer

System Interfaces

200 z/VM: 7.3 REXX/VM Reference

On entry to the exit, the fields RXCRETC and RXCRETCL define a buffer that contains a value
used for the return code in character format (that is, a numeric return code formatted as a
character string). The return code may have a nonnumeric value if desired. On return from the exit,
RXCRETCL contains the length of the data placed in the buffer that RXCRETC points to.

If the buffer supplied is too small for the returning value, then the value is alternately returned in
an EVALBLOK. In this case, the exit supplies an EVALBLOK and stores the address of the block in
RXCRETC. The flag RXIFEVAL is then turned on to indicate that an EVALBLOK has been provided.
If the value is returned in an EVALBLOK, the language processor releases the EVALBLOK storage.
The maximum size of an EVALBLOK is 16MB.

The exit uses the flags RXCFFAIL and RXCFERR to indicate that an ERROR or FAILURE condition
has occurred. The exit controls the definition of what constitutes an ERROR or FAILURE of a
command. Under the default command processor, a negative return code is a FAILURE condition
and a positive return code is an ERROR condition.

When the RXCMD exit is not being used:

• CALL ON ERROR and SIGNAL ON ERROR trap all positive return codes
• CALL ON ERROR and SIGNAL ON ERROR trap all negative return codes if neither CALL ON

FAILURE nor SIGNAL ON FAILURE is set
• If set, CALL ON FAILURE and SIGNAL ON FAILURE trap negative return codes.

When the RXCMD exit is being used:

• CALL ON ERROR and SIGNAL ON ERROR trap the RXCFERR flag that the RXCMD exit returns
• CALL ON ERROR and SIGNAL ON ERROR trap the RXCFFAIL flag if neither CALL ON FAILURE nor

SIGNAL ON FAILURE is set.
• If set, CALL ON FAILURE and SIGNAL ON FAILURE trap the RXCFFAIL flag.

Note: The EXECCOMM interface is enabled during calls to the RXCMD exits.

RXMSQ
Manipulate session queue (the external data queue used for PUSH, QUEUE, and PULL).

The exit routine must support a number of subfunction codes. (Note that the code must be supported
even if the subfunction itself is not supported, for example, RC=1 can be returned to indicate that
the exit routine did not handle the request.) The subfunction request code is contained in the field
RXISUBFN. The remainder of the parameter list depends on the particular subfunction called. The
RXMSQ subfunctions and their parameter lists are:
RXMSQPLL

Pull a line from the session queue.

RXIEXIT DS H Exit code = 4
RXISUBFN DS H Exit subfunction = 1
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXMFEMPT EQU X'40' Queue was empty
RXIFEVAL EQU X'01' String returned in EVALBLOK
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXMRETC DS A Pointer to return buffer
RXMRETCL DS F Length of return buffer

On entry to the exit, the fields RXMRETC and RXMRETCL define a buffer that returns a value for the
line removed from the session queue. If the buffer supplied is too small, then the value is returned
in an EVALBLOK. In this case, the exit supplies an EVALBLOK and stores the address of the block in
RXMRETC. The flag RXIFEVAL is then turned on to indicate that an EVALBLOK has been provided.
If the value is returned in an EVALBLOK, the language processor releases the EVALBLOK storage.
The maximum size of an EVALBLOK is 16MB.

Although the CMS and GCS program stacks are limited to 255 bytes, the session queue that the
RXMSQ exits provide has no such limitation.

System Interfaces

Chapter 8. System Interfaces 201

On return from the exit, the RXMFEMPT flag indicates that there is no data on the queue, and no
data has been returned. The contents of the buffer should be ignored.

RXMSQPSH
Place a line on the session queue.

RXIEXIT DS H Exit code = 4
RXISUBFN DS H Exit subfunction = 2
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXMFLIFO EQU X'80' Stack the line LIFO
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXMVAL DS A Pointer to line to stack
RXMVALL DS F Length of line to stack

The line placed on the queue is the result of evaluating the expression specified on a PUSH or
QUEUE instruction. This string can be any length up to 16MB. The exit truncates this string if
the exit has a restriction on the maximum width of the queue. The flag RXMFLIFO indicates the
stacking order.

RXMSQSIZ
Return the number of lines in the session queue.

RXIEXIT DS H Exit code = 4
RXISUBFN DS H Exit subfunction = 3
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXMQSIZE DS F Number of lines in stack

On return from the exit, RXMQSIZE contains the size of the data queue as a 32-bit unsigned
number.

RXSIO
Session I/O.

Note: The EXTERNALS built-in function always returns a value of zero when the RXSIO exit has been
specified.

The exit routine must support a number of subfunction codes. (Note that the code must be supported
even if the subfunction itself is not supported, for example, RC=1 can be returned to indicate that
the exit routine did not handle the request.) The subfunction request code is contained in the field
RXISUBFN. The remainder of the parameter list depends on the particular subfunction called. The
RXSIO subfunctions and their parameter lists are:
RXSIOSAY

Write a line to the character output stream. Called for SAY instruction to display output.

RXIEXIT DS H Exit code = 5
RXISUBFN DS H Exit subfunction = 1
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXSVAL DS A Pointer to line to display
RXSVALL DS F Length of line to display

The line displayed at the terminal results from evaluating the expression specified on a SAY
instruction. This string can be any length up to the size of the terminal (either by default system
processing or by a call to RXSIOTLL). The exit truncates this string if the string is too long.

System Interfaces

202 z/VM: 7.3 REXX/VM Reference

RXSIOTRC
TRACE output processing. Call to output TRACE results.

RXIEXIT DS H Exit code = 5
RXISUBFN DS H Exit subfunction = 2
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXSVAL DS A Pointer to line to display
RXSVALL DS F Length of line to display

The line to be displayed at the terminal is the result of a traced line. This string may be any
length up to the size of the terminal (as determined by default system processing or by a call to
RXSIOTLL). The exit truncates this string if the string is too long.

RXSIOTRD
Read from character input stream.

RXIEXIT DS H Exit code = 5
RXISUBFN DS H Exit subfunction = 3
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIFEVAL EQU X'01' String returned in EVALBLOK
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXSRETC DS A Pointer to return buffer
RXSRETCL DS F Length of return buffer

On entry to the exit, the fields RXSRETC and RXSRETCL define a buffer that can contain a value
used for the line read from the terminal. If the buffer supplied is too small for the value to
be returned, then the value may alternately be returned in an EVALBLOK. In this case, the exit
supplies an EVALBLOK and stores the address of the block in RXSRETC. The flag RXIFEVAL is
then turned on to indicate that an EVALBLOK has been provided. If the value is returned in an
EVALBLOK, the language processor releases the EVALBLOK storage. The maximum size of an
EVALBLOK is 16MB.

RXSIODTR
Debug read from character input stream.

RXIEXIT DS H Exit code = 5
RXISUBFN DS H Exit subfunction = 4
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXSRETC DS A Pointer to return buffer
RXSRETCL DS F Length of return buffer

On entry to the exit, the fields RXSRETC and RXSRETCL define a buffer that returns a value for the
line read from the terminal. If the buffer supplied is too small, then a return code of -1 is returned.

RXSIOTLL
Return maximum line length in bytes.

RXIEXIT DS H Exit code = 5
RXISUBFN DS H Exit subfunction = 5
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXSSIZE DS F Size of terminal in bytes

On return from the exit, RXSSIZE contains the width of the terminal as a 32-bit unsigned number.

System Interfaces

Chapter 8. System Interfaces 203

The LINESIZE built-in function uses this value, and it breaks up lines created by SAY and TRACE.
The RXSIOSAY and RXSIOTRC functions must be capable of handling lines of this length.

RXMEM
Memory services.

The exit routine must support a number of subfunction codes. (Note that the code must be supported
even if the subfunction itself is not supported, for example, RC=1 can be returned to indicate that
the exit routine did not handle the request.) The field RXISUBFN contains the subfunction request
code. The remainder of the parameter list depends on the particular subfunction called. The RXMEM
subfunctions and their parameter lists are:
RXMEMGET

Allocate memory.

RXIEXIT DS H Exit code = 6
RXISUBFN DS H Exit subfunction = 1
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXMFLO24 EQU X'80' Storage must be allocated
* below the 16MB line.
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXMSSIZE DS F Size of storage to be
* allocated (in doublewords)
RXMADDR DS A Address of allocated storage

On entry to the exit, RXMSSIZE contains the size of the block of storage to be allocated. On
exit, RXMADDR should contain the address of the allocated storage. Out-of-storage conditions are
reflected by setting RXMADDR to zero on return from the exit. The flag RXMFLO24 indicates that
the storage must be allocated below the 16MB line.

RXMEMRET
Deallocate memory.

RXIEXIT DS H Exit code = 6
RXISUBFN DS H Exit subfunction = 2
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXMSSIZE DS F Size of storage to be
* released (in doublewords)
RXMADDR DS A Address of storage to be
* released

On entry, the fields RXMSSIZE and RXMADDR contain the length and address of the storage to be
released.

Note: Because calls to external functions and other exits can result in the language processor's
obtaining blocks of storage that were not allocated by calls to the RXMEMGET exit, the RXMEMRET
exit should be prepared to handle these conditions. If desired, a return code of 1 can be used to
cause a block of storage to be released by usual system means.

Note: Because the memory services provided by the RXMEM exits cannot support releasing storage in
increments other than those allocated, the language processor does not release partial storage if the
RXMEM exit has been specified.

RXHLT
Halt processing.

The exit routine must support a number of subfunction codes. (Note that the code must be supported
even if the subfunction itself is not supported, for example, RC=1 can be returned to indicate that
the exit routine did not handle the request.) The subfunction request code is contained in the field
RXISUBFN. The remainder of the parameter list depends on the particular subfunction called.

System Interfaces

204 z/VM: 7.3 REXX/VM Reference

When the RXHLT exit is not being used, the CMS immediate command HI (Halt Interpretation) causes
a halt condition. If the RXHLT exit is being used, a halt condition is recognized when the exit routine
sets the RXHFHALT flag.

The RXHLT subfunctions and their parameter lists are:
RXHLTCLR

Clear Halt indicator.

RXIEXIT DS H Exit code = 7
RXISUBFN DS H Exit subfunction = 1
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use

This exit has no inputs or outputs. It signals the exit that handles HALT processing that the
condition has been recognized and should be cleared.

RXHLTTST
Test Halt indicator.

RXIEXIT DS H Exit code = 7
RXISUBFN DS H Exit subfunction = 2
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXHFHALT EQU X'80' HALT condition occurred
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use
RXHSTR DS A Pointer to EVALBLOK
* containing an optional
* HALT string

On return from this exit, RXHFHALT indicates whether a HALT condition has occurred. The exit
can also return a string that is available as CONDITION(‘Description’) for a CALL ON HALT or
SIGNAL ON HALT condition trap. This string is returned in an EVALBLOK. In this case, the exit
supplies an EVALBLOK and stores the address of the block in RXHSTR. If the value is returned in
an EVALBLOK, the language processor releases the EVALBLOK storage. The maximum size of an
EVALBLOK is 16MB.

RXTRC
Trace services.
RXTRCTST

Test external trace indicator.

RXIEXIT DS H Exit code = 8
RXISUBFN DS H Exit subfunction = 1
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXTFTRAC EQU X'80' External TRACE setting
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use

On return from this exit, RXTFTRAC indicates whether an external trace condition has occurred.

RXINI
Initialization processing.
RXINIEXT

Perform external initialization.

RXIEXIT DS H Exit code = 9
RXISUBFN DS H Exit subfunction = 1
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags

System Interfaces

Chapter 8. System Interfaces 205

RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use

This exit has no inputs or outputs. It is called before the first instruction of the program is
interpreted. The EXECCOMM interface is enabled when this exit is called.

There are more possibilities for initialization that are not available on GCS. See “Additional Exit
Provided in VM” on page 207 for more information.

RXTER
Termination processing.
RXTEREXT

Perform External Termination.

RXIEXIT DS H Exit code = 10
RXISUBFN DS H Exit subfunction = 1
RXIUSER DS F User word
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIPLEN DS H Length of PLIST in bytes
RXIRESRV DS F Reserved for IBM use

This exit has no inputs or outputs. It is called after the last instruction of the program is
interpreted. The EXECCOMM interface is enabled when this exit is called.

There are more possibilities for termination that are not available on GCS. See “Additional Exit
Provided in VM” on page 207 for more information.

Usage Notes
When using these exits to customize the REXX environment, you may need to consider the following
limitations and restrictions:

1. When an application program calls the language processor, the exit vector could contain codes that are
not defined or are reserved for IBM use. These are ignored.

2. The exit vector could contain the same code more than once. When obtaining the storage for the exit
vector, the first occurrence of the RXMEM exit is used. The first occurrence of the REXMEM exit is also
used to release the storage for the exit vector. In all other cases, including the RXMEM exit, the last
occurrence of an exit code is the one used.

3. Upon return to the language processor from one of the exits, the return code might be a nonzero return
code other than the documented (+)1 or -1. All negative return codes are treated the same as a -1 and
all positive return codes are treated the same as a (+)1.

4. The EXTERNALS built-in function always returns a value of zero when the RXSIO exit has been
specified.

5. The RXMEM exit is not used to obtain or release storage when called on GCS under any of these three
circumstances:

• The REXX language processor has been called through SVC 202 from a problem state program with
exits specified. Storage is obtained for a register save area, and then the SYNCH macro switches
to problem state. This area is retained throughout the processing of the EXEC but is released just
before the language processor returns control back to the SVC handler to return control to the calling
program.

• The EXECCOMM routine has been called through SVC 203 from a problem state program with exits
specified. Storage is obtained for a register save area, and then the SYNCH macro switches to
problem state. This area is retained throughout the processing of the EXECCOMM request, but is
released just before EXECCOMM returns back to the SVC handler to return control to the calling
program.

• The RXMEM exit is being called to obtain storage for the main work area. Temporary storage is
obtained for the RXMEM parameter list, and this is released when the work area has been obtained.
The same sequence is used when calling RXMEM to release the storage the work area occupies.

System Interfaces

206 z/VM: 7.3 REXX/VM Reference

Note: Remember that the FIRST occurrence of the RXMEM exit found in the exit list obtains and
release the storage for the work area. The LAST occurrence of the RXMEM exit found in the exit list is
used for all other storage management requests.

Other information that you may need to be aware of follows.

1. The RXINI, RXTER, RXCMD, and RXFNC exits may use the EXECCOMM interface. EXECCOMM gives
back a return code of -1 when it is called from any other exit routine.

2. The descriptions of some of the exits state that a result may be returned in an EVALBLOK “if the
supplied buffer is too small.” In fact, the result may be returned through an EVALBLOK regardless of
the size of the supplied buffer. It MUST be returned through an EVALBLOK if the supplied buffer is too
small, providing the routine ends with a zero return code.

3. The actual behavior of the RXTRCTST and RXHLT exits is that they are called one time before the first
clause is run, and then one time after each clause is run. The intent of these exits is for them to be
called on a clause boundary between clauses.

Additional Exit Provided in VM
An additional exit function to the z/VM REXX/VM interpreter is provided and is available only to CMS. The
REXEXIT macro is used in an application program to create and maintain a list of user specified global
exits for REXX programs.

Global exits allow applications running on VM to further tailor the REXX environment. System exits are
defined and called for just one exec. In contrast, global exits are called for all REXX execs and remain
defined until explicitly cleared or an IPL or ABEND occurs.

Global exits are defined by using the REXEXIT macro. A global exit can be defined specifying INIT=YES to
indicate that it should be called during REXX initialization. Specifying TERM=YES indicates that it should
be called during REXX termination processing.

The REXEXIT macro has three main parameters: SET, CLR, and QUERY. The SET parameter declares the
named entry point as a user exit. NAME is used with SET to name the exit routine to be defined. In
addition, ENTRY is used with SET to define the entry point of the exit routine.

The CLR parameter deletes the named user exit from the list of exits. The QUERY parameter queries the
named global exit. NAME is also used with CLR and QUERY to name the exit routine to be cleared or
queried.

For a more complete description of the REXEXIT macro, see z/VM: CMS Macros and Functions Reference.

System Interfaces

Chapter 8. System Interfaces 207

System Interfaces

208 z/VM: 7.3 REXX/VM Reference

Chapter 9. Debug Aids

In addition to the TRACE instruction (“TRACE” on page 61), there are the following debug aids.

• The interactive debug facility
• The CMS immediate commands:

– HI – Halt Interpretation
– TS – Trace Start
– TE – Trace End

• The CMS HELP command.

Interactive Debugging of Programs
The debug facility permits interactively controlled execution of a program.

Changing the TRACE action to one with a prefix ? (for example, TRACE ?A or the TRACE built-in function)
turns on interactive debug and indicates to the user that interactive debug is active. Further TRACE
instructions in the program are ignored, and the language processor pauses after nearly all instructions
that are traced at the console (see the following for the exceptions). When the language processor
pauses, indicated by a VM READ or unlocking of the keyboard, three debug actions are available:

1. Entering a null line (with no characters, even blanks) makes the language processor continue
execution until the next pause for debug input. Repeatedly entering a null line, therefore, steps from
pause point to pause point. For TRACE ?A, for example, this is equivalent to single-stepping through
the program.

2. Entering an equal sign (=) with no blanks makes the language processor rerun the clause last traced.
For example: if an IF clause is about to take the wrong branch, you can change the value of the
variable(s) on which it depends, and then rerun it.

Once the clause has been rerun, the language processor pauses again.
3. Anything else entered is treated as a line of one or more clauses, and processed immediately (that

is, as though DO; line; END; had been inserted in the program). The same rules apply as in the
INTERPRET instruction (for example, DO-END constructs must be complete). If an instruction has a
syntax error in it, a standard message is displayed and you are prompted for input again. Similarly
all the other SIGNAL conditions are disabled while the string is processed to prevent unintentional
transfer of control.

During execution of the string, no tracing takes place, except that nonzero return codes from host
commands are displayed. Host commands are always run (that is, are not affected by the prefix ! on
TRACE instructions), but the variable RC is not set.

Once the string has been processed, the language processor pauses again for further debug input
unless a TRACE instruction was entered. In this latter case, the language processor immediately alters
the tracing action (if necessary) and then continues executing until the next pause point (if any). To
alter the tracing action (from All to Results, for example) and then rerun the instruction, you must
use the built-in function TRACE (see the TRACE function). For example, CALL TRACE I changes the
trace action to I and allows re-execution of the statement after which the pause was made. Interactive
debug is turned off, when it is in effect, if a TRACE instruction uses a prefix, or at any time when a
TRACE O or TRACE with no options is entered.

You can use the numeric form of the TRACE instruction to allow sections of the program to be
run without pause for debug input. TRACE n (that is, positive result) allows execution to continue,
skipping the next n pauses (when interactive debug is or becomes active). TRACE -n (that is, negative
result) allows execution to continue without pause and with tracing inhibited for n clauses that would
otherwise be traced.

Debug Aids

© Copyright IBM Corp. 1990, 2022 209

The trace action selected by a TRACE instruction is saved and restored across subroutine calls. This
means that if you are stepping through a program (say after using TRACE ?R to trace Results) and then
enter a subroutine in which you have no interest, you can enter TRACE O to turn tracing off. No further
instructions in the subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R instruction at its start.
Having traced the routine, the original status of tracing is restored and (if tracing was off on entry to the
subroutine) tracing (and interactive debug) is turned off until the next entry to the subroutine.

You can switch tracing on (without modifying a program) by using the command SET EXECTRAC ON.
You can also turn tracing on or off asynchronously (that is, while a program is running) by using the TS
and TE immediate commands. See “Interrupting Execution and Controlling Tracing” on page 210 for the
description of these facilities.

Since any instructions may be run in interactive debug, you have considerable control over execution.

Some examples:

 Say expr /* displays the result of evaluating the */
 /* expression. */

 name=expr /* alters the value of a variable. */

 Trace O /* (or Trace with no options) turns off */
 /* interactive debug and all tracing. */

 Trace ?A /* turns off interactive debug but continues */
 /* tracing all clauses. */

 Trace L /* makes the language processor pause at labels */
 /* only. This is similar to the traditional */
 /* 'breakpoint' function, except that you */
 /* do not have to know the exact name and */
 /* spelling of the labels in the program. */

 exit /* stops execution of the program. */

 Do i=1 to 10; say stem.i; end
 /* displays ten elements of the array stem. */

Note that while in interactive debug, pauses may occur because of PULL statements as well as because of
interactive debug. For programs containing PULL statements, it is important to be aware of the reason for
each pause. In programs, PULL statements are often paired with SAY statements. The user should enter
the data for the PULL at the pause after the trace line for the PULL (the pause specifically for entering
data for the PULL). The user should not enter the data at the pause after the corresponding SAY statement
(this is an interactive debug pause). Exceptions: Some clauses cannot safely be re-run, and, therefore,
the language processor does not pause after them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the loop.
• All END clauses (not a useful place to pause in any case).
• All THEN, ELSE, OTHERWISE, or null clauses.
• All RETURN and EXIT clauses.
• All SIGNAL and CALL clauses (the language processor pauses after the target label has been traced).
• Any clause that raises a condition that CALL ON or SIGNAL ON traps (the pause takes place after the

target label for the CALL or SIGNAL has been traced).
• Any clause that causes a syntax error. (These may be trapped by SIGNAL ON SYNTAX, but cannot be

re-run.)

Interrupting Execution and Controlling Tracing

You can interrupt the language processor during execution in several ways:

Debug Aids

210 z/VM: 7.3 REXX/VM Reference

• The HI (Halt Interpretation) immediate command causes all currently executing REXX programs to stop,
as though there has been a syntax error. This is especially useful when an editor macro gets into a loop,
and it is desirable to halt it without destroying the whole environment (as HX, Halt Execution, would do).
When an HI interrupt causes a REXX program to stop, the program stack is cleared. An HI interrupt may
be trapped by using SIGNAL ON HALT (“SIGNAL” on page 59).

• The TS (Trace Start) immediate command turns on the external tracing bit. If the bit is not already on,
TS puts the program into usual interactive debug and you can then run REXX instructions and so forth as
usual (for example, to display variables, EXIT, and so forth). This too is useful when you suspect that a
REXX program is looping—you can enter TS, and inspect and step the program before deciding whether
to allow the program to continue or not.

• The TE (Trace End) immediate command turns off the external tracing bit. If it is not already off, this
has the effect of executing a TRACE O instruction. This can be useful to stop tracing when not in
interactive debug (as when tracing was started by issuing SET EXECTRAC ON and interactive debug was
subsequently stopped by issuing TRACE ?).

The System External Trace Bit:

Before each clause is run, an external trace bit, owned by CMS, is inspected. You can turn the bit on with
the TS immediate command, and turn it off with the TE immediate command. You can also alter the bit
by using the SET EXECTRAC command (described later). CMS itself never alters this bit, except that it is
cleared on return to CMS command level.

The language processor maintains an internal shadow of the external bit, which therefore allows it to
detect when the external bit changes from a 0 to a 1, or vice-versa. If the language processor sees the bit
change from 0 to 1, ? (interactive debug) is forced on and the tracing action is forced to R if it is A, C, E, F,
L, N, or O. The tracing action is left unchanged if it is I, R, or S.

Similarly, if the shadow bit changes from 1 to 0, all tracing is forced off. This means that tracing may
be controlled externally to the REXX program: you can switch on interactive debug at any time without
modifying the program. The TE command can be useful if a program is tracing clauses without being in
interactive debug (that is, after SET EXECTRAC ON, TRACE ? was issued). You can use TE to switch off the
tracing without affecting any other output from the program.

If the external bit is on upon entry to a REXX program, the SOURCE string is traced (see “PARSE” on page
48) and interactive debug is switched on as usual—hence with use of the system trace bit, tracing of a
program and all programs called from it, can be easily controlled.

The internal shadow bit is saved and restored across internal routine calls. This means that (as with
internally controlled tracing) it is possible to turn tracing on or off locally within a subroutine. It also
means that if a TS interrupt occurs during execution of a subroutine, tracing is also switched on upon
RETURN to the caller.

You can use the CMSFLAG(EXECTRAC) function and the command QUERY EXECTRAC to test the setting of
the system trace bit.

The command SET EXECTRAC ON turns on the trace bit. Using it before invoking a REXX program causes
the program to be entered with debug tracing immediately active. If issued from inside a program, SET
EXECTRAC ON has the same effect as TRACE ?R (unless TRACE I or S is in effect), but is more global in
that all programs called are traced, too. The command SET EXECTRAC OFF turns the trace bit off. Issuing
this when the bit is on is equivalent to the instruction TRACE O, except that it has a system (global) effect.

Note: SET EXECTRAC OFF turns off the system trace bit at any time; for example, if it has been set by a TS
immediate command issued while not in a REXX program.

Debug Aids

Chapter 9. Debug Aids 211

Debug Aids

212 z/VM: 7.3 REXX/VM Reference

Chapter 10. Reserved Keywords and Special
Variables

You can use keywords as ordinary symbols in many situations where there is no ambiguity. The precise
rules are given here.

There are three special variables: RC, RESULT, and SIGL.

Reserved Keywords
The free syntax of REXX implies that some symbols are reserved for the language processor's use in
certain contexts.

Within particular instructions, some symbols may be reserved to separate the parts of the instruction.
These symbols are referred to as keywords. Examples of REXX keywords are the WHILE in a DO
instruction and the THEN (which acts as a clause terminator in this case) following an IF or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and that are not followed
by an = or : are checked to see if they are instruction keywords. You can use the symbols freely elsewhere
in clauses without their being taken as keywords.

It is not, however, recommended for users to run host commands or subcommands with the same name
as REXX keywords (QUEUE, for example). This can create problems for any programmer whose REXX
programs might be used for some time and in circumstances outside his or her control, and who wishes to
make the program absolutely watertight.

In this case, a REXX program may be written with (at least) the first words in command lines enclosed in
quotation marks.

Example:

'ERASE' filename filetype filemode

This also has the advantage of being more efficient, and, with this style, you can use the SIGNAL ON
NOVALUE condition to check the integrity of an exec.

An alternative strategy is to precede such command strings with two adjacent quotation marks, which
concatenates the null string on to the front.

Example:

''Erase filename filetype filemode

A third option is to enclose the entire expression (or the first symbol) in parentheses.

Example:

(Erase filename filetype filemode)

More important, the choice of strategy (if it is to be done at all) is a personal one by the programmer. The
REXX language does not impose it.

Special Variables
There are three special variables that the language processor can set automatically:
RC

is set to the return code from any run host command (or subcommand). Following the SIGNAL events,
SYNTAX, ERROR, and FAILURE, RC is set to the code appropriate to the event: the syntax error

Keywords and Variables

© Copyright IBM Corp. 1990, 2022 213

number (see appendix on error messages, Appendix A, “Error Numbers and Messages,” on page 281)
or the command return code. RC is unchanged following a NOVALUE or HALT event.

Note: Host commands run manually from debug mode do not cause the value of RC to change.

RESULT
is set by a RETURN instruction in a subroutine that has been called if the RETURN instruction specifies
an expression. If the RETURN instruction has no expression on it, RESULT is dropped (becomes
uninitialized.)

SIGL
contains the line number of the clause currently executing when the last transfer of control to a label
took place. (A SIGNAL, a CALL, an internal function invocation, or a trapped error condition could
cause this.)

None of these variables has an initial value. You can alter them, just as with any other variable, and
they may be accessed as described under the “Direct Interface to Current Variables” on page 193. The
PROCEDURE and DROP instructions also affect these variables in the usual way.

Certain other information is always available to a REXX program. This includes the name by which
the program was called and the source of the program (which is available using the PARSE SOURCE
instruction—see “PARSE” on page 48). The latter consists of the string CMS followed by the call type and
then the file name, file type, and file mode of the file being run. These are followed by the name by which
the program was called and the initial (default) command environment.

In addition, PARSE VERSION (see “PARSE” on page 48) makes available the version and date of the
language processor code that is running. The built-in functions TRACE and ADDRESS return the current
trace setting and environment name, respectively.

Finally, you can obtain the current settings of the NUMERIC function by using the DIGITS, FORM, and
FUZZ built-in functions.

Keywords and Variables

214 z/VM: 7.3 REXX/VM Reference

Chapter 11. Some Useful CMS Commands

There are a number of CMS commands that can be especially useful to REXX programmers. Some can
access and change REXX variables.
DESBUF

Clears the console and program stack input and output buffers. DROPBUF should be used in most
cases instead of DESBUF because DESBUF also drops output buffers (which could be undesirable).

DROPBUF
Eliminates only the most recently created program stack buffer or a specified program stack buffer
and all the buffers created after it.

EXECDROP
Purges storage-resident EXECs.

EXECIO
Reads and writes CMS files. Issues CP commands, placing the output that would usually appear on
the screen in the program stack. Reads from the virtual reader. Writes to the virtual printer and virtual
punch.

EXECLOAD
Loads an exec or XEDIT macro into storage and prepares it for execution.

EXECMAP
Lists storage-resident execs.

EXECOS
Cleans up after OS, VSAM and Vector programs, and should be used if more than one OS or VSAM
program is called between returns to CMS command level.

EXECSTAT
Provides the status of a specified exec.

EXECUPDT
An extension to the UPDATE command, EXECUPDT modifies a REXX program file with one or more
update files. The input files must have fixed length, 80-column records. The result is an executable,
V-format program file.

FINIS
Closes one or more files on a disk or in a Shared File System (SFS) directory.

GLOBALV
Saves exec data (variables) from one invocation to the next.

IDENTIFY
Displays or stacks user ID, node ID, RSCS ID, date, time, time zone, and day of the week.

LISTFILE
Lists information about CMS files in accessed directories and on accessed minidisks.

MAKEBUF
Creates a new buffer within the program stack.

NUCXLOAD
Installs specific types of modules as nucleus extensions.

NUCXMAP
Displays or stacks information about currently defined nucleus extensions.

PARSECMD
Parses and translates an exec's arguments.

PIPE
Calls CMS Pipelines to process a series of programs or stages. A series of stages is called a pipeline.
The PIPE command runs a pipeline. Each stage manipulates or handles data by:

CMS Commands

© Copyright IBM Corp. 1990, 2022 215

• Using the stages and pipeline subcommands provided by CMS Pipelines. Several of the stages allow
you to set and retrieve the value of REXX variables.

• Extending the set of CMS Pipelines stages by writing your own stages in the REXX language.
• User-written stages in the Assembler language can call REXX programs.

PROGMAP
Displays or stacks information about programs currently in storage.

QUERY
See SET in this list. (See also the CMSFLAG function.)

SEGMENT
Manages saved storage by: reserving CMS storage for a saved segment that will reside within a virtual
machine, loading or purging a saved segment, or releasing storage previously reserved for a saved
segment.

SENTRIES
Determines the number of lines currently in the program stack. When you issue a SENTRIES
command, CMS returns the number of lines in the program stack (but not the terminal input buffer)
as a return code. The REXX functions QUEUED() and EXTERNALS() can also provide information about
the console stack.

SET
ABBREV, IMPEX, IMPCP, INSTSEG modify the search order; CMSTYPE controls output to the screen
(including output generated by the SAY instruction); EXECTRAC controls tracing.

XEDIT
When used as an Editor, additional subcommands (macros) may be written in REXX. XEDIT may also
be used to write and read menus (full screen displays). In both applications, XEDIT variables may be
assigned to REXX variables using the EXTRACT subcommand of XEDIT.

XMITMSG
Retrieves messages from a repository file. These messages can then be displayed.

For more details on these CMS commands, refer to the z/VM: CMS Commands and Utilities Reference.

CMS Commands

216 z/VM: 7.3 REXX/VM Reference

Chapter 12. Invoking Communications Routines

ADDRESS CPICOMM
You can use the ADDRESS CPICOMM statement in your REXX program to call program-to-program
communications routines. These communications routines must be part of Common Programming
Interface (CPI) Communications.

CPI Communications routines are described in the Common Programming Interface Communications
Reference.

In z/VM, all communications routines are stored in the VMLIB callable services library.

