The Case for and Value of Transactional VSAM

A CICS/Batch File Sharing Enhancement

Session TSS03
Ruth Ferziger
ruthf@us.ibm.com

What is VSAM RLS?

VSAM record level sharing (RLS) was introduced in DFSMS/MVS 1.3.0. It works with the
CICS Transaction Server as an alternative to ‘traditional’ record managéme intent was to
enhance cross system data sharing by providing a locking mechanism at the level of the
individual record in a VSAM data set rather than at the control interval or contrdbaeta

VSAM RLS requires no changes to existing VSAM data sets, except to define ttreenh@G
parameter and possibly a LOGSTREAMID parameter. Other than that, thegradardtVSAM
data sets in the same format as other KSDSs, RRDSs, VRRDSs, and ESDSs anslamse the
VSAM interfaces.

Note that to use VSAM RLS with a recoverable data set, that data set must badged.
This is because there is information in the storage class assigned to the Whtehsis used to
determine how the data set is managed in the coupling facility. Since it isdb&@&tse of a
storage class with a data set that makes a data set SMS-managed, treede daiat be
SMS-managed.

What is a Recoverable Data Set?

Recoverable data set:

* Accessing application must be recognized as a commit protocol application ifriecove
function is required (CICS or Transactional VSAM)

* Transactional back out and forward recovery capability (if needed)

* LOG(UNDOIJALL) attribute

Non-recoverable data set

* Applicable to any application which can tolerate multiple updaters (including CICS)
* No assumption on application recovery environment

* LOG(NONE) or undefined attribute

The concept is to maintain a log of changed records for a recoverable data set ancdgde the |
provide atomic commit or back out of a unit of work's (also known as transaction or unit of
recovery) changes to the data set. For VSAM RLS, CICS maintains logs of itestiang
recoverable data sets, and VSAM RLS inhibits batch jobs from updating recoveraldetslata
RLS mode. Batch readers may concurrently read a recoverable data set, but theypchataat.

Batch updaters and CICS File Control may concurrently share non-recoverabldgisitacse
these data sets do not require logging.

Transactional VSAM is the second stage of the DFSMS/MVS recoverable tfastrategy. It
provides transactional recovery within VSAM, rather than deferring this cagdobitallers of
VSAM, by providing both logging and two phase commit and back out protocols, in addition to
the locking functions already provided by VSAM RLS.

RLS introduced to VSAM the concept of Recoverable File. This attribute is sdecdidMS

(Access Methods Services) DEFINE or ALTER. The parameter and options are:

* LOG(NONE) This declares the file non-recoverable.

* LOG(UNDO) This declares the file recoverable.

* LOG(ALL) This declares the file is recoverable and also requests forwardery logging
(redo) of changes.

The attribute only applies when the file is accessed in RLS or Transaction® W@é8e. When
the file is accessed in NSR/LSR mode, VSAM ignores the attribute.

The recoverable attribute means that when the file is accessed in RLS ocfloaat®y SAM
mode, transactional recovery is provided. With RLS, the recovery is only provided when the
access is through CICS File Control, so RLS does NOT permit a batch (non-CICS) jpEXo O
a recoverable file for OUTPUT.

RLS does provide read access to a recoverable file by batch jobs. The batch job mayRrieguest
read locking to avoid seeing uncommitted changes made by sharing CICS applications. The
batch job may declare via a JCL parameter that it wants to access the@ightRLS.

The parameter and options are:
* RLS=NRI This declares RLS access without read locking.
* RLS=CR This declares RLS access with read locking.

RLS supports non-recoverable files. It provides record locking and file integrtysacr
concurrently executing CICS and batch applications. Transactional recovery ipriddded.
This is because VSAM RLS does not provide:

* undo logging

* two-phase commit/back out support

Most batch jobs that modify VSAM files are NOT designed to share data and can N@isuse
form of data sharing.

What is Transactional Recovery?

The transaction program execution model provides data sharing of recoverable seguniog
the life of a transaction, its changes to recoverable resources are NOT sd®T Inapsactions.
The transaction may request that its changes be rolled back (backed out). If thotidrarfests,

its changes are backed out. This capability is called transactional recoieproltided by the
resource managers.

Applications that are designed to the transaction model are able to easilyhshaceoterable
resources. The resource managers provide the sharing isolation and recovery wisattoima
fails or when the execution environment fails.

IMSDB and DB2 are resource managers that provide transactional recoveryrfdathbases.
CICS File Control provides transactional recovery for VSAM recoverable New,
Transactional VSAM provides transactional recovery for VSAM recoverabedd well.

This is a simple example that illustrates transactional recovery. Theamsliwants to make a
change to two different data items. A field in one data item is decremented from 200 to 100. A
field in the other data item is incremented from 700 to 800. Transactional recoverythag¢ans
either both changes are made or neither change is made. When the application requests Com
both changes are made atomically.

If the application makes these changes to non-recoverable data and the application or the
application environment fails, one or both of the changes may be lost.

The use of recoverable data means all data and other recoverable resourcesvitih dine
same commit scope are always commit-consistent. A commit scope is theesetvetrable
resource managers that participate in a commit.

