
z/VM
7.3

CPI Communications User's Guide

IBM

SC24-6273-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
191.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-09-07
© Copyright International Business Machines Corporation 1991, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. xi

About This Document..xiii
Intended Audience.. xiii
Where to Find More Information...xiii

Links to Other Documents and Websites.. xiii

How to Send Your Comments to IBM...xv

Summary of Changes for z/VM: CPI Communications User's Guide...................... xvii
SC24-6273-73, z/VM 7.3 (September 2022)..xvii
SC24-6273-01, z/VM 7.2 (September 2020)..xvii
SC24-6273-00, z/VM 7.1 (September 2018)..xvii

Chapter 1. Introduction... 1
A Few Words about Our Format and Programs...1

Error Handling...1
The Programming Language Used for This Book...1

Before You Start... 1
Setting Up the User IDs.. 2

Conventions Used in This Book... 2
Pseudonyms... 2
Visual Cues... 2

CPI Communications Terms and Concepts for z/VM.. 3
Program Partners, Communications, and Resources..3
Like Using a Two-Way Radio.. 4
Type of Conversation to Be Used... 5

Program Calls... 6
SAA CPI Communications Calls... 6
z/VM Extensions to CPI Communications... 6

Chapter 2. Starter Set CPI Communications Calls... 7
Calls Used for Starting and Ending Conversations..7
Calls Used for Exchanging Data... 7
Using the Starter Set Calls... 7

Getting Started... 8
Step 1. The Initialize_Conversation (CMINIT) Call.. 8
Step 2. The Allocate (CMALLC) Call... 14
Step 3. The Send_Data (CMSEND) Call..17
Preparing the SERVR Virtual Machine..25
Step 4. The Accept_Conversation (CMACCP) Call... 28
Step 5. The Receive (CMRCV) Call... 30
Step 6. Adding a Receive (CMRCV) Loop to Our Requester Program... 35
Step 7. Adding a Send_Data (CMSEND) Loop to Our Server...38
Step 8. The Deallocate (CMDEAL) Call...42

Summary with Flow Diagram...50
A Word about the Flow Diagrams.. 50

 iii

Flow Diagram for Starter Set Conversation... 50

Chapter 3. Advanced CPI Communications Calls...53
Overview of Advanced CPI Communications Calls...53

Calls Used for Synchronization and Control.. 53
Using Advanced Set Calls.. 54

The Extract_Conversation_State (CMECS) Call... 56
The Prepare_To_Receive (CMPTR) Call..60
The Set_Sync_Level (CMSSL) Call..63
The State Table–Finding Out Where You Can Go from Here...66

Confirmation Processing..68
The Confirm (CMCFM) Call... 68
The Confirmed (CMCFMD) Call...69
The Set_Prepare_To_Receive_Type (CMSPTR) Call.. 75
The Set_Send_Type (CMSST) Call..79
The Set_Deallocate_Type (CMSDT) Call.. 83
The Extract_Conversation_Type (CMECT) Call.. 88
The Send_Error (CMSERR) Call..90
The Set_Conversation_Type (CMSCT) Call.. 92
The Set_Partner_LU_Name (CMSPLN) Call... 96
The Set_TP_Name (CMSTPN) Call..98

Overviews of Additional Advanced Calls...101
Extract_Mode_Name (CMEMN) Call.. 101
Extract_Partner_LU_Name (CMEPLN) Call..101
Extract_Sync_Level (CMESL) Call.. 101
Request_To_Send (CMRTS) Call.. 101
Set_Error_Direction (CMSED) Call... 101
Set_Fill (CMSF) Call..101
Set_Log_Data (CMSLD) Call...102
Set_Mode_Name (CMSMN) Call.. 102
Set_Return_Control (CMSRC) Call... 102
Set_Receive_Type (CMSRT) Call..102
Test_Request_To_Send_Received (CMTRTS) Call.. 103

The Modified Sample Execs.. 103
The PROCESS Sample File Requester Exec...103
The SENDBACK Sample Server Exec...106

Summary..109

Chapter 4. VM Extensions to CPI Communications ... 111
The Relationship between VM and SAA CPI Communications.. 111
Overview of VM Extension Calls.. 111

Summary of VM Extension Calls.. 111
Managing a Resource...113

What Is a Resource Manager?... 113
What Kinds of Resources Are There?.. 113
The Identify_Resource_Manager (XCIDRM) Call.. 115
The Terminate_Resource_Manager (XCTRRM) Call.. 119
The Wait_on_Event (XCWOE) Call... 122

Security Considerations...132
The Set_Conversation_Security_Type (XCSCST) Call..134
The Set_Conversation_Security_User_ID (XCSCSU) Call..136
The Set_Conversation_Security_Password (XCSCSP) Call... 138

Intermediate Servers...141
Setting Up the SERVR2 Virtual Machine.. 142
Converting the SERVR Virtual Machine into an Intermediate Server... 144

Security Considerations for Intermediate Servers... 154
The Extract_Conversation_Security_User_ID (XCECSU) Call... 155

iv

The Set_Client_Security_User_ID (XCSCUI) Call.. 161
Overview of Additional VM Extension Calls.. 168

Extract_Conversation_LUWID (XCECL) Call.. 169
Extract_Conversation_Workunitid (XCECWU) Call..169
Extract_Local_Fully_Qualified_LU_Name (XCELFQ) Call..169
Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) Call... 169
Extract_TP_Name (XCETPN) Call...169
Signal_User_Event (XCSUE) Call..169

The Completed Sample Execs...169
The PROCESS Sample File Requester Exec...169
The SENDBACK Sample Intermediate Server Exec.. 173
The SENDSERV Sample Resource Manager Exec... 179

Conclusion... 183

Appendix A. Event Management for CPI Communications................................... 185
The VMCPIC System Event..185
Managing Events..186

Appendix B. CPI Communications Conversation States.......................................189
Additional CPI Communications States..189

Notices..191
Programming Interface Information...192
Trademarks.. 192
Terms and Conditions for Product Documentation.. 192
IBM Online Privacy Statement.. 193

Bibliography.. 195
Where to Get z/VM Information.. 195
z/VM Base Library..195
z/VM Facilities and Features... 196
Prerequisite Products.. 198
Related Products... 198

Index.. 201

 v

vi

Figures

1. Partner Transaction Programs.. 4

2. A User Program Requests a Resource from a Resource Manager Program.. 4

3. Output from PROCESS EXEC Showing Step 1 Results... 12

4. Step 1 Output from PROCESS EXEC Showing Pseudonym.. 14

5. Output from PROCESS EXEC Showing Step 2 Results... 16

6. Output from PROCESS EXEC Showing a Common Error.. 16

7. Output from PROCESS EXEC Showing Step 3 Results... 20

8. Output from PROCESS EXEC after Adding UCOMDIR NAMES Entry... 22

9. Output from PROCESS EXEC after SET COMDIR Command.. 23

10. System Response after Entering SET SERVER ON Command... 23

11. Output from PROCESS EXEC after Entering the SET SERVER ON Command from the SERVR
Console...24

12. Relationship between UCOMDIR and $SERVER$ NAMES Files.. 27

13. Output Resulting from Execution of SENDBACK EXEC.. 29

14. Output from PROCESS EXEC Showing Step 4 Results... 30

15. Output from SENDBACK EXEC Showing Step 4 Results.. 30

16. Output from PROCESS EXEC Showing Step 5 Results... 34

17. Output from SENDBACK EXEC Showing Step 5 Results.. 34

18. Output from PROCESS EXEC Showing Step 6 Results... 37

19. Output from SENDBACK EXEC Showing Step 6 Results.. 38

20. Output from PROCESS EXEC Showing Step 7 Results... 41

21. Output from SENDBACK EXEC Showing Step 7 Results.. 42

22. Output from PROCESS EXEC Showing Step 8 Results... 46

 vii

23. Output from SENDBACK EXEC Showing Step 8 Results.. 47

24. Flow Diagram for Starter Set Conversation..52

25. Results of First Two Calls from PROCESS EXEC...57

26. Results of Next Two Calls from PROCESS EXEC...58

27. Results of Next Two Receive Calls from PROCESS EXEC...58

28. Completion of PROCESS EXEC Execution.. 58

29. Results of First Call from SENDBACK EXEC... 59

30. Results of Next Two Calls from SENDBACK EXEC..59

31. Completion of SENDBACK EXEC Execution..59

32. Execution Results after Adding CMPTR to PROCESS EXEC... 62

33. Results from SENDBACK EXEC Execution..62

34. Results of Adding CMSSL Call to PROCESS EXEC.. 65

35. Results from SENDBACK EXEC Execution..66

36. Results of Confirmation Processing by PROCESS EXEC.. 73

37. Results of Confirmation Processing by SENDBACK EXEC..74

38. Results after Adding CMSPTR Call to PROCESS EXEC... 78

39. Results of SENDBACK EXEC Execution.. 78

40. Results of PROCESS EXEC Execution... 81

41. Results after Adding CMSST Call to SENDBACK EXEC...82

42. Results after Adding CMSDT Call to PROCESS EXEC... 87

43. Results after Adding CMSDT Call to SENDBACK EXEC.. 87

44. Results of PROCESS EXEC Establishing a Basic Conversation.. 95

45. Results of SENDBACK EXEC Detecting a Basic Conversation..95

46. Results of Setting an Unknown LU Name from PROCESS EXEC.. 98

47. Results of Setting an Incorrect TP Name from PROCESS EXEC.. 100

viii

48. Results on Server Virtual Machine Because of an Incorrect TP Name..100

49. Results of PROCESS EXEC Execution... 121

50. SENDBACK EXEC Execution as a Resource Manager.. 121

51. Results of PROCESS EXEC Execution... 128

52. Results of XCWOE to SENDBACK EXEC..129

53. Results of Starting SENDBACK EXEC on the SERVR User ID...132

54. Results of Entering QUIT at the SERVR Console..132

55. Results from PROCESS EXEC..140

56. Results from SENDBACK EXEC ..141

57. SENDBACK Must Maintain Two Different Conversations...144

58. SENDBACK Assigns conversation_ID=ConvA and con_ID=ConvB... 145

59. Results from PROCESS EXEC..151

60. Results from Intermediate Server's SENDBACK EXEC (Part 1 of 2)... 152

61. Results from Intermediate Server's SENDBACK EXEC (Part 2 of 2)... 153

62. Results from SERV2's SENDSERV EXEC...154

63. Requester's User ID Is Sent to VMUSR3 with TP-Model Application B's Allocate............................... 155

64. Access Security User ID of Intermediate Server (VMUSR2) Sent to VMUSR3......................................155

65. Results from Requester's PROCESS EXEC... 158

66. Results from Intermediate Server's SENDBACK EXEC (Part 1 of 2)... 159

67. Results from Intermediate Server's SENDBACK EXEC (Part 2 of 2)... 160

68. Results from SERVR2's SENDSERV EXEC.. 161

69. Results at SERVR2's Console... 163

70. Results from Requester's PROCESS EXEC... 165

71. Results from Server's SENDBACK EXEC (Part 1 of 2).. 166

72. Results from Server's SENDBACK EXEC (Part 2 of 2).. 167

 ix

73. Results from SERVR2's SENDSERV EXEC.. 168

x

Tables

1. Overview of Communications Programs Using Starter Set Calls... 7

2. When Errors Are Reported.. 18

3. SFS Directories Accessed... 25

4. Overview of Sample Programs with Advanced Set Calls... 54

5. Flush.. 60

6. State Transitions for SENDBACK EXEC CPI Communications Calls.. 67

7. Overview of Sample Programs Using VM Extensions...114

8. Overview of Sample Intermediate Server Program... 142

9. CPI Communications Conversation States...189

10. Additional Conversation States for Protected Conversations... 189

 xi

xii

About This Document

This document is intended to help you learn how to write communication programs. After working through
this document, you should be able to use SAA Common Programming Interface (CPI) Communications
routines to write communication programs that run in the CMS environment.

This document contains information about the IBM z/VM CPI Communications routines for application
programmers.

• It provides an overview and CPI Communications as implemented in z/VM.
• It describes the starter set of SAA CPI Communications routines and builds a pair of simple

communications programs using only these routines.
• It adds advanced SAA CPI Communications routines to programs to show additional functions available

in SAA CPI Communications.
• It modifies programs to include several z/VM extension routines.

Intended Audience
You should read this document if you want to learn how to write communications programs, but are
not familiar with CPI Communications. You do not need to have any experience with communications
programming.

You should be knowledgeable about programming and familiar with CMS. The examples in this document
are coded in REXX, but you do not need to be familiar with the language to work through this document.
You can get acquainted with REXX by copying the examples.

Where to Find More Information
This book is designed to introduce you to CPI Communications in VM. These other books contain related
information:

• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf), SC26-4399

• z/VM: Connectivity, SC24-6267
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: REXX/VM Reference, SC24-6314

Other books you may need to develop application programs are listed in the “Bibliography” on page 195
of this book.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

© Copyright IBM Corp. 1991, 2022 xiii

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

xiv z/VM: 7.3 CPI Communications User's Guide

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1991, 2022 xv

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xvi z/VM: 7.3 CPI Communications User's Guide

Summary of Changes for z/VM: CPI Communications User's
Guide

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6273-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6273-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

SC24-6273-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1991, 2022 xvii

xviii z/VM: 7.3 CPI Communications User's Guide

Chapter 1. Introduction

IBM's Systems Application Architecture® (SAA) has simplified the task of writing communications
programs by providing the Communications element of the Common Programming Interface (CPI).
CPI Communications, also called SAA communications interface, provides a programming interface for
advanced program-to-program communications (APPC).

SAA CPI Communications defines a set of routines and parameters that are consistent across SAA
environments. An application written using CPI Communications on z/VM can be transported to other SAA
environments, provided the application does not use product-specific routines.

This book will help you get started writing simple communications programs using z/VM's implementation
of CPI Communications. It can be viewed as an introduction and companion to Common Programming
Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf), which fully
describes SAA CPI Communications and product-specific extensions.

A Few Words about Our Format and Programs
This book is designed as a self-study primer of the z/VM implementation of CPI Communications.
Gradually, as you work through the book, we will build two sample CPI Communications programs. The
format we will follow is to introduce a CPI Communications routine and provide a short discussion of its
function. Then, we will add that routine to one of our programs and examine how it affects the results of
the program.

After a few general routines have been added, one of our programs will request the contents of a
particular file from the other program. In order to provide a broad introduction to CPI Communications,
we will use most of the SAA and z/VM specfic routines in our programs. While some of these routines are
not required for the particular function of this application, their use will help demonstrate how they may
be used in other applications.

One of the more difficult parts of communications programming is determining what went wrong when
a program does not work as expected. As we build the example programs in this book, things will not
always work correctly the first time. The idea is to let you experience some of the common problems that
can occur while we are here to help you through them. Having these experiences now may help you avoid,
or at least recognize, similar problems in the future.

Error Handling
To limit the complexity of our example programs, we do not handle all error conditions. The degree of
error handling necessary for your programs will depend on the application requirements.

The Programming Language Used for This Book
CPI Communications is intended for use by programs written in the SAA languages. We will be using REXX
for the programs in this book because that is the one language we can be sure every z/VM system will
have available (and besides, it is really easy to use). Familiarity with REXX would be helpful, but it is not
essential to your CPI Communications education in this book. Just type carefully.

Before You Start
Before you begin working through this book, it is important to consider the following items:

• We expect you to know something about CMS and how to use an editor to create and modify a file.
Familiarity with basic communications concepts would be helpful. If you have little or no experience in
communications programming, it may be worthwhile for you to read the "Connectivity Programming in
CMS" section of z/VM: CMS Application Development Guide.

Introduction

© Copyright IBM Corp. 1991, 2022 1

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

• A complete description of CPI Communications can be found in Common Programming Interface
Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf). That book provides
details concerning the SAA CPI Communications routines.

• We encourage you to implement our example programs, and to do so, you will need at least two z/VM
user IDs and logon passwords (you will need three to complete the section on z/VM extensions) on a
z/VM system. So that you can work with both of your virtual machines at the same time, you either
should have access to a terminal or workstation that handles multiple sessions or should arrange to
have two terminals at your desk.

Setting Up the User IDs
If you are not a system administrator, you will need to ask a system administrator or your supervisor to set
up two or three virtual machines (user IDs) on the same z/VM system for you. Throughout this book, we
refer to the virtual machines by the user IDs REQUESTR, SERVR, and SERVR2. You can use any user IDs
you like. Just be careful to change the names appropriately as you copy the example programs. If you do
not plan to work through the chapter on z/VM extensions to SAA CPI Communications, you can manage
very well with only two user IDs (REQUESTR and SERVR).

We tested the example programs used in this book on virtual machines set up with 4MB of storage.

You will also need to ask the system administrator to add an IUCV ALLOW and an IPL CMS statement to
the CP directory of the SERVR and SERVR2 virtual machines. The IUCV ALLOW statement authorizes the
virtual machine to engage in communications. Without this statement, the server machine will not be able
to function in the way that you need for this project. The IPL CMS statement automatically IPLs CMS when
the user ID is logged on by the system as a result of a connection request.

If you plan to work through the z/VM extensions chapter, the SERVR virtual machine will also need Class B
privilege so your program can set an alternate user ID. We will explain what this means when we need it.

Conventions Used in This Book
To make this book as usable as possible, we employ a couple of devices that are also used
in Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf). Namely, we use pseudonyms for the various CPI Communications programming elements
and we use different typefaces to establish visual cues. This section will help you understand and use
these devices effectively.

Pseudonyms
To make it easier to follow what we are discussing and to improve the readability of this book,
pseudonyms are used for the calls, characteristics, variables, and characteristic values that make up
CPI Communications. For example, Initialize_Conversation is the pseudonym for the actual callable name
CMINIT, and the pseudonym for one possible return_code value is CM_OK. Pseudonyms can also be used
for integer values in program code by making use of equate or define statements.

Pseudonyms are not actually passed to CPI Communications as a string of characters. Instead,
the pseudonyms represent integer values that are passed on the program calls. In the preceding
example, CM_OK represents an integer value of 0. A mapping from valid pseudonyms to integer values
can be found in an appendix of Common Programming Interface Communications Reference (https://
publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf).

z/VM provides sample pseudonym files called copy files for each of the SAA languages. See
Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf) (the "Programming Language Considerations" section and the "CPI Communications on
VM/ESA CMS" appendix) for more details on these sample files.

Visual Cues
We use different typefaces to provide visual cues that should make working with this book easier. For
terms that are being defined, we use boldface italics, like new term. We show the example programs

Introduction

2 z/VM: 7.3 CPI Communications User's Guide

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

in a different typeface, as shown below. The first time program code is shown in the book, we show
it in boldface. Whenever that particular program code appears again (as it does fairly often in the next
chapter), we show it in the regular example typeface. This makes it easy to identify new sections of code
and exactly where that code belongs in the program. Here is how the example typeface looks:

Let's say that this is code introduced previously.
This, on the other hand, is new code being inserted.
This makes it easy to see where to put the new code.
And now this is older code again.

The following line shows you how code looks that is to be deleted:

 delete This line of code is to be deleted.

The conventions we use for distinguishing the various programming elements are much the same as
those used in Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/
epubs/pdf/c2643999.pdf):
Call_Pseudonyms

Mixed case with underscores between words, for example, Initialize_Conversation
CALLS

All uppercase, for example, CMINIT
Variables

(This includes parameters and characteristics) mixed-case italics with underscores separating words,
for example, return_code, conversation_ID

characteristic_values
All small uppercase letters with underscores between words, for example, CM_OK,
CM_NO_DATA_RECEIVED

States
Boldface with the initial letter in uppercase and hyphens between words, for example, Send-Pending

When discussing the various communications calls, we generally list only the return codes that
are pertinent to the sample program. For other possible return codes, see the call descriptions
in Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf). A complete list of possible return code pseudonyms and their descriptions can be found
in the "Return Codes" appendix of that book. The return code pseudonyms and associated integer values
can be found in the "Variables and Characteristics" appendix of that book.

CPI Communications Terms and Concepts for z/VM
Before we start looking at individual CPI Communications routines and begin writing our sample
programs, let's cover some background information. This section briefly summarizes some general
terms and concepts related to communications programming and z/VM's implementation of CPI
Communications.

Program Partners, Communications, and Resources
Two CPI Communications programs exchange data using a conversation. The two programs involved in
a conversation are called partners in the conversation, and each of these application programs can be
referred to as a transaction program. Figure 1 on page 4 shows a conversation between Transaction
Program A on UserID-1 and Transaction Program B on UserID-2.

Introduction

Chapter 1. Introduction 3

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

Figure 1. Partner Transaction Programs

The terms local and remote are used to distinguish between the two sides of a conversation. If a program
is being discussed as local, its partner program is said to be the remote program for that conversation.

A common use of conversations is to access or modify resources. A resource can be a program,
file, database, or any other entity that can be identified for application program processing. Common
examples of resources in z/VM are a Shared File System (SFS) filepool or SQL/DS database.

The z/VM resources related to communications programming are classified as global, local, system, and
private based on the scope under which they are identified for use. The only one we are concerned with
in this book is the private resource. For information about global, local, and system resources, see z/VM:
CMS Application Development Guide. A private resource is identified only to the virtual machine in which it
is located, although it can be accessed by authorized programs that reside anywhere in the same network.

A resource manager is a program that manages access to one or more z/VMresources. A resource
manager gets requests from a user program to access resources owned by the resource manager, as
shown in Figure 2 on page 4. The resource manager program runs in a server virtual machine. The
private resource server virtual machine does not need to be logged on when a program requests to
connect to the private resource manager. If the private server virtual machine is not logged on and its
directory entry contains an IPL statement, CP will autolog it.

A user program is a transaction program that requests a service from a resource manager program. The
user program, frequently called a requester program in this book, runs in a requester virtual machine.

Figure 2. A User Program Requests a Resource from a Resource Manager Program

CPI Communications conversations use bidirectional half-duplex connections. Basically, this means that,
although data can be sent by both partners, only one partner can send data at any given time.

Like Using a Two-Way Radio
The process of passing information back and forth between the partner programs, using a half-duplex
conversation, can be compared to the way a pair of two-way radio operators communicate. Both
situations require adherence to a set of communications protocols. The radios must be set to the
same frequency; the virtual machines must be linked in some manner. Both the radio operator and
the communications program initiating a conversation must specify the partner of the conversation. In
general, the recipient of the information, another radio operator or another communications program,
must acknowledge the request to communicate in order for an exchange to take place. The two partners

Introduction

4 z/VM: 7.3 CPI Communications User's Guide

in each type of conversation must take turns sending information to each other. Finally, one of the
partners indicates to the other that the conversation is being terminated.

Protocols have been established in both realms (two-way radios and CPI Communications) to make
communication easier and more efficient. For example, a two-way radio conversation might go something
like this:

 Radio ABC Radio XYZ

 ABC to XYZ, over
 Go ahead, ABC, over
 Give me your location, over
 I'm at Broadway and Vine, over
 Thank you, ABC out
 XYZ out

Yes, it is rather crude, and even odd sounding to those of us who are accustomed to using the telephone
for all our remote communications. But it serves a purpose. Fortunately, CPI Communications is rather
more sophisticated than two-way radio communications, but the principle is still the same.

You will note that in our example, only one side (partner) talked at any one time. We can say that the
talking (or sending) partner was in Send state and that the listening (or receiving) partner was in Receive
state. These are the only two states available in two-way radio communications (unless you count idle
and off as states). These are also the two basic states in the half-duplex protocol.

In CPI Communications, however, considerably more flexibility is possible even though we are still dealing
with half-duplex connections. To use the flexibility provided by computer communications, new states
were added on top of the basic half-duplex protocol. These states are a part of CPI Communications and
they provide various capabilities to communications programs.

Even our simple two-way radio conversation suggests two more states, off (or no conversation) and
start (or set up for a conversation, including idle time before the first transmission). Indeed, CPI
Communications defines two states that coincide with these: Reset and Initialize states. Reset state
means that there is no conversation activity and Initialize state means that a conversation is being set up.
Thus, we already have four states in simple computer communications:

• Reset
• Initialize
• Send
• Receive

We will cover these and additional states as we work through the example programs in this book. For now,
just remember that the type of communications protocol we are working with is basically like a two-way
radio conversation. We can add a good deal of sophistication because we are also using computers and
application programs to do the work for us.

Type of Conversation to Be Used
CPI Communications defines two types of conversations, mapped and basic. Mapped conversations allow
programs to exchange arbitrary data records in formats agreed upon by the application programmers
writing the communications programs. Basic conversations allow programs to exchange data in a
standardized format, that is, a stream of data containing 2-byte length fields that specify the amount
of data to follow before the next length field.

Because we will be using a mapped conversation and a private resource, the information discussed
in this manual will focus on programming from that perspective. Basic conversations require
much more work on the programmer's part than mapped conversations. You can find additional
information on basic conversations in Common Programming Interface Communications Reference (https://
publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf).

Introduction

Chapter 1. Introduction 5

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

Program Calls
CPI Communications programs communicate with each other by making program calls. These calls are
used to establish the characteristics of the conversation and to exchange data and control information
between the programs.

When a program makes a CPI Communications call, the program passes characteristics and data to CPI
Communications using input parameters. When the call completes, CPI Communications passes data and
status information back to the program using output parameters.

SAA CPI Communications Calls
The SAA CPI Communications calls can be divided into two groups, a starter set and an advanced set.
The starter set consists of calls for starting and ending conversations and for exchanging data. Simple
communications programs can be written exclusively with the routines in this group. Chapter 2, “Starter
Set CPI Communications Calls,” on page 7 uses only these communications routines to build the first
working sample programs.

The advanced set consists of calls for synchronization and control, modifying conversation characteristics,
and querying (extracting) conversation characteristics. These calls are used in Chapter 3, “Advanced CPI
Communications Calls,” on page 53 to add more capabilities to our communications programs.

z/VM Extensions to CPI Communications
z/VM provides a group of extension calls to CPI Communications that allow programs to exploit z/VM's
capabilities. An application taking advantage of the added z/VM function, however, is not transportable to
other SAA environments without modification. Chapter 4, “VM Extensions to CPI Communications ,” on
page 111 demonstrates the use of some of the routines in this group.

Introduction

6 z/VM: 7.3 CPI Communications User's Guide

Chapter 2. Starter Set CPI Communications Calls

As we pointed out in Chapter 1, “Introduction,” on page 1, the starter set of CPI Communications routines
is made up of calls to start and end conversations and to exchange data. The six calls in this group are
adequate for writing simple communications programs, and that is just what we are going to do with them
momentarily. The following two tables will familiarize you with these calls.

Calls Used for Starting and Ending Conversations

Pseudonym Call Description Location

Initialize_Conversation CMINIT Initializes values for various
conversation characteristics
before the conversation is
allocated

“Step 1. The Initialize_Conversation (CMINIT)
Call” on page 8

Allocate CMALLC Establishes a conversation
with a partner transaction
program

“Step 2. The Allocate (CMALLC) Call” on page
14

Accept_Conversation CMACCP Accepts an incoming
conversation

“Step 4. The Accept_Conversation (CMACCP)
Call” on page 28

Deallocate CMDEAL Ends a conversation “Step 8. The Deallocate (CMDEAL) Call” on
page 42

Calls Used for Exchanging Data
Pseudonym Call Description Location

Send_Data CMSEND Sends one data record to the
remote program

“Step 3. The Send_Data (CMSEND) Call” on
page 17

Receive CMRCV Receives information from a
given conversation

“Step 5. The Receive (CMRCV) Call” on page
30

Using the Starter Set Calls
In this chapter you will learn how to use the starter set CPI Communications routines to start
conversations, send data, receive data, and end conversations. The routines will be introduced in the
order depicted in the following table. This table is not meant to illustrate the actual flows (transmission
of information) of the conversation. A flow diagram is provided at the end of this chapter to help visualize
how our communications programs work together.

Table 1. Overview of Communications Programs Using Starter Set Calls

 Step REQUESTR User ID SERVR User ID

 1. Initialize_Conversation

 2. Allocate

 3. Send_Data

 4. Accept_Conversation

 5. Receive loop

 6. Receive loop

 7. Send_Data loop

Starter Set Calls

© Copyright IBM Corp. 1991, 2022 7

Table 1. Overview of Communications Programs Using Starter Set Calls (continued)

 Step REQUESTR User ID SERVR User ID

 8. Deallocate

Getting Started
Before you can make much progress in writing communications programs, you will need to set up two
virtual machine user IDs. One of the virtual machines will be the requester, and the other will act as a
server. If you have not already obtained the user IDs, go back to “Setting Up the User IDs” on page 2 for a
description of what you need. Log on the REQUESTR and SERVR user IDs after they are ready.

We will begin working from the REQUESTR user ID, where we will create a user program called PROCESS
EXEC.

FYI: REXX Considerations

Because this is a REXX exec, we will want to begin with a comment line (/* */).

In REXX you can specify a subcommand environment to help ensure predictable and efficient execution
of REXX execs. The REXX subcommand environment for CPI Communications is called CPICOMM, and
we can either specify ADDRESS CPICOMM once for the entire exec or each time we issue a call. Because
our focus is on CPI Communications, we will go ahead and set CPICOMM as the primary subcommand
environment at the top of the program. As a result, we need to keep in mind that the appropriate
ADDRESS statement will need to precede any CMS or CP commands issued by our program.

As part of our basic error checking, we want our program to check the REXX special variable RC. If RC
is not zero, then the CPI Communications call was not invoked and none of the call's output parameters
contain valid values. The chapter on invoking communications routines in z/VM: REXX/VM Reference
lists possible values for the RC variable. We will add the REXX instruction SIGNAL ON ERROR to our
program, which will result in the RC variable being monitored for us. If RC is set to a nonzero value, a
subroutine named Error in our program will be called automatically.

These REXX considerations suggest that we start our program with the following lines:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable trapping of REXX errors. */
/*--*/
address cpicomm
signal on error

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
signal GetOut

Now, we are ready to begin our exploration of CPI Communications.

Step 1. The Initialize_Conversation (CMINIT) Call
Before communication can begin, we must initiate a conversation. There are two steps involved in
initiating a CPI Communications conversation: initialization of conversation characteristics and allocation

Starter Set Calls

8 z/VM: 7.3 CPI Communications User's Guide

of the conversation. The purpose of the Initialize_Conversation (CMINIT) routine is to handle the first step
of that process.

Conversation characteristics define the conversation to be established. Returning to the two-way radio
conversation for an example, the radio operator must decide what transmission frequency to use before
transmitting any information. So, the transmission frequency can be considered a characteristic of the
radio conversation.

Various characteristics are associated with communications conversations, and the
Initialize_Conversation call initializes most of those characteristics to predefined values. (The
"Conversation Characteristics" section in Common Programming Interface Communications Reference
(https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf) contains a complete list of these conversation
characteristics and their default values. For example, the conversation_type characteristic is initialized to
CM_MAPPED_CONVERSATION.) The default characteristic settings are sufficient in many cases, but if any
of these default values are not appropriate for a particular application, they can be changed easily with
calls to other CPI Communications routines that we will discuss in the next chapter.

Another result of a call to the Initialize_Conversation routine is that CPI Communications side information
is examined. The values of several additional conversation characteristics are set based on the contents
of the side information.

FYI: Side Information

Certain information about the partner program that will be participating in a conversation must be
provided to complete the initialization of conversation characteristics. This data is referred to as side
information and it identifies the location of the partner program.

VM's implementation of side information uses CMS communications directory files. A communications
directory file is a NAMES file that can be set up either on a system level (by a system administrator) or on
a user level. We will discuss this in more detail later.

During the discussion of a communications routine, we will want to examine the particular parameters
associated with it. When showing the general call format for a routine, we will indicate which parameters
require that a value be provided on the call (input parameters) and which ones return a value upon
completion of the call (output parameters). The general format for calling Initialize_Conversation is:

 CALL CMINIT(conversation_ID, output
 sym_dest_name, input
 return_code) output

You will notice that this example is similar to the call format shown for Initialize_Conversation
in Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf), except that we are emphasizing whether a parameter serves as input or output. Note that
REXX uses a slightly different call format; we are using the standard format just for illustration here. CALL
is the language-specific syntax for calling CPI Communications routines. CMINIT is the name of this call.

Input Parameter
The sym_dest_name parameter is the sole input parameter on this call, so it is the only one for
which we need to provide a value. Sym_dest_name is an abbreviation of "symbolic destination name",
which is meant to indicate that this parameter identifies the remote partner for the conversation. The
value provided as input to the routine is used as an index into a side information file. Data from the
corresponding entry in side information initializes several conversation characteristics.

Output Parameters
The two output parameters for Initialize_Conversation are conversation_ID and return_code. The
conversation_ID is assigned by CPI Communications to uniquely identify this conversation. It is used
as input on all subsequent CPI Communications calls made for the conversation.

Each CPI Communications routine has a return_code parameter, which specifies the result of the call
execution. All of the return codes are defined in Common Programming Interface Communications

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 9

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

Reference (https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf), although the return_code parameter
for a particular routine can only take on a subset of those values.

It is beyond the intent of this tutorial to cover all of the return_code values that are possible
for each routine. Instead, we are going to highlight just some of the more common ones. For
Initialize_Conversation, there are two codes of interest:
CM_OK (0)

indicates that the characteristics for a conversation have been successfully initialized. That's the code
we will want to get back.

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates that a CMS error has occurred. Whenever a CM_PRODUCT_SPECIFIC_ERROR is returned,
a file on your A-disk called CPICOMM LOGDATA is updated with a message to help you understand
what type of problem was encountered. Message lines are appended to this file, so the last line in
the file is the most recent. Additional information on product specific errors can be found in the
Appendix "CPI Communications on VM/ESA CMS" in Common Programming Interface Communications
Reference (https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf).

Results of the Call
If the Initialize_Conversation call completes successfully, meaning that the return_code was CM_OK, then
the conversation enters Initialize state. Prior to this point, we had been in Reset state. Keep this in mind.
It will be useful later on when we discuss states in more detail.

Adding CMINIT to Our Requester Program
To call the Initialize_Conversation routine, we will need to use the routine's callable name CMINIT.

As previously noted, the sym_dest_name is the only input parameter for this routine. We can either assign
a value (the identifier for our remote partner) to the sym_dest_name variable in our program before calling
Initialize_Conversation, or we can accept the value from the console as an operand on the exec call. To
make the program more dynamic, we will provide the sym_dest_name as console input. We will need to
add an ARG sym_dest_name statement to our REXX exec to pull the symbolic destination name from the
console and place it in the program stack. (Ordinarily, we would also add some error checking to ensure
that any input from the console meets our expectations, but we will forgo that in these simple examples
to save typing and focus on the communications calls.)

In addition, we will display the results of the Initialize_Conversation call. We will add a say statement to
show which call was executed. By passing a list of parameters to a subroutine called TraceParms, we can
also display the current value for each of the parameters.

We will be checking the return_code output parameter after each CPI Communications call to determine
whether the call completed successfully. If return_code contains a nonzero value, we will want to know
about it, so we will add a subroutine called ErrorHandler, which will be called whenever the program
encounters a problem.

FYI: More REXX Considerations

Note that when we add a call to a CPI Communications routine, we need to put single quotation marks
around the call.

The subroutine TraceParms uses the REXX function WORDS to determine the number of blank-delimited
words in a string. In our case, each word is a parameter name, so WORDS will return the number of
parameters that need to be processed. TraceParms also uses the REXX functions WORD, which returns
the specified word in a string, and VALUE, which returns the value that a specified symbol represents.
So, we can use WORD to extract a parameter name followed by VALUE to display the current value of
that parameter.

Adding the Initialize_Conversation call and the new subroutines to the PROCESS EXEC results in these
changes (denoted by highlighting):

Starter Set Calls

10 z/VM: 7.3 CPI Communications User's Guide

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

arg sym_dest_name . /* get user's input */
/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= 0) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID sym_dest_name return_code'

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' return_code
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' return_code
signal GetOut

Throughout the book, we will continue using highlighting as in this example to designate new or changed
code whenever we update one of our execs.

Please type very carefully each time you add new code to the program and check for typing mistakes
because these can cause errors. Now file the exec and run it. Using GETFILE as the sym_dest_name, enter

process getfile

at the command line.

The following should be displayed on your terminal:

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 11

process getfile

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is 0
Ready;

Figure 3. Output from PROCESS EXEC Showing Step 1 Results

As you can see, our return code is zero. Therefore, it should be safe to assume that the conversation
initialization was a success. The symbolic destination name (sym_dest_name) is, of course, the value we
provided when the exec was invoked.

The conversation_ID has special significance. It uniquely defines the local program's side of the
conversation for CPI Communications.

Did you notice that we compared the return_code value to zero after the Initialize_Conversation call? We
could add more meaning to the program by substituting a pseudonym for the integer zero. Pseudonyms
are defined for the integer values of various CPI Communications variables and characteristics and
can be found in an appendix of Common Programming Interface Communications Reference (https://
publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf).

If you look up return_code in the variables and characteristics appendix mentioned above, you will
see that the pseudonym associated with a return_code of zero is CM_OK. So, we can substitute the
pseudonym CM_OK in our program to replace references to a return_code value of zero. But, while
CM_OK is equivalent to zero, it is a pseudonym that only has meaning as a value for the return_code
parameter. For example, CM_WHEN_SESSION_ALLOCATED is the pseudonym that should be used to refer
to a return_control value of zero. Although both pseudonyms represent values of zero, the pseudonyms
themselves provide more specific information about the value with regard to the variable or characteristic
they are associated with.

FYI: Copy Files—the Easy Way to Use Pseudonyms

CMREXX COPY is a sample CPI Communications pseudonym file that includes all of the conversation
characteristic values. It equates pseudonyms to their actual integer values. CMREXX COPY should be
located on your system disk.

Before we can use the pseudonyms in our program, they have to be defined to our program. We can do
this by reading the CMREXX COPY file values into storage using the EXECIO command with a DO loop
that includes the REXX interpret statement.

We can also take advantage of REXX's compound symbol support, which permits arbitrary indexing of
collections of variables that have a common stem. For example, by using the return_code value returned
from Initialize_Conversation as an index to a compound variable called cm_return_code, we can display
a pseudonym result rather than just an integer. CMREXX COPY includes compound variable versions of
each of the conversation characteristics.

The "Programming Language Considerations" section of Common Programming Interface
Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf) contains
information on pseudonym files for other SAA languages.

Let's try using the pseudonyms in our program. First, we will add an EXECIO statement to process the
CMREXX COPY file, and then we will use pseudonyms wherever we can.

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

arg sym_dest_name . /* get user's input */
/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */

Starter Set Calls

12 z/VM: 7.3 CPI Communications User's Guide

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID sym_dest_name return_code'

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
signal GetOut

After making the updates, file the exec and start it again with

process getfile

Now, your results should look like:

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 13

process getfile

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK
Ready;

Figure 4. Step 1 Output from PROCESS EXEC Showing Pseudonym

The return_code parameter was again set to zero following the completion of the Initialize_Conversation
call. Our program then displayed the value of cm_return_code.return_code, or cm_return_code.0, which is
CM_OK.

From this point on, your particular conversation_ID value may differ from the one we show. Differences
in this value do not matter, as long as you use the value returned on the Initialize_Conversation call when
issuing other calls on this conversation.

If you are not fond of typing, you might want to make a copy of PROCESS EXEC and name it SENDBACK
EXEC. Be sure to change the comment line at the top of the SENDBACK copy to reflect its name and
description, remove the "arg sym_dest_name ." line, and remove the seven lines comprising the
"Initialize the conversation" section. We will use this file later.

Step 2. The Allocate (CMALLC) Call
Having initialized a conversation (using the Initialize_Conversation call), an application uses the Allocate
(CMALLC) call to establish the conversation with its partner transaction program.

FYI: What the Allocate Call Actually Does

Before the Allocate call can establish a conversation, it must make sure that there is a logical connection
between the local program's system, also known as a logical unit (LU) in this context, and the remote
program's system. This logical connection is called a session, shown in the following drawing as a pair of
solid lines between the System1 LU and the System2 LU.

Program A Program B

System1 System2

Conversation Session

Each session can support one conversation. In our sample programs this is not really important,
because both partners are considered to be on virtual machines on the same VM/ESA® system and
are therefore in the same LU. Sessions are required on VM only when connecting through an SNA
network. A return code of CM_OK indicates that the session was successfully established. However, an
active session (successful execution of Allocate) does not guarantee that the communication partner's
transaction program can be started.

The allocation request may not be sent until the local send buffer becomes full or is flushed. We will
discuss this in more detail in the next chapter.

The format for Allocate is:

 CALL CMALLC(conversation_ID, input
 return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Starter Set Calls

14 z/VM: 7.3 CPI Communications User's Guide

Output Parameter
The values for return_code on an Allocate call that are of interest to us are:
CM_OK (0)

indicates that the conversation has been allocated and that the local program has entered Send state.
CM_PARAMETER_ERROR (19)

indicates that there is a problem with one of the target destination characteristics provided in side
information or explicitly set.

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates that an error unique to the VM product has occurred. Check the CPICOMM LOGDATA file for a
summary of the error.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state, meaning the specified conversation either has
not been initialized or has already been allocated.

Results of the Call
When return_code indicates CM_OK, the conversation enters Send state. This does not, however,
guarantee that the partner's transaction program has been started.

Adding CMALLC to Our Requester Program
Let's add the Allocate call to the PROCESS EXEC. To save space, we will not show the entire program each
time we add a new routine. So that you can determine where the new code should be inserted, we will
show only the sections of code that precede and follow it. Your exec now should have the following lines
in it:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID sym_dest_name return_code'
/*--*/
/* Allocate the conversation. */
/*--*/
'CMALLC conversation_ID return_code'
say; say 'Routine called: CMALLC'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms 'conversation_ID return_code'

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

⋮

Now file the exec and execute it, again using GETFILE as the sym_dest_name:

process getfile

The results should be:

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 15

process getfile

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK
Ready;

Figure 5. Output from PROCESS EXEC Showing Step 2 Results

As you can see, both return codes were CM_OK, so the conversation initialization and allocation appear to
have been successful and we are now in Send state.

FYI: If You Got a Product-Specific Error

If, instead of the output shown in Figure 5 on page 16, you received a CM_PRODUCT_SPECIFIC_ERROR,
look in the CPICOMM LOGDATA A file for the following message:

CMALLC_PRODUCT_SPECIFIC_ERROR: CMSIUCV CONNECT completed with return
 code 1011

As an exercise, you may want to track down this message to see if you can find out what it means.
(Hint: You will need z/VM: CMS Macros and Functions Reference to look up the CMSIUCV macro and
z/VM: CP Programming Services to look up the APPCVM macro.) This error is most likely saying that your
VM system does not have the Transparent Services Access Facility (TSAF) installed. TSAF is used for
communications among up to eight VM systems.

This problem will be resolved before we get to Step 4, so for now, please continue reading and adding
code to the program, but do not try to run the program because your results will differ from those
shown.

