
Pervasive Encryption
for Linux on z Systems
and LinuxONE

Reinhard Buendgen --
buendgen@de.ibm.com

Crypto Architect for Linux on z

IBM Z / ZSP03160-USEN-38 / July 17, 2017 / © 2017 IBM Corporation

2 © 2017 IBM Corporation

Trademarks

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations

such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements

equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance

characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business

contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

This information provides only general descriptions of the types and portions of workloads that are eligible for execution on Specialty Engines (e.g, zIIPs, zAAPs, and IFLs) ("SEs"). IBM authorizes customers to use IBM SE only to execute the

processing of Eligible Workloads of specific Programs expressly authorized by IBM as specified in the “Authorized Use Table for IBM Machines” provided at www.ibm.com/systems/support/machine_warranties/machine_code/aut.html (“AUT”). No

other workload processing is authorized for execution on an SE. IBM offers SE at a lower price than General Processors/Central Processors because customers are authorized to use SEs only to process certain types and/or amounts of workloads as

specified by IBM in the AUT.

* Registered trademarks of IBM Corporation

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a Registered Trade Mark of AXELOS Limited.

ITIL is a Registered Trade Mark of AXELOS Limited.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VMware, the VMware logo, VMware Cloud Foundation, VMware Cloud Foundation Service, VMware vCenter Server, and VMware vSphere are registered trademarks or trademarks of VMware, Inc. or its

subsidiaries in the United States and/or other jurisdictions.

Other product and service names might be trademarks of IBM or other companies.

CICS*
Cognos*
DataStage*
DB2*
GDPS

Global Business Services*
IBM*
IBM (logo)*
InfoSphere
Maximo*

MQ*
Parallel Sysplex*
QualityStage
Rational*
Smarter Cities

XIV*
zEnterprise*
z/OS*
z Systems*
z/VM*

SPSS*
System Storage*
System x*
Tivoli*
WebSphere*

z/VSE*

http://www.ibm.com/systems/support/machine_warranties/machine_code/aut.html

PERVASIVE ENCRYPTION FOR IBM Z

3

4 © 2017 IBM Corporation

The Value of Data …

Today data is one of the most valuable assets of many companies.

In particular sensitive data must be protected against unauthorized access to avoid

– losing customer trust

– losing competitive advantages

– being subject to fines and regression claims

Data encryption is the most effective way to protect data outside your system be it in flight

or at rest.

But encrypting data is not easy

– requires the introduction of new policies

– complicates data management

– requires to securely manage keys

– costs computing resources

5
© 2017 IBM Corporation

Here is a Dream …

what if you could just encrypt all data in-flight and at-rest

• at no cost

• w/o changing applications

• w/o changing data management

• by pushing a single button

Well, that will remain to be a dream.

But with pervasive encryption we want to

make a large step in that direction.

6
© 2017 IBM Corporation

Pervasive Encryption with IBM Z

IBM z14 -- Designed for Pervasive Encryption

CPACF – Dramatic advance in bulk symmetric encryption performance

Crypto Express6S– Doubling of asymmetric encryption performance for TLS handshakes

Coupling Facility – E2E encryption

z/OS -- New approach to encryption of in-flight and at-rest data

z/OS data set encryption – Transparent encryption of data at-rest

z/OS CF encryption –Transparent end-to-end encryption of CF data

Linux on z and LinuxONE -- Full Power of Linux Ecosystem combined with IBM z14

Capabilities

dm-crypt – Transparent volume encryption using industry unique CPACF protected-keys

Network Security – Enterprise scale encryption and handshakes using z14 CPACF and SIMD

Secure Service Container – Automatic protection of data and code for virtual appliances

z/VM – New: Encrypted paging support

Technical Foundation – Linux on z related

PERVASIVE ENCRYPTION FOR LINUX ON Z SYSTEMS AND
LINUXONE

USE CASES

7

8 © 2017 IBM Corporation

Use Case 1: Mongo DB Server

data at rest

 end-to-end volume level encryption by Linux kernel (dm-crypt)

 transparent usage of CPACF by Linux kernel

 protected key option possible

LinuxLinux

Mongo DBMongo DB

Linux kernelLinux kernel

dm-cryptdm-crypt

DB clientDB client

data in flight:

 encrypted connection by DB server (-> openSSL)

 encrypted Linux sessions via ssh (-> openSSL)

 transparent usage of CPACF by openSSL

 symmetric (CPACF) and asymmetric encryption (SIMD or Crypto Express)

