IBM zEnterprise - Freedom Through Design

THTH
1L
1T

|

Linux on System z debugging with Valgrind

Christian Borntrager <borntraeger@de.ibm.com>

<=

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

AIX* IBM* PowerVM System z10 z/OS*
BladeCenter* IBM eServer PR/SM WebSphere* zSeries*
DataPower* IBM (logo)* Smarter Planet z9* zIVM*
DB2* InfiniBand* System x* z10BC zIVSE
FICON* Parallel Sysplex* System z* z10 EC

GDPS* POWER* System z9* zEnterprise

HiperSockets POWERT*

* Registered trademarks of IBM Corporation
The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license there from.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Windows Server and the Windows logo are trademarks of the Microsoft group of countries.

InfiniBand is a trademark and service mark of the InfiniBand Trade Association.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any
user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the 1/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to
change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

2 © 2012 IBM Corporation

|||
I
|
Il"
n

Linux on System z debugging with Valgrind

I
IIn
|

s/algrind is one of the most prominent debugging tools for Linux
+inds long-standing and hard to find problems
sWorks on binary code

* N0 source code necessary (e.qg. if linked against a closed library)
* No need to recompile

‘Llenty of users: Firefox, OpenOffice, AbiWord, Opera, KDE, GNOME, Qt, libstdc++,
MySQL, PostgreSQL, Perl, Python, PHP, Samba, RenderMan, Nasa Mars Lander
software, SAS, The GIMP, Ogg Vorbis, Unreal Tournament, Medal of Honouir...

“Also supports x86,power,arm and mips
‘Modular system: translation framework + tools
«award-winning

» May 2008:TrollTech's ,inaugural Qt Open Source Development Award for the best open source
development tool*

* July 2006: Julian Seward won a Google-O'Reilly Open Source Award for "Best Toolmaker" fir his
work on valgrind

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

‘Technology is based on a JIT (Just-in-Time Compiler)

Overview (2)

{ntermediate language allows debugging instrumentation

Binary

000000008000062c <main>:
stmg %r9,%ris, 72(%ris)
lay %r15, -80160 (%r15)
1hi %r12,0

i ,

¢ <malloc@plt>

C <main+©x20>

in+0x5:

2>

valgrind

v

libraries

Replace
some of
The library
calls by
Using a
preload
library

translation
into IR

A/

New

instrumentation

binary

A/

translation

To machine code

]

System call

wrapper

kernel

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

Overview (3)
*Usage: valgrind <program>

valgrind buggy_program

==2799== Memcheck, a memory error detector

==2799== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==2799== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==2799== Command: buggy_program

==2799==

==2799== HEAP SUMMARY:

==2799== in use at exit: 200 bytes in 2 blocks
==2799== total heap usage: 2 allocs, 0 frees, 200 bytes allocated
==2799==

==2799== LEAK SUMMARY:

==2799== definitely lost: 100 bytes in 1 blocks
==2799== indirectly lost: ©0 bytes in 0 blocks
==2799== possibly lost: O bytes in 0 blocks
==2799== still reachable: 100 bytes in 1 blocks
==2799== suppressed: 0 bytes in 0 blocks

==2799== Rerun with --leak-check=full to see details of leaked memory

[...]

5 © 2012 IBM Corporation

Linux on System z debugging with Valgrind

Tools

*Several tools

—Memcheck (default): detects memory and data flow problems
—Cachegrind: cache profiling

—Massif: heap profiling

—Helgrind: thread debugging

* DRD: thread debugging

* None: no debugging (for valgrind JIT testing)

 Callgrind: codeflow and profiling

*Tool can be selected with --tool=none|memcheck|
cachegrind...

6

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

1
I

|||
IIn

Memcheck

‘memcheck detects
—Invalid accesses

* Non-allocated memory
* use-after-free

* Array overruns on heap
e Invalid stack areas

—Use of uninitialized data
—Memory leaks

—nvalid free

* Double free
* Wrong free function (free vs. delete vs. delete[] etc.)
—Invalid overlap (memcpy)

—Unfortunately no array overrun on stack
dmportant parameters:

—-leak-check=full

—-track-origins=yes

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

Memcheck — memory leaks

01: #include <stdio.h>
02: #include <stdlib.h>
03: #include <string.h>

04:

05: int main()

06: {
07:
08:
09:
10:
11: }

int 1i;

for (i=0; i < 5; i++)

malloc(1);

cborntra@ri1745045:~/valgrind-demo> valgrind --leak-check=full ./memcheck-leak

[.