CICS Function Shipping Before RLS

Before VSAM RLS, there were CICS application owning regions and CICS file owegnns.
Each FOR owned specific files. If an AOR needed access to a specific file ta fumction ship
the request to the correct FOR which would then process that request and return ththdata. If
FOR or the system on which it was running became unavailable, access to the dasa uves |
the system or FOR could be restored.

Parallel Sysplex CICS with VSAM RLS

CICS AORs (Application Owning Regions) directly access VSAM RLS. They do mettba
function-ship VSAM requests to a CICS FOR (File Owning Region). This meanbéifailtire
of a single system does not make data sets unavailable until that system ctordx tastead,
CICS can still access that data via VSAM RLS server on its own system.

The coupling facility (CF) provides the base multisystem functions requiredsiolegysharing.

Using VSAM RLS

VSAM RLS did NOT introduce any new data formats and uses, for the most part, thegexisti
VSAM interfaces. The major difference is the addition of RLS as a possible valoe on t

MACRF keyword of the ACB. Where before you might have specified NSR, LSR, or GSR, now
you may also specify RLS. Alternatively, you may also use the RLS keyword on theid€d.. O
you have opened a data set for RLS access, you may then use all the existing VSiabéster
access the data: POINT, GET, PUT, ERASE, ENDREQ), etc.

The scope of the sharing is the MVS sysplex, not the individual system. And the aializ

which had previously been done at the Cl level, is now done at the record level. This means that
two different applications, online systems, or z/OS images can be accedsirentiecords

within a single CI at the same time without interfering with each other. VSASIRanages the
serialization and takes responsibility for keeping buffers up to date.

It manages this by maintaining a lock structure in the coupling facility. By doindl aotieity
for all systems in the sysplex is always visible to all of the other systeting sysplex, so it can
never be the case that two applications or online systems or z/OS images ang tipelaame
record at the same time.

VSAM RLS

» Buffers are stored (currently) in the SMSVSAM data space and are also aathed i
coupling facility.
* Record locks are stored in a lock table, which also resides in the coupling facility.

RLS Read Integrity

NRI, or dirty read, does not provide any means of locking. Because of this, it may result in
reading uncommitted changes made by other applications (which currently have tte recor
locked using an exclusive lock).

CR provides a clean read and provides read integrity. It does this by obtaining a shared lock on
the record before reading it, and releasing the locks as soon as the record is reeecdfdhe

locked exclusively by another applications, the CR read must wait until the locksds When

the record is available, RLS serializes the record in shared mode and then ielgn&ded the

lock. Using this option, the application will never see uncommitted changes.

CRE also provides a clean read and provides read integrity. The major differdrateafter
reading the record, the shared locks is not released, but remains held until the end of the
transaction (commit or back out). During this time frame, no other transactions cam tinedat
record. This means that the application can read the record multiple times andraigtged
that it will always see the same thing. In a pure RLS world, this option is avalaleo CICS.
This is because RLS has no concept of a transaction and therefore has no mechanism for
releasing the lock. With Transactional VSAM, this option becomes available to batail.a

RLS Sharing of Recoverable Files

RLS introduced to VSAM the concept of Recoverable File. This attribute is sdacdidMS
(Access Methods Services) DEFINE or ALTER. The parameter and options are:
LOG(NONE) This declares the file non-recoverable.

LOG(UNDO) This declares the file recoverable.

LOG(ALL) This declares the file is recoverable and also requests forwardeny logging
(redo) of changes.

The attribute only applies when the file is accessed in RLS or Transaction® W@®é8e. When
the file is accessed in NSR/LSR mode, VSAM ignores the attribute.

The recoverable attribute means that when the file is accessed in RLS ocfloaat®y SAM
mode, transactional recovery is provided. With RLS, the recovery is only provided when the
access is through CICS File Control, so RLS does NOT permit a batch (non-CICS) jpEXo O
a recoverable file for OUTPUT.

RLS does provide read access to a recoverable file by batch jobs. The batch job mayRriegguest
read locking to avoid seeing uncommitted changes made by sharing CICS applications. The
batch job may declare via a JCL parameter that it wants to access the@ightRLS.

The parameter and options are:
RLS=NRI This declares RLS access without read locking.
RLS=CR This declares RLS access with read locking.

RLS Sharing of Non-Recoverable Files

RLS supports non-recoverable files. It provides record locking and file integratysacr
concurrently executing CICS and batch applications. Transactional recovery ipridgded.
This is because VSAM RLS does not provide:

- undo logging

- two-phase commit/back out support

Most batch jobs that modify VSAM files are NOT designed to share data and can NDisuse
form of data sharing.

What is the Batch Window Problem?

The majority of customers in the CICS Joint User Group have batch windows rangingiérom t
to ten hours. The programs run during the batch window consist of both in house applications
and vendor written applications. These customers would like to be able to do batch haring to
enable them to reduce or eliminate the batch window.