As user I want to run a no-SQL DB service using

an existing open source DB where all data in

flight and at rest is transparently encrypted

Linux server may run in an

• LPAR,

• z/VM guest or

• KVM guest

on z14

all crypto

becomes

faster !

secure manner of key generation

 CPACF true random numbers are fed in kernel entropy pool

9 © 2017 IBM Corporation

Use Case 2: Mobile Server Farm in a Trusted HV

data at rest:

 end to end encryption of all real

volumes by KVM

 transparent usage of CPACF via

kernel and dm-crypt

 protected key option possible

LinuxLinux

node.jsnode.js

KVM on zKVM on z

dm-cryptdm-crypt

data in flight:

 per guest NW encryption in

node.js or apache or DB2

 transparent usage of CPACF

and SIMD via openSSL or GSKit

LinuxLinux

node.jsnode.js

LinuxLinux

DB2DB2

LinuxLinux

DB2DB2

As an operator of a data center for my company

I want to host a server farm such that all data of the

provisioned servers shall be transparently encrypted

on z14

all crypto

becomes

faster !

10 © 2017 IBM Corporation

Use Case 3: PaaS for Sensitive Data

LinuxLinux

App to be

deployed

App to be

deployed

dm-cryptdm-crypt

CEX

z/VM

As a provider for PaaS I want to address

• customers with sensitive data (HR, Health, insurances, ...) and

• provide systems where all data at rest is transparently

encrypted regardless of the storage location such that the

encryption key cannot be stolen.

data at rest

 end-to-end volume level encryption by Linux kernel (dm-crypt)

 transparent usage of protected key CPACF by Linux kernel

 unique security and usability enhancement

– no clear key in memory

• use protected keys

• requires Crypto Express adapter

– autonomous boot

 clear text data in volumes can only be accessed by the system that

created the data

11 © 2017 IBM Corporation

Use Case 4: Secure Service Container (SSC)

As service provider I want to be able host ultra sensitive

appliances (e.g. blockchain nodes) as a black box that

cannot be inspected by my operator team

 let customer & IBM build SSC image

 install signed & partially encrypted SSC image in SCC

LPAR

 no access from SE/HMC into SSC LPAR

 restricted secure connectivity through REST APIs

 all SSC Data E2E encrypted (dm-crypt)

 option: protected key dm-crypt provides additional layer of

security

LinuxLinux

Sensitive

SSC App

Sensitive

SSC App

dm-cryptdm-crypt

CEX

SSC

LPAR

REST

API

PERVASIVE ENCRYPTION FOR LINUX ON Z SYSTEMS AND
LINUXONE

TECHNICAL CONTENTS

12

13
© 2017 IBM Corporation

Technical Aspects of Pervasive Encryption for
Linux on z Systems and LinuxONE

Improved crypto performance

• benefit from accelerated CPACF functions

• exploit improved & new z14 CPACF functions

• exploit z13 & z14 SIMD support

Easy crypto consumability

• Linux is Linux, but using z specific HW shall

not be an extra burden

• transparent crypto exploitation:

• in-kernel crypto contributions

• -> dm-crypt, IPSec, …

• new: direct contributions to

libcrypto/openSSL library code

• -> apache, ssh, …

• protected key dm-crypt

• allows automatic disk access (boot)

Improved security

• abundant entropy

• to generate good and strong keys

• feed CPACF true random numbers into

kernel entropy pool

• unique security enhancement for dm-crypt:

• no plain text key in memory

• use protected keys

• requires Crypto Express adapter

• Secure Service Container

• tamper protected and confidential

appliance container

PERVASIVE ENCRYPTION FOR LINUX ON Z SYSTEMS AND
LINUXONE

TECHNICAL CONTENTS: DATA IN FLIGHT

14

15 © 2017 IBM Corporation

Pervasive Encryption: Data in Flight
 openSSL and libcrypto

– de-facto standard TLS & crypto libraries

– used by many open source projects (including Apache, node.js, MongoDB)