Note on a Common Error
Let's take a moment to look at an error that can show up rather easily in a program.

The Allocate call expects to have a conversation ID passed to it in a valid format. Suppose we misspell our
parameter name when adding the Allocate call to our program, like this:

'CMALLC onversation_ID return_code'

While we can choose any parameter name that we want, our program will be incorrect because the
conversation identifier was previously stored in conversation_ID, not onversation_ID. Here is the output
displayed when this altered program is executed:

process getfile

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK
DMSAXR1292E Error calling CPI-Communications routine, return code -26002
 30 *-* 'CMALLC onversation_ID return_code'
 +++ RC(-26002) +++

* ERROR: REXX has detected an error
 The return code variable RC was set to -26002
Ready;

Figure 6. Output from PROCESS EXEC Showing a Common Error

Starter Set Calls

16 z/VM: 7.3 CPI Communications User's Guide

Error codes that can be returned from ADDRESS CPICOMM are documented in z/VM: REXX/VM Reference
in the chapter called "Invoking Communications Routines". The explanation listed for -26nnn indicates
that there is a problem with parameter number nnn. The call name, for example CMINIT, is considered
to be the first parameter. In our case, nnn is 002 indicating that the second parameter is causing the
problem. By examining that parameter in our program, we see that the error can be corrected quite easily.

Step 3. The Send_Data (CMSEND) Call
The Send_Data (CMSEND) call sends up to 32767 bytes of data to the remote program. When issued
during a mapped conversation (which we are using), this call sends one data record to the remote
program. In this context, a data record is the contents of the buffer passed on the Send_Data call.

The format for Send_Data is:

 CALL CMSEND(conversation_ID, input
 buffer, input
 send_length, input
 request_to_send_received, output
 return_code) output

Input Parameters
The Send_Data call expects three input parameters, including the conversation_ID. The buffer parameter
specifies the data record to be sent. While this record can be defined within the program, it may be useful
for some applications to set buffer to a character string provided by console input.

The send_length parameter specifies the size of the buffer contents in bytes (up to 32767).

Output Parameters
The request_to_send_received parameter returns an indication of whether a request-to-send notification
has been received from the partner program. The request_to_send_received variable can have the
following values:

CM_REQ_TO_SEND_NOT_RECEIVED (0)
CM_REQ_TO_SEND_RECEIVED (1)

If a request-to-send notification was received, it means that the remote program has requested that the
local program's end of the conversation enter Receive state, which would place the remote program's end
of the conversation in Send state.

Request_to_send_received does not return a value when return_code is either
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

Some of the return_code values of interest to us are:
CM_OK (0)

indicates that the Send_Data call executed successfully.
CM_SECURITY_NOT_VALID (6)

indicates that the allocation request was rejected by the remote LU because the access security
information provided by the local system is invalid. The VM appendix to Common Programming
Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf) lists
more specific possible explanations for this return code. The conversation is in Reset state.

CM_TPN_NOT_RECOGNIZED (9)
indicates that the Allocation request was rejected by the remote LU because the specified remote
program name was not recognized at the remote system. The VM appendix to Common Programming
Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf) lists
more specific possible explanations for this return code. The conversation is in Reset state.

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 17

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

CM_TP_NOT_AVAILABLE_NO_RETRY (10)
indicates that the allocation request was rejected because the remote system could not start the
remote program. The condition is not temporary so the program should not retry the allocation. The
conversation is in Reset state.

CM_TP_NOT_AVAILABLE_RETRY (11)
indicates that the allocation request was rejected because the remote system could not start the
remote program. The condition may be temporary so the program can retry the allocation. The
conversation is in Reset state.

CM_DEALLOCATED_ABEND (17)
indicates that the remote program or system deallocated the conversation, terminated abnormally, or
ended without deallocating the conversation. The conversation is in Reset state.

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates that an error unique to the VM product has occurred. Check the CPICOMM LOGDATA file for a
summary of the error.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or that the send_length is greater than
32767.

CM_PROGRAM_STATE_CHECK (25)
most commonly indicates that the conversation is not in Send or Send-Pending state.

CM_RESOURCE_FAILURE_NO_RETRY (26)
indicates that a failure occurred that caused the conversation to be terminated prematurely
or the remote program ended without deallocating the conversation. The VM appendix to
Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf) lists more specific possible explanations for this return code. The condition is not
temporary. The conversation is in Reset state.

CM_RESOURCE_FAILURE_RETRY (27)
indicates that a failure occurred that caused the conversation to be terminated prematurely. This
could occur if the TSAF virtual machine encountered a problem during its processing or if the TSAF
link went down. The condition may be temporary so the program can retry the allocation request. The
conversation is in Reset state.

Table 2. When Errors Are Reported

FYI: A Note on When Errors Are Reported

It is worth mentioning that some CPI Communications errors are not reported when they first occur.
If you read through the possible return_code values listed, you probably noticed that some of them
seemed more appropriate to an Allocate call. In fact, they are indeed allocation errors—they are
reported because the Allocate call did not result in a conversation for one reason or another. However,
they are not actually reported until some call following the Allocate, such as a Send_Data (CMSEND)
call, is executed.

This delay in reporting errors should be kept in mind while debugging application errors. Your program
should be prepared to handle allocation errors on other calls, such as Send_Data and Receive (CMRCV).

Results of the Call
A number of factors, including the values of various conversation characteristics, can affect the results of
the Send_Data call. We will discuss some of these later in the book. For now, a CM_OK return_code value
indicates that the data record has been "sent" and that the conversation is still in Send state.

Adding CMSEND to Our Requester Program
Let's add the Send_Data call to the PROCESS EXEC.

Starter Set Calls

18 z/VM: 7.3 CPI Communications User's Guide

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

Since this is a program to request the contents of a file, we will provide the file name, file type, and file
mode of the file we are requesting when we invoke the exec. By placing the file name, file type, and file
mode in the buffer parameter, this information can be passed to the server on the Send_Data call.

The existing ARG statement needs to be updated to retrieve the additional arguments we will be providing.
We will also need to initialize the buffer and send_length variables.

Your exec should now have the following lines in it:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

arg sym_dest_name fname ftype fmode . /* get user's input */
/*--*/
/* If a file was not specifically requested, set up a default. */
/*--*/
if (fname = '') then
 do
 fname = 'TEST'
 ftype = 'FILE'
 fmode = 'A'
 end
say 'Requesting the file: ' fname ftype fmode
⋮
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID sym_dest_name return_code'
/*--*/
/* Allocate the conversation. */
/*--*/
'CMALLC conversation_ID return_code'
say; say 'Routine called: CMALLC'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms 'conversation_ID return_code'
/*--*/
/* Send the name of the file being requested to the partner program.*/
/*--*/
buffer = fname ftype fmode
send_length = length(buffer)
'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms 'conversation_ID buffer send_length',
 'request_to_send_received return_code'

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end

return

⋮

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 19

FYI: The LEFT Function in REXX

The REXX function LEFT returns the leftmost characters of a character string for a specified length.
Specifying the send_length with the LEFT function of REXX ensures that the say statement will display
exactly what we put into the buffer.

File the exec and run it. This time, in addition to using GETFILE as the sym_dest_name, use TEST as the
fname, FILE as the ftype, and A as the fmode. (Having included this file name as a default in our program,
we do not have to specify it each time we invoke the exec in the future.) The fact that we have not created
TEST FILE A does not matter at this point.

After starting the exec with

process getfile test file a

the following should be displayed:

process getfile test file a
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
 The return_code was set to CM_TPN_NOT_RECOGNIZED
Ready;

Figure 7. Output from PROCESS EXEC Showing Step 3 Results

The return code of CM_TPN_NOT_RECOGNIZED indicates a problem. It looks like our
Initialize_Conversation and Allocate calls were successful, but the Send_Data call did not work. If we
look back at the possible values for the return_code parameter on the Send_Data call, we see that we
did not actually have a conversation even though the Allocate call completed with a return_code value of
CM_OK. This allocation error is what the FYI box, Table 2 on page 18 , was referring to.

So the allocation request was rejected because the program name specified on the
Initialize_Conversation call was not recognized. The problem is that the symbolic destination name
GETFILE has not been identified as the transaction program name (TP_name) of a private resource.

Okay, then how can we define a symbolic destination name? Data about the target destination location is
typically placed in side information, which is a CMS communications directory in VM. The communications
directory is a good place to check first when a return code of CM_TPN_NOT_RECOGNIZED is received.
Based on data in the communications directory, the symbolic destination name is resolved and the
TP_name is initialized for use in the allocation request to the partner program.

Starter Set Calls

20 z/VM: 7.3 CPI Communications User's Guide

FYI: CMS Communications Directories

Let's digress from our program for a moment and investigate how VM implements side information.

VM implements side information with CMS communications directory files. A communications directory
file is a special CMS NAMES file. Communications directories can be set up at either a system or a user
level.

System Communications Directory: A system administrator sets up the system-level communications
directory. The default name defined in the system profile exec (SYSPROF EXEC) for this communications
directory is SCOMDIR NAMES. It is usually located on the system S-disk or in a public SFS file pool
where all users can read it.

User Communications Directory: Any CMS user can create a personal CMS communications directory.
UCOMDIR NAMES is the default name defined in the system profile exec (SYSPROF EXEC) for the user-
level directory. In general, this directory is only necessary if an application uses symbolic destination
names that are not already in the SCOMDIR NAMES file or if there is a need to override the system-
defined values.

Note: You can create or change your communications directories using the NAMES command with the
COMDIR option. See the NAMES command usage notes in z/VM: CMS Commands and Utilities Reference
for more information.

When VM resolves a symbolic destination name, the user-level directory, if one exists, is checked first
for a matching entry. If the user-level communications directory does not contain the specified symbolic
destination name, CMS searches the system-level communications directory for a matching entry. If a
symbolic destination name is defined in both the UCOMDIR NAMES file and the SCOMDIR NAMES file,
only the information in the UCOMDIR NAMES file is used.

If the resource identified in the initialization request does not match a symbolic destination name
defined in either of the CMS communications directories, then the initialization request is processed
using the specified symbolic destination name as the name of a global or local resource located in the
same TSAF collection as the user program.

Here are the communications directory tags and associated values we will be using now:
Tag

What Value the Tag Specifies
:nick.

Symbolic destination name for the target resource (1-8 characters).
:luname.

Identifies where the resource resides. (For our purposes, this is the virtual machine in which our
partner program will execute.)

:tpn.
The transaction program name as it is known at the target LU.

We need to update either the SCOMDIR NAMES file or the UCOMDIR NAMES file to include a valid entry
for our GETFILE symbolic destination name. The server program we are writing can be considered a
private resource manager, so add an entry to the UCOMDIR NAMES file. If you do not have a UCOMDIR
NAMES file, you can create one with the following entry (which is all you need in the file):

 :nick.GETFILE :luname.*USERID SERVR
 :tpn.GET

The GETFILE value for the :nick. tag corresponds to the sym_dest_name we have been specifying when
we invoke our exec. For the :luname. tag, the *USERID is a keyword that indicates that our partner
program is a private resource manager in the same TSAF collection, and SERVR identifies our partner's

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 21

virtual machine (remember that if you used a different user ID for this virtual machine, you need to
substitute that name here). GET, on the :tpn. tag, identifies the target private resource.

The order of the tags in the communications directory and the spacing between them will not make any
difference, as long as all the tags for an entry are grouped together following the :nick. tag for that
entry. If you put more than one tag on a line, separate them with at least one blank.

Save the additions to the UCOMDIR NAMES file, and try out the exec again. Enter

process getfile

and let the program default to the requested file name of TEST FILE A.

The resulting screen output should be:

process getfile Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
 The return_code was set to CM_TPN_NOT_RECOGNIZED
Ready;

Figure 8. Output from PROCESS EXEC after Adding UCOMDIR NAMES Entry

We got the same error code of CM_TPN_NOT_RECOGNIZED again! The problem this time resulted from
not entering a command called SET COMDIR after changing the UCOMDIR NAMES file. Basically, we did
not let CMS know that we had updated a communications directory. This should give you an idea of the
variety of reasons you can get this return code. It is hard to remember them without experiencing them a
few times.

FYI: The SET COMDIR Command

The SET COMDIR command serves several functions. We are interested in just a couple of them right
now. SET COMDIR FILE defines the names of both the system-level and the user-level communications
directory files. The SET COMDIR ON BOTH command enables symbolic destination name resolution. The
SYSPROF EXEC shipped with VM contains these statements, which are automatically issued when CMS
IPLs the virtual machine.

When the SET COMDIR commands are executed, CMS makes an image of the two communications
directories in memory. If you modify either of the communications directories, you need to enter the SET
COMDIR RELOAD command so that a new image of the updated directories is made in memory.

For more information on the SET COMDIR command, see z/VM: CMS Commands and Utilities Reference.

To find out what communications directory files are in memory, you can enter the QUERY COMDIR
command.

If you modified an existing UCOMDIR NAMES file, enter:

set comdir reload

or if you had to create a UCOMDIR NAMES file, enter:

set comdir file user ucomdir names

and then execute the PROCESS EXEC again with

Starter Set Calls

22 z/VM: 7.3 CPI Communications User's Guide

process getfile

Note: Now that we have an entry in the UCOMDIR NAMES file (and CMS knows about it), CPI
Communications will be able to tell that GETFILE refers to a private resource manager. Until now, CPI
Communications considered GETFILE to be a global resource, which is the default on VM when complete
side information is not provided. Thus, when a global resource with the name GETFILE could not be
located on the local system, it is assumed that the resource is elsewhere in the TSAF collection. The
allocation request is then routed to the TSAF virtual machine on the local system. This helps to explain the
CM_PRODUCT_SPECIFIC_ERROR that some users may have gotten in Step 2 the first time the program
was executed with an Allocate call. Users working on a system that is not part of a TSAF collection
received an error indicating that there was no TSAF virtual machine operating on their system. If you
received that error, you can start executing the program again.

Depending on how your server virtual machine is set up, the output may not appear as we show it in this
case. If it is not, do not be alarmed, just continue reading. Your screen output should be:

process getfile Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Figure 9. Output from PROCESS EXEC after SET COMDIR Command

The program appears to wait following the Initialize_Conversation call. In fact, our application is hung
because the partner virtual machine hasn't issued a SET SERVER ON command. The allocation request,
therefore, cannot be presented to the server machine.

Note: If your results are different, it could be because there is already a SET SERVER ON command in
the PROFILE EXEC of the server virtual machine. Read on through the next section to see if this seems to
be the case. Also, you may see different results if there are active APPC/VM conversations in your virtual
machine, for example, you may have an SFS directory accessed. See FYI: SFS Directories Accessed (Table
3 on page 25) for this case.

The SET SERVER ON command will enable interrupts and allow CMS private resource processing. Do not
do anything from the REQUESTR user ID. Instead, from the SERVR user ID, enter

set server on

That command allows the allocation request to be presented, and the SERVR terminal should display the
following message, with the appropriate time:

set server on
 hh:mm:ss * MSG FROM SERVR : DMSIUH2027E Connection request on path 0
 is severed for reason = 7
Ready;

Figure 10. System Response after Entering SET SERVER ON Command

More information is now displayed at the REQUESTR terminal, as well. The complete screen of
information is:

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 23

process getfile Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
 The return_code was set to CM_TPN_NOT_RECOGNIZED
Ready;

Figure 11. Output from PROCESS EXEC after Entering the SET SERVER ON Command from the SERVR
Console

Although the return_code is CM_TPN_NOT_RECOGNIZED once again, it appears we are making progress
because the output on the SERVR terminal indicates that some type of interaction has occurred between
the requester and server virtual machines. But what caused the connection request to be severed, as
noted in the message on the server side?

By looking up message DMSIUH2027E in z/VM: CMS and REXX/VM Messages and Codes (or entering
help message dms2027e on the command line to have the HELP Facility display the message), we
can determine the meaning behind a reason code of 7 for the sever message we received. In general, a
code of 7 indicates that resource or user ID validation has failed. The response suggested in the message
description for code 7 mentions the $SERVER$ NAMES file.

"What's a $SERVER$ NAMES file?" you might ask. It is another special CMS NAMES file that a server
virtual machine uses to control access to the private resources it controls. Knowing this, you no doubt
realize that the reason for the failure of our program is that we have not supplied an entry in the partner's
$SERVER$ NAMES file for the resource to which we want to connect.

Now seems like an appropriate time to focus our attention on the server application. We will start writing
our server program and create a $SERVER$ NAMES entry to see if that helps the Send_Data (CMSEND)
call to complete successfully.

Starter Set Calls

24 z/VM: 7.3 CPI Communications User's Guide

Table 3. SFS Directories Accessed

FYI: SFS Directories Accessed

If your results are different from those on page Figure 11 on page 24, you may have active APPC/VM
conversations in your virtual machine similar to the following.

 hh:mm:ss * MSG FROM SERVR : DMSIUH2027E Connection request on
 path 2 is severed for reason = 6
 Ready;

More information is now displayed at the REQUESTR terminal, as well. The complete screen of
information is:

 process getfile Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
 The return_code was set to CM_TPN_NOT_AVAILABLE_NO_RETRY
 Ready;

By looking up message DMSIUH2027E in z/VM: CMS and REXX/VM Messages and Codes (or entering
help message dms2027e on the command line to have the HELP Facility display the message), we
can determine that the SET SERVER ON command needs to be issued.

Preparing the SERVR Virtual Machine
We need to create or modify four files on the SERVR virtual machine. One is the PROFILE EXEC. Another
is the TEST FILE that's being requested. The third is the $SERVER$ NAMES file. And the fourth is the
transaction program that corresponds to the name GET, which we provided in the UCOMDIR NAMES file of
the REQUESTR virtual machine.

Modifying the PROFILE EXEC File
We need to add these three commands to the PROFILE EXEC to prepare the virtual machine to manage
private resources:

SET SERVER ON
SET FULLSCREEN OFF
SET AUTOREAD OFF

The SET SERVER ON command enables CMS private resource processing. The SET FULLSCREEN OFF
command ensures that CMS session services are deactivated. The SET AUTOREAD OFF command
prevents CMS from issuing a console read immediately after command execution. This prevents the
SERVR virtual machine from hanging when it gets autologged.

Complete the changes to the PROFILE EXEC, file it, and then run it by entering

profile

to put the new commands into effect.

Creating TEST FILE
Now we need to create the file we are requesting to have sent to us. Use TEST for the file name and FILE
for the file type. Include a couple of lines of text in the file, such as:

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 25

This is the first line of the requested file.
This is the second line of the requested file.

Creating the $SERVER$ NAMES File
The program we will be writing soon for the server will be a private resource manager. VM controls access
to a private resource through a special CMS NAMES file called $SERVER$ NAMES. This file contains the
names of private resources and user IDs (virtual machines) that are allowed to connect to them.

Note: You can create or change your $SERVER$ NAMES file using the NAMES command with the SERVER
option. See the NAMES command usage notes in z/VM: CMS Commands and Utilities Reference for more
information.

When an allocation request is received for a private resource, CMS checks the server virtual machine's
$SERVER$ NAMES file for an entry that matches the private resource name specified as the target
of the partner's allocation and determines if the requesting user ID is authorized to allocate to the
private resource. If the user ID is authorized, CMS invokes the private resource with the resource name
passed as a parameter. If the user ID is not authorized, the requester receives an allocation error of
CM_SECURITY_NOT_VALID.

The $SERVER$ NAMES file has three tags:
Tag

What Value the Tag Specifies
:nick.

Specifies the name of the private resource (1-8 characters). This is the same value specified on
the :tpn. tag in the requesting virtual machine's UCOMDIR (or SCOMDIR) NAMES file.

:list.
Specifies the users that are authorized for the private resource. This list can be individual user IDs,
nicknames contained in a standard NAMES file that might refer to groups of users, or an * (asterisk)
that specifies that any requester can connect to this private resource.

:module.
Specifies the name of the resource manager program for the private resource specified in the
nickname field. This value is the name of a CMS module or exec that is to be invoked after connection
authorization has been determined. If a value is not specified for the :module. tag, the value on
the :nick. tag is used. So, the :module. tag can be omitted if the :nick. entry is identical to the
CMS-invokable name of the private resource manager.

Let's create the $SERVER$ NAMES file and include the following information:

 :nick.GET :list.REQUESTR
 :module.SENDBACK

The GET value for the :nick. tag represents the name of the private resource. REQUESTR for
the :list. tag value indicates that REQUESTR is the only user ID authorized to access this resource
(if you used a different user ID for the REQUESTR virtual machine, be sure to specify the name you used
here). The :module. tag value SENDBACK is the name of the resource manager; this corresponds to the
name of the transaction program that is to be invoked.

Note that the value specified for the :tpn. tag in UCOMDIR NAMES on the requester user ID is used
as an index into the server's $SERVER$ NAMES file. For this reason, the values for both the :tpn. tag
of UCOMDIR NAMES and the :nick. tag of $SERVER$ NAMES must match, as Figure 12 on page 27
shows.

Starter Set Calls

26 z/VM: 7.3 CPI Communications User's Guide

Figure 12. Relationship between UCOMDIR and $SERVER$ NAMES Files

Creating the SENDBACK EXEC File
The previous section indicated that the name of the PROCESS EXEC's partner program is SENDBACK.
As was done in the requester application, begin SENDBACK EXEC with a REXX comment line (/* */)
followed by the EXECIO routine to process and load the CMREXX COPY file.

The SENDBACK EXEC should initially contain the following lines (you can use the copy you made at the
end of Step 1—or copy the PROCESS EXEC file now—and then change the first comment and remove the
lines of code not listed here):

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 otherwise
 say ' ' parameter 'is' value(parameter)
 end

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 27

end

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
signal GetOut

Step 4. The Accept_Conversation (CMACCP) Call
The first CPI Communications routine we want to call from the SENDBACK EXEC is Accept_Conversation
(CMACCP). The Accept_Conversation call is solely responsible for accepting incoming conversation
requests. Like Initialize_Conversation (CMINIT), Accept_Conversation sets a number of conversation
characteristics to default values (which we will discuss later) and assigns a conversation ID.

The values of the conversation_type and sync_level conversation characteristics are derived from
the incoming allocation request and cannot be changed. Other conversation characteristics (such
as receive_type and send_type) are set to their default values, but can be changed by Set calls
anytime after issuing the Accept_Conversation call. The "Conversation Characteristics" section in
Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf) lists these characteristics and their default values.

Here is the format for Accept_Conversation:

 CALL CMACCP(conversation_ID, output
 return_code) output

Output Parameters
Both parameters on Accept_Conversation are for output. The conversation_ID parameter returns the
conversation identifier assigned to the conversation by CPI Communications. This identifier will be used
on all CPI Communications calls that follow on this conversation.

An additional point concerning the conversation_ID is that its value is not based on the value
of its communications partner's conversation_ID. The conversation_ID only relates to the side
of the conversation on which it was returned, either from an Initialize_Conversation call or an
Accept_Conversation call. In other words, each side of the conversation gets its own conversation ID.

The values for return_code on an Accept_Conversation call that are of interest to us are:
CM_OK (0)

indicates that the conversation has been accepted and the local program has entered Receive state.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates that an error unique to the VM product has occurred. Check the CPICOMM LOGDATA file for a
summary of the error.

CM_PROGRAM_STATE_CHECK (25)
indicates that no incoming conversation exists.

Starter Set Calls

28 z/VM: 7.3 CPI Communications User's Guide

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

Results of the Call
When return_code indicates CM_OK, the conversation enters Receive state and various conversation
characteristics are initialized to their default values.

Adding CMACCP to Our Server Program
Now add the Accept_Conversation call to your SENDBACK EXEC. Again, we will want to examine the CPI
Communications return_code parameter after each CPI Communications call as part of our minimal error
checking. We will also want to display the results of the call execution.

The SENDBACK EXEC should now have the following lines in it:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Accept the incoming conversation. */
/*--*/
'CMACCP conversation_ID return_code'
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID return_code'

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

⋮

Now file the exec, and execute it. From the SERVR virtual machine console, enter

sendback

Your results should be:

sendback

Routine called: CMACCP

* ERROR: An error occurred on a CMACCP call
 The return_code was set to CM_PROGRAM_STATE_CHECK
Ready;

Figure 13. Output Resulting from Execution of SENDBACK EXEC

Instead of CM_OK, the return code was CM_PROGRAM_STATE_CHECK. As we mentioned earlier,
CM_PROGRAM_STATE_CHECK returned on an Accept_Conversation call means that no incoming
conversation request was present. In simple terms, we did not start the PROCESS EXEC from the
REQUESTR virtual machine, so there was no allocation request waiting to be accepted.

This time, run the PROCESS EXEC from the REQUESTR user ID, and you will see output at both terminals.
After entering

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 29

process getfile

the results from the REQUESTR user ID should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
 The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready;

Figure 14. Output from PROCESS EXEC Showing Step 4 Results

The results from the SERVR user ID should be:

Routine called: CMACCP
 conversation_ID is 00000000
 return_code is CM_OK
Ready;

Figure 15. Output from SENDBACK EXEC Showing Step 4 Results

We have finally established a conversation between the two applications! CMS automatically started our
server application based on information in the $SERVER$ NAMES file. But while the Accept_Conversation
call appears to have completed successfully, there is a problem on the requester side with the Send_Data
call. The return_code value of CM_RESOURCE_FAILURE_NO_RETRY arises because our server program
terminates after it issues the Accept_Conversation call without first deallocating the conversation.
Because the conversation was not explicitly deallocated, the termination is reported to the requester
as an error indicating that the partner resource is no longer available.

We will be adding the Deallocate (CMDEAL) routine to our application a little later. But now, look at the
next step for the server application in the starter set programs overview table Table 1 on page 7, the
Receive (CMRCV) call.

Step 5. The Receive (CMRCV) Call
The Receive (CMRCV) call receives information from an established conversation. The information
received can be a data record, conversation status, or both.

The format for Receive is:

 CALL CMRCV(conversation_ID, input
 buffer, output
 requested_length, input
 data_received, output
 received_length, output
 status_received output
 request_to_send_received, output
 return_code) output

Starter Set Calls

30 z/VM: 7.3 CPI Communications User's Guide

Input Parameters
Use the conversation_ID parameter to identify the conversation for which you want to issue this call. For
SENDBACK EXEC, we will want to specify the value returned on the Accept_Conversation call.

For the requested_length parameter, we will specify the maximum amount of data that the program is
prepared to receive with this Receive call. The range of valid requested_length values is from 0 to 32767.
Remember, the amount of data that can be received by a single Receive call is limited by the value
specified for the requested_length parameter.

Output Parameters
We use the buffer parameter to specify the variable that will hold the received data. The buffer will
contain data only when return_code is set to CM_OK or CM_DEALLOCATED_NORMAL and data_received
is set to a value indicating that at least some data was received. The buffer will not contain any data if
data_received is set to CM_NO_DATA_RECEIVED.

The data_received parameter returns a value indicating whether the program received data. This
parameter contains a value only when return_code is set to CM_OK or CM_DEALLOCATED_NORMAL. The
possible data_received values that are of interest to us are:
CM_NO_DATA_RECEIVED (0)

indicates that no data was received.
CM_COMPLETE_DATA_RECEIVED (2)

indicates that a complete data record or the last remaining portion of the record was received.
CM_INCOMPLETE_DATA_RECEIVED (3)

indicates that less than a complete data record was received. When the program receives
CM_INCOMPLETE_DATA_RECEIVED for the data_received value, it should issue additional Receive
(CMRCV) calls until an indication of CM_COMPLETE_DATA_RECEIVED is reported.

The received_length parameter returns the amount of data, in bytes, received by the program. The
received_length parameter is not given a value when data is not received.

The status_received parameter returns a value that indicates the conversation status. It contains a value
only when the return_code parameter is set to CM_OK. Valid values of interest to us for status_received
are:
CM_NO_STATUS_RECEIVED (0)

No status received; data may be present.
CM_SEND_RECEIVED (1)

The remote program's end of the conversation has entered Receive state. The local program can now
send data.

CM_CONFIRM_RECEIVED (2)
The remote program has sent a confirmation request requesting the local program to respond by
issuing a Confirmed call. The local program must respond by issuing Confirmed, Send_Error, or
Deallocate with deallocate_type set to CM_DEALLOCATE_ABEND.

CM_CONFIRM_SEND_RECEIVED (3)
The remote program's end of the conversation has entered Receive state with confirmation
requested. The local program must respond by issuing Confirmed, Send_Error, or Deallocate with
deallocate_type set to CM_DEALLOCATE_ABEND. Upon issuing a successful Confirmed call, the local
program can send data.

The request_to_send_received parameter returns an indication of whether the remote program issued a
Request_To_Send (CMRTS) call.

The return_code parameter values of interest to us now include:
CM_OK (0)

indicates that the Receive call completed successfully.

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 31

CM_DEALLOCATED_ABEND (17)
indicates that the remote program or the remote LU issued a Deallocate with deallocate_type set to
CM_DEALLOCATE_ABEND. The conversation is now in Reset state.

CM_DEALLOCATED_NORMAL (18)
indicates that the remote program issued a Deallocate call with deallocate_type
set to CM_DEALLOCATE_SYNC_LEVEL or CM_DEALLOCATE_FLUSH. If deallocate_type is
CM_DEALLOCATE_SYNC_LEVEL, the sync_level is CM_NONE. The conversation is now in Reset state.

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates that an error unique to the VM product has occurred. Check the CPICOMM LOGDATA file for a
summary of the error.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or requested_length specifies a value
greater than 32767.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in an appropriate state to issue the Receive call.

CM_RESOURCE_FAILURE_NO_RETRY (26)
indicates that a failure occurred that caused the conversation to be terminated prematurely
or the remote program ended without deallocating the conversation. The VM appendix to
Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf) lists more specific possible explanations for this return code. The condition is not
temporary. The conversation is in Reset state.

CM_RESOURCE_FAILURE_RETRY (27)
indicates that a failure occurred that caused the conversation to be terminated prematurely. This
could occur if the TSAF virtual machine encountered a problem during its processing or if the TSAF
link went down. The condition may be temporary so the program can retry the allocation request. The
conversation is in Reset state.

Results of the Call
For our purposes at this time, when return_code indicates CM_OK, the conversation enters or remains in
Receive state. Other results are possible in various other scenarios; refer to the Receive call description
in Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf) for other results.

Adding a Receive (CMRCV) Loop to Our Server Program
Before calling Accept_Conversation, the conversation (from the server virtual machine's perspective) is in
Reset state. Upon completion of that call, the conversation is in Receive state, so we can now receive the
data that the PROCESS program is trying to send.

We will need to choose a value for the requested_length parameter. Because the only data that this
program is going to receive is the name of the requested file, set the requested_length variable to 20,
which should allow for the largest possible file name in VM.

The starter set programs table Table 1 on page 7 indicates that we will be issuing the Receive calls from
a loop in the server exec. We want to put the Receive call in a loop so our program will be able to avoid
any dependency on a certain number of Receive calls. That way, it will be able to handle varying record
lengths and receive data and status on either the same or separate Receive calls.

Both the Receive and Send_Data routines have a parameter called buffer, so our TraceParms subroutine
needs to be able to distinguish between the two. Our program will display a received buffer whose length
is returned by received_length and a buffer that was sent whose length is contained in send_length. So, we
will use receive_buffer in place of buffer for the Receive call. But when TraceParms displays the parameter
contents, we will still use buffer to label our output.

Starter Set Calls

32 z/VM: 7.3 CPI Communications User's Guide

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

FYI: The LEFT Function in REXX

Before adding the Receive call to the SENDBACK EXEC, we will point out that when a REXX program
calls Receive in VM, the buffer parameter upon return from Receive will have a size of 32767 bytes.
Therefore, if the SAY instruction is used to display the contents of the buffer, the data received will be
displayed along with pad characters for the remainder of the 32767 bytes.

To display only the data that was received on this call, we can take advantage of the REXX function LEFT,
which will return the leftmost characters of a character string for a specified length. The best length to
supply is the one returned on the Receive call itself, namely received_length.

Now add the Receive call and related instructions to your SENDBACK EXEC. The exec should have the
following lines in it:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

⋮
/*--*/
/* Accept the incoming conversation. */
/*--*/
'CMACCP conversation_ID return_code'
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID return_code'
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_file = ''
requested_length = 20
do until (CMRCV_return_code ¬= CM_OK)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'conversation_ID receive_buffer',
 'requested_length data_received',
 'received_length status_received',
 'request_to_send_received return_code'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 requested_file = requested_file || receive_buffer
 end
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 33

 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end

return

⋮

File the exec and execute the PROCESS EXEC from the REQUESTR user ID by entering

process getfile

Your results from the REQUESTR user ID should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMSEND
 conversation_ID is 00000000
 buffer is TEST FILE A
 send_length is 11
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK
Ready;

Figure 16. Output from PROCESS EXEC Showing Step 5 Results

Your results from the SERVR user ID should be:

Routine called: CMACCP
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is TEST FILE A
 requested_length is 20
 data_received is CM_COMPLETE_DATA_RECEIVED
 received_length is 11
 status_received is CM_NO_STATUS_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV

* ERROR: An error occurred during a CMRCV call
 The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready;

Figure 17. Output from SENDBACK EXEC Showing Step 5 Results

The final return_code value of CM_RESOURCE_FAILURE_NO_RETRY on the SERVR user ID indicates that
the partner program terminated abnormally. We will continue to ignore this error for the time being.

A couple of other output parameters from the server program's Receive call are of interest. The server
program successfully received the name of the requested file in buffer. The data_received value of

Starter Set Calls

34 z/VM: 7.3 CPI Communications User's Guide

CM_COMPLETE_DATA_RECEIVED informs us that we received a complete data record. And the values
for status_received and request_to_send_received indicate that neither status nor a request-to-send
notification was received on the call.

Before the contents of the requested file can be sent to the partner program, the direction of the
conversation needs to be reversed so that the SENDBACK EXEC in the SERVR virtual machine is in Send
state. Because the partner in Send state controls the conversation, only it can reverse the direction. We
will also need to prepare the PROCESS EXEC to receive the TEST FILE data.

Step 6. Adding a Receive (CMRCV) Loop to Our Requester Program
You can also use Receive to change the conversation state from Send to Receive state. When the Receive
call is issued from Send state with receive_type set to its default value of CM_RECEIVE_AND_WAIT, the
local system sends any buffered information to the remote program. The partner is notified by receipt of
a status_received value of CM_SEND_RECEIVED that it may begin sending data. The local conversation's
switch into Receive state occurs when the Receive call completes.

Switching states in this manner will be useful to us because the PROCESS EXEC will have to call Receive
anyway to get the information that the server will be sending to it.

The number and length of data lines in TEST FILE is not known to the requester, so there may be no
way to determine how much data will be available to be received. It is important to remember that
the length of data records in the context of communications programs does not generally coincide with
the logical record length of the lines or records of a file. The records (lines) in the file whose contents
our program will be sending to another user may be 80 bytes long, but the data records used by the
communications program sending the data may be 2KB while the data records received at the other
end of the conversation may be 4KB long. These length values are quite arbitrary and are based on the
requirements for a particular application.

Because our programs are very simple and we want to demonstrate how the various CPI Communications
calls work together, we will establish the convention of sending and receiving 80-byte data records. In our
particular case, these records will coincide with the records of TEST FILE.

The PROCESS EXEC could receive the data by issuing multiple Receive calls. By calling Receive from
within a loop, however, the application can handle this situation by coding only a single call to Receive.
The first time through the loop, the Receive call will change the state and, when it becomes available,
receive the first 80-byte data record sent by the server. Subsequent passes through the loop will receive
the rest of the records of the file.

Using a record size of 80 bytes will not be the best approach for all applications. In this case, each
Receive will return one complete line of the requested file, but the overhead of multiple Receive calls
will not be appropriate for some situations. Setting the send and receive lengths to larger values would
overcome this potential drawback.

The starter set programs table Table 1 on page 7 shows that the requester application will deallocate
the conversation after it has finished receiving data from the server. Because we are adding Receive to
the PROCESS EXEC inside a loop, we will need to decide when the looping should be terminated so the
Deallocate call can be made.

After sending all the contents of TEST FILE to the requester, the server will switch its end of
the conversation back to Receive state. The requester will be notified of this change through the
status_received parameter, which will be set to CM_SEND_RECEIVED. The receipt of this status, then,
will be a signal for the requester to end the Receive loop.

Within the loop, the requester will need to process the incoming data. Let's use EXECIO to add each data
record to a file called OUTPUT LOGFILE. Of course, you could choose any name you like.

Here are the contents of PROCESS EXEC at this point:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 35

/*--*/
/* Send the name of the file being requested to the partner program.*/
/*--*/
buffer = fname ftype fmode
send_length = length(buffer)
'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms 'conversation_ID buffer send_length',
 'request_to_send_received return_code'
/*--*/
/* Start a Receive loop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */
/* entered Receive state at its end of the conversation (noted by */
/* receipt of CM_SEND_RECEIVED */
/*--*/
complete_line = ''
requested_length = 80
do until (status_received = CM_SEND_RECEIVED)
 /*--*/
 /* Receive information from the conversation partner. */
 /*--*/
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 say; say 'Routine called: CMRCV'
 select
 when (return_code = CM_OK) then
 do
 call TraceParms 'conversation_ID receive_buffer',
 'requested_length data_received',
 'received_length status_received',
 'request_to_send_received return_code'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 complete_line = complete_line || receive_buffer
 end
 if (data_received = CM_COMPLETE_DATA_RECEIVED) then
 do
 /*--*/
 /* Use EXECIO to write the data to OUTPUT LOGFILE A */
 /* and reset the complete_line variable to nulls. */
 /*--*/
 address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS',
 'STRING' complete_line
 complete_line = ''
 end
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 otherwise

Starter Set Calls

36 z/VM: 7.3 CPI Communications User's Guide

 say ' ' parameter 'is' value(parameter)
 end
end

return

⋮

File the exec, and try out our changes. From a command line at the REQUESTR virtual machine, enter

process getfile

The REQUESTR side results should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMSEND
 conversation_ID is 00000000
 buffer is TEST FILE A
 send_length is 11
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is
 requested_length is 80
 data_received is CM_NO_DATA_RECEIVED
 received_length is 0
 status_received is CM_SEND_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK
Ready;

Figure 18. Output from PROCESS EXEC Showing Step 6 Results

The results from the SERVR user ID should be:

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 37

Routine called: CMACCP
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is TEST FILE A
 requested_length is 20
 data_received is CM_COMPLETE_DATA_RECEIVED
 received_length is 11
 status_received is CM_NO_STATUS_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is
 requested_length is 20
 data_received is CM_NO_DATA_RECEIVED
 received_length is 0
 status_received is CM_SEND_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV

* ERROR: An error occurred during a CMRCV call
 The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready;

Figure 19. Output from SENDBACK EXEC Showing Step 6 Results

Several new interactions that are worth examining occurred between the programs.

After PROCESS EXEC sent the name of the desired file to the partner, it entered the new Receive loop.
The Receive call issued by the requester from Send state sent a notification that its partner could begin to
send data. The server program was presented with that send notification on its second Receive call, which
was indicated by the status_received value of CM_SEND_RECEIVED.

Now, here is where it gets interesting. You will have to trust us on this for the moment, but when the
server program was presented with the status_received value of CM_SEND_RECEIVED, the server's side
of the conversation entered Send state. Because the server program is also executing a Receive loop, it
issued another Receive call. Because the server issued this Receive call from Send state, send control for
the conversation was passed back to the requester! (Yes, the conversation's direction was switched again
before any data could be sent by the server.)

At this point, the requester's Receive completed. And you will note that the status_received parameter
was set to CM_SEND_RECEIVED, which is the condition that completes the requester's Receive loop.
The requester's program then ends, which is reflected to the server program by the return_code of
CM_RESOURCE_FAILURE_NO_RETRY.

Now that the server is receiving the change-of-direction notification, we are ready to update the
SENDBACK EXEC to send the requested file contents to the requester. (And we will need to keep the
server in Send state long enough to accomplish that task.)

Step 7. Adding a Send_Data (CMSEND) Loop to Our Server
We will set up a Send_Data loop in the SENDBACK EXEC similar to the Receive loop in the PROCESS EXEC.
As we mentioned in the discussion of “Step 6. Adding a Receive (CMRCV) Loop to Our Requester Program”
on page 35, we will assume 80-byte data records. Again, this approach may not be the best approach for
all applications, because the overhead of multiple Send_Data calls may not be appropriate. It may be far
more practical to use data records large enough to send an entire file at once.

The requester exec expects the server to turn the conversation around when it finishes sending the
contents of the file, so issue a Receive (CMRCV) call following the Send_Data loop. Issuing the Receive

Starter Set Calls

38 z/VM: 7.3 CPI Communications User's Guide

will place the server's end of the conversation in Receive state and notify the requester that it has entered
Send state again.

It seems that calling a Send subroutine from within the Receive loop will handle our situation. The only
time that the server program will get send control for the conversation is when the requester program
is ready to receive the file contents. So, a status_received value of CM_SEND_RECEIVED will be the
indication for our server application that it is time to send the file.

The SENDBACK EXEC should now have the following lines in it:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

⋮
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_file = ''
requested_length = 20
do until (CMRCV_return_code ¬= CM_OK)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'conversation_ID receive_buffer',
 'requested_length data_received',
 'received_length status_received',
 'request_to_send_received return_code'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 requested_file = requested_file || receive_buffer
 end
 if (status_received = CM_SEND_RECEIVED) then
 call SendFile
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

SendFile:
/*--*/
/* Read the contents of the requested file and send each line of */
/* the file to the partner program. */
/*--*/
address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
do index = 1 to line.0
 buffer = line.index
 send_length = length(buffer)
 'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
 say; say 'Routine called: CMSEND'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
 call TraceParms 'conversation_ID buffer send_length',
 'request_to_send_received return_code'
end

return

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 39

 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end

return

⋮

File the SENDBACK EXEC. Now that both execs have been updated, enter

process getfile

from the REQUESTR user ID. PROCESS EXEC will keep issuing the Receive call from the loop until all the
data has been received. As each line of TEST FILE is received into the requester's buffer parameter, it will
be displayed.

The results on the REQUESTR virtual machine should be:

Starter Set Calls

40 z/VM: 7.3 CPI Communications User's Guide

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMSEND
 conversation_ID is 00000000
 buffer is TEST FILE A
 send_length is 11
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is This is the first line of the requested file.

 requested_length is 80
 data_received is CM_COMPLETE_DATA_RECEIVED
 received_length is 80
 status_received is CM_NO_STATUS_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is This is the second line of the requested file.

 requested_length is 80
 data_received is CM_COMPLETE_DATA_RECEIVED
 received_length is 80
 status_received is CM_NO_STATUS_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is
 requested_length is 80
 data_received is CM_NO_DATA_RECEIVED
 received_length is 0
 status_received is CM_SEND_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK
Ready;

Figure 20. Output from PROCESS EXEC Showing Step 7 Results

Congratulations! You have just successfully requested and received a small file's worth of information
from a file server using the starter set of SAA CPI Communications routines.

