
Discussed is a methodology for discovering operating system
design jaws as an approach to learning system design tech-
niques that may make possible greater data security.

Inputloutput has been found to be involved in most of the
weaknesses discovet-ed by a study team in a particular version
of the system.

Relative design simplicity was found to be the source of great-
est protection against penetration eforts.

Penetrating an operating system: a study of VM/370 integrity
by C. R. Attanasio, P. W. Markstein and R. J. Phillips

There is a large body of literature relating to computing system
security that includes such issues as statements of problems and
requirements for secure systems,'-' research in the design of
secure computing efforts to develop techniques for
verifying the correctness (and hence impenetrability) of pro-
g r a m ~ , ~ and reports of organized efforts to determine the pene-
trability of various operating The literature on oper-
ating system penetration is rather sparse because most of the
work has been done under classified auspices". Although the
general references given here are a small representative portion
of the existing literature, more extensive bibliographies are cited
in References 13 and 14.

In this paper we summarize methods and results of a penetration
study of the IBM Virtual Machine Facility/370 (v ~ / 3 7 0) in the
version that was current in February, 1973. We did not attempt
to follow changes in the system through subsequent releases.
Our goal was to evaluate penetrability in the light of the system
architecture, rather than to track a moving target.

The virtual machine operating ~ y s t e m , ~ ~ . ' ~ v ~ / 3 7 0 , differs from
conventional operating systems in that the interface presented to
the user is that described in the Principles of Operation of Sys-
tem/370 and in which each user has the illusion of having a
stand-alone computing system consisting of a CPU, main storage,

102 ATTANASIO, MARKSTEIN AND PHILLIPS IBM SYST J

and I/O devices.17 v ~ / 3 7 0 differs further from conventional sys-
tems in that the user is presented with one or more interfaces
that are more easily usable than a stand-alone machine, e.g.,
those defined by high-level languages, or supervisor services
that provide functional interfaces to hardware facilities. (~ ~ / 3 7 0
is a successor to CP-67, which is discussed in References 18 and
19.) The virtual storage capability of System/370 hardware and
the software design of v ~ / 3 7 0 combine to provide sharp isola-
tion of the individual virtual machines. By sharing virtual devices,
data sharing with v ~ / 3 7 0 is analogous to the way in which data
are typically shared among real machines.

A team of penetrator-analysts was formed to attempt to pene-
trate v ~ / 3 7 0 , with the objective of obtaining information to
which they were not entitled, such as passwords or data that
belonged to other users. Lesser goals were to acquire an unrea-
sonably large share of resources in order to deny service to
other users, and to obtain resources but escape accountability.
v ~ / 3 7 0 was chosen for study to determine whether the sub-
stantially different architecture of v ~ / 3 7 0 afforded significant
security advantages over the architectures of systems previously
reported in the literature. It was hoped that by performing a
penetration experiment on a virtual machine system, and by
combining the knowledge so gained with the available results of
previous penetration studies, the researchers would be able to
generalize conclusions from the study.

The team of penetrators (the present authors) worked as parts
of the user communities of the v ~ / 3 7 0 systems running at the
IBM Thomas J . Watson Research Center in Yorktown Heights,
New York, and at the System Development Corporation in
Santa Monica, California. Team members were restricted to the
lowest user privilege class, so that any penetrations discovered
would be potentially available to all system users. Indeed, this
restriction left open the question of penetration by system pro-
grammers and computer room personnel. One of our ground
rules was that it would be sufficient to demonstrate the possibility
of carrying out a penetration, without performing the penetra-
tion itself if the case was sufficiently clear. In doubtful cases, a
test of the system on the computer was used for resolution. The
only tool that was available to the penetration team was a listing
of the v ~ / 3 7 0 operating system code. Although the general
user might not normally have that code in his possession, it is
material that is, in principle, available to everyone.