While VSAM record level sharing was a starting point for this goal, it does noehglgle the
necessary sharing. The possibility of augmenting it with Transactional V$fikbdity was
reviewed with the Customer Design Council in May of 1995 to validate that it addressgd a r
requirement and that the approach was viable. The consensus from the council was that the
project should be allowed to proceed, and several customer indicated a strong need for the
capabilities provided by Transactional VSAM.

The batch window is a period of time in which online access to recoverable data sdis must
disabled. During this time, no transaction processing can be done. This is normally done becaus
it Is necessary to run batch jobs or other utilities which do not properly support recodatable

As such, to allow these jobs or utilities to safely update the data, it is firssaegéo make a

copy of the data. In event that the batch job or utility fails or encounters an error, thiscdjey c
restored and online access can be reenabled.

If the batch job completes successfully, then the updated copy of the data set can be used beca
only the batch job had access to the data while it was being updated. Therefore, the data cannot
have been corrupted by interference from online transaction processing or other batch jobs.

Transactional VSAM Background

IBM originally issued a statement of direction regarding TransactionalWB#ck in May of
2000. At that time, no statement was made as to the intended ship vehicle of this new
functionality or how it would be delivered.

Transactional VSAM can be thought of as VSAM RLS plus. It builds on the capabilities
provided by VSAM RLS by continuing to support access to VSAM data sets at the record level
and by adding the necessary commit, backout and logging to support full transactionayrecover

DFSMStvs is a new member of the DFSMS family of products which includes DFSMShsm
DFSMSdss, and DFSMSrmm.

What is DFSMStvs?
Transactional VSAM (TVS)

Transactional VSAM supports the System/390 Coupled Systems Strategy. It bulds on t
locking and data caching functions provided in VSAM RLS using Coupling Facility (CF)
hardware to provide a shared data storage hierarchy for VSAM data. A new Toaradacti
VSAM access mode builds on the access to shared VSAM data sets via CF lockinghargl cac
provided by VSAM RLS. It adds the logging and two-phase commit and backout protocols
required for full transactional capability and sharing.

TVS is a major step toward the enablement of continuous operations (24x7) of CICS VSAM
online applications.

When accessing a data set using VSAM RLS, RLS provides the record level locking and buff
coherency that allows for data sharing. CICS retains the responsibility for ddoggang and
providing the two-phase commit and back out protocols. This means that while applications
using CICS can read and update recoverable VSAM data sets, batch jobs cannot, because they
have no way to provide the necessary recovery capabilities.

Transactional VSAM gives these capabilities to batch job by doing the logging rioatia: by
providing the necessary two-phase commit and backout capabilities. It does this biaeising t
System Logger to perform all of its loggings, and by using the system sync pcamtzgen to
provide two-phase commit and back out coordination across all participating resourgensiana
This is the RRS (Recoverable Resource Services) component of RRMS (Recdvesthiece
Management Services).

In this environment, Transactional VSAM can be thought of as a resource manager which
manages records in recoverable VSAM data sets.

The Value of Transactional VSAM

The objective of Transactional VSAM is to provide transactional recovery giveithiin
VSAM. It is an extension to VSAM RLS. It allows any job or application that is desidoe
data sharing to read/write share VSAM recoverable files.

Transactional VSAM is a follow-on project/capability based on VSAM RLS (celewel

sharing). RLS provides a sysplex-wide server for sharing VSAM files. It pro@Bgsoupling
facility) based locking and data caching with local buffer cross-invalidate sepforts CICS as

a transaction manager. This provides sysplex data sharing of VSAM recovdesblehzn
accessed through CICS. CICS provides the necessary unit-of-work management, undo/redo
logging, and commit/backout functions. VSAM provides the underlying sysplex-scope locking
and data access integrity.

Transactional VSAM adds logging and commit/backout support to VSAM RLS. Transactiona
VSAM requires/supports the OS/390 RRMS (Recoverable Resource Managemes@syervi
component as the commit or sync point manager.

Transactional VSAM provides a level of data sharing with built-in transactiecavery for

VSAM recoverable files that is comparable to the data sharing and transactmmnedry support
for data bases provided by DB2 and IMSDB.

Extending the Availability of CICS Applications

The majority of customers in the CICS Joint User Group have batch windows rangingiérom t
to ten hours. The programs run during the batch window consist of both in house applications

and vendor written applications. These customers would like to be able to do batch haring to
enable them to reduce or eliminate the batch window.

While VSAM record level sharing was a starting point for this goal, it does notfudlgle the
necessary sharing. The possibility of augmenting it with Transactional V$fikbdity was
reviewed with the Customer Design Council in May of 1995 to validate that it addressgd a r
requirement and that the approach was viable. The consensus from the council was that the
project should be allowed to proceed, and several customer indicated a strong need for the
capabilities provided by Transactional VSAM.

The batch window is a period of time in which online access to recoverable data sdis must
disabled. During this time, no transaction processing can be done. This is normally done becaus
it Is necessary to run batch jobs or other utilities which do not properly support recodatable

As such, to allow these jobs or utilities to safely update the data, it is firssaegéo make a

copy of the data. In event that the batch job or utility fails or encounters an error, thiswcdyey c
restored and online access can be reenabled.