The lines displayed for CMRCV could be repeated a number of times depending on the size of the
TEST FILE you created. We have written our program to assume that when the status_received value is
CM_SEND_RECEIVED, all of the file contents have been received. (In reality, however, this value indicates
only that this end of the conversation is back in Send state.) Also at this point, the contents of TEST FILE
have been written to the OUTPUT LOGFILE on the REQUESTR user ID. Note that our application does not
preserve certain file characteristics of the original file, such as logical record length (LRECL) and record
format (RECFM), when it creates the new file on the REQUESTR user ID.

This time, the final routine call from PROCESS EXEC produces a return_code of CM_OK because the
requester is the first of the two execs to terminate. The server exec, however, is waiting for information
from its conversation partner, so we would expect the final routine in SENDBACK EXEC to complete with
the familiar return_code value of CM_RESOURCE_FAILURE_NO_RETRY. We should not see that return
code after we add the Deallocate (CMDEAL) call, but let us see if it shows up this time as we are
expecting.

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 41

The results from the SERVR user ID should be:

Routine called: CMACCP
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is TEST FILE A
 requested_length is 20
 data_received is CM_COMPLETE_DATA_RECEIVED
 received_length is 11
 status_received is CM_NO_STATUS_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is
 requested_length is 20
 data_received is CM_NO_DATA_RECEIVED
 received_length is 0
 status_received is CM_SEND_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMSEND
 conversation_ID is 00000000
 buffer is This is the first line of the requested file.

 send_length is 80
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMSEND
 conversation_ID is 00000000
 buffer is This is the second line of the requested file.

 send_length is 80
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV

* ERROR: An error occurred during a CMRCV call
 The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready;

Figure 21. Output from SENDBACK EXEC Showing Step 7 Results

Not surprisingly, the final return_code value was set to CM_RESOURCE_FAILURE_NO_RETRY.

Now, according to our starter set programs table Table 1 on page 7, there is only one step left, and that
is to deallocate the conversation from the requester exec. This step requires adding a Deallocate call to
the PROCESS EXEC. When SENDBACK has finished sending the contents of TEST FILE, control returns to
its Receive loop. A Receive call is then issued from Send state to reverse the direction of the conversation
and receive the deallocation notification.

Step 8. The Deallocate (CMDEAL) Call
The Deallocate (CMDEAL) call ends a conversation. When the Deallocate call completes successfully, the
conversation_ID is no longer assigned.

The format for Deallocate is:

 CALL CMDEAL(conversation_ID, input
 return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Starter Set Calls

42 z/VM: 7.3 CPI Communications User's Guide

Output Parameter
The return_code is dependent on the deallocate_type and sync_level conversation characteristics.
Using the default values of CM_DEALLOCATE_SYNC_LEVEL and CM_NONE, respectively, for those
characteristics, the possible values for the return_code variable are:
CM_OK (0)

indicates that the conversation deallocation completed successfully.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates that an error unique to the VM product has occurred. Check the CPICOMM LOGDATA file for a
summary of the error.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Send or Send-Pending state.

Results of the Call
After the Deallocate call completes successfully, the conversation is considered to have entered Reset
state, basically meaning that there is nothing left of the conversation.

Adding CMDEAL to Our Requester Program
Let's add the Deallocate (CMDEAL) call to the PROCESS EXEC. The complete exec should now have the
following lines in it:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

arg sym_dest_name fname ftype fmode . /* get user's input */
/*--*/
/* If a file was not specifically requested, set up a default. */
/*--*/
if (fname = '') then
 do
 fname = 'TEST'
 ftype = 'FILE'
 fmode = 'A'
 end
say 'Requesting the file: ' fname ftype fmode
/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID sym_dest_name return_code'
/*--*/
/* Allocate the conversation. */
/*--*/
'CMALLC conversation_ID return_code'
say; say 'Routine called: CMALLC'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms 'conversation_ID return_code'
/*--*/
/* Send the name of the file being requested to the partner program.*/

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 43

/*--*/
buffer = fname ftype fmode
send_length = length(buffer)
'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms 'conversation_ID buffer send_length',
 'request_to_send_received return_code'
/*--*/
/* Start a Receive loop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */
/* entered Receive state at its end of the conversation (noted by */
/* receipt of CM_SEND_RECEIVED */
/* for status_received) or until a return_code value other than */
/* CM_OK is returned. The record length of the incoming data */
/* is assumed to be 80 bytes, or less. */
/*--*/
complete_line = ''
requested_length = 80
do until (status_received = CM_SEND_RECEIVED)
 /*--*/
 /* Receive information from the conversation partner. */
 /*--*/
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 say; say 'Routine called: CMRCV'
 select
 when (return_code = CM_OK) then
 do
 call TraceParms 'conversation_ID receive_buffer',
 'requested_length data_received',
 'received_length status_received',
 'request_to_send_received return_code'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 complete_line = complete_line || receive_buffer
 end
 if (data_received = CM_COMPLETE_DATA_RECEIVED) then
 do
 /*--*/
 /* Use EXECIO to write the data to OUTPUT LOGFILE A */
 /* and reset the complete_line variable to nulls. */
 /*--*/
 address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS',
 'STRING' complete_line
 complete_line = ''
 end
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end
/*--*/
/* Deallocate the conversation normally. */
/*--*/
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms 'conversation_ID return_code'

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)

Starter Set Calls

44 z/VM: 7.3 CPI Communications User's Guide

 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
signal GetOut

File the exec and, once more, enter

process getfile

from the REQUESTR user ID command line.

The results on the REQUESTR virtual machine should be:

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 45

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_ID is 00000000
 sym_dest_name is GETFILE
 return_code is CM_OK

Routine called: CMALLC
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMSEND
 conversation_ID is 00000000
 buffer is TEST FILE A
 send_length is 11
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is This is the first line of the requested file.

 requested_length is 80
 data_received is CM_COMPLETE_DATA_RECEIVED
 received_length is 80
 status_received is CM_NO_STATUS_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is This is the second line of the requested file.

 requested_length is 80
 data_received is CM_COMPLETE_DATA_RECEIVED
 received_length is 80
 status_received is CM_NO_STATUS_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is
 requested_length is 80
 data_received is CM_NO_DATA_RECEIVED
 received_length is 0
 status_received is CM_SEND_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMDEAL
 conversation_ID is 00000000
 return_code is CM_OK
Ready;

Figure 22. Output from PROCESS EXEC Showing Step 8 Results

The results on the SERVR side of the conversation should be:

Starter Set Calls

46 z/VM: 7.3 CPI Communications User's Guide

Routine called: CMACCP
 conversation_ID is 00000000
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is TEST FILE A
 requested_length is 20
 data_received is CM_COMPLETE_DATA_RECEIVED
 received_length is 11
 status_received is CM_NO_STATUS_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV
 conversation_ID is 00000000
 buffer is
 requested_length is 20
 data_received is CM_NO_DATA_RECEIVED
 received_length is 0
 status_received is CM_SEND_RECEIVED
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMSEND
 conversation_ID is 00000000
 buffer is This is the first line of the requested file.

 send_length is 80
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMSEND
 conversation_ID is 00000000
 buffer is This is the second line of the requested file.

 send_length is 80
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMRCV

* ERROR: An error occurred during a CMRCV call
 The return_code was set to CM_DEALLOCATED_NORMAL
Ready;

Figure 23. Output from SENDBACK EXEC Showing Step 8 Results

The return_code value of CM_DEALLOCATED_NORMAL indicates to the server that its partner deallocated
the conversation. The conversation now has entered Reset state on the server's end as well.

Although the return_code is not set to CM_OK, a value of CM_DEALLOCATED_NORMAL does not reflect an
error condition. Rather, it is the indication of a normal termination.

Let's quickly update the SENDBACK EXEC so we will not flag this condition as an error.

Here is the complete updated exec:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 47

 interpret pseudonym.index
end
/*--*/
/* Accept the incoming conversation. */
/*--*/
'CMACCP conversation_ID return_code'
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID return_code'
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_file = ''
requested_length = 20
do until (CMRCV_return_code ¬= CM_OK)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'conversation_ID receive_buffer',
 'requested_length data_received',
 'received_length status_received',
 'request_to_send_received return_code'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 requested_file = requested_file || receive_buffer
 end
 if (status_received = CM_SEND_RECEIVED) then
 call SendFile
 end
 when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
 do
 call TraceParms 'conversation_ID receive_buffer',
 'requested_length data_received',
 'received_length status_received',
 'request_to_send_received return_code'
 say; say 'Conversation deallocated by partner'
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

SendFile:
/*--*/
/* Read the contents of the requested file and send each line of */
/* the file to the partner program. */
/*--*/
address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
do index = 1 to line.0
 buffer = line.index
 send_length = length(buffer)
 'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
 say; say 'Routine called: CMSEND'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
 call TraceParms 'conversation_ID buffer send_length',
 'request_to_send_received return_code'
end

return

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select

Starter Set Calls

48 z/VM: 7.3 CPI Communications User's Guide

 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
signal GetOut

We will not rerun the programs for this change. If you do, the results for the last Receive call displayed
at the SERVR terminal should report that neither data nor status was received, and the return_code
parameter will be set to CM_DEALLOCATED_NORMAL. Because of our update to the SENDBACK EXEC,
this return_code will no longer cause an error message to be displayed.

FYI: Receiving Partial Records

If you recall, when we added the Receive loop to the PROCESS EXEC in step 6, we only wrote
the data being received to our output file when the data_received parameter had a value of
CM_COMPLETE_DATA_RECEIVED. Because TEST FILE was composed of 80-character records and we
specified 80 as the requested_length for the Receive call, the results always showed complete data
being received. So, our program never had to receive just part of a line.

This works because both of our user IDs are on the same system. When the partners are on different
systems, this is not likely to happen because of buffering at the LUs.

To see what would happen if partial records were received, you might want to temporarily change
the requested_length to a lower number. A requested_length of 20, for example, will require that the
Receive routine be called four times to completely receive 80 characters worth of data from the
partner (on the same system). The first three calls to Receive will complete with a data_received
value of CM_INCOMPLETE_DATA_RECEIVED, and on the fourth call, that parameter will be set to
CM_COMPLETE_DATA_RECEIVED. If you check the OUTPUT LOGFILE, you will find that the partial
records were correctly processed by the Receive loop.

In general, you should always write applications in such a way that they can handle partial records.

This brings us to the end of our introduction to the starter set of SAA CPI Communications routines. Now
that you have built the sample programs and basically understand how they work together, you may find
it beneficial to review the final summary section. It contains a flow diagram that shows how our sample
programs would work in an SNA network.

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 49

In the next chapter we will begin covering some more advanced routines. We will be using the same two
user IDs and adding further routine calls to our two execs, so please do not erase them. It might also be
worthwhile to save a backup copy of each program at the end of each chapter.

Summary with Flow Diagram
Now that we see how the various CPI Communications starter set calls can be used to establish
a conversation and exchange data, we can review what we have learned while seeing how
Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf) describes a conversation flow.

A Word about the Flow Diagrams
In the flow diagram we will be examining (Figure 24 on page 52), vertical dotted lines indicate the
components involved in the exchange of information between systems. The horizontal arrows indicate the
direction of the flow for that step. The numbers lined up on the left side of the flow are reference points
to the flow and indicate the progression of the calls made on the conversation. These same numbers
correspond to the numbers under the Step heading of the text description that follows.

The call parameter lists shown in the flows are not complete; only the parameters of particular interest to
the flows being discussed are shown.

This flow diagram does not assume that both partners are on the same VM system. A complete discussion
of all possible timing scenarios is beyond the scope of this book.

Flow Diagram for Starter Set Conversation
Figure 24 on page 52 shows the flow for the conversation developed in. this chapter.

The steps shown in Figure 24 on page 52 are:

Step Description

 1 To communicate with its partner program, PROCESS must first establish a conversation.
PROCESS uses the Initialize_Conversation call to tell CPI Communications that it wants
to:

• Initialize a conversation
• Identify the conversation partner (using sym_dest_name)
• Ask CPI Communications to establish the identifier that the program will use when

referring to the conversation (the conversation_ID).

Upon successful completion of the Initialize_Conversation call, CPI Communications
assigns a conversation_ID and returns it to PROCESS. The program must store the
conversation_ID and use it on all subsequent calls intended for that conversation.

 2 No errors were found on the Initialize_Conversation call, and the return_code is set to
CM_OK.

Two major tasks are now accomplished:

• CPI Communications has established a set of conversation characteristics for the
conversation, based on the sym_dest_name, and uniquely associated them with the
conversation_ID.

• The default values for the conversation characteristics have been
assigned. (For example, the conversation now has conversation_type set to
CM_MAPPED_CONVERSATION.)

 3 PROCESS asks that a conversation be started with an Allocate call using the
conversation_ID previously assigned by the Initialize_Conversation call.

Starter Set Calls

50 z/VM: 7.3 CPI Communications User's Guide

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

Step Description

 4 If a session between the LUs is not already available, one is activated. PROCESS and
SENDBACK can now have a conversation. A return_code of CM_OK indicates that the
Allocate call was successful and the LU has allocated the necessary resources to
the program for its conversation. PROCESS’s conversation is now in Send state and
PROCESS can begin to send data.

Note: In this example, the error conditions that can arise (such as no sessions available)
are not discussed.

 5 and 6 PROCESS sends data with the Send_Data call and receives a return_code of CM_OK.
Until now, the conversation may not have been established because the conversation
startup request may not be sent until the first flow of data. In fact, any number of
Send_Data calls can be issued before CPI Communications actually has a full buffer,
which causes it to send the startup request and data. Step 5 shows a case where the
amount of data sent by the first Send_Data is greater than the size of the local LU’s send
buffer (a system-dependent property), which is one of the conditions that triggers the
sending of data. The request for a conversation is sent at this time.

 7 and 8 After the conversation is established, the remote program’s system takes care of starting
SENDBACK. The conversation on SENDBACK’s side is in Reset state and SENDBACK
issues a call to Accept_Conversation, which places the conversation in Receive state.
The Accept_Conversation call is similar to the Initialize_Conversation call in that it
equates a conversation_ID with a set of conversation characteristics. SENDBACK, like
PROCESS in Step 2 , receives a unique conversation_ID that it will use in all future CPI
Communications calls for that particular conversation.

 9 and 10 After its end of the conversation is in Receive state, SENDBACK begins whatever
processing role it and PROCESS have agreed upon. In this case, SENDBACK accepts
data with a Receive call.

PROCESS could continue to make Send_Data calls (and SENDBACK could continue to
make Receive calls), but, for the purposes of our example, assume that PROCESS only
wanted to send the data contained in its initial Send_Data call.

 11 After sending some amount of data (an indeterminate number of Send_Data calls),
PROCESS issues the Receive call while its end of the conversation is in Send state. This
call causes the remaining data buffered at REQUESTR to be sent and permission to send
to be given to SENDBACK. PROCESS’s end of the conversation is placed in Receive state,
and PROCESS waits for a response from SENDBACK.

SENDBACK issues a Receive call in the same way it issued the previous Receive call.

 12 SENDBACK receives not only the last of the data from PROCESS, but
also a status_received parameter set to CM_SEND_RECEIVED. The value of
CM_SEND_RECEIVED notifies SENDBACK that its end of the conversation is now in Send
state.

 13 As a result of the status_received value, SENDBACK issues a Send_Data call. The data
from this call, on arrival at REQUESTR, is returned to PROCESS as a response to the
Receive it issued in Step 11 .

At this point, the flow of data has been completely reversed and the two programs can
continue whatever processing their logic dictates.

To give control of the conversation back to PROCESS, SENDBACK would simply follow
the same procedure that PROCESS executed in Step 11 .

 14 through 16 PROCESS and SENDBACK continue processing. SENDBACK sends data and PROCESS
receives the data.

 17 SENDBACK issues a Receive call from Send state to change its state back to Receive.

Starter Set Calls

Chapter 2. Starter Set CPI Communications Calls 51

Step Description

 18 PROCESS receives the last of the data along with notification that SENDBACK has
changed states.

 19 PROCESS issues a Deallocate call to send any data buffered by the local system and
release the conversation. The Receive call issued by SENDBACK in step 17 can now
complete.

 20 and 21 The return_code of CM_DEALLOCATED_NORMAL tells SENDBACK that the conversation
is deallocated. Both SENDBACK and PROCESS finish normally.

Note: Only one program should issue Deallocate; in this case it was PROCESS. If
SENDBACK had issued Deallocate after receiving CM_DEALLOCATED_NORMAL, an error
would have resulted.

 Initialize_Conversation (sym_dest_name) . .
 1 .────────────────────────→. . .
 conversation_ID, return_code=CM_OK . .
 2 .←────────────────────────. . .

 .Allocate(conversation_ID). . .
 3 .────────────────────────→. . .
 . return_code=CM_OK . . .
 4 .←────────────────────────. . .
 .Send_Data(conversation_ID, conversation startup request, . .
 . data) . data . (SENDBACK is started by .
 5 .────────────────────────→.────────────────────────────────→. node services) .
 . return_code=CM_OK . . .
 6 .←────────────────────────. . .
 . . . Accept_Conversation .
 7 . . .←────────────────────────.
 . . conversation_ID, return_code=CM_OK
 8 . . .────────────────────────→.
 . . . Receive(conversation_ID).
 9 . . .←────────────────────────.
 . . . data, return_code=CM_OK .
 10 . . .────────────────────────→.
 . . permission to send, . .
 . Receive(conversation_ID). remainder of data, if any . Receive(conversation_ID).
 11 .────────────────────────→.────────────────────────────────→.←────────────────────────.
 . (PROCESS waits for . . data, .
 . data from SENDBACK) . status_received=CM_SEND_RECEIVED
 12 . . .────────────────────────→.

 . data, return_code=CM_OK . data Send_Data(conversation_ID, data)
 13 .←────────────────────────.←────────────────────────────────.←────────────────────────.
 . . . return_code=CM_OK .
 14 . . .────────────────────────→.

 . Receive(conversation_ID). data Send_Data(conversation_ID, data)
 15 .────────────────────────→.←────────────────────────────────.←────────────────────────.
 . data, return_code=CM_OK . . return_code=CM_OK .
 16 .←────────────────────────. permission to send, .────────────────────────→.
 . Receive(conversation_ID). remainder of data, if any . Receive(conversation_ID).
 17 .────────────────────────→.←────────────────────────────────.←────────────────────────.
 . data, . . .
 .status_received=CM_SEND_RECEIVED . .
 18 .←────────────────────────. . .
 .Deallocate(conversation_ID) conversation end . .
 19 .────────────────────────→.────────────────────────────────→. .
 . return_code=CM_OK . . data, .
 20 .←────────────────────────. return_code=CM_DEALLOCATED_NORMAL
 . . .────────────────────────→.
 21 . . (Both execs complete normally) . .

Figure 24. Flow Diagram for Starter Set Conversation

Starter Set Calls

52 z/VM: 7.3 CPI Communications User's Guide

Chapter 3. Advanced CPI Communications Calls

In Chapter 2, “Starter Set CPI Communications Calls,” on page 7, we developed a simple pair
of communications programs to pass a file from one virtual machine to another. Communications
programming is not always so straightforward, however. For situations demanding more flexibility, CPI
Communications provides advanced-function calls that let programs modify conversation characteristics
and synchronize activities between partners.

In this chapter we will discuss and use several of the advanced CPI Communications routines that are
used for synchronization and control, for modifying, and for examining conversation characteristics.

Overview of Advanced CPI Communications Calls
You can use the advanced calls to do more specialized processing than is possible using the default set
of characteristic values. The advanced calls provide more capabilities for synchronization and monitoring
of data. For example, the Set calls let a program modify conversation characteristics, and the Extract calls
let a program examine the conversation characteristics that have been assigned to a given conversation.

Note: Advanced CPI Communications calls can be used with the starter set calls, but are being introduced
separately in this tutorial for the sake of simplicity.

The advanced function calls can be logically divided into three categories:

• Synchronization and control
• Modifying conversation characteristics
• Examining conversation characteristics.

The following tables list the calls in each category, giving both the pseudonyms and callable names.

Calls Used for Synchronization and Control
Pseudonym Call Description Location

Confirm CMCFM Sends a confirmation and waits
for a reply

“The Confirm (CMCFM) Call” on page 68

Confirmed CMCFMD Sends a confirmation reply “The Confirmed (CMCFMD) Call” on page 69

Flush CMFLUS Explicitly sends any
information held in the local
send buffer

Table 5 on page 60

Prepare_To_Receive CMPTR Changes conversation state
from Send to Receive

“The Prepare_To_Receive (CMPTR) Call” on
page 60

Request_To_Send CMRTS Sends notification to partner
that local program has data to
send

“Request_To_Send (CMRTS) Call” on page 101

Send_Error CMSERR Notifies partner of an error
that occurred during the
conversation

“The Send_Error (CMSERR) Call” on page 90

Test_Request_To_Send_
 Received

CMTRTS Determines whether partner
program has requested to send
data

“Test_Request_To_Send_Received (CMTRTS)
Call” on page 103

Calls Used for Modifying Conversation Characteristics
Pseudonym Call Location

Set_Conversation_Type CMSCT “The Set_Conversation_Type (CMSCT) Call” on
page 92

Advanced Calls

© Copyright IBM Corp. 1991, 2022 53

Pseudonym Call Location

Set_Deallocate_Type CMSDT “The Set_Deallocate_Type (CMSDT) Call” on page
83

Set_Error_Direction CMSED “Set_Error_Direction (CMSED) Call” on page 101

Set_Fill CMSF “Set_Fill (CMSF) Call” on page 101

Set_Log_Data CMSLD “Set_Log_Data (CMSLD) Call” on page 102

Set_Mode_Name CMSMN “Set_Mode_Name (CMSMN) Call” on page 102

Set_Partner_LU_Name CMSPLN “The Set_Partner_LU_Name (CMSPLN) Call” on
page 96

Set_Prepare_To_Receive_Type CMSPTR “The Set_Prepare_To_Receive_Type (CMSPTR)
Call” on page 75

Set_Receive_Type CMSRT “Set_Receive_Type (CMSRT) Call” on page 102

Set_Return_Control CMSRC “Set_Return_Control (CMSRC) Call” on page 102

Set_Send_Type CMSST “The Set_Send_Type (CMSST) Call” on page 79

Set_Sync_Level CMSSL “The Set_Sync_Level (CMSSL) Call” on page 63

Set_TP_Name CMSTPN “The Set_TP_Name (CMSTPN) Call” on page 98

Calls Used for Examining Conversation Characteristics

Pseudonym Call Location

Extract_Conversation_State CMECS “The Extract_Conversation_State (CMECS) Call” on page
56

Extract_Conversation_Type CMECT “The Extract_Conversation_Type (CMECT) Call” on page
88

Extract_Mode_Name CMEMN “Extract_Mode_Name (CMEMN) Call” on page 101

Extract_Partner_LU_Name CMEPLN “Extract_Partner_LU_Name (CMEPLN) Call” on page 101

Extract_Sync_Level CMESL “Extract_Sync_Level (CMESL) Call” on page 101

Using Advanced Set Calls
Table 4 on page 54 shows in pseudocode style how we will be building on our programs in this chapter.
The new calls we will be adding are denoted in boldface.

Table 4. Overview of Sample Programs with Advanced Set Calls

 REQUESTR User ID SERVR User ID

 Initialize_Conversation Accept_Conversation

 (Set_Conversation_Type) Extract_Conversation_Type

 Set_Partner_LU_Name if conversation type is basic

 Set_TP_Name Send_Error

 Allocate

 Send_Data -Receive loop-

 if performing confirmation do until notified of deallocation

 Confirm Receive

Advanced Calls

54 z/VM: 7.3 CPI Communications User's Guide

Table 4. Overview of Sample Programs with Advanced Set Calls (continued)

 REQUESTR User ID SERVR User ID

 Set_Prepare_to_Receive_Type if confirmation requested

 Prepare_To-Receive Confirmed

 if send control received

 -Receive loop-

 do until send control returned -Send loop-

 Receive do until all of file is sent

 if confirmation requested if last data record

 Confirmed Set_Send_Type

 Send_Data

 end end

 Deallocate

 end

The Set_Conversation_Type call is shown in parentheses in the table because we remove it after
examining the consequences of its use. In addition, two more calls (Set_Deallocate_Type and
Extract_Conversation_State) are included in subroutines that we will add to keep the flow a little cleaner.

You will notice that we have added calls to the programs we created in Chapter 2, “Starter Set CPI
Communications Calls,” on page 7. Each will be discussed and added to the execs we started in that
chapter.

FYI: Tidying Up

It is time to clean up the PROCESS and SENDBACK execs by removing most of the parameters on
the calls to our TraceParms subroutine. (You might want to make a backup copy of both execs before
continuing.) Very carefully remove all the parameters from these calls except for the following two
Receive parameters:

• 'data_received'
• 'status_received'.

In most cases, the call to TraceParms will be left with no parameters, but this will not hurt anything. As
we add new calls to our program, we will be tracing other parameters in this chapter and we do not want
the console log to be too long. From now on, we will remove extra parameters after we have seen the
results of the call.

The ErrorHandler routine will continue to display any return_code values other than CM_OK or
CM_DEALLOCATED_NORMAL. We will leave the say statements identifying the called routine.

Now, just to make sure you did not make any mistakes, after you have deleted the unwanted
parameters, re-execute the execs to make sure they complete successfully. As you recall, you only need
to execute the PROCESS EXEC, providing the parameter GETFILE as the symbolic destination name.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 55

The Extract_Conversation_State (CMECS) Call
The Extract_Conversation_State (CMECS) call returns a value indicating the local program's current
conversation state for a given conversation.

This routine is meant for use when a program is working with protected conversations (conversations with
the sync_level characteristic set to CM_SYNC_POINT). It is also useful for debugging and error handling.

We can put the Extract_Conversation_State call to good use to help understand the concept of
conversation states. But first, let's look at the parameters.

The format for Extract_Conversation_State is:

 CALL CMECS(conversation_ID, input
 conversation_state, output
 return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameters
The conversation_state parameter returns the current state of the conversation identified by the input
conversation_ID parameter. Possible values for this characteristic are:

• CM_INITIALIZE_STATE (2)
• CM_SEND_STATE (3)
• CM_RECEIVE_STATE (4)
• CM_SEND_PENDING_STATE (5)
• CM_CONFIRM_STATE (6)
• CM_CONFIRM_SEND_STATE (7)
• CM_CONFIRM_DEALLOCATE_STATE (8)
• CM_DEFER_RECEIVE_STATEv (9)
• CM_DEFER_DEALLOCATE_STATE (10)
• CM_SYNC_POINT_STATE (11)
• CM_SYNC_POINT_SEND_STATE (12)
• CM_SYNC_POINT_DEALLOCATE_STATE (13)

See Appendix B, “CPI Communications Conversation States,” on page 189 for more information on the
various conversation states.

The return_code parameter is a variable for returning the result of the call execution. Possible values of
interest to us are:
CM_OK (0)

indicates that the conversation state has been extracted.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file for a summary of the error.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned.

Results of the Call
Anything other than a return code of CM_OK yields a conversation_state value that is undefined and
should not be examined. This call does not cause a state change.

Advanced Calls

56 z/VM: 7.3 CPI Communications User's Guide

Adding CMECS to Both Our Programs
By adding an Extract_Conversation_State call to the TraceParms subroutine in both of our programs, we
will be able to monitor the conversation states on each side of the conversation.

Let's add the new call. The only change is in the TraceParms subroutine, which currently is identical in
both of our execs, so we are just showing that section of the program.

The TraceParms subroutine in both execs (PROCESS and SENDBACK) now contains these lines:

⋮
TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state

return
⋮

The Flow of a Conversation
This time as we review the progression of the conversation between our programs, we will break the
displayed output into sections, like snapshots of the conversation. We want to watch for the relationship
between the routine calls, the call results, and the conversation states. Enter

process getfile

from the REQUESTR user ID and we will proceed.

Looking at the requester's side of the conversation first, we see the following lines displayed at the
REQUESTR terminal:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_state is => CM_INITIALIZE_STATE

Routine called: CMALLC
 conversation_state is => CM_SEND_STATE
⋮

Figure 25. Results of First Two Calls from PROCESS EXEC

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 57

The requester's first call is to Initialize_Conversation. The appropriate communications directory is
checked for side information and default values are set. Upon completion of the Initialize_Conversation
call, a conversation identifier is returned to the program and the state of the conversation is changed from
Reset to Initialize state.

Initialize state can be considered a transition state. The program can now issue Extract calls to view
conversation characteristics and Set calls to override default characteristics or values obtained from side
information. So far, though, this is a very one-sided conversation.

After the Allocate call is issued, a connection (session in SNA communications terminology) is established
between the local and remote systems, if one does not already exist, over which the conversation
will flow. Then the conversation state changes to Send state. The program can now send data on the
conversation.

⋮
Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE
⋮

Figure 26. Results of Next Two Calls from PROCESS EXEC

The requester sends the name of the file it is requesting to the server, and the conversation remains
in Send state. The side of the conversation in Send state maintains control of the conversation until it
changes the state or an error occurs.

This requester, in fact, does want to change states, which it accomplishes by calling Receive. That action
allows the partner to send data, which the requester then receives. Not surprisingly, the requester's side
of the conversation has entered Receive state.

⋮
Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED
 conversation_state is => CM_SEND_STATE
⋮

Figure 27. Results of Next Two Receive Calls from PROCESS EXEC

Data reception continues. The last Receive call shown completes with status_received of
CM_SEND_RECEIVED. That status value switches the conversation state back to Send state. The
requester again controls the conversation.

⋮
Routine called: CMDEAL
Ready;

Figure 28. Completion of PROCESS EXEC Execution

Having received the file from the server, the requester can terminate the conversation by issuing a
Deallocate call. As a result of deallocation, the conversation identifier becomes unassigned. If the
requester program tries to extract the conversation state after the Deallocate, return_code would be
set to CM_PROGRAM_PARAMETER_CHECK because the specified conversation identifier no longer has

Advanced Calls

58 z/VM: 7.3 CPI Communications User's Guide

any meaning. In addition, because the return_code is not CM_OK, the conversation_state parameter value
is undefined.

The conversation has returned to Reset state.

Viewing the conversation from the SERVR user ID, we will see:

Routine called: CMACCP
 conversation_state is => CM_RECEIVE_STATE
⋮

Figure 29. Results of First Call from SENDBACK EXEC

The private server program is started and an Accept_Conversation call is made, taking the server's end
of the conversation from Reset to Receive state. A conversation identifier is also returned for the server.
This conversation ID is not related to the conversation ID on the other end of the conversation.

⋮
Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED
 conversation_state is => CM_SEND_STATE
⋮

Figure 30. Results of Next Two Calls from SENDBACK EXEC

The first Receive issued completes with receipt of the file name sent by the partner. The conversation
remains in Receive state until status_received is returned with a value of CM_SEND_RECEIVED. The
partner has given the server program control of the conversation, which results in the conversation state
change to Send state.

⋮
Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner
Ready;

Figure 31. Completion of SENDBACK EXEC Execution

After responding to the requester by sending the contents of the requested file, the server application
calls Receive to return control to the requester. Although we did not display it, the return_code on the last
Receive call was CM_DEALLOCATED_NORMAL, indicating that the partner deallocated the conversation.
(Notice that our correction to the server program in the previous chapter avoided an error message for
this return_code value.) The conversation identifier for the server's side of the conversation becomes
unassigned, and the conversation enters Reset state.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 59

Table 5. Flush

FYI: Flush (CMFLUS) Call Overview

The Flush (CMFLUS) call empties the send buffer of the local system (logical unit or LU, meaning the
node in the SNA network) for a given conversation. When notified by CPI Communications that a Flush
has been issued, the local LU sends any information it has buffered to the remote LU. The buffered
information can come from Allocate (CMALLC), Send_Data (CMSEND), and Send_Error (CMSERR) calls.

To optimize transmissions between the conversation partners, the local LU typically buffers the data
from consecutive Send_Data calls until the local buffer is full. The amount of data sufficient for
transmission depends on the characteristics of the session allocated for the conversation and may
vary from one session to another.

Using the Flush call can improve application performance when data in the local buffer is needed by the
partner for immediate processing. Also, issuing Flush immediately after an Allocate call should ensure
that the partner program is started as soon as possible.

If the local LU has no information in its send buffer, nothing is transmitted to the remote LU when Flush
is called.

In general, however, Flush should be used sparingly. There is no need to call it if the data is not
required immediately by the partner program. If you need to be sure your partner gets data or allocation
information immediately, however, and you are not changing states, it may be appropriate to call Flush
so your partner can begin processing.

We will not be adding the Flush call to either of our programs because it would have no effect in our
example scenario, but we wanted to introduce this routine because several other CPI Communications
routines that we will be discussing can perform implicit flushes as part of their processing.

As we saw when we added the Extract_Conversation_State (CMECS) call to our program, issuing a
successful Receive (CMRCV) call from Send state really does switch the local end of the conversation to
Receive state. Another way to accomplish that state change is to call the Prepare_To_Receive (CMPTR)
routine.

The Prepare_To_Receive (CMPTR) Call
The Prepare_To_Receive (CMPTR) call changes a conversation from Send to Receive state in preparation
for receiving data. As a result of the Prepare_To_Receive call, the local LU's send buffer may be flushed.

One advantage of the Prepare_To_Receive call is that the calling program is not held up waiting for the
partner to respond with data or status, as would be the case with the Receive call.

The format for Prepare_To_Receive is:

 CALL CMPTR(conversation_ID, input
 return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameter
The possible values for the return_code parameter that are of interest to us are:
CM_OK (0)

indicates that the Prepare_To_Receive call completed successfully.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file for a summary of the error.

Advanced Calls

60 z/VM: 7.3 CPI Communications User's Guide

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.

CM_PROGRAM_STATE_CHECK (25)
can indicate several problems, but the most common error would be that the program is not in Send
or Send-Pending state.

Results of the Call
When return_code indicates CM_OK, the conversation enters Receive state.

Adding CMPTR to Our Requester Program
When programming with CPI Communications, several ways may be available to implement the same
function. For example, we can add a Prepare_To_Receive call to our requester program to change the
requester's side of the conversation to Receive state rather than letting one of the Receive (CMRCV) calls
do that.

Let's add the Prepare_To_Receive call to the PROCESS EXEC, immediately following the Send_Data
(CMSEND) call.

Note: As you add new code, remember to remove the extra parameters (keeping only data_received and
status_received) from the TraceParms calls from the previous addition. The error routine will continue to
display any return_code values other than CM_OK or CM_DEALLOCATED_NORMAL.

Your exec should now have the following lines in it:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Send the name of the file being requested to the partner program.*/
/*--*/
buffer = fname ftype fmode
send_length = length(buffer)
'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms
/*--*/
/* Issue Prepare_To_Receive to switch the conversation state from */
/* Send state to Receive state. */
/*--*/
'CMPTR conversation_ID return_code'
say; say 'Routine called: CMPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms 'conversation_ID return_code'
/*--*/
/* Start a Receive loop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */
/* entered Receive state at its end of the conversation (noted by */
/* receipt of CM_SEND_RECEIVED */
/* for status_received) or until a return_code value other than */
/* CM_OK is returned. The record length of the incoming data */
/* is assumed to be 80 bytes, or less. */
/*--*/
complete_line = ''
requested_length = 80
do until (status_received = CM_SEND_RECEIVED)
 /*--*/
 /* Receive information from the conversation partner. */
 /*--*/
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
⋮

After filing the exec and entering

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 61

process getfile

the REQUESTR virtual machine results will be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_state is => CM_INITIALIZE_STATE

Routine called: CMALLC
 conversation_state is => CM_SEND_STATE

Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMPTR
 conversation_ID is 00000000
 return_code is CM_OK
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED
 conversation_state is => CM_SEND_STATE

Routine called: CMDEAL
Ready;

Figure 32. Execution Results after Adding CMPTR to PROCESS EXEC

And, the SERVR virtual machine results will be:

Routine called: CMACCP
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED
 conversation_state is => CM_SEND_STATE

Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner
Ready;

Figure 33. Results from SENDBACK EXEC Execution

Advanced Calls

62 z/VM: 7.3 CPI Communications User's Guide

The same number of Receive calls are being issued now as before the Prepare_To_Receive call was
added, but the first Receive issued by the requester is no longer serving the dual purpose of changing the
conversation state and receiving data.

Notice that the conversation state following the Prepare_To_Receive call is Receive state.

The Set_Sync_Level (CMSSL) Call
The Set_Sync_Level (CMSSL) call sets the sync_level characteristic for a given conversation and overrides
the sync level assigned with the Initialize_Conversation (CMINIT) call.

The sync_level characteristic specifies the level of synchronization processing between the two programs.
It determines whether the programs support no synchronization, confirmation-level synchronization, or
sync-point-level synchronization.

Only a program initiating a conversation (using the Initialize_Conversation call) can issue the
Set_Sync_Level call. The call must be issued while in Initialize state, prior to the Allocate (CMALLC)
call for the specified conversation.

The format for Set_Sync_Level is:

 CALL CMSSL(conversation_ID, input
 sync_level input
 return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation for which the sync_level characteristic is
to be changed.

Use the sync_level parameter to specify the synchronization level that the local and remote programs can
use on the conversation. This characteristic can be set to one of the following values:
CM_NONE (0)

No confirmation processing will occur on this conversation. The programs will neither issue nor
recognize any synchronization requests.

CM_CONFIRM (1)
Confirmation processing can be performed on this conversation. The programs can issue calls and
recognize returned parameters relating to confirmation.

CM_SYNC_POINT (2)
The programs can perform sync point processing on this conversation. The programs can issue calls to
a synchronization point service, will recognize returned parameters relating to sync point processing,
and can perform confirmation processing.

The use of CM_SYNC_POINT to synchronize the committing and backing out of data updates is
beyond the scope of this book.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that the sync_level value has been changed.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned, the sync_level is set to an undefined value,
the specified sync_level conflicts with another conversation characteristic, or the sync_level is set to
CM_SYNC_POINT and the local system does not support a synchronization point service.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 63

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state.

Results of the Call
A return code other than CM_OK results in no change to the sync_level characteristic. This call does not
cause a state change.

Adding CMSSL to Our Requester Program
Setting the sync_level to CM_NONE would have no effect on our program because that is the default value
assigned with the Initialize_Conversation call. We will not be discussing sync point processing, so we will
set the sync_level to CM_CONFIRM.

Confirmation processing provides a chance for the program receiving data to let the sender know
whether the data is getting through and being processed. You can use confirmation processing to provide
checkpoints in an application.

Let's add the Set_Sync_Level call to the requester application, immediately following the
Initialize_Conversation call. We will also add a console prompt so that we can decide at run time whether
we want to enable confirmation processing.

The PROCESS EXEC should now have the following lines:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms
/*--*/
/* Determine if confirmation processing is desired. */
/*--*/
say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then
 do
 /*--*/
 /* Set sync_level to CM_CONFIRM. */
 /*--*/
 sync_level = CM_CONFIRM
 'CMSSL conversation_ID sync_level return_code'
 say; say 'Routine called: CMSSL'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSSL'
 call TraceParms 'conversation_ID sync_level return_code'
 say ' Confirmation processing enabled'
 end
/*--*/
/* Allocate the conversation. */
/*--*/
⋮
/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then

Advanced Calls

64 z/VM: 7.3 CPI Communications User's Guide

 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'sync_level') then
 say ' sync_level is' cm_sync_level.sync_level
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
⋮

After filing the exec, enter

process getfile

and choose confirmation processing when the prompt is displayed.

The results on the REQUESTR user ID should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_state is => CM_INITIALIZE_STATE

Would you like confirmation processing? (Y/N)
Y

Routine called: CMSSL
 conversation_ID is 00000000
 sync_level is CM_CONFIRM
 return_code is CM_OK
 conversation_state is => CM_INITIALIZE_STATE
 Confirmation processing enabled

Routine called: CMALLC
 conversation_state is => CM_SEND_STATE

Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMPTR

* ERROR: An error occurred during a CMPTR call
 The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready;

Figure 34. Results of Adding CMSSL Call to PROCESS EXEC

The results on the SERVR user ID will be:

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 65

Routine called: CMACCP
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_CONFIRM_SEND_RECEIVED
 conversation_state is => CM_CONFIRM_SEND_STATE

Routine called: CMRCV

* ERROR: An error occurred during a CMRCV call
 The return_code was set to CM_PROGRAM_STATE_CHECK
Ready;

Figure 35. Results from SENDBACK EXEC Execution

Even though our Set_Sync_Level call executed correctly, a subsequent call to Prepare_To_Receive
(CMPTR) failed with return_code set to CM_RESOURCE_FAILURE_NO_RETRY.

The requester enabled confirmation processing, but the server program was not prepared to handle that
situation. We can look at confirmation processing as a pause in the passing of data during which an
exchange of confirmation information takes place. It is like an "aside" or a very short conversation within
the main conversation to make sure both partners are at the point in processing where they are expected
to be.

As it turns out, choosing confirmation processing by setting the sync_level characteristic to CM_CONFIRM
has implications for the Deallocate (CMDEAL) and Prepare_To_Receive (CMPTR) calls. In fact, if not
otherwise changed by the specific Set calls, the default deallocate_type and prepare_to_receive_type
values (CM_DEALLOCATE_SYNC_LEVEL and CM_PREP_TO_RECEIVE_SYNC_LEVEL, respectively) dictate
the type of processing the Deallocate and Prepare_To_Receive calls perform based on the sync level of
the conversation.

What Prepare_To_Receive does when the prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and the sync_level characteristic is CM_CONFIRM is to ask the
partner to confirm that whatever data has been sent to the partner has been received and processed by
the partner. This results in a change to the state of the conversation. After receiving the status_received
value of CM_CONFIRM_SEND_RECEIVED, the server is in Confirm-Send state, but SENDBACK EXEC was
not expecting to be in this state.

The Receive loop in SENDBACK EXEC did not check for a status_received value of
CM_CONFIRM_SEND_RECEIVED, and so continued executing by calling Receive (CMRCV) again. Receive,
however, cannot be called from Confirm-Send state, so the call completed with a return_code of
CM_PROGRAM_STATE_CHECK and the program was terminated. The ending of the server application
was in turn reflected to the requester by the return_code value of CM_RESOURCE_FAILURE_NO_RETRY
on the Prepare_To_Receive (CMPTR) call.

With confirmation processing we find that the conversation states we have been using thus far are no
longer adequate. Although all that probably seems a bit confusing, it is not as bad as it may seem at first.
The next section will help you to determine which calls you can make from a particular state.

The State Table–Finding Out Where You Can Go from Here
As you will recall from our discussion of a two-way radio conversation, states are important to CPI
Communications because they help us to synchronize our activities with those of our partner. Although
the concept of conversation states is helpful, the enforcement of that concept is what helps us write
programs that work correctly. As we have seen, it can get complicated trying to keep track of all the states
and which calls we can make from a given state at a particular time.

