
© 2012 IBM Corporation

Linux on System z debugging with Valgrind

Christian Bornträger <borntraeger@de.ibm.com>

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

2

Trademarks

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any
user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to
change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

* All other products may be trademarks or registered trademarks of their respective companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license there from.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Windows Server and the Windows logo are trademarks of the Microsoft group of countries.
InfiniBand is a trademark and service mark of the InfiniBand Trade Association.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

AIX*
BladeCenter*
DataPower*
DB2*
FICON*
GDPS*
HiperSockets

IBM*
IBM eServer
IBM (logo)*
InfiniBand*
Parallel Sysplex*
POWER*
POWER7*

PowerVM
PR/SM
Smarter Planet
System x*
System z*
System z9*

System z10
WebSphere*
z9*
z10 BC
z10 EC
zEnterprise

z/OS*
zSeries*
z/VM*
z/VSE

© 2012 IBM Corporation3

Linux on System z debugging with Valgrind

Overview (1)

●Valgrind is one of the most prominent debugging tools for Linux
●Finds long-standing and hard to find problems
●Works on binary code

● no source code necessary (e.g. if linked against a closed library)
● No need to recompile

●Plenty of users: Firefox, OpenOffice, AbiWord, Opera, KDE, GNOME, Qt, libstdc++,
MySQL, PostgreSQL, Perl, Python, PHP, Samba, RenderMan, Nasa Mars Lander
software, SAS, The GIMP, Ogg Vorbis, Unreal Tournament, Medal of Honour...
●Also supports x86,power,arm and mips
●Modular system: translation framework + tools
●award-winning

● May 2008:TrollTech's „inaugural Qt Open Source Development Award for the best open source
development tool“

● July 2006: Julian Seward won a Google-O'Reilly Open Source Award for "Best Toolmaker" für his
work on valgrind

© 2012 IBM Corporation4

Linux on System z debugging with Valgrind

Overview (2)

Binary
000000008000062c <main>:
stmg %r9,%r15,72(%r15)
lay %r15,-80160(%r15)
lhi %r12,0
lhi %r10,10000
la %r9,160(%r15)
lgr %r13,%r9
lgr %r11,%r9
lghi %r2,1
brasl %r14,8000044c <malloc@plt>
lgfr %r1,%r12
ahi %r12,1
stg %r2,0(%r11)
sllg %r1,%r1,3
aghi %r11,8
pfd 2,96(%r1,%r9)
brct %r10,8000064c <main+0x20>
lay %r12,80160(%r15)
lg %r2,0(%r13)
aghi %r13,8
brasl %r14,8000048c <free@plt>
cgrjne %r12,%r13,8000067e <main+0x52>
lhi %r13,0
lhi %r12,10000
lgfr %r2,%r13
ahi %r13,1
brasl %r14,800005c0 <stacker>
brct %r12,8000069c <main+0x70>
lg %r4,80272(%r15)
lmg %r9,%r15,80232(%r15)
br %r4

valgrind

translation
into IR

instrumentation

translation
To machine code

kernel

S
ys

te
m

 c
al

l i
nt

er
fa

ce

New
binary

xxx

libraries

Replace
some of

The library
calls by
Using a
preload
library

System call
wrapper

●Technology is based on a JIT (Just-in-Time Compiler)
●Intermediate language allows debugging instrumentation

© 2012 IBM Corporation5

Linux on System z debugging with Valgrind

Overview (3)
●Usage: valgrind <program>

valgrind buggy_program
==2799== Memcheck, a memory error detector
==2799== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==2799== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==2799== Command: buggy_program
==2799==
==2799== HEAP SUMMARY:
==2799== in use at exit: 200 bytes in 2 blocks
==2799== total heap usage: 2 allocs, 0 frees, 200 bytes allocated
==2799==
==2799== LEAK SUMMARY:
==2799== definitely lost: 100 bytes in 1 blocks
==2799== indirectly lost: 0 bytes in 0 blocks
==2799== possibly lost: 0 bytes in 0 blocks
==2799== still reachable: 100 bytes in 1 blocks
==2799== suppressed: 0 bytes in 0 blocks
==2799== Rerun with --leak-check=full to see details of leaked memory
[...]

