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Containers and Docker



What are Containers?

 Virtual environment within Linux OS instance

– So applications share OS kernel

– Only application is started, not entire Linux environment

 Efficiency: no virtualization overhead

– No full system or para-virtualization, but only isolation in the kernel

 Own file system tree via chroot environment

 Container separation of OS objects via „name spaces“

– Process IDs, network devices, mount points, users, and more
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Typical Container Attributes

 Self contained sets of files – escape dependency hell, reduce test matrix

 Serve a single task

 Can build on top of each other

– efficiency: only differences are stored

 Can be deployed simple and quickly

 Can easily be customized, re-packaged and versioned

 Can use synergies in the kernel, if images eventually base on the same 

libraries (same file in underlying images)

– without having to use KSM (Kernel Samepage Merging)
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Docker

 One implementation of a container solution

 Powerful tool to build, modify, deploy, run, manage containers

– Extreme focus on efficiency, fast response times

– Stores incremental differences and caching whenever possible

 Registries serve as central places for images

– Efficient distribution, versioning

 Terminology

– image: a self contained set of files, base for a container

– container: runnable instance, based on an image

 Maintained by Docker, Inc.
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Docker Structure

8



Dockerfile Example

 Use Dockerfiles for controlled builds of images:

# use this base image. Downloaded if not present.

FROM rhel71

MAINTAINER Whatever my name is <some@address.com>

# run commands:

RUN yum install -y httpd

# copy files into the image

ADD index.html /var/www/html/

# publish a port of the container

EXPOSE 80

# how the container is started

ENTRYPOINT ["/usr/sbin/apachectl","-DFOREGROUND"]
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Docker Ecosystem (1)

 Docker Hub

– Docker’s public registry with 100,000+ public images

– Private areas available

– Contains ~100 official images of companies (Ubuntu, MongoDB, …)

– Automated builds possible

 Private registries possible

 Docker Trusted Registry as on-premise, private registry offering by Docker
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Docker Ecosystem (2)

 Additional Docker projects (some still in beta), e.g.

– registry: central image repository with versioning

– machine: make a virtual server a Docker host

– compose: create multi-container applications, manage and scale them

– swarm:

place containers in a Docker cluster
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Docker Ecosystem (3)

 Monitoring

– cAdvisor

– Datadog

 (Docker) Container Orchestrating and Clustering solutions

– Kubernetes: cluster manager by Google

 Grouping/placement, scheduling, state management

 Builds on etcd (key value store for state and cluster coordination)

– Apache Mesos: cluster manager

 Builds on top of Linux nodes

 Cluster resource and service management, resource isolation
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Docker Ecosystem (4)

 OpenStack (components currently out of tree)

– Management integration and standardization (keystone etc.)

 But giving up on Docker CLI flexibility

– Nova: Docker virt driver

 Runs Docker images on hosts, images stored in glance

– Heat: Docker plugin

 Use Docker containers in Heat templates

– Magnum project: control orchestration via Docker and Kubernetes

 Goal to fully leverage Docker efficiency

 Multi-tenancy for Docker and Kubernetes
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Open Container Project

 Docker is de-facto container format standard

– CoreOS launched competitive and open approach (rocket container runtime, appc container format)

 Open Container Project to define industry standard container format and runtime

– Housed under the Linux Foundation, sponsored by many IT companies

 Including CoreOS, Docker, Google, IBM, the Linux Foundation, Mesosphere, Microsoft, Red Hat, SUSE, VMWare, and many 

more

 Docker donated their container format and runtime („runc“)

 OCP standards principles:

– Not bound to specific higher level stack (e.g. orchestration)

– Not bound to particular client, vendor, or project

– Portable across OS, hardware, CPU architectures, public clouds
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Containers and Virtualization



Virtualization vs. Containers

Infrastructure oriented:

 coming from servers, now virtualized

 virtual server resource management

 several applications per server

 isolation

 persistence

Service oriented:

 application-centric

 application management

 solution decomposed

 DevOps

 dynamic
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Virtualization and Containers

 Virtual machine separation 

between tenants
– Virtualization management for 

infrastructure

– Isolation

 Many containers within tenants
– Container efficiency

– Docker management and 

ecosystem
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Docker on z



Docker – Linux on z Systems

 Docker is written in Go

– started with Google‘s golang on x86

– gcc 5 comes with Go support for s390

– gcc 5.2 used for Docker builds

– Docker recently accepted patches for full gcc support

 Tech preview binaries available via UNICAMP

– Anchor page http://www.ibm.com/developerworks/linux/linux390/docker.html

 Talk to your distribution partner representative for details re. z Systems distributions ;-)
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Docker And Cross-Platform Portability (1)

 Docker user experience (CLI, REST API) is identical across platforms

 Containers in binary form are not portable

 Microservice architectures often have clean structure and simple individual components

 Containers are often created through Dockerfiles (build descriptions) containing:

– Specification of base image

 If same distribution is available on s390, usually simple

 Currently, closest thing to Ubuntu on x86 is Debian on z

 If base image is not available, need some workarounds to get there (e.g. „golang“)

– Additional steps to modify image. Very often platform independent:

 Add packages (need adaptions when using different base distro)

 Download files

 Perform build
20



Docker And Cross-Platform Portability (2)

 Usual porting considerations (not Docker-specific)

– Source code available?

– Most code runs on s390 already, or consists of plain C, Java, python, ruby, Go, ...

– Platform specific behavior (e.g. application checks for CPU frequency)

– Non-portable code (endianness, assembler)

 „Upstream work“ alleviates the pain for future updates
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Docker on z: Getting Started

 Base images

– Create based on your host distro (e.g. with a script from blog below)

– Use a public z Systems image from Docker hub (no warranty for content!): 

https://registry.hub.docker.com/search?q=s390x

 A lot of Open Source applications being made available, linked from

– https://www.ibm.com/developerworks/community/groups/community/lozopensource/

– https://github.com/linux-on-ibm-z/ (e.g. for cAdvisor)

 Tutorial with z in mind at http://containerz.blogspot.com/

– first steps and ecosystem
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