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Overview (1)

●Valgrind is one of the most prominent debugging tools for Linux
●Finds long-standing and hard to find problems
●Works on binary code

● no source code necessary (e.g. if linked against a closed library)
● No need to recompile

●Plenty of users: Firefox, OpenOffice, AbiWord, Opera, KDE, GNOME, Qt, libstdc++, 
MySQL, PostgreSQL, Perl, Python, PHP, Samba, RenderMan, Nasa Mars Lander 
software, SAS, The GIMP, Ogg Vorbis, Unreal Tournament, Medal of Honour...
●Also supports x86,power,arm and mips
●Modular system: translation framework + tools
●award-winning

● May 2008:TrollTech's „inaugural Qt Open Source Development Award for the best open source 
development tool“

● July 2006: Julian Seward won a Google-O'Reilly Open Source Award for "Best Toolmaker" für his 
work on valgrind
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Overview (2)

Binary
000000008000062c <main>:
stmg    %r9,%r15,72(%r15)
lay     %r15,-80160(%r15)
lhi     %r12,0
lhi     %r10,10000
la      %r9,160(%r15)
lgr     %r13,%r9
lgr     %r11,%r9
lghi    %r2,1
brasl   %r14,8000044c <malloc@plt>
lgfr    %r1,%r12
ahi     %r12,1
stg     %r2,0(%r11)
sllg    %r1,%r1,3
aghi    %r11,8
pfd     2,96(%r1,%r9)
brct    %r10,8000064c <main+0x20>
lay     %r12,80160(%r15)
lg      %r2,0(%r13)
aghi    %r13,8
brasl   %r14,8000048c <free@plt>
cgrjne  %r12,%r13,8000067e <main+0x52>
lhi     %r13,0
lhi     %r12,10000
lgfr    %r2,%r13
ahi     %r13,1
brasl   %r14,800005c0 <stacker>
brct    %r12,8000069c <main+0x70>
lg      %r4,80272(%r15)
lmg     %r9,%r15,80232(%r15)
br      %r4
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●Technology is based on a JIT (Just-in-Time Compiler)
●Intermediate language allows debugging instrumentation
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Overview (3)
●Usage: valgrind <program>

# valgrind buggy_program
==2799== Memcheck, a memory error detector
==2799== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==2799== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==2799== Command: buggy_program
==2799== 
==2799== HEAP SUMMARY:
==2799==     in use at exit: 200 bytes in 2 blocks
==2799==   total heap usage: 2 allocs, 0 frees, 200 bytes allocated
==2799== 
==2799== LEAK SUMMARY:
==2799==    definitely lost: 100 bytes in 1 blocks
==2799==    indirectly lost: 0 bytes in 0 blocks
==2799==      possibly lost: 0 bytes in 0 blocks
==2799==    still reachable: 100 bytes in 1 blocks
==2799==         suppressed: 0 bytes in 0 blocks
==2799== Rerun with --leak-check=full to see details of leaked memory
[...]
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Tools

●Several tools

–Memcheck (default): detects memory and data flow problems

–Cachegrind: cache profiling

–Massif: heap profiling

–Helgrind: thread debugging
● DRD: thread debugging
● None: no debugging (for valgrind JIT testing)
● Callgrind: codeflow and profiling

●Tool can be selected with --tool=none|memcheck|
cachegrind... 
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Memcheck

●memcheck detects

–Invalid accesses
• Non-allocated memory

• use-after-free

• Array overruns on heap

• Invalid stack areas

–Use of uninitialized data

–Memory leaks

–Invalid free
• Double free

• Wrong free function (free vs. delete vs. delete[] etc.)

–Invalid overlap (memcpy)

–Unfortunately no array overrun on stack

●Important parameters:

–--leak-check=full 

–--track-origins=yes 
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Memcheck – memory leaks

cborntra@r1745045:~/valgrind-demo> valgrind --leak-check=full ./memcheck-leak
[...]
==4390== 
==4390== HEAP SUMMARY:
==4390==     in use at exit: 5 bytes in 5 blocks
==4390==   total heap usage: 5 allocs, 0 frees, 5 bytes allocated
==4390== 
==4390== 4 bytes in 4 blocks are definitely lost in loss record 2 of 2
==4390==    at 0x4026B26: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-s390x-
linux.so)
==4390==    by 0x800005F1: main (memcheck-leak.c:10)
==4390== 
==4390== LEAK SUMMARY:
==4390==    definitely lost: 4 bytes in 4 blocks
==4390==    indirectly lost: 0 bytes in 0 blocks
==4390==      possibly lost: 0 bytes in 0 blocks
==4390==    still reachable: 1 bytes in 1 blocks
==4390==         suppressed: 0 bytes in 0 blocks
==4390== Reachable blocks (those to which a pointer was found) are not shown.
==4390== To see them, rerun with: --leak-check=full --show-reachable=yes
[...]