Here is the format to use when calling a CPI Communications routine from a REXX program:

ADDRESS CPICOMM ' rtnname

parm

retcode '

rtnname
is the name of the CPI Communications routine to be called.

parm
is the name of one or more parameters to be passed to the CPI Communications routine. The number
and type of these parameters are routine-dependent. A parameter being passed must be the name of
a variable.

ADDRESS CPICOMM uses the EXECCOMM interface to build a properly-formatted parameter list
before completing the call to the routine.

retcode
is the name of a variable to receive the return code from the CPI Communications routine. The
value returned in this variable is always greater than or equal to zero. Return codes are documented
for individual CPI Communications routines in the Common Programming Interface Communications
Reference.

Note:

1. If REXX successfully calls the CPI Communications routine, then the REXX variable RC contains
a zero return code. See “Return Codes” on page 218 for a list of return code values that can
be stored in the REXX variable RC. Any value in retcode is the return code from the called CPI
Communications routine and its value is greater than or equal to zero.

2. If REXX detects an error and is not able to successfully call the CPI Communications routine, then
the REXX variable RC contains a negative return code. See “Return Codes” on page 218 for a list of
return code values that can be stored in the REXX variable RC. Any value in retcode is meaningless
because the CPI Communications routine was not successfully called.

Usage Notes

1. Do not use ADDRESS CPICOMM to call other types of CSL routines. Instead, use one of the following:

• To call resource recovery routines, use ADDRESS CPIRR. For more information, see Chapter 13,
“Invoking Resource Recovery Routines,” on page 219.

• To call OPENVM-type CSL routines (such as OpenExtensions callable services), use ADDRESS
OPENVM. For more information, see Chapter 14, “Invoking OPENVM Routines,” on page 221.

Communications Routines

© Copyright IBM Corp. 1990, 2022 217

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

• To call other CSL routines, use the CSL function. For more information, see “CSL” on page 121.
2. Only character string and signed binary data can be passed to a CPI Communications routine. If a

routine's parameter is defined as a signed binary number, the ADDRESS CPICOMM function makes
the necessary translations to and from the routine. However, ADDRESS CPICOMM cannot translate
a number in exponential notation to signed binary. Use the NUMERIC instruction to ensure that
exponential notation is not used.

3. When a CPI Communications routine returns data in a buffer variable, the data is left-justified and may
have trailing blanks. You can use the STRIP function of REXX to extract data from the buffer.

4. See z/VM: CMS Application Development Guide, which contains scenarios and examples for using
ADDRESS CPICOMM in a z/VM environment.

5. When calling Send_Data (CMSEND), the buffer you specify on the call cannot contain more than
32,767 bytes of data. If a buffer has more than 32,767 bytes, you must partition it and pass it in units
of 32,767 or fewer bytes.

Return Codes
The list below shows the possible return codes from ADDRESS CPICOMM. The following return code
values are in the REXX variable RC.
104

Insufficient virtual storage available
-3

Routine does not exist
-7

Routine not loaded
-9

Insufficient virtual storage available (See Chapter 1, “REXX General Concepts,” on page 1.)
-10

Too many parameters specified
-11

Not enough parameters specified
-20

Callable Services Library internal error: invalid call
-22

Callable Services Library internal error: parameter list contains more than one argument
-24

REXX internal error: EXECCOMM fetch failure
-25

REXX internal error: EXECCOMM set failure
-26nnn

Parameter number nnn was too long
-27nnn

Parameter number nnn has an invalid value for the data type of that parameter
-28nnn

Parameter number nnn is an invalid REXX variable name

Note: For the last three return codes, the parameters are numbered serially, corresponding to the order in
which they are coded. The routine name is always parameter number 001, the next parameter is 002, and
so forth. When the return code is between -20 and -28nnn inclusive, the error can occur only when using
the ADDRESS CPICOMM interface from REXX.

Communications Routines

218 z/VM: 7.3 REXX/VM Reference

Chapter 13. Invoking Resource Recovery Routines

ADDRESS CPIRR
You can use the ADDRESS CPIRR statement in your REXX program to call CPI Resource Recovery
routines.

CPI Resource Recovery routines are described in the Common Programming Interface Resource Recovery
Reference.

In z/VM, all CPI Resource Recovery routines are stored in the VMLIB callable services library.

Here is a format to use when calling a CPI Resource Recovery routine from a REXX program:

ADDRESS CPIRR ' rtnname retcode '

rtnname
is the name of the CPI Resource Recovery routine to be called. It is either SRRCMIT or SRRBACK.
SRRCMIT is the CPI Resource Recovery routine that does a commit. SRRBACK is the CPI Resource
Recovery routine that does a rollback. See Common Programming Interface Resource Recovery
Reference for more information about SRRCMIT and SRRBACK.

retcode
is the name of a variable to receive the return code from the CPI Resource Recovery routine. The value
returned in this variable is always greater than or equal to zero. The Common Programming Interface
Resource Recovery Reference documents return codes for individual CPI Resource Recovery routines.

Note:

1. If REXX successfully calls the CPI Resource Recovery routine, then the REXX variable RC contains
a zero return code. See “Return Codes” on page 219 for a list of return code values that can
be stored in the REXX variable RC. Any value in retcode is the return code from the called CPI
Resource Recovery routine, and its value is greater than or equal to zero.

2. If REXX detects an error and is not able to successfully call the CPI Resource Recovery routine,
then message 1292S is issued and CMS abends with the abend code X'ACB'.

Usage Notes
1. Do not use ADDRESS CPIRR to call other types of CSL routines. Instead, use one of the following:

• To call CPI Communications routines, use ADDRESS CPICOMM. For more information, see Chapter
12, “Invoking Communications Routines,” on page 217.

• To call OPENVM-type CSL routines (such as OpenExtensions callable services), use ADDRESS
OPENVM. For more information, see Chapter 14, “Invoking OPENVM Routines,” on page 221.

• To call other CSL routines, use the CSL function. For more information, see “CSL” on page 121.
2. If you issue:

ADDRESS CPIRR 'SRRBACK retcode'

and the rollback of resources fails, then CMS abends with the abend code X'ACB'. See z/VM: CP
Messages and Codes for more information about abend codes.

Return Codes
The list below shows the return code from ADDRESS CPIRR. The following return code value is in the
REXX variable RC:

Resource Recovery Routines

© Copyright IBM Corp. 1990, 2022 219

0
Resource recovery routine was run and control returned to REXX

Resource Recovery Routines

220 z/VM: 7.3 REXX/VM Reference

Chapter 14. Invoking OPENVM Routines

ADDRESS OPENVM
You must use the ADDRESS OPENVM statement in your REXX program to call OPENVM-type CSL routines,
such as OpenExtensions callable services. OPENVM routines may not follow the usual CSL conventions,
such as providing return and reason codes as the first two parameters.

To determine if a routine is an OPENVM routine, you can use the CMS CSLMAP or CSLLIST command. For
information about these commands, see z/VM: CMS Commands and Utilities Reference.

Here is the format to use when calling an OPENVM routine from a REXX program:

ADDRESS OPENVM ' rtnname

parm

'

rtnname
is the name of the OPENVM routine to be called.

parm
is the name of one or more parameters to be passed to the OPENVM routine. The number and type of
these parameters are routine-dependent. A parameter being passed must be the name of a variable.

ADDRESS OPENVM uses the EXECCOMM interface to build a properly-formatted parameter list before
completing the call to the routine.

Usage Notes
1. ADDRESS OPENVM must be used to call OPENVM routines. It may also be used to call other CSL

routines that are not OPENVM routines.
2. If REXX successfully calls the OPENVM routine, then the REXX variable RC contains a zero return code.

See “Return Codes” on page 221 for a list of return code values that can be stored in the REXX variable
RC. The values of retvalue, retcode, and retreason in the parameter list are set by the routine.

3. If REXX detects an error and is not able to successfully call the OPENVM routine, then the REXX
variable RC contains a negative return code. See “Return Codes” on page 221 for a list of return code
values that can be stored in the REXX variable RC. If RC is not zero after the call, then the values of
any output parameters are meaningless because the call to the OPENVM routine was not successfully
completed.

Return Codes
The following list shows the possible return codes from ADDRESS OPENVM. These values are returned in
the REXX variable RC. They reflect the ability of the interface to complete the call to the OPENVM routine.
These return codes are in addition to any values returned from the specific OPENVM routine being called.
0

Routine was completed and control returned to REXX
-7

Routine not loaded from the callable services library
-8

Routine was dropped from the callable services library

OPENVM Routines

© Copyright IBM Corp. 1990, 2022 221

-9
Insufficient virtual storage available (See Chapter 1, “REXX General Concepts,” on page 1.)

-10
More parameters than allowed were specified

-11
Fewer parameters than required were specified

-20
Invalid call

-22
Invalid REXX argument

-23
Subpool create failure

-24
REXX EXECCOMM fetch failure

-25
REXX EXECCOMM set failure

-26nnn
Incorrect data length for parameter number nnn. Possible reasons are:

• The passed length parameter was greater than the maximum allowed for the parameter
• A length value greater than 65535 was supplied for a variable-length character or bit string
• The length specified for an output variable-length character or bit string parameter is greater than

the size the variable was initialized to before the call
• A binary or length input parameter is too big.

-27nnn
Incorrect data or data type for parameter number nnn. Possible reasons are:

• A binary value was passed that contained a nonnumeric character
• A binary value was passed that contained a nonnumeric character or had an initial character that

was not numeric, +, -, or a blank
• A parameter defined as unsigned binary (with a length of 4, 3, 2, or 1) was supplied as a negative

value
• A value supplied for a bit string parameter contained characters other than 0 or 1
• At least one of the stemmed variables containing values for an input column was not defined.

-28nnn
Incorrect variable name for parameter number nnn. Possible reasons are:

• An incorrect variable name was specified for an output variable
• A quoted literal value was supplied as the name for an output variable
• A quoted literal value was supplied as the name for a table column stemmed variable name
• No second quote character was passed for a quoted literal
• The second quote character for a quoted literal was followed by a character that was not a blank.

-29nnn
Incorrect length value (for example, a negative value) was specified for a length parameter, parameter
number nnn.

Note: For the last four return codes, the parameters are numbered serially, corresponding to the order in
which they are coded. The routine name is always parameter number 001, the next parameter is 002, and
so forth.

OPENVM Routines

222 z/VM: 7.3 REXX/VM Reference

Chapter 15. REXX Sockets Application Program
Interface

The REXX Sockets application program interface (API) allows you to write socket applications in REXX for
the TCP/IP environment.

The SOCKET external function uses the TCP/IP Inter-User Communications Vehicle (IUCV) API to access
the TCP/IP internet socket interface. The REXX socket functions are similar to socket calls in the C
programming language.

This chapter contains the following sections:

• “Programming Hints and Tips for Using REXX Sockets” on page 223
• “SOCKET External Function” on page 224
• “Tasks You Can Perform Using REXX Sockets” on page 225
• “REXX Socket Functions” on page 227
• “REXX Sockets System Messages” on page 268
• “REXX Sockets Return Codes” on page 269
• Chapter 16, “Sample Programs,” on page 275

For general information about sockets, see z/VM: TCP/IP Programmer's Reference.

Programming Hints and Tips for Using REXX Sockets
This section contains some information that you might find useful if you plan to use REXX Sockets.

• To use the socket functions contained in this interface, a socket set must be active. The Initialize
function creates a socket set and can be used to create as many socket sets as required (depending on
the limit imposed by the OPTIONS MAXCONN statement in the CP Directory entry. The subtaskid for a
socket set identifies the socket set and should be set to a string value that resembles the application's
purpose. This identifier is displayed in the output of a NETSTAT SOCKET command.

• The socketname parameter on a socket function contains values for domain, portid, and ipaddress. If
socketname is specified as an input parameter on a socket call, you can specify ipaddress as a name
to be resolved by a name server. For example, you can enter 'CUNYVM' or 'CUNYVM.CUNY.EDU'. The
SOCKET function resolves the host name into an IP address using the following:

– If the host name does not contain a dot, then for each value specified as DOMAINSEARCH, as well
as the value specified as DOMAINORIGIN in TCPIP DATA, the domain string is appended to the host
name, and the host name is resolved using the procedure described below.

– If the host name contains a dot, but not as the last character, then resolution is attempted using the
supplied host name, using the procedure described below, before resorting to appending values to
the host name from the domain search list as described above.

– If the host name ends in a dot, then the dot is removed, and the name lookup proceeds as follows:

Host name resolution

1. If DOMAINLOOKUP (in TCPIP DATA) is set to DNS (the default), then each IP address specified in
TCPIP DATA as an NSINTERADDR is sent a DNS query in turn, until either the name is resolved or
the list of NSINTERADDRs is exhausted.

2. If the host name is not resolved by an DNS server, the HOSTS SITEINFO file is interrogated to find
the IP address.

3. If DOMAINLOOKUP is set to FILE, the order of steps 1 and 2 is reversed.
4. If DOMAINLOOKUP is set to DNSONLY, then only step 1 is performed.

© Copyright IBM Corp. 1990, 2022 223

5. If DOMAINLOOKUP is set to FILEONLY, then only step 2 is performed.

For additional information on host name resolution, see the descriptions of the DOMAINSEARCH and
DOMAINLOOKUP statements in the z/VM: TCP/IP Planning and Customization.

• A socket can be in blocking or nonblocking mode. In blocking mode, functions such as Send and Recv
block the caller until the operation completes successfully or an error occurs. In nonblocking mode, the
caller is not blocked, but the operation ends immediately with the return code 35 (EWOULDBLOCK) or
36 (EINPROGRESS). You can use the Fcntl or Ioctl function to switch between blocking and nonblocking
mode.

• When a socket is in nonblocking mode, you can use the Select function to wait for socket events, such
as data arriving at a socket for a Read or Recv function. If the socket is not ready to send data because
buffer space for the transmitted message is not available at the receiving socket, your REXX program
can wait until the socket is ready for sending data.

• If your application uses the GiveSocket and TakeSocket functions to transfer a socket from a concurrent
server program to a child server program, both server programs must agree on a mechanism for
exchanging client IDs and the socket ID to be transferred. The child server program must also signal the
concurrent server program when the TakeSocket function has successfully completed. The concurrent
server program can then close the socket.

• The socket options SO_ASCII and SO_EBCDIC identify the socket's data type for use by the REXX socket
program. Setting SO_EBCDIC on has no effect. Setting SO_ASCII on causes all incoming data on the
socket to be translated from ASCII to EBCDIC and all outgoing data on the socket to be translated from
EBCDIC to ASCII. REXX Sockets uses the following hierarchy of translation tables:

subtaskid TCPXLBIN *
userid TCPXLBIN *
STANDARD TCPXLBIN *
RXSOCKET TCPXLBIN *
Internal tables

The first four tables are data sets, and they are searched in the order in which they are listed. If no files
are found, the internal tables corresponding to the ISO standard are used.

SOCKET External Function

SOCKET (subfunction

, arg

)

The first parameter in the SOCKET function, subfunction, identifies a REXX socket function. The REXX
socket function may have additional arguments. REXX socket functions are provided for:

• Processing socket sets
• Creating, connecting, changing, and closing sockets
• Exchanging data
• Resolving names and other identifiers for sockets
• Managing configurations, options, and modes for sockets
• Translating data and doing tracing

See “Tasks You Can Perform Using REXX Sockets” on page 225 and “REXX Socket Functions” on page
227.

SOCKET returns a character string that contains several values separated by blanks, so the string can be
parsed using REXX. The first value in the string is the return code. If the return code is zero, the values

224 z/VM: 7.3 REXX/VM Reference

following the return code are returned by the socket function (subfunction). If the return code is not zero,
the second value is the name of an error, and the rest of the string is the corresponding error message.

For example:
Call

Return Values
Socket('GetHostId')

'0 9.4.3.2'
Socket('Recv',socket)

'35 EWOULDBLOCK Operation would block'

For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

During initialization of the REXX Sockets module or when doing certain REXX socket functions, system
messages may also be issued. See “REXX Sockets System Messages” on page 268.

The description of each REXX socket function in this chapter provides at least one example of the call and
return value string, and also includes an example of the corresponding C socket call, where applicable.

Tasks You Can Perform Using REXX Sockets
You can use REXX Sockets to perform the following tasks:

• Processing socket sets

A socket set is a number of preallocated sockets available to a single application. You can define
multiple socket sets for one session, but only one socket set can be active.

The functions included in this task group are shown in Table 3 on page 225.

Table 3. REXX socket functions for processing socket sets

Function Purpose

Initialize Defines a socket set

Terminate Closes all the sockets in a socket set and releases the socket set

SocketSet Gets the name of the active socket set

SocketSetList Gets the names of all the available socket sets

SocketSetStatus Gets the status of a socket set

• Creating, connecting, changing, and closing sockets

A socket is an endpoint for communication that can be named and addressed in a network. A socket
is represented by a socket identifier (socketid). A socket ID used in a Socket call must be in the active
socket set.

The functions included in this task group are shown in Table 4 on page 225.

Table 4. REXX socket functions for creating, connecting, changing, and closing sockets

Function Purpose

Socket Creates a socket in the active socket set

Bind Assigns a unique local name (network address) to a socket

Listen Converts an active stream socket to a passive socket

Connect Establishes a connection between two stream sockets

Accept Accepts a connection from a client to a server

Shutdown Shuts down a duplex connection

Chapter 15. REXX Sockets Application Program Interface 225

Table 4. REXX socket functions for creating, connecting, changing, and closing sockets (continued)

Function Purpose

Close Shuts down a socket

GiveSocket Transfers a socket to another application

TakeSocket Acquires a socket from another application

• Exchanging data

You can send and receive data on connected stream sockets and on datagram sockets.

The functions included in this task group are shown in Table 5 on page 226.

Table 5. REXX socket functions for exchanging data

Function Purpose

Read Reads data on a connected socket

Write Writes data on a connected socket

Recv Receives data on a connected socket

Send Sends data on a connected socket

RecvFrom Receives data on a socket and gets the sender's address

SendTo Sends data on a socket, and optionally specifies a destination address

• Resolving names and other identifiers

You can get information such as name, address, client identification, and host name. You can also
resolve an Internet Protocol address (IP address) to a symbolic name or a symbolic name to an IP
address.

The functions included in this task group are shown in Table 6 on page 226.

Table 6. REXX socket functions for resolving names and other identifiers

Function Purpose

GetClientId Gets the calling program's TCP/IP identifier

GetDomainName Gets the domain name for the host processor

GetHostId Gets the IP address for the host processor

GetHostName Gets the name of the host processor

GetPeerName Gets the name of the peer connected to a socket

GetSockName Gets the local name to which a socket was bound

GetHostByAddr Gets the host name for an IP address

GetHostByName Gets the IP address for a host name

Resolve Resolves the host name through a name server

GetProtoByName Gets the network protocol number for a protocol name

GetProtoByNumber Gets the network protocol name for a protocol number

GetServByName Gets the port and network protocol name for a service name

GetServByPort Gets the service name and network protocol name for a port

• Managing configurations, options, and modes

226 z/VM: 7.3 REXX/VM Reference

You can obtain the version number of the REXX Sockets function package, get socket options, set socket
options, and set the mode of operation. You can also determine the network configuration.

The functions included in this task group are shown in Table 7 on page 227.

Table 7. REXX socket functions for managing configurations, options, and modes

Function Purpose

Version Gets the version and date of the REXX Sockets function package

Select Monitors activity on selected sockets

Cancel Cancels an outstanding Select function

GetSockOpt Gets the status of options for a socket

SetSockOpt Sets options for a socket

Fcntl Sets or queries the mode of a socket

Ioctl Controls the operating characteristics of a socket

• Translating data and doing tracing

You can translate data from one type of notation to another. You can also enable or disable tracing
facilities.

The functions included in this task group are shown in Table 8 on page 227.

Table 8. REXX socket functions for translating data and doing tracing

Function Purpose

Translate Translates data from one type of notation to another

Trace Enables or disables tracing facilities

REXX Socket Functions
This section describes the REXX socket functions, which are listed alphabetically.

Accept

SOCKET (' ACCEPT ' , socketid)

Purpose
Use the Accept function on a server to accept a connection request from a client. It is used only with
stream sockets.

The Accept function accepts the first connection on the listening (passive) socket's queue of pending
connections. Accept creates a new socket with the same properties as the listening socket and returns
the new socket ID to the caller. If the queue has no pending connection requests, Accept blocks the caller
unless the listening socket is in nonblocking mode. If no connection requests are queued and the listening
socket is in nonblocking mode, Accept ends with return code 35 (EWOULDBLOCK). The new socket is in
active mode and cannot be used to accept new connections. The original socket remains in passive mode
and is available to accept more connection requests.

Parameters

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 227

socketid
is the identifier of the passive socket on which connections are to be accepted. This is a socket that
was previously placed into passive mode (listening mode) by calling the Listen function.

Return Values
If successful, this function returns a string containing return code 0, the new socket ID, and the socket
name. (The socket name is the socket's network address, which consists of the domain, port ID, and
the IP address.) If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples

Call
Return Values

Socket('Accept',5)
'0 6 AF_INET 5678 9.4.3.2'

The C socket call is: accept(s, name, namelen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Bind

SOCKET (' BIND ' , socketid , socketname)

Purpose
Use the Bind function to assign a unique local name (network address) to a socket. When you create a
socket with the Socket function, the socket does not have a name associated with it, but it does belong to
an addressing family. The form of the name you assign to the socket with the Bind function depends on
the addressing family. The Bind function also allows servers to specify the network interfaces from which
they want to receive UDP packets and TCP connection requests.

Parameters

socketid
is the identifier of the socket.

socketname
is the local name (network address) to be assigned to the socket. The name consists of three parts:
domain

The addressing family of the socket. This must be AF_INET (or the equivalent decimal value 2).
portid

The port number of the socket. This must be either a non-negative integer between 0 and 65535
or INPORT_ANY.

ipaddress
The IP address of the socket. This must be one of the following:

• Dotted decimal address of the local network interface
• INADDR_BROADCAST
• INADDR_ANY

REXX Sockets

228 z/VM: 7.3 REXX/VM Reference

Return Values
If successful, this function returns a string containing only return code 0. If unsuccessful, this function
returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('Bind',5,'AF_INET 1234 128.228.1.2')
'0'

The C socket call is: bind(s, name, namelen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Cancel

SOCKET (' CANCEL ' , messageid)

Purpose
Use the Cancel function to cancel an outstanding Select function. The messageid used by the Cancel
function is obtained from a prior Select function with the IDENTIFY option specified.

The Cancel function can be used in conjunction with asynchronous Select function calls. Each Select
can be issued with the IDENTIFY option, and the returned messageid can be saved for subsequent
Cancel functions. The outstanding Select calls may be terminated by using the Cancel function with the
corresponding messageid. If the Select function completes and a Cancel function is used, the Cancel will
fail with a return code 2018 (EREQUESTNOTACTIVE).

Parameters
messageid

is the message identifier from a previously issued Select request using the IDENTIFY option. For more
information on the IDENTIFY option, see the Select functionon page “IDENTIFY” on page 253.

Return Values
If successful, this function returns a string containing return code 0. If unsuccessful, this function returns
a string containing a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('Cancel',messageid)
'0'

Note: A C language equivalent does not exist.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 229

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Close

SOCKET (' CLOSE ' , socketid)

Purpose
Use the Close function to shut down a socket and free the resources allocated to it. If the socket ID refers
to an open TCP connection, the connection is closed. If a stream socket is closed when there is input data
queued, the TCP connection is reset rather than closed.

Parameters

socketid
is the identifier of the socket to be closed.

Usage Notes
The SO_LINGER socket option, which is set by the SetSockOpt function, can be used to control how
unsent output data is handled when a stream socket is closed. See “SetSockOpt” on page 256.

Return Values
If successful, this function returns a string containing only return code 0. If unsuccessful, this function
returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('Close',6)
'0'

The C socket call is: close(s)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Connect

SOCKET (' CONNECT ' , socketid , socketname)

Purpose
Use the Connect function to establish a connection between two stream sockets or to specify the default
peer for a datagram socket.

When called for a stream socket, Connect performs two tasks:

REXX Sockets

230 z/VM: 7.3 REXX/VM Reference

1. If the Bind function has not been called for the socket used to originate the request, Connect
completes the bind. (The domain, port ID, and IP address are set to AF_INET, INPORT_ANY, and
INADDR_ANY.)

2. Connect then attempts to establish a connection to the other socket.

If the originating stream socket is in blocking mode, Connect blocks the caller until the connection is
established or an error is received. If the originating socket is in nonblocking mode, Connect ends with
return code 36 (EINPROGRESS) or another return code indicating an error.

Parameters

socketid
is the identifier of the socket originating the connection request.

socketname
is the name (network address) of the socket to which a connection will be attempted. The name
consists of three parts:
domain

The addressing family of the socket. This must be AF_INET (or the equivalent decimal value 2).
portid

The port number of the socket.
ipaddress

The IP address of the socket.

Return Values
If successful, this function returns a string containing only return code 0. If unsuccessful, this function
returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('Connect',5,'AF_INET 1234 128.228.1.2')
'0'

Socket('Connect',5,'AF_INET 1234 CUNYVM')
'0'

Socket('Connect',5,'AF_INET 1234 CUNYVM.CUNY.EDU')
'0'

The C socket call is: connect(s, name, namelen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Fcntl

SOCKET (' FCNTL ' , socketid , ' F_SETFL ' , fvalue

' F_GETFL '

)

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 231

Purpose
Use the Fcntl function to set blocking or nonblocking mode for a socket, or to get the setting for the
socket.

Parameters

socketid
is the identifier of the socket.

F_SETFL
sets the status flags for the socket. One flag, FNDELAY, can be set.

F_GETFL
gets the flag status for the socket. One flag, FNDELAY, can be retrieved.

fvalue
is the operating characteristic. The following values are valid:
NON-BLOCKING or FNDELAY

Turns the FNDELAY flag on, which marks the socket as being in nonblocking mode. If data
is not present on calls that can block, such as Read and Recv, Fcntl returns error code 35
(EWOULDBLOCK).

BLOCKING or 0
Turns the FNDELAY flag off, which marks the socket as being in blocking mode.

Return Values
If successful, this function returns a string containing return code 0. If F_GETFL is specified, the operating
characteristic status is also returned. If unsuccessful, this function returns a string containing a nonzero
return code, an error name, and an error message.

Examples

Call
Return Values

Socket('Fcntl',5,'F_SETFL','NON-BLOCKING')
'0'

Socket('Fcntl',5,'F_GETFL')
'0 NON-BLOCKING'

The C socket call is: fcntl(s, cmd, data)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetClientId

SOCKET (' GETCLIENTID '

, ' AF_INET '

, domain

)

REXX Sockets

232 z/VM: 7.3 REXX/VM Reference

Purpose
Use the GetClientId function to get the identifier by which the calling program is known to the TCP/IP
virtual machine.

Parameters

domain
is the addressing family. This must be one of the following:

• AF_INET (or the equivalent decimal value 2); AF_INET is the default.
• AF_UNSPEC (or the equivalent decimal value 0).

Return Values
If successful, this function returns a string containing return code 0 and the TCP/IP identifier. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an
error message.

Examples

Call
Return Values

Socket('GetClientId')
'0 AF_INET USERID1 myId'

The C socket call is: getclientid(domain, clientid)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetDomainName

SOCKET (' GETDOMAINNAME ')

Purpose
Use the GetDomainName function to get the domain name for the processor running the program.

Return Values
If successful, this function returns a string containing return code 0 and the domain name for the
processor. If unsuccessful, this function returns a string containing a nonzero return code, an error name,
and an error message.

Examples

Call
Return Values

Socket('GetDomainName')
'0 ZURICH.IBM.COM'

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 233

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetHostByAddr

SOCKET (' GETHOSTBYADDR ' , ipaddress)

Purpose
Use the GetHostByAddr function to get the host name for a specified IP address. The name is resolved
through a name server, if one is present.

Parameters
ipaddress

is the IP address of the host, in dotted-decimal notation.

Return Values
If successful, this function returns a string containing return code 0 and the full host name. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an
error message.

Examples

Call
Return Values

Socket('GetHostByAddr','128.228.1.2')
'0 CUNYVM.CUNY.EDU'

The C socket call is: gethostbyaddr(addr, addrlen, domain)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetHostByName

SOCKET (' GETHOSTBYNAME ' , hostname

fullhostname

)

Purpose
Use the GetHostByName function to get the IP address for a specified host name. The name is resolved
through a name server, if one is present. GetHostByName returns all the IP addresses for a multihome
host.

Parameters

REXX Sockets

234 z/VM: 7.3 REXX/VM Reference

hostname
is the host processor name as a character string.

fullhostname
is the fully qualified host name in the form hostname.domainname.

Return Values
If successful, this function returns a string containing return code 0 and an IP address list. The addresses
in the list are separated by blanks. If unsuccessful, this function returns a string containing a nonzero
return code, an error name, and an error message.

Examples

Call
Return Values

Socket('GetHostByName','CUNYVM')
'0 128.228.1.2'

Socket('GetHostByName','CUNYVM.CUNY.EDU')
'0 128.228.1.2'

The C socket call is: gethostbyname(name)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetHostId

SOCKET (' GETHOSTID ')

Purpose
Use the GetHostId function to get the IP address for the current host. This address is the default home IP
address.

Return Values
If successful, this function returns a string containing return code 0 and the IP address for the host. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

Examples

Call
Return Values

Socket('GetHostId')
'0 9.4.3.2'

The C socket call is: gethostid()

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 235

GetHostName

SOCKET (' GETHOSTNAME ')

Purpose
Use the GetHostName function to get the name of the host processor on which the program is running.

Return Values
If successful, this function returns a string containing return code 0 and the name of the host processor. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

Examples

Call
Return Values

Socket('GetHostName')
'0 ZURLVM1'

The C socket call is: gethostname(name, namelen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetPeerName

SOCKET (' GETPEERNAME ' , socketid)

Purpose
Use the GetPeerName function to get the name of the peer connected to a socket.

Parameters

socketid
is the identifier of the socket.

Return Values
If successful, this function returns a string containing return code 0 and the name of the peer. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an
error message.

Examples

Call
Return Values

Socket('GetPeerName',6)
'0 AF_INET 1234 128.228.1.2'

REXX Sockets

236 z/VM: 7.3 REXX/VM Reference

The C socket call is: getpeername(s, name, namelen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetProtoByName

SOCKET (' GETPROTOBYNAME ' , protocolname)

Purpose
Use the GetProtoByName function to get the network protocol number for a specified protocol name.

Parameters

protocolname
is the name of a network protocol. The names TCP, UDP, and IP are valid.

Return Values
If successful, this function returns a string containing return code 0 and the protocol number. If the
protocol name specified on the call is incorrect, the function returns a 0 return code and a null protocol
name string. If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples

Call
Return Values

Socket('GetProtoByName','TCP')
'0 6'

The C socket call is: getprotobyname(name)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetProtoByNumber

SOCKET (' GETPROTOBYNUMBER ' , protocolnumber)

Purpose
Use the GetProtoByNumber function to get the network protocol name for a specified protocol number.

Parameters

protocolnumber
is the number of a network protocol. This must be a positive integer.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 237

Return Values
If successful, this function returns a string containing return code 0 and the protocol name. If the protocol
number specified on the call is incorrect, the function returns a 0 return code and a null protocol number
string. If unsuccessful, this function returns a string containing a nonzero return code, an error name, and
an error message.

Examples

Call
Return Values

Socket('GetProtoByNumber',6)
'0 TCP'

The C socket call is: getprotobynumber(name)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetServByName

SOCKET (' GETSERVBYNAME ' , servicename

, protocolname

)

Purpose
Use the GetServByName function to get the port and network protocol name for a specified service name.

Parameters

servicename
is the service name, such as FTP.

protocolname
is a network protocol name, such as TCP, UDP, or IP.

Return Values
If successful, this function returns a string containing return code 0, the service name, the port ID, and the
protocol name. If the service name specified on the call is incorrect, the function returns a 0 return code
with no additional data. If unsuccessful, this function returns a string containing a nonzero return code, an
error name, and an error message. If the protocol name specified on the call is incorrect, the return code
is 2001.