– exploitation of IBM Z CPACF and SIMD code by libcrypto (w/o ibmca engine)

– focus on TLS 1.2 and 1.3 ciphers

– no IBM Z specific configuration required

 IPsec

– bulk encryption and authentication implemented by kernel crypto

– transparently uses CPACF

 GSKit

– IBM C library for TLS and crypto

– e.g. used by IBM HTTP Server (IHS)

– uses IBM Z CPACF

– release 8.0.50.82 will use new z14 CPACF instructions

 Java 8 / JCE

– exploitation of IBM Z CPACF and SIMD code

– Java 8 service refresh 5 will use z14 CPACF instructions

openssl

patches

submitted

upstream

but not yet

accepted

16 © 2017 IBM Corporation

The new Linux on z openSSL Strategy

libssl
implements SSL/TLS

protocol stack

libcrypto
• implement crypto algos (required by TLS & …)

• compilation calls platform specific assembler

• IBM Z: CPACF, SIMD, 64-bit mult

• crypto algos in libcrypto may be replaced by

engine implementations

ibmca engine

CPU (CPACF) CEX

libica

uses CPACF,

CEX*A, CEX*C

Original Linux on z strategy

– put IBM Z specific code in the ibmca engine (only)

– pro:

• all IBM Z specific user space cyrpto in libica

• IBM maintains ibmca engine

– cons: engines must be configured

New Strategy

– all CPU dependent code (SIMD, CPACF) in libcrypto

– Crypto Express dependent code in ibmca

– no config needed for

• hashes (SHA1, SHA2,)

• AES (ECB, CBC, OFB, CFB, XTS, CTR, GCM, CCM)

• chacha20, poly1305

– ibmca engine config needed for

• offload/acceleration of RSA, DH, DSA, ECC, (3DES) via

Crypto Express adapters

• configure engine to not support AES or hashes

openssl

patches

submitted

upstream

but not yet

accepted

until openssl

patches

accepted:

gcm support

added to

ibmca 1.4

PERVASIVE ENCRYPTION FOR LINUX ON Z SYSTEMS AND
LINUXONE

TECHNICAL CONTENTS: DATA AT REST

17

18 © 2017 IBM Corporation

Pervasive Encryption for Data at Rest
 dm-crypt: block device / full volume encryption

– uses kernel crypto

– granularity: disk partition / logical volume

– new protected key option

 ext4fs with encryption option: file system encryption

– uses kernel crypto

– granularity: file, directory, symbolic link

 Spectrum Scale (GPFS) with encryption option: file encryption

– uses GSKit or Clic

– granularity: file

 NFS v4 with encryption option: encryption of file transport

– uses kernel crypto

 SMB v3.1: encryption of file transport

– uses kernel crypto

 DB2 native encryption: data base encryption

– uses GSKit

kernel crypto

automatically uses

CPACF for AES if the

module aes_s390 is

loaded

GSKit and latest

versions of Clic use

CPACF for AES

with new

Linux

kernels, keys

generated on

z14 will be

more secure

on z14

all crypto

becomes

faster !

19 © 2017 IBM Corporation

Data at Rest Encryption Considerations

Questions

 Where is data decrypted/encrypted?

 Who generates keys?

 Who owns (can access) the keys?

 Backups? Data migration?