If the batch job completes successfully, then the updated copy of the data set can be used beca
only the batch job had access to the data while it was being updated. Therefore, the data cannot
have been corrupted by interference from online transaction processing or other batch jobs.

TVS Customer Value

IBM customers who have considerable assets in VSAM require a rapid way totetbgra

data "directly" with e-applications. The Web application has no awareness of fSiklsame
sense as a COBOL program for instance. Instead, the Web application requeste &rsar

the Web. This Web "service" may require VSAM assets in order to compose theeesult
return to the requester. Knowledge of VSAM exists in the tools and structuressttunéture” -
of the WebSphere Application Server "container” that contains the program - i.@riSatéava
Bean (EJB) - that fields the inbound request, converts it into the appropriate paradeter
invocations, and drives the VSAM J2EE Connector to gather the raw VSAM data that it - the
EJB - will render and pass back to the Web requester.

This describes in thumbnail fashion, a multi-tier application server approach tosgatabass

that decouples the back end legacy system from the Web e-application. An EntexariBean
(EJB’s) layer provided in the WebSphere container can be loosely equated to an atiteds m
that can "directly" access legacy data - via "connectors” - to back end Eaénformation
Systems (EIS). The VSAM connector is complements the other connectors such asiDB2 a
CICS and IMS, etc. in that it makes the WebSphere solution more complete. For IBMazgstom
with significant non-database VSAM assets, it is the most cost effectivéopah e-business
solution.

VSAM Data Sharing - RLS

With VSAM RLS, batch jobs could share non-recoverable files for read and update witile CIC
was using them. Assuming the share options were correctly defined, they could aso shar
recoverable files, as long as they only wanted to read them.

R/O = read only
R/W = read or write

VSAM Data Sharing - Transactional VSAM

With Transactional VSAM added to the picture and built on top of VSAM RLS, full sharing of
recoverable files becomes possible. Batch jobs can now update the recoverabléhblgsfinst
quiesicing CICS' access to them.

System Logger is a z/OS facility to write logs from multiple addressespa multiple systems
into the coupling facility which can then be written to DASD

CF -- Coupling Facility required for locking, caching, and buffer coherency in a sharing
environment.

Accessing a Data Set with Transactional VSAM

For the most part, Transactional VSAM only supports those data sets that are defined a
recoverable. That is, the log attribute for the data set is either UNDO (back giaglogly) or

ALL (back out and forward recovery logging). When a batch job opens a recoverable data set for
update, the open is done in Transactional VSAM mode. This allows Transactional VSAM to
provide the necessary transactional recovery for the data set.

Note that data sets opened for input with the CRE option specified are also open in ibraaisact
VSAM mode. This is because the CRE (consistent read explicit, also known ashiepeaid)
locks are sync point duration locks. Without the Transactional VSAM support, VSAM RLS
would know nothing about sync points, and the locks would never get released.

In either case, read or update access, the application is responsible for definyng thargs by
invoking the RRS commit or back out function. It is not possible for Transactional VSAM to
define the sync points because it knows nothing about what the application is actually dioing. If
tried to imply a sync point every so many operations any of the following could happen:

1. Transactional VSAM could insert the sync point between paired operations (thaEig, a G
UPD and its paired PUT UPD or ERASE).

2. Transactional VSAM could insert the sync point in the middle of two pieces of work which
were meant to be atomic (for example, between subtracting 100 dollars from a claeckingt
and adding it to a savings account).

3. Transactional VSAM could decide to commit a piece of work that the application would have
realized should have been backed out (or vice versa).

Using Transactional VSAM

Transactional VSAM (sometimes abbreviated TranVSAM) permits a batch joBENCa
recoverable file for OUTPUT. However, most existing batch jobs that modify V8lasare
NOT designed to permit data sharing. Each job assumes the file is NOT being changed by
another concurrently executing program.

Transactional VSAM provides the necessary transactional recovery to enaldbatatg. Batch
jobs that are designed to use the transactional programming model may useidrehsact
VSAM to read/write shared VSAM recoverable files.

What is a Transaction?

This is an example of the usage of interfaces to Transactional VSAM. Noticelyhehange to
the already existing VSAM application interface is the new repeatalbl@pt@an on GET.

Call SRRCMIT invokes the RRS component of RRMS to commit the changes made by the
application. RRS interfaces with Transactional VSAM to commit the VSAd/cfilanges and
release the corresponding VSAM locks.

If the application also changed other recoverable resources managed by resougeesnide
DB2) that support RRMS, the commit applies atomically across TransactioAd ¥8d the
other resource managers.

Unit of Recovery

The set of changes processed by a single commit or backout (between commits or back outs, or
between the start of the program and the first commit or backout) is called a undwerye A

unit of recovery is an indivisible (atomic) entity which permits resource censisto be

maintained.

Change for a single unit of recovery occur atomically. Atomic operations are liabsxecute

in the same manner as machine instructions: either all the changes are made & mage a

The point at which the applications makes the changes permanent is called theretamiof

commit, or more simply commit or a sync point. If for some reason the applicatioresdbair

the changes not be made or an error occurs which makes it impossible for the changesiéo be ma
atomically, then the changes are backed out.

