IBM System z — z/VSE - Live Virtual Class

The New z/VSE Database Connector
(DBCLI)

Ingo Franzki
ifranzki@de.ibm.com

© 2012 IBM Corporation

mailto:ifranzki@de.ibm.com

IBM System z — z/VSE - Live Virtual Class

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not
actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, 0S/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA,
WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is aregistered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without
notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-1BM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

1 @ © 2012 IBM Corporation

http://www.ibm.com/legal/copytrade.shtml

IBM System z — z/VSE - Live Virtual Class

Agenda

§ Options for using Databases with z/VSE applications
§ z/VSE Database Call Level Interface (DBCLI)
§ DBCLI Concepts

§ COBOL Example

§ Hints & Tips

§ Summary

@ © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

z/VVSE applications accessing Databases

gmumns
lllllll'-----
s
an®
x:-“
.
.
.* /

with DB2
Federation

L4

- B
* L]
. "... ot N
* Ly P
‘0 v Ny --I“ N
"Essmssnannns
0‘ \
.0
L 4
L 4
L 2
L 4 L]
....l. ---llll“----
" EEssssmsssmssEmsEsEs’

L 4
3 : @ © 2012 IBM Corporation

e

IBM System z — z/VSE - Live Virtual Class

§ DB2/VSE or DB2/VM Server zZIVSE “Remote system
- residing in z/VSE or z/VM Batch or CICS (Linux, Unix, Windows)
— Lacks support of modern SQL functionality application SROA With Federation: _
— Only quite old SQL level supported D ZVOE > DB2 Server ---*;Orﬁ‘ﬂcge'sg{??fe'i
§ DB2/VSE Client Edition — Vv —— —v—— ¥
= (on Linux, Windows, Unix) | tocalDB b2 bata b

— Communication via DRDA protocol
— Same old SQL level supported as DB2/VSE Server

— Can not use modern SQL functionality provided by DB2 LUW
— Can only access remote DB2 databases

» Other databases (e.g. MS SQL Server, Oracle, etc) can only be accessed through
IBM InfoSphere Federation Server

§ VSAM Redirector
— Primarily used to keep Databases in sync with VSAM data
— Also allows migration from VSAM to database

§ New: z/VSE Database Call Level Interface
— Allows z/VSE applications to access a relational database on any suitable database server @W‘-
* IBM DB2, IBM Informix, Oracle, MS SQL Server, MySQL, etc.
— Utilize advanced database functions and use SQL statements provided by modern database products

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

New:

\
- | W
§ Allows z/VSE applications to access a relational database on N
any suitable database server

—IBM DB2, IBM Informix, Oracle, MS SQL Server, MySQL, etc.
aThe database product must provide a or later
aUtilize advanced database functions and use SQL statements provided by modern

database products
Requires z/VSE 5.1 plus PTFs (UK78892 and UK78893)

z/IVVSE Java capable Database Server
platform (may run on the
(e.g. Linux on same system as
Batch or CICS System z) the DBCliServer)
application
DBCLI AP Y
v
D?CLI DBCIliServer Database
Client (e.g. IBM DB2,
b Tcpp | 1BM Informix
y v Oracle
or local :
TCPI/IP or TCP/IP JDB_C V3 > SMSgCISLSer\;er
Linux Fast Path Driver yoRL, -

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

New: z/VSE Database Call Level Interface (DBCLI)

§ The z/VSE Database Call Level Interface (DBCLI) provides a programming
nterface (API)

— Call interface for use with COBOL, PL/1, Assembler, C and REXX
—Can be used in Batch applications as well as in CICS TS applications
— Supports LE enabled as well as non-LE environments (Assembler, REXX)

§ It provides callable functions for
—Initializing and Terminating the APl Environment
— Connecting and Disconnecting to/from the DBCLI Server and the Database
—Executing SQL Statements

—Retrieving query resulis through cursors
—Handling of Logical Units of Work (Transactions) g,
—Retrieving Database Meta Data

§ DBCLI can only support what the underlying Database supports

6 @ © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

New:

§ The DBCLI API is not compatible with DB2/VSE’s EXEC DB2 preprocessor
Interface

— It provides similar functions and concepts

—The API is similar to the known from distributed
platforms (ODBC = Open Data Base Connectivity)