© 2012 IBM Corporation6

Linux on System z debugging with Valgrind

Tools

●Several tools

–Memcheck (default): detects memory and data flow problems

–Cachegrind: cache profiling

–Massif: heap profiling

–Helgrind: thread debugging
● DRD: thread debugging
● None: no debugging (for valgrind JIT testing)
● Callgrind: codeflow and profiling

●Tool can be selected with --tool=none|memcheck|
cachegrind...

© 2012 IBM Corporation7

Linux on System z debugging with Valgrind

Memcheck

●memcheck detects

–Invalid accesses
• Non-allocated memory

• use-after-free

• Array overruns on heap

• Invalid stack areas

–Use of uninitialized data

–Memory leaks

–Invalid free
• Double free

• Wrong free function (free vs. delete vs. delete[] etc.)

–Invalid overlap (memcpy)

–Unfortunately no array overrun on stack

●Important parameters:

–--leak-check=full

–--track-origins=yes

© 2012 IBM Corporation8

Linux on System z debugging with Valgrind

Memcheck – memory leaks

cborntra@r1745045:~/valgrind-demo> valgrind --leak-check=full ./memcheck-leak
[...]
==4390==
==4390== HEAP SUMMARY:
==4390== in use at exit: 5 bytes in 5 blocks
==4390== total heap usage: 5 allocs, 0 frees, 5 bytes allocated
==4390==
==4390== 4 bytes in 4 blocks are definitely lost in loss record 2 of 2
==4390== at 0x4026B26: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-s390x-
linux.so)
==4390== by 0x800005F1: main (memcheck-leak.c:10)
==4390==
==4390== LEAK SUMMARY:
==4390== definitely lost: 4 bytes in 4 blocks
==4390== indirectly lost: 0 bytes in 0 blocks
==4390== possibly lost: 0 bytes in 0 blocks
==4390== still reachable: 1 bytes in 1 blocks
==4390== suppressed: 0 bytes in 0 blocks
==4390== Reachable blocks (those to which a pointer was found) are not shown.
==4390== To see them, rerun with: --leak-check=full --show-reachable=yes
[...]

01: #include <stdio.h>
02: #include <stdlib.h>
03: #include <string.h>
04:
05: int main()
06: {
07: int i;
08:
09: for (i=0; i < 5; i++)
10: malloc(1);
11: }

© 2012 IBM Corporation9

Linux on System z debugging with Valgrind

Memcheck – missing initialisation

cborntra@r1745045:~/valgrind-demo> valgrind --track-origins=yes ./memcheck-unit
[…]
==4471== Syscall param exit_group(status) contains uninitialised byte(s)
==4471== at 0x41008A2: _Exit (in /lib64/libc-2.4.so)
==4471== by 0x4093B43: exit (in /lib64/libc-2.4.so)
==4471== by 0x800005FF: main (memcheck-unit.c:8)
==4474== Uninitialised value was created by a stack allocation
==4474== at 0x800005D2: main (memcheck-unit.c:3)
==4471==
==4471==
==4471== HEAP SUMMARY:
==4471== in use at exit: 0 bytes in 0 blocks
==4471== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==4471==
==4471== All heap blocks were freed -- no leaks are possible
==4471==
==4471== For counts of detected and suppressed errors, rerun with: -v
==4471== Use --track-origins=yes to see where uninitialised values come from
==4471== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)

01: #include <stdlib.h>
02: int main()
03: {
04: int a,b,c;
05:
06: a = 1;
07: c = a + b;
08: exit(c);
09: }