Penetration study methodology

The detection of system vulnerabilities is an act of problem solv-
ing. There is no simple, automatic way of finding all significant

NO. 1 . 1976 PENETRATION STUDY OF v ~ / 3 7 0

Figure 1 Portion of a model of interdependencies of VM/370 control objects

I PHYSICALSECURITY
SOFTWARE

INTEGRITY
SYSTEM

1 1 I 1

cL_1 TERMINALS MAIN STORAGE
PROTECTION

DIRECTORY

SEGMENTAND
PAGETABLES

REALCHANNEL

t
VIRTUALCHANNEL

TRANSLATOR OF

PROGRAMS

design oversights or implementation errors. Through systematic
study of the system, an approach and an attitude developed that
enabled the investigators to examine the system with a strong
probability of finding vulnerabilities if they existed. No method
evolved, however, that guaranteed that all vulnerabilities were
found. The method used in this study comprised the following
steps: modeling the system control structure; flaw hypothesis
generation; flaw hypothesis confirmation; and flaw generaliza-
tion. This approach was an example of developing and pruning
search tree structures as proposed by Newell, Simon, and
Shaw" for artificial intelligence application.

modeling At the start of the study, the penetration analysts had to under-
the stand how users interact with the system, what services are

control provided to them by the system, and what constraints are
structure placed on users. It was also necessary to understand the system

structure well enough to recognize the control objects (that is,
those parts of the system that control the system access and
resource availability) and to have a basic general understanding

104 ATTANASIO, MARKSTEIN AND PHILLIPS IBM SYST J

of the interrelationships among control objects and how they are
used. Control objects may be modules, data items, hardware reg-
isters, or data files. They may be accessed through other ob-
jects, such as disk packs, channels, or terminals. A model of the
system was then constructed in the form of a directed graph that
showed the dependencies among control objects.

Figure 1 is an illustrative subset of the actual model in which the
primary target is identified as User Data. The two major de-
pendencies of the integrity of user data are physical security
(which, in turn, is based on the physical security of the central
facility, communication lines, and terminals) and software oper-
ating system integrity. Operating system integrity exists only if
the supervisor state, main storage, and I/O services are managed
correctly. Main storage, as an example, is protected correctly
only when two conditions prevail simultaneously: (1) address ta-
bles, i.e., segment and page tables, are properly established and
protected; and (2) storage keys are used properly. Similar con-
ditions prevail for the branch of the graph that descends from I/O
services, with the addition of mutual dependency between I/O
services and the directory. The mutual dependency shows that
either dependency can be made to fail through a penetration of
the other. Mutual dependency illustrates that the dependency of
the system objects cannot be represented simply as a tree.

Because of the inherent dynamic complexity of an operating sys-
tem, one cannot depend entirely on a static graph like Figure 1
to pinpoint relationships and security weaknesses. We found
penetrations that involved timing considerations, complex mod-
ule interaction, and probabilistic, nonrepeatable events.

The need for familarity with the basic internal structure of VM/
370 is an obvious prerequisite. The participants in this study began
with a knowledge of v ~ / 3 7 0 . As a consequence, very little time
was required for this step. Identifying control objects and their
relationships, however, required reorientation of this knowledge.
To do this, a technique of flaw hypothesis generation was de-
veloped. A flaw hypothesis is an unproved assertion that a system
weakness exists whereby a control object can be modified or cir-
cumvented in ways not intended by its designer, thus constituting
a security vulnerability. The generation of flaw hypotheses is a
team activity. Specific areas of the operating system are studied
from different points of view, and collections of possible security
weaknesses are generated for each area.

Each operating system area was examined for one or more of
the following characteristics:

Implicit or explicit resource sharing mechanisms.

NO. 1 1976 PENETRATION STUDY OF V M / 3 7 0

Man-machine interfaces administered by the operating sys-
tem.

Configuration management controls.

Identity-authentication controls.

Add-on features, design modifications, and design exten-
sions.

Parameter checking.

Control of security descriptors.

Error handling.

Side effects.

Parallelism.

