SLES 11 SP2 Performance Evaluation for Linux on System z

Christian Ehrhardt
IBM Germany Research & Development GmbH
Agenda

- Performance Evaluation
 - Environment
 - Changes one should be aware of

- Performance evaluation Summary
 - Improvements and degradations per area
 - Summarized comparison
Environment

► Hardware Platform – System z10
 ● FICON 8 Gbps
 ● FCP 8 Gbps
 ● HiperSockets
 ● OSA Express 3 1GbE + 10GbE

► Software Platform
 ● VM 5.4
 ● LPAR

► Storage – DS8300 (2107-922)
 ● FICON 8 Gbps
 ● FCP 8 Gbps

► Hardware Platform – System zEnterprise (z196)
 ● FICON 8 Gbps
 ● FCP 8 Gbps
 ● HiperSockets
 ● OSA Express 3 1GbE + 10GbE

► Software Platform
 ● VM 6.1
 ● LPAR

► Storage – DS8800
 ● FICON 8 Gbps
 ● FCP 8 Gbps
Compared Distribution Levels

- Compared Distribution Levels
 - SLES 11 SP1 (2.6.32.12-0.6-default)
 - SLES 11 SP2 (3.0.13-0.27-default)

- Measurements
 - Base regression set covering most customer use cases as good as possible
 - Focus on areas where performance issues are more likely
 - Just the top level summary, based on thousands of comparisons
 - Special case studies for non-common features and setups

- Terminology
 - Throughput – “How much could I transfer in X seconds?”
 - Latency – “How long do I have to wait for event X?”
 - Normalized cpu consumption - “How much cpu per byte do I need?”
New process scheduler (CFS)

- **Goals of CFS**
 - Models “ideal, precise multi-tasking CPU”
 - Fair scheduling based on virtual runtime

- **Changes you might notice when switching from O(1) to CFS**
 - Lower response times for I/O, signals, …
 - Balanced distribution of process time-slices
 - Improved distribution across processors
 - Shorter consecutive time-slices
 - More context switches

- **Improved balancing**
 - Topology support can be activated via the topology=on kernel parameter
 - This makes the scheduler aware of the cpu hierarchy

- **You really get something from fairness as well**
 - Improved worst case latency and throughput
 - By that CFS can ease QoS commitments
Topology of a zEnterprise System

- **Recreate the HW layout in the scheduler**
 - Off in z/VM Guests, since there is no virtual topology information
 - Ability to group (rec. ipc heavy loads) or spread (rec. cache hungry) loads
 - Unintended asymmetries now known to the system

- **Tunable, but complex**
 - `/proc/sys/kernel/sched_*` files contains tunables for decisions regarding request queues
 - `/proc/sys/kernel/sched_domain/*` provides options for the scheduling domains
Benchmark descriptions - File system / LVM / Scaling

- Filesystem benchmark dbench
 - Emulation of Netbench benchmark
 - Generates file system load on the Linux VFS
 - Does the same I/O calls like smbd server in Samba (without networking calls)

- Simulation
 - Workload simulates client and server (Emulation of Netbench benchmark)
 - Mixed file operations workload for each process: create, write, read, append, delete
 - Measures throughput of transferred data
 - Two setup scenarios
 - Scaling – Loads fits in cache, so mainly memory operations for scaling 2,4,8,16 CPUs, 8Gib Memory and scaling from 1 to 40 processes
 - Low main memory and LVM setup for mixed I/O LVM performance 8 CPUs, 2 GiB memory and scaling from 4 to 62 processes
File System benchmark - Scaling Scenario

- Improved scalability for page cache operations
 - Especially improves large workloads
 - Saves cache misses of the load that runs primarily in memory
 - At the same time lower cross process deviation improves QoS
- Improved throughput for disk bound LVM setups as well
 - Especially improves heavily concurrent workloads
Benchmark descriptions – Re-Aim-7