Storage server Server

VS

application

OS-kernel

HVSANcache

adapter adapter

Attack points

• storage server

• SAN

• Server / HV / VS

• insider / outsider

20 © 2017 IBM Corporation

Data Encryption on Storage Subsystem

Questions

 Where is data decrypted/encrypted? storage server

 Who generates keys? storage/OS

 Who owns (can access) the keys? storage/OS admin

Storage server Server

VS

application

OS-kernel

HVSANcache

adapter adapter

Attack points

• storage server -- (secured)

• SAN – not secure

• Server / HV – not secure

• VS insider / outsider – not secure

21 © 2017 IBM Corporation

End-to-End SAN/Network Encryption

application

Storage server Server

VS

OS-kernel

HVSANcache

adapter adapter

Attack points

• storage server -- not secured

• SAN -- secured

• Server / HV -- not secured

• VS insider / outsider – not secured

Questions

 Where is data decrypted/encrypted? adapter

 Who generates keys? system admin

 Who owns (can access) the keys? system admins

22 © 2017 IBM Corporation

End-to-End Data Encryption

Questions

 Where is data decrypted/encrypted? application or kernel

 Who generates keys? app or OS admin

 Who owns (can access) the keys? app or OS admin

Storage server Server

VS

application

OS-kernel

HVSANcache

adapter adapter

Attack points

• storage server -- secured

• SAN -- secured

• Server / HV – (secured)

• VS insider / outsider -- not secured

23 © 2017 IBM Corporation

End-to-End Data Encryption from SSC

Questions

 Where is data decrypted/encrypted? application or kernel

 Who generates keys? app or OS admin

 Who owns (can access) the keys? app or OS admin

Storage server Server

SSC

application

OS-kernel

HVSANcache

adapter adapter

Attack points

• storage server -- secured

• SAN -- secured

• Server / HV – secured

• VS insider / outsider -- hardened

DM-CRYPT & LUKS

24

25 © 2017 IBM Corporation

SAN

vdisk disk

FSdm-crypt

End-to-End Data at Rest Encryption with dm-crypt

 E2E data encryption

– The complete I/O path outside the kernel is encrypted:

• HV, adapters, links, switches, disks

 dm-crypt

– a mechanism for end-to-end data encryption

– data only appears in the clear in application

 Linux kernel component that transparently

• for all applications

• for a whole block device (partition or LV)

– encrypts all data written to disk

– decrypts all data read from disk

 How it works:

– uses in kernel-crypto

• can use IBM Z CPACF Crypto:

– AES-CBC

– XTS-AES (recommended)

– encrypted volumes must be opened before usage

• opening provides encryption key to kernel

• establishes virtual volume in /dev/mapper

application

Linux kernel

file system

block device driver

Linux

on z14

XTS-AES

will be

vey fast

26 © 2017 IBM Corporation

Linux File System Stack with dm-crypt

application

kernel

disk disk

physical

block DD

physical

block DD

logical block DD

logical block DD

page cache

file system (e.g. ext4)

virtual file system

I/O system call

(open, read,

write)

standard I/O

(through page cache)

direct I/O

(bypassing

page cache)

direct I/O to

device

(e.g. swap)

layers of logical

device drivers:

logical volumes,

RAID, multipath

+ dm-crypt

dm-crypt

e
n
c
ry

p
te

d
c
le

a
r

te
x
t

27 © 2017 IBM Corporation

How to Set-up a dm-crypt LUKS Volume
 1: format “raw” volume as dm-crypt volume

– cryptsetup luksFormat …

• cipher, key length, hash, passphrase

– writes dm-crypt header to disk

 2: open dm-crypt volume and assign it a virtual volume name

– cryptsetup luksOpen …

• dm-crypt volume, virtual volume, password

– creates virtual volume in /dev/mapper

– can be automated with /etc/crypttab

 3: use virtual volume

– mkfs (or mkswap)

– mount (or swapon)

– any kind of standard I/O

– do not use raw volume directly

/dev/dasdb1

/dev/mapper/

sec_dev

1

2

kernel translates I/O

to virtual volume into

I/O to raw volume

and performs

decryption/encryption

kernel stores

raw and

encryption

info for virtual

volume

once

with

every

boot

BAU

header contains

wrapped key

PERVASIVE ENCRYPTION FOR LINUX ON Z SYSTEMS AND
LINUXONE

SUPPORTING CPACF PROTECTED KEY CRYPTO

28

29 © 2017 IBM Corporation

Clear Key vs. Secure Key Cryptography

master key

hardware security module

(HSM) -- tamper proof

E.g. Crypto Express Adapter

do not confuse

secure und secret keys

secure key cryptoclear key crypto

secure key

clear key =

plain text key

30 © 2017 IBM Corporation

CPACF Protected Keys

 IBM Z function of the CPU (CPACF)

 each virtual server (LPAR or guest) has a hidden master key

– hidden master key is not accessible from operating system in LPAR or

guest

 a key wrapped by the hidden LPAR/guest master key is called a protected key

 protected key tokens can be generated

– from clear keys (insecure)