§ No preprocessor is needed, instead you code the directly
INn your program

§ A Is provided to show how DBCLI can be used in your
applications

§ Is provided in the updated manual
“zIVSE V5R1 e-business Connectors User's Guide” - SC34-2629-01

—Chapter 9 and 22
—Available on z/VSE web page:

© 2012 IBM Corporation

http://ibm.com/zvse/documentation/#conn

IBM System z — z/VSE - Live Virtual Class

§ Using DBCLI in COBOL:
— The COBOL copybook IESDBCOB contains common declarations

§ Using DBCLI in PL/1
— The PL/I copybook IESDBPL1 contains common declarations

§ Using DBCLIin C
— The C header file IESDBC.h contains common declarations

§ Using DBCLI in Assembler
— The Assembler macro IESDBASM contains common declarations
, VL
— The following register conventions apply:
* Register 0, 1, 14, and 15 are used by the interface and must be, if necessary, saved prior to invocation
* Register 13 must point to a 72-byte save area provided by the caller

§ Using DBCLI in REXX
A
— All parameters must be initialized with a value of the appropriate length before calling the DBCLI API.
This is especially true for output parameters.
— Fullword binary variables must be initialized to contain 4 bytes (for example, VARIABLE = D2C(0,4))
— Since the variable is expected to contain a value in binary representation, you must convert the value from the

REXX string representation into the binary representation and vice versa using the REXX functions C2S and
D2C ,,

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

DBCLI Concepts:

When using the API provided by the DBCLI client, you must:

8 the APl environment by calling the
function

— The INITENYV function allocates an
subsequent functions

— You can have only one active environment at a time in your program

that you must pass to all

8
function

— The TERMENYV function frees all resources allocated by the DBCLI code
— The TERMENYV function will also close any "left over" connections or statements
— After the TERMENY function, the environment handle is no longer valid

the APl environment (at the end of your program) by calling the

on the
or

§ You can set and get various

—You do so by calling the function

function before calling any other

Y

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

DBCLI Concepts:

To access a Database, you must connect to the DBCLI server

and the Vendor database ZIVSE Javacapable | Database Server |
platform (may run on the
Batchl_or (_ZICS (eg&/sl_t:rﬁxz‘))n tsf?em S;gﬁtggﬂwa:)
application
§ You connect to the DBCLI server (DBCliServer) and the Zoncil —_—
database by calling the function —T e
or local
§ You must supply the: e e

— to authenticate with the database

§ The
require a connection

function allocates a

of DBCliServer

or the JDBC URL to which you wish to connect

that you must pass to all subsequent functions that

— You can have multiple connections to the same or different DBCLI servers and databases at a time

— Each connection is represented by its own connection handle

When you are finished working with a database, you must disconnect from the database and the DBCLI
server (DBCIliServer) by calling the function

— The DISCONNECT function frees the connection handle and all left over statements
(if any) that you have allocated using this connection

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

DBCLI Concepts:

Per default, a connection operates in
§ Any database updates that you perform are contained in a

§ You can by calling the COMMIT or ROLLBACK functions:
—The function commits all changes done since the beginning of the logical unit
of work and starts a new logical unit of work
—The function rolls back (reverts) all changes since the beginning of the

logical unit of work or up to a savepoint

§ Usually, you should function :

§ If you do not call the COMMIT function, DBCliServer will all changes
— by calling the function

§ If the (for example, because the program abends), the DBCLI server

done since the beginning of the last logical unit of work

8 You can set a connection into

— In auto-commit mode, every SQL statement is treated as and
5 when the statement execution is complete.
» Therefore, you do not have to call the COMMIT or ROLLBACK functions.
— You set a connection into auto-commit mode by calling the function to

set the attribute to TRUE

11 © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

DBCLI Concepts: Preparing SQL Statements

In order to execute an SQL statement, you must first prepare the SQL statement

§ During preparation, the database will pre-compile the SOQL statement and create an
access plan for the statement

— The access plan is kept as long as the statement exists
—You can then execute the statement as many times as you want

§ The PREPARESTATEMENT function prepares an SQL statement for execution
— It allocates a statement handle that represents the statement
— An application can have multiple prepared statements at a time
§ The PREPARECALL function prepares a stored procedure call statement for execution

§ SQL statements may contain parameters that are evaluated at execution time
— Parameters are marked by a question mark (?) within the SQL statement
— The parameters are numbered in order of appearance, starting with 1

§ After preparing, the application can bind host variables to the parameters using the
BINDPARAMETER function

— When the statement is later executed, the content of the host variables is used and sent
to the database.