We strongly recommend that your not allow your programs to end without committing and that
you not convert your applications to use Transactional VSAM without inserting sync ploints. |

you use only the implicit sync points (commit for normal end of step or end of job, and back out
for abnormal end of step or end of job) you may end up creating retained locks which can cause
problems for other jobs. When these jobs request the retained locks, instead of waitieg for t
locks, they will receive retained lock rejects, which can only be cleared by theagippliwhich
caused them committing or backing out.

In addition, not adding commits or back outs to your application can cause the entire program to
be viewed as a single unit of recovery. This can cause it to hold a large number of locks and to
have a large amount of active data in the undo log. This can have two very negative impacts on
your sysplex operations. The first is that by holding a large number of locks, your program or
application is locking out any other batch applications or on line systems that need$o acce
those records. This can negatively impact your on line response time. Having arlawye af

active data on the undo log can cause it to spill from the coupling facility onto DASDiyebgat
impacting system performance.

Note: This example is extremely simplified since it leaves out any GE &topes, as well as
other operations such as POINT and ENDREQ.

Transactional VSAM Logstreams

Each Transactional VSAM instance has a primary system log (undo log) and a sgegsigan

log (shunt log). Both are implemented as MVS system logger log streams. ddesed

intended for use only for recovery purposes--for example, during back out or restart.eThely ar
meant to be used for any other purpose. The primary system log stream holds data for most
normal in-flight units or recovery (URs). The secondary system log stream hiwideation for

URs that cannot be completed, normally due to back out failures, or which have been determined
to be long running.

System log stream names are generally qualified names, of which the higiulanfgr is the
Transactional VSAM instance name. Transactional VSAM requires the lagnstrames to be
IGWTVnnn.IGWLOG.SYSLOG and IGWTVnnn.IGWSHUNT.SHUNLOG respectively.

Transactional VSAM instance names must be unique throughout the sysplex. Eachtiibreisac
VSAM instance supports the system log for its exclusive use. All other logspreckarate

from the system log. Their stream names are checked to ensure that theysestdiim that

of the system log.

You must define the log streams for the Transactional VSAM primary and secoystarg s
logs to the MVS system logger before starting Transactional VSAM.

Forward recovery logs are kept separate from system logs. Transactiondl M8&ns the log
stream name of a VSAM forward recovery log from the ICF catalog entry for theela
Transactional VSAM only writes to forward recovery logs. It is the respongibflproducts

which provide forward recovery capability to read them.

If you associate forward recovery log stream ids with VSAM data sets, you msusé ¢hat you
define those log streams to the MVS system logger before you open the data Betkglf t
stream name is not defined to the MVS system logger, the connect request falshatie
log stream definition determines the MVS log stream structure in the couptihity f@ which
the log stream is written.

If the use of a log-of-logs is requested via the IGDSMSxx member of SYS1.PARMLI
Transactional VSAM writes a log-of-logs. It contains copies of the start okoands, and the
tie-up records and file close records for recoverable data sets, and log stteptrorx
information. This provides data set recovery products such as CICSVR with the indarmat
required for to control forward recovery. If you use both Transactional VSAM and CIGS, it i
recommended that you use the same log-of-logs for both.

If you do not want Transactional VSAM to write a log-of-logs, omit the LOG_OF _LOGS
parameter from the IGDSMSxx member of SYS1.PARMLIB. If you use Transalcti@#ev

in a sysplex environment, and you run with a log-of-logs, then the log-of-logs should be a single
log stream shared by all Transactional VSAM instances that are used t®theceasme set of
recoverable data sets.

Forward Recovery Logging

Forward recovery is the process of applying the records contained in a redo (or foooaedye

log to redo the changes made to a data set in event that the data set is lost or damaggtd and m
be recovered from a back up copy. This process is only available to those data sets which are
defined as being forward recoverable -- that is, have LOG(ALL) specified and atsa ha
LOGSTREAMID specified.

The forward recovery log records written by Transactional VSAM were desigredas similar
as possible as those written by CICS. There are some minor differences sis {hagsible to
differentiate the writer of the records, but those differences are so minonyifarward
recovery utility which can perform forward recovery for data sets access&iCBycan also do
so for those accessed in Transactional VSAM mode.

Transactional VSAM Logging

Transactional VSAM logging uses the z/OS System Logger. The Transa®&B®AM logger is

a reuse of the design and much of the code of the CICS logger. Forward recovery legsiream
VSAM recoverable files will be shared across CICS and Transactional VSA&fofward
recovery log stream is specified as an attribute of the file. It is spkeiieAMS. The parameter
is: LOGSTREAMID=name.

CICS/Transactional VSAM Logstreams

Transactional VSAM performs the logging for VSAM RLS data sets accas3ednsactional
VSAM mode. You can share a forward recovery log stream between multiple datgoaets
not need to define a log stream for each forward-recoverable data set. Your decidatarsce
of transaction performance, rapid recovery, and the work involved in managing a large
number of log streams.