- **Scalability benchmark Re-Aim-7**
 - Open Source equivalent to the AIM Multiuser benchmark
 - Workload patterns describe system call ratios (can be ipc, disk or calculation intensive)
 - The benchmark then scales concurrent jobs until the overall throughput drops
 - Starts with one job, continuously increases that number
 - Overall throughput usually increases until #threads ≈ #CPUs
 - Then threads are further increased until a drop in throughput occurs
 - Scales up to thousands of concurrent threads stressing the same components
 - Often a good check for non-scaling interfaces
 - Some interfaces don't scale at all (1 Job throughput ≈ multiple jobs throughput, despite >1 CPUs)
 - Some interfaces only scale in certain ranges (throughput suddenly drops earlier as expected)
 - Measures the amount of jobs per minute a single thread and all the threads can achieve

- **Our Setup**
 - 2, 8, 16 CPUs, 4 GiB memory, scaling until overall performance drops
 - Using a journaled file system on an xpram device (stress FS code, but not be I/O bound)
 - Using fserver, new-db and compute workload patterns
Improvements to file-system sync

- The issue blocked process scaling (left) and cpu scaling (right)

- The sync call was broken, so scaling relying on it was almost non existent
 - Scales well in SP2 now with increasing number of processes
 - Fortunately for SP1 this system call is not one of the most frequently called ones
Benchmark descriptions – SysBench

- **Scalability benchmark SysBench**
 - SysBench is a multi-threaded benchmark tool for (among others) oltp database loads
 - Can be run read-only and read-write
 - Clients can connect locally or via network to the database
 - Database level and tuning is important
 - We use Postgres 9.0.4 with configuration tuned for this workload in our test
 - High/Low Hit cases resemble different real world setup cases with high or low cache hit ratios

- **Our List of Setups**
 - Scaling – read-only load with 2, 8, 16 CPUs, 8 GiB memory, 4GiB DB (High-Hit)
 - Scaling Net – read-only load with 2, 8, 16 CPUs, 8 GiB memory, 4GiB DB (High-Hit)
 - Scaling FCP/FICON High Hit ratio – read-write load with 8 CPUs, 8 GiB memory, 4GiB DB
 - RW loads still need to maintain the transaction log, so I/O is still important despite DB<MEM
 - Scaling FCP/FICON Low Hit ratio – read-write load with 8 CPUs, 4 GiB memory, 64GiB DB
 - This is also I/O bound to get the Data into cache TODO
 - All setups use
 - HyperPAV (FICON) / Mulitpathing (FCP)
 - Disk spread over the Storage Server as recommended + Storage Pool Striping
 - Extra Set of disks for the WAL (Transaction Protocol)
SysBench – improved thread fairness

- Overall throughput stayed comparable
- But the fairness across the concurrent threads improved
 - Good to improve fair resource sharing without enforced limits in shared environments
 - Effect especially visible when the Database really has to go to disk (low hit scenario)
 - Can ease fulfilling QoS commitments
Benchmark descriptions - Network

- Network Benchmark which simulates several workloads
- Transactional Workloads
 - 2 types
 - RR – A connection to the server is opened once for a 5 minute time frame
 - CRR – A connection is opened and closed for every request/response
 - 4 sizes
 - RR 1x1 – Simulating low latency keepalives
 - RR 200x1000 – Simulating online transactions
 - RR 200x32k – Simulating database query
 - CRR 64x8k – Simulating website access
- Streaming Workloads – 2 types
 - STRP/STRG – Simulating incoming/outgoing large file transfers (20mx20)
- All tests are done with 1, 10 and 50 simultaneous connections
- All that across on multiple connection types (different cards and MTU configurations)
- Small systems gain an improvement in streaming throughput and cpu consumption
 - Systems being cpu-oversized always had to pay a price in terms of cpu consumption
 - Sometimes dynamic adjustment of your sizing can be an option, check out cpuplugd
 - A paper about that can be found at http://www.ibm.com/developerworks/linux/linux390/perf/index.html