Advanced Calls

66 z/VM: 7.3 CPI Communications User's Guide

The state that a conversation is going to enter next can be readily determined by examining the
state table included as an appendix in Common Programming Interface Communications Reference
(https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf). The state table also indicates which CPI
Communications calls can be issued while in a particular conversation state.

For a brief introduction to the state table, we have combined sections from several real entries into a
modified (and simplified) table of our own. Our table steps through the part of SENDBACK EXEC's side
of the conversation that we just discussed, as it could be viewed from the state table's perspective. As
shown in Table 6 on page 67, the routines called by SENDBACK EXEC appear on the left side of our table,
and the conversation states appear along the top. The number shown with the state name at the top of
the column corresponds to the integer value of that state.

Table 6. State Transitions for SENDBACK EXEC CPI Communications Calls

 Inputs Reset 1 Initialize 2 Send 3 Receive 4 Confirm- Send 7

Accept_Conversation ↓ / / / /

[ok] 4

Receive(W) [pc] [sc] ↓′ ↓′ [sc]

[ok] {dr,no} 4 –

Receive(W) [pc] [sc] ↓′ ↓′ [sc]

[ok] {*,cs} 7 7

Confirmed [pc] [sc] [sc] [sc] ↓′

 [ok] 3

The symbols and abbreviations that are used are all explained in the section preceding the state table
in Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/
c2643999.pdf). We will discuss only those that we need for this example.

When the SENDBACK EXEC is started, no conversation exists, so the conversation is said to be in
Reset state, and the first routine that gets called is Accept_Conversation. To determine what happens
when Accept_Conversation is called from Reset state, we need to examine the intersection of the
corresponding row and column of the state table. In our example, we find the symbol "↓", which indicates
that it is valid to call the specified routine while the conversation is in the state shown at the top of
the column. The "/" in the next column indicates that it is impossible to call Accept_Conversation from
Initialize state, which seems reasonable because the accepting side of a conversation never enters
Initialize state.

Next, we want to check the state transition. The Accept_Conversation call completes with a return_code
of CM_OK, which is represented in the state table with the symbol "[ok]". By looking in the column
of the state we are currently in (Reset) and on the row reflecting the results of the call ([ok] under
Accept_Conversation), we can determine what state transition will occur. In our case, we find a "4", the
integer value corresponding to Receive state. As we have already seen, the conversation did in fact enter
Receive state following the completion of the Accept_Conversation call.

The rest of the conversation can be traced through the state table in a similar fashion. We issue a Receive
call from Receive state that completes with a return_code of CM_OK and the receipt of data but not status
({dr,no}). The table shows a "–", indicating that the conversation remains in the current state of Receive
state.

A second Receive is issued, and it successfully completes with no data but a status_received of
CM_CONFIRM_SEND_RECEIVED ([ok] {*,cs}). The asterisk, in this case, means CM_NO_DATA_RECEIVED.
The "7" means that the conversation now enters Confirm-Send state. This is where our program runs into
trouble. SENDBACK is expecting to receive either data or a status_received value of CM_SEND_RECEIVED.
Because the status_received value does not match, the loop is executed again resulting in another Receive
call. Having entered Confirm-Send state, however, this end of the conversation is now expected to either
confirm that it has received and processed the data sent by its partner by issuing a Confirmed (CMCFMD)
call, or let its partner know that there is a problem by issuing Send_Error (CMSERR) or Deallocate
(CMDEAL) with the deallocate_type set to CM_DEALLOCATE_ABEND. As the Receive call rows of the table

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 67

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

show, calling Receive from Confirm-Send state results in a state check [sc], which was reflected to
SENDBACK EXEC by the return_code value of CM_PROGRAM_STATE_CHECK.

For our purposes, it is adequate simply to issue a Confirmed call to tell the requester side that we have
received and processed the data successfully. We will be discussing the Confirmed call shortly, but let's
examine what effect that call will have while we are looking at our example state table. If we add a
Confirmed call after the Receive, a return_code of CM_OK upon completion of that Confirmed call will
indicate that the conversation has entered state "3", Send state. At that point, SENDBACK will have send
control for the conversation and will be free to send the contents of the requested file.

Before we add a Confirmed call to our server application, though, let's continue our discussion of
confirmation processing and what that means to both sides of the conversation.

Confirmation Processing
Now, let's continue our introduction to confirmation-level synchronization with the Confirm (CMCFM) and
Confirmed (CMCFMD) calls. Because Confirmed (CMCFMD) is used as a response to Confirm (CMCFM), we
will cover both routines before adding them to our programs.

The Confirm (CMCFM) Call
A program uses the Confirm (CMCFM) call to send a confirmation request to its partner program and then
to wait for a reply. If all is well, the partner responds with a Confirmed (CMCFMD) call. These two calls
working together can help programs synchronize their processing of data.

The program can call the Confirm routine only when the conversation associated with the specified
conversation_ID has its sync_level characteristic set to CM_CONFIRM or CM_SYNC_POINT.

Like Flush (CMFLUS), Confirm is another call that should be used only when it is necessary, because it
could adversely affect a program's performance. Because the program that issues Confirm must wait for a
reply from its partner, the calling program's processing is suspended while it waits. If the partner fails to
respond, the program that issued Confirm is left waiting indefinitely.

A common use of Confirm is to verify that the partner has received, validated, or processed data that was
sent to it. Confirmed would be the affirmative response. If the remote program detects an error, it can give
a negative response by issuing Send_Error (CMSERR) or Deallocate (CMDEAL) with deallocate_type set to
CM_DEALLOCATE_ABEND.

The format for Confirm is:

 CALL CMCFM(conversation_ID, input
 request_to_send_received, output
 return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameters
The request_to_send_received parameter returns an indication of whether a request-to-send notification
has been received from the partner program. Possible values are:

CM_REQ_TO_SEND_NOT_RECEIVED (0)
CM_REQ_TO_SEND_RECEIVED (1)

If a request-to-send notification was received, it means that the remote program has requested that the
local program's end of the conversation enter Receive state, which would place the remote program's end
of the conversation in Send state.

Note: When return_code indicates CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, request_to_send_received does not contain a value.

Advanced Calls

68 z/VM: 7.3 CPI Communications User's Guide

The return_code values of interest to us are:
CM_OK (0)

indicates that the remote program replied Confirmed (CMCFMD).
CM_DEALLOCATED_ABEND (17)

usually indicates that the remote program deallocated the conversation with deallocate_type set to
CM_DEALLOCATE_ABEND, or the remote LU did so because of a remote program abnormal-ending
condition. The conversation is in Reset state.

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.

CM_PROGRAM_ERROR_PURGING (22)
indicates that the remote program issued a Send_Error call and the conversation for the remote
program was in Receive or Confirm state. The call may have caused information to be purged.
Purging occurs when the remote program issues Send_Error for a conversation in Receive state
before receiving all the information that the local program sent (all of the information sent before the
CM_PROGRAM_ERROR_PURGING return code was reported to the local program).

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or that the sync_level conversation
characteristic is set to CM_NONE.

CM_PROGRAM_STATE_CHECK (25)
usually indicates that the conversation is not in Send or Send-Pending state.

Allocation errors can also be returned on a Confirm call.

Results of the Call
When the return code is CM_OK (0):

• No state change occurs if the program that issued the call was already in Send state.
• The conversation enters Send state if the program issued the call when the conversation was in

Send-Pending state.

The Confirmed (CMCFMD) Call
A program uses the Confirmed (CMCFMD) call to send a confirmation reply to its partner program. The
local program must have received a confirmation request before it can issue this call.

The format for Confirmed is:

 CALL CMCFMD(conversation_ID, input
 return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that a confirmation reply has been sent to the partner program.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned.
CM_PROGRAM_STATE_CHECK (25)

indicates that the conversation is not in Confirm, Confirm-Send, or Confirm-Deallocate state.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 69

Results of the Call
A CM_OK return code affects the program state as follows:

• The conversation returns to Receive state if the program was in Confirm state (received
CM_CONFIRM_RECEIVED in the status_received parameter on the preceding Receive call).

• The conversation enters Send state if the program was in Confirm-Send state (received
CM_CONFIRM_SEND_RECEIVED in the status_received variable on the preceding Receive call).

• The conversation enters Reset state if the program was in Confirm-Deallocate state (received
CM_CONFIRM_DEALLOC_RECEIVED in the status_received variable on the preceding Receive call).

Adding CMCFM and CMCFMD to Our Programs
Let's add the Confirm call to the requester application immediately following the Send_Data call that is
issued to send the name of the file we are requesting. We will add the Confirmed call to the Receive loop
in the server application.

When the Confirm call completes successfully, we will know that the partner application has started and
that it has received the data. For our simple example, we will not be validating the received data. Both
programs will simply be responding with Confirmed when any confirmation request is received.

Remember that the sync_level of CM_CONFIRM can affect the Prepare_To_Receive (CMPTR) and
Deallocate (CMDEAL) calls by making them wait until the partner responds.

When confirmation processing is enabled, both programs will need to check for confirmation requests.
We encountered a problem with our programs the last time we executed them for that reason, so we
will also want to add a Confirmed call inside the requester's Receive call loop so the program can handle
confirmation processing.

The requester's PROCESS EXEC should now have the following lines:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Send the name of the file being requested to the partner program.*/
/*--*/
buffer = fname ftype fmode
send_length = length(buffer)
'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms
/*--*/
/* Confirm that partner has started and received the name of */
/* the requested file. */
/*--*/
'CMCFM conversation_ID request_to_send_received',
 'return_code'
say; say 'Routine called: CMCFM'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFM'
call TraceParms 'conversation_ID request_to_send_received',
 'return_code'
/*--*/
/* Issue Prepare_To_Receive to switch the conversation state from */
/* Send state to Receive state. */
/*--*/
'CMPTR conversation_ID return_code'
say; say 'Routine called: CMPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms
/*--*/
/* Start a Receive loop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */
/* entered Receive state at its end of the conversation (noted by */
/* receipt of CM_SEND_RECEIVED or CM_CONFIRM_SEND_RECEIVED */
/* for status_received) or until a return_code value other than */
/* CM_OK is returned. The record length of the incoming data */
/* is assumed to be 80 bytes, or less. */

Advanced Calls

70 z/VM: 7.3 CPI Communications User's Guide

/*--*/
complete_line = ''
requested_length = 80
do until (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED)
 /*--*/
 /* Receive information from the conversation partner. */
 /*--*/
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 say; say 'Routine called: CMRCV'
 select
 when (return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received',
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 complete_line = complete_line || receive_buffer
 end
 if (data_received = CM_COMPLETE_DATA_RECEIVED) then
 do
 /*--*/
 /* Use EXECIO to write the data to OUTPUT LOGFILE A */
 /* and reset the complete_line variable to nulls. */
 /*--*/
 address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS',
 'STRING' complete_line
 complete_line = ''
 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms 'conversation_ID return_code'
 end
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end
/*--*/
/* Deallocate the conversation normally. */
/*--*/
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

⋮

The server's SENDBACK EXEC now contains these lines:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

⋮
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_file = ''
requested_length = 20

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 71

do until (CMRCV_return_code ¬= CM_OK) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received'
 if (data_received ¬= CM_NO_DATA_RECEIVED) the
 do
 receive_buffer = left(receive_buffer,received_length)
 requested_file = requested_file || receive_buffer
 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms 'conversation_ID return_code'
 end
 if (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) then
 call SendFile
 else
 if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 say; say 'Conversation deallocated by partner'
 end
 end
 when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
 do
 call TraceParms 'data_received status_received'
 say; say 'Conversation deallocated by partner'
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

⋮

After filing both execs, start them up again by entering:

process getfile

and choose confirmation processing when prompted.

Here are the results displayed from the REQUESTR user ID's side of the conversation:

Advanced Calls

72 z/VM: 7.3 CPI Communications User's Guide

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
 conversation_state is => CM_INITIALIZE_STATE

Would you like confirmation processing? (Y/N)
Y

Routine called: CMSSL
 conversation_state is => CM_INITIALIZE_STATE
 Confirmation processing enabled

Routine called: CMALLC
 conversation_state is => CM_SEND_STATE

Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMCFM
 conversation_ID is 00000000
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK
 conversation_state is => CM_SEND_STATE

Routine called: CMPTR
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED
 conversation_state is => CM_SEND_STATE

Routine called: CMDEAL
Ready;

Figure 36. Results of Confirmation Processing by PROCESS EXEC

And, here are the results displayed at the SERVR user ID:

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 73

Routine called: CMACCP
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_CONFIRM_RECEIVED
 conversation_state is => CM_CONFIRM_STATE

Routine called: CMCFMD
 conversation_ID is 00000000
 return_code is CM_OK
 conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_CONFIRM_SEND_RECEIVED
 conversation_state is => CM_CONFIRM_SEND_STATE

Routine called: CMCFMD
 conversation_ID is 00000000
 return_code is CM_OK
 conversation_state is => CM_SEND_STATE

Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMSEND
 conversation_state is => CM_SEND_STATE

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_CONFIRM_DEALLOC_RECEIVED
 conversation_state is => CM_CONFIRM_DEALLOCATE_STATE

Routine called: CMCFMD
conversation_ID is 00000000
return_code is CM_OK

Conversation deallocated by partner
Ready;

Figure 37. Results of Confirmation Processing by SENDBACK EXEC

Our program still has the same basic flow to it, but there are some differences this time. Notice that
whenever a confirmation request was made, it was reflected to the partner in the status_received
parameter of a Receive (CMRCV) call.

Also notice the states that the conversation entered following receipt of a confirmation request. The
conversation will remain in the Confirm, Confirm-Send, or Confirm-Deallocate state until the local
program replies to the partner with Confirmed (CMCFMD), Send_Error (CMSERR), or Deallocate (CMDEAL)
with deallocate_type set to CM_DEALLOCATE_ABEND.

Advanced Calls

74 z/VM: 7.3 CPI Communications User's Guide

FYI: Tidying Up, Part II

Now that we have seen the conversation state changes for several program executions, let's comment
out that section of the TraceParms subroutine in both the PROCESS EXEC and the SENDBACK EXEC.
Here is an easy way to make that change:

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
⋮
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

Most of the previously added calls to TraceParms no longer pass a list of parameters, so those existing
calls will not be providing any function now. If you choose to remove the calls or comment them out,
go right ahead, but leaving them in the programs the way they are is also fine. We still want to keep the
TraceParms calls in the Receive routine sections that pass the data_received and status_received values.

We will continue calling TraceParms once each time a new routine gets added to one of our programs to
display the resulting parameters.

We have mentioned the prepare_to_receive_type and deallocate_type characteristics in the context of the
last few communications routines, but we have not described their function. Now, let's take a closer look
at what they are used for by discussing the routines that can set them.

The Set_Prepare_To_Receive_Type (CMSPTR) Call
The Set_Prepare_To_Receive_Type (CMSPTR) call sets the prepare_to_receive_type conversation
characteristic for a given conversation and overrides the value assigned by the Initialize_Conversation
(CMINIT) or Accept_Conversation (CMACCP) call.

The format for Set_Prepare_To_Receive_Type is:

 CALL CMSPTR(conversation_ID, input
 prepare_to_receive_type, input
 return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the prepare_to_receive_type parameter to specify the type of prepare-to-receive processing to be
performed for this conversation. You can set the prepare_to_receive_type variable to one of the following
values:
CM_PREP_TO_RECEIVE_SYNC_LEVEL (0)

Perform the prepare-to-receive based on one of the following sync_level settings:

• If sync_level is CM_NONE, execute the function of the Flush (CMFLUS) call and enter Receive state.
• If sync_level is CM_CONFIRM, execute the function of the Confirm (CMCFM) call and if successful (as

indicated by a return code of CM_OK on the Prepare_To_Receive call, or a return code of CM_OK on
the Send_Data call with send_type set to CM_SEND_AND_PREP_TO_RECEIVE), enter Receive state.
If Confirm is not successful, the state of the conversation is determined by the return code.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 75

• If sync_level is CM_SYNC_POINT, enter Defer-Receive state until the program issues a
synchronization point service's commit or backout call, or until the program issues a Confirm or
Flush call for this conversation. If one of those calls is successful, enter Receive state. Otherwise,
the conversation state is determined by the return code.

CM_PREP_TO_RECEIVE_FLUSH (1)
Execute the function of the Flush (CMFLUS) call and enter Receive state.

CM_PREP_TO_RECEIVE_CONFIRM (2)
Execute the function of the Confirm call and if successful (as indicated by a return code of CM_OK
on the Prepare_To_Receive call, or a return code of CM_OK on the Send_Data call with send_type set
to CM_SEND_AND_PREP_TO_RECEIVE), enter Receive state. If it is not successful, the state of the
conversation is determined by the return code.

Output Parameter
The possible values for the return_code parameter are:
CM_OK (0)

indicates that the prepare_to_receive_type has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates an error from CMS; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned, that the prepare_to_receive_type is
CM_PREP_TO_RECEIVE_CONFIRM, but the conversation is assigned with sync_level set to CM_NONE,
or that the prepare_to_receive_type is set to an undefined value.

Results of the Call
Anything other than a return code of CM_OK results in no change to the prepare_to_receive_type
characteristic. This call does not cause a state change.

Adding CMSPTR to Our Requester Program
When sync_level is CM_CONFIRM, a program that sets the prepare_to_receive_type to
CM_PREP_TO_RECEIVE_CONFIRM will behave exactly as a program that keeps the default value of
CM_PREP_TO_RECEIVE_SYNC_LEVEL.

We saw the confirmation request that was received by the server following the requester's
call to Prepare_To_Receive (CMPTR) the last time we ran our programs. Now let's set the
prepare_to_receive_type to CM_PREP_TO_RECEIVE_FLUSH. This will have the same effect as following
the Prepare_To_Receive call with a call to Flush (CMFLUS).

We will add the Set_Prepare_To_Receive call to the PROCESS EXEC just to see the difference in
processing. Instead of the partner receiving a status_received value of CM_CONFIRM_SEND_RECEIVED, it
should get CM_SEND_RECEIVED.

Let's add the call immediately before the Prepare_To_Receive call. Your exec should now have the
following lines in it.

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Confirm that partner has started and received the name of */
/* the requested file. */
/*--*/
'CMCFM conversation_ID request_to_send_received',
 'return_code'
say; say 'Routine called: CMCFM'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFM'
call TraceParms
/*--*/

Advanced Calls

76 z/VM: 7.3 CPI Communications User's Guide

/* Set the prepare_to_receive_type to CM_PREP_TO_RECEIVE_FLUSH. */
/*--*/
prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH
'CMSPTR conversation_ID prepare_to_receive_type return_code'
say; say 'Routine called: CMSPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPTR'
call TraceParms 'conversation_ID prepare_to_receive_type return_code'
/*--*/
/* Issue Prepare_To_Receive to switch the conversation state from */
/* Send state to Receive state. */
/*--*/
'CMPTR conversation_ID return_code'
say; say 'Routine called: CMPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms
⋮

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'sync_level') then
 say ' sync_level is' cm_sync_level.sync_level
 when (parameter = 'prepare_to_receive_type') then
 say ' prepare_to_receive_type is',
 cm_prepare_to_receive_type.prepare_to_receive_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

⋮

File the exec and let's try it out with

process getfile

and again pick confirmation processing.

The terminal session from the REQUESTR virtual machine is:

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 77

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Would you like confirmation processing? (Y/N)
Y

Routine called: CMSSL
 Confirmation processing enabled

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMCFM

Routine called: CMSPTR
 conversation_ID is 00000000
 prepare_to_receive_type is CM_PREP_TO_RECEIVE_FLUSH
 return_code is CM_OK

Routine called: CMPTR

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 38. Results after Adding CMSPTR Call to PROCESS EXEC

And at the SERVR virtual machine, you will see:

Routine called: CMACCP

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_CONFIRM_RECEIVED

Routine called: CMCFMD

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND

Routine called: CMSEND

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_CONFIRM_DEALLOC_RECEIVED

Routine called: CMCFMD

Conversation deallocated by partner
Ready;

Figure 39. Results of SENDBACK EXEC Execution

Advanced Calls

78 z/VM: 7.3 CPI Communications User's Guide

This time the server's Receive (CMRCV) call, which completes following the requester's
Prepare_To_Receive call, returned a status_received value of CM_SEND_RECEIVED. Before we changed
the prepare_to_receive_type, that same Receive completed with CM_CONFIRM_SEND_RECEIVED in
status_received.

Keep in mind that the prepare_to_receive_type for the requester's end of the conversation will continue
to be CM_PREP_TO_RECEIVE_FLUSH for the rest of the conversation, unless a subsequent call to
Set_Prepare_To_Receive_Type resets it.

You also should understand that the prepare_to_receive_type for the server's end of the conversation
remains unchanged at this point. It is still set to the default value CM_PREP_TO_RECEIVE_SYNC_LEVEL.

The Set_Send_Type (CMSST) Call
The Set_Send_Type (CMSST) call sets the send_type characteristic for a given conversation and overrides
the value that was assigned with the Initialize_Conversation (CMINIT) or Accept_Conversation (CMALLC)
call.

The format for Set_Send_Type is:

 CALL CMSST(conversation_ID, input
 send_type, input
 return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the send_type parameter to specify what information, if any, is to be sent to the remote program
in addition to the data supplied on the Send_Data (CMSEND) call, and whether the data is to be sent
immediately or buffered. You can set the send_type variable to one of the following values:
CM_BUFFER_DATA (0)

No additional data is sent; supplied data could be buffered.
CM_SEND_AND_FLUSH (1)

No additional data is sent; supplied data is sent immediately.
CM_SEND_AND_CONFIRM (2)

Supplied data is sent immediately along with a confirmation request.
CM_SEND_AND_PREP_TO_RECEIVE (3)

Supplied data is sent immediately along with send control of the conversation.
CM_SEND_AND_DEALLOCATE (4)

Supplied data is sent immediately along with deallocation notification.

Output Parameter
The possible return_code values are:
CM_OK (0)

indicates that the send_type value has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned, that an undefined value was specified for
send_type, or that there is a conflict between the send_type value and the sync_level value.

Results of the Call
Anything other than a return code of CM_OK results in no change to the send_type characteristic. This call
does not cause a state change.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 79

Adding CMSST to Our Server Program
Let's add the Set_Send_Type call to the SENDBACK EXEC on the SERVR user ID. We will use a send_type
value of CM_SEND_AND_PREP_TO_RECEIVE.

That change will affect the behavior of any Send_Data calls that follow it because a state change
notification will be sent along with the file contents. However, we do not want to transfer send control of
the conversation to the file requester partner until after the entire file has been sent. For that reason, the
Set_Send_Type call needs to be inserted into the Send_Data loop so that the send_type is set just before
the last Send_Data call is issued.

Your exec should now have the following lines:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

⋮

/*-------------------------- Subroutines ---------------------------*/

SendFile:
/*--*/
/* Read the contents of the requested file and send each line of */
/* the file to the partner program. */
/*--*/
address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
do index = 1 to line.0
 if (index = line.0) then
 /*--*/
 /* Reset the send_type conversation characteristic just */
 /* before the final Send_Data call. */
 /*--*/
 do
 send_type = CM_SEND_AND_PREP_TO_RECEIVE
 'CMSST conversation_ID send_type return_code'
 say; say 'Routine called: CMSST'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSST'
 call TraceParms 'conversation_ID send_type return_code'
 end
 buffer = line.index
 send_length = length(buffer)
 'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
 say; say 'Routine called: CMSEND'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
 call TraceParms
end

return

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'send_type') then
 say ' send_type is' cm_send_type.send_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end

Advanced Calls

80 z/VM: 7.3 CPI Communications User's Guide

end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

⋮

Now file the exec, and let's execute it. Start it with

process getfile

and choose confirmation processing.

The results on the requester side should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Would you like confirmation processing? (Y/N)
Y

Routine called: CMSSL
 Confirmation processing enabled

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMCFM

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_CONFIRM_SEND_RECEIVED

Routine called: CMCFMD

Routine called: CMDEAL
Ready;

Figure 40. Results of PROCESS EXEC Execution

The server side's results should be:

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 81

Routine called: CMACCP

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_CONFIRM_RECEIVED

Routine called: CMCFMD

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND

Routine called: CMSST
 conversation_ID is 00000000
 send_type is CM_SEND_AND_PREP_TO_RECEIVE
 return_code is CM_OK

Routine called: CMSEND

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_CONFIRM_DEALLOC_RECEIVED

Routine called: CMCFMD

Conversation deallocated by partner
Ready;

Figure 41. Results after Adding CMSST Call to SENDBACK EXEC

The results are basically the same as the last time we executed our programs. However, the last
Receive call on the REQUESTR side of the conversation indicates that the status_received value is
CM_CONFIRM_SEND_RECEIVED this time, rather than CM_SEND_RECEIVED. Do you understand what
happened?

By the time the final Send_Data call is issued by the server, the program has reset the send_type to
CM_SEND_AND_PREP_TO_RECEIVE. When the Send_Data routine is called, that send_type value causes
send control of the conversation to be sent to the partner program along with any data that is supplied.
The same results can be achieved by issuing Send_Data with the default send_type of CM_BUFFER_DATA
followed by a Prepare_To_Receive call.

We need to remember, though, that the prepare_to_receive_type characteristic also comes into the picture
because of that implicit Prepare_To_Receive call. The Set_Prepare_To_Receive_Type (CMSPTR) call that
the PROCESS EXEC issues affects only the file requester's end of the conversation. So, the server's
prepare_to_receive_type has not changed from the default of CM_PREP_TO_RECEIVE_SYNC_LEVEL.

Now, the sync_level of the conversation must be taken into consideration. Because we
request confirmation processing, the sync_level characteristic is set to CM_CONFIRM. When the
prepare_to_receive_type is CM_PREP_TO_RECEIVE_SYNC_LEVEL and the sync_level is CM_CONFIRM, an
implicit confirmation request is sent to the partner. If a positive response is received, the local side of the
conversation enters Receive state.

The Receive (CMRCV) call following the Send_Data call in the SENDBACK EXEC had been changing the
conversation state. Now, that state change is happening as a result of the Send_Data call, instead.

In effect, when the Send_Data call is made, it is as if our program also issued a Prepare_To_Receive
(CMPTR) call and a Confirm (CMCFM) call. The point behind our example is twofold. First, as we have
already seen, it is possible to combine the function of multiple calls into a single call. In some cases, this
capability may simplify your programs. Second, you need to keep this fact in mind so that you can write
your programs to correctly anticipate this type of behavior.

Advanced Calls

82 z/VM: 7.3 CPI Communications User's Guide

The Set_Deallocate_Type (CMSDT) Call
The Set_Deallocate_Type (CMSDT) call sets the deallocate_type characteristic for a given conversation
and overrides the value assigned with either the Initialize_Conversation (CMINIT) or Accept_Conversation
(CMACCP) call.

The format for Set_Deallocate_Type is:

 CALL CMSDT(conversation_ID, input
 deallocate_type, input
 return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the deallocate_type parameter to specify the type of deallocation to be performed. You can set it to
one of the following values:
CM_DEALLOCATE_SYNC_LEVEL (0)

perform deallocation based on the sync_level characteristic in effect for this conversation:

• If sync_level is CM_NONE, execute the function of the Flush (CMFLUS) call and deallocate the
conversation normally and unconditionally.

• If sync_level is CM_CONFIRM, execute the function of the Confirm (CMCFM) call. The conversation is
deallocated normally when the remote program responds to the confirmation request by issuing the
Confirmed (CMCFMD) call. The conversation remains allocated when the remote program responds
to the confirmation request by issuing the Send_Error (CMSERR) call.

• If sync_level is CM_SYNC_POINT, defer the deallocation until the program issues a synchronization
point service's commit call. If the commit call is successful, the conversation is deallocated
normally. If the commit is not successful or if the program issues a synchronization point service's
backout call instead of a commit, the conversation is not deallocated.

CM_DEALLOCATE_FLUSH (1)
execute the function of the Flush call and deallocate the conversation normally.

CM_DEALLOCATE_CONFIRM (2)
execute the function of the Confirm call. The conversation is deallocated normally when the remote
program responds to the confirmation request by issuing the Confirmed call. The conversation
remains allocated if the remote program responds to the confirmation request by issuing the
Send_Error (CMSERR) call.

CM_DEALLOCATE_ABEND (3)
execute the function of the Flush call when the program is in Send state and deallocate
the conversation abnormally. If the program is in Receive state, data purging can occur. This
deallocate_type is used to unconditionally deallocate the conversation regardless of the level of
synchronization, and is intended for use when a program detects an error condition that prevents
further useful communications.

Output Parameter
The possible values for the return_code parameter are:
CM_OK (0)

indicates that the deallocate_type value has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned, that there is a conflict between the
sync_level and the deallocate_type values, or that the deallocate_type specifies an undefined value.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 83

Results of the Call
When return_code is anything other than CM_OK, the deallocate_type characteristic is unchanged. This
call does not cause a state change.

Adding CMSDT to Both Our Programs
Setting the deallocate_type to CM_DEALLOCATE_FLUSH will make a Deallocate (CMDEAL) call act like one
with a deallocate_type of CM_DEALLOCATE_SYNC_LEVEL combined with a sync_level of CM_NONE. These
are the default values for these conversation characteristics.

A Deallocate with deallocate_type set to CM_DEALLOCATE_CONFIRM is the same as one with
deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL combined with sync_level set to CM_CONFIRM.
That is how our program is currently working.

The deallocate_type that is a little more interesting is CM_DEALLOCATE_ABEND, which a program would
use when it determines there is a problem that will prevent further communications with its partner.

When our programs detect a bad return_code value, they call an error routine and exit. The best way
to leave any conversation is to first issue Deallocate, and now we have a way of successfully calling
Deallocate regardless of the conversation's current state.

Let's change the error subroutines Error and ErrorHandler in both programs to call a new
subroutine named AbnormalEnd. The AbnormalEnd routine will issue a Set_Deallocate_Type call with
deallocate_type set to CM_DEALLOCATE_ABEND, followed by a Deallocate call. The required update is
similar in both execs.

The PROCESS exec should include the following additions:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'sync_level') then
 say ' sync_level is' cm_sync_level.sync_level
 when (parameter = 'prepare_to_receive_type') then
 say ' prepare_to_receive_type is',
 cm_prepare_to_receive_type.prepare_to_receive_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'

Advanced Calls

84 z/VM: 7.3 CPI Communications User's Guide

if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
call AbnormalEnd
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd
signal GetOut

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms 'conversation_ID deallocate_type return_code'
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms 'conversation_ID return_code'
 end

return

And, the SENDBACK exec should include these additional lines:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

⋮

/*-------------------------- Subroutines ---------------------------*/

⋮

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 85

 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'send_type') then
 say ' send_type is' cm_send_type.send_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
call AbnormalEnd
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd
signal GetOut

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms 'conversation_ID deallocate_type return_code'
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms 'conversation_ID return_code'
 end

return

Now file the execs and enter

process getfile

but do not select confirmation processing this time.

The results on the REQUESTR user ID should be:

Advanced Calls

86 z/VM: 7.3 CPI Communications User's Guide

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMCFM

* ERROR: An error occurred during a CMCFM call
 The return_code was set to CM_PROGRAM_PARAMETER_CHECK

Routine called: CMSDT
 conversation_ID is 00000000
 deallocate_type is CM_DEALLOCATE_ABEND
 return_code is CM_OK

Routine called: CMDEAL
 conversation_ID is 00000000
 return_code is CM_OK
Ready;

Figure 42. Results after Adding CMSDT Call to PROCESS EXEC

The results on the SERVR user ID should be:

Routine called: CMACCP

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV

* ERROR: An error occurred during a CMRCV call
 The return_code was set to CM_DEALLOCATED_ABEND

Routine called: CMSDT
Ready;

Figure 43. Results after Adding CMSDT Call to SENDBACK EXEC

Let's start our analysis of what happened with the requester. Because we answered "no" to the
confirmation prompt, Set_Sync_Level was not called to change the sync_level conversation characteristic.
Therefore, when the requester program tried to issue a Confirm call, the sync_level characteristic's
value was CM_NONE. This attempt caused the CM_PROGRAM_PARAMETER_CHECK return_code.
The requester's ErrorHandler routine was called and Set_Deallocate_Type was called to set the
deallocate_type to CM_DEALLOCATE_ABEND. Deallocate was then issued to terminate the conversation.

That abnormal termination was reflected to the server program on a Receive call that completed
with a return_code of CM_DEALLOCATED_ABEND. When the server program detected that something
was wrong, it called the error subroutine, which called Set_Deallocate_Type with deallocate_type set
to CM_DEALLOCATE_ABEND for its side of the conversation. But because the deallocation of the
conversation by the requester had already been completed, the server's end of the conversation was
in Reset state. Thus, the attempt to set the deallocate_type failed because the conversation ID was no
longer assigned. (Recall that we do not bother to display an error message if the Set_Deallocate_Type call
fails, because the conversation is already being deallocated because of an error.)

While trying out the CM_DEALLOCATE_ABEND deallocate_type, we also discovered a logic error in the
requester application. These sample programs are handling conversations with sync_level set to either

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 87

CM_NONE or CM_CONFIRM, so the requester should not call Confirm unless confirmation processing has
been enabled.

Because the PROCESS EXEC sets the sync_level to CM_CONFIRM based on console input, we can add
conditional logic preceding the Confirm call to ensure that Confirm is called only when confirmation
processing is requested.

The change to the PROCESS EXEC would look like:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/
⋮
/*--*/
/* Send the name of the file being requested to the partner program.*/
/*--*/
buffer = fname ftype fmode
send_length = length(buffer)
'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms
/*--*/
/* Call Confirm only when sync_level is not CM_NONE. We can use */
/* the confirmation processing flag set from console input. */
/*--*/
if (perform_confirm = 'Y') then
 do
 /*--*/
 /* Confirm that partner has started and received the name of */
 /* the requested file. */
 /*--*/
 'CMCFM conversation_ID request_to_send_received',
 'return_code'
 say; say 'Routine called: CMCFM'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFM
 call TraceParms
 end
/*--*/
/* Set the prepare_to_receive_type to CM_PREP_TO_RECEIVE_FLUSH. */
/*--*/
prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH
'CMSPTR conversation_ID prepare_to_receive_type return_code'
say; say 'Routine called: CMSPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPTR'
call TraceParms

⋮

The Extract_Conversation_Type (CMECT) Call
The Extract_Conversation_Type (CMECT) call extracts the value of the conversation_type characteristic
for a given conversation. This routine is useful for a server application that wants to determine what the
conversation_type is for a conversation it has accepted.

When the server accepts a conversation, the conversation_type characteristic has already been defined
by the requester. Perhaps a server is written to send data with the expectation that the conversation is
mapped, like our file-request server. With the addition of an Extract_Conversation_Type call immediately
following an Accept_Conversation (CMACCP) call, the server can determine if the conversation it just
accepted is mapped or basic. If the conversation is basic, the server can then call Set_Deallocate_Type
(CMSDT) to set the deallocate_type to CM_DEALLOCATE_ABEND and issue a Deallocate (CMDEAL) call to
terminate the conversation.

Alternatively, suppose the server wants to handle both mapped and basic conversations. A program
issuing the Send_Data (CMSEND) call for a basic conversation must add a logical record length field
as part of the buffer parameter. (This is done automatically by CPI Communications on a mapped
conversation, which is one of the reasons we are using a mapped conversation between our two
applications.) By issuing an Extract_Conversation_Type call, a server program can determine whether
it needs to perform this type of extra processing. The z/VM: CMS Application Development Guide contains

Advanced Calls

88 z/VM: 7.3 CPI Communications User's Guide

a sample CPI Communications resource manager program that uses the Extract_Conversation_Type call
in a similar way.

The format for Extract_Conversation_Type is:

 CALL CMECT(conversation_ID, input
 conversation_type, output
 return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameters
The conversation_type parameter is a variable for returning the conversation_type characteristic of the
specified conversation. Possible values it can return are:

CM_BASIC_CONVERSATION (0)
CM_MAPPED_CONVERSATION (1)

Possible values for the return_code parameter are:
CM_OK (0)

indicates that the conversation_type has been extracted successfully.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned.

Results of the Call
If the return code is not CM_OK, no conversation_type will be returned to the local program. The call
neither changes the conversation_type for the specified conversation, nor causes a state change.

Adding CMECT to Our Server Program
Let's add the Extract_Conversation_Type call to the SENDBACK EXEC, following the Accept_Conversation
(CMACCP) call.

If the conversation is basic, we will want to deallocate it abnormally. A Deallocate call with
deallocate_type set to CM_DEALLOCATE_ABEND is already coded in the ErrorHandler subroutine, so let's
just call it to terminate the conversation.

The updated exec should look like:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

⋮
/*--*/
/* Accept the incoming conversation. */
/*--*/
'CMACCP conversation_ID return_code'
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms
/*--*/
/* Extract conversation_type to ensure the conversation is mapped. */
/*--*/
'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms 'conversation_ID conversation_type return_code'
/*--*/
/* If the conversation is basic, deallocate abnormally. */
/*--*/

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 89

if (conversation_type = CM_BASIC_CONVERSATION) then
 do
 say; say '* ERROR: Accepting and deallocating a basic',
 'conversation'
 call AbnormalEnd
 signal GetOut
 end
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_file = ''
requested_length = 20
⋮

/*-------------------------- Subroutines ---------------------------*/

⋮

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'send_type') then
 say ' send_type is' cm_send_type.send_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_type') then
 say ' conversation_type is',
 cm_conversation_type.conversation_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

⋮

Before we try out the update we just made, however, let's look at a routine that can be used to alert the
partner that an error may have occurred.

The Send_Error (CMSERR) Call
A program can use the Send_Error (CMSERR) call to inform its partner that it detected an error during
a conversation. If the conversation is in Send state when Send_Error is issued, the call forces the LU to
flush its send buffer.

Upon completion of a successful Send_Error call, the local program is in Send state and the remote
program is in Receive state.

Advanced Calls

90 z/VM: 7.3 CPI Communications User's Guide

A program can use this routine to truncate an incomplete logical record it is sending, to inform the remote
program of an error detected in received data, or to reject a confirmation request. In some situations, it
may be useful to follow this call with a Send_Data (CMSEND) call to provide further information to the
partner.

The format for Send_Error is:

 CALL CMSERR(conversation_ID, input
 request_to_send_received, output
 return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameters
The request_to_send_received parameter is a variable for returning an indication of whether a request-to-
send notification has been received from the partner program. It can return one of the following values:

CM_REQ_TO_SEND_NOT_RECEIVED (0)
CM_REQ_TO_SEND_RECEIVED (1)

If a request-to-send notification was received, it means that the remote program has requested that the
local program's end of the conversation enter Receive state, which would place the remote program's end
of the conversation in Send state.

Note: When return_code indicates CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, request_to_send_received does not contain a value.

Depending on the state of the conversation, some of the possible return_code values that can be returned
are:
CM_OK (0)

indicates that the Send_Error call executed successfully.
CM_DEALLOCATED_ABEND (17)

usually indicates that the remote program deallocated the conversation with deallocate_type set to
CM_DEALLOCATE_ABEND, or the remote LU did so because of a remote program abnormal-ending
condition. The conversation is in Reset state.

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.

CM_PROGRAM_ERROR_PURGING (22)
indicates that the remote program issued a Send_Error call and the conversation for the remote
program was in Receive or Confirm state. The call may have caused information to be purged.
Purging occurs when the remote program issues Send_Error for a conversation in Receive state
before receiving all the information that the local program sent (all of the information sent before the
CM_PROGRAM_ERROR_PURGING return code is reported to the local program).

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Send, Receive, Send-Pending, Confirm, Confirm-Send,
Confirm-Deallocate, Sync-Point, Sync-Point-Send, or Sync-Point-Deallocate state.

Allocation errors can also be returned on a Send_Error call.

Results of the Call
When return_code indicates CM_OK, the conversation enters Send state if the call is issued in Receive,
Confirm, Confirm-Send, Confirm-Deallocate, or Send-Pending state. No state change occurs when the
call is issued in Send state.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 91

Adding CMSERR to Our Server Program
For our example, we will have SENDBACK EXEC call Send_Error if it detects that a basic conversation
has been accepted. Let's add the call after the Extract_Conversation_Type (CMECT) call we just added,
immediately before the ErrorHandler is called to deallocate the conversation.

The server program should include these changes:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

⋮
/*--*/
/* Extract conversation_type to ensure the conversation is mapped. */
/*--*/
'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'
if (return_code >= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms 'conversation_ID conversation_type return_code'
/*--*/
/* If the conversation is basic, deallocate abnormally. */
/*--*/
if (conversation_type = CM_BASIC_CONVERSATION) then
 do
 say; say '* ERROR: Accepting and deallocating a basic',
 'conversation'
 /*--*/
 /* Call Send_Error to notify partner that error was detected. */
 /* Since the program is going to exit, do not check the */
 /* Send_Error results for an error. */
 /*--*/
 'CMSERR conversation_ID request_to_send_received return_code'
 say; say 'Routine called: CMSERR'
 if (return_code = CM_OK) then
 call TraceParms 'conversation_ID request_to_send_received',
 'return_code'
 call AbnormalEnd
 signal GetOut
 end
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_file = ''
requested_length = 20
⋮

Now, the only way to test the changes we have made is to have a basic conversation accepted by the
server. To create a basic conversation, we need to issue the Set_Conversation_Type call.

The Set_Conversation_Type (CMSCT) Call
The Set_Conversation_Type (CMSCT) call sets the conversation_type characteristic for a given
conversation, overriding the value assigned with the Initialize_Conversation (CMINIT) call.

Only the program initiating a conversation (using the Initialize_Conversation call) can issue the
Set_Conversation_Type call. The call must be issued while in Initialize state, prior to the Allocate
(CMALLC) call for the specified conversation.

The default conversation_type supplied by CPI Communications during conversation initialization is
CM_MAPPED_CONVERSATION, so the only time a program would need to call Set_Conversation_Type
is when a basic conversation is required.

The format for Set_Conversation_Type is:

 CALL CMSCT(conversation_ID, input
 conversation_type, input
 return_code) output

Advanced Calls

92 z/VM: 7.3 CPI Communications User's Guide

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the conversation_type parameter to specify the type of conversation to be allocated. You can set it to
one of the following values:

CM_BASIC_CONVERSATION (0)
CM_MAPPED_CONVERSATION (1)

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that the conversation_type has been set.
CM_PRODUCT_SPECIFIC_ERROR(20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned, that the conversation_type specifies an
undefined value, or that the conversation_type is set to CM_MAPPED_CONVERSATION, but the fill
characteristic is set to CM_FILL_BUFFER or a prior call to Set_Log_Data is still in effect.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state. Therefore, the conversation_type
characteristic cannot be altered.

Results of the Call
If a return_code other than CM_OK is returned on the call, the conversation_type characteristic is not
changed. This call does not cause a state change.