1i

[..

o]
4390==

4390== HEAP SUMMARY:

4390== in use at exit: 5 bytes in 5 blocks

4390== total heap usage: 5 allocs, 0 frees, 5 bytes allocated
4390==

4390== 4 bytes in 4 blocks are definitely lost in loss record 2 of 2
4390== at 0x4026B26: malloc (in /usr/1lib64/valgrind/vgpreload_memcheck-s390x-
nux.so)

4390== by 0x800005F1: main (memcheck-leak.c:10)

4390==

4390== LEAK SUMMARY:

4390== definitely lost: 4 bytes in 4 blocks

4390== indirectly lost: 0 bytes in 0 blocks

4390== possibly lost: 0 bytes in 0 blocks

4390== still reachable: 1 bytes in 1 blocks

4390== suppressed: 0 bytes in 0 blocks

4390== Reachable blocks (those to which a pointer was found) are not shown.
with: --leak-check=full --show-reachable=yes

4390== To see them, rerun

]

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

|||
[HH
II| |
J“m
n

Memcheck — missing initialisation

01:
02:
03:
04:
05:
06:
07:
08:
09:

#include <stdlib.h>
int main()

{

int a,b,c;

a 1,
c a+ b;
exit(c);

cborntra@r1745045:~/valgrind-demo> valgrind --track-origins=yes ./memcheck-unit

(-]

==4471== Syscall param exit_group(status) contains uninitialised byte(s)

==4471== at 0x41008A2: _Exit (in /1ib64/libc-2.4.s0)
==4471== by 0x4093B43: exit (in /1ib64/libc-2.4.s0)

==4471== by 0x800005FF: main (memcheck-unit.c:8)

==4474== Uninitialised value was created by a stack allocation
==4474== at 0x800005D2: main (memcheck-unit.c:3)

==4471==

==4471==

==4471== HEAP SUMMARY:

==4471== in use at exit: O bytes in 0 blocks

==4471== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==4471==

==4471== All heap blocks were freed -- no leaks are possible

==4471==

==4471== For counts of detected and suppressed errors, rerun with: -v
==4471== Use --track-origins=yes to see where uninitialised values come from
==4471== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)

© 2012 IBM Corporation

|||
(el

il
||||I|||
n

Linux on System z debugging with Valgrind

Memcheck — overlap detection

01: #include <string.h>

02:

03: int main()

04: {

05: char buf[16000];

06:

07: memcpy (buf, buf+10, 200);
08: }

cborntra@r1745045:~/valgrind-demo> valgrind ./memcheck-memcpy

==4194== Memcheck, a memory error detector

==4194== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==4194== Using Valgrind-3.6.0 and LibVEX; rerun with -h for copyright info
==4194== Command: ./memcheck-memcpy

==4194==

==4194== Source and destination overlap in memcpy(0x7fefffb58, 0x7fefffb62, 200)
==4194== at 0x402A1F0: memcpy (in /usr/1lib64/valgrind/vgpreload_memcheck-s390x-
linux.so)

==4194== by 0x80000601: main (memcheck-memcpy.c:7)

==4194==

==4194==

==4194== HEAP SUMMARY:

==4194== in use at exit: 0@ bytes in 0 blocks

==4194== total heap usage: 0 allocs, 0 frees, 0 bytes allocated

==4194==

==4194== All heap blocks were freed -- no leaks are possible

==4194==

==4194== For counts of detected and suppressed errors, rerun with: -v
==4194== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)

10 © 2012 IBM Corporation

Linux on System z debugging with Valgrind

|||

[HH
il

i

n

drd/helgrind

*Detects potential races between threads

e read/write without lock
e Lock contention

*Mis-use of pthread library

« Invalid pointer (e.g. mutex instead of condition variable)
» Unlock without lock

« Unlock of a lock that was taken by a different thread
 Deletion of a taken lock

*DRD and Helgrind cover similar cases

* Both tools have strong and weak points — use both

11

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

|||
[HH
II| |
J“m
n

Helgrind
Data races

01: #include <pthread.h>

02:

03: static char mem;

04:

05: static void* thread_func(void* arg)

06: {

07: mem = (char) (unsigned long) arg;

08: return NULL;

09: }

10:

11: int main(int argc, char** argv)

12: {

13: pthread_t tid;

14: pthread_create(&tid, NULL, thread_func, (void *) 1);
15: pthread_create(&tid, NULL, thread_func, (void *) 2);
16: return 0O;

17: 3}

cborntra@ri1745045:~/valgrind-demo> valgrind --tool=helgrind ./helgri

[.