© 2012 IBM Corporation10

Linux on System z debugging with Valgrind

Memcheck – overlap detection

cborntra@r1745045:~/valgrind-demo> valgrind ./memcheck-memcpy
==4194== Memcheck, a memory error detector
==4194== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==4194== Using Valgrind-3.6.0 and LibVEX; rerun with -h for copyright info
==4194== Command: ./memcheck-memcpy
==4194==
==4194== Source and destination overlap in memcpy(0x7fefffb58, 0x7fefffb62, 200)
==4194== at 0x402A1F0: memcpy (in /usr/lib64/valgrind/vgpreload_memcheck-s390x-
linux.so)
==4194== by 0x80000601: main (memcheck-memcpy.c:7)
==4194==
==4194==
==4194== HEAP SUMMARY:
==4194== in use at exit: 0 bytes in 0 blocks
==4194== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==4194==
==4194== All heap blocks were freed -- no leaks are possible
==4194==
==4194== For counts of detected and suppressed errors, rerun with: -v
==4194== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)

01: #include <string.h>
02:
03: int main()
04: {
05: char buf[1000];
06:
07: memcpy(buf, buf+10, 200);
08: }

© 2012 IBM Corporation11

Linux on System z debugging with Valgrind

drd/helgrind

●Detects potential races between threads
● read/write without lock
● Lock contention

●Mis-use of pthread library
● Invalid pointer (e.g. mutex instead of condition variable)
● Unlock without lock
● Unlock of a lock that was taken by a different thread
● Deletion of a taken lock
● …

●DRD and Helgrind cover similar cases
● Both tools have strong and weak points → use both

© 2012 IBM Corporation12

Linux on System z debugging with Valgrind

Helgrind
Data races

cborntra@r1745045:~/valgrind-demo> valgrind --tool=helgrind ./helgrind-race
[...]
==7027== Thread #3 was created
==7027== at 0x4137FEC: clone (in /lib64/libc-2.4.so)
==7027== by 0x40473BF: do_clone (in /lib64/libpthread-2.4.so)
==7027== by 0x40478C9: pthread_create@@GLIBC_2.2 (in /lib64/libpthread-2.4.so)
==7027== by 0x402C977: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
==7027== by 0x8000068B: main (helgrind-race.c:15)
==7027==
==7027== Thread #2 was created
==7027== at 0x4137FEC: clone (in /lib64/libc-2.4.so)
==7027== by 0x40473BF: do_clone (in /lib64/libpthread-2.4.so)
==7027== by 0x40478C9: pthread_create@@GLIBC_2.2 (in /lib64/libpthread-2.4.so)
==7027== by 0x402C977: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
==7027== by 0x8000066B: main (helgrind-race.c:14)
==7027==
==7027== Possible data race during write of size 1 at 0x80001acc by thread #3
==7027== at 0x80000616: thread_func (helgrind-race.c:7)
==7027== by 0x402CB2D: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
==7027== by 0x40470C1: start_thread (in /lib64/libpthread-2.4.so)
==7027== by 0x413806D: ??? (in /lib64/libc-2.4.so)
==7027== This conflicts with a previous write of size 1 by thread #2
==7027== at 0x80000616: thread_func (helgrind-race.c:7)
==7027== by 0x402CB2D: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
==7027== by 0x40470C1: start_thread (in /lib64/libpthread-2.4.so)
==7027== by 0x413806D: ??? (in /lib64/libc-2.4.so)
[...]