12 @ © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

DBCLI Concepts:

SQL statements may contain parameters that are evaluated at execution time
§ Parameters are marked by a within the SQL statement

§ The parameters are , Starting with 1

§ Parameters can be used for INPUT, OUTPUT or both

? ?

Parameter 1 Parameter 2

aAbove statement has 2 parameters

§ When using DB2/VSE preprocessor, above statement would look like:
— SELECT * FROM EMPLOYEE WHERE EMPNG>: enpno AND SALARY>: sal ary

§ The application using the function
— When the statement is later executed, the and sent
to the database
— You also specify the and of the variable with the BINDPARAMETER call

— You do not need to re-bind the parameters when executing the statement a second time

3 You can use the and functions to obtain
, detailed information about the statement parameters .

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

DBCLI Concepts:

A\

To execute a statement, you must call the function

§ If the statement was an SQL , YOu can retrieve the number of rows
updated using the function or the parameter at the
EXECUTE function

§ If the statement was a SQL , YOu can to retrieve (fetch) the

result rows and columns
— A statement can provide multiple results (mostly stored procedures)
— To retrieve the additional results you must call the function
— The GETMORERESULTS function will move to the next available cursor or update count

§ If the statement was a stored procedure call, are updated with the data
passed back by the stored procedure

§ When you no longer need a statement, you must close it by calling the
function:

— The CLOSESTATEMENT function frees the statement handle and closes all cursors (if
any) that may still be open from the last statement execution

§ The statement handle is no longer valid after the CLOSESTATEMENT function

14 © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

DBCLI Concepts: Result sets and Cursors

The execution on an SOL query returns aresult in form of a cursor
§ A cursor allows you to retrieve (fetch) the result rows and columns

—You can use the GETNUMCOLUMNS and GETCOLUMNINFO
functions to obtain detailed information about the cursor's columns

— The columns are numbered in order of appearance, starting at 1

§ To fetch the result rows using the cursor, you must first bind host variables to the columns of
interest

— You bind host variables to the columns of interest by calling the BINDCOLUMN function

— If the FETCH function is called later on, the host variables will be updated with the
contents of the column in the row that has been fetched

§ Per default, the FETCH function processes the cursor from the beginning to the end
—You may reposition with a cursor

* Providing the database supports this and you have created the statement using the
appropriate type (CURSOR-TYPE-SCROLL-INSENSITIVE or CURSOR-TYPE-
SCROLL-SENSITIVE)

§ Repositioning can be performed using either the:
— FETCH function with operations FETCH-PREVIOUS, FETCH-FIRST, FETCH-LAST,
FETCH-ABSOLUTE or FETCH-RELATIVE.

5 — SETPOS function @ © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

DBCLI Concepts:

The DBCLI interface allows you to retrieve
§ This includes functions to get a
§ This information is typically stored in system catalog tables in the database.

— You can also execute regular SELECT statements against the system catalog tables, but
this requires that you know which database system and vendor you are using

— System catalog tables are vendor- and database-specific

§ The DBCLI interface provides a
to retrieve meta data information.

— These functions are prefixed with 'DB'
— The function DBTABLES for example retries a list of tables

available in the database

from the database
, iIndexes, keys,

. and so on

10101001100
00010011101
11100011100

e

B

§ Please note that some databases may not support all of the meta data functions

DBBESTROWIDENT
DBCATALOGS
DBCOLUMNPRIV
DBCOLUMNS
DBCROSSREFERENCE
DBEXPORTEDKEYS
DBIMPORTEDKEYS
DBINDEXINFO
DBPRIMARYKEYS

16 DBPROCEDURECOLS

DBPROCEDURES
DBSCHEMAS
DBSUPERTABLES
DBSUPERTYPES
DBTABLEPRIV
DBTABLES
DBTABLETYPES
DBTYPEINFO
DBUDTS
DBVERSIONCOLS

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

COBOL Example

FROCEDUEE DIVISION.
HMATH-PROGERAM.
DISPLAY 'COBSAMFPL STAETED'.

