
zSeries Technical Conference

L76 | May 2004 © 2004 IBM Corporation

The Art of Squeezing Penguins

Rob van der Heij
IBM Netherlands
rvdheij@nl.ibm.com

zSeries Technical Conference

© 2004 IBM Corporation2 L76 | The Art of Squeezing Penguins May 2004

Trademarks
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

BookManager*
DB2*
DFSMS/MVS*
DFSMS/VM*
e-business logo*
Enterprise Storage Server
ESCON*
FICON
GDDM*

IBM*
IBM logo*
Language Environment*
Multiprise*
MVS
NetRexx
OpenEdition*
OpenExtensions
OS/390*

VM/ESA*
VSE/ESA
VTAM*
z/Architecture
z/OS
z/VM
zSeries

Parallel Sysplex*
PR/SM
QMF
RACF*
RAMAC*
S/390*
S/390 Parallel Enterprise Server
VisualAge*
VisualGen*

Notes: Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's
job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve
throughput improvements equivalent to the performance ratios stated here. IBM hardware products are manufactured from new parts, or new and serviceable used
parts. Regardless, our warranty terms apply. All customer examples cited or described in this presentation are presented as illustrations of the manner in which
some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending
on individual customer configurations and conditions. This publication was produced in the United States. IBM may not offer the products, services or features
discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information
on the product or services available in your area. All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and
represent goals and objectives only. Information about non-IBM products is obtained from the manufacturers of those products or their published announcements.
IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products. Prices subject to change without notice. Contact your IBM representative
or Business Partner for the most current pricing in your geography.

The following are trademarks or registered trademarks of other companies.

Lotus, Notes, and Domino are trademarks or registered trademarks of Lotus Development Corporation; LINUX is a registered trademark of Linus Torvalds; Penguin
(Tux) compliments of Larry Ewing; Tivoli is a trademark of Tivoli Systems Inc.; Java and all Java-related trademarks and logos are trademarks of Sun Microsystems,
Inc., in the United States and other countries; UNIX is a registered trademark of The Open Group in the United States and other countries; Microsoft, Windows and
Windows NT are registered trademarks of Microsoft Corporation; SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic
Transaction LLC. * All other products may be trademarks or registered trademarks of their respective companies.

zSeries Technical Conference

© 2004 IBM Corporation3 L76 | The Art of Squeezing Penguins May 2004

Allocating Memory to Servers

LPAR does not provide virtual memory
– Only hand out what you have physically installed
– You could define virtual machines in the same way

zSeries

3 GB 3 GB 10 GB

z/VM

zSeries

3 GB 3 GB 10 GB

zSeries Technical Conference

© 2004 IBM Corporation4 L76 | The Art of Squeezing Penguins May 2004

Agenda

Virtual Memory

Define Linux “footprint”

Measuring Linux memory usage

Reducing Linux footprint
– Sharing memory
– Collaborative Memory Management

Results

zSeries Technical Conference

© 2004 IBM Corporation5 L76 | The Art of Squeezing Penguins May 2004

Redbook

Contents

Virtualization and server consolidation

z/VM memory and storage concepts

Linux virtual memory concepts

Tuning memory for z/VM Linux guests

Examining Linux swap device options

CPU resources and the z/VM scheduler

Tuning processor performance for z/VM Linux guests

Tuning DASD performance for z/VM Linux guests

Measuring the cost of OSA, Linux, and z/VM networking

zSeries Technical Conference

© 2004 IBM Corporation6 L76 | The Art of Squeezing Penguins May 2004

Virtual Memory

Virtual Memory builds on
– Address Translation hardware
– Limited amount of real memory
– Paging space

Virtual Memory provides
– Isolation by providing each their own virtual linear space
– A way for a memory manager to over commit memory

• Sometimes incorrectly referred to as “sharing memory”

zSeries Technical Conference

© 2004 IBM Corporation7 L76 | The Art of Squeezing Penguins May 2004

Virtual Memory

Dynamic Address Translation
Translate virtual to real address
– Also for access registers

zSeries Technical Conference

© 2004 IBM Corporation8 L76 | The Art of Squeezing Penguins May 2004

Virtual Memory

Simplified picture for small virtual machines
– Segment table and page tables span virtual memory
– One such set for each virtual machine

STO

Segment table Page tables

Pages

Not all page table entries
lead to a page frame

Resident in storage

Paged out to paging space

Never touched (not present)

zSeries Technical Conference

© 2004 IBM Corporation9 L76 | The Art of Squeezing Penguins May 2004

Virtual Memory

Segment table and page tables for each virtual machine

Cost of page tables would be considerable
– VM also needs some management structures with the pages
– Fortunately only needed when the segment is not empty