Examples

Call
Return Values

Socket('GetServByName','ftp','tcp')
'0 FTP 21 TCP'

The C socket call is: getservbyname(name, proto)

REXX Sockets

238 z/VM: 7.3 REXX/VM Reference

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetServByPort

SOCKET (' GETSERVBYPORT ' , portid

, protocolname

)

Purpose
Use the GetServByPort function to get the service name and network protocol name for a specified port
number.

Parameters

portid
is a port number. This must be an integer between 0 and 65535. Instead of a number, you can specify
INPORT_ANY or ANY to have TCP/IP get any available port ID.

protocolname
is a network protocol name, such as TCP, UDP, or IP.

Return Values
If successful, this function returns a string containing return code 0, the service name, the port ID, and the
protocol name. If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples

Call
Return Values

Socket('GetServByPort',21,'tcp')
'0 FTP 21 TCP'

The C socket call is: getservbyport(name, proto)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetSockName

SOCKET (' GETSOCKNAME ' , socketid)

Purpose
Use the GetSockName function to get the name to which a socket was bound. Stream sockets are not
assigned a name until after a successful call to the Bind, Connect, or Accept function.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 239

Parameters

socketid
is the identifier of the socket.

Return Values
If successful, this function returns a string containing return code 0 and the socket name (network
address, consisting of domain, port ID, and IP address). If unsuccessful, this function returns a string
containing a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('GetSockName',7)
'0 AF_INET 5678 9.4.3.2'

The C socket call is: getsockname(s, name, namelen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GetSockOpt

SOCKET (' GETSOCKOPT ' , socketid , level , optname)

Purpose
Use the GetSockOpt function to get the status of options and other data associated with an AF_INET
socket. Most socket options are set with the SetSockOpt function. Multiple options can be associated with
each socket. You must specify each option or other item you want to query on a separate call.

Parameters

socketid
is the identifier of the socket.

level
is the protocol level for which the socket option or other data is being queried. SOL_SOCKET
and IPPROTO_TCP are supported. All optname values beginning with "SO_" are for protocol level
SOL_SOCKET and are interpreted by the general socket code. All optname values beginning with
"TCP_" are for protocol level IPPROTO_TCP and are interpreted by the TCP/IP internal code.

optname
is a value that indicates the type of information requested:
Value

Description
SO_ASCII

Gets the status of the SO_ASCII option, which controls the translation of data to ASCII. The
setting can be On or Off. When SO_ASCII is On, data is translated to ASCII. When SO_ASCII is Off,
data is not translated to or from ASCII. This option is ignored by ASCII hosts. In the return string,
the option setting is followed by the name of the translation table used, if translation is applied to
the data.

REXX Sockets

240 z/VM: 7.3 REXX/VM Reference

SO_BROADCAST
Gets the status of the SO_BROADCAST option, which controls the ability to send broadcast
messages over the socket. The setting can be On or Off. This option does not apply to stream
sockets.

SO_DEBUG
Gets the status of the SO_DEBUG option, which controls the recording of debug information. The
setting can be On or Off.

SO_EBCDIC
Gets the status of the SO_EBCDIC option, which controls the translation of data to EBCDIC. The
setting can be On or Off. When SO_EBCDIC is On, data is translated to EBCDIC. When SO_EBCDIC
is Off, data is not translated to or from EBCDIC. In the return string, the option setting is followed
by the name of the translation table used, if translation is applied to the data.

SO_ERROR
Gets the pending errors on the socket and clears the error status. It can be used to check for
asynchronous errors on connected datagram sockets or for other asynchronous errors (errors that
are not explicitly returned by one of the socket functions).

SO_KEEPALIVE
Gets the status of the SO_KEEPALIVE option, which controls whether a datagram is periodically
sent on an idle connection. The setting can be On or Off.

SO_LINGER
Gets the status of the SO_LINGER option, which controls whether the Close function will linger if
data is present. The setting can be On or Off:

• If SO_LINGER is On and there is unsent data present when Close is called, the calling
application is blocked until the data transmission is complete or the connection has timed out.

• If SO_LINGER is Off, a call to Close returns without blocking the caller. TCP/IP still tries to send
the data. Although the data transfer is usually successful, it cannot be guaranteed, because
TCP/IP repeats the Send request for only a specified period of time.

In the return string, an On setting is followed by the number of seconds that TCP/IP continues
trying to send the data after Close is called.

SO_OOBINLINE
Gets the status of the SO_OOBINLINE option, which controls how out-of-band data is to be
received. This option applies only to AF_INET stream sockets. The setting can be On or Off:

• When SO_OOBINLINE is On, out-of-band data is placed in the normal data input queue as it is
received. The Recv and RecvFrom functions can then receive the data without enabling the the
MSG_OOB flag.

• When SO_OOBINLINE is Off, out-of-band data is placed in the priority data input queue as it is
received. The Recv and Recvfrom functions must enable the MSG_OOB flag to receive the data.

SO_SNDBUF
Gets the size of the TCP/IP send buffer in OPTVAL.

SO_REUSEADDR
Gets the status of the SO_REUSEADDR option, which controls whether local addresses can be
reused. The setting can be On or Off. When SO_REUSEADDR is On, local addresses that are
already in use can be bound. Instead of the usual algorithm of checking at Bind time, TCP/IP
checks at Connect time to ensure that the local address and port are not the same as the remote
address and port. If the association already exists at Connect time, Connect returns Error 48
(EADDRINUSE) and the connect request fails.

SO_TYPE
Gets the socket type, which can be SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW.

TCP_NODELAY
Gets the status of the do-not-delay-the-send flag, which indicates whether TCP can send small
packets as soon as possible. The setting can be On or Off.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 241

Return Values
If successful, this function returns a string containing return code 0 and the option status or other
requested value. If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples

Call
Return Values

Socket('GetSockOpt',5,'Sol_Socket','So_ASCII')
'0 On STANDARD'

Socket('GetSockOpt',5,'Sol_Socket','So_Broadcast')
'0 On'

Socket('GetSockOpt',5,'Sol_Socket','So_Error')
'0 0'

Socket('GetSockOpt',5,'Sol_Socket','So_Linger')
'0 On 60'

Socket('GetSockOpt',5,'Sol_Socket','So_Sndbuf')
'0 8192'

Socket('GetSockOpt',5,'Sol_Socket','So_Type')
'0 SOCK_STREAM'

Socket('GetSockOpt',5,'IPproto_TCP','TCP_NoDelay')
'0 Off'

The C socket call is: getsockopt(s, level, optname, optval, optlen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

GiveSocket

SOCKET (' GIVESOCKET ' , socketid , clientid)

Purpose
Use the GiveSocket function to transfer a socket to another application. GiveSocket makes the socket
available to a TakeSocket call issued by another application using the same TCP/IP server. Any connected
stream socket can be given. GiveSocket is typically used by a concurrent server program that obtains
sockets using the Accept function and then gives them to child server programs that handle one socket at
a time.

Parameters

socketid
is the identifier of the socket to be given.

clientid
is the identifier for the application that will be taking the socket. This consists of three parts:
domain

The addressing family. This must be AF_INET (or the equivalent decimal value 2).

REXX Sockets

242 z/VM: 7.3 REXX/VM Reference

userid
The z/VM user ID of the virtual machine in which the taking application is running.

subtaskid
The subtask ID used on the taking application. This is optional.

The method for obtaining the taking application's client ID is not defined by TCP/IP.

Return Values
If successful, this function returns a string containing only return code 0. If unsuccessful, this function
returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('GiveSocket',6,'AF_INET USERID2 hisId')
'0'

The C socket call is: givesocket(s, clientid)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Initialize

SOCKET (' INITIALIZE ' , subtaskid

, 40 ,
1

,
40

maxdesc

,
1

, TCP/IP_userid

)

Notes:
1 The default value is obtained from the TCPIP DATA file, or a value of 'TCPIP' is used.

Purpose
Use the Initialize function to define a socket set. If the function is successful, this socket set becomes the
active socket set.

Parameters

subtaskid
is the name of the socket set. The name can be up to eight printable characters; it cannot contain
blanks.

maxdesc
is the maximum number of preallocated sockets in the socket set. The number can be between 1 and
the maximum number supported by TCP/IP for VM. The default is 40.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 243

TCP/IP_userid
is the user ID of the TCP/IP server machine. If not specified, this value is obtained from the
TCPIPUserid field of the TCPIP DATA file. If the field is undefined or the file is not available, a value of
'TCPIP' is used.

Return Values
If successful, this function returns a string containing return code 0, the name (subtask ID) of the
initialized socket set, the maximum number of preallocated sockets in the socket set, and the user ID
of the TCP/IP server machine. If unsuccessful, this function returns a string containing a nonzero return
code, an error name, and an error message.

Examples

Call
Return Values

Socket('Initialize','myId')
'0 myId 40 TCPIP'

Note: A C language equivalent does not exist.

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Ioctl

SOCKET (' IOCTL ' , socketid , icmd

, ivalue

)

Purpose
Use the Ioctl function to control the operating characteristics of a socket.

Parameters

socketid
is the identifier of the socket.

icmd
is the operating characteristics command to be issued:
Command

Description
FIONBIO

Sets or clears nonblocking for socket I/O. You specify On or Off in ivalue.
FIONREAD

Gets the number of immediately readable bytes of data for the socket and returns it in the return
string.

SIOCATMARK
Determines if the current location in the input data is pointing to out-of-band data. Yes or No is
returned in the return string.

REXX Sockets

244 z/VM: 7.3 REXX/VM Reference

SIOCDINTERFACE
Removes an interface. You specify the network interface in ivalue. If the interface is inactive, the
interface configuration information is removed from the TCP/IP server.

SIOCGIFADDR
Gets the network interface address. You specify the network interface in ivalue. The address is
returned in the return string in the format interface domain port IP_address.

SIOCGIFBRDADDR
Gets the network interface broadcast address. You specify the network interface in ivalue. The
address is returned in the return string in the format interface domain port IP_address.

SIOCGIFCONF
Gets the network interface configuration. You specify the maximum number of interfaces to
be returned in ivalue. The list of interfaces is returned in the return string, each in the format
interface domain port IP_address.

SIOCGIFDSTADDR
Gets the network interface destination address. You specify the network interface in ivalue. The
address is returned in the return string in the format interface domain port IP_address.

SIOCGIFFLAGS
Gets the network interface flags. You specify the network interface in ivalue. The network
interface is returned in the return string, followed by the flag settings as four hexadecimal digits,
followed by the symbolic names of the enabled flags.

SIOCGIFMETRIC
Gets the network interface routing metric. You specify the network interface in ivalue. The
network interface and the metric integer are returned in the return string.

SIOCGIFNETMASK
Gets the network interface network mask. You specify the network interface in ivalue. The
network interface is returned in the return string, followed by the network mask in the format
interface domain port IP_address.

SIOCSIFMETRIC
Sets the network interface routing metric. You specify a string containing the interface name
followed by the new metric in ivalue.

ivalue
is the operating characteristics value. This value depends on the value specified for icmd. The ivalue
parameter can be used as input or output or both on the same call.

Return Values
If successful, this function returns a string containing return code 0 and operating characteristics
information. If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples

Call
Return Values

Socket('Ioctl',5,'FionBio','On')
'0'

Socket('Ioctl',5,'FionRead')
'0 8192'

Socket('Ioctl',5,'SiocAtMark')
'0 No'

Socket('Ioctl',5,'Siocdinterface','eth1')
'0'

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 245

Socket('Ioctl',5,'SiocGifAddr','TR1')
'0 TR1 AF_INET 0 9.4.3.2'

Socket('Ioctl',5,'SiocGifConf',2)
'0 TR1 AF_INET 0 9.4.3.2 TR2 AF_INET 0 9.4.3.3'

Socket('Ioctl',5,'SiocGifFlags','TR1')
'0 TR1 0063 IFF_UP IFF_BROADCAST IFF_NOTRAILERS IFF_RUNNING'

Socket('Ioctl',5,'SiocGifMetric','TR1')
'0 TR1 0'

Socket('Ioctl',5,'SiocGifNetMask','TR1')
'0 TR1 AF_INET 0 255.255.255.0'

The C socket call is: ioctl(s, cmd, data)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Listen

SOCKET (' LISTEN ' , socketid

, 10

, backlog

)

Purpose
Use the Listen function to transform an active stream socket into a passive socket. Listen performs two
tasks:

1. If the Bind function has not been called for the socket, Listen completes the bind. (The domain, port
ID, and IP address are set to AF_INET, INPORT_ANY, and INADDR_ANY.)

2. Listen creates a connection request queue for incoming connection requests. After the queue is full,
additional connection requests are ignored.

Calling the Listen function indicates a readiness to accept client connection requests. After Listen is
called, the socket can never be used as an active socket to initiate connection requests. Calling Listen is
the third of four steps that a server performs to accept a connection. It is called after allocating a stream
socket with the Socket function, and after binding a name to the socket with the Bind function, but before
calling the Accept function.

Parameters

socketid
is the identifier of the socket.

backlog
is the number of pending connection requests. This number is an integer between 0 and 10. The
default is 10.

Return Values
If successful, this function returns a string containing only return code 0. If unsuccessful, this function
returns a string containing a nonzero return code, an error name, and an error message.

REXX Sockets

246 z/VM: 7.3 REXX/VM Reference

Examples

Call
Return Values

Socket('Listen',5,10)
'0'

The C socket call is: listen(s, backlog)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Read

SOCKET (' READ ' , socketid

, 10000

, maxlength

)

Purpose
Use the Read function to read data on a connected socket, up to a specified maximum number of bytes.
This is the conventional TCP/IP read data operation. If less than the requested number of bytes is
available, Read returns the number currently available. If data is not available at the socket, Read waits
for data to arrive and blocks the caller, unless the socket is in nonblocking mode.

For datagram sockets, Read returns the entire datagram that was sent, providing that the datagram fits
into the specified buffer.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket, and program A sends 1000 bytes,
each call to this function can return any number of bytes, up to the entire 1000 bytes. The number of
bytes returned is contained in the return values string. Therefore, programs using stream sockets should
place this call in a loop that repeats until all the data has been received. If the length in the return values
string is zero, the other side of the call has closed the stream socket.

Parameters

socketid
is the identifier of the socket.

maxlength
is the maximum length of data to be read. This is a number of bytes between 1 and 100000. If
a number larger than the upper limit of 100000 is given, it will be replaced with 100000. If not
specified, the default of 10000 is used.

Return Values
If successful, this function returns a string containing return code 0, the length of the data read, and the
data read. If unsuccessful, this function returns a string containing a nonzero return code, an error name,
and an error message.

Examples

Call
Return Values

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 247

Socket('Read',6)
'0 21 This is the data line'

The C socket call is: read(s, buf, len)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Recv

SOCKET (' RECV ' , socketid

, 10000 , ' '

,
10000

maxlength

, ' '

, recvflags

)

Purpose
Use the Recv function to receive data on a connected socket, up to a specified maximum number of bytes.
By specifying option flags, you can also:

• Read out-of-band data
• Peek at the incoming data without removing it from the buffer

On a datagram socket, if more than the number of bytes requested is available, Recv discards the excess
bytes. If less than the number of bytes requested is available, Recv returns the number of bytes currently
available. If data is not available at the socket, Recv waits for data to arrive and blocks the caller, unless
the socket is in nonblocking mode.

On a stream socket, if the data length in the return string is zero, the other side has closed the socket.

Parameters

socketid
is the identifier of the socket.

maxlength
is the maximum length of data to be received. This is a number of bytes between 1 and 100000.
If a number larger than the upper limit of 100000 is given, it will be replaced with 100000. If not
specified, the default of 10000 is used.

recvflags
are flags that control the Recv operation:
MSG_OOB or OOB or OUT_OF_BAND

Read out-of-band data on the socket. Only AF_INET stream sockets support out-of-band data.
MSG_PEEK or PEEK

Look at the data on the socket but do not change or destroy it. The next call to Recv can read the
same data.

''
Receive the data. No flag is set. This is the default.

REXX Sockets

248 z/VM: 7.3 REXX/VM Reference

Return Values
If successful, this function returns a string containing return code 0, the length of the data received, and
the data received. If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples

Call
Return Values

Socket('Recv',6)
'0 21 This is the data line'

Socket('Recv',6,,'PEEK OOB')
'0 24 This is out-of-band data'

The C socket call is: recv(s, buf, len, flags)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

RecvFrom

SOCKET (' RECVFROM ' , socketid

, 10000 , ' '

,
10000

maxlength

, ' '

, recvflags

)

Purpose
Use the RecvFrom function to receive data on a socket, up to a specified maximum number of bytes, and
get the sender's address. By specifying option flags, you can also:

• Receive out-of-band data
• Peek at the incoming data without removing it from the buffer

On a datagram socket, if more than the number of bytes requested is available, RecvFrom discards the
excess bytes. If less than the number of bytes requested is available, RecvFrom returns the number of
bytes available.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket, and program A sends 1000 bytes,
each call to RecvFrom can return any number of bytes, up to the entire 1000 bytes. The number of bytes
returned is specified in the return values string. Therefore, programs using stream sockets should place
RecvFrom in a loop that repeats until all the data has been received. If a data length of zero is returned in
the return values string, the socket has been closed by the other side.

If data is not available at the socket, RecvFrom waits for data to arrive and blocks the caller, unless the
socket is in nonblocking mode.

Parameters

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 249

socketid
is the identifier of the socket.

maxlength
is the maximum length of data to be received. This is a number of bytes between 1 and 100000.
If a number larger than the upper limit of 100000 is given, it will be replaced with 100000. If not
specified, the default of 10000 is used.

recvflags
are flags that control the RecvFrom operation:
MSG_OOB or OOB or OUT_OF_BAND

Read out-of-band data on the socket. Only AF_INET stream sockets support out-of-band data.
MSG_PEEK or PEEK

Look at the data on the socket but do not change or destroy it.
''

Receive the data. No flag is set. This is the default.

Return Values
If successful, this function returns a string containing return code 0, the network address (domain, remote
port, and remote IP address) of the sender, the length of the data received, and the data received. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

Examples

Call
Return Values

Socket('RecvFrom',6)
'0 AF_INET 5678 9.4.3.2 9 Data line'

The C socket call is: recvfrom(s, buf, len, flags, name, namelen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Resolve

SOCKET (' RESOLVE ' , ipaddress

hostname

fullhostname

,
1

, timeout

)

Notes:
1 Default value obtained from the ResolverTimeout field in the TCPIP DATA file.

Purpose
Use the Resolve function to resolve the host name through a name server, if one is present.

Parameters

REXX Sockets

250 z/VM: 7.3 REXX/VM Reference

ipaddress
is the IP address of the host, in dotted-decimal notation.

hostname
is the host processor name as a character string.

fullhostname
is the fully qualified host name in the form hostname.domainname.

timeout
is a positive integer indicating the maximum wait time in seconds. If a value is not specified, the
default wait time is obtained from the ResolverTimeout field in the TCPIP DATA file.

Return Values
If successful, this function returns a string containing return code 0, the IP address of the host, and the
full host name. If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples

Call
Return Values

Socket('Resolve','128.228.1.2')
'0 128.228.1.2 CUNYVM.CUNY.EDU'

Socket('Resolve','CUNYVM')
'0 128.228.1.2 CUNYVM.CUNY.EDU'

Socket('Resolve','CUNYVM.CUNY.EDU')
'0 128.228.1.2 CUNYVM.CUNY.EDU'

Note: A C language equivalent does not exist.

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Select

SOCKET (' SELECT '

, , ' FOREVER '

,

Mask

,
' FOREVER '

timeout

Signal Options
' VMSOCKET '

eventname

' SIGNAL ' ' IDENTIFY '

Signal Options
' SIGNAL '

' IDENTIFY ' ' SIGNAL '

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 251

)

Mask
1

' READ '

read_socketlist

' WRITE '

write_socketlist

' EXCEPTION '

exception_socketlist

Notes:
1 You can specify the lists of socket descriptors in any order.

Purpose
Use the Select function to monitor activity on specified socket IDs to see if any of them are ready for
reading or writing or have an exception condition pending. Select does not check for the order of event
completion.

A Close on the other side of a socket connection is not reported as an exception, but as a Read event that
returns zero bytes of data.

When Connect is called with a socket in nonblocking mode, the Connect call ends and returns code 36
(EINPROGRESS). The completion of the connection setup is then reported as a Write event on the socket.

When Accept is called with a socket in nonblocking mode, the Accept call ends and returns code 35
(EWOULDBLOCK). The availability of the connection request is reported as a Read event on the original
socket, and Accept should be called only after the Read has been reported.

Parameters

READ read_socketidlist
specifies a list of socket descriptors to be checked to see if they are ready for reading. A socket is
ready for reading when incoming data is buffered for it or, for a listening socket, when a connection
request is pending. Select returns the socket ID in the return value string if a call to read from that
socket will not block. If you do not need to test any sockets for reading, you can pass a null for the list.

WRITE write_socketidlist
specifies a list of socket descriptors to be checked to see if they are ready for writing. A socket is
ready for writing when there is buffer space for outgoing data. Select returns the socket ID in the
return value string if a call to write to that socket will not block. If you do not need to test any sockets
for writing, you can pass a null for the list.

EXCEPTION exception_socketidlist
specifies a list of socket descriptors to be checked to see if they have an exception condition pending.
A socket has an exception condition pending if it has received out-of-band data or if another program
has successfully taken the socket using the TakeSocket function. If you do not need to test any
sockets for exceptions pending, you can pass a null for the list.

timeout
is a positive integer indicating the maximum wait time in seconds. The default is FOREVER.

REXX Sockets

252 z/VM: 7.3 REXX/VM Reference

SIGNAL eventname
specifies the name of a CMS multitasking event that is signaled when the Select request completes.
The default event is VMSOCKET. The Socket function will end immediately with return code 0
indicating that the Select request has been accepted. Event eventname will be signaled (with an event
key length of 0) later on when the Select request actually completes. The data that Select normally
returns can be obtained by using the EventRetrieve CSL routine after eventname has been signaled.

IDENTIFY
is used to have Select return the messageid corresponding to the outstanding Select request. This
messageid can be used with the Cancel function to cancel the Select request. IDENTIFY should only
be used in conjunction with the SIGNAL parameter, since there is no messageid available if the Select
function call is synchronous.

Since SELECT normally has an event associated with it, when the IDENTIFY keyword immediately
follows the SELECT, the VMSOCKET event is implied.

Return Values
If successful, this function returns a string containing return code 0, the number of sockets that have
completed events, the list of socket IDs that are ready for reading, the list of socket IDs that are ready for
writing, and the list of socket IDs that have an exception pending. If unsuccessful, this function returns a
string containing a nonzero return code, an error name, and an error message.

Usage Notes
1. To specify a CMS multitasking event name, your program must:

a. Call the EventCreate CSL routine to create a named event.
b. Call the EventMonitorCreate routine to associate this event, and possibly others, with a monitor. For

example, if you also want to wait on console input, include the VMCONINPUT event on this monitor.
c. Call the Socket function to create the socket.
d. Call the Select function, specifying the event name.
e. Call the EventWait routine to wait for the monitor to wake up.
f. Call the EventRetrieve routine to get the results.

For information about event management, including descriptions of the event-related CSL routines,
see z/VM: CMS Application Multitasking.

Examples

Call
Return Values

Socket('Select','Read 5 Write Exception',10)
'0 1 READ 5 WRITE EXCEPTION'

The C socket call is: select(nfds, readfds, writefds, exceptfds, timeout)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 253

Send

SOCKET (' SEND ' , socketid , data

, ' '

, sendflags

)

Purpose
Use the Send function to send data on a connected socket. By specifying option flags, you can also:

• Send out-of-band data
• Suppress the use of local routing tables

If Send cannot send the number of bytes of data that is requested, it waits until sending is possible. This
blocks the caller, unless the socket is in nonblocking mode. For datagram sockets, the socket should not
be in blocking mode.

Parameters

socketid
is the identifier of the socket.

data
is the message string to be sent.

sendflags
are flags that control the Send operation:
MSG_OOB or OOB or OUT_OF_BAND

Sends out-of-band data on the socket. Only AF_INET stream sockets support out-of-band data.
MSG_DONTROUTE or DONTROUTE

Do not route the data. Routing is handled by the calling program. This flag is valid only for
datagram sockets.

''
Send the data. No flag is set. This is the default.

Return Values
If successful, this function returns a string containing return code 0 and the length of the data sent. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

Examples

Call
Return Values

Socket('Send',6,'Some text')
'0 9'

Socket('Send',6,'Out-of-band data','OOB')
'0 16'

The C socket call is: send(s, buf, len, flags)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

REXX Sockets

254 z/VM: 7.3 REXX/VM Reference

SendTo

SOCKET (' SENDTO ' , socketid , data

, ' '

,
' '

sendflags , destination_name

)

Purpose
Use the SendTo function to send data on a socket. This function is similar to the Send function, except
that you can specify a destination address to send datagrams on a UDP socket, whether the socket is
connected or unconnected. By specifying option flags, you can also:

• Send out-of-band data
• Suppress the use of local routing tables

For datagram sockets, the socket should not be in blocking mode.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each call to the SendTo function can send any
number of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in the return values
string. Therefore, programs using stream sockets should place SendTo in a loop that repeats the call until
all the data has been sent.

Parameters

socketid
is the identifier of the socket.

data
is the message string to be sent.

sendflags
are flags that control the SendTo operation:
MSG_OOB or OOB or OUT_OF_BAND

Sends out-of-band data on the socket. Only AF_INET stream sockets support out-of-band data.
MSG_DONTROUTE or DONTROUTE

Do not route the data. Routing is handled by the calling program.
''

Send the data. No flag is set. This is the default.
destination_name

is the destination network address, which consists of three parts:
domain

The addressing family. This must be AF_INET (or the equivalent decimal value 2).
portid

The port number.
ipaddress

The IP address.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 255

Return Values
If successful, this function returns a string containing return code 0 and the length of the data sent. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

Examples

Call
Return Values

Socket('SendTo',6,'some text',,'AF_INET 5678 9.4.3.2')
'0 9'

Socket('SendTo',6,'some text',,'AF_INET 5678 ZURLVM1')
'0 9'

Socket('SendTo',6,'some text',,'AF_INET 5678

ZURLVM1.ZURICH.IBM.COM')
'0 9'

The C socket call is: sendto(s, buf, len, flags, name, namelen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

SetSockOpt

SOCKET (' SETSOCKOPT ' , socketid , level , optname ,

optvalue)

Purpose
Use the SetSockOpt function to set the options associated with an AF_INET socket.

The optvalue parameter is used to pass data used by the particular set command. The optvalue parameter
points to a buffer containing the data needed by the set command. The optvalue parameter is optional
and can be set to 0, if data is not needed by the command.

Parameters

socketid
is the identifier of the socket.

level
is the protocol level for which the socket option is being set. SOL_SOCKET and IPPROTO_TCP are
supported. All optname values beginning with "SO_" are for protocol level SOL_SOCKET and are
interpreted by the general socket code. All optname values beginning with "TCP_" are for protocol
level IPPROTO_TCP and are interpreted by the TCP/IP internal code.

optname
is the socket option to be set:
Option

Description

REXX Sockets

256 z/VM: 7.3 REXX/VM Reference

SO_ASCII
Controls the translation of data to ASCII. When SO_ASCII is On, data is translated to ASCII. When
SO_ASCII is Off, data is not translated to or from ASCII. Following the setting in the optvalue
parameter, you can specify the name of the translation table used, if translation is applied to the
data. This option is ignored by ASCII hosts.

SO_BROADCAST
Controls the ability to send broadcast messages over the socket. This option does not apply to
stream sockets. The initial setting is Off.

SO_DEBUG
Controls the recording of debug information. The initial setting is Off.

SO_EBCDIC
Controls the translation data to EBCDIC. When SO_EBCDIC is On, data is translated to EBCDIC.
When SO_EBCDIC is Off, data is not translated to or from EBCDIC. Following the setting in the
optvalue parameter, you can specify the name of the translation table used, if translation is
applied to the data. This option is ignored by EBCDIC hosts.

SO_KEEPALIVE
Controls whether a datagram is periodically sent on an idle connection. If the remote TCP/IP does
not respond to this datagram or to retransmissions of this datagram, the connection ends with
error code 60 (ETIMEDOUT). The initial setting is Off.

SO_LINGER
Controls whether the Close function will linger if data is present:

• If SO_LINGER is On and there is unsent data present when Close is called, the calling
application is blocked until the data transmission completes or the connection times out.

• If SO_LINGER is Off, a call to Close returns without blocking the caller. TCP/IP still tries to send
the data. Although this transfer is usually successful, it cannot be guaranteed, because TCP/IP
repeats the Send request for only a specified period of time.

This option applies only to stream sockets. The initial setting is Off.

SO_OOBINLINE
Controls how out-of-band data is to be received:

• When SO_OOBINLINE is On, out-of-band data is placed in the normal data input queue as it is
received. The Recv and RecvFrom functions can then receive the data without enabling the the
MSG_OOB flag.

• When SO_OOBINLINE is Off, out-of-band data is placed in the priority data input queue as it is
received. The Recv and RecvFrom functions must enable the MSG_OOB flag to receive the data.

This option applies only to stream sockets. The initial setting is Off.

SO_REUSEADDR
Controls whether local addresses can be reused. When SO_REUSEADDR is On, local addresses
that are already in use can be bound. Instead of the usual algorithm of checking at Bind time,
TCP/IP checks at Connect time to ensure that the local address and port are not the same as the
remote address and port. If the address and port are duplicated at Connect time, Connect returns
error code 48 (EADDRINUSE) and the connect request fails.

The initial setting is Off.

TCP_NODELAY
Controls the do-not-delay-the-send flag, which indicates whether TCP/IP can send small packets
as soon as possible.

optvalue
is the option setting.

For all options except SO_LINGER, you can specify On, Off, or a number (0 = Off, nonzero = On).

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 257

For the SO_LINGER option, you can specify On n, n, or Off. If you specify only n, On is implied. The
value n is the number of seconds that TCP/IP should continue trying to send the data after the Close
function is called.

Return Values
If successful, this function returns a string containing only return code 0. If unsuccessful, this function
returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('SetSockOpt',5,'Sol_Socket','So_ASCII','On')
'0'

Socket('SetSockOpt',5,'Sol_Socket','So_Broadcast','On')
'0'

Socket('SetSockOpt',5,'Sol_Socket','So_Linger',60)
'0'

Socket('SetSockOpt',5,'IPproto_TCP','TCP_NoDelay','On')
'0'

The C socket call is: setsockopt(s, level, optname, optval, optlen)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

ShutDown

SOCKET (' SHUTDOWN ' , socketid

, ' BOTH '

, how

)

Purpose
Use the ShutDown function to shut down all or part of a duplex connection.

Parameters

socketid
is the identifier of the socket.

how
sets the communication direction to be shut down:
FROM or RECEIVE or RECEIVING or READ or READING

Disables further receive-type operations on the socket, ending communication from the socket.
TO or SEND or SENDING or WRITE or WRITING

Disables further send-type operations on the socket, ending communication to the socket.
BOTH

Disables further receive-type and send-type operations on the socket, ending communication
from and to the socket. This is the default.

REXX Sockets

258 z/VM: 7.3 REXX/VM Reference

Return Values
If successful, this function returns a string containing only return code 0. If unsuccessful, this function
returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('ShutDown',6,'BOTH')
'0'

The C socket call is: shutdown(s, how)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Socket

SOCKET (' SOCKET '

, ' AF_INET ' , ' SOCK_STREAM ' , ' IPPROTO_TCP '

,

' AF_INET '

domain

Type and Protocol

)

Type and Protocol
, ' SOCK_STREAM ' , ' IPPROTO_TCP '

,

' SOCK_STREAM '

type

,
1

,

1

protocol

Notes:
1 The default protocol depends on the domain and socket type. There is no default protocol for a
raw socket.

Purpose
Use the Socket function to create a socket in the active socket set. Different types of sockets provide
different communication services.