Access to microprogramming.

Complex interfaces.

Duplication of function.

Limits and prohibitions.

Access to residual information.

Violation of design principles.

If such characteristics were present, the team hypothesized how
the discovered characteristics might weaken the system. The
directed graph model of v ~ / 3 7 0 was used to identify control
objects, the security of which was to be questioned.

Each flaw hypothesis so generated was subsequently evaluated
by the team, which estimated the probability that a flaw existed.
The team then assessed the potential security vulnerability,
should that flaw be exploited. This filtering process eliminated
hypotheses that, in the judgement of the team, had a low proba-
bility of being confirmed or a low probability of leading to a pen-
etration if confirmed. Those of sufficient interest were docu-
mented in the form of “flaw hypothesis study sheets,” which
identify the flaw, the threatened control object, the potential
payoff, and the probability of success.

The flaw-hypothesis method produced a perspective of the sys-
tem that was different from that of the system designers. It helped

106 ATTANASIO. MARKSTEIN AND PHILLIPS IBM SYST J

reduce a natural tendency to accept-even unconsciously-
implicit assumptions made by the designers and, thereby, the
tendency to overlook security flaws. Subjecting every part of
the system to such examination helped make the study compre-
hensive.

A two-stage detailed inquiry was made for each flaw hypothesis
study sheet. The first stage may be characterized as a desk-
checking procedure, wherein existing documentation, program
logic manuals, and symbolic listings of the system were exam-
ined to determine the validity of a flaw hypothesis. Flaw hypoth-
eses that could not be resolved by desk checking were then sub-
jected to the second stage of inquiry-live system testing. Such
an investigation of a hypothesis often uncovered flaws of value
in an unrelated area.

Details of each live test were peculiar to each hypothesis, but
testing generally involved the coding of small, one-shot progams.
It was not the intention of a live test to produce an actual pene-
tration, but to show that a flaw existed. (A penetration, as op-
posed to a flaw, involved a complete program and strategy to
exploit a flaw or combination of flaws. A penetration effort was
usually larger than a flaw demonstration effort.) A large intellec-
tual investment, but only a small amount of code, was usually
required to demonstrate the existence of a flaw. An actual pene-
tration program involved little additional innovation after a flaw
was confirmed, but it required large coding investment to exploit
the flaw. A penetration effort might include straightforward pro-
grams to perform input/output, timing, initialization, set-up, and
so forth.

Of the 880 flaw hypotheses generated, 76 warranted detailed
study; the remainder were quickly dismissed. Thirty-five flaw
hypotheses were confirmed. Nineteen of these flaws required
running a one-shot program for confirmation. Two additional
flaws were found as byproducts of program tests for other weak-
nesses.

When a flaw was confirmed, it was documented and further ana-
lyzed to determine whether it had been an instance of a more
general class of flaws. For example, a flaw may have been that a
particular parameter was not being adequately checked in a par-
ticular interface. By generalizing the nature of that parameter-
checking process, it might be found that many other parameters
at other similar interfaces were similarly inadequately screened.
By revealing such generic classes of flaws, effective design coun-
termeasures for generic weaknesses could be developed.

Generic flaws served two purposes beyond guiding the penetra-
tion study of ~ ~ 1 3 7 0 and subsequently exploiting the flaws.

NO. 1 * 1976 PENETRATION STUDY OF v ~ / 3 7 0

flaw
hypothesis
confirmation

flaw
generation

107

Particular areas of weakness that were discovered became start-
ing points in penetration analyses of other systems, to test
whether generic flaws in one system have counterparts in other
systems. Also, collections of generic weaknesses outline areas
that require particularly careful design, implementation, and
testing for systems of the future.

specific Online data, system capabilities, and system resource account-
methods ing became the control object targets of the v ~ / 3 7 0 penetration

for team. Of these, accounting information was considered to be a
VM/370 subset of online data. Therefore, no effort was made directly

toward inducing failures in the v ~ / 3 7 0 accounting mechanism.
The principal effort was to find design or implementation errors
in v ~ / 3 7 0 itself that would permit a general user to break out of
his virtual machine address space.