Address
Range

Size Needed for full
address space

Total cost

Page Frame 4K 4 K 524288

2048

1

2 G

Page Table 1 M 2 K 4 M

Segment Table 2 G 16 K 16 K

zSeries Technical Conference

© 2004 IBM Corporation10 L76 | The Art of Squeezing Penguins May 2004

Virtual Memory

z/VM Memory Management will
– At first reference to a virtual page

• Allocate a page table when entire segment is absent
• Allocate a page frame to hold the page

– Page-out unused pages to paging space to make room
• Driven by demand for free page frames

– Page-in referenced page when needed again
– Migrate pages from expanded storage to paging disks

zSeries Technical Conference

© 2004 IBM Corporation11 L76 | The Art of Squeezing Penguins May 2004

z/VM Paging

Basic numbers with CP INDICATE LOAD
– Use Performance reporting for trends

CP IND

AVGPROC-004% 02

XSTORE-000482/SEC MIGRATE-0194/SEC

MDC READS-000146/SEC WRITES-000001/SEC HIT RATIO-081%

STORAGE-050% PAGING-0321/SEC STEAL-000%

DASD

XSTORE

CORE

X
S
T
O
R
E

M
I
G
R
A
T
E

P
A
G
I
N
G

zSeries Technical Conference

© 2004 IBM Corporation12 L76 | The Art of Squeezing Penguins May 2004

Footprint

Virtual machine memory breakdown
– Resident
– Paged out to DASD
– Paged out to XSTORE
– Not there

CP IND USER LINUX40

USERID=LINUX40 MACH=XA STOR=64M VIRT=V XSTORE=NONE

IPLSYS=DEV 0205 DEVNUM=00014

PAGES: RES=00004121 WS=00004111 LOCK=00000010 RESVD=00000000

NPREF=00004934 PREF=00000000 READS=00000001 WRITES=00004935

XSTORE=001103 READS=000426 WRITES=006463 MIGRATES=004934

CPU 00: CTIME=00:44 VTIME=000:03 TTIME=000:04 IO=001987

RDR=000000 PRT=000000 PCH=000000

64 M = 16384 pages

Resident

XSTORE

DASD

Absent

Use a virtual NIC
instead of dedicated OSA:

~1820 pages

zSeries Technical Conference

© 2004 IBM Corporation13 L76 | The Art of Squeezing Penguins May 2004

Footprint

Resident

XSTORE

DASD

Absent

Most numbers from IND USER
add up well
– Number of pages on DASD is not

always accurate

CP IND USER LINUX40

USERID=LINUX40 MACH=XA STOR=64M VIRT=V XSTORE=NONE

IPLSYS=DEV 0205 DEVNUM=00014

PAGES: RES=00004121 WS=00004111 LOCK=00000010 RESVD=00000000

NPREF=00004934 PREF=00000000 READS=00000001 WRITES=00004935

XSTORE=001103 READS=000426 WRITES=006463 MIGRATES=004934

CPU 00: CTIME=00:44 VTIME=000:03 TTIME=000:04 IO=001987

RDR=000000 PRT=000000 PCH=000000

4121

1103

4934

6
4
6
3

4
9
3
4

1

4
2
6

zSeries Technical Conference

© 2004 IBM Corporation14 L76 | The Art of Squeezing Penguins May 2004

Footprint

Compare storage residency of virtual machines

Footprint consists of different components
1. Resident pages
2. Expanded storage
3. DASD