Adding CMSCT to Our Requester Program
We have avoided basic conversations up to now because they are more difficult to write. However, just for
this section, we will start one to demonstrate how the changes we have made to the server program work.

We are not going to worry about setting up a program to correctly process a basic conversation. We
will just add a Set_Conversation_Type call in the PROCESS EXEC, following the Initialize_Conversation
(CMINIT) call.

We will want to continue focusing on mapped conversations, so we will remove the
Set_Conversation_Type call after we have tested the exec.

The requester program will temporarily include these additions:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms
/*--*/
/* Set the conversation_type to basic. */
/*--*/
conversation_type = CM_BASIC_CONVERSATION
'CMSCT conversation_ID conversation_type return_code'
say; say 'Routine called: CMSCT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSCT'
call TraceParms 'conversation_ID conversation_type return_code'
/*--*/

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 93

/* Determine if confirmation processing is desired. */
/*--*/
say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then
 do
 /*--*/
 /* Set sync_level to CM_CONFIRM. */
 /*--*/
 sync_level = CM_CONFIRM
 'CMSSL conversation_ID sync_level return_code'
 say; say 'Routine called: CMSSL'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSSL
 call TraceParms
 say ' Confirmation processing enabled'
 end
⋮

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'sync_level') then
 say ' sync_level is' cm_sync_level.sync_level
 when (parameter = 'prepare_to_receive_type') then
 say ' prepare_to_receive_type is',
 cm_prepare_to_receive_type.prepare_to_receive_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_type') then
 say ' conversation_type is',
 cm_conversation_type.conversation_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return
⋮

File the exec and start it up with

process getfile

and choose not to have confirmation performed.

Results on the requester side should be:

Advanced Calls

94 z/VM: 7.3 CPI Communications User's Guide

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: CMSCT
 conversation_ID is 00000000
 conversation_type is CM_BASIC_CONVERSATION
 return_code is CM_OK

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
 The return_code was set to CM_PROGRAM_ERROR_PURGING

Routine called: CMSDT

Routine called: CMDEAL
Ready;

Figure 44. Results of PROCESS EXEC Establishing a Basic Conversation

The server's results should be:

Routine called: CMACCP

Routine called: CMECT
 conversation_ID is 00000000
 conversation_type is CM_BASIC_CONVERSATION
 return_code is CM_OK

* ERROR: Accepting and deallocating a basic conversation

Routine called: CMSERR
 conversation_ID is 00000000
 request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
 return_code is CM_OK

Routine called: CMSDT

Routine called: CMDEAL
Ready;

Figure 45. Results of SENDBACK EXEC Detecting a Basic Conversation

The requester program sets the conversation type to basic and the server program detects this with
the Extract_Conversation_Type call. The server program issues a Send_Error (CMSERR) call and then a
Deallocate (CMDEAL) with deallocate_type set to CM_DEALLOCATE_ABEND. As the Send_Error flows to
the requester, it causes the incoming requested file name data to be purged without being received. That
fact is reported to the requester when its Send_Data (CMSEND) call completes with a return_code of
CM_PROGRAM_ERROR_PURGING.

Because Send_Error causes the side of the conversation that calls it to enter Send state, its partner
(the requester program in this case) enters Receive state when its Send_Data call completes. The
requester recognizes that the last return_code value is not CM_OK, so it calls ErrorHandler to terminate
the conversation. Although both partners issue a Deallocate call, only one of them will be successful.
We chose not to have our ErrorHandler subroutine report any additional errors because it is already
deallocating the conversation and terminating the program.

Now you can go back and remove the code we added for the Set_Conversation_Type call, including that in
the TraceParms subroutine, from PROCESS EXEC.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 95

The Set_Partner_LU_Name (CMSPLN) Call
The Set_Partner_LU_Name (CMSPLN) call sets the partner_LU_name characteristic for a given
conversation, overriding the partner LU name obtained from side information using the sym_dest_name.

This call does not change any data in the side information, and the new partner_LU_name value will be
known only for this particular conversation.

Only the program initializing a conversation (using the Initialize_Conversation (CMINIT) call) can issue
Set_Partner_LU_Name. The call must be issued while in Initialize state, prior to the Allocate (CMALLC)
call for the specified conversation.

Partner location information is usually kept in side information. This call might be included if a particular
program did not want to use the partner_LU_name acquired from side information, or if the program
wanted to ensure that the partner_LU_name it used would not be affected by a change to the :luname.
tag in the communications directory. Explicitly setting the partner_LU_name may decrease the portability
of the program to other SAA platforms because VM uses a space as a delimiter rather than a period.

The format for Set_Partner_LU_Name is:

 CALL CMSPLN(conversation_ID, input
 partner_LU_name, input
 partner_LU_name_length, input
 return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the partner_LU_name parameter to specify the name of the remote LU where the remote transaction
program is located. This LU name is any name by which the local LU knows the remote LU for purposes of
allocating a conversation.

In VM, a partner_LU_name consists of two character strings separated by a blank.

Use the partner_LU_name_length parameter to specify the length of the partner LU name, which can be
from 1 to 17 bytes.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that the partner LU name has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned or that the specified
partner_LU_name_length is less than 1 or greater than 17.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state. Therefore, the partner_LU_name conversation
characteristic cannot be altered.

Results of the Call
If the return_code is not CM_OK, the partner_LU_name and partner_LU_name_length characteristics
remain unchanged. This call does not cause a state change.

Adding CMSPLN to Our Requester Program
Our requester program does not need the Set_Partner_LU_Name call, but let's try it out to see how it
works. We will add the call following the Initialize_Conversation call and provide an invalid value.

Advanced Calls

96 z/VM: 7.3 CPI Communications User's Guide

Your exec should now have the following lines:

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms
/*--*/
/* Set the partner_LU_name explicitly. */
/*--*/
partner_LU_name = 'UNKNOWN NAME'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU_name',
 'partner_LU_name_length return_code'
say; say 'Routine called: CMSPLN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms 'conversation_ID partner_LU_name',
 'partner_LU_name_length return_code'
/*--*/
/* Determine if confirmation processing is desired. */
/*--*/
say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then
 do
 /*--*/
 /* Set sync_level to CM_CONFIRM. */
 /*--*/
 sync_level = CM_CONFIRM
 'CMSSL conversation_ID sync_level return_code'
 say; say 'Routine called: CMSSL'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSSL'
 call TraceParms 'conversation_ID sync_level return_code'
 say ' Confirmation processing enabled'
 end
⋮

File the exec and execute it by entering

process getfile

from the command line and answer the confirmation prompt with 'N'.

The results on the requester side should be:

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 97

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: CMSPLN
 conversation_ID is 00000000
 partner_LU_name is UNKNOWN NAME
 partner_LU_name_length is 12
 return_code is CM_OK

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

* ERROR: An error occurred during a CMALLC call
 The return_code was set to CM_PARAMETER_ERROR

Routine called: CMSDT

Routine called: CMDEAL
Ready;

Figure 46. Results of Setting an Unknown LU Name from PROCESS EXEC

The Set_Partner_LU_Name call executed correctly, but the Allocate call failed with return_code set to
CM_PARAMETER_ERROR. The problem is that we specified a bad value for the partner_LU_name.

The failure of our program has shown that inclusion of the Set_Partner_LU_Name call resulted in
overriding the side information value for the partner LU name, as we expected.

You can either correct the partner_LU_name or remove the call to Set_Partner_LU_Name. We will go
back and provide the valid partner_LU_name for our server. (Remember that you need to substitute the
appropriate name if you are using a different user ID.) For the example we have shown, we need to
replace UNKNOWN NAME with *USERID SERVR, as follows:

partner_LU_name = '*USERID SERVR'

See z/VM: Connectivity for information on LU naming conventions in VM.

The exec should work correctly again, if you want to execute it.

The Set_TP_Name (CMSTPN) Call
The Set_TP_Name (CMSTPN) call sets the TP_name characteristic for a given conversation, overriding the
transaction program (TP) name obtained from side information using the sym_dest_name.

Executing this call does not change the transaction program name provided with the :tpn. tag in the
communications directory. It only changes the value of the TP_name characteristic for this particular
conversation.

Only the program initializing a conversation (using the Initialize_Conversation (CMINIT) call) can issue
Set_TP_Name. The call must be issued while in Initialize state, prior to the Allocate (CMALLC) call for the
specified conversation.

Note: The TP name must be formatted according to the naming conventions of the partner LU.

The format for Set_TP_Name is:

 CALL CMSTPN(conversation_ID, input
 TP_name, input
 TP_name_length, input
 return_code) output

Advanced Calls

98 z/VM: 7.3 CPI Communications User's Guide

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the TP_name parameter to specify the name of the remote program, as it is known at the target LU.

Use the TP_name_length parameter to specify the length of the TP_name, from 1 to 64 bytes.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that the TP name has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the conversation ID is unassigned or the specified length of the TP name is less than 1
or greater than 64.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state. Therefore, the TP_name characteristic cannot
be altered.

Results of the Call
If the return code is not CM_OK, then the TP_name and TP_name_length characteristics remain
unchanged. This call does not cause a state change.

Adding CMSTPN to Our Requester Program
Again, our requester program does not need to use Set_TP_Name, but we will add the call to demonstrate
its use. Let's add it following the Set_Partner_LU_Name (CMSPLN) call and provide an invalid value.

Your exec should now have the following lines.

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Set the partner_LU_name explicitly. */
/*--*/
partner_LU_name = '*USERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU_name',
 'partner_LU_name_length return_code'
say; say 'Routine called: CMSPLN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms
/*--*/
/* Set the transaction program name (TP_name) explicitly. */
/*--*/
TP_name = 'NOTATPNAME'
TP_name_length = length(TP_name)
'CMSTPN conversation_ID TP_name TP_name_length return_code'
say; say 'Routine called: CMSTPN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSTPN'
call TraceParms 'conversation_ID TP_name TP_name_length return_code'
/*--*/
/* Determine if confirmation processing is desired. */
/*--*/
say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then
 do
 /*--*/
 /* Set sync_level to CM_CONFIRM. */
 /*--*/
 sync_level = CM_CONFIRM

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 99

 'CMSSL conversation_ID sync_level return_code'
 say; say 'Routine called: CMSSL'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSSL'
 call TraceParms
 say ' Confirmation processing enabled'
 end
⋮

Now to test what happens, begin the program with

process getfile

and again forgo the confirmation processing.

The results on the requester's side are:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: CMSPLN

Routine called: CMSTPN
 conversation_ID is 00000000
 TP_name is NOTATPNAME
 TP_name_length is 10
 return_code is CM_OK

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
 The return_code was set to CM_TPN_NOT_RECOGNIZED

Routine called: CMSDT
Ready;

Figure 47. Results of Setting an Incorrect TP Name from PROCESS EXEC

At the server's terminal, you will see:

 hh:mm:ss * MSG FROM SERVR : DMSIUH2027E Connection request on path 0
 is severed for reason = 7

Figure 48. Results on Server Virtual Machine Because of an Incorrect TP Name

The results should look familiar to you because we had a similar problem in Chapter 2, “Starter
Set CPI Communications Calls,” on page 7. The partner LU was unable to start a program with
the TP name we provided because it does not exist. The sever reported at the server's terminal
is reflected back to the requester on the Send_Data (CMSEND) call when it completes with
return_code set to CM_TPN_NOT_RECOGNIZED. The conversation has entered Reset state at the
requester's end when the Send_Data call completes, so the Set_Deallocate_Type (CMSDT) call fails with
CM_PROGRAM_PARAMETER_CHECK, which we do not see, and the Deallocate (CMDEAL) is not issued.

This problem can be remedied easily by either replacing NOTATPNAME with the correct value or removing
the call. We will replace NOTATPNAME with the correct value as follows :

TP_name = 'GET'

Feel free to run the programs again to confirm that they work correctly after making the change.

Advanced Calls

100 z/VM: 7.3 CPI Communications User's Guide

Overviews of Additional Advanced Calls
Although we will not be adding the routines covered in this section to either of our programs, they are
included here to give you a brief introduction to some additional CPI Communications calls that are
available to programmers.

Extract_Mode_Name (CMEMN) Call
The Extract_Mode_Name (CMEMN) call extracts the mode name for a conversation. CPI Communications
returns the mode name in the mode_name parameter.

Extract_Partner_LU_Name (CMEPLN) Call
The Extract_Partner_LU_Name (CMEPLN) call extracts the partner LU name for a conversation. CPI
Communications returns the partner LU name in the partner_LU_name parameter.

Extract_Mode_Name (CMEMN) and Extract_Partner_LU_Name can provide information about the session
carrying the conversation and the conversation originator.

Extract_Sync_Level (CMESL) Call
The Extract_Sync_Level (CMESL) call extracts the value of the sync_level conversation characteristic for a
given conversation. The value is returned in the sync_level parameter.

Request_To_Send (CMRTS) Call
A program can use the Request_To_Send (CMRTS) call to notify its conversation partner that it wants to
enter Send state for a given conversation.

When a conversation is in Receive state, it cannot send data without permission. The partner in Send
state effectively exercises control over the conversation. The Request_To_Send call is used by a program
in Receive state to notify its partner that it wishes to change states and send data.

The partner program is made aware of the request by the request_to_send_received parameter being set
to CM_REQ_TO_SEND_RECEIVED on a Send_Data (CMSEND), Test_Request_To_Send (CMTRTS), Confirm
(CMCFM), Send_Error (CMSERR), or Receive (CMRCV) call. The Request_To_Send call is the only way for a
program to request control.

The program that issues Request_To_Send does not get control of the conversation until it receives
a status_received value of CM_SEND_RECEIVED or CM_CONFIRM_SEND_RECEIVED from the remote
program on a subsequent Receive call.

Set_Error_Direction (CMSED) Call
The Set_Error_Direction (CMSED) call sets the error_direction characteristic for a given conversation,
overriding the value assigned by the Initialize_Conversation (CMINIT) or Accept_Conversation (CMACCP)
call.

A program should issue Set_Error_Direction before calling Send_Error (CMSERR) for a conversation in
Send-Pending state. Send-Pending state arises when a Receive (CMRCV) call completes with both data
and a conversation status of CM_SEND_RECEIVED. This call lets a program indicate to its partner whether
the error is in the data just received, or is a local processing error.

Set_Fill (CMSF) Call
The Set_Fill (CMSF) call sets the fill characteristic for a given conversation, overriding the value assigned
with the Initialize_Conversation (CMINIT) or Accept_Conversation (CMACCP) calls. The Set_Fill call is
valid only for basic conversations.

Use the Set_Fill call to specify that you want to receive data independent of its logical record format. In
other words, each logical record will not necessarily be presented to your program as it arrives, but rather

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 101

will be buffered. The amount of data received will be equal to or less than the length specified by the
requested_length parameter of the Receive call.

Set_Log_Data (CMSLD) Call
The Set_Log_Data (CMSLD) call sets the log_data and log_data_length characteristics for a
given conversation, overriding the values assigned with the Initialize_Conversation (CMINIT) or
Accept_Conversation (CMACCP) calls. The Set_Log_Data call is valid only for basic conversations.

Log data is program-unique error information that is to be logged. The data supplied by the program
is any data the program wants to have logged, such as information that can help identify the cause
of the error. The data is sent on a Send_Error call or a Deallocate call when deallocate_type is
CM_DEALLOCATE_ABEND.

Set_Mode_Name (CMSMN) Call
The Set_Mode_Name (CMSMN) call sets the mode_name and mode_name_length characteristics
for a given conversation, overriding the value originally obtained from side information using the
sym_dest_name. The mode name designates network properties for the session to be allocated for the
conversation. Network properties include, for example, the class of service to be used and whether data
is to be encrypted. The mode name is needed only when allocating a conversation to a partner in the SNA
network.

Only the program initiating a conversation (using the Initialize_Conversation (CMINIT) call) can issue
Set_Mode_Name. The call must be issued while in Initialize state, prior to the Allocate (CMALLC) call for
the specified conversation.

As with the Set_Partner_LU_Name (CMSPLN) and Set_TP_Name (CMSTPN) calls, a program would use
Set_Mode_Name to avoid dependency on the side information. As was the case with the other routines,
explicitly setting the mode_name within a program may make that program less portable.

Set_Return_Control (CMSRC) Call
The Set_Return_Control (CMSRC) call sets the return_control characteristic for a given conversation,
overriding the value assigned with the Initialize_Conversation (CMINIT) call.

Set_Return_Control can be called only by the program that initiates a conversation (using the
Initialize_Conversation call). The call must be issued while in Initialize state, prior to the Allocate
(CMALLC) call for the specified conversation.

A program might use this call to set the return_control characteristic to CM_IMMEDIATE if it had other
processing it could perform should a wait be required for a session to become available. If the Allocate
call completes with return_code set to CM_UNSUCCESSFUL, the program could do some other processing
until it wanted to attempt another conversation allocation. Not setting the return_control characteristic to
CM_IMMEDIATE would result in the program waiting until a session was available for the conversation to
be allocated.

Set_Receive_Type (CMSRT) Call
The Set_Receive_Type (CMSRT) call sets the receive_type conversation characteristic for a given
conversation and overrides the initial value assigned by the Initialize_Conversation (CMINIT) or
Accept_Conversation (CMACCP) call.

With the default receive_type setting of CM_RECEIVE_AND_WAIT, a Receive (CMRCV) call will not
complete until incoming information is available for it to receive.

If a program needs to perform processing outside of a CPI Communications conversation, changing
the receive_type to CM_IMMEDIATE could be beneficial. That way, the program could periodically issue
a Receive call to check for incoming information, and if there was not anything available to receive,
the call would complete with the data_received parameter set to CM_NO_DATA_RECEIVED and the

Advanced Calls

102 z/VM: 7.3 CPI Communications User's Guide

status_received parameter set to CM_NO_STATUS_RECEIVED. The program could then perform some of
its other processing until it again wanted to poll for information.

The Set_Receive_Type call only affects the local side of the conversation, and after it is set, the
receive_type will remain in effect for the rest of the conversation or until Set_Receive_Type is called
again.

Test_Request_To_Send_Received (CMTRTS) Call
A program uses the Test_Request_To_Send_Received (CMTRTS) call to determine whether a request-to-
send notification has been received from the remote program for a given conversation.

The Modified Sample Execs
In this section, we have included a complete listing of both of the programs we have been developing,
incorporating all the changes made through the end of this chapter.

The PROCESS Sample File Requester Exec
/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

arg sym_dest_name fname ftype fmode . /* get user's input */
/*--*/
/* If a file was not specifically requested, set up a default. */
/*--*/
if (fname = '') then
 do
 fname = 'TEST'
 ftype = 'FILE'
 fmode = 'A'
 end
say 'Requesting the file: ' fname ftype fmode
/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms
/*--*/
/* Set the partner_LU_name explicitly. */
/*--*/
partner_LU_name = '*USERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU_name',
 'partner_LU_name_length return_code'
say; say 'Routine called: CMSPLN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms
/*--*/
/* Set the transaction program name (TP_name) explicitly. */
/*--*/
TP_name = 'GET'
TP_name_length = length(TP_name)
'CMSTPN conversation_ID TP_name TP_name_length return_code'
say; say 'Routine called: CMSTPN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSTPN'
call TraceParms

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 103

/*--*/
/* Determine if confirmation processing is desired. */
/*--*/
say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then
 do
 /*--*/
 /* Set sync_level to CM_CONFIRM. */
 /*--*/
 sync_level = CM_CONFIRM
 'CMSSL conversation_ID sync_level return_code'
 say; say 'Routine called: CMSSL'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSSL'
 call TraceParms
 say ' Confirmation processing enabled'
 end
/*--*/
/* Allocate the conversation. */
/*--*/
'CMALLC conversation_ID return_code'
say; say 'Routine called: CMALLC'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms
/*--*/
/* Send the name of the file being requested to the partner program.*/
/*--*/
buffer = fname ftype fmode
send_length = length(buffer)
'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms
/*--*/
/* Call Confirm only when sync_level is not CM_NONE. We can use */
/* the confirmation processing flag set from console input. */
/*--*/
if (perform_confirm = 'Y') then
 do
 /*--*/
 /* Confirm that partner has started and received the name of */
 /* the requested file. */
 /*--*/
 'CMCFM conversation_ID request_to_send_received',
 'return_code'
 say; say 'Routine called: CMCFM'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFM
 call TraceParms
 end
/*--*/
/* Set the prepare_to_receive_type to CM_PREP_TO_RECEIVE_FLUSH. */
/*--*/
prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH
'CMSPTR conversation_ID prepare_to_receive_type return_code'
say; say 'Routine called: CMSPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPTR'
call TraceParms
/*--*/
/* Issue Prepare_To_Receive to switch the conversation state from */
/* Send state to Receive state. */
/*--*/
'CMPTR conversation_ID return_code'
say; say 'Routine called: CMPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms
/*--*/
/* Start a Receive loop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */
/* entered Receive state at its end of the conversation (noted by */
/* receipt of CM_SEND_RECEIVED or CM_CONFIRM_SEND_RECEIVED */
/* for status_received) or until a return_code value other than */
/* CM_OK is returned. The record length of the incoming data */
/* is assumed to be 80 bytes, or less. */
/*--*/
complete_line = ''
requested_length = 80
do until (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED)
 /*--*/
 /* Receive information from the conversation partner. */
 /*--*/

Advanced Calls

104 z/VM: 7.3 CPI Communications User's Guide

 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 say; say 'Routine called: CMRCV'
 select
 when (return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 complete_line = complete_line || receive_buffer
 end
 if (data_received = CM_COMPLETE_DATA_RECEIVED) then
 do
 /*--*/
 /* Use EXECIO to write the data to OUTPUT LOGFILE A */
 /* and reset the complete_line variable to nulls. */
 /*--*/
 address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS',
 'STRING' complete_line
 complete_line = ''
 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms
 end
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end
/*--*/
/* Deallocate the conversation normally. */
/*--*/
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'sync_level') then
 say ' sync_level is' cm_sync_level.sync_level
 when (parameter = 'prepare_to_receive_type') then
 say ' prepare_to_receive_type is',

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 105

 cm_prepare_to_receive_type.prepare_to_receive_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
call AbnormalEnd
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd
signal GetOut

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms
 end

return

The SENDBACK Sample Server Exec
/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/

Advanced Calls

106 z/VM: 7.3 CPI Communications User's Guide

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Accept the incoming conversation. */
/*--*/
'CMACCP conversation_ID return_code'
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms
/*--*/
/* Extract conversation_type to ensure the conversation is mapped. */
/*--*/
'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms
/*--*/
/* If the conversation is basic, deallocate abnormally. */
/*--*/
if (conversation_type = CM_BASIC_CONVERSATION) then
 do
 say; say '* ERROR: Accepting and deallocating a basic',
 'conversation'
 /*--*/
 /* Call Send_Error to notify partner that error was detected. */
 /* Since the program is going to exit, do not check the */
 /* Send_Error results for an error. */
 /*--*/
 'CMSERR conversation_ID request_to_send_received return_code'
 say; say 'Routine called: CMSERR'
 if (return_code = CM_OK) then
 call TraceParms
 call AbnormalEnd
 signal GetOut
 end
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_file = ''
requested_length = 20
do until (CMRCV_return_code ¬= CM_OK) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 requested_file = requested_file || receive_buffer
 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms
 end
 if (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) then
 call SendFile
 else
 if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 say; say 'Conversation deallocated by partner'

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 107

 end
 end
 when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
 do
 call TraceParms 'data_received status_received'
 say; say 'Conversation deallocated by partner'
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

SendFile:
/*--*/
/* Read the contents of the requested file and send each line of */
/* the file to the partner program. */
/*--*/
address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
do index = 1 to line.0
 if (index = line.0) then
 /*--*/
 /* Reset the send_type conversation characteristic just */
 /* before the final Send_Data call. */
 /*--*/
 do
 send_type = CM_SEND_AND_PREP_TO_RECEIVE
 'CMSST conversation_ID send_type return_code'
 say; say 'Routine called: CMSST'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSST'
 call TraceParms
 end
 buffer = line.index
 send_length = length(buffer)
 'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
 say; say 'Routine called: CMSEND'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
 call TraceParms
end

return

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'send_type') then
 say ' send_type is' cm_send_type.send_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_type') then
 say ' conversation_type is',
 cm_conversation_type.conversation_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */

Advanced Calls

108 z/VM: 7.3 CPI Communications User's Guide

/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
call AbnormalEnd
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd
signal GetOut

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms
 end

return

Summary
You have reached the end of the advanced-function calls chapter. In this chapter, we learned more about
conversation states. We explored confirmation processing and the setting and extracting of conversation
characteristics. Along the way, we discovered how conversation characteristics can influence the course
of a conversation. It should be clear that the SAA CPI Communications calls we have covered provide
powerful function.

Next, we will examine some of the VM extension calls to CPI Communications. We will be using the same
execs in the next section, so do not erase them. You might want to make a backup copy of the execs at
this point.

Advanced Calls

Chapter 3. Advanced CPI Communications Calls 109

Advanced Calls

110 z/VM: 7.3 CPI Communications User's Guide

Chapter 4. VM Extensions to CPI Communications

Now that we are familiar with most of the SAA CPI Communications routines, let's direct our attention to
the VM extensions. These extension routines let you take advantage of VM's ability to provide additional
security levels, to accept multiple conversations for each transaction program (TP), and to set up an
intermediate server.

The Relationship between VM and SAA CPI Communications
Before looking at the VM extension calls and what we can do with them, let's step back for a moment and
briefly discuss the communications functions and protocols underlying SAA CPI Communications. This
will help us to understand VM's implementation of and extensions to CPI Communications.

SAA CPI Communications provides a programming interface to IBM's Systems Network Architecture
(SNA) logical unit 6.2 (LU 6.2). SNA LU 6.2 defines a set of communications functions and protocols
that let application programs on different systems communicate. The set of calls defined by SAA,
however, does not implement every aspect of the LU 6.2 protocol. VM provides extensions to SAA CPI
Communications to support several additional LU 6.2 features, such as support for security types. VM
also provides routines that can be considered extensions to the LU 6.2 architecture. Resource manager
support for accepting multiple incoming conversations, for example, is not part of the LU 6.2 protocol.
This support is very important to server programs in the VM environment.

CPI Communications applications running in the VM environment can establish conversations that closely
conform to the LU 6.2 model for communications. Such applications are referred to here as LU 6.2
transaction program model applications, or TP-model applications. While a TP-model application can be
created using only SAA CPI Communications routines, such an application is also allowed to call most of
the VM/ESA extension routines.

For more detailed information on TP-model applications, see the "Understanding CPI Communications"
chapter in z/VM: CMS Application Development Guide.

Overview of VM Extension Calls
VM provides extension routines for setting and extracting access security information and for supporting
multiple concurrent conversations per server. These functions do not exist in SAA CPI Communications.

Note: After VM extensions are added to a program, the program will require modification if it is ported to
another SAA platform. The VM extensions can be used with the SAA starter set and advanced-function
calls, but it may be beneficial to place them in separate procedures whenever possible to facilitate
modifying your program in case you need to port it to another SAA platform later.

We will divide this chapter into sections that group the VM extension routines according to their use in our
programs. First, we will discuss resource managers, followed by some general security considerations.
Then, we will discuss intermediate servers and the security concerns relating specifically to them.

Summary of VM Extension Calls
You can identify the extension calls easily because they all begin with the prefix XC. In VM, these routines
can be logically divided into several categories, as the following tables show. Some of the routines are not
discussed because they are beyond the scope of this book.

Calls Used for Conversation Security
Pseudonym Call Description Location

Extract_Conversation_
 Security_User_ID

XCECSU Extracts the access security
user ID for the conversation

“The Extract_Conversation_Security_User_ID (XCECSU)
Call” on page 155

VM Extension Calls

© Copyright IBM Corp. 1991, 2022 111

Pseudonym Call Description Location

Set_Client_Security_
 User_ID

XCSCUI Lets an intermediate server
specify a client user ID

“The Set_Client_Security_User_ID (XCSCUI) Call” on page
161

Set_Conversation_Security_
 Password

XCSCSP Sets the access security
password for the
conversation

“The Set_Conversation_Security_Password (XCSCSP) Call”
on page 138

Set_Conversation_Security_
 Type

XCSCST Sets the security level for the
conversation

“The Set_Conversation_Security_Type (XCSCST) Call” on
page 134

Set_Conversation_Security_
 User_ID

XCSCSU Sets the access security user
ID for the conversation

“The Set_Conversation_Security_User_ID (XCSCSU) Call” on
page 136

Calls Used for Resource Management and Event Notification
Pseudonym Call Description Location

Identify_Resource_Manager XCIDRM Identifies a name for a given
resource to be managed
by this program (resource
manager)

“The Identify_Resource_Manager (XCIDRM) Call” on page
115

Signal_User_Event XCSUE Queues an event to be
reported by a subsequent
Wait_on_Event call in the
same virtual machine

“Signal_User_Event (XCSUE) Call” on page 169

Terminate_Resource_
 Manager

XCTRRM Ends ownership of a resource
by a resource manager

“The Terminate_Resource_Manager (XCTRRM) Call” on page
119

Wait_on_Event XCWOE Allows an application to wait
on an event from one or
more partners (events that
can be reported include
user events, allocation
events, information input,
notification that a resource
has been revoked,
console input, and Shared
File System asynchronous
events)

“The Wait_on_Event (XCWOE) Call” on page 122

Calls Used for Resource Recovery Support
Pseudonym Call Description Location

Extract_Conversation_
 LUWID

XCECL Extracts the logical unit
of work ID associated
with the specified protected
conversation

“Extract_Conversation_LUWID (XCECL) Call” on page 169

Extract_Local_Fully_
 Qualified_LU_Name

XCELFQ Extracts the local fully-
qualified LU name for the
specified conversation

“Extract_Local_Fully_Qualified_LU_Name (XCELFQ) Call” on
page 169

Extract_Remote_Fully_
 Qualified_LU_Name

XCERFQ Extracts the remote fully-
qualified LU name for the
specified conversation

“Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) Call”
on page 169

Extract_TP_Name XCETPN Extracts the TP name for the
specified conversation

“Extract_TP_Name (XCETPN) Call” on page 169

VM Extension Calls

112 z/VM: 7.3 CPI Communications User's Guide

Call Used for Extracting CMS Work Unit ID
Pseudonym Call Description Location

Extract_Conversation_
 Workunitid

XCECWU Extracts the CMS work
unit ID associated with the
specified conversation

“Extract_Conversation_Workunitid (XCECWU) Call” on page
169

Managing a Resource
In this section, we will use VM extension routines to convert our server program into a resource manager
that can handle requests for a particular resource (in this case, a file called TEST FILE).

What Is a Resource Manager?
A resource manager is simply a program that controls access to a resource, such as a file, database,
device, or other entity that can be identified for application program processing.

A resource is identified in VM by a name called a resource ID. When a user requests a connection to a
specific resource, the resource manager program handles the request.

By identifying itself as a resource manager, a server application can manage one or more resources
and can accept more than one conversation per resource. Our purpose here is to acquaint you with the
concepts and the calls to implement them, so we will not actually demonstrate the management of more
than one resource or the acceptance of more than one conversation.

What Kinds of Resources Are There?
We briefly discussed resources in the context of communications programming earlier in the book, but
let's review and expand upon what we know about them. We mentioned four kinds of resources: local,
global, system, and private.

Local
A local resource is known only to the local VM system. Only authorized users on the local system can
access the resource. In addition, the names of the local resources must be unique within the system
where they reside.

A local resource manager must be logged on and already running before users can make a successful
allocate conversation request.

Resources (for example, a printer) that should be limited to the users of one system should be defined as
a local resource to that system.

Global
A global resource is known to the local system, to all systems within the TSAF or CS collection and to the
SNA network. Global resource names must be unique within the TSAF or CS collection. Authorized users
in the TSAF or CS collection or in the SNA network can access global resources.

A global resource manager must be logged on and already running before users can make a successful
allocate conversation request.

System
A system resource is known only to the VM/ESA system where it is located but is remotely accessible from
other systems. A system resource name only needs to be unique to that system. Any authorized user in
the TSAF or CS collection or the SNA network connected to the system on which the system resource
resides can access the system resource.

A system resource manager must be logged on and already running before users can make a successful
allocate conversation request.

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 113

Private
A private resource is known only to the virtual machine where it resides. As we have seen, the $SERVER$
NAMES file identifies the various private resources and validates all allocation requests. Private resource
names need to be unique only within the virtual machine where they reside. Any authorized users in the
TSAF or CS collection or in the SNA network can access private resources.

A private resource manager need not be logged on when the allocation request is presented. CP will
autolog a private resource manager and automatically invoke the TP associated with a given resource
found in the $SERVER$ NAMES file.

Resources that need to be limited to a single user should be defined as private. For example, a user
working on a workstation uses a program to access files maintained in a virtual machine. These files
would be defined as private resources and the workstation user would be the only authorized user of the
resources.

Using VM Extension Calls to Manage Resources
The following table shows in pseudocode style how our two programs are changing. The calls we will be
adding in this section appear in boldface.

Table 7. Overview of Sample Programs Using VM Extensions

REQUESTR User ID SERVR User ID

 Initialize_Conversation Identify_Resource_Manager

 Set_Conversation_Security_Type Do forever

 Set_Conversation_Security_User_ID Wait_on_Event

 Set_Conversation_Security_Password select on event type

 Set_Partner_LU_Na,me when allocation request

 Set_TP_Na,me Accept_Conversation

 Allocate Extract_Conversation_Type

 Send_Data if conversation type is basic

 if performing confirmation Send_Error

 Confirm when information input

 Set_Prepare_To_Receive_Type

 Prepare_To_Receive -Receive loop-

 do until no data left to receive

 -Receive loop- Receive

 do until send control returned if confirmation requested

 Receive Confirmed

VM Extension Calls

114 z/VM: 7.3 CPI Communications User's Guide

Table 7. Overview of Sample Programs Using VM Extensions (continued)

REQUESTR User ID SERVR User ID

 if confirmation requested if send control received

 Confirmed

 end -Send loop-

 do until whole file is sent

 Deallocate if last data record

 Set_Send_Type

Although we are not adding many new calls to our programs, you will notice that we are restructuring
SENDBACK EXEC on the SERVR user ID. This restructuring will make our server program more flexible.

FYI: Tidying Up, Part III

In case you have not been removing unneeded parameters from the TraceParms subroutine calls,
you might want to go back and clean up the PROCESS and SENDBACK execs now. Remove all the
parameters on the TraceParms subroutine calls that do not provide you with useful information (only
keep the status_received and data_received parameters). Remember, we will be adding more of these
calls for all the routines introduced in this chapter and we do not want the console log to be too long.

If you just deleted the parameters on the TraceParms subroutine calls, rerun the execs to make sure
they complete successfully. We will not be using confirmation processing in the rest of the program, so
you can either remember to answer "N" to the confirmation-processing prompt each time you run the
program, or you can comment out the following line in the PROCESS EXEC

parse upper pull perform_confirm

and add this declaration line to make the choice automatic:

perform_confirm = 'N'

The Identify_Resource_Manager (XCIDRM) Call
A server program uses the Identify_Resource_Manager (XCIDRM) call to declare to CMS the name of the
resource that it wants to manage.

An application can call Identify_Resource_Manager multiple times to identify different resources that it
wants to manage.

The format for Identify_Resource_Manager is:

 CALL XCIDRM(resource_ID, input
 resource_manager_type, input
 service_mode, input
 security_level_flag, input
 return_code) output

Input Parameters
The Identify_Resource_Manager call expects four input parameters, the first of which is the resource_ID,
which specifies the name of a resource to be managed by this resource manager application. The
resource_ID parameter value corresponds to the transaction program name provided by applications that

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 115

allocate a conversation for this resource. Those allocation requests are then routed to the application that
called this Identify_Resource_Manager routine.

Use the resource_manager_type parameter to specify whether the resource_ID contains the name of a
private, local, global, or system resource. Valid values are:
XC_PRIVATE (0)

indicates that the specified resource will be managed as a private resource, accessible to authorized
users residing in the local system, a TSAF or CS collection, or an SNA network.

XC_LOCAL (1)
indicates that the specified resource will be managed as a local resource, accessible only to users
within the local system.

XC_GLOBAL (2)
indicates that the specified resource will be managed as a global resource, accessible to users in the
local system, the TSAF or CS collection, or the SNA network.

XC_SYSTEM (3)
indicates that the specified resource will be managed as a system resource, accessible to users in the
local system, the TSAF or CS collection, or the SNA network.

Use the service_mode parameter to specify how this resource manager application handles
conversations. Valid values are:
XC_SINGLE (0)

indicates that this resource manager program can accept only a single conversation for the specified
resource_ID.

After the resource manager program has accepted the single conversation, further allocation requests
for the same resource_ID will be queued for private resources and deallocated for local and global
resources.

After the resource manager program has completed processing and deallocated the single
conversation, it should call the Terminate_Resource_Manager (XCTRRM) routine before ending. A
private resource manager application that has queued allocation requests pending will be restarted as
soon as it ends.

XC_SEQUENTIAL (1)
indicates that this resource manager program can accept only one conversation at a time for a given
resource_ID.

After the resource manager program has accepted a conversation, further allocation requests for the
same resource_ID will be queued for private resources and deallocated for local and global resources.

When a conversation is completed and deallocated, the resource manager program can issue
Wait_on_Event (XCWOE) to wait for the next allocation request.

XC_MULTIPLE (2)
indicates that this resource manager program can accept multiple concurrent conversations for a
given resource_ID.

Subsequent allocation requests for the same resource_ID will be presented to the resource manager
program the next time Wait_on_Event (XCWOE) is called.

Use the security_level_flag parameter to specify whether this resource manager will accept allocation
requests with conversation_security_type set to XC_SECURITY_NONE (which is identical to having
a :security. tag value of NONE in the corresponding communications directory entry). Valid values
are:

• XC_REJECT_SECURITY_NONE (0)
• XC_ACCEPT_SECURITY_NONE (1)

Output Parameter
Possible values for the return_code parameter are:

VM Extension Calls

116 z/VM: 7.3 CPI Communications User's Guide

CM_OK (0)
indicates that the Identify_Resource_Manager (XCIDRM) call completed successfully.

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the resource_ID has already been defined within the virtual machine or that an invalid
value was specified for the resource_manager_type, service_mode, or security_level_flag.

(25)
indicates that this is a TP-model application, so Identify_Resource_Manager (XCIDRM) cannot be
called. See the discussion of TP-model applications “The Relationship between VM and SAA CPI
Communications” on page 111 for more information.

CM_UNSUCCESSFUL (28)
indicates that the resource_ID is already defined for another virtual machine or that you do not have
VM directory authorization to identify this local or global resource.

Results of the Call
When return_code indicates CM_OK, the resource ID has been declared. This call does not cause a state
change.

Adding XCIDRM to Our Server Program
The server application that we have created can be considered a private resource manager. Although this
call is not required for our program and does not change the results, it will show how to set up a resource
manager. As an exercise, you may want to try extending this program to accept multiple conversations for
the same resource.

We will add a call to Identify_Resource_Manager immediately preceding the Accept_Conversation
(CMACCP) call. Recall that the name of the private resource being requested is passed to the resource
manager as an argument. This private resource name also happens to be the value specified on
the :nick. tag in $SERVER$ NAMES, as illustrated in Figure 12 on page 27. We will use that value passed
as an argument to identify our resource on the Identify_Resource_Manager call. In our case, it will be
GET. Note that we do not have to use the value passed as an argument for this purpose; we could identify
the resource to be managed simply by specifying its name in the program. The resource_manager_type
will be XC_PRIVATE. We have been dealing with just one conversation, so XC_SINGLE will suffice
for the service_mode, and we will exclude connections having a conversation_security_type of
XC_SECURITY_NONE by setting the security_level_flag to XC_REJECT_SECURITY_NONE.

Because there is no conversation_ID associated with the Identify_Resource_Manager call, the
ErrorHandler subroutine will not need to be called if an error is detected. We will just have the program
display an error message.

The SENDBACK EXEC should now have the following lines:

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

arg resource_ID . /* :nick. value from $SERVER$ NAMES file */
/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 117

/* Identify the application as manager of the private resource. */
/*--*/
resource_manager_type = XC_PRIVATE
service_mode = XC_SINGLE
security_level_flag = XC_REJECT_SECURITY_NONE
'XCIDRM resource_ID resource_manager_type service_mode',
 'security_level_flag return_code'
say; say 'Routine called: XCIDRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCIDRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 signal GetOut
 end
call TraceParms 'resource_ID resource_manager_type service_mode',
 'security_level_flag return_code'
/*--*/
/* Accept the incoming conversation. */
/*--*/
'CMACCP conversation_ID return_code'
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms
⋮

/*-------------------------- Subroutines ---------------------------*/

⋮

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'send_type') then
 say ' send_type is' cm_send_type.send_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_type') then
 say ' conversation_type is',
 cm_conversation_type.conversation_type
 when (parameter = 'resource_manager_type') then
 say ' resource_manager_type is',
 xc_resource_manager_type.resource_manager_type
 when (parameter = 'service_mode') then
 say ' service_mode is' xc_service_mode.service_mode
 when (parameter = 'security_level_flag') then
 say ' security_level_flag is',
 xc_security_level_flag.security_level_flag
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

VM Extension Calls

118 z/VM: 7.3 CPI Communications User's Guide

return
⋮

An application that calls Identify_Resource_Manager (XCIDRM) to declare ownership of a resource should
also call Terminate_Resource_Manager (XCTRRM) to end its ownership of that resource before exiting.
Let's examine the Terminate_Resource_Manager call next and add it to our program before trying out our
revised program.

The Terminate_Resource_Manager (XCTRRM) Call
The Terminate_Resource_Manager (XCTRRM) call is used by a resource manager application to terminate
ownership of a resource. Any conversations and pending allocation requests associated with the specified
resource_ID will be automatically deallocated.

The format for Terminate_Resource_Manager is:

 CALL XCTRRM(resource_ID, input
 return_code) output

Input Parameter
Use the resource_ID parameter to specify the resource name, previously designated for management by
this resource manager application on a call to Identify_Resource_Manager (XCIDRM), for which service is
being terminated.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that Terminate_Resource_Manager completed successfully.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the virtual machine does not control the specified resource.
CM_PROGRAM_STATE_CHECK (25)

indicates that this is a TP-model application, so Terminate_Resource_Manager cannot be called.
See the discussion of TP-model applications “The Relationship between VM and SAA CPI
Communications” on page 111 for more information.

Results of the Call
When return_code indicates CM_OK, the resource is no longer identified (any future allocates to it will fail)
and any conversations associated with the specified resource_ID enter Reset state.

Adding XCTRRM to Our Server Program
Let's add the Terminate_Resource_Manager call to SENDBACK EXEC in a subroutine called TerminateRes.
After the server receives the deallocation notice from its partner, it will call TerminateRes to free up the
resource this program has been managing.