– from secure keys using CEX Adapter (secure)

 IBM Z CPU can compute symmetric encryption for protected keys

– pro

• no clear keys in operating system memory

• fast, encryption/decryption at CPU/CPACF speed, no I/O needed

– cons

• „hiding“ of master key not as good and tamper proof as that of an HSM

• not certified as HSM

• the LPAR/guest master key is not persistent

– need to store (secure) key to derive protected key from

master key

CPU/FW

memory not accessible by OS

protected key

31 © 2017 IBM Corporation

Managing Protected Keys: the pkey Kernel Module

 upstream since kernel version 4.11

 activate with

modprobe pkey

 implements misc device: /dev/pkey

 provides functions (IOCTLs) to

– PKEY_GENSEC: generate a random CCA secure key

– PKEY_CLR2SEC: generate a CCA secure key from a clear key

– PKEY_SEC2PROT: generate a protected key from a CCA secure key

– PKEY_FINDCARD: find an adapter and domain associated with a given secure key

– PKEY_SECK2PROTK: first PKEY_FINDCARD then PKEY_SEC2PROT

– PKEY_GENSEC, PKEY_CLR2SEC, PKEY_SEC2PROT have target adapter&domain as well as key type as

arguments

 Secure keys are CCA secure keys of type AESDATA

32 © 2017 IBM Corporation

Secure Key Handling: the zkey Tool

– new tool in s390tools 1.39

– requires pkey module

– generate, validate, re-encipher secure AES keys to be transformed into protected keys

• generate

 generates file with AES secure key (AESDATA)

 random key or from clear key

 single key (for CBC) or two keys (for XTS)

 size of secure keys: 64 bytes (single key), 128 bytes (XTS key) regardless of AES key size

• validate

– checks if input file contains valid AES secure key

– if yes displays key attributes

• re-encipher

– support master key change on Crypto Express adapter

– transforms a valid secure key wrapped by a current (or old) HSM master key into a secure key

wrapped by a new (or current) master key

– requires installation of CCA package from

» http://www-03.ibm.com/security/cryptocards/pciecc2/lonzsoftware.shtml

http://www-03.ibm.com/security/cryptocards/pciecc2/lonzsoftware.shtml

33 © 2017 IBM Corporation

The PAES in-kernel Cipher

 upstream since kernel 4.11

 paes module implements protected key AES ciphers:

– ecb(paes)

– cbc(paes)

– xts(paes)

– ctr(paes)

 requires the pkey module as prereq

 paes ciphers take CCA AES secure keys as key arguments

– transforms secure key into protected key

– caches protected key (into encryption context aka transform)

– uses protected key for cryptographic operations

PERVASIVE ENCRYPTION FOR LINUX ON Z SYSTEMS AND
LINUXONE

SUPPORTING CPACF PROTECTED KEY CRYPTO FOR DM-CRYPT

34

35 © 2017 IBM Corporation

SAN

vdisk disk

FSdm-crypt

E2E Data at Rest Encryption with Protected Keys
 Protected keys

– never stored in plain text in OS memory

– wrapped by system key accessible to CPU only

– volatile since system key recycled with every IPL

– extend “life span of protected keys” with the help of Crypto Express

adapters

– functionally similar to secure keys but much faster

• implemented on CPU (CPACF)

• no I/O required

 New kernel support for protected key

– module to support managing protected keys

• transform secure key into protected key

– module to support PAES cipher (protected key AES)