Focus on resident pages
and on expanded storage

0

2048

4096

6144

8192

10240

12288

14336

16384

LIN
UX40

LIN
UX41

LIN
UX42

LIN
UX43

LIN
UX44

LIN
UX45

LIN
UX46

LIN
UX47

LIN
UX48

LIN
UX49

RES
XSTOR
DASD

zSeries Technical Conference

© 2004 IBM Corporation15 L76 | The Art of Squeezing Penguins May 2004

Footprint changes over time

INDICATE USER shows user footprint size

Activity in Linux makes the footprint increase
– 1115 from DASD

– 111 from XSTORE

– 265 fresh pages

PAGES: RES=00004121 WS=00004111 LOCK=00000010 RESVD=00000000

NPREF=00004934 PREF=00000000 READS=00000001 WRITES=00004935

XSTORE=001103 READS=000426 WRITES=006463 MIGRATES=004934

CPU 00: CTIME=00:44 VTIME=000:03 TTIME=000:04 IO=001987

PAGES: RES=00005612 WS=00005602 LOCK=00000010 RESVD=00000000

NPREF=00004934 PREF=00000000 READS=00001116 WRITES=00004935

XSTORE=000992 READS=000537 WRITES=006463 MIGRATES=004934

CPU 00: CTIME=00:50 VTIME=000:04 TTIME=000:04 IO=002035

DASD

XSTORE

CORE 1115
111

zSeries Technical Conference

© 2004 IBM Corporation16 L76 | The Art of Squeezing Penguins May 2004

Footprint changes over time

z/VM will page-out only when necessary
– Minimal footprint can only be determined when there is

enough memory pressure
– Differences between virtual machines may not be

representative
• Compute average over

a number of servers
• Compare groups of servers

0

2000

4000

6000

8000

10000

12000

14000

Time

Pa
ge

s

xstor
res

zSeries Technical Conference

© 2004 IBM Corporation17 L76 | The Art of Squeezing Penguins May 2004

Unsolicited Experiment #1

Effect of adding storage to VM

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0:15 3:15 6:15 9:15 12:15 15:15 18:15 21:15

Time

W
or

ki
ng

 S
et

 S
iz

e
(p

ag
es

)

0

50

100

150

200

250

300

350

Expanded Storage
Page Rate
(pages/s)

WSS A
WSS B
PGin
PGout

Linux Virtual
machines grow as
long as memory is
available

When memory
constraint is taken
away, Linux virtual
machines grow
again

Avoid work when you

can: ~ 1500 pages

zSeries Technical Conference

© 2004 IBM Corporation18 L76 | The Art of Squeezing Penguins May 2004

Measuring Linux footprint

Comparing a set of similar idle servers
– These servers appear to be happy with just 6 MB

Some activity in Linux will cause VM to page-in

0

500

1000

1500

2000

2500

3000

3500

41 42 43 44 45 46 47 48 49

Pa
ge

s xstor

res

0

500

1000

1500

2000

2500

3000

3500

41 42 43 44 45 46 47 48 49

Pa
ge

s xstor

res

Connection rate: 10.1 conn/s (99.3 ms/conn, <=22 concurrent connections)

Connection time [ms]: min 1.0 avg 260.6 max 2144.9 median 1.5 stddev 554.1

Connection time [ms]: connect 9.2

zSeries Technical Conference

© 2004 IBM Corporation19 L76 | The Art of Squeezing Penguins May 2004

Measuring Linux footprint

Paging in the missing pages is not for free
– Delay for the first transaction after idle period
– Almost no “fresh” pages

• Linux uses all memory
– Wake-up delay depends on

• Paging capacity available
• Amount of pages needed

Waking up an idle server

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8

Time (s)

Pa
ge

s

Resident pages

Extra pages read

zSeries Technical Conference

© 2004 IBM Corporation20 L76 | The Art of Squeezing Penguins May 2004

Linux Memory Usage

Over time Linux will use all memory
– Kernel code and core structures
– Stack (process data)
– Page Cache

• Programs being executed
• Shared libraries for programs
• Disk files being used
• Anything else that was used before

But what pages does it really need to run?

zSeries Technical Conference

© 2004 IBM Corporation21 L76 | The Art of Squeezing Penguins May 2004

Linux Memory Usage

Look at which pages are kept
resident on VM
– Walk the segment and page tables
– With sufficient servers that should

reveal a pattern

It does show a pattern
– But not very helpful

zSeries Technical Conference

© 2004 IBM Corporation22 L76 | The Art of Squeezing Penguins May 2004

Linux Memory Usage

Linux implements virtual memory as well
– The same object resides in different “guest real” pages

• The 2.4 kernel lacks mapping of real page to virtual
– Very hard to compare different servers

• Kernel and static allocations are fixed

zSeries Technical Conference

© 2004 IBM Corporation23 L76 | The Art of Squeezing Penguins May 2004

Reducing Linux Footprint

Linux kernel in NSS
– Code has been around for some time

• Moves code and data into different segments
– Included in SuSE distribution

• By default not enabled
• Must compile your own kernel: not supported

– Could save some 300-400 pages per Linux server
Filename=SUSE80T4 Filetype=NSS Class=A Spoolid=0139

Time loaded=6 11:07 Size=4M

Pages: Main=379 Xstore=51 Dasd=430 Locked=0

Paging:

Xstore: Reads=1549 Writes=2838 Migrates=286

Dasd: Reads=1843 Writes=1400

zSeries Technical Conference

© 2004 IBM Corporation24 L76 | The Art of Squeezing Penguins May 2004

Linux Kernel in NSS

– Kernel is a relatively small portion of total code
• Typically less than 2 MB (< 1% of the full system)
• Kernel pages are popular

– Shared pages are less likely to be paged out by VM
• Keeping kernel pages in is a Good Thing (pseudo page fault)

<---CPU time--> <--------Main Storage (pages)--------->

UserID <(seconds)> T:V <Resident> Lock <-----WSS----->

Time /Class Total Virt Rat Total Activ -ed Total Actv Avg Resrvd

-------- -------- ----- ----- --- ----- ----- ---- ----- ---- ---- ------

17:08:27 System: 2.24 2.02 1.1 715K 715K 5315 711K 711K 2246 0

LINUX-C 0.60 0.53 1.1 296K 296K 1000 295K 295K 2957 0

*TheUsrs 0.55 0.49 1.1 149K 149K 3030 148K 148K 1399 0

*Servers 0.41 0.39 1.1 592 592 4 999 999 100 0

Linux-B 0.38 0.35 1.1 145K 145K 500 145K 145K 2903 0

Linux-A 0.30 0.26 1.1 122K 122K 500 121K 121K 2434 0

Linux-B: IPL from DASD

Linux-A: IPL from NSS

Kernel code
shared in NSS:

~400 pages

Drivers built-in
:

~100 pages

zSeries Technical Conference

© 2004 IBM Corporation25 L76 | The Art of Squeezing Penguins May 2004

Reducing Linux Footprint

Recent patches on IBM developerWorks
– May not be in your favorite distribution yet

Exploiting VM Shared Segments (DCSS)
– DCSS Block Device
– The xip2 file system

Collaborative Memory Management
– Dynamically adjust Linux memory management through

external controls

zSeries Technical Conference

© 2004 IBM Corporation26 L76 | The Art of Squeezing Penguins May 2004

VM Shared Segments

Facility to share storage between virtual machines
– Sharing is normally done read-only
– Exploited by CMS and Program Products

• Small virtual machine size and small working set
• Sub-second response times

– Exploited by GCS to simulate z/OS memory layout
– Exploited by Linux

• Sharing the kernel code
• Sharing application code (userspace binaries)
• Very fast swap device
• Shared R/W memory between servers

zSeries Technical Conference

© 2004 IBM Corporation27 L76 | The Art of Squeezing Penguins May 2004

VM Shared Segments

– Page tables and pages shared by virtual machines
• At the same virtual address for each virtual machine

– Virtual machine storage not necessarily contiguous

STO

Segment table Page tables

VM1
VM2

VM3S1

S2

Virtual Machine memory layout

Pages

STO

Pages

zSeries Technical Conference

© 2004 IBM Corporation28 L76 | The Art of Squeezing Penguins May 2004

VM Shared Segments

Defined and saved by the systems programmer
– DEFSEG Define address range
– SAVESEG Saves the contents of the segment
– Updates through replacement of the complete segment

Contents is kept in special spool files
– SDF - System Data File
– Referenced by name, Identified by number

Resides in paging subsystem while in use
– Paged preferred by z/VM to keep in memory

zSeries Technical Conference

© 2004 IBM Corporation29 L76 | The Art of Squeezing Penguins May 2004

VM Shared Segments

NSS – Named Saved System
– Virtual machine uses one at a time
– Is attached by IPL
– Overlaps portions of the virtual machine

DCSS – Discontiguous Shared Segment
– Can use different segments at the same time
– Attached through diagnose 64
– Can overlap virtual machine or be above it

zSeries Technical Conference

© 2004 IBM Corporation30 L76 | The Art of Squeezing Penguins May 2004

Linux and Shared Segments

With recent patches Linux can attach DCSS
– Segment becomes part of Linux “real memory”

• Memory management structures to map it
• Structures are set up when Linux boots
• Override memory size at boot time with mem=

– Kernel can access contents of shared segments
• Access is R/O or R/W depending on space type
• Kernel can map pages into process address space

Patches currently on linuxvm.org

Expected to appear in SuSE soon

zSeries Technical Conference

© 2004 IBM Corporation31 L76 | The Art of Squeezing Penguins May 2004

Linux and Shared Segments

Override memory size in kernel
command line
– Linux will still probe memory to see

what it can use
– Defines the amount of real address

space that can be used
Segment to be used must be
– Completely outside virtual machine
– Defined below the set maximum
– Can not overlap