==7027== at
==7027== by
==7027== by
==7027== by
==7027== by
==7027==

==7027== Thread #3 was created

Ox4137FEC: clone (in /1ib64/1ibc-2.4.s0)

0x40473BF: do_clone (in /1ib64/libpthread-2.4.s0)

0x40478C9: pthread_create@@GLIBC_2.2 (in /1ib64/libpthread-2.4.s0)
0x402C977: ??? (in /usr/1lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
0x8000068B: main (helgrind-race.c:15)

==7027== Thread #2 was created

==7027== at
==7027== by
==7027== by
==7027== by
==7027== by
==7027==
==7027==
==7027== at
==7027== by
==7027== by
==7027== by
==7027== This
==7027== at
==7027== by
==7027== by
12 ==7027== by

[...]

Ox4137FEC: clone (in /1ib64/1ibc-2.4.s0)

0x40473BF: do_clone (in /1ib64/libpthread-2.4.s0)

0x40478C9: pthread_create@@GLIBC_2.2 (in /1ib64/libpthread-2.4.s0)
0x402C977: ??? (in /usr/1lib64/valgrind/vgpreload_helgrind-s390x-1linux.so)
0x8000066B: main (helgrind-race.c:14)

Possible data race during write of size 1 at 0x8000l1lacc by thread #3

0x80000616: thread_func (helgrind-race.c:7)

0x402CB2D: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-linux.so)
0x40470C1: start_thread (in /1ib64/libpthread-2.4.s0)

0x413806D: ??? (in /1ib64/1libc-2.4.s0)

conflicts with a previous write of size 1 by thread #2

0x80000616: thread_func (helgrind-race.c:7)

0x402CB2D: ??? (in /usr/lib64/valgrind/vgpreload_helgrind-s390x-1linux.so)
0x40470C1: start_thread (in /1ib64/libpthread-2.4.s0)

0x413806D: ??? (1n /1ib64/1ibc-2.4. SO) © 2012 IBM Corporation

Linux on System z debugging with Valgrind

|||

[HH
il

1

n

Callgrind

‘Profiling tool
 Call graphs
* Function dependencies
» Cache accesses
 Branch prediction

«creates callgrind.out.<pid> files
{Jse GUIs to read date

*Additional information for the out files with

* -- Ump-instr=yes: assembler code
* --trace-jump=yes : branches

«Contains a simplified branch predicition

13

© 2012 IBM Corporation

||||||||
imn
[HIK
!!HIIII
ndl])

Linux on System z debugging with Valgrind

Profiling -GUIs (e.g. kcachegrin

valgrind --tool=callgrind --dump-instr=yes --trace-jump=yes ./5-callgrind-deep

int t3(void)

{

& /home/cborntra/callgrind.out.7476 [./deep]

=)k

return 1;