We will add a call to TerminateRes following the GetOut label so our program will always terminate
ownership of the resource before exiting. Just as we issue Deallocate (CMDEAL) with deallocate_type set
to CM_DEALLOCATE_ABEND from the ErrorHandler subroutine to try to ensure that the conversation is
deallocated by the program, adding the TerminateRes call following the GetOut label will ensure that we
terminate ownership of the resource when an error has been detected as well as during normal program
termination. Note that all conversations associated with the resource should be deallocated before calling
Terminate_Resource_Manager.

Your server program should now have the following lines:

/*==*/
/* SENDBACK EXEC - Sample server application. */

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 119

/*==*/

⋮
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_file = ''
requested_length = 20
do until (CMRCV_return_code ¬= CM_OK) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
⋮
 end
 when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
 do
 call TraceParms
 say; say 'Conversation deallocated by partner'
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

GetOut:
 call TerminateRes
 exit

/*-------------------------- Subroutines ---------------------------*/

⋮

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms 'conversation_ID deallocate_type return_code'
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms
 end

return

TerminateRes:
/*--*/
/* TerminateRes will terminate ownership of the specified resource. */
/*--*/
'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCTRRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 end
else
 call TraceParms 'resource_ID return_code'

return

Everything should work fine if you try out our latest change. The REQUESTR user ID results should be:

VM Extension Calls

120 z/VM: 7.3 CPI Communications User's Guide

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: CMSPLN

Routine called: CMSTPN

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 49. Results of PROCESS EXEC Execution

The SERVR user ID results should be:

Routine called: XCIDRM
 resource_ID is GET
 resource_manager_type is XC_PRIVATE
 service_mode is XC_SINGLE
 security_level_flag is XC_REJECT_SECURITY_NONE
 return_code is CM_OK

Routine called: CMACCP

Routine called: CMECT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND

Routine called: CMSST

Routine called: CMSEND

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner

Routine called: XCTRRM
 resource_ID is GET
 return_code is CM_OK
Ready;

Figure 50. SENDBACK EXEC Execution as a Resource Manager

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 121

The Wait_on_Event (XCWOE) Call
The Wait_on_Event (XCWOE) call is used by an application to wait for a communications event from
one or more partners. In addition, Wait_on_Event can reflect console interrupts and user events to the
program.

Wait_on_Event is often used by resource managers that wait for some type of interrupt to determine the
next action that is to be performed.

Note: For multitasking applications, it is recommended that you use CMS event management services
and the VMCPIC system event, rather than Wait_on_Event. You can find introductory information about
using event management services for CPI Communications in Appendix A, “Event Management for CPI
Communications,” on page 185.

The format for Wait_on_Event is:

 CALL XCWOE(resource_ID, output
 conversation_ID, output
 event_type, output
 event_info_length, output
 event_buffer, output
 return_code) output

Output Parameters
The resource_ID parameter returns the name of a resource (managed by the calling resource manager
application) for which an event has occurred. The value returned is a name that was specified by this
application on a previous Identify_Resource_Manager (XCIDRM) call.

The resource_ID parameter contains a meaningful value only when the event_type is
XC_ALLOCATION_REQUEST, XC_RESOURCE_REVOKED, or XC_USER_EVENT.

The conversation_ID parameter returns an identifier for the conversation on which information is
available to be received. The conversation_ID parameter contains a meaningful value only when the
event_type is XC_INFORMATION_INPUT.

The event_type parameter returns a value indicating the type of event that has occurred. The event_type
can be set to one of the following values:
XC_ALLOCATION_REQUEST (1)

indicates that a remote program is attempting to allocate a conversation to this application.
This event will continue to be reported by subsequent calls to Wait_on_Event until you issue
an Accept_Conversation (CMACCP) call to process the event or until Terminate_Resource_Manager
(XCTRRM) is called to end management of the subject resource.

XC_INFORMATION_INPUT (2)
indicates that a communications partner is attempting to send data, status, or both to this application.
This event will continue to be reported by subsequent calls to Wait_on_Event until you issue a Receive
(CMRCV) call to process this event, until a Send_Error (CMSERR) or Deallocate (CMDEAL) call is
issued, or until Terminate_Resource_Manager is called to end management of the subject resource.

XC_RESOURCE_REVOKED (3)
indicates that another program has revoked the resource being managed by this resource manager
application. The resource manager application must issue a Terminate_Resource_Manager call when
it completes all active conversations. After it has been presented to the application, the information
associated with this event will no longer be available.

XC_CONSOLE_INPUT (4)
indicates that information was entered at the console attached to this virtual machine and was
placed in the event_buffer parameter. After it has been presented to the application, the information
associated with this event will no longer be available.

VM Extension Calls

122 z/VM: 7.3 CPI Communications User's Guide

XC_REQUEST_ID (5)
indicates that a Shared File System asynchronous event has occurred. The request ID is placed
in the event_info_length parameter. After it has been presented to the application, the information
associated with this event will no longer be available.

XC_USER_EVENT (6)
indicates the occurrence in the caller's virtual machine of some event that is of interest to the program
calling Wait_on_Event. The event was detected by another program, such as an interrupt handler,
which in turn called the Signal_User_Event (XCSUE) routine to queue the event for reporting by
Wait_on_Event. After it has been presented to the application, the information associated with this
event will no longer be available.

The event_info_length parameter returns an integer value with various meanings depending on the
particular event type. The event_info_length parameter can have one of the following meanings:

• If the event_type is XC_INFORMATION_INPUT, XC_CONSOLE_INPUT, or XC_USER_EVENT,
event_info_length indicates the number of data bytes that are available to be received. When
the event_type is XC_INFORMATION_INPUT, the value of event_info_length should be used on a
subsequent Receive call to receive the data. For mapped conversations, this length may be greater
than the number of bytes sent by the remote program.

• If the event_type is XC_CONSOLE_INPUT or XC_USER_EVENT, event_info_length indicates the length of
the data that is available in the event_buffer.

• If the event_type is XC_REQUEST_ID, event_info_length contains the actual request ID.

The event_info_length parameter does not contain a meaningful value and should not be examined if the
event_type is XC_ALLOCATION_REQUEST or XC_RESOURCE_REVOKED.

The event_buffer parameter returns the data, up to 130 bytes, that was either entered at the console
during a console input event or passed on a Signal_User_Event call. The event_buffer parameter contains
a meaningful value only when the event_type is XC_CONSOLE_INPUT or XC_USER_EVENT.

Possible values for the return_code parameter are:
CM_OK (0)

indicates that the Wait_on_Event call completed successfully.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_STATE_CHECK (25)

indicates that no conversations exist and no resources were identified.

Results of the Call
If multiple events are pending, they will be reported on successive calls to Wait_on_Event (XCWOE) in the
following order of priority:

1. User Event
2. Allocation request
3. Information input
4. Resource revoked notification
5. Request ID
6. Console input

So, if a user event occurs, it will be presented on the next Wait_on_Event call ahead of any other event
types, even though they may have been pending for longer than the user event.

This call does not cause a state change.

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 123

Adding XCWOE to Our Server Program
We will add the Wait_on_Event call to SENDBACK EXEC, following the Identify_Resource_Manager
(XCIDRM) call. The only event types our program needs to wait for are allocation requests and information
input.

Typically, Wait_on_Event is placed inside a loop, and a resource manager calling Wait_on_Event would
generally want to keep its end of a conversation in Receive state.

When Wait_on_Event completes, the section of code designed to handle the particular event that was
reported gets executed. Then, Wait_on_Event can be issued again to wait for the next event to occur.

We will need to restructure our server program when we add the Wait_on_Event call. In effect, we are
going to let our program be driven by the type of event that gets reported. For that reason, we will want to
make our program more generic. Instead of adding each routine call to the program in the order that it will
be issued, we will group into a subroutine the calls that are related for a particular event.

We will need to move some of our existing code into subroutines. In addition, because the resource_ID
and conversation_ID parameters on the Wait_on_Event call may not always contain meaningful
information, we will want to keep the resource name and conversation ID in two additional variables,
save_res_ID and save_con_ID, so that the information is not lost. That way, if an error is detected, the
program will always have access to the resource ID and conversation ID so it can terminate management
of the resource and deallocate the conversation.

We can also change the Receive (CMRCV) call so that the requested_length is set to the value in the
Wait_on_Event parameter event_info_length when there is information to be received. That way, we will
be requesting to receive the amount of data that is available to the program. Keep in mind, however, that
an application using this value as the requested length may need to verify that it does not exceed the
maximum length for a single Receive call.

To keep the amount of screen output reasonable, we will not display the event_buffer with the
Wait_on_Event results. But we will continue to display the resource_ID associated with both the
Identify_Resource_Manager and the Terminate_Resource_Manager calls.

Here is what the modified server program looks like. Note that any lines of code that need to be removed
are marked as follows: delete .

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

⋮
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Identify the application as manager of the private resource. */
/* Remember the resource_ID value for later use in XCTRRM by */
/* storing it in save_res_ID. */
/*--*/
save_res_ID = resource_ID
resource_manager_type = XC_PRIVATE
service_mode = XC_SINGLE
security_level_flag = XC_REJECT_SECURITY_NONE
'XCIDRM resource_ID resource_manager_type service_mode',
 'security_level_flag return_code'
say; say 'Routine called: XCIDRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCIDRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 signal GetOut
 end
call TraceParms 'resource_ID'
/*--*/

VM Extension Calls

124 z/VM: 7.3 CPI Communications User's Guide

/* Start continuous Wait_on_Event loop. */
/*--*/
requested_file = ''
do forever
 /*--*/
 /* Issue Wait_on_Event to wait for the next event to occur. */
 /*--*/
 'XCWOE resource_ID conversation_ID event_type event_info_length',
 'event_buffer return_code'
 say; say 'Routine called: XCWOE'
 if (return_code ¬= CM_OK) then call ErrorHandler 'XCWOE'
 call TraceParms 'resource_ID conversation_ID event_type',
 'event_info_length return_code'
 /*--*/
 /* Choose next action based on type of event. */
 /*--*/
 select
 when (event_type = XC_ALLOCATION_REQUEST) then
 call AcceptConv
 when (event_type = XC_INFORMATION_INPUT) then
 call ReceiveInfo
 otherwise
 do
 say
 say '* ERROR: Wait_on_Event reported event_type',
 xc_event_type.event_type
 end
 end /* select */
 /*--*/
 /* When notice of partner's deallocation is received, leave the */
 /* Wait_on_Event loop. */
 /*--*/
 if (return_code = CM_DEALLOCATED_NORMAL) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 leave
end /* do forever */

GetOut:
 call TerminateRes
 exit

/*-------------------------- Subroutines ---------------------------*/

AcceptConv:
/*--*/
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID. */
/*--*/
'CMACCP conversation_ID return_code'
save_con_ID = conversation_ID
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms
/*--*/
/* Extract conversation_type to ensure the conversation is mapped. */
/*--*/
'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms
/*--*/
/* If the conversation is basic, deallocate abnormally. */
/*--*/
if (conversation_type = CM_BASIC_CONVERSATION) then
 do
 say; say '* ERROR: Accepting and deallocating a basic',
 'conversation'
 /*--*/
 /* Call Send_Error to notify partner that error was detected. */
 /* Since the program is going to exit, do not check the */
 /* Send_Error results for an error. */
 /*--*/
 'CMSERR conversation_ID request_to_send_received return_code'
 say; say 'Routine called: CMSERR'
 if (return_code = CM_OK) then
 call TraceParms
 call AbnormalEnd
 signal GetOut
 end

return

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 125

ReceiveInfo:
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
 delete requested_file = ''
requested_length = event_info_length
do until (data_received = CM_COMPLETE_DATA_RECEIVED) |,
 (data_received = CM_NO_DATA_RECEIVED)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 requested_file = requested_file || receive_buffer
 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms
 end
 if (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) then
 call SendFile
 else
 if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 say; say 'Conversation deallocated by partner'
 end
 end
 when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
 do
 call TraceParms 'data_received status_received'
 say; say 'Conversation deallocated by partner'
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

return

SendFile:
/*--*/
/* Read the contents of the requested file and send each line of */
/* the file to the partner program. */
/*--*/
address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
do index = 1 to line.0
 if (index = line.0) then
 /*--*/
 /* Reset the send_type conversation characteristic just */
 /* before the final Send_Data call. */
 /*--*/
 do
 send_type = CM_SEND_AND_PREP_TO_RECEIVE
 'CMSST conversation_ID send_type return_code'
 say; say 'Routine called: CMSST'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSST'
 call TraceParms
 end
 buffer = line.index

VM Extension Calls

126 z/VM: 7.3 CPI Communications User's Guide

 send_length = length(buffer)
 'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
 say; say 'Routine called: CMSEND'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
 call TraceParms
end

return

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'send_type') then
 say ' send_type is' cm_send_type.send_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_type') then
 say ' conversation_type is',
 cm_conversation_type.conversation_type
 when (parameter = 'resource_manager_type') then
 say ' resource_manager_type is',
 xc_resource_manager_type.resource_manager_type
 when (parameter = 'service_mode') then
 say ' service_mode is' xc_service_mode.service_mode
 when (parameter = 'security_level_flag') then
 say ' security_level_flag is',
 xc_security_level_flag.security_level_flag
 when (parameter = 'event_type') then
 say ' event_type is' xc_event_type.event_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

⋮

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/* Use conversation ID in save_con_ID, from start of conversation. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
conversation_ID = save_con_ID
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms
 'CMDEAL conversation_ID return_code'

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 127

 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms
 end

return

TerminateRes:
/*--*/
/* TerminateRes will terminate ownership of the specified resource. */
/* Use resource name stored in save_res_ID at start of program. */
/*--*/
resource_ID = save_res_ID
'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCTRRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 end
else
 call TraceParms 'resource_ID'

return

Executing the programs now will show some slightly different output.

The following lines should be displayed at the requester's terminal:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: CMSPLN

Routine called: CMSTPN

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 51. Results of PROCESS EXEC Execution

These lines should appear at the server's terminal:

VM Extension Calls

128 z/VM: 7.3 CPI Communications User's Guide

Routine called: XCIDRM
 resource_ID is GET

Routine called: XCWOE
 resource_ID is GET
 conversation_ID is
 event_type is XC_ALLOCATION_REQUEST
 event_info_length is 0
 return_code is CM_OK

Routine called: CMACCP

Routine called: CMECT

Routine called: XCWOE
 resource_ID is
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT
 event_info_length is 15
 return_code is CM_OK

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: XCWOE
 resource_ID is
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT
 event_info_length is 0
 return_code is CM_OK

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVEDRoutine called: CMSEND

Routine called: CMSST

Routine called: CMSEND

Routine called: XCWOE
 resource_ID is
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT
 event_info_length is 0
 return_code is CM_OK

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner

Routine called: XCTRRM
 resource_ID is GET
Ready;

Figure 52. Results of XCWOE to SENDBACK EXEC

Notice that the first Wait_on_Event call completed with an allocation request for the GET resource.
Our resource manager could be managing more than just one resource. In that case, the resource_ID
parameter would let the program know for which resource the request was intended.

After the resource manager accepts a conversation, information input events can occur. These events
identify the particular conversation on which the information is available. There being only one
conversation involved in our example, the conversation_ID is always the same here.

Now that we are convinced the converted exec is working like the previous version of our program, let's
try another option for the resource manager. Suppose there were going to be frequent requests to the
server for file contents. It might be preferable for the server program to keep running and waiting for
these requests rather than terminating after each request is processed.

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 129

By identifying our resource with a service_mode of XC_SEQUENTIAL, the next allocation request will be
reported on a Wait_on_Event (XCWOE) call after the previous conversation has been deallocated.

Our server needs just a couple of changes. We will not be terminating the resource manager when
the partner deallocates, so let's add support for console input events to provide a way of stopping
the program. That way, the server will continue to run until an entry is made from the SERVR virtual
machine's console. Let's also comment out the LEAVE statement that was to be performed when an
information event resulted in a return_code of CM_DEALLOCATED_NORMAL or a status_received value of
CM_CONFIRM_DEALLOC_RECEIVED.

In addition, we will change the call to the TraceParms subroutine associated with the Wait_on_Event call
so that only the conversation_ID and event_type are displayed. We will also drop resource_ID from the
Identify_Resource_Manager and Terminate_Resource_Manager TraceParms calls.

Here are the changes to the private resource manager.

/*==*/
/* SENDBACK EXEC - Sample server application. */
/*==*/

⋮
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Identify the application as manager of the private resource. */
/* Remember the resource_ID value for later use in XCTRRM by */
/* storing it in save_res_ID. */
/*--*/
resource_ID = word(resource_ID 'GET',1)
save_res_ID = resource_ID
resource_manager_type = XC_PRIVATE
service_mode = XC_SEQUENTIAL
security_level_flag = XC_REJECT_SECURITY_NONE
'XCIDRM resource_ID resource_manager_type service_mode',
 'security_level_flag return_code'
say; say 'Routine called: XCIDRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCIDRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 signal GetOut
 end
call TraceParms
/*--*/
/* Start continuous Wait_on_Event loop. */
/* Any console input will end the loop. */
/*--*/
requested_file = ''
do forever
 say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'
 /*--*/
 /* Issue Wait_on_Event to wait for the next event to occur. */
 /*--*/
 'XCWOE resource_ID conversation_ID event_type event_info_length',
 'event_buffer return_code'
 say; say 'Routine called: XCWOE'
 if (return_code ¬= CM_OK) then call ErrorHandler 'XCWOE'
 call TraceParms 'conversation_ID event_type'
 /*--*/
 /* Choose next action based on type of event. */
 /*--*/
 select
 when (event_type = XC_ALLOCATION_REQUEST) then
 call AcceptConv
 when (event_type = XC_INFORMATION_INPUT) then
 call ReceiveInfo
 when (event_type = XC_CONSOLE_INPUT) then
 /*--*/
 /* Leave the Wait_on_Event loop. */

VM Extension Calls

130 z/VM: 7.3 CPI Communications User's Guide

 /*--*/
 leave
 otherwise
 do
 say
 say '* ERROR: Wait_on_Event reported event_type',
 xc_event_type.event_type
 end
 end /* select */
 /*--*/
 /* When notice of partner's deallocation is received, leave the */
 /* Wait_on_Event loop. */
 /*--*/
 /* Commenting out next three lines …
 if (return_code = CM_DEALLOCATED_NORMAL) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 leave
 … */end
 /* do forever */

GetOut:
 call TerminateRes
 exit

/*-------------------------- Subroutines ---------------------------*/

⋮

ReceiveInfo:
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_length = event_info_length
do until (data_received = CM_COMPLETE_DATA_RECEIVED) |,
 (data_received = CM_NO_DATA_RECEIVED)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 requested_file = requested_file || receive_buffer
 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms
 end
 if (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) then
 call SendFile
 else
 if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 say; say 'Conversation deallocated by partner'
 requested_file = ''
 end
 end
 when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
 do
 call TraceParms 'data_received status_received'
 say; say 'Conversation deallocated by partner'
 requested_file = ''
 end

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 131

 otherwise
 call ErrorHandler 'CMRCV'
 end
end

return

⋮

Now, in addition to starting the programs the usual way from the requester virtual machine, you can
independently start the resource manager. Recall that the first change we made to SENDBACK in this
section was to add the line

resource_ID = word(resource_ID 'GET',1)

before the Identify_Resource_Manager call. This line lets SENDBACK use the resource ID passed to it if
it is started as a result of an allocation request from PROCESS EXEC or, if it is started from the SERVR
console, supply the resource ID itself. Let's try the latter case now. From the SERVR user ID, enter

sendback

You should see:

sendback

Routine called: XCIDRM

Waiting for an event to occur. Enter "QUIT" to exit.

Figure 53. Results of Starting SENDBACK EXEC on the SERVR User ID

The server program will wait until an allocation request or until QUIT (or anything else, for that matter) is
entered from the server virtual machine's console. Now start the requester program, as usual, with

process getfile

The results should be the same as the last time we ran the program, except that the server does not end
when the requester program issues Deallocate (CMDEAL).

You can start the requester exec again, and its allocation request will be handled correctly by the server.
Try it a few times, and when you would like to terminate the resource manager, simply enter QUIT at the
console for the server virtual machine. You will then see:

QUIT

Routine called: XCWOE
 conversation_ID is
 event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 54. Results of Entering QUIT at the SERVR Console

The resource manager terminated ownership of the GET resource and ended. As already mentioned, you
can still start the programs from the requester virtual machine, but the server program will no longer
terminate by itself. Rather, it will continue waiting for an event to occur.

Security Considerations
When we talk about security in this book, we are referring to access security information for a
conversation. This conversation security information includes a user ID and possibly a password that

VM Extension Calls

132 z/VM: 7.3 CPI Communications User's Guide

can be sent to the remote LU (only the user ID becomes available to the remote application). This security
information verifies the identity of the partner allocating the conversation. The allocating program must
supply adequate security information, which is verified by the receiving LU.

SAA CPI Communications does not address the issue of conversation security except to establish a
default level of security known as SAME. This means that only the access security ID (user ID) that
was used to invoke the local program is sent to the remote LU and transaction program. In addition to
conversation security SAME, VM provides NONE and PGM.
SECURITY(NONE)

Indicates that the local program is not sending any access security information, nor is CP providing a
user ID on the allocation request. No user ID information is forwarded, so the remote program cannot
determine if the allocation request is authorized.

A public bulletin board would be an example of an application where access authorization is not
required.

SECURITY(SAME)
Indicates that the local program is sending neither a user ID nor a password on its allocation. In VM,
the user ID that invoked the local program is sent to the remote LU for validation. The remote LU uses
the $SERVER$ NAMES file to validate the authorization of the allocation request.

While SAA CPI Communications establishes SECURITY(SAME) as the default security level, it provides
no way to examine or change the security level.

SECURITY(SAME) should be used when a program requests services for another program. We will be
using SECURITY(SAME) when we discuss the routines that pertain to intermediate servers.

SECURITY(PGM)
Indicates that the local program is sending a user ID and password in its allocation request to access
a defined resource for a given conversation. When setting the access security information, any user ID
and password combination that is valid at the target LU or within the TSAF collection can be specified.
The remote LU is responsible for validating both the user ID and password prior to accepting the
allocation request. The $SERVER$ NAMES file contains a list of authorized user IDs for a given private
resource. Only the user ID is made available to the remote program.

Side information as defined by SAA CPI Communications does not include any reference to conversation
security. VM provides for additional tags in its CMS communications directory that allow the specification
of conversation security information. These tags are:
Tag

What Value the Tag Specifies
:security.

The security type of the conversation (NONE, SAME, or PGM).
:userid.

The access security user ID (used for security type PGM only).
:password.

The access security password (used for security type PGM only).

Conversation security information can be specified in other ways as well. The conversation security type
can be explicitly set in the program using the Set_Conversation_Security_Type (XCSCST) call. The security
user ID and password can be specified in two other ways: using Set calls in the program or by putting
an APPCPASS statement in the virtual machine's CP directory. We will discuss these Set calls in the next
three sections. See the following FYI box for more information on the APPCPASS statement.

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 133

FYI: Security Information and the APPCPASS Statement

If there are concerns about placing security information in a file when SECURITY(PGM) is used, the
values can be provided in an APPCPASS statement in the virtual machine's CP directory. An APPCPASS
statement entry does not take precedence over a value provided in either side information or on an
explicit Set call. Issuing one of the explicit Set calls does override, for the specified conversation,
any corresponding information supplied in side information and takes precedence over an APPCPASS
statement.

If the security type is SECURITY(PGM) and only a user ID has been provided, or neither a user ID
nor a password has been provided, either in side information or through an explicit Set call, then the
CP directory is checked for an APPCPASS statement to supply the missing values. When the security
type is SECURITY(PGM) and only a password is provided, a CM_PRODUCT_SPECIFIC_ERROR occurs at
allocation time.

The following table summarizes when the CP directory is checked for an APPCPASS statement to
supply missing values. The first two columns show what, if any, security information is provided in side
information or through an explicit Set call. The last column indicates the result.

 User ID Password Result
 ------- -------- ---
 yes no APPCPASS checked for password, based on user_ID
 yes yes APPCPASS not checked
 no no APPCPASS checked for user ID and password, based
 on LU_name
 no yes Product-specific error returned on Allocate (CMALLLC)

See z/VM: Connectivity for more information on the APPCPASS statement.

The Set_Conversation_Security_Type (XCSCST) Call
The Set_Conversation_Security_Type (XCSCST) call sets the conversation_security_type characteristic for
a given conversation, overriding the value assigned with the Initialize_Conversation (CMINIT) call.

Set_Conversation_Security_Type can be called only by the program that initiates a conversation (using
the Initialize_Conversation call). The call must be issued while in Initialize state, prior to the Allocate
(CMALLC) call for the specified conversation.

On VM, a security type can be specified in side information (a communications directory) with
the :security. tag. If a value is not provided in side information, the default security type of SAME is
assigned during conversation initialization. An application needs to issue Set_Conversation_Security_Type
only if a value was not set in side information and the default value is not desired.

The format for Set_Conversation_Security_Type is:

 CALL XCSCST(conversation_ID, input
 conversation_security_type, input
 return_code) output

Input Parameters
Use the conversation_ID parameter to specify the conversation identifier.

Use the conversation_security_type parameter to specify the kind of access security information to be
sent to the remote LU for validation. If present, the security information consists of either a user ID or a
user ID and a password. The conversation_security_type can be set to one of these values:
XC_SECURITY_NONE (0)

indicates that no access security information is being included in the allocation request for the
conversation.

XC_SECURITY_SAME (1)
indicates that the access user ID of the local program's virtual machine is being sent to the target LU
and transaction program.

VM Extension Calls

134 z/VM: 7.3 CPI Communications User's Guide

XC_SECURITY_PROGRAM (2)
indicates that a user ID and password are being supplied and sent in the allocation request for the
conversation. The target transaction program can access only the access security user ID.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that the Set_Conversation_Security_Type call executed successfully.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned or that the conversation_security_type is set
to an undefined value.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation in not in Initialize state.

Results of the Call
When return_code is anything other than CM_OK, the conversation_security_type is unchanged. This call
does not cause a state change.

Adding XCSCST to Our Requester Program
Let's set the security type for this conversation to XC_SECURITY_PROGRAM with the
Set_Conversation_Security_Type routine. We will add the call immediately following the
Initialize_Conversation call in the PROCESS EXEC.

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms
/*--*/
/* Set the conversation_security_type explicitly. */
/*--*/
conversation_security_type = XC_SECURITY_PROGRAM
'XCSCST conversation_ID conversation_security_type return_code'
say; say 'Routine called: XCSCST'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCSCST'
call TraceParms 'conversation_ID conversation_security_type',
 'return_code'
/*--*/
/* Set the partner_LU_name explicitly. */
/*--*/
partner_LU_name = '*USERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU_name',
 'partner_LU_name_length return_code'
say; say 'Routine called: CMSPLN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms
⋮

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 135

 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'sync_level') then
 say ' sync_level is' cm_sync_level.sync_level
 when (parameter = 'prepare_to_receive_type') then
 say ' prepare_to_receive_type is',
 cm_prepare_to_receive_type.prepare_to_receive_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_security_type') then
 say ' conversation_security_type is',
 xc_conversation_security_type.conversation_security_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

⋮

Recall that we can provide the user ID and password in side information by adding the :userid. and
the :password. tags. Alternatively, we can explicitly provide these values within the application by using
the Set_Conversation_Security_User_ID (XCSCSU) and Set_Conversation_Security_Password (XCSCSP)
calls.

The Set_Conversation_Security_User_ID (XCSCSU) Call
The Set_Conversation_Security_User_ID (XCSCSU) call sets the access security user ID for a given
conversation.

Set_Conversation_Security_User_ID can be called only by the program that initiates a conversation
(using the Initialize_Conversation (CMINIT) call). The call must be issued while in Initialize state,
prior to the Allocate (CMALLC) call for the specified conversation, and is only valid when the
conversation_security_type is XC_SECURITY_PROGRAM.

The format for Set_Conversation_Security_User_ID is:

 CALL XCSCSU(conversation_ID, input
 security_user_ID, input
 security_user_ID_length, input
 return_code) output

Input Parameters
Use the conversation_ID parameter to specify the conversation identifier.

Use the security_user_ID parameter to specify the access security user ID that will be sent to the remote
LU. This value will be available to the remote transaction program for validation.

Use the security_user_ID_length parameter to specify the length of the security user ID. This length value
can range from zero to eight. If the security_user_ID_length is zero, the security user ID is set to null and
the security_user_ID parameter is ignored.

VM Extension Calls

136 z/VM: 7.3 CPI Communications User's Guide

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that the Set_Conversation_Security_User_ID call executed successfully.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned or that the value specified in the
security_user_ID_length parameter is less than zero or greater than eight.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state or that the conversation_security_type is not
XC_SECURITY_PROGRAM.

Results of the Call
When return_code indicates CM_OK, the access security user ID specified on this routine overrides a
user ID in the communications directory and causes an access security user ID specified in a directory
APPCPASS statement to be ignored. If the security_user_ID_length parameter is specified as zero,
however, the APPCPASS directory statement is checked during allocation processing. This call does not
cause a state change.

Adding XCSCSU to Our Requester Program
While an APPCPASS directory statement may be the preferred location for security information in
most cases, in our example we will set the access security user ID in the program with the
Set_Conversation_Security_User_ID routine.

Let's add the call to the requester's PROCESS EXEC immediately after the
Set_Conversation_Security_Type (XCSCST) call. For our example, we will use the requester's user ID,
REQUESTR. You will need to substitute the user ID for your requester virtual machine if you used a
different name.

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/
/* Set the conversation_security_type explicitly. */
/*--*/
conversation_security_type = XC_SECURITY_PROGRAM
'XCSCST conversation_ID conversation_security_type return_code'
say; say 'Routine called: XCSCST'
if (return_code >= CM_OK) then call ErrorHandler 'XCSCST'
call TraceParms 'conversation_ID conversation_security_type',
 'return_code'
/*--*/
/* Set the security_user_ID explicitly. */
/*--*/
security_user_ID = 'REQUESTR'
security_user_ID_length = length(security_user_ID)
'XCSCSU conversation_ID security_user_ID security_user_ID_length',
 'return_code'
say; say 'Routine called: XCSCSU'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCSCSU'
call TraceParms 'conversation_ID security_user_ID',
 'security_user_ID_length return_code'
/*--*/
/* Set the partner_LU_name explicitly. */
/*--*/
partner_LU_name = '*USERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU_name',
 'partner_LU_name_length return_code'
say; say 'Routine called: CMSPLN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms
⋮

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 137

Before we can try the changes we have made, we still need to set the password value.

The Set_Conversation_Security_Password (XCSCSP) Call
The Set_Conversation_Security_Password (XCSCSP) call sets the access security password for a given
conversation. The Set_Conversation_Security_Password routine can be called only while in Initialize
state. This call is valid only when the conversation_security_type is XC_SECURITY_PROGRAM.

The format for Set_Conversation_Security_Password is:

 CALL XCSCSP(conversation_ID, input
 security_password, input
 security_password_length, input
 return_code) output

Input Parameters
Use the conversation_ID parameter to specify the conversation identifier.

Use the security_password parameter to specify the access security password that will be passed to the
remote LU for validation.

Use the security_password_length parameter to specify the length of the security password. This length
value can range from zero to eight. If the password length is zero, the password is set to null and the
security_password parameter is ignored.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that the Set_Conversation_Security_Password call executed successfully.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned or that the value specified for the
security_password_length is less than zero or greater than eight.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state or the conversation_security_type is not
XC_SECURITY_PROGRAM.

Results of the Call
When return_code indicates CM_OK, the access security password specified on this routine overrides
a password in the communications directory and causes an access security password specified in a
directory APPCPASS statement to be ignored. If the security_password_length parameter is specified as
zero, however, the APPCPASS directory statement is checked during allocation processing. This call does
not cause a state change.

Adding XCSCSP to Our Requester Program
Having used a Set_Conversation_Security_User_ID (XCSCSU) call to specify the security user ID, we now
need to provide the access security password, as well. Let's use the Set_Conversation_Security_Password
routine to set that password value in the program.

We will add the call to the requester's exec, following the Set_Conversation_Security_User_ID routine.
For the sample program shown in this book we used REQUESTR for the user ID, so we will supply the
REQUESTR password. You will need to substitute the password for your requester virtual machine.

/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

⋮
/*--*/

VM Extension Calls

138 z/VM: 7.3 CPI Communications User's Guide

/* Set the security_user_ID explicitly. */
/*--*/
security_user_ID = 'REQUESTR'
security_user_ID_length = length(security_user_ID)
'XCSCSU conversation_ID security_user_ID security_user_ID_length',
 'return_code'
say; say 'Routine called: XCSCSU'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCSCSU'
call TraceParms 'conversation_ID security_user_ID',
 'security_user_ID_length return_code'
/*--*/
/* Set the security_password explicitly. */
/*--*/
security_password = 'PASSWORD'
security_password_length = length(security_password)
'XCSCSP conversation_ID security_password security_password_length',
 'return_code'
say; say 'Routine called: XCSCSP'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCSCSP'
call TraceParms 'conversation_ID security_password',
 'security_password_length return_code'
/*--*/
/* Set the partner_LU_name explicitly. */
/*--*/
partner_LU_name = '*USERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU_name',
 'partner_LU_name_length return_code'
say; say 'Routine called: CMSPLN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms
⋮

We are finally ready to try out our program with the new security level. As always, start things off with

process getfile

from the requester. The resulting screen display for the requester will be:

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 139

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: XCSCST
 conversation_ID is 00000000
 conversation_security_type is XC_SECURITY_PROGRAM
 return_code is CM_OK

Routine called: XCSCSU
 conversation_ID is 00000000
 security_user_ID is REQUESTR
 security_user_ID_length is 8
 return_code is CM_OK

Routine called: XCSCSP
 conversation_ID is 00000000
 security_password is PASSWORD
 security_password_length is 8
 return_code is CM_OK

Routine called: CMSPLN

Routine called: CMSTPN

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 55. Results from PROCESS EXEC

The server will display these lines:

VM Extension Calls

140 z/VM: 7.3 CPI Communications User's Guide

Routine called: XCIDRM

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is
 event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP

Routine called: CMECT

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND

Routine called: CMSST

Routine called: CMSEND

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner

Waiting for an event to occur. Enter "QUIT" to exit.
QUIT

Routine called: XCWOE
 conversation_ID is
 event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 56. Results from SENDBACK EXEC

Intermediate Servers
It is time to turn our attention to intermediate servers. An intermediate server is a program that handles
communications requests to a resource manager program on behalf of a user program. The user program
can be referred to as a client of the intermediate server. In our example, the requester PROCESS EXEC
allocates a conversation to the server SENDBACK EXEC. Now, if SENDBACK EXEC does not process the
file request, but instead allocates a conversation to another program that will actually handle the request,
SENDBACK EXEC would take on the role of an intermediate server and PROCESS EXEC would be a client
program. This is how the programs we are writing will work, but these are rather simple programs whose
purpose is to illustrate how to use the calls.

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 141

A more realistic scenario would be a server that, while performing some task for a user, needs to access
a resource that is controlled by another resource manager. Security considerations may dictate that the
server handling user requests not be authorized to access any other resources on its own. Thus, the
server would need to be able to pass along the user ID of the requester for whom it is doing the work so
the resource manager controlling the needed resource could determine who was requesting a particular
resource.

Another use for an intermediate server in VM might be to control access to a group of resources. This
intermediate server could be used to do security validation and to direct user requests to appropriate
server virtual machines.

Now we will have three communications programs. The intermediate server needs to be a bit more
sophisticated than either of the other two programs. In fact, the requester and the new (final) server will
hardly change from the previous section. The following pseudocode summarizes how the intermediate
server program will be structured.

Table 8. Overview of Sample Intermediate Server Program

SERVR User ID

 Identify_Resource_Manager
 do forever
 Wait_on_Event
 select on event type
 when allocation request
 Accept_Conversation (ConvA)
 if conversation type is basic
 Send_Error
 else
 Initialize_Conversation
 Allocate (ConvB)
 when information input
 -Receive loop-
 Receive (on conversation in Receive state)
 if confirmation requested
 Confirmed
 if complete data received
 Send_Data (on conversation in Send state)
 if send control received (on conversation in Receive state)
 Prepare_To_Receive (on conversation in Send state)
 -end Receive loop-
 when console input
 leave

 end select
 end
 Terminate_Resource_Manager

Setting Up the SERVR2 Virtual Machine
At this point, we are ready to begin using SERVR2, our third user ID. SERVR2 is going to take on the role of
the resource manager that has been performed by the SERVR virtual machine. You will need copies of the
following SERVR files on SERVR2:

• SENDBACK EXEC (rename to SENDSERV)
• TEST FILE
• PROFILE EXEC

VM Extension Calls

142 z/VM: 7.3 CPI Communications User's Guide

Let's rename the SENDBACK EXEC on SERVR2 to be SENDSERV EXEC. Modify the lines in TEST FILE to
indicate that they reside on the final server. The reason we want to copy the PROFILE EXEC over to the
new user ID is that it contains some important lines that we added so our server virtual machine could
function properly. If you do not want to replace an existing PROFILE EXEC file on the SERVR2 user ID,
simply copy the three SET commands we added in Chapter 2, “Starter Set CPI Communications Calls,” on
page 7.

On SERVR2, create a $SERVER$ NAMES file containing these lines (and substituting your user ID, if
appropriate):

 :nick.GET :list.SERVR
 :module.SENDSERV

Although we are using GET for the nickname in both servers, it is not required that the names be the
same. It is just simpler for our purposes in this book.

We will want the resource manager SENDSERV EXEC on the SERVR2 user ID to terminate when
the conversation that started it is deallocated. We previously commented out the section of code
that issues a LEAVE statement if return_code is CM_DEALLOCATED_NORMAL or status_received is
CM_CONFIRM_DEALLOC_RECEIVED. Let's remove the comments from that part of the program to restore
that function. Note that any lines of code that need to be removed are marked as follows: delete .

/*==*/
/* SENDSERV EXEC - Sample server application. */
/*==*/

⋮
/*--*/
/* Start continuous Wait_on_Event loop. */
/* Any console input will end the loop. */
/*--*/
requested_file = ''
do forever
 say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'
 /*--*/
 /* Issue Wait_on_Event to wait for the next event to occur. */
 /*--*/
 'XCWOE resource_ID conversation_ID event_type event_info_length',
 'event_buffer return_code'
 say; say 'Routine called: XCWOE'
 if (return_code ¬= CM_OK) then call ErrorHandler 'XCWOE'
 call TraceParms 'conversation_ID event_type'
 /*--*/
 /* Choose next action based on type of event. */
 /*--*/
 select
 when (event_type = XC_ALLOCATION_REQUEST) then
 call AcceptConv
 when (event_type = XC_INFORMATION_INPUT) then
 call ReceiveInfo
 when (event_type = XC_CONSOLE_INPUT) then
 /*--*/
 /* Leave the Wait_on_Event loop. */
 /*--*/
 leave
 otherwise
 do
 say
 say '* ERROR: Wait_on_Event reported event_type',
 xc_event_type.event_type
 end
 end /* select */
 /*--*/
 /* When notice of partner's deallocation is received, leave the */
 /* Wait_on_Event loop. */
 /*--*/
 delete /* Commenting out next three lines …
 if (return_code = CM_DEALLOCATED_NORMAL) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 leave
 delete … */
 end /* do forever */

GetOut:

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 143

 call TerminateRes
 exit

/*-------------------------- Subroutines ---------------------------*/

⋮

That completes the set up required for the SENDSERV EXEC to handle file requests on the resource
manager virtual machine. Now, let's turn to the SERVR user ID and the program that will become the
intermediate server.

Converting the SERVR Virtual Machine into an Intermediate Server
With a little modification, our existing private resource manager program can be turned into an
intermediate server program. The intermediate server will be dealing with two distinct conversations.
One conversation, ConvA, will be between the requester PROCESS EXEC and the intermediate server
SENDBACK EXEC, and the other, ConvB, will be between SENDBACK EXEC and the new resource manager,
SERVR2's SENDSERV EXEC, as shown in Figure 57 on page 144.

Figure 57. SENDBACK Must Maintain Two Different Conversations

The program, therefore, will need to keep track of two conversation IDs and decide which conversation ID
should be used on a particular CPI Communications call.

A summary of the processing to be performed by the SERVR virtual machine follows.

The intermediate server receives an allocation request from the requester program PROCESS EXEC. After
accepting the conversation, SENDBACK EXEC can start another conversation with the resource manager
program SENDSERV. We will add a new StartConv subroutine to perform that function. In addition, we will
include conversation_ID on the TraceParms subroutine call (for the Initialize_Conversation (CMINIT) call)
in StartConv to see what value gets assigned to the conversation being allocated. Similarly, we will add
conversation_ID back to the TraceParms call made following the Accept_Conversation call.

Within the ReceiveInfo loop, we will add calls to a new subroutine EndConv that deallocates the
conversation with the resource manager when the intermediate server receives notification that the
requester program has issued Deallocate (CMDEAL).

Our intermediate server will receive two types of data, the file request from the user program and the file
contents from the resource manager. In both cases, the intermediate server needs to forward the data it
receives on one conversation to its partner on the other conversation.

When complete data is received, the SendInfo subroutine is called. At that time, the conversation_ID
variable still identifies the conversation on which data was last received. So, the first step in the SendInfo
subroutine is to set con_ID, which is the variable that will now be used to specify the conversation ID on
the Send_Data call, to the value of the other conversation, as shown in Figure 58 on page 145. In that
way, the program can forward the data to its other partner.

VM Extension Calls

144 z/VM: 7.3 CPI Communications User's Guide

Figure 58. SENDBACK Assigns conversation_ID=ConvA and con_ID=ConvB

As long as one partner is sending data, the intermediate server will need to remain in Receive state for
the conversation with that partner and remain in Send state for the other conversation. This will allow the
intermediate server to pass the information it gets on one conversation along to the partner on the other
conversation.

We will add a new subroutine named PrepReceive, which will be called when send control notification
is received. We will code our programs in such a way that the intermediate server's entering Send
state on one of its conversations indicates that all the data has been received from the partner that
transferred send control. The intermediate server, which forwards data as it receives it, is now finished
forwarding data on its other conversation and can transfer send control to the partner on that other
conversation. This state change is accomplished with a call to the Prepare_To_Receive subroutine on that
other conversation. We will display only the conversation_ID on the call to TraceParms.

Because both complete data and send control may be received at the same time, the program needs to
protect the conversation_ID used on the last Receive call. Hence, the reason for the new variable con_ID
being used in both SendInfo and PrepReceive subroutines.