Linux guest

192 M

segments

64 M

dasd=200-207 root=/dev/dasdb1 mem=192m 0 M

zSeries Technical Conference

© 2004 IBM Corporation32 L76 | The Art of Squeezing Penguins May 2004

Linux and Shared Segments

DCSS Block Device
– Like a disk in memory
– Could be used to hold common code

• But would be copied into private memory
• Would only avoid the disk I/O

The xip2 file system
– Execute in Place
– DCSS pages mapped into process address space

• Avoids I/O and allows sharing

Page Cache

Block Devices

Virtual File System

xip2

zSeries Technical Conference

© 2004 IBM Corporation33 L76 | The Art of Squeezing Penguins May 2004

Benefits of xip2 file system

Compare boot with and without xip2
– 64 MB virtual machine
– 128 MB for xip2 file system

– Savings because code is
not loaded in memory

– Faster booting

Resident pages after IPL

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30 35

Time (s)

Re
si

de
nt

 p
ag

es

No xip2
With xip2

Booting server with

xip2: ~1850 pages

zSeries Technical Conference

© 2004 IBM Corporation34 L76 | The Art of Squeezing Penguins May 2004

Benefits of xip2 file system

Less code to load into private memory
– Difference for sample configuration ~ 10 MB

linuxgw:~ # rsh linux10 `which free`

total used free shared buffers cached

Mem: 59052 28160 30892 0 424 9208

-/+ buffers/cache: 18528 40524

Swap: 0 0 0

linuxgw:~ # rsh linux60 `which free`

total used free shared buffers cached

Mem: 60596 38304 22292 0 772 19428

-/+ buffers/cache: 18104 42492

Swap: 0 0 0

zSeries Technical Conference

© 2004 IBM Corporation35 L76 | The Art of Squeezing Penguins May 2004

Benefits of xip2 file system

Sample shows invocation of tcsh id

– Less I/O done
– Less memory used

linuxgw:~ # rsh linux10 `which vmstat` 10

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

r b swpd free buff cache si so bi bo in cs us sy id wa

0 0 0 30740 424 9244 0 0 0 5 0 4 0 0 100 0

0 0 0 30712 424 9264 0 0 2 0 0 23 0 2 98 0

0 0 0 30712 424 9264 0 0 0 0 0 5 0 0 100 0

linuxgw:~ # rsh linux60 `which vmstat` 10

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

r b swpd free buff cache si so bi bo in cs us sy id wa

0 0 0 21608 784 19920 0 0 0 0 0 4 0 0 100 0

0 0 0 21224 788 20280 0 0 36 0 0 24 0 0 100 0

0 0 0 21224 788 20280 0 0 0 0 0 5 0 0 100 0

zSeries Technical Conference

© 2004 IBM Corporation36 L76 | The Art of Squeezing Penguins May 2004

Creating the xip2 file system

Using zipl
– Create image file and mount

via the loop device
– Populate with necessary files
– Run zipl with new “segment”

option to prepare disk
– Use class E user to IPL disk
– Issue SAVESEG command

Using DCSS block device
– Attach segment with “load non-

shared” function call
– Simply add and delete files as

necessary
– Have the block device driver

issue SAVESEG

Requires CP class E for Linux
Performance considerations

zSeries Technical Conference

© 2004 IBM Corporation37 L76 | The Art of Squeezing Penguins May 2004

Using the xip2 file system

mount –t xip2 –o ro,memarea=SUSE80S1 none /mnt/s1

– Invokes Diagnose 64 to attach shared segment
– The memarea option identifies the segment to be used
– Major benefit for files used through mmap() call

• Executables (e.g. /bin, /sbin, /usr/bin, /usr/sbin)
• Shared Libraries (e.g. /lib, /usr/lib)

– The xip2 files will be spread over the entire file system
• Use the –bind option of mount Redbook SG24-6824Large Scale Linux Deployment

zSeries Technical Conference

© 2004 IBM Corporation38 L76 | The Art of Squeezing Penguins May 2004

Sizing the xip2 file system

Define segments high enough
– Above all virtual machines that want to use it
Define segments low enough
– So that they fit under the mem= setting
Define segments large enough
– That way you can put more stuff in
Define segments small enough
– So they allow for large virtual machines

This needs tuning!