01: #include <stdio.h>
02: #include <stdlib.h>
03: #include <string.h>
04: 
05: int main()
06: {
07: int i;
08:
09: for (i=0; i < 5; i++)
10: malloc(1);
11: }



© 2012 IBM Corporation9

Linux on System z debugging with Valgrind

Memcheck – missing initialisation

cborntra@r1745045:~/valgrind-demo> valgrind --track-origins=yes ./memcheck-unit
[…]
==4471== Syscall param exit_group(status) contains uninitialised byte(s)
==4471==    at 0x41008A2: _Exit (in /lib64/libc-2.4.so)
==4471==    by 0x4093B43: exit (in /lib64/libc-2.4.so)
==4471==    by 0x800005FF: main (memcheck-unit.c:8)
==4474==  Uninitialised value was created by a stack allocation
==4474==    at 0x800005D2: main (memcheck-unit.c:3)
==4471== 
==4471== 
==4471== HEAP SUMMARY:
==4471==     in use at exit: 0 bytes in 0 blocks
==4471==   total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==4471== 
==4471== All heap blocks were freed -- no leaks are possible
==4471== 
==4471== For counts of detected and suppressed errors, rerun with: -v
==4471== Use --track-origins=yes to see where uninitialised values come from
==4471== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)

01: #include <stdlib.h>
02: int main()
03: {
04:        int a,b,c;
05:
06:        a = 1;
07:        c = a + b;
08:        exit(c);
09: }
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Memcheck – overlap detection

cborntra@r1745045:~/valgrind-demo> valgrind ./memcheck-memcpy
==4194== Memcheck, a memory error detector
==4194== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==4194== Using Valgrind-3.6.0 and LibVEX; rerun with -h for copyright info
==4194== Command: ./memcheck-memcpy
==4194== 
==4194== Source and destination overlap in memcpy(0x7fefffb58, 0x7fefffb62, 200)
==4194==    at 0x402A1F0: memcpy (in /usr/lib64/valgrind/vgpreload_memcheck-s390x-
linux.so)
==4194==    by 0x80000601: main (memcheck-memcpy.c:7)
==4194== 
==4194== 
==4194== HEAP SUMMARY:
==4194==     in use at exit: 0 bytes in 0 blocks
==4194==   total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==4194== 
==4194== All heap blocks were freed -- no leaks are possible
==4194== 
==4194== For counts of detected and suppressed errors, rerun with: -v
==4194== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)

01: #include <string.h>
02:
03: int main()
04: {
05: char buf[1000];
06:
07: memcpy(buf, buf+10, 200);
08: }
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drd/helgrind

●Detects potential races between threads
● read/write without lock
● Lock contention

●Mis-use of pthread library
● Invalid pointer (e.g. mutex instead of condition variable)
● Unlock without lock
● Unlock of a lock that was taken by a different thread
● Deletion of a taken lock
● …

●DRD and Helgrind cover similar cases
● Both tools have strong and weak points → use both
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Helgrind
Data races