The MVS logger merges all the forward recovery log records from the varioonsattenal
VSAM instances onto the shared forward recovery log. Some points to consider are:

1. All data sets used by one transaction should use the same log stream (to reduce thaf number
log streams written to at sync point).
2. Share a forward recovery log stream between data sets that:

- Have similar security requirements

- Have similar backup frequency

- Are likely to need restoring in their entirety at the same
time.
3. Log stream names should relate to the data sets. For example, PAYROLL.da@ulsebe
mapped to a forward recovery log named PAYROLL.FWDRECOV.PAYLOG.
4. Don't mix high update frequency data sets with low update frequency data sets, Ibexause t
causes a disproportionate amount of unwanted log data to be read during recovery of low
frequency data sets.
5. Don't put all high update frequency data sets on a single log stream because you cedld exce
the throughput capacity of the stream.
6. If you define too many data sets to a single log stream, you could experience frequent
structure-full events when the log stream can't keep up with data flow.

7. Redundant data should be deleted from log streams periodically so that the logdtreains
become excessively large. Typically, for a forward recovery log, deletion of talasd@lated to
the data backup frequency. For example, you might keep the 4 most recent generations of
backup, and when you delete a redundant backup generation you should also delete the
corresponding redundant forward recovery log records. These are the records older than the
redundant backup because they are no longer needed for forward recovery.

The log of logs is written to provide information to forward recovery programs suclC&s Cl
VSAM Recovery (CICSVR) The log of logs contains copies of the start of run recodithea
tie-up and file close records for forward recoverable data sets written taodaeeavery logs.
Thus it provides a summary of which recoverable VSAM data sets Transactionil N&A
used, when they were used, and to which log stream the forward recovery log records were
written.

If you have a forward recovery product that can utilize the log of logs, you should ensurke that al
Transactional VSAM instances sharing the recoverable data sets writestmtbdog of logs log

stream. Do not share the log of logs between test and production Transactional VShigemst
because it could be misused to compromise the contents of production data sets durirey a restor

Transactional VSAM and z/OS RRS

Recoverable Resource Management Services consists of three piecest prexéns
registration services. This is the set of services that allow resourcgenait@register with
RRMS and let it know that they are present and managing recoverable resources. When
Transactional VSAM initializes it uses these services to registeresource manager for
recoverable VSAM data.

The second piece is context services. This is the piece of RRMS that managebkiningBs

and makes sure that if a task terminates without having taking action on an outstanding unit of
recovery (transaction) that the system takes the appropriate action. TicaredatSAM registers

its interest with context services when it detects that a unit of recovery rummdega TCB is

doing Transactional VSAM work.

The third piece is resource recovery services. This is the z/OS sync point nrethgeovides
the interfaces that applications use to invoke commit or back out.

Transactional VSAM is a recoverable resource manager. It is NOT a consyitcopoint

manager. Transactional VSAM interfaces with the z/OS sync point manager.avhe

application issues a commit request directly to z/OS or indirectly through aaiyrenanager

that interfaces with the z/OS sync point manager, Transactional VSAM is invmgaditipate

in the 2-phase commit process. Other resource managers (like DB2) whose reesesmbtes
were modified by the transaction are also invoked by the z/OS sync point manager thusgrovidi
a commit scope across the multiple resource managers.

SYS1.PARMLIB

Some Transactional VSAM parameters apply only to the system on which they are fthard. O
apply across the sysplex. Regardless of which type a parameter may be, eahats ar
remembered across IPLs. Therefore, your IGDSMSxx member of SYS1.PARMIdBatways
specify a complete set of the parameters you wish Transactional VSAM to use.

The RLSTMOUT parameter is optional. It specifies the maximum time in setwetds VSAM
RLS or Transactional VSAM request is to wait for a required lock before the resjassumed

to be in deadlock and aborted with VSAM return code 8 and reason code 22(X'16").
RLSTMOUT is specified as a value in seconds in the range of 0 to 9999. The defaultis 0. A
value of 0 means that the VSAM RLS or Transactional VSAM request has no time outhalue;
request will wait for as long as necessary to obtain the required lock.

VSAM RLS detects deadlocks within VSAM and Transactional VSAM. It cannot detect
deadlocks across other resource managers, and uses the time out value to determurehwhen s
deadlocks may have occurred. The installation may specify a global time out value in the
IGDSMSxx member of SYS1.PARMLIB, a step level time out value on the JCL, andicpecif
applications may specify a time out value on the RPL passed for each VSAM request.

For a particular VSAM RLS or Transactional VSAM request, the value used footims:

1. the value specified in the RPL, if any
2. the value specified in JCL at the step level, if any
3. the value specified in the IGDSMSxx member of SYS1.PARMLIB, if any

RLSTMOUT is both a VSAM RLS and a Transactional VSAM parameter. Theréfore i
RLSTMOUT is found but no Transactional VSAM instance names are specified, thetuthe va
is used only by RLS. RLSTMOUT may be specified only once in a sysplex and appliesadicros
systems in the sysplex. The first instance of Transactional VSAM brought up thighsysplex
determines the value. Subsequent Transactional VSAM instances use the valishegtaplthe
first system, regardless of what may be specified in their members of SNOMLPB. To

change the value, use the SETSMS command. This will cause the value to be changed on all
systems in the sysplex.