zSeries Technical Conference

© 2004 IBM Corporation39 L76 | The Art of Squeezing Penguins May 2004

Sizing the xip2 file system

Set Linux memory size with mem=
– Attractive to set mem= very high to

use many segments
– But memory management structures

take room too
– Various tables are sized as part of

total memory: about 20 MB / GB
• 11 MB for struct page entries

will mostly be paged out later

Cost of memory management

0

16384

32768

49152

65536

0 500 1000 1500 2000

Defined memory size with mem= (MB)

Fr
ee

 m
em

or
y

(K
B)

zSeries Technical Conference

© 2004 IBM Corporation40 L76 | The Art of Squeezing Penguins May 2004

Sizing the xip2 file system

Funny “bump” in the curve
– Like switching gears
– Probably not spent very well

• Hash tables will be used less dense and
increase footprint Cost of memory management

49152

49408

49664

49920

50176

50432

50688

50944

51200

51456

240 244 248 252 256 260 264 268 272 276 280 284

Defined memory size with mem= (MB)

Fr
ee

 m
em

or
y

(K
B)

Stick to “magic

numbers” for the

memory size:

~150 pages

zSeries Technical Conference

© 2004 IBM Corporation41 L76 | The Art of Squeezing Penguins May 2004

Finding candidates for xip2

Not possible to put all software in
Most benefit for access through mmap()
– Binaries, libraries, some data files
Attractive for very popular files used by many servers
– GNU C Runtime, application binaries and libraries
Effective for large files
Selection is done on directory granularity

zSeries Technical Conference

© 2004 IBM Corporation42 L76 | The Art of Squeezing Penguins May 2004

Finding candidates for xip2

See maps entry in /proc to find files mapped
– Linux already handles sharing between processes
– Files are loaded on demand

linux02:~ # ps -e | grep http

537 ? 00:00:00 httpd

538 ? 00:00:00 httpd

linux02:~ # head -n 10 /proc/537/maps

00400000-0043e000 r-xp 00000000 5e:09 75595 /usr/sbin/httpd

0043e000-00446000 rw-p 0003d000 5e:09 75595 /usr/sbin/httpd

00446000-0046f000 rwxp 00000000 00:00 0

40000000-40013000 r-xp 00000000 5e:05 3053 /lib/ld-2.2.5.so

40013000-40015000 rw-p 00012000 5e:05 3053 /lib/ld-2.2.5.so

40015000-40016000 rw-p 00000000 00:00 0

40018000-4001c000 r-xp 00000000 5e:09 105675 /usr/lib/libmm.so.12.0.21

4001c000-4001d000 rw-p 00003000 5e:09 105675 /usr/lib/libmm.so.12.0.21

4001d000-40088000 r-xp 00000000 5e:05 3063 /lib/libm.so.6

40088000-4008a000 rw-p 0006a000 5e:05 3063 /lib/libm.so.6

zSeries Technical Conference

© 2004 IBM Corporation43 L76 | The Art of Squeezing Penguins May 2004

Boot script to mount xip2

#! /bin/sh -x

case "$1" in

start)

if [-n "$dcss"]; then

dcss=`echo $dcss | tr [a-z] [A-Z]`

mkdir /mnt/$dcss

modprobe xip2fs

mount -t xip2 -o ro,memarea=$dcss none /mnt/$dcss

{ while read tag path; do

case "$tag" in

"-") mount -n --bind /$path /mnt/$dcss/$path ;

fixup="$fixup $path" ;;

"+") mount -n -r --bind /mnt/$dcss/$path /$path;;

esac

done

} < /mnt/$dcss/$dcss.idx

for path in $fixup ; do

mount -n --bind /mnt/$dcss/$path /$path

done

fi ;;

*) ;;

esac

+ lib

+ bin

+ sbin

+ usr/bin

+ usr/sbin

- usr/lib/locale

- usr/lib/perl5

+ usr/lib

zSeries Technical Conference

© 2004 IBM Corporation44 L76 | The Art of Squeezing Penguins May 2004

Using xip2 file system Web server with
xip2: ~1050 pagesComparing web servers

– z/VM slightly short on memory
– Half of servers with xip2 and half without

Average initial delay:
With xip2: 1.5 s
No xip2: 2.6 s

Memory usage for web traffic

0

500

1000

1500

2000

2500

3000

3500

4000

0 60 120 180 240 300
Tim e (s)

A
ve

ra
ge

 re
si

de
nt

 p
ag

es

With xip2
No xip2

zSeries Technical Conference

© 2004 IBM Corporation45 L76 | The Art of Squeezing Penguins May 2004

Using the xip2 file system

Major issue is to be able to share code R/O
– Same issues as with shared R/O disk

• No possibility to update code with servers running
• Application code split in shared and non-shared portion