The team grouped penetration into the following four categories:

Seize control of the entire computing system. In essence,
v ~ / 3 7 0 was induced to relinquish control to the virtual
machine in supervisor mode, or to reveal the control descrip-
tors that controlled access to data. When a penetrator had
this level of privilege, all information in the system was at his
disposal.

Subvert a particular system mechanism. This might cause
some unauthorized data to be revealed to the penetrator,
without his controlling the entire computing system. Often
there was an element of chance. The penetration attempt
might have to be repeated several times before all the neces-
sary conditions were met, since only some conditions were
under the penetrator’s direct control.

Degrade system performance. The reduction of the ability of
other users to accomplish useful work was generally not
perpetrated directly. Techniques for performance degrada-
tion, however, were generally found during the study of other
flaw hypotheses.

Security risks. Human error or inadequate operating pro-
cedures could provide the opening for a penetration. Security
risk was not studied extensively because that risk depended
on specific installation procedures, personnel compentence,
and the degree of concern for security at each installation.
Nevertheless, it was considered important that these risk
areas be minimized if security was to be achieved. One lapse
of security might provide a penetrator with the opportunity
to make a change that would persist in the system, and per-
mit continued penetration.

108 ATTANASIO, MARKSTEIN AND PHILLIPS IBM SYST J

Penetration results

Almost every demonstrated flaw in the system was found to
involve the input/output facility (~ l o) in some manner. Other
elements that contributed to system Haws were concurrent oper-
ations, resource allocation, and the human interface.

The support of the virtual I/O interface is the most complex
portion of v ~ / 3 7 0 . Simulation of a single virtual machine I/O
instruction might involve the simulation of an entire channel
program. For performance reasons, rather than simulate such a
channel program one command at a time, v ~ / 3 7 0 attempts to
compile real channel programs from virtual ones. That is;
v ~ / 3 7 0 attempts to effect relocation on channel programs stat-
ically by deducing the addresses on the devices that are really
to be used (i.e., relocation of virtual seek addresses), and by
relocating data addresses to their current real main storage ad-
dresses. v ~ / 3 7 0 then places the translated program in its own ad-
dress space, where it is not vulnerable to being overwritten by a
user program when the channel begins to execute the relocated
program.

The v ~ / 3 7 0 designers, realizing that not all channel programs
could be statically analyzed, barred most instances of self-modi-
fying channel programs. We discovered, however, that many
complex actions were still possible with non-self-modifying
channel programs. To compound the problems of handling chan-
nel programs, the same I/O logic was found to be repeated five
times in v ~ / 3 7 0 , to optimally support five different require-
ments. Specialized versions of I/O logic support the following
situations: virtual spooling support; virtual console support; vir-
tual channel-to-channel adapter support; and a special v ~ / 3 7 0
r/o interface. Each variation of I/O support has provided possi-
bilities for different errors.

We found that when the system performed I/O, no address space
restrictions were enforced by the hardware features to permit
dynamic checking of each byte that was to be modified. The I/O
channel acted as an independent parallel processor with inde-
pendent and unrestricted access to all of main storage. The only
hardware feature that could restrict channel access was the stor-
age protection key. Except for shared pages, that key was con-
trolled by the virtual machine and was not used to provide sys-
tem protection.

Even after omitting self-modifying channel programs from con-
sideration, the structure of System/370 I/O was found to be so
complex as to make complete static analysis and translation
very difficult. Although they are not described as such in the
Principles of Operation for System/370, channel commands are

NO. 1 * 1976 PENETRATION STUDY OF v ~ / 3 7 0

essentially variable-length commands. A modifier bit in a chan-
nel command indicates that the next nonbranch command to be
fetched by the channel merely specifies a second area of main
storage to be used by the hardware. Only the address and count
fields are used by the channel. In this sense, the second com-
mand is an extension of the first.