- Generic receive offload is now on by default
 - Further improves cpu consumption, especially for streaming workloads
Network II

- Pure virtual connections degraded by 5 to 20%
 - Affects approximately half of the workload scenarios (smaller payloads are more in trouble)
 - Affects virtual vswitch and hipersocket connections
- Some good messages mitigating that degradations
 - The reported overhead caused in the virtualization layers improved, so scaling will be better
 - Smaller degradations with larger mtu sizes
 - Effect smaller on zEnterprise than on z10
Network III

10 Gigabit Ethernet OSA Express 3 MTU 1492

<table>
<thead>
<tr>
<th>Workload</th>
<th>Throughput deviation SP1 to SP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x1 1</td>
<td>-15</td>
</tr>
<tr>
<td>3x1 10</td>
<td>-10</td>
</tr>
<tr>
<td>200x1000</td>
<td>-5</td>
</tr>
<tr>
<td>200x1000</td>
<td>0</td>
</tr>
<tr>
<td>200x1000 50</td>
<td>5</td>
</tr>
<tr>
<td>200x32k 1</td>
<td>10</td>
</tr>
<tr>
<td>200x32k 10</td>
<td>15</td>
</tr>
<tr>
<td>200x32k 50</td>
<td>20</td>
</tr>
<tr>
<td>strg 1</td>
<td>25</td>
</tr>
<tr>
<td>strg 10</td>
<td>30</td>
</tr>
<tr>
<td>strg 50</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th>CPU consumption deviation SP1 to SP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x1 1</td>
<td>-15</td>
</tr>
<tr>
<td>3x1 10</td>
<td>-10</td>
</tr>
<tr>
<td>200x1000</td>
<td>-5</td>
</tr>
<tr>
<td>200x1000</td>
<td>0</td>
</tr>
<tr>
<td>200x1000 50</td>
<td>5</td>
</tr>
<tr>
<td>200x32k 1</td>
<td>10</td>
</tr>
<tr>
<td>200x32k 10</td>
<td>15</td>
</tr>
<tr>
<td>200x32k 50</td>
<td>20</td>
</tr>
<tr>
<td>strg 1</td>
<td>25</td>
</tr>
<tr>
<td>strg 10</td>
<td>30</td>
</tr>
<tr>
<td>strg 50</td>
<td>35</td>
</tr>
</tbody>
</table>

- **Degradations and Improvements often show no clear line to stay away from**
 - Overall we rated most of the network changes as acceptable tradeoff
 - If your workload matches exactly one of the degrading spots it might be not acceptable for you
 - On the other hand if your load is in one of the sweets spots your load can improve a lot
 - No solid recommendations what will surely improve or degrade in a migration
 - While visible in pure network benchmarks, our net based Application benchmarks didn't show impacts
 - Streaming like workloads improve in most, but not all cases
Benchmark descriptions - Disk I/O

- **Workload**
 - Threaded I/O benchmark
 - Each process writes or reads to a single file, volume or disk
 - Can be configured to run with and without page cache (direct I/O)
 - Operating modes: Sequential write/rewrite/read + Random write/read

- **Setup**
 - Main memory was restricted to 256 MiB
 - File size (overall): 2 GiB, Record size: 64KiB
 - Scaling over 1, 2, 4, 8, 16, 32, 64 processes
 - Sequential run: write, rewrite, read
 - Random run: write, read (with previous sequential write)
 - Once using bypassing the page cache
 - Sync and Drop Caches prior to every invocation
Page cache based read - issues fixed and further improved

- Huge improvement for read throughput
 - It has improved, but most of the impressive numbers are from a bug in older releases
 - Occurred if a lot of concurrent read streams ran on a small (memory) system
 - Last Distribution releases only had a partial mitigation of the issue, but no fix
 - The improvements for other loads are within a range from 0 to 15%
OpenSSL based Cryptography