Software maintenance nightmare

Various restrictions require proper planning
– Probably different segments for each class of server

• Combine general segment and application specific segments
• Could be combined with automount

zSeries Technical Conference

© 2004 IBM Corporation46 L76 | The Art of Squeezing Penguins May 2004

Collaborative Memory Management

Recent development
– Patches on IBM developerWorks (January 2004)

Both Linux and z/VM do memory management
– Local optimization versus global resource allocation

Linux CMM driver to reduce memory usage
– Interface for VM to steer CMM driver

zSeries Technical Conference

© 2004 IBM Corporation47 L76 | The Art of Squeezing Penguins May 2004

Page Cache Paging Problem

1. Linux application wants to read, new page (a) is
taken to read data in. Application continues to
read new data in, in new fresh pages.

2. Working set grows and VM moves least recently
used page to expanded memory page frame (b).

3. After more time without reference, contents of the
page moves to paging volumes.

4. Application reads more data and Linux ran out of
unused pages. Linux will use the oldest one which
is paged out. The reference causes VM to allocate
a frame (c) and page it in.

5. Old contents is disposed, and replaced by new
data read by Linux into the page frame.

Net result: local optimization to reduce I/O resulted
in 3 I/O operations for one block of data.

paging

Linux

a

1

5

b

2

3

c 4

zSeries Technical Conference

© 2004 IBM Corporation48 L76 | The Art of Squeezing Penguins May 2004

Collaborative Memory Management

Kernel thread that can take memory away
from Linux and return to z/VM

– Triggered by z/VM memory
management

– Pages returned to Linux
• trigger by external controls
• timed release

Can shrink Linux footprint to avoid z/VM
having to page it out to expanded (2)

Can make Linux drop pages that were
already out in expanded storage (3)

Maybe also prevent page-in by z/VM when
Linux frees the page (4)

paging

Linux

a

1

5

b

2

3

c 4

zSeries Technical Conference

© 2004 IBM Corporation49 L76 | The Art of Squeezing Penguins May 2004

Collaborative Memory Management

Kernel thread allocates memory
– Least Recently Used pages are allocated
– VM is told to drop the page via Diagnose 10

Kernel module cmm.o registers /proc variables
– cmm_pages target reserved pages
– cmm_timed_pages reserved pages with timer
– cmm_timeout timer and pages to release

zSeries Technical Conference

© 2004 IBM Corporation50 L76 | The Art of Squeezing Penguins May 2004

Collaborative Memory Management

Kernel module smsgiucv.o
– Set up of IUCV handler for SMSG
– SET SMSG IUCV

Passes messages to cmm.o
– CMM SHRINK Set the cmm_pages target
– CMM RELEASE Increase the cmm_timed_pages
– CMM REUSE Timed pages return plus interval

zSeries Technical Conference

© 2004 IBM Corporation51 L76 | The Art of Squeezing Penguins May 2004

Collaborative Memory Management

Kernel thread allocates memory from Linux
– Initially it takes all unused memory (see free)
– Beyond free memory it takes pages based on LRU

• The real page could be in expanded storage or on disk

The cmm driver needs directives from “outside”
– Determine when to reserve memory

• Most effective would be short after transaction end
– Decide how much memory should be reserved

• Probably requires knowledge about Linux utilization

zSeries Technical Conference

© 2004 IBM Corporation52 L76 | The Art of Squeezing Penguins May 2004

Collaborative Memory Management

Permanent reservation
Reduce Linux footprint during a longer period
– Front-end servers off-shift
– Backup servers during office hours

Temporary reservation
Return memory to Linux short after reservation
– Either “manually” or through cmm_timeout
– Makes z/VM drop pages to prevent page-out

zSeries Technical Conference

© 2004 IBM Corporation53 L76 | The Art of Squeezing Penguins May 2004

Collaborative Memory Management

Still early development
– We need to learn how this can be used
– The current code has some rough edges

• The SMSG interface may need authentication check
• It’s easy to over commit and bring Linux down
• SMSG and /proc interface are not consistent

– Steering needs information from z/VM and Linux

zSeries Technical Conference

© 2004 IBM Corporation54 L76 | The Art of Squeezing Penguins May 2004

DCSS Block Device for Swapping

Linux on z/VM can benefit from fast swap device
– Allows to make virtual machine size smaller
– VDISK turns out to be a popular candidate

• Especially using the diagnose driver instead of FBA
– Look at it as memory, not disk