Parameters

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 259

domain
is the communications domain in which communication is to take place. This parameter specifies the
addressing family (format of addresses within a domain) being used. This value must be AF_INET (or
the equivalent integer value 2), which indicates the internet domain. This is also the default.

type
is type of socket to be created. The supported types are:
Type

Description
SOCK_STREAM

The abbreviated form STREAM is also permitted. This type of socket provides sequenced, two-way
byte streams that are reliable and connection-oriented. Bytes are guaranteed to arrive, arrive only
once, and arrive in the order sent. AF_INET stream sockets also support a mechanism for sending
and receiving out-of-band data.

SOCK_DGRAM
The abbreviated form DATAGRAM is also permitted. This type of socket provides datagrams, which
are connectionless messages of a fixed maximum length whose reliability is not guaranteed.
Datagrams can be corrupted, received out of order, lost, or delivered multiple times.

SOCK_RAW
The abbreviated form RAW is also permitted. This type of socket provides the interface to internal
protocols, such as IP and ICMP. You can specify this type only if you have been authorized to
create raw sockets by the TCP/IP server virtual machine.

The default type is SOCK_STREAM.

protocol
is the protocol to be used with the socket.

For stream and datagram sockets, you should set this field to 0 to allow TCP/IP to assign the default
protocol for the domain and socket type selected. For the AF_INET domain, the default protocols are:

• IPPROTO_TCP for stream sockets
• IPPROTO_UDP for datagram sockets

There is no default protocol for a raw socket. For raw sockets, the following protocols are valid:

• IPPROTO_ICMP
• IPPROTO_RAW or RAW (equivalent values)

Return Values
If successful, this function returns a string containing return code 0 and the identifier (socket ID) of the
new socket. If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples

Call
Return Values

Socket('Socket')
'0 5'

The C socket call is: socket(domain, type, protocol)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

REXX Sockets

260 z/VM: 7.3 REXX/VM Reference

SocketSet

SOCKET (' SOCKETSET '

, subtaskid

)

Purpose
Use the SocketSet function to get the name (subtask ID) of the active socket set. If you specify a subtask
ID on the call, that socket set becomes the active socket set.

Parameters

subtaskid
is the name of a socket set. The name can be up to eight printable characters; it cannot contain
blanks.

Return Values
If successful, this function returns a string containing return code 0 and the subtask ID of the active
socket set. If unsuccessful, this function returns a string containing a nonzero return code, an error name,
and an error message.

Examples

Call
Return Values

Socket('SocketSet','firstId')
'0 firstId'

Note: A C language equivalent does not exist.

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

SocketSetList

SOCKET (' SOCKETSETLIST ')

Purpose
Use the SocketSetList function to get a list of the names (subtask IDs) of all the available socket sets in
the current order of the stack.

Return Values
If successful, this function returns a string containing return code 0, the subtask ID of the active socket
set, and the subtask IDs of all the other available socket sets (if any) in the current order of the stack. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 261

Examples

Call
Return Values

Socket('SocketSetList')
'0 myId firstId'

Note: A C language equivalent does not exist.

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

SocketSetStatus

SOCKET (' SOCKETSETSTATUS '

, subtaskid

)

Purpose
Use the SocketSetStatus function to get the status of a socket set. If you do not specify the name (subtask
ID) of the socket set, the active socket set is used. If the socket set is connected, this function returns the
number of free sockets and the number of allocated sockets in the socket set. If the socket set is severed,
the reason for the TCP/IP sever is also returned. Initialized socket sets should be in connected status, and
uninitialized socket sets should be in free status.

A socket set that is initialized but is not in connected status must be terminated before the subtask ID can
be reused.

Parameters

subtaskid
is the name of a socket set. The name can be up to eight printable characters; it cannot contain
blanks.

Return Values
If successful, this function returns a string containing return code 0, the subtask ID of the socket set, and
the status of the socket set. Connect and sever information may also be returned. If unsuccessful, this
function returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('SocketSetStatus')
'0 myId Connected Free 17 Used 23'

Note: A C language equivalent does not exist.

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

REXX Sockets

262 z/VM: 7.3 REXX/VM Reference

TakeSocket

SOCKET (' TAKESOCKET ' , clientid , socketid)

Purpose
Use the TakeSocket function to acquire a socket from another application. The giving application must
have already issued a GiveSocket call. After Takesocket completes successfully, the giving application
must close the socket.

Parameters

clientid
is the identifier for the application that is giving the socket. This consists of three parts:
domain

The addressing family. This must be AF_INET (or the equivalent integer value 2).
userid

The z/VM user ID of the virtual machine in which the giving application is running.
subtaskid

The subtask ID used on the giving application.

The method for obtaining the giving application's client ID is not defined by TCP/IP.

socketid
is the identifier of the socket on the giving application. The method for obtaining this value is not
defined by TCP/IP.

Return Values
If successful, this function returns a string containing return code 0 and a new socket ID (the identifier
assigned to the socket on the taking application). If unsuccessful, this function returns a string containing
a nonzero return code, an error name, and an error message.

Examples

Call
Return Values

Socket('TakeSocket','AF_INET USERID1 myId',6)
'0 7'

The C socket call is: takesocket(clientid, hisdesc)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Terminate

SOCKET (' TERMINATE '

, subtaskid

)

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 263

Purpose
Use the Terminate function to close all the sockets in a socket set and release the socket set. If you do
not specify a socket set, the active socket set is terminated. If the active socket set is terminated, the next
socket set in the stack (if available) becomes the active socket set.

Parameters

subtaskid
is the name of the socket set. The name can be up to eight printable characters; it cannot contain
blanks.

Return Values
If successful, this function returns a string containing return code 0 and the name (subtask ID) of the
terminated socket set. If unsuccessful, this function returns a string containing a nonzero return code, an
error name, and an error message.

Examples

Call
Return Values

Socket('Terminate','myId')
'0 myId'

Note: A C language equivalent does not exist.

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Trace

SOCKET (' TRACE '

, setting

modifier

)

Purpose
Use the Trace function to enable or disable tracing facilities.

Parameters

setting
indicates the type of tracing. The supported settings are:
ON

Enables both IUCV and Resolver tracing
IUCV

Enables IUCV tracing only
RESOLVER

Enables Resolver tracing only (tracing of domain name server queries)

REXX Sockets

264 z/VM: 7.3 REXX/VM Reference

OFF
Disables all tracing

modifier
allows you to enable or disable a specific trace. This parameter is valid only with the IUCV and
RESOLVER settings. You can specify either ON or OFF. The default is ON.

Return Values
If successful, this function returns a string containing return code 0 and the previous Trace setting. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

Usage Notes
1. Because tracing can generate large amounts of console traffic, this function should be used with

caution.
2. If Trace is specified without a setting, it returns the current setting.

Examples

Call
Return Values

Socket('Trace')
'0 Off'

Socket('Trace','IUCV')
'0 Off'

Socket('Trace')
'0 IUCV'

Socket('Trace','Resolver')
'0 IUCV'

Socket('Trace')
'0 On'

Socket('Trace','IUCV Off')
'0 On'

Socket('Trace')
'0 Resolver'

Socket('Trace','On')
'0 Resolver'

Socket('Trace')
'0 On'

Socket('Trace','Off')
'0 On'

Socket('Trace')
'0 Off'

Note: A C language equivalent does not exist.

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 265

Translate

SOCKET (' TRANSLATE ' , string , how)

Purpose
Use the Translate function to translate data from one type of notation to another.

Parameters

string
is a character string that contains the data to be translated.

how
indicates the type of translation to be done. The supported types are (case is not significant in these
values):
Type

Description
To_Ascii or Ascii

Translates the specified REXX character string to ASCII
To_Ebcdic or Ebcdic

Translates the specified REXX hexadecimal string to EBCDIC
To_IP_Address or To_IPaddress or IPaddress

Translates the specified dotted-decimal IP address into a 4-byte hexadecimal notation, or the
specified 4-byte hexadecimal IP address into dotted-decimal notation

To_SockAddr_In or SockAddr_In
Translates the specified sockaddr_in structure from human-readable notation (a three-part
character string containing AF_INET, the decimal port value, and either an IP address or a
partially- or fully-qualified host name) into a 16-byte hexadecimal notation, or from 16-byte
hexadecimal notation into a human-readable notation

Return Values
If successful, this function returns a string containing return code 0, the length of the translated string,
and the translated string. If unsuccessful, this function returns a string containing a nonzero return code,
an error name, and an error message.

Usage Notes
1. In addition to the blanks between the three parts of the return string, the translated string may contain

leading or trailing blanks. You must use caution when parsing the return string with the REXX Parse
statement in order to preserve the possible leading or trailing blanks.

2. The length value returned should be used as an indication of the actual length of the translated string.
The length value includes any leading or trailing blanks.

Examples

Call: Socket('Translate','Hello ','To_Ascii') Return Values: '0 6 xxxxx' (xxxxx is
X'48656C6C6F20')

Call: Socket('Translate','48656C6C6F20'X,'To_Ebcdic') Return Values: '0 6 Hello
' (Note the trailing blank.)

Call: Socket('Translate','128.228.1.2','To_IP_Address') Return Values: '0 4 xxxx'
(xxxx is X'80E40102')

REXX Sockets

266 z/VM: 7.3 REXX/VM Reference

Call: Socket('Translate','80E40102'X,'To_IP_Address') Return Values: '0 11
128.228.1.2'

Call: Socket('Translate','64.64.64.64','To_IP_Address') Return Values: '0 4 xxxx'
(xxxx is X'40404040', four EBCDIC blanks)

Call: Socket('Translate',' ','To_IP_Address') Return Values: '0 11 64.64.64.64'

Call: Socket('Translate','AF_INET 123 CUNYVM.CUNY.EDU','To_SockAddr_In') Return
Values: '0 16 xxxxxxxxxxxxxxxx' (xxxxxxxxxxxxxxxx is X'0002 007B 80E40102
0000000000000000')

Call: Socket('Translate','0002007B80E401020000000000000000'X,'To_SockAddr_In')
Return Values: '0 23 AF_INET 123 128.228.1.2'

Note: A C language equivalent does not exist.

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Version

SOCKET (' VERSION ')

Purpose
Use the Version function to get the version number and date for the REXX Sockets function package.

Return Values
If successful, this function returns a string containing return code 0 and the REXX Sockets version and
date. If unsuccessful, this function returns a string containing a nonzero return code, an error name, and
an error message.

Examples

Call
Return Values

Socket('Version')
'0 REXX/SOCKETS n.nn dd month yyyy'

Note: A C language equivalent does not exist.

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

Write

SOCKET (' WRITE ' , socketid , data)

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 267

Purpose
Use the Write function to write data on a connected socket. This function is similar to the Send function,
except that it lacks the control flags available with Send. If it is not possible to write the data, Write waits
until conditions are suitable for writing data. This blocks the caller, unless the socket is in nonblocking
mode. For datagram sockets, the socket should not be in blocking mode.

Parameters

socketid
is the identifier of the socket.

data
is the data to be written.

Return Values
If successful, this function returns a string containing return code 0 and the length of the data written. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

Examples

Call
Return Values

Socket('Write',6,'some text')
'0 9'

The C socket call is: write(s, buf, len)

Messages and Return Codes
For a list of REXX Sockets system messages, see “REXX Sockets System Messages” on page 268. For a
list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 269.

REXX Sockets System Messages
Depending on how your z/VM system is set up, the REXX Sockets module may be invoked from a logical
saved segment or from disk. The following error and warning system messages may be displayed during
the process of initializing REXX Sockets, or when doing tracing or other functions.

For explanations of these messages, see z/VM: CP Messages and Codes or enter:

help msg msgno

help msg msgno

DMS1400E Unable to acquire Dynamic Save
Area storage

DMS1401E System-dependent initialization
module not found

DMS1402E Unable to initialize REXX/Sockets
Global Work Area

DMS1403I > name+nnnn calls name R0-3:
registers

DMS1404I > to name+nnnn CC=cc R0-3:
registers

DMS1404I > R4-7: registers

DMS1405E Return code nn from NUCEXT SET
for xxxxxxxx

DMS1406I Unable to establish ABEND exit;
processing continues

DMS1407I REXX/Sockets anchor located by
NUCEXT {CALL|QUERY|SET}

DMS1408W File fn ft * not found

DMS1409I Opening file fn ft

REXX Sockets

268 z/VM: 7.3 REXX/VM Reference

DMS1410E FSSTATE failed; rc=nn

DMS1412I File fn ft fm opened successfully

DMS1413I REXX source: source_string

DMS1414I REXX clause: statement

DMS1415I RXSOCKET - REXX/Sockets (for
VM)REXX support for the TCP/IP
Socket Interface Type: 'HELP
RXSOCKET' for more information

DMS1416I Multitasking environment
detected; switching to Block/
Unblock mode

DMS1417I Blocking thread nn in process nn

DMS1418I Unblocked thread nn in process nn

DMS1419E {EventCreate|EventSignal|
EventDelete} failed for event
event_name; RC=nn Reason=nn

DMS1420E Abend nnn detected in REXX/
Sockets at (where)+nnnn=xxxxxxxx

DMS1421E RXSOCKET loaded at xxxxxxxx;
Global Work Area at xxxxxxxx

DMS1422E -------------- Registers at time of
failure: --------------

DMS1423E PSW: xxxxxxxx xxxxxxxx

DMS1424E Rxx-Rxx: xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx

DMS1425E -------------------- Module
traceback: --------------------

DMS1426E nnnnnnnnnn called from
nnnnnnnnnn+xxxx with DSA at
xxxxxxxx

DMS1427E ----------------- First 80 bytes of
DSA: -----------------

DMS1428E xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx * nnnnnnnnnnnnnnnn *

DMS1430I REXX/SOCKETS 3.01 12 April
1996

DMS1431I IUCV SEND DATA={PRMMSG|
BUFFER|BUFFER, BUFFLIST=YES}

DMS1432I PRMMSG1: xxxxxxxx PRMMSG2:
xxxxxxxx

DMS1433I The variations of this message
are explained below. MESSAGES:
o Buffer: (nnnnnn bytes) o Reply:
(nnnnnn bytes with IUCV message
ID: nnnn) o Buffer n: (nnnnnn
bytes)

DMS1434I xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx

DMS1435I Connecting to NameServer:
nnn.nnn.nnn.nnn, Time: hh:mm:ss

DMS1436I Question to
NameServer: nnn.nnn.nnn.nnn,
ResolverTimeout: nnn seconds

DMS1437I Answer from NameServer:
nnn.nnn.nnn.nnn, Time: hh:mm:ss

DMS1438I xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx

DMS1440E RXSOCKET requires TCPIP Version
2 or higher

DMS1441E IUCV error; IPAUDIT: xxxxxxxx

DMS1442I The variations of this message
are explained below. MESSAGES:
o IUCV nnnnnnnn interrupt for
socket call nnnnnnnn on socket
{socket|PATH} {socket number|path
id} o IUCV nnnnnnnn interrupt on
PATH path id (socket set name) o
IUCV nnnnnnnn interrupt on PATH
path id (socket set name), Reason:
reason

REXX Sockets Return Codes
A REXX sockets call returns a return code as the first token of the result string. If the return code is not
zero, the second and third tokens in the result string are the error name and the corresponding error
message. The following table lists the return code values defined for all REXX socket functions.

Code Error Name Error Message

0 - -

1 EPERM Not owner

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 269

Code Error Name Error Message

2 ENOENT No such file or directory

3 ESRCH No such process

4 EINTR Interrupted system call

5 EIO I/O error

6 ENXIO No such device or address

7 E2BIG Arg list too long

8 ENOEXEC Exec format error

9 EBADF Bad file number

10 ECHILD No children

11 EAGAIN No more processes

12 ENOMEM Not enough memory

13 EACCES Permission denied

14 EFAULT Bad address

15 ENOTBLK Block device required

16 EBUSY Device busy

17 EEXIST File exists

18 EXDEV Cross-device link

19 ENODEV No such device

20 ENOTDIR Not a directory

21 EISDIR Is a directory

22 EINVAL Argument not valid

23 ENFILE File table overflow

24 EMFILE Too many open files

25 ENOTTY Inappropriate ioctl for device

26 ETXTBSY Text file busy

27 EFBIG File too large

28 ENOSPC No space left on device

29 ESPIPE Illegal seek

30 EROFS Read-only file system

31 EMLINK Too many links

32 EPIPE Broken pipe

33 EDOM Argument too large

34 ERANGE Result too large

35 EWOULDBLOCK Operation would block

36 EINPROGRESS Operation now in progress

REXX Sockets

270 z/VM: 7.3 REXX/VM Reference

Code Error Name Error Message

37 EALREADY Operation already in progress

38 ENOTSOCK Socket operation on non-socket

39 EDESTADDRREQ Destination address required

40 EMSGSIZE Message too long

41 EPROTOTYPE Protocol wrong type for socket

42 ENOPROTOOPT Option not supported by protocol

43 EPROTONOSUPPORT Protocol not supported

44 ESOCKTNOSUPPORT Socket type not supported

45 EOPNOTSUPP Operation not supported on socket

46 EPFNOSUPPORT Protocol family not supported

47 EAFNOSUPPORT Address family not supported by protocol
family

48 EADDRINUSE Address already in use

49 EADDRNOTAVAIL Cannot assign requested address

50 ENETDOWN Network is down

51 ENETUNREACH Network is unreachable

52 ENETRESET Network dropped connection on reset

53 ECONNABORTED Software caused connection abort

54 ECONNRESET Connection reset by peer

55 ENOBUFS No buffer space available

56 EISCONN Socket is already connected

57 ENOTCONN Socket is not connected

58 ESHUTDOWN Cannot send after socket shutdown

59 ETOOMANYREFS Too many references: cannot splice

60 ETIMEDOUT Connection timed out

61 ECONNREFUSED Connection refused

62 ELOOP Too many levels of symbolic links

63 ENAMETOOLONG File name too long

64 EHOSTDOWN Host is down

65 EHOSTUNREACH Host is unreachable

66 ENOTEMPTY Directory not empty

67 EPROCLIM Too many processes

68 EUSERS Too many users

69 EDQUOT Disc quota exceeded

70 ESTALE Stale NFS file handle

71 EREMOTE Too many levels of remote in path

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 271

Code Error Name Error Message

72 ENOSTR Not a stream device

73 ETIME Timer expired

74 ENOSR Out of stream resources

75 ENOMSG No message of desired type

76 EBADMSG Not a data message

77 EIDRM Identifier removed

78 EDEADLK Deadlock situation detected/avoided

79 ENOLCK No record locks available

80 ENONET Machine is not on the network

81 ERREMOTE Object is remote

82 ENOLINK The link has been severed

83 EADV Advertise error

84 ESRMNT SRMOUNT error

85 ECOMM Communication error on send

86 EPROTO Protocol error

87 EMULTIHOP Multihop attempted

88 EDOTDOT Cross mount point

89 EREMCHG Remote address changed

90 ECONNCLOSED Connection closed by peer

1000 EIBMBADCALL Bad socket-call constant

1001 EIBMBADPARM Bad parm

1002 EIBMSOCKETOUTOFRANGE Socket out of range

1003 EIBMSOCKINUSE Socket in use

1004 EIBMIUCVERR IUCV error

2001 EINVALIDRXSOCKETCALL Syntax error in RXSOCKET parameter list

2002 ECONSOLEINTERRUPT Console interrupt

2003 ESUBTASKINVALID Subtask ID not valid

2004 ESUBTASKALREADYACTIVE Subtask already active

2005 ESUBTASKNOTACTIVE Subtask not active

2006 ESOCKETNOTALLOCATED Socket could not be allocated

2007 EMAXSOCKETSREACHED Maximum number of sockets reached

2008 ESOCKETALREADYDEFINED Socket already defined

2009 ESOCKETNOTDEFINED Socket not defined

2010 ETCPIPSEVEREDPATH TCPIP severed IUCV path

2011 EDOMAINSERVERFAILURE Domain name server failure

REXX Sockets

272 z/VM: 7.3 REXX/VM Reference

Code Error Name Error Message

2012 EINVALIDNAME "name" received from TCPIP server not valid

2013 EINVALIDCLIENTID "clientid" received from TCPIP server not valid

2014 EINVALIDFILENAME File name specified not valid

2015 ENUCEXTFAILURE Error during NUCEXT function

2016 EHOSTNOTFOUND Host not found in SITEINFO file

2017 EIPADDRNOTFOUND IP address not found in ADDRINFO file

2018 EREQUESTNOTACTIVE Specified socket request not active

2051 EFORMATERROR Format error

2052 ESERVERFAILURE Server failure

2053 EUNKNOWNHOST Unknown host

2054 EQUERYTYPENOTIMPLEMENTED Query type not implemented

2055 EQUERYREFUSED Query refused

2056 EIPADDRNOTFOUND IP address not found in ETC HOSTS file

2057 EHOSTNOTFOUND Host not found in ETC HOSTS file

3nnn error codes identify internal errors. The following list is provided for IBM use only.

Code Error Name Error Message

3001 EIUCVINVALIDPATH IUCV path ID not valid

3002 EIUCVPATHQUIESCED IUCV path quiesced

3003 EIUCVMSGLIMITEXCEEDED IUCV message limit exceeded

3004 EIUCVNOPRIORITY IUCV priority message not allowed on this
path

3005 EIUCVSMALLBUFFER IUCV buffer too small

3006 EIUCVBADFETCH IUCV Fetch Protection Exception

3007 EIUCVBADADDRESS IUCV Addressing Exception on answer buffer

3008 EIUCVBADMSGCLASS IUCV conflicting message class/path/msgid

3009 EIUCVPURGEDMSG IUCV message was purged

3010 EIUCVBADMSGLENGTH IUCV negative message length

3011 EIUCVTARGETNOTAVAIL IUCV target userid not logged on

3012 EIUCVTARGETNOTENABLED IUCV target userid not enabled for IUCV

3013 EIUCVPATHLIMITEXCEEDED IUCV path limit exceeded

3014 EIUCVTARGETPATHLIMIT IUCV partner path limit exceeded

3015 EIUCVNOTAUTHORIZED IUCV not authorized

3016 EIUCVINVALIDCPSYSTEMSERVICE IUCV CP System Service not valid

3018 EIUCVINVALIDMSGLIMIT IUCV message limit not valid

3019 EIUCVBUFFERALREADYDECLARED IUCV buffer already declared

REXX Sockets

Chapter 15. REXX Sockets Application Program Interface 273

Code Error Name Error Message

3020 EIUCVPARTNERSEVERED IUCV partner severed path

3021 EIUCVPARTNERNOPRMDATA IUCV cannot accept data in parmlist

3022 EIUCVSENDLISTINVALID IUCV SEND buffer list not valid

3023 EIUCVINVALIDBUFFERLENGTH IUCV negative length in answerlist

3024 EIUCVINVALIDLISTLENGTH IUCV total list length not valid

3025 EIUCVPRMMSGANSLISTCONFLICT IUCV PRMMSG/answer-list conflict

3026 EIUCVBUFFERLISTNOTALIGNED IUCV buffer list not aligned

3027 EIUCVANSWERLISTNOTALIGNED IUCV answer list not aligned

3028 EIUCVNOCONTROLBUFFER IUCV no control buffer

3048 EIUCVFUNCTIONNOTSUPPORTED IUCV function not supported

3052 EIBMNOMSG IUCV API: No message found

3053 EIBMDIRERR IUCV API: Errors encountered reading
directory

3054 EIBMPROTERR IUCV API: Protection exception

3055 EIBMADDRERR IUCV API: Addressing exception

3056 EIBMSPECERR IUCV API: Specification exception

3057 EIBMOPERR IUCV API: Operation exception

REXX Sockets

274 z/VM: 7.3 REXX/VM Reference

Chapter 16. Sample Programs

This section describes two sample REXX socket programs that are provided with the REXX Sockets
package:

• REXX-EXEC RSCLIENT — a client sample program
• REXX-EXEC RSSERVER — a server sample program

Before you start the client program, you must start the server program in another address space. The two
programs can run on different hosts, but the internet address of the host running the server program must
be entered with the command starting the client program, and the hosts must be connected on the same
network using TCP/IP.

REXX-EXEC RSCLIENT Sample Program
The client sample program (RSCLIENT EXEC) is a REXX socket program that shows you how to use the
calls provided by REXX Sockets. The program connects to the server sample program and receives data,
which is displayed on the screen. It uses sockets in blocking mode.

After parsing and testing the input parameters, RSCLIENT obtains a socket set using the Initialize function
and a socket using the Socket function. The program then connects to the server and writes the user
ID, the node ID, and the number of lines requested on the connection to the server. It reads data in a
loop and displays it on the screen until the data length is zero, indicating that the server has closed the
connection. If an error occurs, the client program displays the return code, determines the status of the
socket set, and ends the socket set.

The server adds the EBCDIC new line character to the end of each record, and the client uses this
character to determine the start of a new record. If the connection is abnormally closed, the client does
not display partially received records.

trace o
signal on syntax

/* Set error code values */
ecpref = 'RXS'
ecname = 'CLI'
initialized = 0

parse arg argstring
argstring = strip(argstring)
if substr(argstring,1,1) = '?' then do
 say 'RSSERVER and RSCLIENT are a pair of programs which provide an'
 say 'example of how to use REXX/SOCKETS to implement a service. The'
 say 'server must be started before the clients get started. '
 say ' '
 say 'The RSSERVER program runs in its own dedicated virtual machine'
 say 'and returns a number of data lines as requested to the client.'
 say 'It is started with the command: '
 say ' RSSERVER '
 say 'and terminated with the command: '
 say ' HX '
 say ' '
 say 'The RSCLIENT program is used to request a number of arbitrary'
 say 'data lines from the server and can be run concurrently any'
 say 'number of times by different clients until the server is'
 say 'terminated. It is started with the command: '
 say ' RSCLIENT number <server> '
 say 'where "number" is the number of data lines to be requested and'
 say '"server" is the ipaddress of the service virtual machine. (The'
 say 'default ipaddress is the one of the host on which RSCLIENT is'
 say 'running, assuming that RSSERVER runs on the same host.) '
 exit 100
end

/* Split arguments into parameters and options */
parse upper var argstring parameters '(' options ')' rest

REXX Sockets - Sample Programs

© Copyright IBM Corp. 1990, 2022 275

/* Parse the parameters */
parse var parameters lines server rest
if ¬datatype(lines,'W') then call error 'E', 24, 'Invalid number'
lines = lines + 0
if rest¬='' then call error 'E', 24, 'Invalid parameters'

/* Parse the options */
do forever
 parse var options token options
 select
 when token='' then leave
 otherwise call error 'E', 20, 'Invalid option "'token'"'
 end
end

/* Initialize control information */
port = '1952' /* The port used by the server */
address command 'IDENTIFY (LIFO'
parse upper pull userid . locnode .

/* Initialize */
call Socket 'Initialize', 'RSCLIENT'
if src=0 then initialized = 1
else call error 'E', 200, 'Unable to initialize RXSOCKET MODULE'
if server='' then do
 server = Socket('GetHostId')
 if src¬=0 then call error 'E', 200, 'Cannot get the local ipaddress'
end
ipaddress = server

/* Initialize for receiving lines sent by the server */
s = Socket('Socket')
if src¬=0 then call error 'E', 32, 'SOCKET(SOCKET) rc='src
call Socket 'Connect', s, 'AF_INET' port ipaddress
if src¬=0 then call error 'E', 32, 'SOCKET(CONNECT) rc='src
call Socket 'Write', s, locnode userid lines
if src¬=0 then call error 'E', 32, 'SOCKET(WRITE) rc='src

/* Wait for lines sent by the server */
dataline = ''
num = 0
do forever

 /* Receive a line and display it */
 parse value Socket('Read', s) with len newline
 if src¬=0 | len<=0 then leave
 dataline = dataline || newline
 do forever
 if pos('15'x,dataline)=0 then leave
 parse var dataline nextline '15'x dataline
 num = num + 1
 say right(num,5)':' nextline
 end
end

/* Terminate and exit */
call Socket 'Terminate'
exit 0

/* Calling the real SOCKET function */
socket: procedure expose initialized src
 a0 = arg(1)
 a1 = arg(2)
 a2 = arg(3)
 a3 = arg(4)
 a4 = arg(5)
 a5 = arg(6)
 a6 = arg(7)
 a7 = arg(8)
 a8 = arg(9)
 a9 = arg(10)
 parse value 'SOCKET'(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9) with src res
return res

/* Syntax error routine */
syntax:
 call error 'E', rc, '==> REXX Error No.' 20000+rc
return

/* Error message and exit routine */
error: procedure expose ecpref ecname initialized
 type = arg(1)

REXX Sockets - Sample Programs

276 z/VM: 7.3 REXX/VM Reference

 retc = arg(2)
 text = arg(3)
 ecretc = right(retc,3,'0')
 ectype = translate(type)
 ecfull = ecpref || ecname || ecretc || ectype
 address command 'EXECIO 1 EMSG (CASE M STRING' ecfull text
 if type¬='E' then return
 if initialized then do
 parse value Socket('SocketSetStatus') with . status severreason
 if status¬='Connected' then do
 say 'The status of the socket set is' status severreason
 end
 call Socket 'Terminate'
 end
exit retc

REXX-EXEC RSSERVER Sample Program
The server sample program (RSSERVER EXEC) shows an example of how to use sockets in nonblocking
mode. The program waits for connect requests from client programs, accepts the requests, and then
sends data. The sample can handle multiple client requests in parallel processing.

The server program sets up a socket to accept connection requests from clients and waits in a loop for
events reported by the select call. If a socket event occurs, it is processed. A read event can occur on the
original socket for accepting connection requests and on sockets for accepted socket requests. A write
event can occur only on sockets for accepted socket requests.

A read event on the original socket for connection requests means that a connection request from a client
occurred. Read events on other sockets indicate either that there is data to receive or that the client has
closed the socket. Write events indicate that the server can send more data. The server program sends
only one line of data in response to a write event.

The server program keeps a list of sockets to which it wants to write. It keeps this list to avoid unwanted
socket events. The TCP/IP protocol is not designed for one single-threaded program communicating on
many different sockets, but for multithread applications where one thread processes only events from a
single socket.

trace o
signal on syntax
signal on halt

/* Set error code values */
initialized = 0

parse arg argstring
argstring = strip(argstring)
if substr(argstring,1,1) = '?' then do
 say 'RSSERVER and RSCLIENT are a pair of programs which provide an'
 say 'example of how to use REXX/SOCKETS to implement a service. The'
 say 'server must be started before the clients get started. '
 say ' '
 say 'The RSSERVER program runs on a VM Userid. '
 say 'It returns a number of data lines as requested to the client. '
 say 'It is started with the command: RSSERVER '
 say 'and terminated by issuing HX. '
 say ' '
 say 'The RSCLIENT program is used to request a number of arbitrary'
 say 'data lines from the server. One or more clients can access '
 say 'the server until it is terminated. '
 say 'It is started with the command: RSCLIENT number <server> '
 say 'where "number" is the number of data lines to be requested and'
 say '"server" is the ipaddress of the service virtual machine. (The'
 say 'default ipaddress is the one of the host on which RSCLIENT is'
 say 'running, assuming that RSSERVER runs on the same host.) '
 say ' '
 exit 100
end

/* Split arguments into parameters and options */
parse upper var argstring parameters '(' options ')' rest

/* Parse the parameters */
parse var parameters rest
if rest¬='' then call error 'E', 24, 'Invalid parameters specified'

REXX Sockets - Sample Programs

Chapter 16. Sample Programs 277

/* Parse the options */
do forever
 parse var options token options
 select
 when token='' then leave
 otherwise call error 'E', 20, 'Invalid option "'token'"'
 end
end

/* Initialize control information */
port = '1952' /* The port used for the service */

/* Initialize */
say 'RSSERVER: Initializing'
call Socket 'Initialize', 'RSSERVER'
if src=0 then initialized = 1
else call error 'E', 200, 'Unable to initialize SOCKET'
ipaddress = Socket('GetHostId')
if src¬=0 then call error 'E', 200, 'Unable to get the local ipaddress'
say 'RSSERVER: Initialized: ipaddress='ipaddress 'port='port

/* Initialize for accepting connection requests */
s = Socket('Socket')
if src¬=0 then call error 'E', 32, 'SOCKET(SOCKET) rc='src
call Socket 'Bind', s, 'AF_INET' port ipaddress
if src¬=0 then call error 'E', 32, 'SOCKET(BIND) rc='src
call Socket 'Listen', s, 10
if src¬=0 then call error 'E', 32, 'SOCKET(LISTEN) rc='src
call Socket 'Ioctl', s, 'FIONBIO', 'ON'
if src¬=0 then call error 'E', 36, 'Cannot set mode of socket' s

/* Wait for new connections and send lines */
timeout = 60
linecount. = 0
wlist = ''
do forever

 /* Wait for an event */
 if wlist¬='' then sockevtlist = 'Write'wlist 'Read * Exception'
 else sockevtlist = 'Write Read * Exception'
 sellist = Socket('Select',sockevtlist,timeout)
 if src¬=0 then call error 'E', 36, 'SOCKET(SELECT) rc='src
 parse upper var sellist . 'READ' orlist 'WRITE' owlist 'EXCEPTION' .
 if orlist¬='' | owlist^='' then do
 event = 'SOCKET'
 if orlist¬='' then do
 parse var orlist orsocket .
 rest = 'READ' orsocket
 end
 else do
 parse var owlist owsocket .
 rest = 'WRITE' owsocket
 end
 end
 else event = 'TIME'

 select

 /* Accept connections from clients, receive and send messages */
 when event='SOCKET' then do
 parse var rest keyword ts .