* Perform the INITENV call

*-
MOVE 'SOCKETO0' TO TCPNAME.
MOVE 'EZASCH23' TO ADSNAME. . .
CALL 'IESDBCLI' USING FUNC-INITENV [ENV-HANDLE| < |n|t|a||ze the environment

TCENAME ADSNAME RETCODE.
DISPLAY 'RETCODE OF INITENV IS ' RETCODE.
IF RETCODE > EOK THEN
PERFORM CHECK-ERROR

END-IF.

17 @ © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

COBOL Example

FROCEDUEE DIVISION.
HMATH-PROGERAM.
DISPLAY 'COBSAMFPL STAETED'.

- * Connect to the DBEBCLI server and the databass

MOVE '9.152.2.70" TO SERVER., IP Or hOStname Of

MOVE 10 TO SERVER-LEM.
MOVE 18178 TO PORT. DBCLI Server
MOVE 'SAMELE' TO DENAME. Qo
MOVE & TO DEMNAME-LEN.

MOVE 'dbuserid' TO USERID.q Database allaS name

MOVE & TO USERID-LEH.

MOVE 'password' TO PASSWD. User_ID & Password

MOVE & TO PASSWD-LEH.
CALL 'IESDBCLI'" USING FUNC-CCOHNNECT ENV-HANDLE (CON-HANDLE

SERVER S5ERVER-LEN PCRT DBNAME DBNAME-LEN \
USERID TUSERID-LEN PASSWD PASSWD-LEN

RETCODE. — Connect to the
e RErcODE o 2O TEEN DBCLI Server

PERFOEM CHECE-ERERCE

— and the Database

18 : @ © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

COBOL Example

FROCEDURE DIVISICN.
MATN-PROGERAM.
DISPLAY 'COBESZMPL STARTED'.
=
- *=
+ |* Connect to the DBCLI server and the databass
*=
HMOVE '2.152.2.70" TO SERVER.
HMOVE 10 TO SEEVER-LEN.
MOVE 16178 TO PORT.
HMOVE 'SRMFLE' TO DENAME.
HMOVE © TO DENAME-LEN.
*
* Prepare an S0L statement for later sxescution /
*
MOVE 'SELECT * FROM EMPLOYEE WHERE EMPNC>7? AND SALARY>?'
TO SQL.
HMOVE LENGTH OF 5QL TO SQL-LEN.

CALL

DISPLAY 'RETCODE OF PREPARESTATEMENT IS5 " RETCOCDE.
IF RETCCDE > ECE THEN

FERFORM CHECE-ERRCE
END-IF.

"IESDECLI' USING FUNC-PREPARESTATEMENT ENV-HANDLE
CON-HANDLE |STMT-HANDLE| SQL SQL-LEN D a—
CURSOR-TYPE-SCROLL-INSENSITIVE CURSOR-CONCUR-READ-ONLY
HOLD-CURSORS-OVER-COMMIT RETCODE.

SQL Statement
Containing Parameter

_ Markers ('?)

— Prepare an
SQL Statement
for later execution

19

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

COBOL Example

FROCEDURE DIVISIOHN.
HMLTH-PROGELM.
DISPLAY 'COBSAMPL STLRERTED'.
- -
- * CJonnect te the DBCOLI server and the databass
-
MOVE '9.152.2.70'" TO S5EEVER.
MOVE 10 TO SERVER-LEHN.
MOVE 18178 TO PORT.
MOVE 'SAMPLE' TO DEMNAME.
MOVE & TO DENAME-LEN.
*+
* Prgs EE— E— — =
i * Bind the EMPFNO host variskle (T=xt) to parameter 1
* Hers we speclfy the opticonsl codspags parameter to
* gend the text dats 1n the desirsd codspagse.
*+
MOVE 1 TO PBPLEM-IDX.
MOVE LENGTH OF EMPHOC TO EMPHO-LEN.
MOVE "CEF1047'" TO CODEPLAGE.
MOVE LENGTH OF CODEPAGE TO CODEPAGE-LEN.
CALL "IESDEBCLI'" USING FUNC-BINDEARARMETER ENV-HALMNDLE
STHMT-HLWMDLE PLEM-IDX HATIVE-TYPE-STRING

EMPHNC EMPNCO-LEN EMPNO-IHD
CODEPAGE CODEPAGE-LEN RETICOCDE.
DISPLAY 'RETCODE OF BINDPRRAMETER IS °
IF EETCCDE > ECE THEN
FERFOEM CHECE-EERERCE
END-IF.