The interpretation of a word by the channel depends on the con-
text of the word, that is, whether it is the first or a subsequent
word of a variable-length command. We found that the same
word might - during the execution of a channel program - have
played the role of a command in its own right as well as acting
as the extension of another command by using transfers in the
channel program or command skipping in disk channel pro-
grams. Thus the System/370 architecture allowed puns in the
channel, in that a word’s interpretation depended on whether it
was received as the leading or trailing portion of a long com-
mand. This fact seemed to have been overlooked in the v ~ / 3 7 0
static analysis of channel programs, since this possibility was
not considered when backward branches occurred in channel
programs. When a word had been examined, v ~ / 3 7 0 assumed
that its meaning remained constant throughout the execution of
the channel program. This resulted in several penetrations, some
of which enabled the penetrators to seize complete control of
the system to access files illicitly, or to deprive other users of
certain resources, e.g., I/O channels, by writing nonterminating
channel programs.

concurrent v ~ / 3 7 0 allowed a virtual machine to execute one or more I/O
operations operations at the same time as CPU instructions were being

executed. After an I/O operation had been initiated, the v ~ / 3 7 0
architecture would allow the virtual machine to be schedulable.
Thus the virtual machine could start another I/O operation on a
different channel, execute instructions, or issue system requests.
The channels performed, in a sense, as though they were sepa-
rate parallel processors. They could modify any location in vir-
tual storage while code was being executed. In addition, a user
might specify that a virtual machine be schedulable before the
processing of console commands had been completed. This
would make it possible for a virtual machine to execute pro-
grams while command processing for the same virtual machine
was in progress by the v ~ / 3 7 0 control program.

This capability of concurrent operations for a virtual machine
puts a stringent requirement on the control program. Since it
would be possible for a virtual machine’s storage to be modified
at any instant, the control program must never make assump-
tions based on values that it obtains from the virtual machine’s
storage.

110 ATTANASIO, MARKSTEIN AND PHILLIPS IBM SYST J

v ~ / 3 7 0 was found to be generally careful to observe this re-
striction. Selector channel programs were always found to be
executed from protected system areas. The spooling and virtual
console functions moved the current command word to a pro-
tected area for examination. An instruction that caused an inter-
ruption would be moved to a table early in its processing. Vir-
tual console commands were moved to a system buffer before
processing. These are all instances of strength.

However, two v ~ / 3 7 0 features were discovered that permitted
a total penetration, and others were discovered that could cause
the system to fail. The first case concerned the Os/360 use of
self-modifying channel programs in its ISAM access methodz1.
To support this feature in a virtual machine, v ~ / 3 7 0 had been
modified to examine channel programs for the pattern associated
with this use of self-modifying code by 0s/360. The v ~ / 3 7 0
method of handling such channel programs was to execute some
commands out of the user’s virtual storage, that is, not in VM/
370 storage space. As a consequence, a penetrator, mimicking the
os/360 channel program, could modify the commands in his
storage before they were executed by the channel, and, thereby,
overwrite arbitrary portions of v ~ / 3 7 0 . This feature, however,
was not generally available to the user. It would take a deliberate
action by a system administrator to make it available to a specific
user. Hence, the support of the os/360 ISAM access method could
be controlled, or, if desired, denied to all users. The second case
involved a bizarre interplay of an oversight in condition-code
checking, simultaneous CPU and I/O channel program execution,
and a retrofit to the basic v ~ / 3 7 0 design. With careful timing,
these factors could be manipulated to gain a total system pene-
tration.

Design oversights could be exploited to monopololize some
system resources. As a result, the system might become less
useful to others, even though there might be no penetration, in
the sense of gaining control of the machine or accessing private
information. For most system resources used by v ~ / 3 7 0 in
servicing users, the allocation is an “open-shelf’ strategy. In
general, an interactive system must be capable of responding to
rapidly fluctuating demands for services and resources from
users. In an interactive environment, therefore, maintaining con-
trol of resources-such as working main storage and I/O chan-
nels -and the ability to distinguish legitimate demands from ma-
licious ones would be quite difficulf. Such a capability was
discovered to be beyond the capability of v ~ / 3 7 0 .