}

int t2(void) main
{ Search: | (No Grouping) v | | fypes | Callers Al Callers | Callee Map | Source Code
return t3 () ’ '_Incl. Self Called Function Location s
1 H 0644 0.00 (0) H0X0000000000000cCO 1d-2.4.50
W 9332 0.00 1 M(below main} libc-2.4.50
T 5520,12509 Eman ey deepc |
int tj_(vo]_d) /M 68.01K 25.19 100 0004t1 deep: deep.c
¥ 42.82K 25.19 100 000 mit2 deep: deep.c
{ ! 17.63F 17.63 100 000 Mt3 deep: deep.c
return t2(); 300 0.02 18 dl start 1d-2.4.50
} 2.89 0.15 18 dl sysdep_start ld-2.4.50
2.87 0.00 1mdl main Id-2.4.50
285 003 18_dl_new_object 1d-2.4.50 3
int main () 283 0.04 15_dl_init_paths ld-2.4.50
279 0.00 1 mdo_preload ld-2.4.50
{ 274 0.02 18 dl map_object deps ld-2.4.50
int i, Sum; 220 0.00 1 _dl_receive error Id-2.4.50
222 0.02 1 Minit_tls Id-2.4.50
5= & e dmees e MRS ——— i 2
x i - - - T dUUU UDFL u.uu CUaQuuUUUU LU D/ 1arn %rL3,8u000/bU < IU STaIN_USeq+uxiu> aeep.ciLs
for (i=0; i<100000; i++) 113 3.63 104mdo lookup_x d-2.4.50 8000 05F8 0.00 a7fbffse aghi %rl5,-168 deep.c:17
sum+=t1(); 052 011 SH<cycle 2> d-2.4.50 3000 05FC 0.00 b9 0400bf lgr %rl1,%r15 deep.c:17
v 048 001 28 d|_catch_error d-2.4.50 8000 0600 0.00 a7180000 i %rL,0 deep.c:20
return sum; 045 043 5M<cycle 1> 1d-2.4.50 80000604 0.00 50 10b0 a4 st %rl,164(%r11) deep.c:20
} 0.44 042 68_dl_new_object2 <cycle 1> Id-2.4.50 3000 0608 0.00 a7180000 Ihi %r1,0 deep.c:21
0.41 0.04 68 _dl_map_object <cycle2> Id-2.4.50 2000 060C 0.00 5010 b0 a0 st %rl,160(%r11) deep.c:21
034 034 104m dl elf hash 1d-2.4.50 3000 0610 000 a7f40011 i 80000632 <main+0x46> deep.c:21 i
030 0.01 34 _dl_map_object _from_fd Id-2.4.50 : Jump 1 times to 0x80000632
0.21 0.01 10m dl fixup 1d-2.4.50 2 cOes5fiffffdd brasl %rl4,800005bc <t1> deep.c:22
019 0.00 1 _dl_init d-2.4.50 B 68.01 # 100000 callfs) to 't1’ (deep: deep.c)
019 0.00 1mcall_init ld-2.4.50 3000 061A 2.52|| b9oaoo12 lgr %rl,%r2 deep.c:22
018 0.0 180x0000000004037¢40 (unknown) 3000 061E 252|| sa10b0a4 a %rl,164{%r11) deep.c:22
018 0.01 14 pthread_initialize_minimal libpthread-2.4. | 8000 0622 25211 5010b0 a4 st %r1,164(%r11) deep.c:22 o
03 (.00 Loexit lbc-2.4.50 1A 30000626 2.52]| 5810b0a0 | %rL160(%r11) deep.c:21 v
o 011002 18 dl fini] d-7.4 50 g v e CallGraph A IR pochine coce |

14

File View Go Settings Help

fhopen | QaBack v 2 rorwerds v b Up v || G Relative) Cycle Detection .Q%hﬁ.e\ative to Parent | Instruction Fetch

Flat Profile

@

callgrind.out.7476 [1] - Total Instruction Fetch Cost: 3 969 936

®

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

*Shows simulated cache behaviour

Cachegrind

» Default based on z10 cache values

« Parameter available, e.g. to use z9 or z196 values

« Handles 2 levels: 1% level und last level for instruction and data

» Also creates cachegrind.out.<pid> files
ri1745045:~ # valgrind --tool=cachegrind 1ls

15

==21487==
==21487==
==21487==
==21487==
==21487==
--21487- -
bin inst
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==
==21487==

Cachegrind, a cache and branch-prediction profiler

Copyright (C) 2002-2010, and GNU GPL'd, by Nicholas Nethercote et al.
Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
Command: 1s

Warning: Cannot auto-detect cache config on s390x,

-sys repos testtools

I refs: 656,270
I1 misses: 792
LLi misses: 656
I1 miss rate: 0.12%
LLi miss rate: 0.09%
D refs: 453,124
D1 misses: 1,869
LLd misses: 1,313
D1 miss rate: 0.4%
LLd miss rate: 0.2%
LL refs: 2,661
LL misses: 1,969
LL miss rate: 0.1%

(361,066 rd

(
(
(
(

1,589 rd
1,061 rd
0.4%
0.2%

2,381 rd
1,717 rd
0.1%

+ 92,058 wr)

+ + + + +

+ +

280 wr)
252 wr)
0.3%)
0.2%)

280 wr)
252 wr)
0.2%)

using one or more defaults

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

|||
[HH
il

Avallability

*System z support since version 3.7
* SLES11SP2
*Backports into 3.6

e SLES10

» Since SP4 on SDK
 RHELG

» Since Ulon main DVD
 RHELS

* No valgrind for z

Linux on System z debugging with Valgrind

|||
IIn
[}

1

I
..||I

]

17

Installation

* RHELG:

« yuminstall valgrind val grind-devel

» Kcachegrind: install kde-sdk (+plus X and fonts)

« SLES11

« zypper install valgrind val grind-devel

« Kcachegrind:

- kdesdk3 source rpm from opensuse factory. Rebuild source rpm (
http://download.opensuse.org/source/factory/repo/oss/suse/src/kdesdk3-.....src.rpm)

- Install the resulting kdesdk-profile package
- Start with /opt/kde3/bin/kcachegrind

© 2012 IBM Corporation

http://download.opensuse.org/source/factory/repo/oss/suse/src/kdesdk3-.....src.rpm

|||

Linux on System z debugging with Valgrind

Hints

No need to recompile, but
* Better results with debug info

» Gcce option -O0 might result in more findings(the compiler might hide some errors)
» Gcce option -fno-builtin might result in more findings

~-trace-children=yes will also debug child processes
Setuid programs might cause trouble

» Valgrind is the process container (- no setuid)

—Possible solution: remove setuid and start as the right user, check documentation for other ways
«Killall/ps etc.