 /* Accept new connections from clients */
 if keyword='READ' & ts=s then do
 nsn = Socket('Accept',s)
 if src=0 then do
 parse var nsn ns . np nia .
 say 'RSSERVER: Connected by' nia 'on port' np 'and socket' ns
 end
 end

 /* Get nodeid, userid and number of lines to be sent */
 if keyword='READ' & ts¬=s then do
 parse value Socket('Recv',ts) with len nid uid count .
 if src=0 & len>0 & datatype(count,'W') then do
 if count<0 then count = 0
 if count>5000 then count = 5000
 ra = 'by' uid 'at' nid
 say 'RSSERVER: Request for' count 'lines on socket' ts ra
 linecount.ts = linecount.ts + count
 call addsock(ts)

REXX Sockets - Sample Programs

278 z/VM: 7.3 REXX/VM Reference

 end
 else do
 call Socket 'Close',ts
 linecount.ts = 0
 call delsock(ts)
 say 'RSSERVER: Disconnected socket' ts
 end
 end

 /* Get nodeid, userid and number of lines to be sent */
 if keyword='WRITE' then do
 if linecount.ts>0 then do
 num = random(1,sourceline()) /* Return random-selected */
 msg = sourceline(num) || '15'x /* line of this program */
 call Socket 'Send',ts,msg
 if src=0 then linecount.ts = linecount.ts - 1
 else linecount.ts = 0
 end
 else do
 call Socket 'Close',ts
 linecount.ts = 0
 call delsock(ts)
 say 'RSSERVER: Disconnected socket' ts
 end
 end

 end

 /* Unknown event (should not occur) */
 otherwise nop
 end
end

/* Terminate and exit */
call Socket 'Terminate'
say 'RSSERVER: Terminated'
exit 0

/* Procedure to add a socket to the write socket list */
addsock: procedure expose wlist
 s = arg(1)
 p = wordpos(s,wlist)
 if p=0 then wlist = wlist s
return

/* Procedure to del a socket from the write socket list */
delsock: procedure expose wlist
 s = arg(1)
 p = wordpos(s,wlist)
 if p>0 then do
 templist = ''
 do i=1 to words(wlist)
 if i¬=p then templist = templist word(wlist,i)
 end
 wlist = templist
 end
return

/* Calling the real SOCKET function */
socket: procedure expose initialized src
 a0 = arg(1)
 a1 = arg(2)
 a2 = arg(3)
 a3 = arg(4)
 a4 = arg(5)
 a5 = arg(6)
 a6 = arg(7)
 a7 = arg(8)
 a8 = arg(9)
 a9 = arg(10)
 parse value 'SOCKET'(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9) with src res
return res

/* Syntax error routine */
syntax:
 call error 'E', rc, '==> REXX Error No.' 20000+rc
return

/* Halt exit routine */
halt:
 call error 'E', 4, '==> REXX Interrupted'

REXX Sockets - Sample Programs

Chapter 16. Sample Programs 279

return

/* Error message and exit routine */
error:
 type = arg(1)
 retc = arg(2)
 text = arg(3)
 ecretc = right(retc,3,'0')
 ectype = translate(type)
 ecfull = 'RXSSRV' || ecretc || ectype
 say '===> Error:' ecfull text
 if type¬='E' then return
 if initialized
 then do
 parse value Socket('SocketSetStatus') with . status severreason
 if status¬='Connected'
 then say 'The status of the socket set is' status severreason
 end
 call Socket 'Terminate'
exit retc

REXX Sockets - Sample Programs

280 z/VM: 7.3 REXX/VM Reference

Appendix A. Error Numbers and Messages

The error numbers produced by syntax errors during processing of REXX programs are all in the range
3-49 (and this is the value placed in the variable RC when SIGNAL ON SYNTAX event is trapped). The
language processor adds 20000 to these error return codes before leaving an exec in order to provide a
different range of codes than those used by CMS EXEC and EXEC 2. When the language processor displays
an error message, it first sets the CMSTYPE indicator to RT (Resume Typing), ensuring that the message
will be seen by the user, even if HT (Halt Typing) was in effect when the error occurred.

External interfaces to the language processor can generate three of the error messages either before the
language processor gains control or after control has left the language processor. Therefore, SIGNAL ON
SYNTAX cannot trap these errors. The error numbers involved are: 3 and 5 (if the initial requirements for
storage could not be met) and 26 (if on exit the returned string could not be converted to form a valid
return code). Error 4 can be trapped only by SIGNAL ON HALT or CALL ON HALT. Five errors the language
processor detects cannot be trapped by SIGNAL ON SYNTAX unless the label SYNTAX appears earlier in
the program than the clause with the error. These errors include: 6, 12, 13, 22, and 30.

The CP command SET EMSG ON causes error messages to be prefixed with a CMS error code. The full
form of the message, including this error code, is given in the message list.

The message list is ordered by the CMS message number. For your convenience, a table cross-referencing
the REXX error code with the CMS message number precedes the message list.

In the message list, each message is followed by an explanation giving possible causes for the error. The
same explanation can be obtained from CMS using the following command:

HELP MSG DMSnnnE (where nnn is the CMS error number
and error type is either 'E' or'T')

The following is a list of the error codes and their associated CMS messages:

Table 9. List of Error Codes and CMS Messages

Error code CMS message Error code CMS message

No number DMSREX255T Error 26 DMSREX466E

Error 3 DMSREX451E Error 27 DMSREX467E

Error 4 DMSREX452E Error 28 DMSREX486E

Error 5 DMSREX450E Error 29 DMSREX487E

Error 6 DMSREX453E Error 30 DMSREX468E

Error 7 DMSREX454E Error 31 DMSREX469E

Error 8 DMSREX455E Error 32 DMSREX492E

Error 9 DMSREX456E Error 33 DMSREX488E

Error 10 DMSREX457E Error 34 DMSREX470E

Error 11 DMSREX458E Error 35 DMSREX471E

Error 12 DMSREX459E Error 36 DMSREX472E

Error 13 DMSREX460E Error 37 DMSREX473E

Error 14 DMSREX461E Error 38 DMSREX489E

Error 15 DMSREX462E Error 39 DMSREX474E

Error 16 DMSREX463E Error 40 DMSREX475E

Error Numbers and Messages

© Copyright IBM Corp. 1990, 2022 281

Table 9. List of Error Codes and CMS Messages (continued)

Error code CMS message Error code CMS message

Error 17 DMSREX465E Error 41 DMSREX476E

Error 18 DMSREX491E Error 42 DMSREX477E

Error 19 DMSREX482E Error 43 DMSREX478E

Error 20 DMSREX483E Error 44 DMSREX479E

Error 21 DMSREX464E Error 45 DMSREX480E

Error 22 DMSREX449E Error 46 DMSREX218E

Error 23 DMSREX1106E Error 47 DMSREX219E

Error 24 DMSREX484E Error 48 DMSREX490E

Error 25 DMSREX485E Error 49 DMSREX481E

In these messages, the term "language processor" refers to the z/VM REXX/VM interpreter.

In addition to the following error messages, the language processor issues the terminal (unrecoverable)
message DMSREX255T Insufficient storage for Exec interpreter.

For information and a complete listing of the REXX/VM error messages, see z/VM: CMS and REXX/VM
Messages and Codes.

Error Numbers and Messages

282 z/VM: 7.3 REXX/VM Reference

Appendix B. Double-Byte Character Set (DBCS)
Support

A Double-Byte Character Set supports languages that have more characters than can be represented by 8
bits (such as Korean Hangeul and Japanese kanji). REXX has a full range of DBCS functions and handling
techniques.

These include:

• Symbol and string handling capabilities with DBCS characters
• An option that allows DBCS characters in symbols, comments, and literal strings.
• An option that allows data strings to contain DBCS characters.
• A number of functions that specifically support the processing of DBCS character strings
• Defined DBCS enhancements to current instructions and functions.

Note: The use of DBCS does not affect the meaning of the built-in functions as described in Chapter 3,
“Functions,” on page 67. This explains how the characters in a result are obtained from the characters
of the arguments by such actions as selecting, concatenating, and padding. The appendix describes how
the resulting characters are represented as bytes. This internal representation is not usually seen if the
results are printed. It may be seen if the results are displayed on certain terminals.

General Description
The following characteristics help define the rules used by DBCS to represent extended characters:

• Each DBCS character consists of 2 bytes.
• There are no DBCS control characters.
• The codes are within the ranges defined in the table, which shows the valid DBCS code for the DBCS

blank. You cannot have a DBCS blank in a simple symbol, in the stem of a compound variable, or in a
label.

Table 10. DBCS Ranges

Byte EBCDIC

1st X'41' to X'FE'

2nd X'41' to X'FE'

DBCS blank X'4040'

• DBCS alphanumeric and special symbols

A DBCS contains double-byte representation of alphanumeric and special symbols corresponding to
those of the Single-Byte Character Set (SBCS). In EBCDIC, the first byte of a double-byte alphanumeric
or special symbol is X'42' and the second is the same hex code as the corresponding EBCDIC code.

Here are some examples:

X'42C1' is an EBCDIC double-byte A
X'4281' is an EBCDIC double-byte a
X'427D' is an EBCDIC double-byte quote

• No case translation

In general, there is no concept of lowercase and uppercase in DBCS.
• Notational conventions

© Copyright IBM Corp. 1990, 2022 283

This appendix uses the following notational conventions:

DBCS character -> .A .B .C .D
SBCS character -> a b c d e
DBCS blank -> '. '
EBCDIC shift-out (X'0E') -> <
EBCDIC shift-in (X'0F') -> >

Note: In EBCDIC, the shift-out (SO) and shift-in (SI) characters distinguish DBCS characters from SBCS
characters.

Enabling DBCS Data Operations and Symbol Use
The OPTIONS instruction controls how REXX regards DBCS data. To enable DBCS operations, use the
EXMODE option. To enable DBCS symbols, use the ETMODE option on the OPTIONS instruction; this must
be the first instruction in the program. (See “OPTIONS” on page 46 for more information.)

If OPTIONS ETMODE is in effect, the language processor does validation to ensure that SO and SI are
paired in comments. Otherwise, the contents of the comment are not checked. The comment delimiters
(/* and */) must be SBCS characters.

Symbols and Strings
In DBCS, there are DBCS-only symbols and strings and mixed symbols and strings.

DBCS-Only Symbols and Mixed SBCS/DBCS Symbols
A DBCS-only symbol consists of only nonblank DBCS codes as indicated in Table 10 on page 283.

A mixed DBCS symbol is formed by a concatenation of SBCS symbols, DBCS-only symbols, and other
mixed DBCS symbols. In EBCDIC, the SO and SI bracket the DBCS symbols and distinguish them from the
SBCS symbols.

The default value of a DBCS symbol is the symbol itself, with SBCS characters translated to uppercase.

A constant symbol must begin with an SBCS digit (0–9) or an SBCS period. The delimiter (period) in a
compound symbol must be an SBCS character.

DBCS-Only Strings and Mixed SBCS/DBCS Strings
A DBCS-only string consists of only DBCS characters. A mixed SBCS/DBCS string is formed by a
combination of SBCS and DBCS characters. In EBCDIC, the SO and SI bracket the DBCS data and
distinguish it from the SBCS data. Because the SO and SI are needed only in the mixed strings, they are
not associated with the DBCS-only strings.

In EBCDIC:

DBCS-only string -> .A.B.C
Mixed string -> ab<.A.B>
Mixed string -> <.A.B>
Mixed string -> ab<.C.D>ef

Validation
The user must follow certain rules and conditions when using DBCS.

DBCS Symbol Validation
DBCS symbols are valid only if you comply with the following rules:

• The DBCS portion of the symbol must be an even number of bytes in length

284 z/VM: 7.3 REXX/VM Reference

• DBCS alphanumeric and special symbols are regarded as different to their corresponding SBCS
characters. Only the SBCS characters are recognized by REXX in numbers, instruction keywords, or
operators

• DBCS characters cannot be used as special characters in REXX
• SO and SI cannot be contiguous
• Nesting of SO or SI is not permitted
• SO and SI must be paired
• No part of a symbol consisting of DBCS characters may contain a DBCS blank.
• Each part of a symbol consisting of DBCS characters must be bracketed with SO and SI.

These examples show some possible misuses:

<.A.BC> -> Incorrect because of odd byte length
<.A.B><.C> -> Incorrect contiguous SO/SI
<> -> Incorrect contiguous SO/SI (null DBCS symbol)
<.A<.B>.C> -> Incorrectly nested SO/SI
<.A.B.C -> Incorrect because SO/SI not paired
<.A. .B> -> Incorrect because contains blank
'. A<.B><.C> -> Incorrect symbol

Mixed String Validation
The validation of mixed strings depends on the instruction, operator, or function. If you use a mixed string
with an instruction, operator, or function that does not allow mixed strings, this causes a syntax error.

The following rules must be followed for mixed string validation:

• DBCS strings must be an even number of bytes in length, unless you have SO and SI.

EBCDIC only:

• SO and SI must be paired in a string.
• Nesting of SO or SI is not permitted.

These examples show some possible misuses:

'ab<cd' -> INCORRECT - not paired
'<.A<.B>.C> -> INCORRECT - nested
'<.A.BC>' -> INCORRECT - odd byte length

The end of a comment delimiter is not found within DBCS character sequences. For example, when the
program contains /* < */, then the */ is not recognized as ending the comment because the scanning
is looking for the > (SI) to go with the < (SO) and not looking for */.

When a variable is created, modified, or referred to in a REXX program under OPTIONS EXMODE, it is
validated whether it contains a correct mixed string or not. When a referred variable contains a mixed
string that is not valid, it depends on the instruction, function, or operator whether it causes a syntax
error.

The ARG, PARSE, PULL, PUSH, QUEUE, SAY, TRACE, and UPPER instructions all require valid mixed strings
with OPTIONS EXMODE in effect.

Instruction Examples
Here are some examples that illustrate how instructions work with DBCS.

Note: <.A> is used only as a shortcut notational convention. In EBCDIC, actual instructions using the
DBCS support must be written in hexadecimal. For example,

DATATYPE('<.A.B.C>')

would actually be coded as

Appendix B. Double-Byte Character Set (DBCS) Support 285

DATATYPE('0E42C142C242C30F'X)

PARSE
In EBCDIC:

x1 = '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1
 w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 1 w1
 w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1 .
 w1 -> '<.A.B>'

The leading and trailing SO and SI are unnecessary for word parsing and, thus, they are stripped off.
However, one pair is still needed for a valid mixed DBCS string to be returned.

PARSE VAR x1 . w2
 w2 -> '<. ><.E><.F><>'

Here the first blank delimited the word and the SO is added to the string to ensure the DBCS blank and the
valid mixed string.

PARSE VAR x1 w1 w2
 w1 -> '<.A.B>'
 w2 -> '<. ><.E><.F><>'

PARSE VAR x1 w1 w2 .
 w1 -> '<.A.B>'
 w2 -> '<.E><.F>'

The word delimiting allows for unnecessary SO and SI to be dropped.

x2 = 'abc<>def <.A.B><><.C.D>'

PARSE VAR x2 w1 '' w2
 w1 -> 'abc<>def <.A.B><><.C.D>'
 w2 -> ''

PARSE VAR x2 w1 '<>' w2
 w1 -> 'abc<>def <.A.B><><.C.D>'
 w2 -> ''

PARSE VAR x2 w1 '<><>' w2
 w1 -> 'abc<>def <.A.B><><.C.D>'
 w2 -> ''

Note that for the last three examples '', <>, and <><> are each a null string (a string of length 0). When
parsing, the null string matches the end of string. For this reason, w1 is assigned the value of the entire
string and w2 is assigned the null string.

PUSH and QUEUE
The PUSH and QUEUE instructions add entries to the program stack. Since a stack entry is limited to 255
bytes, the expression must be truncated less than 256 bytes. If the truncation splits a DBCS string, REXX
will insure that the integrity of the SO-SI pairing will be kept under OPTIONS EXMODE.

SAY and TRACE
The SAY and TRACE instructions write data to the output stream. As was true for the PUSH and QUEUE
instructions, REXX will guarantee the SO-SI pairs are kept for any data that is separated to meet the
requirements of the output stream. The SAY and TRACE instructions display data on the user's terminal.
As was true for the PUSH and QUEUE instructions, REXX will guarantee the SO-SI pairs are kept for any

286 z/VM: 7.3 REXX/VM Reference

data that is separated to meet the requirements of the terminal line size. This is generally 130 bytes or
fewer if the DIAG-24 value returns a smaller value.

When the data is split up in shorter lengths, again the DBCS data integrity is kept under OPTIONS
EXMODE. In EBCDIC, if the terminal line size is less than 4, the string is treated as SBCS data, because 4
is the minimum for mixed string data.

UPPER
Under OPTIONS EXMODE, the UPPER instruction translates only SBCS characters in contents of one or
more variables to uppercase, but it never translates DBCS characters. If the content of a variable is not
valid mixed string data, no uppercasing occurs.

DBCS Function Handling
Some built-in functions can handle DBCS. The functions that deal with word delimiting and length
determining conform with the following rules under OPTIONS EXMODE:

1. Counting characters—Logical character lengths are used when counting the length of a string (that is,
1 byte for one SBCS logical character, 2 bytes for one DBCS logical character). In EBCDIC, SO and SI
are considered to be transparent, and are not counted, for every string operation.

2. Character extraction from a string—Characters are extracted from a string on a logical character
basis. In EBCDIC, leading SO and trailing SI are not considered as part of one DBCS character.
For instance, .A and .B are extracted from <.A.B>, and SO and SI are added to each DBCS
character when they are finally preserved as completed DBCS characters. When multiple characters
are consecutively extracted from a string, SO and SI that are between characters are also extracted.
For example, .A><.B is extracted from <.A><.B>, and when the string is finally used as a completed
string, the SO prefixes it and the SI suffixes it to give <.A><.B>.

Here are some EBCDIC examples:

S1 = 'abc<>def'

SUBSTR(S1,3,1) -> 'c'
SUBSTR(S1,4,1) -> 'd'
SUBSTR(S1,3,2) -> 'c<>d'

S2 = '<><.A.B><>'

SUBSTR(S2,1,1) -> '<.A>'
SUBSTR(S2,2,1) -> '<.B>'
SUBSTR(S2,1,2) -> '<.A.B>'
SUBSTR(S2,1,3,'x') -> '<.A.B><>x'

S3 = 'abc<><.A.B>'

SUBSTR(S3,3,1) -> 'c'
SUBSTR(S3,4,1) -> '<.A>'
SUBSTR(S3,3,2) -> 'c<><.A>'
DELSTR(S3,3,1) -> 'ab<><.A.B>'
DELSTR(S3,4,1) -> 'abc<><.B>'
DELSTR(S3,3,2) -> 'ab<.B>'

3. Character concatenation—String concatenation can only be done with valid mixed strings. In EBCDIC,
adjacent SI and SO (or SO and SI) that are a result of string concatenation are removed. Even during
implicit concatenation as in the DELSTR function, unnecessary SO and SI are removed.

4. Character comparison—Valid mixed strings are used when comparing strings on a character basis. A
DBCS character is always considered greater than an SBCS one if they are compared. In all but the
strict comparisons, SBCS blanks, DBCS blanks, and leading and trailing contiguous SO and SI (or SI
and SO) in EBCDIC are removed. SBCS blanks may be added if the lengths are not identical.

In EBCDIC, contiguous SO and SI (or SI and SO) between nonblank characters are also removed for
comparison.

Appendix B. Double-Byte Character Set (DBCS) Support 287

Note: The strict comparison operators do not cause syntax errors even if you specify mixed strings that
are not valid.

In EBCDIC:

 '<.A>' = '<.A. >' -> 1 /* true */
 '<><><.A>' = '<.A><><>' -> 1 /* true */
 '<> <.A>' = '<.A>' -> 1 /* true */
'<.A><><.B>' = '<.A.B>' -> 1 /* true */
 'abc' < 'ab<. >' -> 0 /* false */

5. Word extraction from a string—“Word” means that characters in a string are delimited by an SBCS or
a DBCS blank.

In EBCDIC, leading and trailing contiguous SO and SI (or SI and SO) are also removed when words
are separated in a string, but contiguous SO and SI (or SI and SO) in a word are not removed or
separated for word operations. Leading and trailing contiguous SO and SI (or SI and SO) of a word are
not removed if they are among words that are extracted at the same time.

In EBCDIC:

W1 = '<><. .A. . .B><.C. .D><>'

SUBWORD(W1,1,1) -> '<.A>'
SUBWORD(W1,1,2) -> '<.A. . .B><.C>'
SUBWORD(W1,3,1) -> '<.D>'
SUBWORD(W1,3) -> '<.D>'

W2 = '<.A. .B><.C><> <.D>'

SUBWORD(W2,2,1) -> '<.B><.C>'
SUBWORD(W2,2,2) -> '<.B><.C><> <.D>'

Built-in Function Examples
Examples for built-in functions, those that support DBCS and follow the rules defined, are given in this
section. For full function descriptions and the syntax diagrams, refer to Chapter 3, “Functions,” on page
67.

ABBREV
In EBCDIC:

ABBREV('<.A.B.C>','<.A.B>') -> 1
ABBREV('<.A.B.C>','<.A.C>') -> 0
ABBREV('<.A><.B.C>','<.A.B>') -> 1
ABBREV('aa<>bbccdd','aabbcc') -> 1

Applying the character comparison and character extraction from a string rules.

COMPARE
In EBCDIC:

COMPARE('<.A.B.C>','<.A.B><.C>') -> 0
COMPARE('<.A.B.C>','<.A.B.D>') -> 3
COMPARE('ab<>cde','abcdx') -> 5
COMPARE('<.A><>','<.A>','<. >') -> 0

Applying the character concatenation for padding, character extraction from a string, and character
comparison rules.

COPIES
In EBCDIC:

288 z/VM: 7.3 REXX/VM Reference

COPIES('<.A.B>',2) -> '<.A.B.A.B>'
COPIES('<.A><.B>',2) -> '<.A><.B.A><.B>'
COPIES('<.A.B><>',2) -> '<.A.B><.A.B><>'

Applying the character concatenation rule.

DATATYPE
DATATYPE('<.A.B>') -> 'CHAR'
DATATYPE('<.A.B>','D') -> 1
DATATYPE('<.A.B>','C') -> 1
DATATYPE('a<.A.B>b','D') -> 0
DATATYPE('a<.A.B>b','C') -> 1
DATATYPE('abcde','C') -> 0
DATATYPE('<.A.B','C') -> 0
DATATYPE('<.A.B>','S') -> 1 /* if ETMODE is on */

Note: If string is not a valid mixed string and C or D is specified as type, 0 is returned.

FIND
FIND('<.A. .B.C> abc','<.B.C> abc') -> 2
FIND('<.A. .B><.C> abc','<.B.C> abc') -> 2
FIND('<.A. . .B> abc','<.A> <.B>') -> 1

Applying the word extraction from a string and character comparison rules.

INDEX, POS, and LASTPOS
INDEX('<.A><.B><><.C.D.E>','<.D.E>') -> 4
POS('<.A>','<.A><.B><><.A.D.E>') -> 1
LASTPOS('<.A>','<.A><.B><><.A.D.E>') -> 3

Applying the character extraction from a string and character comparison rules.

INSERT and OVERLAY
In EBCDIC:

INSERT('a','b<><.A.B>',1) -> 'ba<><.A.B>'
INSERT('<.A.B>','<.C.D><>',2) -> '<.C.D.A.B><>'
INSERT('<.A.B>','<.C.D><><.E>',2) -> '<.C.D.A.B><><.E>'
INSERT('<.A.B>','<.C.D><>',3,,'<.E>') -> '<.C.D><.E.A.B>'

OVERLAY('<.A.B>','<.C.D><>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',3) -> '<.C.D><><.A.B>'
OVERLAY('<.A.B>','<.C.D><>',4,,'<.E>') -> '<.C.D><.E.A.B>'
OVERLAY('<.A>','<.C.D><.E>',2) -> '<.C.A><.E>'

Applying the character extraction from a string and character comparison rules.

JUSTIFY
JUSTIFY('<><. .A. . .B><.C. .D>',10,'p')
 -> '<.A>ppp<.B><.C>ppp<.D>'
JUSTIFY('<><. .A. . .B><.C. .D>',11,'p')
 -> '<.A>pppp<.B><.C>ppp<.D>'
JUSTIFY('<><. .A. . .B><.C. .D>',10,'<.P>')
 -> '<.A.P.P.P.B><.C.P.P.P.D>'
JUSTIFY('<><.X. .A. . .B><.C. .D>',11,'<.P>')
 -> '<.X.P.P.A.P.P.B><.C.P.P.D>'

Applying the character concatenation for padding and character extraction from a string rules.

Appendix B. Double-Byte Character Set (DBCS) Support 289

LEFT, RIGHT, and CENTER
In EBCDIC:

LEFT('<.A.B.C.D.E>',4) -> '<.A.B.C.D>'
LEFT('a<>',2) -> 'a<> '
LEFT('<.A>',2,'*') -> '<.A>*'
RIGHT('<.A.B.C.D.E>',4) -> '<.B.C.D.E>'
RIGHT('a<>',2) -> ' a'
CENTER('<.A.B>',10,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E>'
CENTER('<.A.B>',11,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E.E>'
CENTER('<.A.B>',10,'e') -> 'eeee<.A.B>eeee'

Applying the character concatenation for padding and character extraction from a string rules.

LENGTH
In EBCDIC:

LENGTH('<.A.B><.C.D><>') -> 4

Applying the counting characters rule.

REVERSE
In EBCDIC:

REVERSE('<.A.B><.C.D><>') -> '<><.D.C><.B.A>'

Applying the character extraction from a string and character concatenation rules.

SPACE
In EBCDIC:

SPACE('a<.A.B. .C.D>',1) -> 'a<.A.B> <.C.D>'
SPACE('a<.A><><. .C.D>',1,'x') -> 'a<.A>x<.C.D>'
SPACE('a<.A><. .C.D>',1,'<.E>') -> 'a<.A.E.C.D>'

Applying the word extraction from a string and character concatenation rules.

STRIP
In EBCDIC:

STRIP('<><.A><.B><.A><>',,'<.A>') -> '<.B>'

Applying the character extraction from a string and character concatenation rules.

SUBSTR and DELSTR
In EBCDIC:

SUBSTR('<><.A><><.B><.C.D>',1,2) -> '<.A><><.B>'
DELSTR('<><.A><><.B><.C.D>',1,2) -> '<><.C.D>'
SUBSTR('<.A><><.B><.C.D>',2,2) -> '<.B><.C>'
DELSTR('<.A><><.B><.C.D>',2,2) -> '<.A><><.D>'
SUBSTR('<.A.B><>',1,2) -> '<.A.B>'
SUBSTR('<.A.B><>',1) -> '<.A.B><>'

Applying the character extraction from a string and character concatenation rules.

SUBWORD and DELWORD
In EBCDIC:

290 z/VM: 7.3 REXX/VM Reference

SUBWORD('<><. .A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><. .A. . .B><.C. .D>',1,2) -> '<><. .D>'
SUBWORD('<><.A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><.A. . .B><.C. .D>',1,2) -> '<><.D>'
SUBWORD('<.A. .B><.C><> <.D>',1,2) -> '<.A. .B><.C>'
DELWORD('<.A. .B><.C><> <.D>',1,2) -> '<.D>'

Applying the word extraction from a string and character concatenation rules.

SYMBOL
In EBCDIC:

 Drop A.3 ; <.A.B>=3 /* if ETMODE is on */

 SYMBOL('<.A.B>') -> 'VAR'
 SYMBOL(<.A.B>) -> 'LIT' /* has tested '3' */
 SYMBOL('a.<.A.B>') -> 'LIT' /* has tested A.3 */

TRANSLATE
In EBCDIC:

TRANSLATE('abcd','<.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>bcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>xcd','<><.A.B.C>','ab<>c') -> '<.A>x<.C>d'

Applying the character extraction from a string, character comparison, and character concatenation rules.

VALUE
In EBCDIC:

Drop A3 ; <.A.B>=3 ; fred='<.A.B>'

VALUE('fred') -> '<.A.B>' /* looks up FRED */
VALUE(fred) -> '3' /* looks up <.A.B> */
VALUE('a'<.A.B>) -> 'A3' /* if ETMODE is on */

VERIFY
In EBCDIC:

VERIFY('<><><.A.B><><.X>','<.B.A.C.D.E>') -> 3

Applying the character extraction from a string and character comparison rules.

WORD, WORDINDEX, and WORDLENGTH
In EBCDIC:

W = '<><. .A. . .B><.C. .D>'

WORD(W,1) -> '<.A>'
WORDINDEX(W,1) -> 2
WORDLENGTH(W,1) -> 1

Y = '<><.A. . .B><.C. .D>'

WORD(Y,1) -> '<.A>'
WORDINDEX(Y,1) -> 1
WORDLENGTH(Y,1) -> 1

Z = '<.A .B><.C> <.D>'

WORD(Z,2) -> '<.B><.C>'

Appendix B. Double-Byte Character Set (DBCS) Support 291

WORDINDEX(Z,2) -> 3
WORDLENGTH(Z,2) -> 2

Applying the word extraction from a string and (for WORDINDEX and WORDLENGTH) counting characters
rules.

WORDS
In EBCDIC:

W = '<><. .A. . .B><.C. .D>'

WORDS(W) -> 3

Applying the word extraction from a string rule.

WORDPOS
In EBCDIC:

WORDPOS('<.B.C> abc','<.A. .B.C> abc') -> 2
WORDPOS('<.A.B>','<.A.B. .A.B><. .B.C. .A.B>',3) -> 4

Applying the word extraction from a string and character comparison rules.

DBCS Processing Functions
This section describes the functions that support DBCS mixed strings. These functions handle mixed
strings regardless of the OPTIONS mode.

Note: When used with DBCS functions, length is always measured in bytes (as opposed to
LENGTH(string), which is measured in characters).

Counting Option
In EBCDIC, when specified in the functions, the counting option can control whether the SO and SI are
considered present when determining the length. Y specifies counting SO and SI within mixed strings. N
specifies not to count the SO and SI, and is the default.

Function Descriptions
The following are the DBCS functions and their descriptions.

DBADJUST

DBADJUST (string

, operation

)

In EBCDIC, adjusts all contiguous SI and SO (or SO and SI) characters in string based on the operation
specified. The following are valid operations. Only the capitalized and highlighted letter is needed; all
characters following it are ignored.
Blank

changes contiguous characters to blanks (X'4040').
Remove

removes contiguous characters, and is the default.