cborntra@r1745045:~/valgrind-demo> valgrind --tool=helgrind ./helgrind-race
[...]
==7027== Thread #3 was created
==7027==    at 0x4137FEC: clone (in /lib64/libc-2.4.so)
==7027==    by 0x40473BF: do_clone (in /lib64/libpthread-2.4.so)
==7027==    by 0x40478C9: pthread_create@@GLIBC_2.2 (in /lib64/libpthread-2.4.so)
==7027==    by 0x402C977: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
==7027==    by 0x8000068B: main (helgrind-race.c:15)
==7027== 
==7027== Thread #2 was created
==7027==    at 0x4137FEC: clone (in /lib64/libc-2.4.so)
==7027==    by 0x40473BF: do_clone (in /lib64/libpthread-2.4.so)
==7027==    by 0x40478C9: pthread_create@@GLIBC_2.2 (in /lib64/libpthread-2.4.so)
==7027==    by 0x402C977: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
==7027==    by 0x8000066B: main (helgrind-race.c:14)
==7027== 
==7027== Possible data race during write of size 1 at 0x80001acc by thread #3
==7027==    at 0x80000616: thread_func (helgrind-race.c:7)
==7027==    by 0x402CB2D: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
==7027==    by 0x40470C1: start_thread (in /lib64/libpthread-2.4.so)
==7027==    by 0x413806D: ??? (in /lib64/libc-2.4.so)
==7027==  This conflicts with a previous write of size 1 by thread #2
==7027==    at 0x80000616: thread_func (helgrind-race.c:7)
==7027==    by 0x402CB2D: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
==7027==    by 0x40470C1: start_thread (in /lib64/libpthread-2.4.so)
==7027==    by 0x413806D: ??? (in /lib64/libc-2.4.so)
[...]

01: #include <pthread.h>
02: 
03: static char mem;
04: 
05: static void* thread_func(void* arg)
06: {
07:     mem = (char) (unsigned long) arg;
08:     return NULL;
09: }
10: 
11: int main(int argc, char** argv)
12: {
13:    pthread_t tid;
14:    pthread_create(&tid, NULL, thread_func, (void *) 1);
15:    pthread_create(&tid, NULL, thread_func, (void *) 2);
16:    return 0;
17: }
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Callgrind

●Profiling tool
● Call graphs
● Function dependencies
● Cache accesses
● Branch prediction

●creates callgrind.out.<pid> files
●Use GUIs to read date
●Additional information for the out files with

● -- ump-instr=yes: assembler code
● --trace-jump=yes : branches

●Contains a simplified branch predicition
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Profiling -GUIs (e.g. kcachegrind)

int t3(void)
{
 return 1;
}

int t2(void)
{
 return t3();
}

int t1(void)
{
 return t2();
}

int main()
{
 int i,sum;

 sum = 0;
 for (i=0; i<100000; i++)
  sum+=t1();
 return sum;
}

valgrind --tool=callgrind --dump-instr=yes --trace-jump=yes ./5-callgrind-deep
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Cachegrind
●Shows simulated cache behaviour

● Default based on z10 cache values

● Parameter available, e.g. to use z9 or z196 values

● Handles 2 levels: 1st level und last level for instruction and data

● Also creates cachegrind.out.<pid> files
r1745045:~ # valgrind --tool=cachegrind ls
==21487== Cachegrind, a cache and branch-prediction profiler
==21487== Copyright (C) 2002-2010, and GNU GPL'd, by Nicholas Nethercote et al.
==21487== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==21487== Command: ls
==21487== 
--21487-- Warning: Cannot auto-detect cache config on s390x, using one or more defaults 
bin  inst-sys  repos  testtools
==21487== 
==21487== I   refs:      656,270
==21487== I1  misses:        792
==21487== LLi misses:        656
==21487== I1  miss rate:    0.12%
==21487== LLi miss rate:    0.09%
==21487== 
==21487== D   refs:      453,124  (361,066 rd   + 92,058 wr)
==21487== D1  misses:      1,869  (  1,589 rd   +    280 wr)
==21487== LLd misses:      1,313  (  1,061 rd   +    252 wr)
==21487== D1  miss rate:     0.4% (    0.4%     +    0.3%  )
==21487== LLd miss rate:     0.2% (    0.2%     +    0.2%  )
==21487== 
==21487== LL refs:         2,661  (  2,381 rd   +    280 wr)
==21487== LL misses:       1,969  (  1,717 rd   +    252 wr)
==21487== LL miss rate:      0.1% (    0.1%     +    0.2%  )
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Availability

●System z support since version 3.7
● SLES11SP2

●Backports into 3.6
● SLES10

● Since SP4 on SDK 
● RHEL6

● Since U1on main DVD
● RHEL5

● No valgrind for z
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Installation

● RHEL6:
● yum install valgrind valgrind-devel

● Kcachegrind: install kde-sdk (+plus X and fonts)

● SLES11
● zypper install valgrind valgrind-devel

● Kcachegrind:

– kdesdk3 source rpm from opensuse factory. Rebuild source rpm (
http://download.opensuse.org/source/factory/repo/oss/suse/src/kdesdk3-.....src.rpm)