» Valgrind starter will be replace by the tool
—one-s390x-linux
—memcheck-s390x-linux
—eftc.
*The program will be slower
« 5-30 times slower for memcheck
‘Suppression files can be used to block specific errors

1+ ANG=C to avoid CU** instruction

18 © 2012 IBM Corporation

Linux on System z debugging with Valgrind

Limitations for System z

*No exp-ptrcheck (exp-sgcheck) tool support

*Only 64bit applications

*No decimal floating point

Current focus is on compiler generated code (gcc)

*Some other instructions are missing in the older
backports (translate, stfle)

*Only partial support for gcc option -march=z196

Linux on System z debugging with Valgrind

|||
[HH
II| |
J“m
n

Debugging: gdb attach

cborntra@tuxmaker:~/valgrind-demo> valgrind --db-attach=yes ./fault

==13002== Memcheck, a memory error detector

==13002== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==13002== Using Valgrind-3.6.0.SVN and LibVEX; rerun with -h for copyright info
==13002== Command: ./fault

==13002==
==13002== Invalid read of size 1
==13002== at 0x8000057C: main (fault.c:7)

==13002== Address 0x0 is not stack'd, malloc'd or (recently) free'd
==13002==

==13002==

==13002== ---- Attach to debugger ? --- [Return/N/n/Y/y/C/c] ----Yy
==13002== starting debugger with cmd: /usr/bin/gdb -nw /proc/13033/fd/1014 13033
GNU gdb 6.6

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "s390x-suse-linux"...

Using host libthread_db library "/1ib64/libthread_db.so.1".

Attaching to program: /proc/13033/fd/1014, process 13033

0x000000008000057c in main () at fault.c:7

7 exit(*c);

(gdb)

20

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

21

Debugging gdb server (>=3.7)

» Since 3.7 valgrind contains a gdb server

» vgdb control program

» --vgdb-error=0 as quick way to enable

[cborntra@r1745045 valgrind]$ valgrind --vgdb-error=0
/home/cborntra/REPOS/valgrind/none/tests/s390x/mvcl

==65367==
==65367==
==65367==
==65367==
==65367==
==65367==
==65367==
==65367==
==65367==
==65367==
==65367==
==65367==
==65367==

Memcheck, a memory error detector

Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.

Using Valgrind-3.8.0.SVN and LibVEX; rerun with -h for copyright info
Command: /home/cborntra/REPOS/valgrind/none/tests/s390x/mvcl

(action at startup) vgdb me ...

TO DEBUG THIS PROCESS USING GDB: start GDB like this

/path/to/gdb /home/chorntra/REPOS/valgrind/none/tests/s390x/mvcl
and then give GDB the following command

target remote | /usr/local/lib/valgrind/../../bin/vgdb --pid=65367
--pid is optional if only one valgrind process is running

© 2012 IBM Corporation

Linux on System z debugging with Valgrind

Annotations

* Your program can control valgrind

» Several macros defined in valgrind header
files under /usr/include/valgrind/

 Make memory defined/undefined, check if
running under valgrind etc.

* Valgrind-devel package

01: int main()

02: {

03: int a = 3;

04:

05: printf("No Error here: %d\n", a);

06: VALGRIND_MAKE_MEM_UNDEFINED(&a, sizeof(a));
07: printf("Here is an error %d\n", a);

08: return 0;

09: }

22 © 2012 IBM Corporation

|||
[HH
II| |

..III'"
nutl)

Linux on System z debugging with Valgrind

Problem reporting

‘hittps://bugs.kde.org/enter _bug.cgi?product=valgrind
‘Missing instructions will look like
vex s390->IR: unimplemented i1nsn: XXXX XXXX

valgrind: Unrecognised instruction at address
OXXXXXXXX .

‘Missing system calls

WARNING: unhandled syscall: XxxX

You may be able to write your own handler.
Read the file README_MISSING_SYSCALL_OR_IOCTL.

+Valgrind internal errors

* Might be a valgrind bug
» Might be causes by buggy programs

23 © 2012 IBM Corporation

Linux on System z debugging with Valgrind

Thanks

© 2012 IBM Corporation

24

	Slide 1
	Trademarks
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