The SYSNAME parameter is optional. It specifies the name of the systemsctotivhi

preceding or subsequent Transactional VSAM instance names apply. Up to 32 system names
may be specified. The system names must be specified in the same order assdatidinal

VSAM instance names. SMS examines the system names specified and cohgparesthe
system name in the CVT. When a match is found, it stores the value of the TVSNAME
parameter in the matching position as the Transactional VSAM instance namme $gstem.

The combination of SYSNAME. and TVSNAME should be used when the PARMLIB member
is shared between systems.

If no SYSNAME. parameter is specified, then the TVSNAME applies to the systemhich the
PARMLIB member is read. This parameter is supported only in PARMLIB. It is not gedpor
on the SETSMS command.

If SYSNAME. is found without TVSNAME, it is treated as a syntax error. If SXBIE. is
found, but the system is not listed, then Transactional VSAM will not be started ontdm.sys

The TVSNAME parameter is optional. It specifies the identifiers which uniqdehtify

instances of Transactional VSAM running in the sysplex. Up to 32 identifiers maydikeesie

The identifiers must be unique within the sysplex. They must be a numeric value from 0 to 255,
which Transactional VSAM uses as the last byte of its instance name (althouiigbet

displayed as three bytes).

If the TVSNAME parameter is specified without the SYSNAME. parametemn,dhy a single
value may be specified, and the name applies to the system on which the PARMLIB nsember
read. The numeric digits are appended to the characters IGWTYV to form the Tomasact

VSAM instance name. The TVSNAME parameter may be used without the SYSNAME.
parameter when the PARMLIB member is not shared between systems. Thistpaimme
supported only in PARMLIB. It is not supported on the SETSMS command, and there is no
default.

If no TVSNAME parameter is found, then Transactional VSAM processing will not balzea
on the system.

The TV_START_TYPE parameter is optional. It specifies the type of startdctional VSAM

is to perform. Up to 32 TV_START_TYPE values may be specified. TV_START_TYPE values
must be specified in the same order as Transactional VSAM instance nameskRM WA

specified, then Transactional VSAM reads its undo log and processes the infornfatabsirn
accordance with the information RRS has about any outstanding URs. If COLD iseshéelodn
Transactional VSAM deletes any information remaining in the undo log and stdrteeabg

were empty. COLD should be used when the Transactional VSAM undo log has been damaged.
The default is WARM.

You can allow some values to default and others to be specified by entering something like:

TV_START_TYPE(COLD,,COLD)

This would cause the Transactional VSAM instance in the second position to waynvistart
the first and third Transactional VSAM instances would cold start.

If TV_START_TYPE is found with only the TVSNAME parameter, then it applies toytbieis
only which the parmlib member is being read. If it is found with both TVSNAME and
SYSNAME parameters, then it applies to the system specified on the SYSNAREqtar
preceding or following it. If the TVSNAME parameter is not specified and TV_SITARPE
is, it is treated as a syntax error.

This parameter is supported only in PARMLIB. It is not
supported on the SETSMS command.

The AKP parameter is optional. It specifies the activity key point triggeeyathich is the

number of logging operations between the taking of keypoints. Up to 32 activity key point values
may be specified. AKP values must be specified in the same order as Transe&kNial

instance names. Valid values are 200 to 65535. The default is 1000.

You can allow some values to default and others to be specified by entering something like:

AKP(800,,3000)

This would cause the value for the system/Transactional VSAM instance in tinel gasition
to default to 1000, and set the values for the first and third systems/Transactiomal VSA
instances to 800 and 3000 respectively.

If AKP is found with only the TVSNAME parameter, then it applies to the system dnghw
the parmlib member is being read.

If AKP is found without TVSNAME, it is treated as a syntax error.

The log of logs parameter is optional. It specifies the log stream to be usedagsdhigs.
This log contains copies of the tie up records written to forward recovery logs and syuse
forward recovery products. If it is not specified, then no log of logs is used. The defaulsés t
no log of logs.

If LOG_OF _LOGS is found but no Transactional VSAM instance names are specified, the
will be treated as a syntax error.

This parameter is unique to each system in the sysplex. As each instance daftibraadSaSAM
comes up, it uses the log of logs name found in its member of SYS1.PARMLIB.

If you are running test and production systems within the same sysplex, it may abléé¢siuse
different logs of logs. In this case, use a separate parmlib member for tlystesst @nd specify
a different log of logs in it.

This parameter is supported only in PARMLIB. It is not
supported on the SETSMS command.

The QTIMEOUT parameter is optional. It specifies the quiesce exit timelu# vaseconds.
Only one quiesce timeout value may be specified and applies to all systems ipkie Iy
first instance of Transactional VSAM brought up within the sysplex determineslte
Subsequent Transactional VSAM instances use the value established by thstéinst sy
regardless of what may be specified in their members of SYS1.PARMLIB. To ctiengaiue,
use the SETSMS command. This will cause the value to be changed on all systems in the
sysplex.