• takes a secure key and caches the associated protected key

 dm-crypt

– can use PAES cipher to protect data with XTS-AES

 New tools to manage volume encrypted using PAES

– support of LUKS format (work in progress)

application

Linux kernel

file system

block device driver

Linux

CEX

36 © 2017 IBM Corporation

Using the PAES with dm-crypt – Plain Format

 the plain dm-crypt format does not have a header describing the disk encryption: no

formatting required

 generate a file with a secure key

zkey generate seckey.bin –xts

– requires access to CEX[5|6]C adapter

 open block device as device mapper volume

cryptsetup open --type plain --key-file seckey.bin \\

--key-size 1024 --cipher paes-xts-plain64/dev/dasdb1 \\

plain_enc

– new virtual device mapper volume /dev/mapper/plain_enc will be created

– requires access to CEX[5|6]C adapter

 use new device mapper volume

– (only once) create file system:

mkfs.ext4 /dev/mapper/plain_enc

– mount:

mount /dev/mapper/plain_enc /mount_point

– access:

echo “hello world” > /mount_point/myfile

/dev/dasb1

/dev/mapper/

plain_enc

/mount_point

once

with

every

boot

BAU

seckey.bin

37 © 2017 IBM Corporation

Using the PAES with dm-crypt – LUKS Format

0: insert new kernel modules during boot

 requires access to CEX5C or CEX6C adapter

1: format raw volume as dm-crypt volume

 cryptsetup luksFormat …

– cipher, key length, hash, password

– use “paes” instead of “aes”

 writes dm-crypt header to disk

2: open dm-crypt volume and assign it a virtual volume name

 cryptsetup luksOpen …

– dm-crypt volume, virtual volume, passphrase (needs not be protected)

 creates virtual volume in /dev/mapper

3: use virtual volume

 mkfs (or mkswap)

 mount (or swapon)

 any kind of standard I/O

 do not use raw volmue directly

/dev/dasdb1

/dev/mapper/

sec_dev

1

2

kernel translates I/O

to virtual volume into

I/O to raw volume

and performs

decryption/encryption

kernel stores

raw and

encryption

info for virtual

volume

once

with

every

boot

BAU

header contains

wrapped secure

key
once

modification

of cryptsetup

submitted

upstream but

not yet

accepted

BEST PRACTICES WITH ENCRYPTED VOLUMES

38

39 © 2017 IBM Corporation

Best Practices with (Protected Key) dm-crypt

 use /etc/cryptsetup

– to configure automated opening of volumes

 use dm-crypt volumes as LVM physical volumes

– allows transparent data migration

 for production use

– to deal with key loss (plain formant)

• backup secure key

– to deal with LUKS header corruption

• back up dm-crypt header

– to deal with HSM loss

• make sure you have a back-up adapter with same master key as primary adapter

• or put the smart cards with the master key parts into a set of safes.

40 © 2017 IBM Corporation

/etc/crypttab

 configuration file to describe how dm-crypt volumes are to be opened

 will be read and interpreted before /etc/fstab

 format

– each line describes a dm-crypt volume:

• <dm-crypt volume> <path of block-device> <password file>|none [options]

– for the plain format, the password file contains a key

• options may be set to describe volatile swap and tmp volumes

– example lines:

luks_vol /dev/dasdb1 sec_dev /root/PWs/sec_dev.pw

sec_swap /dev/dasdb2 sec_swap none cipher=aes-xts-plain64,size=512,hash=sha512,swap

plain_vol /dev/dasdd1 /root/seckey.bin plain,cipher=paes-xts-plain64,hash=plain, \\

size=1024

41 © 2017 IBM Corporation

Using dm-crypt Volumes as LVM Physical Volumes

Use virtual dm-crypt device as

input to vgcreate
Migrate data from unencrypted volume to dm-crypt volume

– 1: add dm-crypt based physical volume to volume group:

vgextend VG PV2

– 2: migrate data from V1 to DMV:

pvmove V1 DMV

VG

LV1 LV2

PV1 PV2 PV3

DM

V1

DM

V2

DM

V3

V1 V2 V3

VG

LV1 LV2

PV1 PV2

DMV

V1 V2

1

2

works transparently

while applications

access LVs

42 © 2017 IBM Corporation

Back-ups of Encrypted Data

 Back-ups at file system level

– e.g. with tar

– back-up is plain text encryption depends on how

back up is stored

 Raw disk image

– e.g. dd from /dev/dasdb1

– back-up is encrypted exactly as original disk

– LUKS: self-contained as it contains LUKS header

 Always a good idea:

– LUKS: make a back-up of the LUKS header

• protects against header corruption

– plain format: always back-up key file

luksOpen

mount

tar

dd

cryptsetup luksDump

encrypt

Secure Service Containers

43IBM Z / ZSP03160-USEN-38 / July 17, 2017 / © 2017 IBM Corporation

44 © 2017 IBM Corporation

Secure Service Container (SSC)
The Base Infrastructure to Host and Build Software Appliances

• Provides simplified mechanism for fast

deployment and management of

packaged solutions

• Management provided via remote APIs

(RESTful) and web interfaces

• Enables appliances to be delivered via

distribution channels

• Provides tamper protection during

appliance installation and runtime

• Ensure confidentiality of data and code

running within the appliance – both at

flight and at rest

Services

Applications

Operating SystemM
an

ag
e
m
e
n
t

S
e

c
u

ri
ty

S
im

p
lic

it
y

SSC Security Concept

45

Boot sequence:

1. Firmware bootloader is loaded in

memory

2. Firmware loads the software

bootloader from disk

1. Check integrity of software

bootloader

2. Decrypt software bootloader

3. Software bootloader activate

encrypted disks

1. Key stored in software

bootloader (encrypted)

2. Encryption/decryption done

on the flight when accessing

appliance code&data

4. Appliance designed to be managed

by remote APIs only

• REST APIs to configure Linux

and apps

• No ssh (allowed in dev mode

IBM Z / ZSP03160-USEN-38 / July 17, 2017 / © 2017 IBM Corporation

Firmware

Bootloader

signature check

decryption

Software

Bootloader

Disc

Encryption

Key

Software

Image & Data

Disk Encryption

LVM

check

decrypt

open

LUKS

Protected Memory (SSC LPAR)

Encrypted

Software

Encrypted

Data

SE

Smartcard
Machine secret

Encrypted, Signed, Tamper Resistant, Protected

THE CRYPTO EXPRESS6S ADAPTER

46

47
© 2017 IBM Corporation

The Crypto Express6S Adapter

At z14 GA CEX6S adapters will be tolerated

• on all supported distribution releases

• supported release may need ”toleration” patch

• CCA and EP11 require a package update from
• http://www.ibm.com/security/cryptocards/pciecc2/lonzsoftware.shtml

“Toleration” means

• CEX6S adapters will be accepted by Linux releases with CEX6S toleration

support.

• CEX5S function will be available on CEX6S adapters.

• The kernel will “pretend” a CEX6S adapter is a CEX5S adapter.

• Performance improvements of CEX6S adapters will be available to Linux.

48
© 2017 IBM Corporation

Pervasive Encryption for Linux on z Systems -- When?

• z14 CPACF HW performance improvements

• dm-crypt, libica, openSSL, openCryptoki, Java, GSKit: all distributions at z14 GA

• z14 CPACF new CPACF instructions (GCM, TRNG)

• Java, GSKit: future release update

• kernel (TRNG): distribution releases to pick up the new code

• openSSL

• once patches accepted upstream distribution releases to pick up the new code

• until then GCM via ibmca 1.4: distribution releases to pick up the new code

• Protected key support

• basic support (pkey & paes modules, zkey tool): distribution releases to pick up the

new code

• dm-crypt with plain format: implicit with basic protected key support

• dm-crypt with LUKS format: once cryptsetup patches accepted upstream distribution

release to pick up the new code

• SSC

• GA for some appliances (BC, VSENA)

• more appliances to follow

49 © 2017 IBM Corporation

Summary

Pervasive Encryption for Linux provides

– fast and consumable data protection for data in-flight and data at-rest

– transparent fast encryption for data at rest

– extended security for data at-rest with protected key dm-crypt

– a trusted computing environment for sensitive appliances through Secure Service

Containers

IBM will work with its distribution partners to include the new function code being

accepted by open source projects in future distribution releases.

50 © 2017 IBM Corporation