DBCS Support

292 z/VM: 7.3 REXX/VM Reference

Here are some EBCDIC examples:

DBADJUST('<.A><.B>a<>b','B') -> '<.A. .B>a b'
DBADJUST('<.A><.B>a<>b','R') -> '<.A.B>ab'
DBADJUST('<><.A.B>','B') -> '<. .A.B>'

DBBRACKET

DBBRACKET (string)

In EBCDIC, adds SO and SI brackets to a DBCS-only string. If string is not a DBCS-only string, a SYNTAX
error results. That is, the input string must be an even number of bytes in length and each byte must be a
valid DBCS value.

Here are some EBCDIC examples:

DBBRACKET('.A.B') -> '<.A.B>'
DBBRACKET('abc') -> SYNTAX error
DBBRACKET('<.A.B>') -> SYNTAX error

DBCENTER

DBCENTER (string , length
,

pad , option

)

returns a string of length length with string centered in it, with pad characters added as necessary to make
up length. The default pad character is a blank. If string is longer than length, it is truncated at both ends
to fit. If an odd number of characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBCENTER('<.A.B.C>',4) -> ' <.B> '
DBCENTER('<.A.B.C>',3) -> ' <.B>'
DBCENTER('<.A.B.C>',10,'x') -> 'xx<.A.B.C>xx'
DBCENTER('<.A.B.C>',10,'x','Y') -> 'x<.A.B.C>x'
DBCENTER('<.A.B.C>',4,'x','Y') -> '<.B>'
DBCENTER('<.A.B.C>',5,'x','Y') -> 'x<.B>'
DBCENTER('<.A.B.C>',8,'<.P>') -> ' <.A.B.C> '
DBCENTER('<.A.B.C>',9,'<.P>') -> ' <.A.B.C.P>'
DBCENTER('<.A.B.C>',10,'<.P>') -> '<.P.A.B.C.P>'
DBCENTER('<.A.B.C>',12,'<.P>','Y') -> '<.P.A.B.C.P>'

DBCJUSTIFY

DBCJUSTIFY (string , length
,

pad , option

)

DBCS Support

Appendix B. Double-Byte Character Set (DBCS) Support 293

formats string by adding pad characters between nonblank characters to justify to both margins and
length of bytes length (length must be nonnegative). Rules for adjustments are the same as for the
JUSTIFY function. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some examples:

DBCJUSTIFY('<><AA BB><CC>',20,,'Y')
 -> '<AA> <BB> <CC>'

DBCJUSTIFY('<>< AA BB>< CC>',20,'<XX>','Y')
 -> '<AAXXXXXXBBXXXXXXCC>'

DBCJUSTIFY('<>< AA BB>< CC>',21,'<XX>','Y')
 -> '<AAXXXXXXBBXXXXXXCC> '

DBCJUSTIFY('<>< AA BB>< CC>',11,'<XX>','Y')
 -> '<AAXXXXBB> '

DBCJUSTIFY('<>< AA BB>< CC>',11,'<XX>','N')
 -> '<AAXXBBXXCC> '

DBLEFT

DBLEFT (string , length
,

pad , option

)

returns a string of length length containing the leftmost length characters of string. The string returned is
padded with pad characters (or truncated) on the right as needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBLEFT('ab<.A.B>',4) -> 'ab<.A>'
DBLEFT('ab<.A.B>',3) -> 'ab '
DBLEFT('ab<.A.B>',4,'x','Y') -> 'abxx'
DBLEFT('ab<.A.B>',3,'x','Y') -> 'abx'
DBLEFT('ab<.A.B>',8,'<.P>') -> 'ab<.A.B.P>'
DBLEFT('ab<.A.B>',9,'<.P>') -> 'ab<.A.B.P> '
DBLEFT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBLEFT('ab<.A.B>',9,'<.P>','Y') -> 'ab<.A.B> '

DBRIGHT

DBRIGHT (string , length
,

pad , option

)

returns a string of length length containing the rightmost length characters of string. The string returned is
padded with pad characters (or truncated) on the left as needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

DBCS Support

294 z/VM: 7.3 REXX/VM Reference

Here are some EBCDIC examples:

DBRIGHT('ab<.A.B>',4) -> '<.A.B>'
DBRIGHT('ab<.A.B>',3) -> ' <.B>'
DBRIGHT('ab<.A.B>',5,'x','Y') -> 'x<.B>'
DBRIGHT('ab<.A.B>',10,'x','Y') -> 'xxab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>') -> '<.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',9,'<.P>') -> ' <.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBRIGHT('ab<.A.B>',11,'<.P>','Y') -> ' ab<.A.B>'
DBRIGHT('ab<.A.B>',12,'<.P>','Y') -> '<.P>ab<.A.B>'

DBRLEFT

DBRLEFT (string , length

, option

)

returns the remainder from the DBLEFT function of string. If length is greater than the length of string,
returns a null string.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBRLEFT('ab<.A.B>',4) -> '<.B>'
DBRLEFT('ab<.A.B>',3) -> '<.A.B>'
DBRLEFT('ab<.A.B>',4,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',3,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',8) -> ''
DBRLEFT('ab<.A.B>',9,'Y') -> ''

DBRRIGHT

DBRRIGHT (string , length

, option

)

returns the remainder from the DBRIGHT function of string. If length is greater than the length of string,
returns a null string.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBRRIGHT('ab<.A.B>',4) -> 'ab'
DBRRIGHT('ab<.A.B>',3) -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5) -> 'a'
DBRRIGHT('ab<.A.B>',4,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',8) -> ''
DBRRIGHT('ab<.A.B>',8,'Y') -> ''

DBTODBCS

DBTODBCS (string)

DBCS Support

Appendix B. Double-Byte Character Set (DBCS) Support 295

converts all passed, valid SBCS characters (including the SBCS blank) within string to the corresponding
DBCS equivalents. Other single-byte codes and all DBCS characters are not changed. In EBCDIC, SO and
SI brackets are added and removed where appropriate.

Here are some EBCDIC examples:

DBTODBCS('Rexx 1988') -> '<.R.e.x.x. .1.9.8.8>'
DBTODBCS('<.A> <.B>') -> '<.A. .B>'

Note: In these examples, the .x is the DBCS character corresponding to an SBCS x.

DBTOSBCS

DBTOSBCS (string)

converts all passed, valid DBCS characters (including the DBCS blank) within string to the corresponding
SBCS equivalents. Other DBCS characters and all SBCS characters are not changed. In EBCDIC, SO and SI
brackets are removed where appropriate.

Here are some EBCDIC examples:

DBTOSBCS('<.S.d>/<.2.-.1>') -> 'Sd/2-1'
DBTOSBCS('<.X. .Y>') -> '<.X> <.Y>'

Note: In these examples, the .d is the DBCS character corresponding to an SBCS d. But the .X and .Y do
not have corresponding SBCS characters and are not converted.

DBUNBRACKET

DBUNBRACKET (string)

In EBCDIC, removes the SO and SI brackets from a DBCS-only string enclosed by SO and SI brackets. If
the string is not bracketed, a SYNTAX error results.

Here are some EBCDIC examples:

DBUNBRACKET('<.A.B>') -> '.A.B'
DBUNBRACKET('ab<.A>') -> SYNTAX error

DBVALIDATE

DBVALIDATE (string

, 'C'

)

returns 1 if the string is a valid mixed string or SBCS string. Otherwise, returns 0. Mixed string validation
rules are:

1. Only valid DBCS character codes
2. DBCS string is an even number of bytes in length
3. EBCDIC only — Proper SO and SI pairing.

DBCS Support

296 z/VM: 7.3 REXX/VM Reference

In EBCDIC, if C is omitted, only the leftmost byte of each DBCS character is checked to see that it falls
in the valid range for the implementation it is being run on (that is, in EBCDIC, the leftmost byte range is
from X'41' to X'FE').

Here are some EBCDIC examples:

z='abc<de'

DBVALIDATE('ab<.A.B>') -> 1
DBVALIDATE(z) -> 0

y='C1C20E111213140F'X

DBVALIDATE(y) -> 1
DBVALIDATE(y,'C') -> 0

DBWIDTH

DBWIDTH (string

, option

)

returns the length of string in bytes.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBWIDTH('ab<.A.B>','Y') -> 8
DBWIDTH('ab<.A.B>','N') -> 6

DBCS Support

Appendix B. Double-Byte Character Set (DBCS) Support 297

DBCS Support

298 z/VM: 7.3 REXX/VM Reference

Appendix C. Performance Considerations

Here are some tips to help you code your programs for better performance.

The overhead of including comments on a line with an instruction is negligible except for the storage they
take up and the initial read-in time. Comments on a separate line may affect performance, but these may
be removed in the executable form by EXECUPDT.

Special information is kept for DO-loops to minimize loop overhead.

Parsing is optimized for mixed case data. PARSE ARG and PARSE PULL are therefore slightly faster than
ARG and PULL.

Where possible, the executable form of REXX programs should be in V-format. This minimizes execution
time, main storage use (paging), and file space or minidisk space required. (Note: If EXECUPDT is used,
the library files are F-format but the executable file is V-format.)

Wherever possible, REXX programs should be written in mixed case (especially comments). This
maximizes reading speed and minimizes human errors because of misreading data, and so improves
the performance of the human side of the REXX programming operation.

There is no particular area in the language processor that can be described as a bottleneck. However, any
external call may incur significant system overhead. High precision numbers should be avoided unless
truly needed.

Performance Considerations

© Copyright IBM Corp. 1990, 2022 299

Performance Considerations

300 z/VM: 7.3 REXX/VM Reference

Appendix D. Example of a Function Package

 TITLE 'USERFN: Sample model for user function package'
*
*
* The first part of this example deals with obtaining free
* storage and moving the rest of the program into that storage
* as a nucleus extension. The code just loaded (from FREEGO
* label to the table before FUNC1) then responds to the
* original call and successive calls to RXUSERFN. Calls to
* load a user function are handled by setting up their entry
* points as nucleus extensions.
* In order to set up new user functions, the user must add an
* entry in the FUNLIST table and add the code following the
* other functions.
*
USERFN CSECT *
 USING *,R12
 USING NUCON,0
 USING USERSAVE,R13
 LR R10,R14 Save return address
 SLR R2,R2 Assume it is NUCEXT
* "RXUSERFN" only.
 CLI ARG1(R1),X'FF' Any arguments?
 BE GOLOAD Br if not - go install
 CLC ARG1(8,R1),=CL8'LOAD' Is this explicit load?
 BNE BADPL Br if not - go complain
* Note: You do not have to handle RESET because the
* package has not yet been loaded
 SPACE 1
*-> LOAD request, so check function name against FUNLIST
 SPACE 1
 LA R4,LENTRY Length of FUNLIST entry
 LA R2,FUNLIST Start of function table
 LA R5,EFUNLIST End of function table
CHECK EQU *
 CLC ARG2(,R1),FUNLNAME(R2) Names match?
 BE GOLOAD Br if yes - go do
* appropriate NUCEXTing.
 BXLE R2,R4,CHECK Continue testing if more
 LA R15,1 Indicate function not found
 BR R10 Not in list - return
 SPACE 1
*=> NUCEXT "RXUSERFN" as well as specific function (for example, if
* LOAD specified on invocation).
 SPACE 1
GOLOAD EQU *
 LA R0,FREELEND Length of code in DWs
* Get the storage
 CMSSTOR OBTAIN,DWORDS=(R0),SUBPOOL='NUCLEUS', X
 ERROR=NOSTORE
 LA R8,FREEGO Start of free storage code
 L R9,=A(FREELEN) Get length in bytes
 LR R7,R9 Copy length for MVCL
 LR R4,R9 Save for later use
 LR R3,R1 ""
 LR R6,R1 Free storage area start
 SPKA 0 Set nucleus key
 MVCL R6,R8 Move code to free storage
 NUCEXT SET,NAME='RXUSERFN',ENTRY=(R3), X
 ORIGIN=((R3),(R4)),KEY=NUCLEUS,SYSTEM=YES, X
 SERVICE=YES,ERROR=(R10)
*-> See if there is a function...
 LTR R2,R2 Install "RXUSERFN" only?
 BZR R10 Br if yes - return to caller
* R2 points to FUNLIST entry to be installed.
* R3 points to start of NUCXLOADed area.
 A R3,FUNOFFS(,R2) Calculate true start address
 LA R2,FUNLNAME(R2) Address of startup name
 NUCEXT SET,NAME=(R2),ENTRY=(R3),KEY=NUCLEUS, X
 ORIGIN=(0,0),SYSTEM=YES,SERVICE=NO,ERROR=*
 BR R10 Return to caller
 DROP R12
 SPACE 3
 LTORG ,
 TITLE 'USERFN: Code residing in free storage'

A Function Package

© Copyright IBM Corp. 1990, 2022 301

* The following code resides in free storage, and is capable *
* of replying to LOAD or RESET. *
* A LOAD call results in the identifying of the functions *
* passed as parameters following LOAD as entry points in *
* RXUSERFN. *
* A RESET service call from NUCXDROP will turn the functions *
* OFF. A PURGE service call is ignored. *

 SPACE 2
FREEGO DS 0D Force doubleword alignment
* of free-loaded code.
 USING *,R12
 B STARTCOD
 DC CL8'>USERFN<' Eye-catcher for storage dump
STARTCOD EQU *
 LR R10,R14 Save return address
 CLC ARG1(8,R1),=CL8'LOAD' Is this a load?
 BE CHK4ARGS Yes, check for any args
 CLC ARG1(8,R1),=CL8'RESET' Reset ?
 BE DOOFF Yes, turn off functions
 SLR R15,R15 In case of service call
 CLI USECTYP,EPLFABEN Is it an abend call ?
 BER R14 Br if yes - quick quit
 LA R15,4 No, set error RC
 BR R14 .. and return
 SPACE 1
CHK4ARGS EQU *
 LA R15,1 Set possible return code
 CLI ARG2(R1),X'FF' Any arguments passed?
 BER R14 No, error (already loaded)

* AUTOLOAD: switch on selected function *

* *
* 'LOAD' request. Check function name against FUNLIST. *
* *
* Only turn on the requested (autoload) function. *

 SPACE 1
 PUSH USING Save USING status
AUTOLOAD EQU *
 LR R3,R1 Save old PLIST pointer
 LR R1,R13 Get new PLIST address
 LA R4,LENTRY Length of FUNLIST entry
 LA R5,EFUNLIST End of function table
 LA R2,FUNLIST Start of function table
 LA R15,1 Set error return code
CHECK1 EQU *
 CLC ARG2(,R3),FUNLNAME(R2) Check against name
 BE TURNON Found - turn function on
 BXLE R2,R4,CHECK1 Loop for another check
 BR R10 Return with RC = 1
 SPACE 1
TURNON EQU *
* See if function is already a nucleus extension
 LA R3,FUNLNAME(R2) Get startup name
 NUCEXT QUERY,NAME=(R3),ERROR=*
 LTR R15,R15 Check return code
 BZR R10 Exit if already loaded
 L R6,FUNOFFS(,R2) Load address offset
 ALR R6,R12 True start address
 NUCEXT SET,NAME=(R3),ENTRY=(R6),KEY=NUCLEUS, X
 ORIGIN=(0,0),SYSTEM=YES,SERVICE=NO,ERROR=*
 BR R10 Return
 POP USING Restore USING status
 SPACE 1

* RESET call: switch off functions *

DOOFF EQU *
 LA R5,FUNLIST -> to list
FUNLOOP EQU *
 DMSLT R15,FUNOFFS(R5) Any more to cancel?
 BZR R10 0 = all done ... Get out
 LA R3,FUNLNAME(R5)
 NUCEXT CLR,NAME=(R3),ERROR=*
* (ignore errors, for example: function already canceled)
 LA R5,LENTRY(,R5) -> next item in FUNLIST
 B FUNLOOP
 SPACE 3

A Function Package

302 z/VM: 7.3 REXX/VM Reference

* List of functions included in this pack, with their offsets
FUNLNAME EQU 4,8 Offset & length of name
FUNOFFS EQU 0,4 Offset to the routine
FUNLIST DC A(FUNC1-FREEGO),CL8'RXUSER1'
LENTRY EQU *-FUNLIST Length of a single entry
 DC A(FUNC2-FREEGO),CL8'RXUSER2'
 DC A(FUNC3-FREEGO),CL8'RXUSER3'
EFUNLIST EQU * End of the funlist proper
 DC A(*-*) End fence

 EJECT
*+-+
* A sample user written function is shown below. As many
* other functions can be added as the user desires.
*
* The usual order is to obtain an EVALBLOK (here done by
* the GETBLOK routine), do the function and put the result
* in the EVALBLOK, and finally to complete the EVALBLOK and
* return (here done by the EBLOCK routine).
*+-+
 SPACE 2
* 'USERFN: USER1 - User function 1'
* This function simply returns the first passed parameter!
FUNC1 EQU *
 USING *,R12 Tell assembler of base
 LR R10,R14 Save return address
 LR R13,R0 Get copy of R0
 USING EFPLIST,R13 Addressing for the PLIST
 L R11,EARGLIST Get pointer to arg list
 MVC SAVEFRET,EFUNRET Save function return addr
 DROP R13 Done with this for now
 USING PARMBLOK,R11 Tell assembler
 L R1,PARM1LEN Returned data length
 LR R3,R1 Save it for later
 BAL R14,GETBLOK Go get EVALBLOK
 USING EVALBLOK,R5 Tell assembler

* *
* other processing for function 1 would be here *
* *

 L R15,PARM1ADR
 EX R3,MOVEIT Move the data
 LA R15,0 Set good return code
 B EBLOCK Complete EVALBLOK & return
MOVEIT MVC EVDATA(0),0(R15) Move user parm to eval block
 SPACE 2
* 'USERFN: USER2 - User function 2'
FUNC2 EQU *

* *
* code for user function 2 goes here! *
* *

 LA R15,0 Set RC of 2
 BR R14 Return
 SPACE 2
* 'USERFN: USER3 - User function 3'
FUNC3 EQU *

* *
* code for user function 3 goes here! *
* *

 LA R15,0 Set RC of 3
 BR R14 Return
 EJECT
 TITLE 'USERFN: Common get EVALBLOK subroutine'

* This subroutine obtains an EVALBLOK. *
* The assumed input is: *
* - R1: length of EVDATA (return data length) *
* - R14: return address *
* *
* The output is: *
* - R0, R1, & R2 undefined *
* - R4: number of doublewords in entire EVALBLOK *
* - R5: address of the EVALBLOK *
* - R15: undefined *
* - other registers are unchanged. *

A Function Package

Appendix D. Example of a Function Package 303

* *
* If storage is not available, an error message is displayed *
* and return is taken to the caller with a nonzero return *
* code. *

 SPACE 2
GETBLOK EQU *
 BALR R2,0 Establish base register
 USING *,R2 Tell assembler
 LA R0,EVCTLEN+7(,R1) Add in overhead + rounding
 C R1,STORLIM Compare with storage limit
 BH NOSTORE Branch if higher than limit
 SRL R0,3 Make it doublewords
 LR R4,R0 Return number of doublewords
* in entire EVALBLOK.
 CMSSTOR OBTAIN,DWORDS=(R0),ERROR=NOSTORE Get the storage
 LR R5,R1 Save A(EVALBLOK)
* Now clear the storage block
 LR R15,R3 Save R3
 LR R0,R5 Addr of storage block in R0
 LR R1,R4 Length of storage in R1
 SLL R1,3 Make it bytes!
 LA R3,0 length to 0, pad of '00'x
 MVCL R0,R2 Clear the block
 LR R3,R15 Restore R3
 BR R14 Return to caller
 DROP R2 Done with this guy
 TITLE 'USERFN: Common complete EVALBLOK routine'

* At this point the EVALBLOK is filled in. The registers *
* are assumed to be as follows: *
* R3 - the number of bytes of data to be returned
* R4 - the size (in doublewords) of the entire EVALBLOK *
* R5 - the address of the EVALBLOK *

 SPACE 1
EBLOCK EQU *
 BALR R12,0 Set base register
 USING *,R12 Tell assembler
 USING EVALBLOK,R5 Addressing for EVALBLOK
 ST R4,EVSIZE Total block size (DW's)
 L R4,SAVEFRET Get back return address
 ST R5,0(R4) Pass address back to caller
 ST R3,EVLEN Set it in EVALBLOK
 BR R10 Abandon ship
 DROP R5
 TITLE 'Common Error Processing Routines'

* Error handling routines. *

 SPACE 3
BADPL EQU * Something's wrong with PLIST
 BALR R12,0 Load base for this code
 USING *,R12 Tell assembler of this
 LA R2,MSG1 Get message address
 B DISPMSG Go display the message
 SPACE 1
NOSTORE EQU * CMSSTORE not successful
 BALR R12,0 Load base for this code
 USING *,R12 Tell assembler of this
 LA R2,MSG2 Get message address
DISPMSG EQU *
 BALR R12,0 Load base for this code
 USING *,R12 Tell assembler of this
 LR R1,R13 Use USERSAVE for PLIST
 APPLMSG APPLID=USR,TEXTA=(R2)
NODISPL1 EQU *
 LA R15,4 Set nonzero return code
 BR R10 Return
 SPACE 1
MSG1 DC AL1(L'MSG1TXT)
MSG1TXT DC C'DMSRUF070E Invalid parameter'
 SPACE
MSG2 DC AL1(L'MSG2TXT)
MSG2TXT DC C'DMSRUF450E Machine storage exhausted or request exceedX
 s limit'
 SPACE 2
STORLIM DC F'16777216' Constant of 16MB
SAVEFRET DS F Function return address
 ORG ,
 SPACE 2
 LTORG Literal pool

A Function Package

304 z/VM: 7.3 REXX/VM Reference

 TITLE 'USERFN: Common symbolic assignments'
 SPACE 1
ARG1 EQU 8,8 First argument
ARG2 EQU 16,8 Second argument
 REGEQU
 DS 0D Get to doubleword boundary
FREELEN EQU *-FREEGO Bytes of free store code.
FREELEND EQU (*-FREEGO+7)/8 Doublewords of free store
* code.
 SPACE 1
* NUCEXT PLIST Flags:
SERVICE EQU X'40'
SYSTEM EQU X'80'
 SPACE 2
*-- DSECT for the function PLIST ------------------------------
EFPLIST DSECT
ECOMVERB DS F COMVERB pointer
EBEGARGS DS F pointer to argument string
EENDARGS DS F pointer to arg string end
EFBLOCK DS F fileblock pointer (0)
EARGLIST DS F pointer to function args
EFUNRET DS F location of return data
*-- DSECT for the returned data block -------------------------
EVALBLOK DSECT
EVBPAD1 DS F Reserved
EVSIZE DS F Total block size in DW's
EVLEN DS F Length of Data (in bytes)
EVBPAD2 DS F Reserved
EVCTLEN EQU *-EVALBLOK Length of preceding section
EVDATA DS 0D First byte of data
EVDATAW1 DS F First word of data
EVDATAW2 DS F Second word of data
EVDATAW3 DS F Third word of data
EVDATAW4 DS F Fourth word of data
EVDATAW5 DS F Fifth word of data
 SPACE 3
-- DSECT for input parameters ------------------------------
PARMBLOK DSECT
PARM1ADR DS F Address of parameter 1
PARM1LEN DS F Length of parameter 1
PARMNTRY EQU *-PARMBLOK Length of table entry
PARM2ADR DS F Address of parameter 2
PARM2LEN DS F Length of parameter 2
PARM3ADR DS F Address of parameter 3
PARM3LEN DS F Length of parameter 3
PARM4ADR DS F Address of parameter 4
PARM4LEN DS F Length of parameter 4
PARM5ADR DS F Address of parameter 5
PARM5LEN DS F Length of parameter 5
PADR EQU 0,4 Offset in each pair to
* parameter's address.
PLEN EQU 4,4 Offset in each pair to
* parameter's length.
 SPACE 3
 USERSAVE
 EPLIST
 PRINT NOGEN No need to see NUCON....
 NUCON
 END

A Function Package

Appendix D. Example of a Function Package 305

A Function Package

306 z/VM: 7.3 REXX/VM Reference

Appendix E. z/VM REXX/VM Interpreter in the GCS
Environment

Most REXX capabilities available in the CMS environment are also available in the Group Control System
(GCS) environment. You can use the REXX instructions, functions, expressions, operators, and so forth.
There are, however, some differences between writing REXX programs for the GCS environment and
writing REXX programs for the CMS environment.

The differences in the GCS environment are as follows:

1. Execs usually reside in CMS formatted disk files and have a file type of GCS. The GCS file type can be
overridden by using the file block.

2. GCS does not support the following immediate commands: TS, TE, and HI.
3. An exec written for the GCS environment should not have the same name as an immediate command.

(Note that an immediate command lets you interrupt a program and halt its execution either
temporarily or permanently.) Immediate commands are higher in the search order; therefore, an
immediate command would be run before an exec. An exec written for the GCS environment with the
same name as an immediate command would never be run.

4. GCS does not support the external function libraries: RXSYSFN, RXLOCFN, and RXUSERFN. However,
GCS does support external function calls. These functions and subroutines must be written in the
REXX language.

5. The GCS CMDSI macro can be used to call REXX programs from Assembler language programs. The
FILEBLK parameter on the CMDSI macro contains the address of the file block. FILEBLK is useful for
executing in-storage execs, executing execs with file types other than GCS, and establishing an initial
subcommand environment.

6. The default ADDRESS environment of REXX is GCS.

ADDRESS GCS specifies that full command resolution is in effect. With full command resolution, first
search for an exec with the given name. If such an exec does not exist, then call the given name using
SVC 202. If the above fails, search for a CP command with the given name.

ADDRESS COMMAND searches for host commands (GCS commands).
7. GCS does not have a terminal input buffer. If you enter a PULL instruction and the program stack is

empty, the WTOR macro generates a read to the console.
8. Each task has its own program stack. Therefore, data in a program stack can be shared among execs

running in the same task.
9. To specify other subcommand environments in GCS you must use LOADCMD. LOADCMD defines a

command name to the requested module of a CMS load library and loads this command module into
storage. Therefore, GCS can call the requested command module when a command is entered at the
console or submitted by a program with the CMDSI macro.

10. The SIGNAL ON HALT instruction has no effect in GCS.
11. GCS does not support the third parameter (selector) on a call to the VALUE function.
12. GCS does not support the REXX Level 2 Stream I/O functions. If the user has an exec with the same

name as one of the REXX Stream I/O functions, the exec will be run.

For information about exits in the GCS environment, see “REXX Exits” on page 198.

The Extended PLIST (EPLIST)
The EPLIST macro generates a DSECT for the GCS extended parameter list.

The format of the EPLIST macro is:

REXX/VM in the GCS Environment

© Copyright IBM Corp. 1990, 2022 307

label

EPLIST

where

label
is an optional assembler label for the statement.

The first statement in the EPLIST macro expansion is labeled EPLIST. For the format of the EPLIST macro,
refer to the data areas and control blocks information in the IBM z/VM Internet Library at IBM: z/VM
Internet Library (https://www.ibm.com/vm/library).

The Standard Tokenized PLIST (PLIST)
The standard tokenized PLIST has the following format:

 DC CL8'EXEC'
 DC CL8'execname'
 DC XL8'FF'

The File Block (FBLOCK)
For the format of the FBLOCK macro, refer to the data areas and control blocks information in the IBM
z/VM Internet Library at IBM: z/VM Internet Library (https://www.ibm.com/vm/library).

EXECCOMM Processing (Sharing Variables)
The EXECCOMM macro allows programs to access and manipulate the current generation of REXX
variables. For a description of EXECCOMM, see z/VM: Group Control System.

Shared Variable Request Block (SHVBLOCK)
If the address of the shared variable request block passed in register 0 is incorrect, the task is terminated
with abend code FCB and reason code 0D01. Each request block in the chain must be structured as
indicated in the SHVBLOCK macro refer to the data areas and control blocks information in the IBM z/VM
Internet Library at IBM: z/VM Internet Library (https://www.ibm.com/vm/library).

A typical calling sequence using the EXECCOMM macro is:

EXECCOMM REQLIST=(5)

where register 5 points to the first of a chain of one or more request blocks.

Function Codes (SHVCODE)
For the format of the SHVCODE macro, refer to the data areas and control blocks information in the IBM
z/VM Internet Library at IBM: z/VM Internet Library (https://www.ibm.com/vm/library).

RXITDEF Processing (Assigning Values for Exits)
The RXITDEF macro assigns the correct values to the symbols used for the exit routine function and
subfunction codes. You can use this macro for CMS and GCS programs.

The format of the RXITDEF macro is:

RXITDEF

For more information on using this macro with the REXX exits, see “REXX Exits” on page 198.

This macro assigns the following symbols:

REXX/VM in the GCS Environment

308 z/VM: 7.3 REXX/VM Reference

https://www.ibm.com/vm/library/
https://www.ibm.com/vm/library/
https://www.ibm.com/vm/library/
https://www.ibm.com/vm/library/
https://www.ibm.com/vm/library/

RXFNC EQU X'0002' Process a function request
RXFNCCAL EQU X'0001' FNC Call a function/subroutine
RXCMD EQU X'0003' Process a command request
RXCMDHST EQU X'0001' CMD Process a host command request
RXMSQ EQU X'0004' Manipulate the session queue
RXMSQPLL EQU X'0001' MSQ Pull an entry from queue
RXMSQPSH EQU X'0002' MSQ Push an entry onto queue
RXMSQSIZ EQU X'0003' MSQ Determine the queue size
RXSIO EQU X'0005' Perform session Input/Output
RXSIOSAY EQU X'0001' SIO Output a SAY string
RXSIOTRC EQU X'0002' SIO Output a TRACE string
RXSIOTRD EQU X'0003' SIO Terminal read
RXSIODTR EQU X'0004' SIO Debug terminal read
RXSIOTLL EQU X'0005' SIO determine line length
RXMEM EQU X'0006' Memory management services
RXMEMGET EQU X'0001' MEM Get memory
RXMEMRET EQU X'0002' MEM Return memory
RXHLT EQU X'0007' Halt services
RXHLTCLR EQU X'0001' HLT Clear the halt status
RXHLTTST EQU X'0002' HLT Test the halt status
RXTRC EQU X'0008' Test the TRACE status
RXTRCTST EQU X'0001' TRC Test the TRACE status
RXINI EQU X'0009' Initialization service
RXINIEXT EQU X'0001' INI Initialization exit
RXTER EQU X'000A' Termination service
RXTEREXT EQU X'0001' TER Termination exit

RXITPARM Processing (Mapping Parameter List for Exits)
The RXITPARM macro maps the parameter list used to pass information between the language processor
and an exit routine. You can use this macro for CMS and GCS programs.

The format of the RXITPARM macro is:

RXITPARM

For more information on using this macro with the REXX exits, see “REXX Exits” on page 198. For the
format of the RXITPARM macro and which parameters are used for the exit routines, refer to the data
areas and control blocks information in the IBM z/VM Internet Library at IBM: z/VM Internet Library
(https://www.ibm.com/vm/library).

REXX/VM in the GCS Environment

Appendix E. z/VM REXX/VM Interpreter in the GCS Environment 309

https://www.ibm.com/vm/library/
https://www.ibm.com/vm/library/

REXX/VM in the GCS Environment

310 z/VM: 7.3 REXX/VM Reference

Appendix F. Input and Output Return and Reason
Codes

The z/VM implementation of input and output uses CSL routines to perform I/O. The return codes and
reason codes from the higher level internal routines are documented in this table.

I/O Return and Reason Codes

© Copyright IBM Corp. 1990, 2022 311

Table 11. Variables and Their Possible Values

Variable Name Integer and Pseudonym Values

reascode 0
Task successfully completed.

90101
Data truncated.

96100
Insufficient storage.

99504
Incorrect open intent for the specified object. (For example, WRITE was
specified, but the stream cannot be written to.)