Virtual machines are scheduled on the basis of terminal activity,
I/O activity, working-set size, and priority. The then-current im-
plementation allowed a penetrator to misrepresent his activity

NO. 1 1976 PENETRATION STUDY OF V M / 3 7 0

design of
resource
allocation

1 1 1

and thus be able to obtain a disproportionate share of the CPU
cycles. In extreme cases, users might not be serviced at all as a
result of such abuse.

human As in any chain of interconnecting components, a computing
interface system is only as secure as its weakest link. And that link may

be a human being. Even if all the vulnerabilities described so far
were corrected, a system as maintained at a given installation
might still be vulnerable to human error or oversight. Many po-
tential flaws involved the human interface, but we found no
common element that related these weaknesses in the same
manner as rlo was found to be a common factor in the penetra-
tions just described.

The system was found to be unable to protect itself from an op-
erator or system programmer who desired to penetrate the sys-
tem. Great caution was found to be required during system
maintenance to prevent unauthorized system modification or
inadvertent loss of information. People doing maintenance might
often be overworked and under pressure, and might become
negligent in protecting critical data. They might not realize that a
new version of a system must be guarded before it becomes
operational as well as after it is put into use.

There seemed to be no attempt to protect the system from inten-
tional subversion by an operator. The computer console was the
link in the chain that permitted alteration of any location in stor-
age. Operator errors might also lead to penetrations. Since any
volume could be mounted on a real computer, it was consistent
with vM/370 design to permit any volume to be mounted on a
virtual machine. This would give great flexibility, but would
make system security dependent on perfect operators. It was
our belief that installations should limit operator actions so as to
partially compensate for such weaknesses.

Written or telephone communication with the operator was re-
quired to schedule drives, channels, dedicated printers, commu-
nication lines, etc., that were attached to a virtual machine. Re-
sponsibility for detecting and preventing illegal requests for data
rested completely with the operator.

The system identifies itself by a standard log-on sequence that a
virtual machine can simulate. A terminal may be left unattended
while attached to a virtual machine set up to simulate the log-on
procedure. The next person to use the terminal, believing that he
is interacting with v ~ / 3 7 0 , may reveal his password to the vir-
tual machine. This can happen when several users share a termi-
nal, which is a common mode of operation. Of course, any user
who takes the precaution of not using a pre-established connec-
tion avoids this hazard.

112 ATTANASIO, MARKSTEIN A N D PHILLIPS IBM SYST J

Security strengths and weaknesses

Many types of penetrations that have been successful against
conventional operating systems"'" are not possible against
v ~ / 3 7 0 . F o r example, os/360 and other systems11'22 have been
penetrated because those systems used user-addressable main
storage for system control information. Penetrations have also
been accomplished because the operating system and its users
made use of the same file management system. Such a structure
requires great care in its implementation to insure that system
operations (which are subject to fewer constraints) are always
distinguished from user operations.ll

The main strength of v ~ / 3 7 0 is its simplicity. The System/370
Principles of Operation interface presented by v ~ / 3 7 0 does not
allow v ~ / 3 7 0 to employ user-addressable storage for its own
purposes. Therefore, all control information must be in storage
that is private to v ~ / 3 7 0 , and, thus, the first type of penetration
just mentioned is not possible. The simplicity of v ~ / 3 7 0 and its
resultant small size allow it to be essentially resident in main
storage, so that its requirements for I/O services are simple and
are handled directly, rather than through the data management
support that is available to users.