In the ReceiveInfo subroutine, when the data_received parameter is set to a value other than
CM_NO_DATA_RECEIVED, we will want to append the contents of the Receive (CMRCV) buffer to the
send_data variable to handle partial records. The send_data contents will be used later when the data is
forwarded to the other partner. We know that for this application, data will be sent to the intermediate
server by only one partner at a time, because the other partner is in Receive state receiving the forwarded
data from the intermediate server. The send_data variable is cleared before the Wait_on_Event loop is
entered and after a complete data record is forwarded to the other partner.

To make it a little easier to sort out the conversation on which the program is sending data, we will update
the TraceParms call for Send_Data to display the conversation_ID used.

After a normal termination is received by the intermediate server, the conversation between the file
requester and the intermediate server is over. We will want to add a Deallocate call to deallocate the
conversation between the intermediate server and the resource manager. Again, we will only show the
conversation_ID with the call to TraceParms for the new Deallocate call.

Finally, we must update the ErrorHandler subroutine so that it will attempt to abnormally deallocate both
conversations if an error is detected. Note that any lines of code that need to be removed are marked as
follows: delete .

/*==*/
/* SENDBACK EXEC - Sample intermediate server application. */
/*==*/

⋮
/*--*/
/* Start continuous Wait_on_Event loop. */
/* Any console input will end the loop. */
/*--*/
send_data = ''
do forever
 say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 145

 /*--*/
 /* Issue Wait_on_Event to wait for the next event to occur. */
 /*--*/
 'XCWOE resource_ID conversation_ID event_type event_info_length',
 'event_buffer return_code'
 say; say 'Routine called: XCWOE'
 if (return_code ¬= CM_OK) then call ErrorHandler 'XCWOE'
 call TraceParms 'conversation_ID event_type'
 /*--*/
 /* Choose next action based on type of event. */
 /*--*/
 select
 when (event_type = XC_ALLOCATION_REQUEST) then
 do
 call AcceptConv
 call StartConv
 end
 when (event_type = XC_INFORMATION_INPUT) then
 call ReceiveInfo
 when (event_type = XC_CONSOLE_INPUT) then
 /*--*/
 /* Leave the Wait_on_Event loop. */
 /*--*/
 leave
 otherwise
 do
 say
 say '* ERROR: Wait_on_Event reported event_type',
 xc_event_type.event_type
 end
 end /* select */
 /*--*/
 /* When notice of partner's deallocation is received, leave the */
 /* Wait_on_Event loop. */
 /*--*/
 /* Commenting out next three lines …
 if (return_code = CM_DEALLOCATED_NORMAL) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 leave
 … */
end /* do forever */

GetOut:
 call TerminateRes
 exit

/*-------------------------- Subroutines ---------------------------*/

AcceptConv:
/*--*/
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID1. */
/*--*/
'CMACCP conversation_ID return_code'
save_con_ID1 = conversation_ID
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID'
/*--*/
/* Extract conversation_type to ensure the conversation is mapped. */
/*--*/
'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms
/*--*/
/* If the conversation is basic, deallocate abnormally. */
/*--*/
if (conversation_type = CM_BASIC_CONVERSATION) then
 do
 say; say '* ERROR: Accepting and deallocating a basic',
 'conversation'
 /*--*/
 /* Call Send_Error to notify partner that error was detected. */
 /* Since the program is going to exit, do not check the */
 /* Send_Error results for an error. */
 /*--*/
 'CMSERR conversation_ID request_to_send_received return_code'
 say; say 'Routine called: CMSERR'
 if (return_code = CM_OK) then
 call TraceParms
 call AbnormalEnd

VM Extension Calls

146 z/VM: 7.3 CPI Communications User's Guide

 signal GetOut
 end

return

StartConv:
/*--*/
/* StartConv will establish a conversation with the resource */
/* manager on behalf of the file requester. */
/* First, initialize the conversation to the resource manager. */
/*--*/
sym_dest_name = 'GETFILE'
'CMINIT conversation_ID sym_dest_name return_code'
save_con_ID2 = conversation_ID
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID'
/*--*/
/* Allocate conversation. Conversation_ID still equals save_con_ID2.*/
/*--*/
'CMALLC conversation_ID return_code'
say; say 'Routine called: CMALLC'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMALLC'

return

ReceiveInfo:
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_length = event_info_length
do until (data_received = CM_COMPLETE_DATA_RECEIVED) |,
 (data_received = CM_NO_DATA_RECEIVED)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 send_data = send_data || receive_buffer
 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms
 end
 if (data_received = CM_COMPLETE_DATA_RECEIVED) then
 /*--*/
 /* Forward data to partner on the other conversation. */
 /*--*/
 call SendInfo
 if (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) then
 /*--*/
 /* The server should only get send control when one */
 /* partner has completed sending data. */
 /*--*/
 call PrepReceive
 else
 if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 say; say 'Conversation deallocated by requester'

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 147

 delete requested_file = ''
 call EndConv
 end
 end
 when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
 do
 call TraceParms 'data_received status_received'
 say; say 'Conversation deallocated by requester'
 delete requested_file = ''
 call EndConv
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

return

SendInfo:
/*--*/
/* Send data received on one conversation to partner on other */
/* conversation. The send_data variable contains either the name */
/* of the requested file or a line from the file, and it was set in */
/* ReceiveInfo. Conversation_ID was last set on CMRCV call. */
/* Reset it to the ID of the other conversation. */
/*--*/
if (conversation_ID = save_con_ID1) then
 con_ID = save_con_ID2
else
 con_ID = save_con_ID1
 delete address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
 delete do index = 1 to line.0
 delete if (index = line.0) then
 delete /*--*/
 delete /* Reset the send_type conversation characteristic just */
 delete /* before the final Send_Data call. */
 delete /*--*/
 delete do
 delete send_type = CM_SEND_AND_PREP_TO_RECEIVE
 delete 'CMSST conversation_ID send_type return_code'
 delete say; say 'Routine called: CMSST'
 delete if (return_code ¬= CM_OK) then call ErrorHandler 'CMSST'
 delete call TraceParms 'conversation_ID send_type return_code'
 delete end
buffer = send_data
send_length = length(buffer)
'CMSEND con_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms 'con_ID'
send_data = '' /* reset received data variable to nulls */
 delete end

return

PrepReceive:
/*--*/
/* When send control is received on one conversation, the */
/* intermediate server is ready to transfer send control to */
/* partner on the other conversation. */
/*--*/
if (conversation_ID = save_con_ID1) then
 con_ID = save_con_ID2
else
 con_ID = save_con_ID1
'CMPTR con_ID return_code'
say; say 'Routine called: CMPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms 'con_ID'

return

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)

VM Extension Calls

148 z/VM: 7.3 CPI Communications User's Guide

 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'send_type') then
 say ' send_type is' cm_send_type.send_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_type') then
 say ' conversation_type is',
 cm_conversation_type.conversation_type
 when (parameter = 'resource_manager_type') then
 say ' resource_manager_type is',
 xc_resource_manager_type.resource_manager_type
 when (parameter = 'service_mode') then
 say ' service_mode is' xc_service_mode.service_mode
 when (parameter = 'security_level_flag') then
 say ' security_level_flag is',
 xc_security_level_flag.security_level_flag
 when (parameter = 'event_type') then
 say ' event_type is' xc_event_type.event_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

EndConv:
/*--*/
/* Deallocate the conversation with the resource manager. */
/*--*/
conversation_ID = save_con_ID2
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms 'conversation_ID'

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
call AbnormalEnd
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 149

signal GetOut

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/* Use conversation IDs in save_con_ID1 and save_con_ID2. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
conversation_ID = save_con_ID1
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms
 end
conversation_ID = save_con_ID2
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 end

return

TerminateRes:
/*--*/
/* TerminateRes will terminate ownership of the specified resource. */
/* Use resource name stored in save_res_ID at start of program. */
/*--*/
resource_ID = save_res_ID
'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCTRRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 end
else
 call TraceParms

return

Before we run our programs, we must add location information about the partner program to the
intermediate server's side information. Otherwise, when SENDBACK EXEC tries to allocate a conversation
to SENDSERV EXEC in the SERVR2 virtual machine, it will get a CM_TPN_NOT_RECOGNIZED return_code.
Create a UCOMDIR FILE on SERVR with the following entry (inserting your user ID, if different):

 :nick.GETFILE :luname.*USERID SERVR2
 :tpn.GET

After filing the UCOMDIR FILE, remember to issue

set comdir reload

or

set comdir file user ucomdir names

to put the new information into effect.

To test out the intermediate server, just issue

process getfile

VM Extension Calls

150 z/VM: 7.3 CPI Communications User's Guide

from the REQUESTR user ID, with no confirmation processing.

The information displayed at the REQUESTR virtual machine will be identical to what we have seen in the
past. The terminal display is:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: XCSCST

Routine called: XCSCSU

Routine called: XCSCSP

Routine called: CMSPLN

Routine called: CMSTPN

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 59. Results from PROCESS EXEC

At the intermediate server virtual machine SERVR, output from both of its conversations will be displayed
and should look like:

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 151

Routine called: XCIDRM

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is
 event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP
 conversation_ID is 00000000

Routine called: CMECT

Routine called: CMINIT
 conversation_ID is 00000001

Routine called: CMALLC

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMSEND
 con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMPTR
 con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000001
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Figure 60. Results from Intermediate Server's SENDBACK EXEC (Part 1 of 2)

VM Extension Calls

152 z/VM: 7.3 CPI Communications User's Guide

Routine called: CMSEND
 con_ID is 00000000
Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000001
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND
 con_ID is 00000000

Routine called: CMPTR
 con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by requester

Routine called: CMDEAL
 conversation_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.
QUIT

Routine called: XCWOE
 conversation_ID is
 event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 61. Results from Intermediate Server's SENDBACK EXEC (Part 2 of 2)

The SERVR2 display will be essentially identical to the results we have seen for the resource manager in
the past. The results at the SERVR2 user ID are:

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 153

Routine called: XCIDRM

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is
 event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP

Routine called: CMECT

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND

Routine called: CMSST

Routine called: CMSEND

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner

Routine called: XCTRRM
Ready;

Figure 62. Results from SERV2's SENDSERV EXEC

Security Considerations for Intermediate Servers
Now that we have modified a server program to act as an intermediate server, let's turn our attention
back to the topic of security. Before we created the intermediate server, the requester program
was communicating directly with the resource manager. If the conversation_security_type was either
XC_SECURITY_PROGRAM or the default XC_SECURITY_SAME, the resource manager application was sent
an access security user ID.

An application can use this access security user ID to determine whether the requester program is
authorized to use a particular resource. For example, the $SERVER$ NAMES file entry for a private
resource manager may include an asterisk on the :list. tag, meaning that any application is authorized
to connect to the resource manager. The resource manager, however, may control some resources, such
as restricted files, that only certain users are allowed to access. When a request is received for one of
those resources, the resource manager can use the Extract_Conversation_Security_User_ID (XCECSU) call
to determine if the requester is authorized to access it.

VM Extension Calls

154 z/VM: 7.3 CPI Communications User's Guide

What happens to the access security user ID when an intermediate server is used? If the intermediate
server is considered to be a TP-model application, then the user ID of the virtual machine running the
requester program will be sent to the resource manager, as shown in Figure 63 on page 155.

Figure 63. Requester's User ID Is Sent to VMUSR3 with TP-Model Application B's Allocate

If the intermediate server is not a TP-model application (like in our example program, because we call
Identify_Resource_Manager), the access security user ID sent to the resource manager is the user ID of
the intermediate server, as shown in Figure 64 on page 155.

Figure 64. Access Security User ID of Intermediate Server (VMUSR2) Sent to VMUSR3

If the server controlling the resource needs the access security user ID, the non-TP-model intermediate
server can issue a Set_Client_Security_User_ID (XCSCUI) call so that the user ID of the requester
program's virtual machine is sent to the resource manager. That call requires that the intermediate
server's virtual machine have authorization to issue DIAGNOSE code X'D4'. This is typically Class B
privilege, unless the default privilege classes have been changed.

We will look at Set_Client_Security_User_ID in a moment. First, though, let's discuss the call that can
provide an intermediate server application with the requester program's access security user ID.

The Extract_Conversation_Security_User_ID (XCECSU) Call
The Extract_Conversation_Security_User_ID (XCECSU) call is used by a program to extract the access
security user ID associated with a given conversation.

A security user ID will be returned only when the conversation_security_type for the conversation is
set to XC_SECURITY_SAME or XC_SECURITY_PROGRAM. The security_user_ID parameter will contain
nulls (X'00') if Extract_Conversation_Security_User_ID is issued when the conversation_security_type is
XC_SECURITY_NONE.

A call to this routine does not change the conversation security user ID for the specified conversation.

The format for Extract_Conversation_Security_User_ID is:

 CALL XCSCSU(conversation_ID, input
 security_user_ID, output
 security_user_ID_length, output
 return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameters
The security_user_ID parameter is a variable for returning the access security user ID of the conversation
partner. If the return_code is not set to CM_OK, the security_user_ID will not contain a meaningful value.

The security_user_ID_length parameter returns the length of the security user ID.

Possible values for the return_code parameter are:

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 155

CM_OK (0)
indicates that the Extract_Conversation_Security_User_ID (XCECSU) call executed successfully.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.

Results of the Call
When return_code indicates CM_OK the access security user ID associated with the conversation is
returned. This call does not cause a state change.

Adding XCECSU to Our Intermediate Server Program
Let's add the Extract_Conversation_Security_User_ID call to the intermediate server as the first step in
sending the user program's user ID (REQUESTR) to the resource manager (SERVR2). We will include the
new call at the end of the AcceptConv subroutine. Only the security_user_ID will be passed to TraceParms.

The changes to the SENDBACK EXEC on the SERVR user ID are:

/*==*/
/* SENDBACK EXEC - Sample intermediate server application. */
/*==*/

⋮

/*-------------------------- Subroutines ---------------------------*/

AcceptConv:
/*--*/
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID1. */
/*--*/
'CMACCP conversation_ID return_code'
save_con_ID1 = conversation_ID
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID'
/*--*/
/* Extract conversation_type to ensure the conversation is mapped. */
/*--*/
'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms
/*--*/
/* If the conversation is basic, deallocate abnormally. */
/*--*/
if (conversation_type = CM_BASIC_CONVERSATION) then
 do
 say; say '* ERROR: Accepting and deallocating a basic',
 'conversation'
 /*--*/
 /* Call Send_Error to notify partner that error was detected. */
 /* Since the program is going to exit, do not check the */
 /* Send_Error results for an error. */
 /*--*/
 'CMSERR conversation_ID request_to_send_received return_code'
 say; say 'Routine called: CMSERR'
 if (return_code = CM_OK) then
 call TraceParms
 call AbnormalEnd
 signal GetOut
 end
/*--*/
/* Extract the access security user ID for the conversation. */
/*--*/
'XCECSU conversation_ID security_user_ID security_user_ID_length',
 'return_code'
say; say 'Routine called: XCECSU'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCECSU'
call TraceParms 'security_user_ID'

return

StartConv:

VM Extension Calls

156 z/VM: 7.3 CPI Communications User's Guide

/*--*/
/* StartConv will establish a conversation with the resource */
/* manager on behalf of the file requester. */
/* First, initialize the conversation to the resource manager. */
/*--*/
sym_dest_name = 'GETFILE'
'CMINIT conversation_ID sym_dest_name return_code'
save_con_ID2 = conversation_ID
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID'
/*--*/
/* Allocate conversation. Conversation_ID still equals save_con_ID2.*/
/*--*/
'CMALLC conversation_ID return_code'
say; say 'Routine called: CMALLC'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms

return

⋮

Adding XCECSU to Our Resource Manager Program
By adding the Extract_Conversation_Security_User_ID call to the resource manager as well, we can
observe what access security user ID is being sent to it. The application could use the value returned from
that call to determine if the conversation should be continued for that particular user ID.

Let's insert the call in the same location, at the end of the AcceptConv subroutine. The SENDSERV EXEC
update for SERVR2 is:

/*==*/
/* SENDSERV EXEC - Sample server application. */
/*==*/

⋮

/*-------------------------- Subroutines ---------------------------*/

AcceptConv:
/*--*/
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID. */
/*--*/
'CMACCP conversation_ID return_code'
save_con_ID = conversation_ID
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms
/*--*/
/* Extract conversation_type to ensure the conversation is mapped. */
/*--*/
'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms
/*--*/
/* If the conversation is basic, deallocate abnormally. */
/*--*/
if (conversation_type = CM_BASIC_CONVERSATION) then
 do
 say; say '* ERROR: Accepting and deallocating a basic',
 'conversation'
 /*--*/
 /* Call Send_Error to notify partner that error was detected. */
 /* Since the program is going to exit, do not check the */
 /* Send_Error results for an error. */
 /*--*/
 'CMSERR conversation_ID request_to_send_received return_code'
 say; say 'Routine called: CMSERR'
 if (return_code = CM_OK) then
 call TraceParms
 call AbnormalEnd
 signal GetOut
 end
/*--*/
/* Extract the access security user ID for the conversation. */

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 157

/*--*/
'XCECSU conversation_ID security_user_ID security_user_ID_length',
 'return_code'
say; say 'Routine called: XCECSU'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCECSU'
call TraceParms 'security_user_ID'

return

ReceiveInfo:
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_length = event_info_length
⋮

Again, we will try out the results by entering

process getfile

from the REQUESTR command line, and no confirmation processing will be requested.

The PROCESS EXEC output on the REQUESTR user ID is unchanged:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: XCSCST

Routine called: XCSCSU

Routine called: XCSCSP

Routine called: CMSPLN

Routine called: CMSTPN

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 65. Results from Requester's PROCESS EXEC

On the SERVR virtual machine, the intermediate server results are:

VM Extension Calls

158 z/VM: 7.3 CPI Communications User's Guide

Routine called: XCIDRM

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is
 event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP
 conversation_ID is 00000000

Routine called: CMECT

Routine called: XCECSU
 security_user_ID is REQUESTR

Routine called: CMINIT
 conversation_ID is 00000001

Routine called: CMALLC

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMSEND
 con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMPTR
 con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000001
 event_type is XC_INFORMATION_INPUT

Figure 66. Results from Intermediate Server's SENDBACK EXEC (Part 1 of 2)

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 159

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMSEND
 con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000001
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND
 con_ID is 00000000

Routine called: CMPTR
 con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by requester

Routine called: CMDEAL
 conversation_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.
QUIT

Routine called: XCWOE
 conversation_ID is
 event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 67. Results from Intermediate Server's SENDBACK EXEC (Part 2 of 2)

Lastly, displayed at the SERVR2 user ID is:

VM Extension Calls

160 z/VM: 7.3 CPI Communications User's Guide

Routine called: XCIDRM

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is
 event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP

Routine called: CMECT

Routine called: XCECSU
 security_user_ID is SERVR

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND

Routine called: CMSST

Routine called: CMSEND

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner

Routine called: XCTRRM
Ready;

Figure 68. Results from SERVR2's SENDSERV EXEC

Notice that the access security user ID extracted by the SERVR's SENDBACK EXEC is REQUESTR, and the
value extracted by the SERVR2's SENDSERV EXEC is SERVR. Thus, SENDSERV has no way of knowing that
the request originated from the REQUESTR virtual machine.

Because the intermediate server is simply passing a request for data along to the resource manager, it
may be desirable to let the resource manager know the value of the access security user ID used for the
initial conversation from the file requester to the intermediate server. The next routine provides a way to
forward an access security user ID, provided the virtual machine has the required privilege class.

The Set_Client_Security_User_ID (XCSCUI) Call
The Set_Client_Security_User_ID (XCSCUI) call is used by an intermediate server to set an access security
user ID value for a given conversation based on an incoming conversation's access security user ID. This

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 161

user ID is then presented to the target when the intermediate server allocates a conversation on behalf of
the client application (the requester program).

An intermediate server may have incoming conversations from various virtual machines.
Set_Client_Security_User_ID (XCSCUI) can be used to specify a particular user ID that will be presented
to the target resource manager. In this way, the target resource manager virtual machine knows the origin
of the request.

An intermediate server can call Set_Client_Security_User_ID (XCSCUI) only when the following conditions
are true:

• The program is not a TP-model application.
• The specified conversation (to be allocated to the target resource manager) has a

conversation_security_type characteristic equal to XC_SECURITY_SAME.
• An access security user ID is available for the incoming conversation with the client. The access security

user ID for that conversation should be retrieved by calling the Extract_Conversation_Security_User_ID
(XCECSU) routine.

• The intermediate server virtual machine is authorized to issue a DIAGNOSE code X'D4' (for defining
an alternate user ID). This authorization typically requires privilege class B, unless the default
privilege classes have been altered. If not authorized, the Allocate (CMALLC) call will complete with
a CM_PRODUCT_SPECIFIC_ERROR return code.

This call can be issued only when the specified conversation is in Initialize state, prior to the Allocate call.

The format for Set_Client_Security_User_ID is:

 CALL XCSCUI(conversation_ID, input
 client_user_ID, input
 return_code) output

Input Parameters
There are two input parameters. Specify the identifier for the outgoing conversation in the
conversation_ID parameter.

Use the client_user_ID parameter to specify the user ID that was obtained using
Extract_Conversation_Security_User_ID.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)

indicates that Set_Client_Security_User_ID executed successfully.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned or that the conversation_security_type of
the outgoing conversation is not XC_SECURITY_SAME.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation in not in Initialize state or that the program is a TP-model application,
which makes this call invalid.

Results of the Call
Upon successful completion, the security_user_ID for the specified conversation is set to the value
specified on the call. This call does not cause a state change.

If the intermediate server virtual machine is not authorized to issue DIAGNOSE code X'D4', an allocation
error results.

VM Extension Calls

162 z/VM: 7.3 CPI Communications User's Guide

Adding XCSCUI to Our Intermediate Server Program
Providing your intermediate server virtual machine is authorized to issue DIAGNOSE code X'D4', you can
add the Set_Client_Security_User_ID call to the intermediate server application. By adding that call, we
can have the access security user ID associated with the requester's conversation sent to the resource
manager. Only the client_user_ID will be passed for TraceParms to display.

We will add the call in the StartConv subroutine, just after the Initialize_Conversation (CMINIT) call. The
SERVR file SENDBACK EXEC is updated, as follows:

/*==*/
/* SENDBACK EXEC - Sample intermediate server application. */
/*==*/

⋮

StartConv:
/*--*/
/* StartConv will establish a conversation with the resource */
/* manager on behalf of the file requester. */
/* First, initialize the conversation to the resource manager. */
/*--*/
sym_dest_name = 'GETFILE'
'CMINIT conversation_ID sym_dest_name return_code'
save_con_ID2 = conversation_ID
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID'
/*--*/
/* Pass the requesting program's access user ID to resource manager.*/
/*--*/
client_user_ID = security_user_ID
'XCSCUI conversation_ID client_user_ID return_code'
say; say 'Routine called: XCSCUI'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCSCUI'
call TraceParms 'client_user_ID'
/*--*/
/* Allocate conversation. Conversation_ID still equals save_con_ID2.*/
/*--*/
'CMALLC conversation_ID return_code'
say; say 'Routine called: CMALLC'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms

return

⋮

After entering

process getfile

at the REQUESTR user ID, we will rather quickly encounter a problem. At the resource manager's virtual
machine, SERVR2, a familiar error message appears (with the corresponding time):

 hh:mm:ss * MSG FROM SERVR2 : DMSIUH2027E Connection request on path 0
 is severed for reason = 7

Figure 69. Results at SERVR2's Console

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 163

FYI: If SERVR Received a Product Specific Error Instead

If the following message was appended to the CPICOMM LOGDATA file on the SERVR user ID
(intermediate server):

CMALLC_PRODUCT_SPECIFIC_ERROR: Unable to set alternate user ID

the VM system you are working on may have an external security manager program such as Resource
Access Control Facility/Virtual Machine (RACF*/VM) installed. Such a program may require a special
command to be entered before it will allow an alternate user ID to be set. You will need to check the
documentation for that external security manager to determine how to obtain the necessary authority
for the intermediate server.

This sever message indicates that some validation attempt has failed and suggests that there may be a
missing entry in the $SERVER$ NAMES file. Apparently, the Set_Client_Security_User_ID call really did
make it appear to the resource manager that the file request was coming directly from the REQUESTR
user ID. However, only the intermediate server, SERVR, is authorized in the $SERVER$ NAMES file to
connect to the resource manager SENDSERV EXEC, so the conversation was deallocated.

A quick update to the $SERVER$ NAMES file on the SERVR2 virtual machine will clear up this problem.
Let's simply add REQUESTR to the list of authorized users of the resource manager:

 :nick.GET :list.SERVR REQUESTR
 :module.SENDSERV

Starting our programs again will yield these results at the REQUESTR terminal:

VM Extension Calls

164 z/VM: 7.3 CPI Communications User's Guide

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: XCSCST

Routine called: XCSCSU

Routine called: XCSCSP

Routine called: CMSPLN

Routine called: CMSTPN

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 70. Results from Requester's PROCESS EXEC

The SENDBACK EXEC on the SERVR virtual machine displays the following output:

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 165

Routine called: XCIDRM

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is
 event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP
 conversation_ID is 00000000

Routine called: CMECT

Routine called: XCECSU
 security_user_ID is REQUESTR

Routine called: CMINIT
 conversation_ID is 00000001

Routine called: XCSCUI
 client_user_ID is REQUESTR

Routine called: CMALLC

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMSEND
 con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMPTR
 con_ID is 00000001

Figure 71. Results from Server's SENDBACK EXEC (Part 1 of 2)

VM Extension Calls

166 z/VM: 7.3 CPI Communications User's Guide

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000001
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Routine called: CMSEND
 con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000001
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND
 con_ID is 00000000

Routine called: CMPTR
 con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by requester

Routine called: CMDEAL
 conversation_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.
QUIT

Routine called: XCWOE
 conversation_ID is
 event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 72. Results from Server's SENDBACK EXEC (Part 2 of 2)

And, final results from the resource manager virtual machine, SERVR2, are:

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 167

Routine called: XCIDRM

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is
 event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP

Routine called: CMECT

Routine called: XCECSU
 security_user_ID is REQUESTR

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_COMPLETE_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_SEND_RECEIVED

Routine called: CMSEND

Routine called: CMSST

Routine called: CMSEND

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
 conversation_ID is 00000000
 event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
 data_received is CM_NO_DATA_RECEIVED
 status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner

Routine called: XCTRRM
Ready;

Figure 73. Results from SERVR2's SENDSERV EXEC

Now the LU where SENDSERV resides is able to validate the original requester against the entries in the
SERVR2 user ID's $SERVER$ NAMES file to ensure that only authorized users are allowed to access the
resources controlled by SENDSERV.

Overview of Additional VM Extension Calls
None of the routines covered in this section are used in any of our sample programs. They are included
here to give you a brief introduction to the other extension routines available to programmers in the VM
environment.

VM Extension Calls

168 z/VM: 7.3 CPI Communications User's Guide

Extract_Conversation_LUWID (XCECL) Call
The Extract_Conversation_LUWID (XCECL) call extracts the logical unit of work ID (LUWID) associated
with the specified protected conversation. The LUWID can be used to identify the most recent
synchronization point. This routine can be called only after an Allocate (CMALLC) or Accept_Conversation
(CMACCP) call that establishes a protected (sync_level value of CM_SYNC_POINT) conversation.

Extract_Conversation_Workunitid (XCECWU) Call
The Extract_Conversation_Workunitid (XCECWU) call extracts the CMS work unit ID associated with the
specified conversation. Extract_Conversation_Workunitid is especially useful for resource managers that
handle multiple requests for multiple resources.

The output from this routine can be used as input to specify the work unit ID on such CSL routines as Push
Workunitid (DMSPUSH), for changing the default CMS work unit, and Commit (DMSCOMM) and Rollback
(DMSROLLB) when using Coordinated Resource Recovery. These callable services library (CSL) routines
are described in z/VM: CMS Callable Services Reference. For information on CMS work units, refer to z/VM:
CMS Application Development Guide.

Extract_Local_Fully_Qualified_LU_Name (XCELFQ) Call
The Extract_Local_Fully_Qualified_LU_Name (XCELFQ) call extracts the local fully-qualified LU name for
the specified conversation. The output from this routine can be used as input on the Resource Adapter
Registration (DMSREG) CSL routine, which is described in z/VM: CMS Callable Services Reference.

Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) Call
The Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) call extracts the remote fully-qualified LU name
for the specified conversation. The output from this routine can be used as input on the Resource Adapter
Registration (DMSREG) CSL routine, which is described in z/VM: CMS Callable Services Reference.

Extract_TP_Name (XCETPN) Call
The Extract_TP_Name (XCETPN) call extracts the TP name characteristic for the specified conversation.

Signal_User_Event (XCSUE) Call
The Signal_User_Event (XCSUE) call queues an event to be reported by a subsequent Wait_on_Event call
in the same virtual machine. Signal_User_Event would typically be called from an event handler to let a
CPI Communications program running in the same virtual machine know about some event such as the
receipt of a message or the lapsing of a time interval. The CPI Communications program would have to
issue Wait_on_Event (XCWOE) to get the user-event notification.

The Completed Sample Execs
Listings of the three completed programs are provided in this section. All of the changes made during this
chapter are incorporated into these final versions.

The PROCESS Sample File Requester Exec
/*==*/
/* PROCESS EXEC - Sample file requester application. */
/*==*/

arg sym_dest_name fname ftype fmode . /* get user's input */
/*--*/
/* If a file was not specifically requested, set up a default. */
/*--*/
if (fname = '') then
 do
 fname = 'TEST'
 ftype = 'FILE'

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 169

 fmode = 'A'
 end
say 'Requesting the file: ' fname ftype fmode
/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Initialize the conversation. */
/*--*/
'CMINIT conversation_ID sym_dest_name return_code'
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms
/*--*/
/* Set the conversation_security_type explicitly. */
/*--*/
conversation_security_type = XC_SECURITY_PROGRAM
'XCSCST conversation_ID conversation_security_type return_code'
say; say 'Routine called: XCSCST'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCSCST'
call TraceParms
/*--*/
/* Set the security_user_ID explicitly. */
/*--*/
security_user_ID = 'REQUESTR'
security_user_ID_length = length(security_user_ID)
'XCSCSU conversation_ID security_user_ID security_user_ID_length',
 'return_code'
say; say 'Routine called: XCSCSU'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCSCSU'
call TraceParms
/*--*/
/* Set the security_password explicitly. */
/*--*/
security_password = 'PASSWORD'
security_password_length = length(security_password)
'XCSCSP conversation_ID security_password security_password_length',
 'return_code'
say; say 'Routine called: XCSCSP'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCSCSP'
call TraceParms
/*--*/
/* Set the partner_LU_name explicitly. */
/*--*/
partner_LU_name = '*USERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU_name',
 'partner_LU_name_length return_code'
say; say 'Routine called: CMSPLN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms
/*--*/
/* Set the transaction program name (TP_name) explicitly. */
/*--*/
TP_name = 'GET'
TP_name_length = length(TP_name)
'CMSTPN conversation_ID TP_name TP_name_length return_code'
say; say 'Routine called: CMSTPN'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSTPN'
call TraceParms
/*--*/
/* Determine if confirmation processing is desired. */
/*--*/
say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then
 do
 /*--*/
 /* Set sync_level to CM_CONFIRM. */
 /*--*/
 sync_level = CM_CONFIRM

VM Extension Calls

170 z/VM: 7.3 CPI Communications User's Guide

 'CMSSL conversation_ID sync_level return_code'
 say; say 'Routine called: CMSSL'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSSL'
 call TraceParms
 say ' Confirmation processing enabled'
 end
/*--*/
/* Allocate the conversation. */
/*--*/
'CMALLC conversation_ID return_code'
say; say 'Routine called: CMALLC'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms
/*--*/
/* Send the name of the file being requested to the partner program.*/
/*--*/
buffer = fname ftype fmode
send_length = length(buffer)
'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms
/*--*/
/* Call Confirm only when sync_level is not CM_NONE. We can use */
/* the confirmation processing flag set from console input. */
/*--*/
if (perform_confirm = 'Y') then
 do
 /*--*/
 /* Confirm that partner has started and received the name of */
 /* the requested file. */
 /*--*/
 'CMCFM conversation_ID request_to_send_received',
 'return_code'
 say; say 'Routine called: CMCFM'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFM'
 call TraceParms
 end
/*--*/
/* Set the prepare_to_receive_type to CM_PREP_TO_RECEIVE_FLUSH. */
/*--*/
prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH
'CMSPTR conversation_ID prepare_to_receive_type return_code'
say; say 'Routine called: CMSPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSPTR'
call TraceParms
/*--*/
/* Issue Prepare_To_Receive to switch the conversation state from */
/* Send state to Receive state. */
/*--*/
'CMPTR conversation_ID return_code'
say; say 'Routine called: CMPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms
/*--*/
/* Start a Receive loop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */
/* entered Receive state at its end of the conversation (noted by */
/* receipt of CM_SEND_RECEIVED or CM_CONFIRM_SEND_RECEIVED */
/* for status_received) or until a return_code value other than */
/* CM_OK is returned. The record length of the incoming data */
/* is assumed to be 80 bytes, or less. */
/*--*/
complete_line = ''
requested_length = 80
do until (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED)
 /*--*/
 /* Receive information from the conversation partner. */
 /*--*/
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 say; say 'Routine called: CMRCV'
 select
 when (return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 171

 complete_line = complete_line || receive_buffer
 end
 if (data_received = CM_COMPLETE_DATA_RECEIVED) then
 do
 /*--*/
 /* Use EXECIO to write the data to OUTPUT LOGFILE A */
 /* and reset the complete_line variable to nulls. */
 /*--*/
 address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS',
 'STRING' complete_line
 complete_line = ''
 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms
 end
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end
/*--*/
/* Deallocate the conversation normally. */
/*--*/
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms

GetOut:
 exit

/*-------------------------- Subroutines ---------------------------*/

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'sync_level') then
 say ' sync_level is' cm_sync_level.sync_level
 when (parameter = 'prepare_to_receive_type') then
 say ' prepare_to_receive_type is',
 cm_prepare_to_receive_type.prepare_to_receive_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_security_type') then
 say ' conversation_security_type is',
 xc_conversation_security_type.conversation_security_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/

VM Extension Calls

172 z/VM: 7.3 CPI Communications User's Guide

/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
call AbnormalEnd
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd
signal GetOut

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms
 end

return

The SENDBACK Sample Intermediate Server Exec
/*==*/
/* SENDBACK EXEC - Sample intermediate server application. */
/*==*/

arg resource_ID . /* :nick. value from $SERVER$ NAMES file */
/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Identify the application as manager of the private resource. */
/* Remember the resource_ID value for later use in XCTRRM by */

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 173

/* storing it in save_res_ID. */
/*--*/
resource_ID = word(resource_ID 'GET',1)
save_res_ID = resource_ID
resource_manager_type = XC_PRIVATE
service_mode = XC_SEQUENTIAL
security_level_flag = XC_REJECT_SECURITY_NONE
'XCIDRM resource_ID resource_manager_type service_mode',
 'security_level_flag return_code'
say; say 'Routine called: XCIDRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCIDRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 signal GetOut
 end
call TraceParms
/*--*/
/* Start continuous Wait_on_Event loop. */
/* Any console input will end the loop. */
/*--*/
send_data = ''
do forever
 say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'
 /*--*/
 /* Issue Wait_on_Event to wait for the next event to occur. */
 /*--*/
 'XCWOE resource_ID conversation_ID event_type event_info_length',
 'event_buffer return_code'
 say; say 'Routine called: XCWOE'
 if (return_code ¬= CM_OK) then call ErrorHandler 'XCWOE'
 call TraceParms 'conversation_ID event_type'
 /*--*/
 /* Choose next action based on type of event. */
 /*--*/
 select
 when (event_type = XC_ALLOCATION_REQUEST) then
 do
 call AcceptConv
 call StartConv
 end
 when (event_type = XC_INFORMATION_INPUT) then
 call ReceiveInfo
 when (event_type = XC_CONSOLE_INPUT) then
 /*--*/
 /* Leave the Wait_on_Event loop. */
 /*--*/
 leave
 otherwise
 do
 say
 say '* ERROR: Wait_on_Event reported event_type',
 xc_event_type.event_type
 end
 end /* select */
 /*--*/
 /* When notice of partner's deallocation is received, leave the */
 /* Wait_on_Event loop. */
 /*--*/
 /* Commenting out next three lines …
 if (return_code = CM_DEALLOCATED_NORMAL) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 leave
 … */
end /* do forever */

GetOut:
 call TerminateRes
 exit

/*-------------------------- Subroutines ---------------------------*/

AcceptConv:
/*--*/
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID1. */
/*--*/
'CMACCP conversation_ID return_code'
save_con_ID1 = conversation_ID
say; say 'Routine called: CMACCP'

VM Extension Calls

174 z/VM: 7.3 CPI Communications User's Guide

if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID'
/*--*/
/* Extract conversation_type to ensure the conversation is mapped. */
/*--*/
'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms
/*--*/
/* If the conversation is basic, deallocate abnormally. */
/*--*/
if (conversation_type = CM_BASIC_CONVERSATION) then
 do
 say; say '* ERROR: Accepting and deallocating a basic',
 'conversation'
 /*--*/
 /* Call Send_Error to notify partner that error was detected. */
 /* Since the program is going to exit, do not check the */
 /* Send_Error results for an error. */
 /*--*/
 'CMSERR conversation_ID request_to_send_received return_code'
 say; say 'Routine called: CMSERR'
 if (return_code = CM_OK) then
 call TraceParms
 call AbnormalEnd
 signal GetOut
 end
/*--*/
/* Extract the access security user ID for the conversation. */
/*--*/
'XCECSU conversation_ID security_user_ID security_user_ID_length',
 'return_code'
say; say 'Routine called: XCECSU'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCECSU'
call TraceParms 'security_user_ID'

return

StartConv:
/*--*/
/* StartConv will establish a conversation with the resource */
/* manager on behalf of the file requester. */
/* First, initialize the conversation to the resource manager. */
/*--*/
sym_dest_name = 'GETFILE'
'CMINIT conversation_ID sym_dest_name return_code'
save_con_ID2 = conversation_ID
say; say 'Routine called: CMINIT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID'
/*--*/
/* Pass the requesting program's access user ID to resource manager.*/
/*--*/
client_user_ID = security_user_ID
'XCSCUI conversation_ID client_user_ID return_code'
say; say 'Routine called: XCSCUI'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCSCUI'
call TraceParms 'client_user_ID'
/*--*/
/* Allocate conversation. Conversation_ID still equals save_con_ID2.*/
/*--*/
'CMALLC conversation_ID return_code'
say; say 'Routine called: CMALLC'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms

return

ReceiveInfo:
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_length = event_info_length
do until (data_received = CM_COMPLETE_DATA_RECEIVED) |,
 (data_received = CM_NO_DATA_RECEIVED)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 175

 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 send_data = send_data || receive_buffer
 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms
 end
 if (data_received = CM_COMPLETE_DATA_RECEIVED) then
 /*--*/
 /* Forward data to partner on the other conversation. */
 /*--*/
 call SendInfo
 if (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) then
 /*--*/
 /* The server should only get send control when one */
 /* partner has completed sending data. */
 /*--*/
 call PrepReceive
 else
 if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 say; say 'Conversation deallocated by requester'
 call EndConv
 end
 end
 when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
 do
 call TraceParms 'data_received status_received'
 say; say 'Conversation deallocated by requester'
 call EndConv
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

return

SendInfo:
/*--*/
/* Send data received on one conversation to partner on other */
/* conversation. The send_data variable contains either the name */
/* of the requested file or a line from the file, and it was set in */
/* ReceiveInfo. Conversation_ID was last set on CMRCV call. */
/* Reset it to the ID of the other conversation. */
/*--*/
if (conversation_ID = save_con_ID1) then
 con_ID = save_con_ID2
else
 con_ID = save_con_ID1
buffer = send_data
send_length = length(buffer)
'CMSEND con_ID buffer send_length',
 'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms 'con_ID'
send_data = '' /* reset received data variable to nulls */

return

VM Extension Calls

176 z/VM: 7.3 CPI Communications User's Guide

PrepReceive:
/*--*/
/* When send control is received on one conversation, the */
/* intermediate server is ready to transfer send control to */
/* partner on the other conversation. */
/*--*/
if (conversation_ID = save_con_ID1) then
 con_ID = save_con_ID2
else
 con_ID = save_con_ID1
'CMPTR con_ID return_code'
say; say 'Routine called: CMPTR'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms 'con_ID'

return

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code
 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'send_type') then
 say ' send_type is' cm_send_type.send_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_type') then
 say ' conversation_type is',
 cm_conversation_type.conversation_type
 when (parameter = 'resource_manager_type') then
 say ' resource_manager_type is',
 xc_resource_manager_type.resource_manager_type
 when (parameter = 'service_mode') then
 say ' service_mode is' xc_service_mode.service_mode
 when (parameter = 'security_level_flag') then
 say ' security_level_flag is',
 xc_security_level_flag.security_level_flag
 when (parameter = 'event_type') then
 say ' event_type is' xc_event_type.event_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

EndConv:
/*--*/
/* Deallocate the conversation with the resource manager. */
/*--*/
conversation_ID = save_con_ID2
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 177

if (return_code ¬= CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms 'conversation_ID'

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
call AbnormalEnd
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd
signal GetOut

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/* Use conversation IDs in save_con_ID1 and save_con_ID2. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
conversation_ID = save_con_ID
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms
 end
conversation_ID = save_con_ID2
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 end

return

TerminateRes:
/*--*/
/* TerminateRes will terminate ownership of the specified resource. */
/* Use resource name stored in save_res_ID at start of program. */
/*--*/
resource_ID = save_res_ID
'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCTRRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 end
else
 call TraceParms

return

VM Extension Calls

178 z/VM: 7.3 CPI Communications User's Guide

The SENDSERV Sample Resource Manager Exec
/*==*/
/* SENDSERV EXEC - Sample server application. */
/*==*/

arg resource_ID . /* :nick. value from $SERVER$ NAMES file */
/*--*/
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
/*--*/
address cpicomm
signal on error
/*--*/
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
/*--*/
address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
 interpret pseudonym.index
end
/*--*/
/* Identify the application as manager of the private resource. */
/* Remember the resource_ID value for later use in XCTRRM by */
/* storing it in save_res_ID. */
/*--*/
resource_ID = word(resource_ID 'GET',1)
save_res_ID = resource_ID
resource_manager_type = XC_PRIVATE
service_mode = XC_SEQUENTIAL
security_level_flag = XC_REJECT_SECURITY_NONE
'XCIDRM resource_ID resource_manager_type service_mode',
 'security_level_flag return_code'
say; say 'Routine called: XCIDRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCIDRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 signal GetOut
 end
call TraceParms
/*--*/
/* Start continuous Wait_on_Event loop. */
/* Any console input will end the loop. */
/*--*/
requested_file = ''
do forever
 say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'
 /*--*/
 /* Issue Wait_on_Event to wait for the next event to occur. */
 /*--*/
 'XCWOE resource_ID conversation_ID event_type event_info_length',
 'event_buffer return_code'
 say; say 'Routine called: XCWOE'
 if (return_code ¬= CM_OK) then call ErrorHandler 'XCWOE'
 call TraceParms
 /*--*/
 /* Choose next action based on type of event. */
 /*--*/
 select
 when (event_type = XC_ALLOCATION_REQUEST) then
 call AcceptConv
 when (event_type = XC_INFORMATION_INPUT) then
 call ReceiveInfo
 when (event_type = XC_CONSOLE_INPUT) then
 /*--*/
 /* Leave the Wait_on_Event loop. */
 /*--*/
 leave
 otherwise
 do
 say
 say '* ERROR: Wait_on_Event reported event_type',
 xc_event_type.event_type
 end
 end /* select */
 /*--*/
 /* When notice of partner's deallocation is received, leave the */