The quiesce timeout value specifies the amount of time the Transactional VSAddegenets
will allow to elapse before concluding that a quiesce cannot be completed suocegafiall
values are 60 to 3600. The default is 300.

If QTIMEOUT is found but no Transactional VSAM instance names are specified, ttieen i
treated as a syntax error. Unlike other Transactional VSAM parameterspédified only once
and applies across all systems.

The MAXLOCKS parameter is optional. It specifies two values: the maximum muwhhbaique

lock requests that a single unit of recovery may make before warning messagssea and an
increment value. Once the maximum number of unique lock requests is reached, the warning
messages will be issued every time the number of unique lock requests over and above the
maximum increases by a multiple of the increment. The messages include the gobf tlaenob

which is holding the locks. The installation can then determine if the application should be
allowed to proceed or if the job should be canceled. If the job is canceled, the UR will be backed
out, and the locks will remain held until the back out completes.

MAXLOCKS is specified as a pair of values in the range of 0 to 999999. The default for both
values is 0. A value of O indicates that warning messages should not be issued.

If MAXLOCKS is found but no Transactional VSAM instance names are specified,ttivéh i
be treated as a syntax error. Unlike other Transactional VSAM parameiespatified only
once and applies across all systems.

Performance

VSAM performs best when running in non-shared resource (NSR) mode. Because no resources
are shared, no serialization effort is required and, therefore, there is no cosafizirggexcept

for some basic support through VSAM’s share options. But, as the name implies, the NSR
resources are not shared with other users or applications. With local shared sed&R}eand

global shared resources (GSR), VSAM provides some extra code to allow sharing tbegpee

and to manage buffer pools. Record-level sharing (RLS) goes another step further and provide
sharing support across a Parallel Sysplex on a logical record level.

With the advent of DFSMStvs, another step is taken by providing serialization support through
record locking, logging support for commit or backout, as well as forward recovery fuligtiona
through forward recovery logging. All of this does not come for free, and requires same ext
effort in various system areas. Compared with NSR or LSR, DFSMStvs require®ste
processing cost from the following areas:

Cross address space communication -- all requests are passed to the SMS@AMIse
processing

Record locking -- shared locks are obtained for any records which are read withyirctedri
exclusive locks are obtained on any records which are obtained for update or added

Data logging for commit or backout -- without logging, it would be impossible to provide
atomicity and recoverability because there would be no way to perform the backout function
Commit or backout processing -- this two-phase process ensures that either adl aplate
committed or all the changes are backed out

Forward recovery logging -- for those data sets which are forward recoverat#astadditional
overhead associated with writing copies of the changed records to the forward rémpvery
Coupling facility cache access -- the coupling facility is used for locking, imdfand logging
Loss of chained sequential I/O -- Transactional VSAM is built on top of VSAM RLS hvisic
optimized for direct access rather than sequential access

Loss of deferred write -- in order to provide the level of recoverability requiredM/BIAS and
Transactional VSAM do not support deferred write

Taking these into consideration, DFSMStvs performance cannot be compared ditécthewi
performance of NSR access to VSAM files because so much more work is done on behalf of the
application. Batch applications that use DFSMStvs will take longer than trathatich

applications that were designed to run in a batch window without a concurrent online system.
The motivation to use DFSMStvs comes from the need to access VSAM files corgurrent
especially with a transaction server which is up and providing online service even dtecing ba
update processes.

Performance -- Parallelizing the Workload

Even though the additional overhead associated with locking, logging, and two phase commit
and back out results in increased elapsed time, it should be noted that this can be offset by the
parallelism that Transactional VSAM allows. Of course, this assume$éhbatch jobs are
independent of one another, and that one batch job is not waiting for the output of another batch
job to provide its input.

In this example created by the ITSO, the master file contained 1,000,000 records. Thehob whic
updated this master file was run in three different ways: as a single non-gdsmedes (NSR)

job that updated all 1,000,000 records, as a single Transactional VSAM job that update all 1,000,
000 records, and as four separate Transactional VSAM jobs that each updated 250,000 of the
records.

This chart shows a comparison of the elapsed time. Note, however, that these results we
obtained in an uncontrolled test environments an should by no means used as benchmarks.

When splitting the Transactional VSAM work load into four parallel batch jobs, eachndbs e

after about the same elapsed time because each job is processing the same naourds of r

They complete in about 41% of the time it took to run the updates as a single Transactional
VSAM job. Running them as four parallel jobs even caused them to run slightly fastdrehan t
traditional NSR environment when comparing wall clock time. The number of EXCPs and the
CPU consumption vary slightly between jobs in the DFSMStvs environment. In addition, CPU
time, elapsed time, and the number of EXCPs are higher when using Transactional M8&\M

is due to the extra overhead noted earlier: locking, logging, and two phase commit and back out.

Transactional VSAM Summary

Transactional VSAM provides general VSAM recoverable file sharing. Thisss@dra long
standing requirement for sharing of VSAM files across CICS and batch jobs.