The major security vulnerability of v ~ / 3 7 0 is due to the com-
plexity required of the control program in simulating the Sys-
tem/360 interface for input/output. In this area, v ~ / 3 7 0 is more
complex than conventional operating systems, and input/output
was involved in all the penetrations found. Penetrations were
possible both because of errors in simulating some of the more
improbable channel programs that can be written by a user, and
from failure to anticipate certain effects made possible by the
simultaneous operation of the CPU and input/output in the sup-
port of one user.

Concluding remarks

The virtual machine architecture embodied in v ~ / 3 7 0 greatly
simplifies an operating system in most areas and hence increases
the probability of correct implementation and resistance to pene-
tration. The control program is not concerned with user files or
multiple access methods. It simulates a machine with a fixed
number of buttons and instructions that require interpretation.
The choice of System/370 Principles of Operation as a user in-
terface provides a well understood and well documented inter-
face. The result is a system that is smaller and simpler, with
fewer opportunities for error. The simplicity enhances the prob-
ability of obtaining security. The exception area is the support of
inputloutput.

NO. 1 . 1976 PENETRATION STUDY OF V M / 3 7 0

Our investigation produced a strong conviction that v ~ / 3 7 0
was well implemented and carefully tested, even though the
study resulted in several penetrations that were the result of
implementation errors. This contradiction is consistent with our
observation that no system of the size and complexity of
VM / 370 is known to be error free. All paths could not be tested,
and proof of correctness could not be demonstrated. A penetra-
tion of any portion of the system could jeopardize the entire sys-
tem. Modifications, corrections, and functional enhancements
were found to have a higher probability of containing flaws that
yielded penetrations than the original core of the system.

The .penetration methodology developed by our team has pro-
vided a systematic and reasonably comprehensive approach to
testing VM / 370 security strengths and weaknesses. Although
there may remain serious and undiscovered flaws, the methodol-
ogy provided a high payoff ratio of actual flaws found to poten-
tial flaws examined (65%). The method saved much time by
preventing the researchers from examining low-probability or
redundant pathways. It also provided a means for internal com-
munication. At the same time, the team methodology required
laborious hours of intensive readings of listings, system docu-
mentation, and program logic manuals. Although many hypothe-
ses were generated, only a small number could be studied in
detail. In the process of discarding large numbers of hypotheses,
one or more valid ones may have been overlooked. Also, the
very fact that a systematic approach was taken introduces the
possibility that exposures orthogonal to the paths of investiga-
tion indicated by the methodology might more easily remain
concealed.

As a final observation on the penetration study of ~ ~ 1 3 7 0 , we
occasionally contemplated the wisdom of attempting to make a
virtual machine the same as its real-machine counterpart. In one
case, the designers of v ~ / 3 7 0 had ignored the operation code in
a channel program using data chaining because the hardware
appeared to do so. In another case, by making the storage keys
freely available to the virtual machine, v ~ / 3 7 0 was deprived of
an extra measure of protection against rlo errors. Thus, per-
mitting a virtual machine to be able to create virtual copies of
itself-although essential for some of the purposes for which
virtual machine systems are used-increases the difficulty of
making such systems secure.

Acknowledgment

The authors acknowledge the contributions of C. Weissman and
R. R. Linde of the System Development Corporation, and L. A.
Belady and A. L. Tritter of the IBM Research Division. Their

114 ATTANASIO, MARKSTEIN AND PHILLIPS IBM SYST J

I tant role in establishing a methodology, setting goals, and specu;
lating on probable weaknesses of W/370. Referees’ comments
led us to make useful improvements in this paper.

CITED REFERENCES
I . J. P. Anderson, Computer Security Technology Planning Study, ESD-TR-

73-5 1 -1, Headquarters, Electronic Systems Division, Hanscom Air Force
Base, Massachusetts 01730 (October 1972).

2. H. Weiss, “Computer security, an overview,” Datamation 20, No. 1 (Janu-
ary 1974).

3. R. Schell, et al. Preliminary Notes on the Design of Secure Militury Com-
puter Systems, ESD-MCI-73- I , Headquarters, Electronic Systems Division,
Hanscom Air Force Base, Massachusetts 01730 (January 1973).