- **OpenSSL test suite**
 - Part of the openssl suite
 - Able to compare different Ciphers
 - Able to compare different payload sizes
 - contains a local and distributed (via network) test tools
 - Can pass handshaking to crypto cards using the ibmca openssl engine
 - Can pass en-/decryption to accelerated CPACF commands using the ibmca openssl engine

- **Our Setups**
 - Scale concurrent connections to find bottlenecks
 - Iterate over different Ciphers like AES, DES
 - Run the workload with different payload sizes
 - Run SW only, CPACF assisted and CPACF + CEX3 Card assisted modes
 - CEX cards in in accelerator and co-processor mode
 - We use distributed clients as workload driver
 - Evaluate overall throughput and fairness of throughput distribution
 - Evaluate the cpu consumption caused by the load
OpenSSL based Cryptography

- Compressing the data to save cryptographic effort was the default for a while
 - Counter-productive on System z as CPACF/CEX is so fast (and CEX account as off-loaded)
- Now it is possible to deactivate compression via an Environment variable OPENSSL_NO_DEFAULT_ZLIB=Y
 - 1000k payload cases with CPACF and cards x3.8 times faster now, still x2.3 without CEX cards
 - Even 40b payload cases still show 15% throughput improvement
 - Additionally depending on the setup 50% to 80% less cpu per transferred kilobyte
Agenda

- Performance Evaluation
 - Environment
 - Changes one should be aware of

- Performance evaluation Summary
 - Improvements and degradations per area
 - Summarized comparison
SLES 11 SP2 Improvements & Degradations per area

<table>
<thead>
<tr>
<th>SLES 11 SP2 vs. SLES 11 SP1</th>
<th>Especially affects, but not limited to the following workloads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvements/Degradations</td>
<td></td>
</tr>
<tr>
<td>Process scaling</td>
<td>Websphere Family, large scale Databases</td>
</tr>
<tr>
<td>Filesystem Scaling</td>
<td>File serving</td>
</tr>
<tr>
<td>Network Streaming</td>
<td>TSM, replication tasks (DB2 HADR, Domino)</td>
</tr>
<tr>
<td>Disk I/O via page cache</td>
<td>Clearcase, DB2 on ECKD disks, File serving, Datastage</td>
</tr>
<tr>
<td>Disk I/O</td>
<td>TSM, Databases</td>
</tr>
<tr>
<td>Cryptography</td>
<td>Secure Serving/Communication in general</td>
</tr>
<tr>
<td>Pure Virtual Networks</td>
<td>Common Hipersocket setups: SAP enqueue server, Websphere to z/OS, Cognos to z/OS</td>
</tr>
</tbody>
</table>

- Improvements in almost every area
 - Especially for large workloads/machines (scaling)

- Degradations for virtual networking
Summary for SLES 11 SP2 vs. SP1

- SLES 11 SP2 performance is good
 - Improved compared to the already good SP1 release
 - Beneficial effects slightly bigger on newer System zEnterprise systems
 - Generally recommendable
 - Except environments focusing on pure virtual networks

- Improvements and degradations

<table>
<thead>
<tr>
<th>Level</th>
<th>On HW</th>
<th>Improved</th>
<th>No difference or Trade-off</th>
<th>Degraded</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLES 11 SP2</td>
<td>z10</td>
<td>30</td>
<td>67</td>
<td>8</td>
</tr>
<tr>
<td>SLES 11 SP2</td>
<td>z196</td>
<td>33</td>
<td>64</td>
<td>3</td>
</tr>
</tbody>
</table>
Questions

- Further information is available at
 - Linux on System z – Tuning hints and tips
 - Live Virtual Classes for z/VM and Linux
 http://www.vm.ibm.com/education/lvc/

Christian Ehrhardt
Linux on System z
Performance Evaluation

Research & Development
Schönaicher Strasse 220
71032 Böblingen, Germany

ehrhardt@de.ibm.com