– Diagnose driver requires CMS formatting before use

zSeries Technical Conference

© 2004 IBM Corporation55 L76 | The Art of Squeezing Penguins May 2004

DCSS Block Device for Swapping

Define the DCSS as Exclusive Write
– Each virtual machine gets a private copy of the DCSS
Run mkswap before saving the DCSS
Swap signature in first block only
– Save only one page, rest can be “Exclusive R/W not-saved”
– Minimal cost when not in use, fast in setup
Swapping to DCSS happens without I/O

q nss name suse80sw map

FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP

0142 SUSE80SW DCSS N/A 04000 04000 EW A 00001 N/A N/A

04001 04FFF EN

zSeries Technical Conference

© 2004 IBM Corporation56 L76 | The Art of Squeezing Penguins May 2004

DCSS Block Device for Swapping

Swapping to DCSS does not cause CP overhead
– The MVC is done in SIE when both pages are available

• Results in low T:V Ratio
• Swap rate measured 50% higher than with VDISK
• Swapping still consumes CPU resources – avoiding is better

Fragmentation of swap space is still a concern
– Consider to implement a hierarchy of swap devices

<---CPU time--> <--------Main Storage (pages)--------->

UserID <(seconds)> T:V <Resident> Lock <-----WSS----->

Time /Class Total Virt Rat Total Activ -ed Total Actv Avg Resrvd

-------- -------- ----- ----- --- ----- ----- ---- ----- ---- ---- ------

04:30:27 LINUY03 40.56 25.72 1.6 13216 13216 10 13233 13K 13K 0

LINUY02 40.48 40.42 1.0 15166 15166 10 15982 15K 15K 0

zSeries Technical Conference

© 2004 IBM Corporation57 L76 | The Art of Squeezing Penguins May 2004

DCSS Block Device for Swapping

Restrictions and limitations
– Swap DCSS must be defined above virtual machine size

• As low as possible to reduce cost of tables in Linux
– Maybe define multiple segments at different starting address

• Total of virtual machine size and DCSS is < 2G
– Address space used for swap can not be used for xip2

zSeries Technical Conference

© 2004 IBM Corporation58 L76 | The Art of Squeezing Penguins May 2004

Possible savings

– These are no absolute values
– Numbers are based on

comparison between servers
– Not all savings can be achieved

at the same time

– In this configuration allowed for
running 300 servers rather than
only 100.

Virtual NIC rather than dedicated OSA 1820

Avoid useless work where possible 1500

Shared kernel in NSS 400

Built-in drivers rather than modules 100

Idle server with xip2 file system 1850

Stick to “magic size” boundaries 150

Web server with xip2 file system 1050

6870

zSeries Technical Conference

© 2004 IBM Corporation59 L76 | The Art of Squeezing Penguins May 2004

Conclusion

Exciting new development
– Essential for running lots of Linux guests on z/VM

Execute in Place file system
– For general use the software management issues must

be solved

Collaborative Memory Management
– Will need a lot of experimentation to get this tuned

Combination of xip2 and cmm has extra value

	The Art of Squeezing Penguins
	Trademarks
	Allocating Memory to Servers
	Agenda
	Redbook
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Virtual Memory
	z/VM Paging
	Footprint
	Footprint
	Footprint
	Footprint changes over time
	Footprint changes over time
	Unsolicited Experiment #1
	Measuring Linux footprint
	Measuring Linux footprint
	Linux Memory Usage
	Linux Memory Usage
	Linux Memory Usage
	Reducing Linux Footprint
	Linux Kernel in NSS
	Reducing Linux Footprint
	VM Shared Segments
	VM Shared Segments
	VM Shared Segments
	VM Shared Segments
	Linux and Shared Segments
	Linux and Shared Segments
	Linux and Shared Segments
	Benefits of xip2 file system
	Benefits of xip2 file system
	Benefits of xip2 file system
	Creating the xip2 file system
	Using the xip2 file system
	Sizing the xip2 file system
	Sizing the xip2 file system
	Sizing the xip2 file system
	Finding candidates for xip2
	Finding candidates for xip2
	Boot script to mount xip2
	Using xip2 file system
	Using the xip2 file system
	Collaborative Memory Management
	Page Cache Paging Problem
	Collaborative Memory Management
	Collaborative Memory Management
	Collaborative Memory Management
	Collaborative Memory Management
	Collaborative Memory Management
	Collaborative Memory Management
	DCSS Block Device for Swapping
	DCSS Block Device for Swapping
	DCSS Block Device for Swapping
	DCSS Block Device for Swapping
	Possible savings
	Conclusion