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 179

 /* Wait_on_Event loop. */
 /*--*/
 if (return_code = CM_DEALLOCATED_NORMAL) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 leave
end /* do forever */

GetOut:
 call TerminateRes
 exit

/*-------------------------- Subroutines ---------------------------*/

AcceptConv:
/*--*/
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID. */
/*--*/
'CMACCP conversation_ID return_code'
save_con_ID = conversation_ID
say; say 'Routine called: CMACCP'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms
/*--*/
/* Extract conversation_type to ensure the conversation is mapped. */
/*--*/
'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'
if (return_code ¬= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms
/*--*/
/* If the conversation is basic, deallocate abnormally. */
/*--*/
if (conversation_type = CM_BASIC_CONVERSATION) then
 do
 say; say '* ERROR: Accepting and deallocating a basic',
 'conversation'
 /*--*/
 /* Call Send_Error to notify partner that error was detected. */
 /* Since the program is going to exit, do not check the */
 /* Send_Error results for an error. */
 /*--*/
 'CMSERR conversation_ID request_to_send_received return_code'
 say; say 'Routine called: CMSERR'
 if (return_code = CM_OK) then
 call TraceParms
 call AbnormalEnd
 signal GetOut
 end
/*--*/
/* Extract the access security user ID for the conversation. */
/*--*/
'XCECSU conversation_ID security_user_ID security_user_ID_length',
 'return_code'
say; say 'Routine called: XCECSU'
if (return_code ¬= CM_OK) then call ErrorHandler 'XCECSU'
call TraceParms 'security_user_ID'

return

ReceiveInfo:
/*--*/
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
/*--*/
requested_length = event_info_length
do until (data_received = CM_COMPLETE_DATA_RECEIVED) |,
 (data_received = CM_NO_DATA_RECEIVED)
 'CMRCV conversation_ID receive_buffer requested_length',
 'data_received received_length status_received',
 'request_to_send_received return_code'
 CMRCV_return_code = return_code
 say; say 'Routine called: CMRCV'
 select
 when (CMRCV_return_code = CM_OK) then
 do
 call TraceParms 'data_received status_received'
 if (data_received ¬= CM_NO_DATA_RECEIVED) then
 do
 receive_buffer = left(receive_buffer,received_length)
 requested_file = requested_file || receive_buffer

VM Extension Calls

180 z/VM: 7.3 CPI Communications User's Guide

 end
 /*--*/
 /* Determine whether a confirmation request has been */
 /* received. If so, respond with a positive reply. */
 /*--*/
 if (status_received = CM_CONFIRM_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 /*--*/
 /* Issue Confirmed to reply to the partner. */
 /*--*/
 'CMCFMD conversation_ID return_code'
 say; say 'Routine called: CMCFMD'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMCFMD'
 call TraceParms
 end
 if (status_received = CM_SEND_RECEIVED) |,
 (status_received = CM_CONFIRM_SEND_RECEIVED) then
 call SendFile
 else
 if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
 do
 say; say 'Conversation deallocated by partner'
 requested_file = ''
 end
 end
 when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
 do
 call TraceParms 'data_received status_received'
 say; say 'Conversation deallocated by partner'
 requested_file = ''
 end
 otherwise
 call ErrorHandler 'CMRCV'
 end
end

return

SendFile:
/*--*/
/* Read the contents of the requested file and send each line of */
/* the file to the partner program. */
/*--*/
address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
do index = 1 to line.0
 if (index = line.0) then
 /*--*/
 /* Reset the send_type conversation characteristic just */
 /* before the final Send_Data call. */
 /*--*/
 do
 send_type = CM_SEND_AND_PREP_TO_RECEIVE
 'CMSST conversation_ID send_type return_code'
 say; say 'Routine called: CMSST'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSST'
 call TraceParms
 end
 buffer = line.index
 send_length = length(buffer)
 'CMSEND conversation_ID buffer send_length',
 'request_to_send_received return_code'
 say; say 'Routine called: CMSEND'
 if (return_code ¬= CM_OK) then call ErrorHandler 'CMSEND'
 call TraceParms
end

return

TraceParms:
/*--*/
/* Display parameters and their values as passed to this subroutine.*/
/*--*/
parse arg parmlist
do word_num = 1 to words(parmlist)
 parameter = word(parmlist,word_num)
 select
 when (parameter = 'return_code') then
 say ' return_code is' cm_return_code.return_code

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 181

 when (parameter = 'buffer') then
 say ' buffer is' left(buffer,send_length)
 when (parameter = 'receive_buffer') then
 say ' buffer is' left(receive_buffer,received_length)
 when (parameter = 'data_received') then
 say ' data_received is' cm_data_received.data_received
 when (parameter = 'status_received') then
 say ' status_received is' cm_status_received.status_received
 when (parameter = 'request_to_send_received') then
 say ' request_to_send_received is',
 cm_request_to_send_received.request_to_send_received
 when (parameter = 'send_type') then
 say ' send_type is' cm_send_type.send_type
 when (parameter = 'deallocate_type') then
 say ' deallocate_type is' cm_deallocate_type.deallocate_type
 when (parameter = 'conversation_type') then
 say ' conversation_type is',
 cm_conversation_type.conversation_type
 when (parameter = 'resource_manager_type') then
 say ' resource_manager_type is',
 xc_resource_manager_type.resource_manager_type
 when (parameter = 'service_mode') then
 say ' service_mode is' xc_service_mode.service_mode
 when (parameter = 'security_level_flag') then
 say ' security_level_flag is',
 xc_security_level_flag.security_level_flag
 when (parameter = 'event_type') then
 say ' event_type is' xc_event_type.event_type
 otherwise
 say ' ' parameter 'is' value(parameter)
 end
end
/*--*/
/* Extract the current conversation state of the local program. */
/*--*/
/* Commenting out next four lines …
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
 say ' conversation_state is =>',
 cm_conversation_state.conversation_state
… */

return

Error:
/*--*/
/* Report error when REXX special variable RC is not 0. */
/*--*/
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
call AbnormalEnd
signal GetOut

ErrorHandler:
/*--*/
/* Report routine that failed and the error return code. */
/*--*/
parse arg routine_name
say
say '* ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd
signal GetOut

AbnormalEnd:
/*--*/
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/* Use conversation ID in save_con_ID, from start of conversation. */
/*--*/
deallocate_type = CM_DEALLOCATE_ABEND
conversation_ID = save_con_ID
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
 do
 call TraceParms

VM Extension Calls

182 z/VM: 7.3 CPI Communications User's Guide

 'CMDEAL conversation_ID return_code'
 say; say 'Routine called: CMDEAL'
 if (return_code = CM_OK) then
 call TraceParms
 end

return

TerminateRes:
/*--*/
/* TerminateRes will terminate ownership of the specified resource. */
/* Use resource name stored in save_res_ID at start of program. */
/*--*/
resource_ID = save_res_ID
'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'
if (return_code ¬= CM_OK) then
 do
 say
 say '* ERROR: An error occurred during an XCTRRM call'
 say ' The return_code was set to',
 cm_return_code.return_code
 end
else
 call TraceParms

return

Conclusion
In this chapter we expanded our use of CPI Communications routines to include the VM extensions,
we learned about intermediate servers and we successfully changed security information for the
conversation.

As we pointed out in the introduction, this book is intended to be merely an introduction to SAA CPI
Communications on VM and to the VM extensions to CPI Communications. There is still more for you
to learn. The Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/
epubs/pdf/c2643999.pdf) and z/VM: CMS Application Development Guide contain additional sample
programs and more information on using CPI Communications. In addition, z/VM: Connectivity contains
information that can help you set up your virtual machine to manage system resources, communicate with
resources, and communicate with other programs through a TSAF collection or an SNA network.

VM Extension Calls

Chapter 4. VM Extensions to CPI Communications 183

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

VM Extension Calls

184 z/VM: 7.3 CPI Communications User's Guide

Appendix A. Event Management for CPI
Communications

The Wait_on_Event (XCWOE) call is provided by z/VM to allow an application to receive notification of
various communications events. We introduced this call earlier in our example programs.

It is important to understand that Wait_on_Event causes an entire virtual machine to be blocked until
the call completes. So, a better choice for multitasking applications is to use CMS event management
services. These services allow an application to wait for events while blocking just a single thread. Hence,
other threads can continue to perform work while there is a wait outstanding.

The occurrences of CPI Communications events are represented by a system event called VMCPIC.
By reporting information through this event, CPI Communications allows an application to use all the
facilities of event management services to monitor and respond to these conditions, with the additional
benefit of avoiding undue serialization in multitasking applications.

The following types of events are reported by the VMCPIC system event:

• Allocation requests
• Information input from partner
• Resource revoked notification.

Note: When using the VMCPIC event to monitor allocation requests or information input, these events
are reported only once, whereas Wait_on_Event reports these events continuously until the appropriate
action is taken.

Console input and user events also can be handled through the use of event management services. CMS
provides a system event, called VMCONINPUT, that allows an application to monitor console input events.
Additionally, an application can use the event management functions to generate and process its own
user events.

The VMCPIC System Event
When a VMCPIC system event is signalled, data comparable to the information provided by the
Wait_on_Event call is associated with the signal. A portion of this event data composes the event key.

The following list contains a description of the event data available when a VMCPIC event is signalled:

• Allocation requests:

The event data associated with a signal for an allocation request consists of X'00000001' concatenated
with the resource_ID:

• Information input:

The event data associated with a signal for information input consists of X'00000002' concatenated
with the conversation_ID concatenated with the event_info_length:

© Copyright IBM Corp. 1991, 2022 185

Note: The event_info_length may be greater than the actual data sent by your remote partner. This
information is part of the mapped conversation data record built and sent by CPI Communications at
your remote partner.

• Resource revoked notification:

The event data associated with a signal for a resource revoked notification also consists of X'00000003'
concatenated with the resource_ID:

For example, let's take a look at the event data that would be associated with an information input
event type. If our communications partner on conversation ID 00000000 sent us the data string "Begin
transaction" on a mapped conversation, the VMCPIC event signal would have associated with it the
following hexadecimal representation of the event data:

X'00000002F0F0F0F0F0F0F0F000000015'

The first 4 bytes of the event data indicate that the event_type is 2, or XC_INFORMATION_INPUT as we
refer to it in this book. The next 8 bytes hold the conversation_ID of 00000000. And, the final 4 bytes
inform us of the length of information that is available for receipt.

Managing Events
CMS declares the event services external functions, constants, and return and reason codes in a series
of programming language binding files. The APILOAD command is provided for processing these files in a
REXX application.

Including VMREXMT provides us with all of the REXX binding files. (Note that it is possible to be more
selective as to which files get included, but the safe way when starting out is to include all of them.)

The following lines of code will accomplish this task:

/*--*/
/* Process REXX binding files. */
/*--*/
'APILOAD (VMREXMT)'

The approach to waiting on events involves first creating an event monitor through the
EventMonitorCreate function. This tells event management services which event your program is
interested in and if you want to be notified only of those events of a certain type.

To monitor CPI Communications events, we will need to create an event monitor for the VMCPIC system
event. And, to be able to handle console input, we will also want to monitor the VMCONINPUT system
event.

Here is an example illustrating one way to do it:

⋮
/*--*/
/* Create an event monitor for the VMCPIC event, specifying a */
/* wildcard key of '*' so all VMCPIC events will match. Also */
/* monitor the VMCONINPUT event to trap console input. */
/*--*/
/* Indicate monitor should persist until EventMonitorDeleted or */
/* the process is terminated. */
monitor_flag.1 = vm_evn_no_auto_delete

/* Indicate all threads in the process containing the monitor */
/* remain dispatchable. */
monitor_flag.2 = vm_evn_async_monitor

/* Indicate any loose signals should be bound to the monitor. */

186 z/VM: 7.3 CPI Communications User's Guide

monitor_flag.3 = vm_evn_bind_loose_signals

monitor_flag_size = 3 /* Monitor_flag composed of 3 elements */

number_of_events = 2 /* Monitor 2 events: VMCPIC, VMCONINPUT */

/* Specify the names of the events to monitor. */
event_name_address.1 = 'VMCPIC'
event_name_address.2 = 'VMCONINPUT'

event_name_length.1 = length(event_name_address.1)
event_name_length.2 = length(event_name_address.2)

/* Use a wildcard key of '*' to match any occurrence. */
event_key_address.1 = '*'; event_key_length.1 = 1
event_key_address.2 = '*'; event_key_length.2 = 1

/* Allow the list of bound signals to grow without limit. */
bound_signal_limit.1 = -1; bound_signal_limit.2 = -1

/* The monitored condition is satisfied if one of the event list */
/* entries is signalled. */
event_count = 1

call CSL 'EventMonitorCreate retcode reascode monitor_token',
 'monitor_flag monitor_flag_size number_of_events',
 'event_name_address event_name_length event_key_address',
 'event_key_length bound_signal_limit event_count'
⋮

Next, we issue EventWait to actually enter a wait for the occurrence of either the VMCPIC or the
VMCONINPUT event. Typically, the call to EventWait is placed inside a loop, and an application that is
waiting for an event would generally want to keep its end of a conversation in Receive state.

Here is an example of the EventWait call:

⋮
/*--*/
/* Issue EventWait to wait for the next event to occur. */
/*--*/
call CSL 'EventWait retcode reascode monitor_token',
 'number_of_events event_flag'
⋮

If the EventWait completes due to the signalling of a VMCPIC event, we will want to call EventRetrieve
to obtain the associated event data to determine which event_type occurred. For example, upon learning
that a VMCPIC information input event has been signalled, we will want to receive the information our
communications partner sent.

When EventWait completes because the VMCONINPUT event was signalled, we will need to read a line
from the terminal input buffer.

Remember, if we create a monitor for more than one event, it is possible for an EventWait call to complete
with an indication that several of the events have been signalled.

We might use a code fragment like the following one:

⋮
/*--*/
/* An event has occurred, so get the data describing the event. */
/*--*/
/* Check each of the events we are monitoring. */
do index = 1 to event_flag.0

 /* Check if this event has been signalled. */
 if event_flag.index >= 0 then
 do
 if event_name_address.index = 'VMCONINPUT' then
 do
 /* Handle console input. */
 parse pull console_input
 say; say "Entered at the console was: '"console_input"'"
 end

 if event_name_address.index = 'VMCPIC' then
 do

Appendix A. Event Management for CPI Communications 187

 /* Handle a CPI Communications event. */
 data_buffer_length = 16 /* Max length for VMCPIC event */

 call CSL 'EventRetrieve retcode reascode monitor_token',
 'index data_buffer data_buffer_length',
 'event_data_length'

 /* The first four bytes of VMCPIC event data hold the */
 /* event_type. */
 parse var data_buffer 1 event_type +4

 /* Convert the event_type to decimal. */
 event_type = c2d(event_type)

 /* Determine which message format the VMCPIC event has. */
 if event_type = xc_information_input then
 do
 /* Handle an information input event. Format is: */
 /* event_type||conversation_ID||event_info_length */
 parse var data_buffer 5 conversation_ID +8,
 event_info_length

 /* Convert the event_info_length to decimal. */
 event_info_length = c2d(event_info_length)
 .
 .
 .
 end
 else
 do
 /* Handle an allocation request or resource revoked */
 /* notification event. Format is: */
 /* event_type||resource_ID */
 parse var data_buffer 5 resource_ID +8
 .
 .
 .
 end
 end
 end

end
⋮

After processing an event, the application would typically loop back to wait for the next event.

A complete description of event management services can be found in z/VM: CMS Application
Multitasking.

188 z/VM: 7.3 CPI Communications User's Guide

Appendix B. CPI Communications Conversation
States

A CPI Communications conversation can be in one of the following states:

Table 9. CPI Communications Conversation States

State Description

Reset There is no conversation for this conversation_ID.

Initialize Initialize_Conversation has completed successfully and a conversation_ID has
been assigned for this conversation.

Send The program is able to send data on this conversation.

Receive The program is able to receive data on this conversation.

Send-Pending The program has received both data and send control on the same Receive
call.

Confirm A confirmation request has been received on this conversation; that is, the
remote program issued a Confirm call and is waiting for the local program to
issue Confirmed. After responding with Confirmed, the local program's end of
the conversation returns to Receive state.

Confirm-Send A confirmation request and send control have both been received on this
conversation; that is, the remote program issued a Prepare_To_Receive call
with the prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL
and the sync_level for this conversation is CM_CONFIRM. After responding
with Confirmed, the local program's end of the conversation enters Send
state.

Confirm-Deallocate A confirmation request and deallocation notification have both been received
on this conversation; that is, the remote program issued a Deallocate call with
the deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and the sync_level
for this conversation is CM_CONFIRM. After the local program responds with
Confirmed, the conversation is deallocated.

Additional CPI Communications States
In addition to the conversation states described above, the following states are required when a program
uses a protected CPI Communications conversation (that is, with the sync_level characteristic set to
CM_SYNC_POINT):

Table 10. Additional Conversation States for Protected Conversations

State Description

Defer-Receive The local program will enter Receive state after a sync point
operation completes successfully; that is, the local program has
issued a Prepare_to_Receive call with prepare_to_receive_type
set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT, or it issued a Send_Data call with send_type
set to SEND_AND_PREP_TO_RECEIVE, prepare_to_receive_type set
to CM_PREP_TO_RECEIVE_SYNC_LEVEL, and sync_level set to
CM_SYNC_POINT. The conversation will not enter Receive state until
a successful sync point operation, Flush, or Confirm takes place.

© Copyright IBM Corp. 1991, 2022 189

Table 10. Additional Conversation States for Protected Conversations (continued)

State Description

Defer-Deallocate The local program has requested to deallocate the conversation after
a sync point operation has completed; that is, it issued a Deallocate
call with deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and
sync_level set to CM_SYNC_POINT, or it issued a Send_Data call
with send_type set to SEND_AND_DEALLOCATE, deallocate_type
set to CM_DEALLOCATE_SYNC_LEVEL, and sync_level set to
CM_SYNC_POINT. The conversation will not be deallocated until a
successful sync point operation takes place.

Sync-Point The local program issued a Receive call and was given a return_code
of CM_OK and a status_received of CM_TAKE_COMMIT. After a
successful sync point operation, the conversation will return to
Receive state.

Sync-Point-Send The local program issued a Receive call and was given a return_code
of CM_OK and a status_received of CM_TAKE_COMMIT_SEND. After
a successful sync point operation, the conversation will be placed in
Send state.

Sync-Point-Deallocate The local program issued a Receive call and was given a return_code
of CM_OK and a status_received of CM_TAKE_COMMIT_DEALLOCATE.
After a successful sync point operation, the conversation will be
deallocated and placed in Reset state.

190 z/VM: 7.3 CPI Communications User's Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1991, 2022 191

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This book is intended to help the customer develop communications programs in VM using the
Communications element of the Systems Application Architecture (SAA) Common Programming Interface
(CPI) and the VM extensions to the SAA CPI Communications interface. This book documents General-
Use Programming Interface and Associated Guidance Information provided by the CMS component of
z/VM.

General-use programming interfaces allow the customer to write programs that obtain the services of
z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a world-wide basis.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

192 z/VM: 7.3 CPI Communications User's Guide

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 193

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

194 z/VM: 7.3 CPI Communications User's Guide

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1991, 2022 195

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

196 z/VM: 7.3 CPI Communications User's Guide

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 197

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

198 z/VM: 7.3 CPI Communications User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Bibliography 199

200 z/VM: 7.3 CPI Communications User's Guide

Index

Special Characters
$SERVER$ NAMES file 26, 143

A
accept incoming conversation request 28
Accept_Conversation (CMACCP)

call description 28
example flow using 52
in sample server program 29

access security information
setting and extracting 111

ADDRESS CPICOMM 8
advanced function calls

description 6
list 53
sample program pseudocode 54

Advanced Program-to-Program Communications (APPC)
interface for 1
type 6.2 logical unit 111

Allocate (CMALLC)
call description 14
example flow using 52
in sample requester program 15

allocation request 185
alternate user ID

setting 2, 155, 162
APILOAD command 186
APPCPASS statement 134

B
basic conversation 5, 92
binding file 186
buffer

description 14, 60
example flow 51

C
calls

advanced function 53
format 9
naming conventions 2
starter set 6, 7
VM extensions 111

change conversation state
from Send to Receive 60

change data flow direction
by receiving program 95, 101
by sending program 35, 38

characteristic of
CMS files 41
conversation_ID 9, 28
conversation_state

characteristic of (continued)
conversation_state (continued)

extract 56
possible values 56

conversation_type
extract 88
possible values 5
set 92

deallocate_type
possible values 83
set 83

default values 8
error_direction 101
fill 101
integer values 2
log_data 102
mode_name

extract 101
set 102

modifying 53
naming conventions 2
overview 8
partner_LU_name 101
prepare_to_receive_type 75
pseudonyms 2
receive_type 102
return_control 102
send_type 79
sync_level

extract 101
possible values 63
set 63

TP_name 98
viewing 53, 54, 112

class B privilege
issuing DIAGNOSE code X'D4' 155, 162
setting alternate user ID 2

client program 141
CMACCP (Accept_Conversation)

call description 28
example flow using 52
in sample server program 29

CMALLC (Allocate)
call description 14
example flow using 52
in sample requester program 15

CMCFM (Confirm)
call description 68
in sample programs 70

CMCFMD (Confirmed)
call description 69
in sample programs 70

CMDEAL (Deallocate)
call description 42
example flow using 52
in sample requester program 43

CMECS (Extract_Conversation_State)

Index 201

CMECS (Extract_Conversation_State) (continued)
call description 56
in sample programs 57

CMECT (Extract_Conversation_Type)
call description 88
in sample server program 89

CMEMN (Extract_Mode_Name) 101
CMEPLN (Extract_Partner_LU_Name) 101
CMESL (Extract_Sync_Level) 101
CMFLUS (Flush) 60
CMINIT (Initialize_Conversation)

call description 8
example flow using 52

CMPTR (Prepare_To_Receive)
call description 60
in sample requester program 61

CMRCV (Receive)
call description 30
example flow using 52
loop in sample requester program 35
loop in sample server program 32, 38

CMREXX COPY file 12
CMRTS (Request_To_Send) 101
CMS multitasking

using event management services 185
CMSCT (Set_Conversation_Type)

call description 92
in sample requester program 93

CMSDT (Set_Deallocate_Type)
call description 83
in sample programs 84

CMSED (Set_Error_Direction) 101
CMSEND (Send_Data)

call description 17
example flow using 52
in sample requester program 19
loop in sample server program 38

CMSERR (Send_Error)
call description 90
in sample server program 92

CMSF (Set_Fill) 54, 101
CMSLD (Set_Log_Data) 54, 102
CMSMN (Set_Mode_Name) 102
CMSPLN (Set_Partner_LU_Name)

call description 96
in sample requester program 96

CMSPTR (Set_Prepare_To_Receive_Type
call description 75
in sample requester program 76

CMSRC (Set_Return_Control) 102
CMSRT (Set_Receive_Type) 102
CMSSL (Set_Sync_Level)

call description 63
in sample requester program 64

CMSST (Set_Send_Type)
call description 79
in sample server program 80

CMSTPN (Set_TP_Name)
call description 98
in sample requester program 99

CMTRTS (Test_Request_To_Send_Received) 103
Common Programming Interface (CPI) Communications

introduction 1
naming conventions 2

communications directory
CMS NAMES file 21
description 9, 21
SCOMDIR file 21
SET COMDIR Command 22
UCOMDIR file 21, 26

Confirm (CMCFM)
call description 68
in sample programs 70

Confirm state 189
Confirm-Deallocate state 189
Confirm-Send state 67, 189
confirmation processing

Confirm call 68
Confirmed call 69
general discussion 66

Confirmed (CMCFMD)
call description 69
in sample programs 70

conventions in this book 2
conversation

accept 28
allocate 14
basic 5
characteristics 9
deallocate 42
description 3
initialize 9
mapped 5
multiple 111
security 132
states 67, 189
synchronization and control

Confirm call 68
Confirmed call 69
Flush call 60
list of calls 53
Prepare_To_Receive call 60
Request_To_Send call 101
Send_Error call 90
Test_Request_To_Send_Received call 103

transition from a state 66
types 5

conversation_type characteristic
extract 88
possible values 92
set 92

copy file
CMREXX 12

CPICOMM LOGDATA file 10
create $SERVER$ NAMES file 26

D
data

buffering 35, 60
direction, changing

by receiving program 95, 101
by sending program 35, 38

purging 95
transmission 35, 60

data record
description 17, 35
Receive call 30

202 z/VM: 7.3 CPI Communications User's Guide

data record (continued)
Send_Data call 17

Deallocate (CMDEAL)
call description 42
example flow using 52
in sample requester program 43

deallocate_type characteristic
possible values 83
set 83

declare
resource to manage 115

detect error
using Send_Error (CMSERR) call 90

DIAGNOSE code X'D4' 155, 162

E
end conversation

using Deallocate (CMDEAL) call 42
error

checking 8
detecting 90
reporting 16, 18

error_direction characteristic 101
establish conversation

using Allocate (CMALLC) call 14
event

communications 185
services 185
system 185

event management
using for CPI Communications 185

event management services 185
event notification 122
EventMonitorCreate

use of 186
EventRetrieve

use of 187
EventWait

use of 187
examine

conversation characteristics 53, 54
EXECIO command 12
extension, VM

calls
conversation security 111, 132, 154
overview 111, 168
resource recovery 112
resources, events 111, 112

sample program pseudocode 114
extract calls

conversation_security_user_ID 155
conversation_state 56
conversation_type 88
list of

advanced set 53, 54
VM extensions 112

mode_name 101
partner_LU_name 101
sync_level 101

Extract Local Fully Qualified LU Name (XCELFQ) 169
Extract Remote Fully Qualified LU Name (XCERFQ) 169
Extract_Conversation_LUWID (XCECL) 169
Extract_Conversation_Security_User_ID (XCECSU)

Extract_Conversation_Security_User_ID (XCECSU) (continued)
call description 155
in sample intermediate server 156
in sample resource manager program 157

Extract_Conversation_State (CMECS)
call description 56
in sample programs 57

Extract_Conversation_Type (CMECT)
call description 88
in sample server program 89

Extract_Conversation_Workunit_ID (XCECWU) 169
Extract_Mode_Name (CMEMN) 101
Extract_Partner_LU_Name (CMEPLN) 101
Extract_Sync_Level (CMESL) 101
Extract_TP_Name (XCETPN) 169

F
file

binding 186
characteristics 41

fill characteristic 101
flow

conversation 57
diagram 52

Flush (CMFLUS) 60
flush send buffer 60
force a conversation flow using Flush (CMFLUS) 60
format of calls 9
FYI (for your information) boxes

CMS communications directories 21
copy files—the easy way to use pseudonyms 12
Flush (CMFLUS) call overview 60
if SERVR received a product-specific error 164
if you got a product-specific error 16
LEFT function in REXX 20, 33
more REXX considerations 10
receiving partial records 49
REXX considerations 8
security information and the APPCPASS statement 134
SET COMDIR command 22
side information 9
tidying up 55
tidying up, part II 75
tidying up, part III 115
what the Allocate call does 14
when errors are reported 18

G
General-Use programming interfaces 192
global resource

description 113
in communications programming 4
specifying on Identify_Resource_Manager call 116

H
half-duplex protocol 4

I
Identify_Resource_Manager (XCIDRM)

Index 203

Identify_Resource_Manager (XCIDRM) (continued)
call description 115
in sample server program 117

incoming conversation request
accepting 28

information input 185
initialize

conversation 8
state 10, 189

Initialize_Conversation (CMINIT)
call description 8
example flow using 52

intermediate server
converting SERVR virtual machine 144
description 141
sample program pseudocode 142
security considerations 154

interrupt
console

reflecting 122, 185

L
local partner 3
local resource

description 113
in communications programming 4
specifying on Identify_Resource_Manager call 116

logical unit 14
LU 6.2 and CPI Communications 111

M
manage

events 186
manager, resource 113
mapped conversation 5
mode_name characteristic

extract 101
set 102

modify data flow direction
by receiving program 35, 38
by sending program 95, 101

multiple conversations 111
multitasking, CMS

using event management services 185

N
NAMES command 21, 26
NAMES file 9
naming conventions 2, 8

O
ownership of a resource

terminating 119

P
partner 3
partner_LU_name characteristic

extract 101

partner_LU_name characteristic (continued)
set 96

password
access security

setting 138
preface xiii
prepare

SERVR virtual machine 25
Prepare_To_Receive (CMPTR)

call description 60
in sample requester program 61

prepare_to_receive_type characteristic
possible values 75
set 75

private resource
description 114
in communications programming 4
specifying on Identify_Resource_Manager call 116

privilege class B
issuing DIAGNOSE code X'D4' 155, 162
setting alternate user ID 2

PROFILE EXEC
modifying 25

program
partners 3
states, conversation 189

programming interfaces, General-Use 192
pseudonym

copy files 12
example of 12
explanation of 2, 12
values 12

Q
query

conversation characteristics 53, 54

R
RC special variable

REXX 8
Receive (CMRCV)

call description 30
example flow using 52
loop in sample requester program 35
loop in sample server program 32, 38

receive information
using Receive (CMRCV) call 30

Receive state
description 189
how a program enters it 35, 67

receive_type characteristic
possible values 102
set 102

record
format 41
length 35, 41
partial 49

reflect
console interrupts 122, 185

related publications xiii
remote partner 3

204 z/VM: 7.3 CPI Communications User's Guide

report
errors 16, 18

report events 185
Request_To_Send (CMRTS) 101
requester program 4
requester virtual machine 4
Reset state 10, 189
resource

kinds of
global 4, 113, 116
local 4, 113, 116
private 4, 114, 116
system 4, 113, 116

management 111–113
resource revoked notification 186
REstructured eXtended eXecutor/Virtual Machine

(REXX/VM)
binding files 186
considerations 8
CPICOMM subcommand environment 8
functions 10
interpret statement 12
SIGNAL ON ERROR instruction 8
special variable RC 8

return
access security user ID 155
CMS work unit ID 169
conversation state 56
conversation type 88
local fully-qualified LU name 169
logical unit of work ID 169
mode name 101
partner LU name 101
remote fully-qualified LU name 169
sync_level value 101
TP name 169

return codes 3
return_control characteristic 102

S
sample of

completed execs 169
program pseudocode

advanced set 54
intermediate server 142
starter set 7
VM extensions 114

security
$SERVER$ NAMES file 26, 154
general considerations 132
levels in VM

SECURITY(NONE) 133
SECURITY(PROGRAM) 133
SECURITY(SAME) 133

relating to intermediate servers 154
send

confirmation request 68
send data

using Send_Data (CMSEND) call 17
Send state 189
Send_Data (CMSEND)

call description 17
example flow using 52

Send_Data (CMSEND) (continued)
in sample requester program 19
loop in sample server program 38

Send_Error (CMSERR)
call description 90
in sample server program 92

send_type characteristic
possible values 79
set 79

Send-Pending state 189
server program

description 4
SERVR's SENDBACK EXEC 27
SERVR2's SENDSERV EXEC 142

SERVR virtual machine, converting to intermediate server
144
SERVR2 virtual machine, setting up 142
session

description 14
set calls

client_security_user_ID 161
conversation_security_password 138
conversation_security_type 134
conversation_security_user_ID 136
conversation_type 92
deallocate_type 83
error_direction 101
fill 101
listing of 53
log_data 102
mode_name 102
partner_LU_name 96
prepare_to_receive_type 75
receive_type 102
return_control 102
send_type 79
sync_level 63
TP_name 98

SET COMDIR Command 22
set up

user IDs 2
Set_Client_Security_User_ID (XCSCUI)

call description 161
in sample intermediate server 163

Set_Conversation_Security_Password (XCSCSP)
call description 138
in sample requester program 138

Set_Conversation_Security_Type (XCSCST)
call description 134
in sample requester program 135

Set_Conversation_Security_User_ID (XCSCSU)
call description 136
in sample requester program 137

Set_Conversation_Type (CMSCT)
call description 92
in sample requester program 93

Set_Deallocate_Type (CMSDT)
call description 83
in sample programs 84

Set_Error_Direction (CMSED) 101
Set_Fill (CMSF) 54, 101
Set_Log_Data (CMSLD) 54, 102
Set_Mode_Name (CMSMN) 102
Set_Partner_LU_Name (CMSPLN)

Index 205

Set_Partner_LU_Name (CMSPLN) (continued)
call description 96
in sample requester program 96

Set_Prepare_To_Receive_Type (CMSPTR)
call description 75
in sample requester program 76

Set_Receive_Type (CMSRT) 102
Set_Return_Control (CMSRC) 102
Set_Send_Type (CMSST)

call description 79
in sample server program 80

Set_Sync_Level (CMSSL)
call description 63
in sample requester program 64

Set_TP_Name (CMSTPN)
call description 98
in sample requester program 99

side information
general information 9, 21
in VM/ESA 21

Signal_User_Event (XCSUE) 169
starter-set calls

description 6
list 7
sample program call table 7
sample program flow 50

state
conversation

description 189
extracting 56
list 189

state table for conversations
abbreviations 67
example of how to use 66

subcommand environment
in REXX 8

symbolic destination name 9
sync_level characteristic

extract 101
possible values 63
set 63

synchronization and control calls
Confirm 68
Confirmed 69
Flush 60
list of 53
Prepare_To_Receive 60
Request_To_Send 101
Send_Error 90
Test_Request_To_Send_Received 103

system resource
description 113
in communications programming 4
specifying on Identify_Resource_Manager call 116

Systems Application Architecture (SAA)
overview 1, 111

Systems Network Architecture (SNA) 111

T
Terminate_Resource_Manager (XCTRRM)

call description 119
in sample server program 119

Test_Request_To_Send_Received (CMTRTS) 103

TP_name characteristic 98
trademarks 192
transition, state 67
Transparent Services Access Facility (TSAF) 16
types of conversations 5

U
user ID

setting up 2
user program 4

V
variables

integer values 2
pseudonyms 2

view conversation characteristics 53, 54
VM extension

calls
conversation security 111, 132, 154
overview 111, 168
resource recovery 112
resources, events 111, 112

sample program pseudocode 114
VMCONINPUT system event 185
VMCPIC system event 185

W
Wait_on_Event (XCWOE)

call description 122
in sample server program 124

X
XCECL (Extract_Conversation_LUWID) 169
XCECSU (Extract_Conversation_Security_User_ID)

call description 155
in sample intermediate server 156
in sample resource manager program 157

XCECWU (Extract_Conversation_Workunit_ID) 169
XCELFQ (Extract Local Fully Qualified LU Name) 169
XCERFQ (Extract Remote Fully Qualified LU Name) 169
XCETPN (Extract_TP_Name) 169
XCIDRM (Identify_Resource_Manager)

call description 115
in sample server program 117

XCSCSP (Set_Conversation_Security_Password)
call description 138
in sample requester program 138

XCSCST (Set_Conversation_Security_Type)
call description 134
in sample requester program 135

XCSCSU (Set_Conversation_Security_User_ID)
call description 136
in sample requester program 137

XCSCUI (Set_Client_Security_User_ID)
call description 161
in sample intermediate server 163

XCSUE (Signal_User_Event) 169
XCTRRM (Terminate_Resource_Manager)

call description 119

206 z/VM: 7.3 CPI Communications User's Guide

XCTRRM (Terminate_Resource_Manager) (continued)
in sample server program 119

XCWOE (Wait_on_Event)
call description 122
in sample server program 124

Index 207

208 z/VM: 7.3 CPI Communications User's Guide

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6273-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: CPI Communications User's Guide
	SC24-6273-73, z/VM 7.3 (September 2022)
	SC24-6273-01, z/VM 7.2 (September 2020)
	SC24-6273-00, z/VM 7.1 (September 2018)

	Chapter 1. Introduction
	A Few Words about Our Format and Programs
	Error Handling
	The Programming Language Used for This Book

	Before You Start
	Setting Up the User IDs

	Conventions Used in This Book
	Pseudonyms
	Visual Cues

	CPI Communications Terms and Concepts for z/VM
	Program Partners, Communications, and Resources
	Like Using a Two-Way Radio
	Type of Conversation to Be Used

	Program Calls
	SAA CPI Communications Calls
	z/VM Extensions to CPI Communications

	Chapter 2. Starter Set CPI Communications Calls
	Calls Used for Starting and Ending Conversations
	Calls Used for Exchanging Data
	Using the Starter Set Calls
	Getting Started
	Step 1. The Initialize_Conversation (CMINIT) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding CMINIT to Our Requester Program

	Step 2. The Allocate (CMALLC) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding CMALLC to Our Requester Program
	Note on a Common Error

	Step 3. The Send_Data (CMSEND) Call
	Input Parameters
	Output Parameters
	Results of the Call
	Adding CMSEND to Our Requester Program

	Preparing the SERVR Virtual Machine
	Modifying the PROFILE EXEC File
	Creating TEST FILE
	Creating the $SERVER$ NAMES File
	Creating the SENDBACK EXEC File

	Step 4. The Accept_Conversation (CMACCP) Call
	Output Parameters
	Results of the Call
	Adding CMACCP to Our Server Program

	Step 5. The Receive (CMRCV) Call
	Input Parameters
	Output Parameters
	Results of the Call
	Adding a Receive (CMRCV) Loop to Our Server Program

	Step 6. Adding a Receive (CMRCV) Loop to Our Requester Program
	Step 7. Adding a Send_Data (CMSEND) Loop to Our Server
	Step 8. The Deallocate (CMDEAL) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding CMDEAL to Our Requester Program

	Summary with Flow Diagram
	A Word about the Flow Diagrams
	Flow Diagram for Starter Set Conversation

	Chapter 3. Advanced CPI Communications Calls
	Overview of Advanced CPI Communications Calls
	Calls Used for Synchronization and Control
	Calls Used for Modifying Conversation Characteristics
	Calls Used for Examining Conversation Characteristics

	Using Advanced Set Calls
	The Extract_Conversation_State (CMECS) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding CMECS to Both Our Programs
	The Flow of a Conversation

	The Prepare_To_Receive (CMPTR) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding CMPTR to Our Requester Program

	The Set_Sync_Level (CMSSL) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSSL to Our Requester Program

	The State Table–Finding Out Where You Can Go from Here

	Confirmation Processing
	The Confirm (CMCFM) Call
	Input Parameter
	Output Parameters
	Results of the Call

	The Confirmed (CMCFMD) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding CMCFM and CMCFMD to Our Programs

	The Set_Prepare_To_Receive_Type (CMSPTR) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSPTR to Our Requester Program

	The Set_Send_Type (CMSST) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSST to Our Server Program

	The Set_Deallocate_Type (CMSDT) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSDT to Both Our Programs

	The Extract_Conversation_Type (CMECT) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding CMECT to Our Server Program

	The Send_Error (CMSERR) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding CMSERR to Our Server Program

	The Set_Conversation_Type (CMSCT) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSCT to Our Requester Program

	The Set_Partner_LU_Name (CMSPLN) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSPLN to Our Requester Program

	The Set_TP_Name (CMSTPN) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSTPN to Our Requester Program

	Overviews of Additional Advanced Calls
	Extract_Mode_Name (CMEMN) Call
	Extract_Partner_LU_Name (CMEPLN) Call
	Extract_Sync_Level (CMESL) Call
	Request_To_Send (CMRTS) Call
	Set_Error_Direction (CMSED) Call
	Set_Fill (CMSF) Call
	Set_Log_Data (CMSLD) Call
	Set_Mode_Name (CMSMN) Call
	Set_Return_Control (CMSRC) Call
	Set_Receive_Type (CMSRT) Call
	Test_Request_To_Send_Received (CMTRTS) Call

	The Modified Sample Execs
	The PROCESS Sample File Requester Exec
	The SENDBACK Sample Server Exec

	Summary

	Chapter 4. VM Extensions to CPI Communications
	The Relationship between VM and SAA CPI Communications
	Overview of VM Extension Calls
	Summary of VM Extension Calls
	Calls Used for Conversation Security
	Calls Used for Resource Management and Event Notification
	Calls Used for Resource Recovery Support
	Call Used for Extracting CMS Work Unit ID

	Managing a Resource
	What Is a Resource Manager?
	What Kinds of Resources Are There?
	Local
	Global
	System
	Private
	Using VM Extension Calls to Manage Resources

	The Identify_Resource_Manager (XCIDRM) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCIDRM to Our Server Program

	The Terminate_Resource_Manager (XCTRRM) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding XCTRRM to Our Server Program

	The Wait_on_Event (XCWOE) Call
	Output Parameters
	Results of the Call
	Adding XCWOE to Our Server Program

	Security Considerations
	The Set_Conversation_Security_Type (XCSCST) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCSCST to Our Requester Program

	The Set_Conversation_Security_User_ID (XCSCSU) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCSCSU to Our Requester Program

	The Set_Conversation_Security_Password (XCSCSP) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCSCSP to Our Requester Program

	Intermediate Servers
	Setting Up the SERVR2 Virtual Machine
	Converting the SERVR Virtual Machine into an Intermediate Server

	Security Considerations for Intermediate Servers
	The Extract_Conversation_Security_User_ID (XCECSU) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding XCECSU to Our Intermediate Server Program
	Adding XCECSU to Our Resource Manager Program

	The Set_Client_Security_User_ID (XCSCUI) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCSCUI to Our Intermediate Server Program

	Overview of Additional VM Extension Calls
	Extract_Conversation_LUWID (XCECL) Call
	Extract_Conversation_Workunitid (XCECWU) Call
	Extract_Local_Fully_Qualified_LU_Name (XCELFQ) Call
	Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) Call
	Extract_TP_Name (XCETPN) Call
	Signal_User_Event (XCSUE) Call

	The Completed Sample Execs
	The PROCESS Sample File Requester Exec
	The SENDBACK Sample Intermediate Server Exec
	The SENDSERV Sample Resource Manager Exec

	Conclusion

	Appendix A. Event Management for CPI Communications
	The VMCPIC System Event
	Managing Events

	Appendix B. CPI Communications Conversation States
	Additional CPI Communications States

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