01: #include <pthread.h>
02:
03: static char mem;
04:
05: static void* thread_func(void* arg)
06: {
07: mem = (char) (unsigned long) arg;
08: return NULL;
09: }
10:
11: int main(int argc, char** argv)
12: {
13: pthread_t tid;
14: pthread_create(&tid, NULL, thread_func, (void *) 1);
15: pthread_create(&tid, NULL, thread_func, (void *) 2);
16: return 0;
17: }

© 2012 IBM Corporation13

Linux on System z debugging with Valgrind

Callgrind

●Profiling tool
● Call graphs
● Function dependencies
● Cache accesses
● Branch prediction

●creates callgrind.out.<pid> files
●Use GUIs to read date
●Additional information for the out files with

● -- ump-instr=yes: assembler code
● --trace-jump=yes : branches

●Contains a simplified branch predicition

© 2012 IBM Corporation14

Linux on System z debugging with Valgrind

Profiling -GUIs (e.g. kcachegrind)

int t3(void)
{
 return 1;
}

int t2(void)
{
 return t3();
}

int t1(void)
{
 return t2();
}

int main()
{
 int i,sum;

 sum = 0;
 for (i=0; i<100000; i++)
 sum+=t1();
 return sum;
}

valgrind --tool=callgrind --dump-instr=yes --trace-jump=yes ./5-callgrind-deep

© 2012 IBM Corporation15

Linux on System z debugging with Valgrind

Cachegrind
●Shows simulated cache behaviour

● Default based on z10 cache values

● Parameter available, e.g. to use z9 or z196 values

● Handles 2 levels: 1st level und last level for instruction and data

● Also creates cachegrind.out.<pid> files
r1745045:~ # valgrind --tool=cachegrind ls
==21487== Cachegrind, a cache and branch-prediction profiler
==21487== Copyright (C) 2002-2010, and GNU GPL'd, by Nicholas Nethercote et al.
==21487== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==21487== Command: ls
==21487==
--21487-- Warning: Cannot auto-detect cache config on s390x, using one or more defaults
bin inst-sys repos testtools
==21487==
==21487== I refs: 656,270
==21487== I1 misses: 792
==21487== LLi misses: 656
==21487== I1 miss rate: 0.12%
==21487== LLi miss rate: 0.09%
==21487==
==21487== D refs: 453,124 (361,066 rd + 92,058 wr)
==21487== D1 misses: 1,869 (1,589 rd + 280 wr)
==21487== LLd misses: 1,313 (1,061 rd + 252 wr)
==21487== D1 miss rate: 0.4% (0.4% + 0.3%)
==21487== LLd miss rate: 0.2% (0.2% + 0.2%)
==21487==
==21487== LL refs: 2,661 (2,381 rd + 280 wr)
==21487== LL misses: 1,969 (1,717 rd + 252 wr)
==21487== LL miss rate: 0.1% (0.1% + 0.2%)

© 2012 IBM Corporation16

Linux on System z debugging with Valgrind

Availability

●System z support since version 3.7
● SLES11SP2

●Backports into 3.6
● SLES10

● Since SP4 on SDK
● RHEL6

● Since U1on main DVD
● RHEL5

● No valgrind for z

© 2012 IBM Corporation17

Linux on System z debugging with Valgrind

Installation

● RHEL6:
● yum install valgrind valgrind-devel

● Kcachegrind: install kde-sdk (+plus X and fonts)

● SLES11
● zypper install valgrind valgrind-devel

● Kcachegrind:

– kdesdk3 source rpm from opensuse factory. Rebuild source rpm (
http://download.opensuse.org/source/factory/repo/oss/suse/src/kdesdk3-.....src.rpm)

– Install the resulting kdesdk-profile package

– Start with /opt/kde3/bin/kcachegrind

http://download.opensuse.org/source/factory/repo/oss/suse/src/kdesdk3-.....src.rpm

© 2012 IBM Corporation18

Linux on System z debugging with Valgrind

Hints
●No need to recompile, but

● Better results with debug info
● Gcc option -O0 might result in more findings(the compiler might hide some errors)
● Gcc option -fno-builtin might result in more findings

●--trace-children=yes will also debug child processes
●Setuid programs might cause trouble

● Valgrind is the process container (→ no setuid)

–Possible solution: remove setuid and start as the right user, check documentation for other ways

●Killall/ps etc.
● Valgrind starter will be replace by the tool

–none-s390x-linux

–memcheck-s390x-linux

–etc.