99505
Incorrect length specified.

99508
Object not defined.

99509
End of object encountered.

99510
System program error.

99511
Error releasing storage.

99512
System program error.

99513
System program error.

99514
System program error.

99515
Incorrect object name.

99518
System program error.

99520
No unique IDs available.

99522
No information available.

99524
Object already exists.

99525
Object already open.

99526
Object not open.

99527
Object is read only.

99528
Object was not found.

I/O Return and Reason Codes

312 z/VM: 7.3 REXX/VM Reference

Table 11. Variables and Their Possible Values (continued)

Variable Name Integer and Pseudonym Values

reascode
(continued)

99529
Object is not readable.

99530
Object specific error. This is usually followed by a lower level routine name and
the return and reason codes from this lower level routine.

99532
Pointer is not movable.

99533
Pointer is out of range.

retcode 0
Task successfully completed.

 4
Warning

 8
Error

I/O Return and Reason Codes

Appendix F. Input and Output Return and Reason Codes 313

I/O Return and Reason Codes

314 z/VM: 7.3 REXX/VM Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1990, 2022 315

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to write programs to
obtain services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a world-wide basis.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

316 z/VM: 7.3 REXX/VM Reference

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 317

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

318 z/VM: 7.3 REXX/VM Reference

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1990, 2022 319

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

320 z/VM: 7.3 REXX/VM Reference

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 321

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

322 z/VM: 7.3 REXX/VM Reference

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Bibliography 323

324 z/VM: 7.3 REXX/VM Reference

Index

Special Characters
- (subtraction operator) 8
, (comma)

as continuation character 6
in CALL instruction 29
in function calls 67
in parsing template list 27, 148
separator of arguments 29, 67

: (colon)
as a special character 6
in a label 12

! prefix on TRACE option 63
? prefix on TRACE option 62
. (period)

as placeholder in parsing 140
causing substitution in variable names 14
in numbers 156

* (multiplication operator) 8, 156
- tracing flag 64
** (power operator) 8, 158
/ (division operator) 8, 156
// (remainder operator) 8, 159
/= (not equal operator) 9
/== (strictly not equal operator) 9, 10
\ (NOT operator) 10
\< (not less than operator) 9
\<< (strictly not less than operator) 10
\= (not equal operator) 9
\== (strictly not equal operator) 9
\> (not greater than operator) 9
\>> (strictly not greater than operator) 10
& (AND logical operator) 10
&& (exclusive OR operator) 10
% (integer division operator) 8, 159
+ (addition operator) 8, 156
+++ tracing flag 64
< (less than operator) 9
<< (strictly less than operator) 9, 10
<<= (strictly less than or equal operator) 10
<= (less than or equal operator) 9
<> (less than or greater than operator) 9
= (equal sign)

assignment indicator 13
equal operator 9
immediate debug command 209
in DO instruction 32
in parsing template 142

== (strictly equal operator) 8, 9, 156
> (greater than operator) 9
>.> tracing flag 64
>< (greater than or less than operator) 9
>= (greater than or equal operator) 9
>> (strictly greater than operator) 9, 10
>>= (strictly greater than or equal operator) 10
>>> tracing flag 64
>C> tracing flag 64

>F> tracing flag 64
>L> tracing flag 64
>O> tracing flag 64
>P> tracing flag 64
>V> tracing flag 64
¬ (NOT operator) 10
¬< (not less than operator) 9
¬<< (strictly not less than operator) 10
¬= (not equal operator) 9
¬== (strictly not equal operator) 9, 10
¬> (not greater than operator) 9
¬>> (strictly not greater than operator) 10
| (inclusive OR operator) 10
|| (concatenation operator) 8

Numerics
370 flag of CMSFLAG function 121

A
ABBREV flag of CMSFLAG function 120
ABBREV function

description 71
example 71
testing abbreviations 71
using to select a default 71

abbreviations
testing with ABBREV function 71

ABS function
description 72
example 72

absolute value
finding using ABS function 72
function 72
positional patterns 142
used with power 158

abuttal 8
Accept function, REXX Sockets 227
Access Certain Device Dependent Information, DIAGRC(8C)
131
accessing TCP/IP socket interface with SOCKET function 135
acronym descriptions for DIAGRC(14) 126
action taken when a condition is not trapped 166
action taken when a condition is trapped 166
active loops 41
addition

description 157
operator 8

additional operator examples 159
ADDRESS CPICOMM statement 217
ADDRESS CPIRR statement 219
ADDRESS function

description 72
determining current environment 72
example 72

ADDRESS instruction

Index 325

ADDRESS instruction (continued)
description 24
example 24
settings saved during subroutine calls 31

ADDRESS OPENVM statement 221
address setting 25, 31
adlen 190
advanced topics in parsing 148
algebraic precedence 10
alphabetic character word options in TRACE 62
alphabetics

checking with DATATYPE 80
used as symbols 4

alphanumeric checking with DATATYPE 80
altering

flow within a repetitive DO loop 41
special variables 17
TRACE setting 110

AND, logical operator 10
ANDing character strings together 73
APILOAD function 119
ARG function

description 72
example 73

ARG instruction
description 27
example 27

ARG option of PARSE instruction 48
arguments

checking with ARG function 72
of execs 27
of functions 27, 67
of subroutines 27, 29
passing to execs 188
passing to functions 67
retrieving with ARG function 72
retrieving with ARG instruction 27
retrieving with the PARSE ARG instruction 48

arithmetic
basic operator examples 158
comparisons 160
errors 162
exponential notation example 161
numeric comparisons, example 160
NUMERIC settings 44
operation rules 157
operator examples 159
operators 8, 155, 156
overflow 162
precision 156
underflow 162
whole numbers 162

array
initialization of 15
setting up 14

assigning
data to variables 48
values for exits in GCS, RXITDEF macro 308

assignment
description 13
indicator (=) 13
multiple assignments 144
of compound variables 14, 15

associative storage 14

attention, STORAGE function 136
AUTOREAD flag of CMSFLAG function 120

B
B2X function

description 74
example 75

backslash, use of 5, 10
Base option of DATE function 82
basic operator examples 158
binary

digits 4
strings

description 4
implementation maximum 4
nibbles 4

to hexadecimal conversion 74
Bind function, REXX Sockets 228
binding file for CSL routines, including in program 119
binding files, programming language

APILOAD function 119
including in REXX/VM program 119

BITAND function
description 73
example 73
logical bit operations 73

BITOR function
description 74
example 74
logical bit operations, BITOR 74

bits checked using DATATYPE 80
BITXOR function

description 74
example 74
logical bit operations, BITXOR 74

blanks
adjacent to special character 2
as concatenation operator 8
in parsing, treatment of 140
removal with STRIP function 107

boolean operations 10
bottom of program reached during execution 37
bracketed DBCS strings

DBBRACKET function 293
DBUNBRACKET function 296

built-in functions
ABBREV 71
ABS 72
ADDRESS 72
ARG 72
B2X 74
BITAND 73
BITOR 74
BITXOR 74
C2D 79
C2X 80
calling 29
CENTER 75
CENTRE 75
CHARIN 75
CHAROUT 76
CHARS 77
COMPARE 78

326 z/VM: 7.3 REXX/VM Reference

built-in functions (continued)
CONDITION 78
COPIES 79
D2C 85
D2X 86
DATATYPE 80
DATE 81
DBCS functions 292
definition 29
DELSTR 84
DELWORD 84
description 71
DIGITS 85
ERRORTEXT 86
EXTERNALS 117
FIND 117
FORM 86
FORMAT 87
FUZZ 88
INDEX 117
INSERT 88
JUSTIFY 118
LASTPOS 89
LEFT 89
LENGTH 89
LINEIN 89
LINEOUT 90
LINES 91
LINESIZE 118
MAX 92
MIN 92
OVERLAY 93
POS 93
QUEUED 93
RANDOM 94
REVERSE 94
RIGHT 95
SIGN 95
SOURCELINE 95
SPACE 96
STREAM 96
STRIP 107
SUBSTR 107
SUBWORD 108
SYMBOL 108
TIME 108
TRACE 110
TRANSLATE 110
TRUNC 111
USERID 118
VALUE 111
VERIFY 112
WORD 113
WORDINDEX 113
WORDLENGTH 113
WORDPOS 114
WORDS 114
X2B 115
X2C 115
X2D 115
XRANGE 114

BY phrase of DO instruction 32

C
C2D function

description 79
example 79
implementation maximum 80

C2X function
description 80
example 80

CALL instruction
description 29
example 30
implementation maximum 31

callable services library (CSL)
ADDRESS CPICOMM 217
ADDRESS OPENVM 221
binding file, including in program 119
calls originating from an application program 184
CSL function as a subroutine 121
function 121
return codes and reason codes 311
returned values 122
using routines from the callable services library 196

calls
originating from CMS pipelines 187
recursive 30
to and from the language processor 181

Cancel function, REXX Sockets 229
CENTER function

description 75
example 75

centering a string using
CENTER function 75
CENTRE function 75

CENTRE function
description 75
example 75

Century option of DATE function 82
changing destination of commands 24
character

definition 2
input and output 171, 179
input streams 173
output streams 174
position of a string 89
position using INDEX 117
removal with STRIP function 107
strings, ANDing 73
strings, exclusive-ORing 74
strings, ORing 74
to decimal conversion 79
to hexadecimal conversion 80
word options, alphabetic in TRACE 62

CHARIN function
description 75
example 76
role in input and output 171

CHAROUT function
description 76
example 77
role in input and output 171

CHARS function
description 77
example 77

Index 327

CHARS function (continued)
role in input and output 171

checking arguments with ARG function 72
clauses

assignment 13
commands 13
continuation of 6
description 1, 12
instructions 12
keyword instructions 13
labels 12
null 12

Close function, REXX Sockets 230
CMS

CMSMIXED 25
COMMAND environment 19
commands

DESBUF 215
DROPBUF 215
EXECDROP 215
EXECIO 215
EXECLOAD 215
EXECMAP 215
EXECOS 215
EXECSTAT 215
EXECUPDT 215
FINIS 215
GLOBALV 215
IDENTIFY 215
LISTFILE 215
MAKEBUF 215
NUCXLOAD 215
NUCXMAP 215
PARSECMD 215
PIPE 215
PROGMAP 215
QUERY 215
SEGMENT 215
SENTRIES 215
SET 215
XEDIT 215
XMITMSG 215

environment name 18, 25
EXEC users, note 28
issuing commands to 16, 18, 24
pipelines, calls from 187
search order 18
unique functions 119
unique routines 119

CMSCALL
ADDRESS instruction 25
use in functions 69

CMSFLAG function
as a debug aid 211
description 120

CMSMIXED 25
CMSTYPE flag of CMSFLAG function 120
code page 2
codes

error 281
return and reason for I/O
311

collating sequence using XRANGE 114
collections of variables 112

COLLECTOR example program 178
colon

as a special character 6
as label terminators 12
in a label 12

combining string and positional patterns 149
comma

as continuation character 6
in CALL instruction 29
in function calls 67
in parsing template list 27, 148
separator of arguments 29, 67

command
alternative destinations 16
clause 13
CMS 215
destination of 24
errors, trapping 165
inhibiting with TRACE instruction 63
issuing to host 16
PIPE 215

COMMAND as an environment name 19, 25
comments

description 2
examples 2
to identify program language 181, 188

communications routines 217
COMPARE function

description 78
example 78

comparisons
numeric, example 160
of numbers 9, 160
of strings

description 9
using COMPARE 78

compound
symbols 14
variable

description 14
setting new value 15

concatenation
of strings 8
operator

|| 8
abuttal 8
blank 8

conceptual overview of parsing 150
condition

action taken when not trapped 166
action taken when trapped 166
definition 165
ERROR 165
FAILURE 165
HALT 165
information 168
information, definition 31
NOTREADY 165
NOVALUE 165
saved during subroutine calls 30
SYNTAX 166
trap information using CONDITION 78
trapping of 165
traps, notes 167

328 z/VM: 7.3 REXX/VM Reference

CONDITION function
description 78
example 79

conditional
loops 32
phrase 34

Connect function, REXX Sockets 230
console

reading from with PULL 53
writing to with SAY 57

constant symbols 14
content addressable storage 14
continuation

character 6
clauses 6
example 6
of data for display 57

Control Program (CP)
issuing commands to 18

control variable 33
controlled loops 33
conversion

binary to hexadecimal 74
character to decimal 79
character to hexadecimal 80
conversion functions 71
decimal to character 85
decimal to hexadecimal 86
formatting numbers 87
functions 116
hexadecimal to binary 115
hexadecimal to character 115
hexadecimal to decimal 115

COPIES function
description 79
example 79

copying a string using COPIES 79
count from stream 76
counting

option in DBCS 292
words in a string 114

CPICOMM 217
CSL function

description 121
example 123
subroutine 121

current terminal line width 118

D
D2C function

description 85
example 85
implementation maximum 85

D2X function
description 86
example 86
implementation maximum 86

data
length 7
terms 7

data queue
role in input and output 175
VM extensions 176

DATATYPE function
description 80
example 81

date and version of the language processor 50
DATE function

description 81
example 83

Days option of DATE function 82
DBADJUST function

description 292
example 293

DBBRACKET function
description 293
example 293

DBCENTER function
description 293
example 293

DBCJUSTIFY function
description 293

DBCS
built-in function descriptions 292
built-in function examples 288
characters 283
counting option 292
description 283
enabling data operations and symbol use 284
EXMODE 284
function handling 287
functions

DBADJUST 292
DBBRACKET 293
DBCENTER 293
DBCJUSTIFY 293
DBLEFT 294
DBRIGHT 294
DBRLEFT 295
DBRRIGHT 295
DBTODBCS 295
DBTOSBCS 296
DBUNBRACKET 296
DBVALIDATE 296
DBWIDTH 297

handling 283
instruction examples 285
mixed SBCS/DBCS string 284
mixed string validation example 285
mixed symbol 284
notational conventions 283
only string 80
parsing characters 150
processing functions 292
SBCS strings 283
shift-in (SI) characters 283, 288
shift-out (SO) characters 283, 288
string, DBCS-only 284
string, mixed SBCS/DBCS 284
strings 46, 283
strings and symbols 284
support 283, 292
symbol validation and example 284
symbol, DBCS-only 284
symbol, mixed 284
symbols and strings 284
validation, mixed string 285

Index 329

DBLEFT function
description 294
example 294

DBRIGHT function
description 294
example 295

DBRLEFT function
description 295
example 295

DBRRIGHT function
description 295
example 295

DBTODBCS function
description 295

DBTOSBCS function
description 296
example 296

DBUNBRACKET function
description 296
example 296

DBVALIDATE function
description 296
example 297

DBWIDTH function
description 297
example 297

debug
aids

description 209, 211
examples 210

interactive 61, 209
decimal

arithmetic 155, 163
to character conversion 85
to hexadecimal conversion 86

default
environment 17
selecting with ABBREV function 71

delayed state
description 165
of NOTREADY condition 177

deleting
part of a string 84
words from a string 84

DELSTR function
description 84
example 84

DELWORD function
description 84
example 85

derived names of variables 14
description

acronym for DIAGRC(14) 126
of built-in functions for DBCS 292

Determine Virtual Storage Size, DIAGRC(60) 130
Device Type and Features, DIAGRC(24) 130
DIAG function 124
DIAGRC function

Access Certain Device Dependent Information 131
description 125
Determine Virtual Storage Size 130
Device Type and Features 130
diagnose code 00 125
diagnose code 08 125

DIAGRC function (continued)
diagnose code 0C 126
diagnose code 14 126
diagnose code 210 134
diagnose code 218 134
diagnose code 24 130
diagnose code 270 135
diagnose code 5C 130
diagnose code 60 130
diagnose code 64 131
diagnose code 8C 131
diagnose code A0 132
diagnose code BC 133
diagnose code C8 133
diagnose code CC 133
diagnose code F8 133
Error Message Editing 130
Find, Load, or Purge a Named Segment 131
Input File Manipulation 126
Obtain ACI Information: ESM Product Information 132
Open and Query Spool File Characteristics 133
Pseudo Timer 126
Pseudo Timer Extended 135
Read Spool File Origin Data 133
Real CPU ID 134
Retrieve Device Information 134
SAVE CP's language 133
SET CP's language 133
Store Extended-Identification Code 125
Virtual Console Function 125

DIGITS function
description 85
example 85

DIGITS option of NUMERIC instruction 44, 156
direct interface to variables 193
division

description 158
operator 8

DMS1400E 268
DMS1401E 268
DMS1402E 268
DMS1403I 268
DMS1404I 268
DMS1405E 268
DMS1406I 268
DMS1407I 268
DMS1408W 268
DMS1409I 268
DMS1410E 269
DMS1412I 269
DMS1413I 269
DMS1414I 269
DMS1415I 269
DMS1416I 269
DMS1417I 269
DMS1418I 269
DMS1419E 269
DMS1420E 269
DMS1421E 269
DMS1422E 269
DMS1423E 269
DMS1424E 269
DMS1425E 269
DMS1426E 269

330 z/VM: 7.3 REXX/VM Reference

DMS1427E 269
DMS1428E 269
DMS1430I 269
DMS1431I 269
DMS1432I 269
DMS1433I 269
DMS1434I 269
DMS1435I 269
DMS1436I 269
DMS1437I 269
DMS1438I 269
DMS1440E 269
DMS1441E 269
DMS1442I 269
DMSCSL 184
DO instruction

description 32
example 34

DOS flag of CMSFLAG function 120
DROP instruction

description 36
example 36

DROPBUF 215

E
editor macros 24
elapsed-time clock

measuring intervals with 108
saved during subroutine calls 31

END clause
specifying control variable 33

engineering notation 161
environment

addressing of 24
CMSMIXED 25
default 25, 49, 188
determining current using ADDRESS function 72
GCS 307
name, definition 24
name, PSW 72
REXX/VM in GCS 307
temporary change of 24

EPLIST macro 307
equal

operator 9
sign

in parsing template 142
to indicate assignment 5, 13

equality, testing of 9
error

codes and messages 281
definition 17
during execution of functions 70
during stream input and output 177
from commands 17
messages

and codes 281
retrieving with ERRORTEXT 86

syntax 281
traceback after 65
trapping 165

ERROR condition of SIGNAL and CALL instructions 168
Error Message Editing, DIAGRC(5C) 130

ERRORTEXT function
description 86
example 86

ETMODE 46
European option of DATE function 82
EVALBLOK format 190
evaluation of expressions 7
example

ABBREV function 71
ABS function 72
ADDRESS function 72
ADDRESS instruction 24
ARG function 73
ARG instruction 27
B2X function 75
basic arithmetic operators 158
BITAND function 73
BITOR function 74
BITXOR function 74
built-in function in DBCS 288
C2D function 79
C2X function 80
CALL instruction 30
CENTER function 75
CENTRE function 75
character 6
CHARIN function 76
CHAROUT function 77
CHARS function 77
clauses 6
combining positional pattern and parsing into words 145
combining string and positional patterns 149
combining string pattern and parsing into words 145
comments 2
COMPARE function 78
CONDITION function 79
continuation 6
COPIES function 79
CSL function 123
D2C function 85
D2X function 86
DATATYPE function 81
DATE function 83
DBADJUST function 293
DBBRACKET function 293
DBCENTER function 293
DBCS instruction 285
DBLEFT function 294
DBRIGHT function 295
DBRLEFT function 295
DBRRIGHT function 295
DBTOSBCS function 296
DBUNBRACKET function 296
DBVALIDATE function 297
DBWIDTH function 297
debug aids 210
DELSTR function 84
DELWORD function 85
DIGITS function 85
DO instruction 34
DROP instruction 36
ERRORTEXT function 86
EXIT instruction 37
exponential notation 161

Index 331

example (continued)
expressions 11
FIND function 117
FORM function 87
FORMAT function 87
function package 301
FUZZ function 88
IF instruction 38
INDEX function 117
input and output 178
INSERT function 88
INTERPRET instruction 39
ITERATE instruction 41
JUSTIFY function 118
LASTPOS function 89
LEAVE instruction 42
LEFT function 89
LENGTH function 89
LINEIN function 90
LINEOUT function 91
LINES function 92
MAX function 92
MIN function 92
mixed string validation 285
NOP instruction 43
numeric comparisons 160
output and input 178
OVERLAY function 93
parsing instructions 147
parsing multiple strings in a subroutine 148
period as a placeholder 140
POS function 93
PROCEDURE instruction 51
PULL instruction 53
PUSH instruction 54
QUEUE instruction 55
QUEUED function 94
RANDOM function 94
reserved keywords 213
REVERSE function 94
RIGHT function 95
SAY instruction 57
SELECT instruction 58
SIGL, special variable 169
SIGN function 95
SIGNAL instruction 59
simple templates, parsing 139
SOCKET function 136
SOURCELINE function 95
SPACE function 96
special characters 6
STORAGE function 136
STREAM function 97
STRIP function 107
SUBSTR function 107
SUBWORD function 108
SYMBOL function 108
symbol validation 285
templates containing positional patterns 142
templates containing string patterns 141
TIME function 109
TRACE function 110
TRACE instruction 64
TRANSLATE function 110

example (continued)
TRUNC function 111
UPPER instruction 66
USERID function 119
using a variable as a positional pattern 146
using a variable as a string pattern 146
VALUE function 111
VERIFY function 113
WORD function 113
WORDINDEX function 113
WORDLENGTH function 113
WORDPOS function 114
WORDS function 114
X2B function 115
X2C function 115
X2D function 116
XRANGE function 114

examples of programs 178
exception conditions saved during subroutine calls 30
exclusive OR operator 10
exclusive-ORing character strings together 74
EXEC 2 users, note 28
EXECCOMM

interface to variables 193
sharing variables, in GCS 308
subcommand entry point 193

execs
arguments to 27
calling as functions 192
in-store execution of 188
invoking 181
PLIST for 181
retrieving name of 49

EXECTRAC flag
CMSFLAG function, use with 120
external control of tracing 211

execution
by language processor 1
of data 39

EXIT instruction
description 37
example 37

exit, RXFNC 200
EXMODE

in DBCS 284
with OPTIONS instruction 46

exponential notation
description 155, 160
example 161
usage 5

exponentiation
description 160
operator 8

EXPOSE option of PROCEDURE instruction 51
exposed variable 51
expressions

evaluation 7
examples 11
parsing of 50
results of 7
tracing results of 62

extended PLIST 188
external

data queue

332 z/VM: 7.3 REXX/VM Reference

external (continued)
data queue (continued)

counting lines in 93
reading from with PULL 53
writing to with PUSH 54
writing to with QUEUE 55

functions
APILOAD 119
CMSFLAG 120
CSL 121
description 68
DIAG 124
DIAGRC 125
interface 192
SOCKET 135
STORAGE 136
STSI 137

instruction, UPPER 66
routine

calling 29
definition 29

subroutines
description 68
interface 192

trace bit 211
variables

access with VALUE function 112
EXTERNAL option of PARSE instruction 48
EXTERNALS function 117
extracting

substring 107
word from a string 113
words from a string 108

F
FAILURE condition of SIGNAL and CALL instructions 165,
168
failure, definition 17
FBLOCK (file block) in GCS 308
Fcntl function, REXX Sockets 231
FIFO (first-in/first-out) stacking 55
file block

description 191
in the GCS environment 308

file name, type, mode of program 49
FILECOPY example program 178
FIND function

description 117
example 117

Find, Load, or Purge a Named Segment, DIAGRC(60) 131
finding

mismatch using COMPARE 78
string in another string 93, 117
string length 89
word length 113

flags, tracing
- 64
+++ 64
>.> 64
>>> 64
>C> 64
>F> 64
>L> 64

flags, tracing (continued)
>O> 64
>P> 64
>V> 64

flow of control
unusual, with CALL 165
unusual, with SIGNAL 165
with CALL/RETURN 29
with DO construct 32
with IF construct 38
with SELECT construct 58

FOR phrase of DO instruction 32
FOREVER repetitor on DO instruction 32
FORM function

description 86
example 87

FORM option of NUMERIC instruction 44, 162
FORMAT function

description 87
example 87

formatting
DBCS blank adjustments 292
DBCS bracket adding 293
DBCS bracket stripping 296
DBCS EBCDIC to DBCS 295
DBCS string width 297
DBCS strings to SBCS 296
DBCS text justification 293
numbers for display 87
numbers with TRUNC 111
of output during tracing 64
text centering 75
text justification 118
text left justification 89, 294
text left remainder justification 295
text right justification 95, 294
text right remainder justification 295
text spacing 96
text validation function 296

functions
ABS 72
ADDRESS 72
APILOAD 119
ARG 72
B2X 74
BITAND 73
BITOR 74
BITXOR 74
built-in 71, 115
built-in, description 71
C2D 79
C2X 80
call, definition 67
calling 67
calling execs as 192
CENTER 75
CENTRE 75
CMSFLAG 120
codes, SHVCODE 308
COMPARE 78
CONDITION 78
COPIES 79
CSL 121
D2C 85

Index 333

functions (continued)
D2X 86
DATATYPE 80
DATE 81
definition 67
DELSTR 84
DELWORD 84
description 67
DIAG 124
DIAGRC 125
DIGITS 85
ERRORTEXT 86
external 68
external interface 192
external packages 116, 119, 136
EXTERNALS 117
FIND 117
for z/VM information 119
forcing built-in or external reference 68
FORM 86
FORMAT 87
FUZZ 88
INDEX 117
INSERT 88
internal 67
invocation of 188
JUSTIFY 118
LASTPOS 89
LEFT 89
LENGTH 89
LINESIZE 118
MAX 92
MIN 92
numeric arguments of 162
OVERLAY 93
package, example 301
packages 116
POS 93
processing in DBCS 292
QUEUED 93
RANDOM 94
return from 56
REVERSE 94
RIGHT 95
SHVCODE, codes 308
SIGN 95
SOCKET 135
SOURCELINE 95
SPACE 96
STORAGE 136
STREAM 96
STRIP 107
STSI 137
SUBSTR 107
SUBWORD 108
SYMBOL 108
TIME 108
TRACE 110
TRANSLATE 110
TRUNC 111
USERID 118
VALUE 111
variables in 51
VERIFY 112

functions (continued)
WORD 113
WORDINDEX 113
WORDLENGTH 113
WORDPOS 114
WORDS 114
X2B 115
X2C 115
X2D 115
XRANGE 114

FUZZ
controlling numeric comparison 160
option of NUMERIC instruction 44, 160

FUZZ function
description 88
example 88

G
general concepts 1, 17, 20
GetClientId function, REXX Sockets 232
GetDomainName function, REXX Sockets 233
GetHostByAddr function, REXX Sockets 234
GetHostByName function, REXX Sockets 234
GetHostId function, REXX Sockets 235
GetHostName function, REXX Sockets 236
GetPeerName function, REXX Sockets 236
GetProtoByName function, REXX Sockets 237
GetProtoByNumber function, REXX Sockets 237
GetServByName function, REXX Sockets 238
GetServByPort function, REXX Sockets 239
GetSockName function, REXX Sockets 239
GetSockOpt function, REXX Sockets 240
GiveSocket function, REXX Sockets 242
global variables

access with VALUE function 112
GOTO, unusual 165
greater than operator 9
greater than or equal operator (>=) 9
greater than or less than operator (><) 9
Group Control System (GCS)

assigning values for exits, RXITDEF macro 308
environment 307
EPLIST macro 307
EXECCOMM processing (sharing variables) 308
FBLOCK (file block) 308
file block (FBLOCK) 308
mapping parameter lists for exits, RXITPARM macro 309
PLIST, standard tokenized 308
REXX/VM 307
RXITDEF macro 308
RXITPARM macro 309
sharing variables, EXECCOMM processing 308
SHVBLOCK (shared variable request block) 308
SHVCODE (function codes) 308
standard tokenized PLIST 308

group, DO 32
grouping instructions to run repetitively 32
guard digit 157

H
HALT condition of SIGNAL and CALL instructions 165, 168

334 z/VM: 7.3 REXX/VM Reference

Halt Interpretation (HI) immediate command 209
halt, trapping 165
halting a looping program 210
HELP, online 20
hexadecimal

checking with DATATYPE 80
digits 3
strings

description 3
implementation maximum 4

to binary, converting with X2B 115
to character, converting with X2C 115
to decimal, converting with X2D 115

HI (Halt Interpretation) immediate command 210
host commands

and storage management 25
issuing commands to underlying operating system 16

hours calculated from midnight 109
HT (Halt Typing) immediate command 120
HT flag

cleared before error messages 281
HX (Halt Execution) immediate command 210

I
I/O

functions
CHARIN 75
CHAROUT 76
CHARS 77
LINEIN 89
LINEOUT 90
LINES 91
STREAM 96

model 171
return codes and reason codes for I/O
311
streams 171, 179

identifying users 118
IF instruction

description 38
example 38

immediate commands
HI (Halt Interpretation) 210
TE (Trace End) 210
TS (Trace Start) 210

IMPCP flag of CMSFLAG function 120
IMPEX flag of CMSFLAG function 120
implementation maximum

binary strings 4
C2D function 80
CALL instruction 31
D2C function 85
D2X function 86
hexadecimal strings 4
literal strings 3
MAX function 92
MIN function 92
numbers 5
operator characters 15
storage limit 1
symbols 5
TIME function 110
X2D function 116

implied semicolons 6
imprecise numeric comparison 160
in-store execution of execs 188
including CSL binding file in program 119
inclusive OR operator 10
indefinite loops 33
indentation during tracing 64
INDEX function

description 117
example 117

indirect evaluation of data 39
inequality, testing of 9
infinite loops 32
inhibition of commands with TRACE instruction 63
initialization

of arrays 15
of compound variables 15

Initialize function, REXX Sockets 243
input

errors during 177
from the user 171

Input File Manipulation, DIAGRC(14) 126
INSERT function

description 88
example 88

inserting a string into another 88
instructions

ADDRESS 24
ARG 27
CALL 29
definition 12
DO 32
DROP 36
EXIT 37
IF 38
INTERPRET 39
ITERATE 41
keyword

description 23
LEAVE 42
NOP 43
NUMERIC 44
OPTIONS 46
PARSE 48
parsing, summary 147
PROCEDURE 51
PULL 53
PUSH 54
QUEUE 55
RETURN 56
SAY 57
SELECT 58
SIGNAL 59
TRACE 61
UPPER 66

integer
arithmetic 155, 163
division

description 155, 159
operator 8

interactive debug 61, 209
interfaces

system 181
to external routines 192

Index 335

interfaces (continued)
to variables 193

internal
functions

description 67
return from 56
variables in 51

routine
calling 29
definition 29

INTERPRET instruction
description 39
example 39

interpretive execution of data 39
interrupting program execution 210
invoking

built-in functions 29
routines 29

Ioctl function, REXX Sockets 244
ITERATE instruction

description 41
example 41
use of variable on 41

J
Julian option of DATE function 82
justification, text right, RIGHT function 95
JUSTIFY function

description 118
example 118

justifying text with JUSTIFY function 118

K
keyword

conflict with commands 213
description 23
examples 213
mixed case 23
reservation of 213

L
label

as target of CALL 29
as target of SIGNAL 59
description 12
duplicate 59
in INTERPRET instruction 39
search algorithm 59

language
processor date and version 50
structure and syntax 1

LASTPOS function
description 89
example 89

leading
blank removal with STRIP function 107
zeros

adding with the RIGHT function 95
removing with STRIP function 107

LEAVE instruction

LEAVE instruction (continued)
description 42
example 42
use of variable on 42

leaving your program 37
LEFT function

description 89
example 89

LENGTH function
description 89
example 89

less than operator (<) 9
less than or equal operator (<=) 9
less than or greater than operator (<>) 9
LIFO (last-in/first-out) stacking 54
line length and width of terminal 118
LINEIN function

description 89
example 90
role in input and output 171

LINEIN option of PARSE instruction 49
LINEOUT function

description 90
example 91
role in input and output 171

lines
from a program retrieved with SOURCELINE 95
from stream 49, 89
remaining in stream 91

LINES function
description 91
example 92
role in input and output 171

LINESIZE function 118
list

template
ARG instruction 27
PARSE instruction 48
PULL instruction 53

Listen function, REXX Sockets 246
literal string

description 3
implementation maximum 3
patterns 141

locating
phrase in a string 117
string in another string 93, 117
word in a string 113

logical
bit operations

BITAND 73
BITOR 74
BITXOR 74

operations 10
lookaside buffering 299
looping program

halting 210
tracing 210

loops
active 41
execution model 34
modification of 41
repetitive 33
termination of 42