4. D. Tsichritzis, Systems Security, IBM Research Report RC3989, may be
obtained from rhe IBM Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, N. Y.10598.

5 . NBS Special Publication 404, Approaches to Privacy and Security in Com-
puter Systems, U.S. Department of Commerce, Washington, D.C., 1974.

6. A. Jones, Protection in Programmed Systems, Ph.D. Thesis, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania
(June 1973).

7. S. E. Madnick and J. Donovan, An Approach to Informution System Isola-
tion and Security in a Shared Facility, Alfred P. Sloan School of Manage-
ment, M.I.T., Cambridge, Massachusetts (March 1973).

8. R. Bisbey and G. Popek, Encapsulation: A n Approach to Operating System
Security, Information Sciences Institute, Marina Del Ray, California 9029 1 .

9. G. Popek and C. Kline, “Verifiable secure operating system software,”
AFIPS Conference Proceedings, Nutional Computer Conference 43, 145 -
15 1 (1974).

10. P. Karger and R. Schell, MULTICS Security Evaluation: Vulnerability
Analysis, NTIS: ADIAOOI 120, may be obtained from the National Techni-
cal Information Service, U.S. Department of Commerce, Springfield, Vir-
ginia 22 15 1.

11. W. McPhee, “Operating system integrity in OSlVS2,” IBM Systems Jour-
nal 13, No. 3, 230-252 (1974).

12. J . P. Anderson, AFIACS Computer Security Controls Study, ESD-TR-71-
398, Headquarters, Electronic Systems Division, Hanscom Air Force Base,
Massachusetts 01730 (November 1971).

13. J. Bergart, Computer Security, Access Control and Privacy Protection in
Computer Systems, Moore School of Electrical Engineering, University of
Pennsylvania (1972).

14. J. Scherf, Computer and Data Security: A Comprehensive Annotated Bibli-
i ography, Alfred P. Sloan School of Management, M.I.T., Cambridge, Mas-

~ 15. IBM Virtual Machine Facilityl370: Command Language Users’ Guide,
IBM Publication GC20-1804, may be obtained from IBM Corporation,
Data Processing Division, 1133 Westchester Avenue, White Plains, New
York 10604.

16. IBM Virtual Machine Facility/370: Control Program (CP) Logic, IBM
Publication SY20-0880, may be obtained from IBM Corporation, Data Pro-
cessing Division, I133 Westchester Avenue, White Plains, New York
10604.

17. IBM Systeml37O Principles of Operation, IBM Publication GA22-7000,
may be obtained from IBM Corporation, Data Processing Division, 1133
Westchester Avenue, White Plains, New York 10604.

I sachusetts (1974).

1 NO. 1 * 1976 PENETRATION STUDY OF VM / 370 1 1.5

18. R. P. Parmelee, T. L. Peterson, C. C . Tillman, and D. J . Hatfield, “Virtual
storage and virtual machine concepts,” IBM Systems Journal 11, No. 2,

19. M. McGrath, “Virtual machine computing in an engineering environment,”
IBM Systems Journal 11, No. 2, 13 1 - 149.

20. A. Newell, J . Shaw, and H. Simon, “A variety of intelligent learning in a
general problem solver,” Self Organizing Systems, Proceedings of an Inter-
disciplinury Conference, Pergamon Press, Elmsford, New York 10523.

21. “OS/VS Data Management Services Guide,” IBM Publication GC26-
3783, may be obtained from IBM Corporation, Data Processing Division,
1133 Westchester Avenue, White Plains, New York 10604.

22. W. M. Inglis, “Security problems in the WWMCCS GCOS Joint Technical
Support Activity Operating System Technical system,” Bulletin 7308-12,

99-130.

Defense Communication Agency (August 1973).

Reprint Order No. G321-5029

116 ATTANASIO, MARKSTEIN AND PHILLIPS