●The program will be slower
● 5-30 times slower for memcheck

●Suppression files can be used to block specific errors
●LANG=C to avoid CU** instruction

© 2012 IBM Corporation19

Linux on System z debugging with Valgrind

Limitations for System z

●No exp-ptrcheck (exp-sgcheck) tool support
●Only 64bit applications
●No decimal floating point
●Current focus is on compiler generated code (gcc)
●Some other instructions are missing in the older
backports (translate, stfle)
●Only partial support for gcc option -march=z196

© 2012 IBM Corporation20

Linux on System z debugging with Valgrind

Debugging: gdb attach
cborntra@tuxmaker:~/valgrind-demo> valgrind --db-attach=yes ./fault
==13002== Memcheck, a memory error detector
==13002== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==13002== Using Valgrind-3.6.0.SVN and LibVEX; rerun with -h for copyright info
==13002== Command: ./fault
==13002==
==13002== Invalid read of size 1
==13002== at 0x8000057C: main (fault.c:7)
==13002== Address 0x0 is not stack'd, malloc'd or (recently) free'd
==13002==
==13002==
==13002== ---- Attach to debugger ? --- [Return/N/n/Y/y/C/c] ---- y
==13002== starting debugger with cmd: /usr/bin/gdb -nw /proc/13033/fd/1014 13033
GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "s390x-suse-linux"...
Using host libthread_db library "/lib64/libthread_db.so.1".
Attaching to program: /proc/13033/fd/1014, process 13033
0x000000008000057c in main () at fault.c:7
7 exit(*c);
(gdb)

© 2012 IBM Corporation21

Linux on System z debugging with Valgrind

Debugging gdb server (>=3.7)

● Since 3.7 valgrind contains a gdb server
● vgdb control program
● --vgdb-error=0 as quick way to enable

[cborntra@r1745045 valgrind]$ valgrind --vgdb-error=0
/home/cborntra/REPOS/valgrind/none/tests/s390x/mvcl
==65367== Memcheck, a memory error detector
==65367== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==65367== Using Valgrind-3.8.0.SVN and LibVEX; rerun with -h for copyright info
==65367== Command: /home/cborntra/REPOS/valgrind/none/tests/s390x/mvcl
==65367==
==65367== (action at startup) vgdb me ...
==65367==
==65367== TO DEBUG THIS PROCESS USING GDB: start GDB like this
==65367== /path/to/gdb /home/cborntra/REPOS/valgrind/none/tests/s390x/mvcl
==65367== and then give GDB the following command
==65367== target remote | /usr/local/lib/valgrind/../../bin/vgdb --pid=65367
==65367== --pid is optional if only one valgrind process is running
==65367==

© 2012 IBM Corporation22

Linux on System z debugging with Valgrind

Annotations

● Your program can control valgrind
● Several macros defined in valgrind header

files under /usr/include/valgrind/
● Make memory defined/undefined, check if

running under valgrind etc.
● Valgrind-devel package

01: int main()
02: {
03: int a = 3;
04:
05: printf("No Error here: %d\n", a);
06: VALGRIND_MAKE_MEM_UNDEFINED(&a, sizeof(a));
07: printf("Here is an error %d\n", a);
08: return 0;
09: }

© 2012 IBM Corporation23

Linux on System z debugging with Valgrind

Problem reporting

●https://bugs.kde.org/enter_bug.cgi?product=valgrind
●Missing instructions will look like

 vex s390->IR: unimplemented insn: xxxx xxxx

 valgrind: Unrecognised instruction at address
0xxxxxxxx.

●Missing system calls

WARNING: unhandled syscall: xxx

You may be able to write your own handler.

Read the file README_MISSING_SYSCALL_OR_IOCTL.

●Valgrind internal errors
● Might be a valgrind bug
● Might be causes by buggy programs

© 2012 IBM Corporation24

Linux on System z debugging with Valgrind

Thanks

	Slide 1
	Trademarks
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