336 z/VM: 7.3 REXX/VM Reference

lowercase symbols 4

M
macro

editor 24
EPLIST 307
REXEXIT 207
RXITDEF in GCS 308
RXITPARM in GCS 309
XEDIT interface 20

MAKEBUF
creating additional buffers 54, 55
description 215

mapping parameter lists for exits, RXITPARM macro 309
MAX function

description 92
example 92
implementation maximum 92

memory
accessing 136
finding upper limit of 136

message examples, notation used in xviii
messages, error 281
MIN function

description 92
example 92
implementation maximum 92

minutes calculated from midnight 109
mixed DBCS string 80
model of input and output 171
Month option of DATE function 82
multi-way call 30, 60
multiple

argument passing 188
assignments in parsing 144
string parsing 144, 148

multiplication
description 157
operator 8

N
names

CMSMIXED, environment 25
of execs 49
of functions 67
of programs 49
of subroutines 29
of variables 4

negation
of logical values 10
of numbers 8

nesting of control structures 31
nibbles 4
NOETMODE 46
NOEXMODE 46
NOP instruction

description 43
example 43

Normal option of DATE function 82
not equal operator 9
not greater than operator 9

not less than operator 9
NOT operator 5, 10
notation

engineering 161
exponential, example 161
scientific 161

notation used in message and response examples xviii
note

condition traps 167
to CMS EXEC and EXEC 2 users 28

NOTREADY condition
condition trapping 177
raised by stream errors 177
SIGNAL and CALL instructions 168

NOTYPING flag cleared before error messages 281
NOVALUE condition

not raised by VALUE function 112
of SIGNAL and CALL instructions 168
on SIGNAL instruction 165
use of 213

null
clauses 12
strings 3, 7

number from stream 77
numbers

arithmetic on 8, 155, 156
checking with DATATYPE 80
comparison of 9, 160
description 5, 155, 156
formatting for display 87
implementation maximum 5
in DO instruction 32
truncating 111
use in the language 162
whole 162

numeric
comparisons, example 160
options in TRACE 63

NUMERIC instruction
description 44
DIGITS option 44
FORM option 44, 162
FUZZ option 44
option of PARSE instruction 49, 162
settings saved during subroutine calls 30

O
Obtain ACI Information: ESM Product Information,
DIAGRC(A0) 132
online HELP Facility, using 20
Open and Query Spool File Characteristics, DIAGRC(BC) 133
OPENVM routines 221
operations

arithmetic 157
tracing results 61

operator
arithmetic

description 7, 155, 156
list 8

as special characters 5
characters

description 5
implementation maximum 15

Index 337

operator (continued)
comparison 9, 160
concatenation 8
examples 158, 159
logical 10
precedence (priorities) of 10

options
alphabetic character word in TRACE 62
numeric in TRACE 63
prefix in TRACE 62

OPTIONS instruction 46
OR, logical

exclusive 10
inclusive 10

Ordered option of DATE function 82
ORing character strings together 74
output

errors during 177
to the user 171

overflow, arithmetic 162
OVERLAY function

description 93
example 93

overlaying a string onto another 93
overview of parsing 150

P
package, example of function 301
packing a string with X2C 115
pad character, definition 71
page, code 2
parameter list

extended 18
tokenized 18

parentheses
adjacent to blanks 6
in expressions 10
in function calls 67
in parsing templates 145

PARSE instruction
description 48
NUMERIC option 162

PARSE LINEIN
role in input and output 171

PARSE PULL
role in input and output 171

parsing
advanced topics 148
combining patterns and parsing into words 145
combining string and positional patterns 149
conceptual overview 150
definition 139
description 139
equal sign 142
examples

combining positional pattern and parsing into words
145
combining string and positional patterns 149
combining string pattern and parsing into words
145
parsing instructions 147
parsing multiple strings in a subroutine 148
period as a placeholder 140

parsing (continued)
examples (continued)

simple templates 139
templates containing positional patterns 142
templates containing string patterns 141
using a variable as a positional pattern 146
using a variable as a string pattern 146

into words 139
multiple assignments 144
multiple strings 148
patterns

positional 139, 141
string 139, 141

period as placeholder 140
positional patterns

absolute 142
relative 142
variable 146

selecting words 139
source string 139
special case 149
steps 150
string patterns

literal string patterns 141
variable string patterns 145

summary of instructions 147
templates

in ARG instruction 27
in PARSE instruction 48
in PULL instruction 53

treatment of blanks 140
UPPER, use of 146
variable patterns

positional 146
string 146

with DBCS characters 150
word parsing

description and examples 139
patterns in parsing

combining into words 145
positional 139, 141
string 139, 141

performance considerations 299
period

as placeholder in parsing 140
causing substitution in variable names 14
in numbers 156

permanent command destination change 24
persistent input and output 171
PIPE command 215
pipelines

calls from 187
command 215

PLIST
extended 188
for accessing variables 193
for invoking execs 181
for invoking external routines 192
standard tokenized 308

POS function
description 93
example 93

position
last occurrence of a string 89

338 z/VM: 7.3 REXX/VM Reference

position (continued)
of character using INDEX 117

positional patterns
absolute 142
description 139
relative 142
variable 146

powers of ten in numbers 5
precedence of operators 10
precision of arithmetic 156
preface xv
prefix

operators 9, 10
options in TRACE 62

presumed command destinations 24
PROCEDURE instruction

description 51
example 51

process external functions, RXFNC 200
programming

restrictions 1
style 299

programming language binding files
APILOAD function 119
including in REXX/VM program 119

programs
examples 178
retrieving lines with SOURCELINE 95
retrieving name of 49

PROTECT flag of CMSFLAG function 120
protecting variables 51
pseudo random number function of RANDOM 94
Pseudo Timer Extended, DIAGRC(270) 135
Pseudo Timer, DIAGRC(0C) 126
PSW

as an environment name 49, 72
non-SVC subcommand invocation
191

PULL instruction
description 53
example 53
role in input and output 171

PULL option of PARSE instruction 49
purging storage resident execs 215
PUSH instruction

description 54
example 54
role in input and output 171

Q
QUERY EXECTRAC command 211
querying TRACE setting 110
QUEUE instruction

description 55
example 55
role in input and output 171

QUEUED function
description 93
example 94
role in input and output 171

R
RANDOM function

description 94
example 94

random number function of RANDOM 94
RC (return code)

not set during interactive debug 209
set by commands 17
set by CSL external function 122
set to 0 if commands inhibited 63
special variable 168, 213

Read function, REXX Sockets 247
read position in a stream 174
Read Spool File Origin Data, DIAGRC(F8) 133
reading

CMS files 215
queue and console 53

Real CPU ID, DIAGRC(218) 134
reason codes for CSL routines generating I/O 311
recursive call 30
Recv function, REXX Sockets 248
RecvFrom function, REXX Sockets 249
relative positional patterns 142
RELPAGE flag of CMSFLAG function 120
remainder

description 155, 159
operator 8

reordering data with TRANSLATE function 110
repeating a string with COPIES 79
repetitive loops

altering flow 42
controlled repetitive loops 33
exiting 42
simple DO group 33
simple repetitive loops 33

request block
for accessing variables 194

reservation of keywords 213
Resolve function, REXX Sockets 250
resource recovery interface 219
response examples, notation used in xviii
restoring variables 36
restrictions

embedded blanks in numbers 5
first character of variable name 13
in programming 1
maximum length of results 7

RESULT
set by RETURN instruction 30, 56
special variable 213

results
length of 7

Retrieve Device Information, DIAGRC(210) 134
retrieving

argument strings with ARG 27
arguments with ARG function 72
lines with SOURCELINE 95

return
code

as set by commands 17
CSL routines generating I/O
311
setting on exit 37

Index 339

return (continued)
string

setting on exit 37
RETURN instruction

description 56
returning control from REXX program 56
REVERSE function

description 94
example 94

REXX
interpreter structure 299

REXX exits
REXEXIT 207
RXCMD

RXCMDHST 200
RXFNC

RXFNCCAL 200
RXHLT

RXHLTCLR 205
RXHLTTST 205

RXINI
RXINIEXT 205

RXMEM
RXMEMGET 204
RXMEMRET 204

RXMSQ
RXMSQPLL 201
RXMSQPSH 202
RXMSQSIZ 202

RXSIO
RXSIODTR 203
RXSIOSAY 202
RXSIOTLL 203
RXSIOTRC 203
RXSIOTRD 203

RXTER 206
RXTRC

RXTRCTST 205
REXX sockets

return codes 269
REXX Sockets

SOCKET external function 135
REXX Sockets API

function descriptions
Accept 227
Bind 228
Cancel 229
Close 230
Connect 230
Fcntl 231
GetClientId 232
GetDomainName 233
GetHostByAddr 234
GetHostByName 234
GetHostId 235
GetHostName 236
GetPeerName 236
GetProtoByName 237
GetProtoByNumber 237
GetServByName 238
GetServByPort 239
GetSockName 239
GetSockOpt 240
GiveSocket 242

REXX Sockets API (continued)
function descriptions (continued)

Initialize 243
Ioctl 244
Listen 246
Read 247
Recv 248
RecvFrom 249
Resolve 250
Select 251
Send 254
SendTo 255
SetSockOpt 256
ShutDown 258
Socket 259
SocketSet 261
SocketSetList 261
SocketSetStatus 262
TakeSocket 263
Terminate 263
Trace 264
Translate 266
Version 267
Write 267

overview 223
programming hints and tips 223
sample programs

client 275
server 277

tasks 225
REXX/VM

interpreter structure 299
RIGHT function

description 95
example 95

rounding
description 157
using a character string as a number 5

RSCLIENT EXEC 275
RSSERVER EXEC 277
RT (Resume Typing) immediate command 120
running off the end of a program 37
RX

prefix on external routines 192
search order 69

RXCMD, REXX exit
RXCMDHST 200
RXFNC 200

RXFNC, REXX exit 200
RXHLT, REXX exit

RXHLTCLR 205
RXHLTTST 205

RXINI, REXX exit
RXINIEXT 205

RXITDEF macro in GCS 308
RXITPARM macro 309
RXLOCFN

description 116
in GCS environment 307
search order 69

RXMEM, REXX exit
RXMEMGET 204
RXMEMRET 204

RXMSQ

340 z/VM: 7.3 REXX/VM Reference

RXMSQ (continued)
RXMSQPLL 201
RXMSQPSH 202
RXMSQSIZ 202

RXSIO, REXX exit
RXSIODTR 203
RXSIOSAY 202
RXSIOTLL 203
RXSIOTRC 203
RXSIOTRD 203

RXSYSFN
description 116
in GCS environment 307
search order 69

RXTER, REXX exit 206
RXTRC, REXX exit

RXTRCTST 205
RXUSERFN

description 116
example 301
function package 116
in GCS environment 307
search order 69

S
SAVE CP's language, DIAGRC(CC) 133
SAY instruction

description 57
displaying data 57
example 57
role in input and output 171

SBCS strings 283
scientific notation 161
search order

for commands 18
for functions 68
for subroutines 30

searching a string for a phrase 117
seconds calculated from midnight 109
Select function, REXX Sockets 251
SELECT instruction

description 58
example 58

selecting a default with ABBREV function 71
semicolons

implied 6
omission of 23
within a clause 1

Send function, REXX Sockets 254
SendTo function, REXX Sockets 255
sequence, collating using XRANGE 114
SET CP's language, DIAGRC(C8) 133
SET EXECTRAC command

external control of tracing 211
SetSockOpt function, REXX Sockets 256
SFS directories 1
shared variable request block (SHVBLOCK) 308
shift-in (SI) characters 283
Shift-in (SI) characters 288
shift-out (SO) characters 283
Shift-out (SO) characters 288
ShutDown function, REXX Sockets 258
SHVBLOCK (shared variable request block)

SHVBLOCK (shared variable request block) (continued)
description 308
format 194

SHVCODE (function codes) 308
SIGL

set by CALL instruction 30
set by SIGNAL instruction 59
special variable

example 169
SIGN function

description 95
example 95

SIGNAL instruction
description 59
example 59
execution of in subroutines 30

significant digits in arithmetic 156
simple

repetitive loops 33
symbols 14

six-word extended PLIST 188
SOCKET function

description 135
example 136

Socket function, REXX Sockets 259
SocketSet function, REXX Sockets 261
SocketSetList function, REXX Sockets 261
SocketSetStatus function, REXX Sockets 262
source

of program and retrieval of information 49
string 139

SOURCE option of PARSE instruction 49
SOURCELINE function

description 95
example 95

SPACE function
description 96
example 96

spacing, formatting, SPACE function 96
special

characters and example 6
parsing case 149
variables

RC 17, 168, 213
RESULT 30, 56, 213
SIGL 30, 169, 213

SPOOL EXEC, avoiding 19
SPOOL MODULE, avoiding 19
standard input and output 171
Standard option of DATE function 82
standard tokenized PLIST 308
stem of a variable

assignment to 15
description 14
used in DROP instruction 36
used in PROCEDURE instruction 51

steps in parsing 150
storage

accessing 136
execution from 188
finding upper limit of 136
limit, implementation maximum 1
management and host commands 25

STORAGE function

Index 341

STORAGE function (continued)
attention 136
description 136
examples 136

Store Extended-Identification Code, DIAGRC(00) 125
stream errors 177
STREAM function

command option 96
description 96
description option 96
example 97
function overview 175
state option 97

strict comparison 9
strictly equal operator 9
strictly greater than operator 9, 10
strictly greater than or equal operator 10
strictly less than operator 9, 10
strictly less than or equal operator 10
strictly not equal operator 9, 10
strictly not greater than operator 10
strictly not less than operator 10
string

and symbols in DBCS 284
as literal constant 3
as name of function 3
as name of subroutine 29
binary specification of 4
centering using CENTER function 75
centering using CENTRE function 75
comparison of 9
concatenation of 8
copying using COPIES 79
DBCS 283
DBCS-only 284
deleting part, DELSTR function 84
description 3
extracting words with SUBWORD 108
finding a phrase in 117
finding character position 117
finding in another string, POS function 93
from stream 75
hexadecimal specification of 3
interpretation of 39
length of 7
locating in another string, POS function 93
mixed SBCS/DBCS 284
mixed, validation 285
null 3, 7
patterns

description 139
literal 141
positional 141
variable 146

quotation marks in 3
repeating using COPIES 79
SBCS 283
verifying contents of 112

STRIP function
description 107
example 107

structure and syntax 1
STSI function

description 137

STSI function (continued)
example 137

style, programming 299
SUBCOM function 20
subcommand

addressing of 24
concept 20
destinations 24

subexpression 7
subkeyword 13
subroutines

calling of 29
definition 67
external interface 192
forcing built-in or external reference 30
naming of 29
passing back values from 56
return from 56
use of labels 29
variables in 51

SUBSET flag of CMSFLAG function 120
subsidiary list 36, 51
substitution

in expressions 7
in variable names 14

SUBSTR function
description 107
example 107

substring, extracting with SUBSTR function 107
subtraction

description 157
operator 8

SUBWORD function
description 108
example 108

summary
parsing instructions 147

symbol
assigning values to 13
classifying 14
compound 14
constant 14
DBCS validation 284
DBCS-only 284
description 4
implementation maximum 5
mixed DBCS 284
simple 14
uppercase translation 4
use of 13
valid names 4

SYMBOL function
description 108
example 108

symbols and strings in DBCS 284
syntax

error
traceback after 65
trapping with SIGNAL instruction 165

general 1
SYNTAX condition of SIGNAL and CALL instructions 166, 168
syntax diagrams, how to read xv
system interfaces

calls

342 z/VM: 7.3 REXX/VM Reference

system interfaces (continued)
calls (continued)

originating from a CALL instruction or a function call
183
originating from a clause that is an expression 182
originating from a MODULE 184
originating from alternate format exec programs
182
originating from an application program 184
originating from CMS execs 182
originating from CMS pipelines 187
originating from EXEC 2 programs 182
originating from the CMS command line 181
originating from the XEDIT command line 182
to and from the language processor 181
to DMSCSL 184

CMS EXEC interface 187
description 181, 207
direct interface to current variables 193
extended parameter list 188
file block 191
function codes (SHVCODE) 194
function packages 192
non-SVC subcommand invocation 192
request block (SHVBLOCK) 194
using routines from the callable services library 196

system trace bit 211

T
tail 14
TakeSocket function, REXX Sockets 263
TE (Trace End) immediate command 210
template

definition 139
list

ARG instruction 27
PARSE instruction 48

parsing
definition 139
general description 139
in ARG instruction 27
in PARSE instruction 48
in PULL instruction 53
PULL instruction 53

temporary command destination change 24
ten, powers of 161
terminals

finding width with LINESIZE 118
reading from with PULL 53
writing to with SAY 57

Terminate function, REXX Sockets 263
terms and data 7
testing

abbreviations with ABBREV function 71
variable initialization 108

THEN
as free standing clause 23
following IF clause 38
following WHEN clause 58

TIME function
description 108
example 109
implementation maximum 110

tips, tracing 63
TO phrase of DO instruction 32
tokens

binary strings 4
description 3
hexadecimal strings 3
literal strings 3
numbers 5
operator characters 5
special characters 6
symbols 4

trace
bit, external 211
tags 64

Trace End (TE) immediate command 209
TRACE function

description 110
example 110

Trace function, REXX Sockets 264
TRACE instruction

alphabetic character word options 62
description 61
example 64

TRACE setting
altering with TRACE function 110
altering with TRACE instruction 61
querying 110

Trace Start (TS) immediate command 209
traceback, on syntax error 65
tracing

action saved during subroutine calls 30
by interactive debug 209
data identifiers 64
execution of programs 61
external control of 210, 211
looping programs 210
tips 63

tracing flags
- 64
+++ 64
>.> 64
>>> 64
>C> 64
>F> 64
>L> 64
>O> 64
>P> 64
>V> 64

trademarks 316
trailing

blank removed using STRIP function 107
zeros 157

transient input and output 171
TRANSLATE function

description 110
example 110

Translate function, REXX Sockets 266
translation

with TRANSLATE function 110
with UPPER instruction 66

trap conditions
explanation 165
how to trap 165
information about trapped condition 78

Index 343

trap conditions (continued)
using CONDITION function 78

trapname
description 166

TRUNC function
description 111
example 111

truncating numbers 111
TS (Trace Start) immediate command 210
type of data checking with DATATYPE 80
type-ahead line counting with EXTERNALS 117

U
unassigning variables 36
unconditionally leaving your program 37
underflow, arithmetic 162
uninitialized variable 13
unpacking a string

with B2X 74
with C2X 80

UNTIL phrase of DO instruction 32
unusual change in flow of control 165
UPPER

in parsing 146
instruction

description 66
example 66

option of PARSE instruction 48
uppercase translation

during ARG instruction 27
during PULL instruction 53
of symbols 4
with PARSE UPPER 48
with TRANSLATE function 110
with UPPER instruction 66

Usa option of DATE function 83
user input and output 171, 179
USERID function

description 118
example 119

users, identifying 118

V
validation

DBCS symbol 284
mixed string 285

VALUE function
description 111
example 111

value of variable, getting with VALUE 111
VALUE option of PARSE instruction 50
VAR option of PARSE instruction 50
variable

compound 14
controlling loops 33
description 13
direct interface to 193
dropping of 36
exposing to caller 51
external collections 112
getting value with VALUE 111

variable (continued)
global 112
in internal functions 51
in subroutines 51
names 4
new level of 51
parsing of 50
patterns, parsing with

positional 146
string 145

pool interface 13
positional patterns 146
reference 145
resetting of 36
setting new value 13
sharing, in GCS 308
SHVBLOCK 308
SIGL 169
simple 14
special

RC 17, 168, 213
RESULT 56, 213
SIGL 30, 169, 213

string patterns, parsing with 145
testing for initialization 108
translation to uppercase 66
valid names 13

VERIFY function
description 112
example 113

verifying contents of a string 112
Version function, REXX Sockets 267
VERSION option of PARSE instruction 50
Virtual Console Function, DIAGRC(08) 125
VMLIB 121, 217, 219
VMMTLIB 121

W
Weekday option of DATE function 83
WHILE phrase of DO instruction 32
whole numbers

checking with DATATYPE 80
description 5, 162

word
alphabetic character options in TRACE 62
counting in a string 114
deleting from a string 84
extracting from a string 108, 113
finding in a string 117
finding length of 113
in parsing 139
locating in a string 113
parsing

description and examples 139
WORD function

description 113
example 113

WORDINDEX function
description 113
example 113

WORDLENGTH function
description 113
example 113

344 z/VM: 7.3 REXX/VM Reference

WORDPOS function
description 114
example 114

WORDS function
description 114
example 114

Write function, REXX Sockets 267
write position in a stream 174
writing

CMS files 215
to the stack

with PUSH 54
with QUEUE 55

X
X2B function

description 115
example 115

X2C function
description 115
example 115

X2D function
description 115
example 116
implementation maximum 116

XA flag of CMSFLAG function 120
XC flag of CMSFLAG function 120
XEDIT macro interface 20
XOR, logical 10
XORing character strings together 74
XRANGE function

description 114
example 114

Y
YEAR2000 flag of CMSFLAG function 120

Z
Z flag of CMSFLAG function 121
z/VM

HELP Facility, using 20
unique functions 119
unique routines 119

zeros
added on the left 95
removal with STRIP function 107

Index 345

346 z/VM: 7.3 REXX/VM Reference

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6314-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: REXX/VM Reference
	SC24-6314-73, z/VM 7.3 (September 2022)
	SC24-6314-01, z/VM 7.2 (February 2022)
	SC24-6314-01, z/VM 7.2 (September 2020)
	SC24-6314-00, z/VM 7.1 (September 2018)

	Chapter 1. REXX General Concepts
	Structure and General Syntax
	Characters
	Comments
	Tokens
	Implied Semicolons
	Continuations

	Expressions and Operators
	Expressions
	Operators
	String Concatenation
	Arithmetic
	Comparison
	Logical (Boolean)
	Parentheses and Operator Precedence

	Clauses and Instructions
	Null Clauses
	Labels
	Instructions
	Assignments
	Keyword Instructions
	Commands

	Assignments and Symbols
	Constant Symbols
	Simple Symbols
	Compound Symbols
	Stems

	Commands to External Environments
	Environment
	Commands
	The CMS Environment
	The COMMAND Environment
	Issuing Subcommands from Your Program

	Using the Online HELP Facility

	Chapter 2. Keyword Instructions
	ADDRESS
	ARG
	CALL
	DO
	Simple DO Group
	Repetitive DO Loops
	Simple Repetitive Loops
	Controlled Repetitive Loops
	Conditional Phrases (WHILE and UNTIL)
	DROP
	EXIT
	IF
	INTERPRET
	ITERATE
	LEAVE
	NOP
	NUMERIC
	OPTIONS
	PARSE
	PROCEDURE
	PULL
	PUSH
	QUEUE
	RETURN
	SAY
	SELECT
	SIGNAL
	TRACE
	UPPER

	Chapter 3. Functions
	Syntax
	Functions and Subroutines
	Search Order
	Errors During Execution

	Built-in Functions
	ABBREV (Abbreviation)
	ABS (Absolute Value)
	ADDRESS
	APILOAD
	ARG (Argument)
	BITAND (Bit by Bit AND)
	BITOR (Bit by Bit OR)
	BITXOR (Bit by Bit Exclusive OR)
	B2X (Binary to Hexadecimal)
	CENTER/CENTRE
	CHARIN (Character Input)
	CHAROUT (Character Output)
	CHARS (Characters Remaining)
	CMSFLAG
	COMPARE
	CONDITION
	COPIES
	CSL
	C2D (Character to Decimal)
	C2X (Character to Hexadecimal)
	DATATYPE
	DATE
	DBCS (Double-Byte Character Set Functions)
	DELSTR (Delete String)
	DELWORD (Delete Word)
	DIAG/DIAGRC
	DIGITS
	D2C (Decimal to Character)
	D2X (Decimal to Hexadecimal)
	ERRORTEXT
	EXTERNALS
	FIND
	FORM
	FORMAT
	FUZZ
	INDEX
	INSERT
	JUSTIFY
	LASTPOS (Last Position)
	LEFT
	LENGTH
	LINEIN (Line Input)
	LINEOUT (Line Output)
	LINES (Lines Remaining)
	LINESIZE
	MAX (Maximum)
	MIN (Minimum)
	OVERLAY
	POS (Position)
	QUEUED
	RANDOM
	REVERSE
	RIGHT
	SIGN
	SOCKET
	SOURCELINE
	SPACE
	STORAGE
	STSI
	STREAM
	Stream Commands
	Command strings

	STRIP
	SUBSTR (Substring)
	SUBWORD
	SYMBOL
	TIME
	TRACE
	TRANSLATE
	TRUNC (Truncate)
	USERID
	VALUE
	VERIFY
	WORD
	WORDINDEX
	WORDLENGTH
	WORDPOS (Word Position)
	WORDS
	XRANGE (Hexadecimal Range)
	X2B (Hexadecimal to Binary)
	X2C (Hexadecimal to Character)
	X2D (Hexadecimal to Decimal)

	Function Packages
	Additional Built-in Functions Provided in VM
	EXTERNALS
	FIND
	INDEX
	JUSTIFY
	LINESIZE
	USERID
	External Functions and Routines Provided in VM
	APILOAD
	CMSFLAG
	CSL
	DIAG
	DIAGRC
	SOCKET
	STORAGE
	STSI

	Chapter 4. Parsing
	Simple Templates for Parsing into Words
	The Period as a Placeholder

	Templates Containing String Patterns
	Templates Containing Positional (Numeric) Patterns
	Combining Patterns and Parsing Into Words

	Parsing with Variable Patterns
	Using UPPER
	Parsing Instructions Summary
	Parsing Instructions Examples
	Advanced Topics in Parsing
	Parsing Multiple Strings
	Combining String and Positional Patterns: A Special Case
	Parsing with DBCS Characters
	Details of Steps in Parsing

	Chapter 5. Numbers and Arithmetic
	Introduction
	Definition
	Numbers
	Precision
	Arithmetic Operators
	Arithmetic Operation Rules—Basic Operators
	Addition and Subtraction
	Multiplication
	Division
	Basic Operator Examples

	Arithmetic Operation Rules—Additional Operators
	Power
	Integer Division
	Remainder
	Additional Operator Examples

	Numeric Comparisons
	Exponential Notation
	Numeric Information
	Whole Numbers
	Numbers Used Directly by REXX
	Errors

	Chapter 6. Conditions and Condition Traps
	Action Taken When a Condition Is Not Trapped
	Action Taken When a Condition Is Trapped
	Condition Information
	Descriptive Strings

	Special Variables
	The Special Variable RC
	The Special Variable SIGL

	Chapter 7. Input and Output Streams
	Stream Formats
	Opening and Closing Streams
	Stream Names Used by the Input and Output Functions
	Unit Record Device Streams
	The Input and Output Model
	Character Input Streams
	Character Output Streams
	Physical and Logical Lines
	The STREAM Function
	External Data Queue—the General REXX SAA Model
	External Data Queue—VM Extensions
	Implementation

	General I/O Information
	Errors During Input and Output
	Examples of Input and Output
	Summary of Instructions and Functions

	Chapter 8. System Interfaces
	Calls to and from the Language Processor
	Calls Originating from the CMS Command Line
	Calls Originating from the XEDIT Command Line
	Calls Originating from CMS Execs
	Calls Originating from EXEC 2 Programs
	Calls Originating from Alternate Format Exec Programs
	Calls Originating from a Clause That Is an Expression
	Calls Originating from a CALL Instruction or a Function Call
	Calls Originating from a MODULE
	Calls Originating from an Application Program
	Calls Originating from CMS Pipelines
	The CMS EXEC Interface
	The Extended Parameter List
	Using the Extended Parameter List
	The File Block

	Function Packages
	Non-SVC Subcommand Invocation
	Direct Interface to Current Variables
	The Request Block (SHVBLOCK)
	Function Codes (SHVCODE)
	Using Routines from the Callable Services Library

	REXX Exits
	Invocation of the Language Processor by an Application Program
	Invocation of the Exits by the Language Processor
	Call Conditions
	Return Conditions
	Exit Definitions
	Usage Notes

	Additional Exit Provided in VM

	Chapter 9. Debug Aids
	Interactive Debugging of Programs
	Interrupting Execution and Controlling Tracing

	Chapter 10. Reserved Keywords and Special Variables
	Reserved Keywords
	Special Variables

	Chapter 11. Some Useful CMS Commands
	Chapter 12. Invoking Communications Routines
	ADDRESS CPICOMM

	Chapter 13. Invoking Resource Recovery Routines
	ADDRESS CPIRR

	Chapter 14. Invoking OPENVM Routines
	ADDRESS OPENVM

	Chapter 15. REXX Sockets Application Program Interface
	Programming Hints and Tips for Using REXX Sockets
	SOCKET External Function
	Tasks You Can Perform Using REXX Sockets
	REXX Socket Functions
	Accept
	Bind
	Cancel
	Close
	Connect
	Fcntl
	GetClientId
	GetDomainName
	GetHostByAddr
	GetHostByName
	GetHostId
	GetHostName
	GetPeerName
	GetProtoByName
	GetProtoByNumber
	GetServByName
	GetServByPort
	GetSockName
	GetSockOpt
	GiveSocket
	Initialize
	Ioctl
	Listen
	Read
	Recv
	RecvFrom
	Resolve
	Select
	Send
	SendTo
	SetSockOpt
	ShutDown
	Socket
	SocketSet
	SocketSetList
	SocketSetStatus
	TakeSocket
	Terminate
	Trace
	Translate
	Version
	Write

	REXX Sockets System Messages
	REXX Sockets Return Codes

	Chapter 16. Sample Programs
	REXX-EXEC RSCLIENT Sample Program
	REXX-EXEC RSSERVER Sample Program

	Appendix A. Error Numbers and Messages
	Appendix B. Double-Byte Character Set (DBCS) Support
	General Description
	Enabling DBCS Data Operations and Symbol Use
	Symbols and Strings
	DBCS-Only Symbols and Mixed SBCS/DBCS Symbols
	DBCS-Only Strings and Mixed SBCS/DBCS Strings

	Validation
	DBCS Symbol Validation
	Mixed String Validation

	Instruction Examples
	PARSE
	PUSH and QUEUE
	SAY and TRACE
	UPPER

	DBCS Function Handling
	Built-in Function Examples
	ABBREV
	COMPARE
	COPIES
	DATATYPE
	FIND
	INDEX, POS, and LASTPOS
	INSERT and OVERLAY
	JUSTIFY
	LEFT, RIGHT, and CENTER
	LENGTH
	REVERSE
	SPACE
	STRIP
	SUBSTR and DELSTR
	SUBWORD and DELWORD
	SYMBOL
	TRANSLATE
	VALUE
	VERIFY
	WORD, WORDINDEX, and WORDLENGTH
	WORDS
	WORDPOS

	DBCS Processing Functions
	Counting Option

	Function Descriptions
	DBADJUST
	DBBRACKET
	DBCENTER
	DBCJUSTIFY
	DBLEFT
	DBRIGHT
	DBRLEFT
	DBRRIGHT
	DBTODBCS
	DBTOSBCS
	DBUNBRACKET
	DBVALIDATE
	DBWIDTH

	Appendix C. Performance Considerations
	Appendix D. Example of a Function Package
	Appendix E. z/VM REXX/VM Interpreter in the GCS Environment
	The Extended PLIST (EPLIST)
	The Standard Tokenized PLIST (PLIST)

	The File Block (FBLOCK)
	EXECCOMM Processing (Sharing Variables)
	Shared Variable Request Block (SHVBLOCK)
	Function Codes (SHVCODE)

	RXITDEF Processing (Assigning Values for Exits)
	RXITPARM Processing (Mapping Parameter List for Exits)

	Appendix F. Input and Output Return and Reason Codes
	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