– Install the resulting kdesdk-profile package

– Start with /opt/kde3/bin/kcachegrind

http://download.opensuse.org/source/factory/repo/oss/suse/src/kdesdk3-.....src.rpm
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Hints
●No need to recompile, but

● Better results with debug info
● Gcc option -O0 might result in more findings(the compiler might hide some errors)
● Gcc option -fno-builtin might result in more findings

●--trace-children=yes will also debug child processes
●Setuid programs might cause trouble

● Valgrind is the process container (→ no setuid)

–Possible solution: remove setuid and start as the right user, check documentation for other ways

●Killall/ps etc.
● Valgrind starter will be replace by the tool

–none-s390x-linux

–memcheck-s390x-linux

–etc.

●The program will be slower
● 5-30 times slower for memcheck

●Suppression files can be used to block specific errors
●LANG=C to avoid CU** instruction
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Limitations for System z

●No exp-ptrcheck (exp-sgcheck) tool support
●Only 64bit applications
●No decimal floating point
●Current focus is on compiler generated code (gcc)
●Some other instructions are missing in the older 
backports (translate, stfle)
●Only partial support for gcc option -march=z196
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Debugging: gdb attach
cborntra@tuxmaker:~/valgrind-demo> valgrind --db-attach=yes ./fault
==13002== Memcheck, a memory error detector
==13002== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==13002== Using Valgrind-3.6.0.SVN and LibVEX; rerun with -h for copyright info
==13002== Command: ./fault
==13002== 
==13002== Invalid read of size 1
==13002==    at 0x8000057C: main (fault.c:7)
==13002==  Address 0x0 is not stack'd, malloc'd or (recently) free'd
==13002== 
==13002== 
==13002== ---- Attach to debugger ? --- [Return/N/n/Y/y/C/c] ---- y
==13002== starting debugger with cmd: /usr/bin/gdb -nw /proc/13033/fd/1014 13033
GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" for details.
This GDB was configured as "s390x-suse-linux"...
Using host libthread_db library "/lib64/libthread_db.so.1".
Attaching to program: /proc/13033/fd/1014, process 13033
0x000000008000057c in main () at fault.c:7
7               exit(*c);
(gdb) 
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Debugging gdb server (>=3.7)

● Since 3.7 valgrind contains a gdb server
● vgdb control program
● --vgdb-error=0 as quick way to enable

[cborntra@r1745045 valgrind]$ valgrind --vgdb-error=0 
/home/cborntra/REPOS/valgrind/none/tests/s390x/mvcl
==65367== Memcheck, a memory error detector
==65367== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==65367== Using Valgrind-3.8.0.SVN and LibVEX; rerun with -h for copyright info
==65367== Command: /home/cborntra/REPOS/valgrind/none/tests/s390x/mvcl
==65367== 
==65367== (action at startup) vgdb me ... 
==65367== 
==65367== TO DEBUG THIS PROCESS USING GDB: start GDB like this
==65367==   /path/to/gdb /home/cborntra/REPOS/valgrind/none/tests/s390x/mvcl
==65367== and then give GDB the following command
==65367==   target remote | /usr/local/lib/valgrind/../../bin/vgdb --pid=65367
==65367== --pid is optional if only one valgrind process is running
==65367== 
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Annotations

● Your program can control valgrind
● Several macros defined in valgrind header 

files under /usr/include/valgrind/
● Make memory defined/undefined, check if 

running under valgrind etc.
● Valgrind-devel package

01: int main()
02: {
03: int a = 3;
04: 
05: printf("No Error here: %d\n", a);
06: VALGRIND_MAKE_MEM_UNDEFINED(&a, sizeof(a));
07: printf("Here is an error %d\n", a);
08: return 0;
09: }
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Problem reporting

●https://bugs.kde.org/enter_bug.cgi?product=valgrind
●Missing instructions will look like

 vex s390->IR: unimplemented insn: xxxx xxxx

        valgrind: Unrecognised instruction at address 
0xxxxxxxx.

●Missing system calls

WARNING: unhandled syscall: xxx

You may be able to write your own handler.

Read the file README_MISSING_SYSCALL_OR_IOCTL.

●Valgrind internal errors
● Might be a valgrind bug
● Might be causes by buggy programs
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Thanks
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