EETCCDE.

Bind host variable
L “EMPNQO”

to parameter

number 1

as STRING

20

lis)

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

COBOL Example

FROCEDUEE DIVISION.
HMATH-PROGERAM.
DISPLAY 'COBSAMFPL STAETED'.

- * Connect to the DBEBCLI server and the databass

MOVE '5.152.2.70" TO SEEVER.
MOVE 10 TO SERVER-LEH.

MOVE 16178 TO PORT.

MOVE 'S&MFLE' TO DENAME.

Bind host variable
“SALARY”

to parameter
number 2

as PACKED decimal

+ * * * #

21

MOVE & TO DENAME-LEN.
*+
* Prgs EE— E— — —
* . — - P - o
* Bind the EMPNCO host variable (Text) to parameter 1.
* Hers we speclfy the opticonsl codspags parameter to
* pond the tewt Asts Tn the Aseirad ~odonsags /
*+

Silad LR o H.AJ_LP:LR:{ mosc bﬂr_i.ﬂb_—l‘._ = k_d d_ui;.ﬂ_L
i
g

Here wve speclf

want to send the numeric ds

MOVE 2 TO PARM-IDX.

MOVE LENGTH OF SALARY TO SALARY-LEHN.

MOVE 2 TO DECFOS.

CALL 'IESDBCLI' USING FUNC-BINDEARAMETER ENV-HANDLE
STHT-HANDLE PAEM-IDX MNATIVE-TYPE-PACEED-SIGNED
SALARY SALARY-LEN SALARY-THND
DECPCS RETCCDE.

DISPLAY 'RETCODE OF BINDPARAMETER IS5 ' RETCODE.

IF RETCCDE > ECE THEN

FERFOEM CHECE-ERRCE

END-IF.

© 2012 IBM Corporation

lis)

IBM System z — z/VSE - Live Virtual Class

COBOL Example

PROCEDURE DIVISION.
MATN-PROGEAM. -
DISPLAY 'COBSAMPL STARTED! o B
* Seft the host wvariables values
. [* * variables:
- * CJonnect te the DBCOLI server and t?*
- MOVE '000030" TO EMENO.
MOVE 'S.152.2.70' TO SERVER. MOVE INDICATE-NOTHULL TO EMPHO-IND.
MOVE 10 TO SERVER-LEHN. MOVE 01000.00 TO SALARY.
MOVE 16178 TO DORT. MOVE INDICATE-NOTHULL TO SALARY-THD.
MOVE 'SRAMPLE' TO DENAME. - .
HMOVE & TO DEHNLME-LEN. * Execute the statement. This will use the valuss of the
* * host variables for the parameters
* Pras SEE————— —= =
+)) CALL '"IESDECLI' USINHNG FUNC-EXECUTE ENV-HANDLE
* Bind the fEP#i host FEI%E. STMT—HANDLE RETCODE.
* Here we specifyv the optio] IF RETCODE > FOE THEN
* cand the ftowt Aats 1n ftha _ _
= FERFORM CHECE-ERERCE
} * Bind the SALARY host END-IF.
* Hers we specify the d DISPLAY 'REETCCODE COF EXECUTE
* want to send the numd IF RETCODE > ECKE THEN
* FERFORM CHECE-ERERCE
MOVE 2 TO PARM-TDH END-IF.
MOVE LENGTH OF SALAEY TO SALARY-LEN.
MOVE 2 TO DECPOS.
CALL '"IESDECLI' USING FUNC-BINDPARAMETER ENV-HANDLE
STHT-HANDLE PAEM-IDX HATIVE-TYPE-PACEED-SIGHED
SALARY SALARY-LEN SALARY-THD
DECFCS RETCCDE.
DISPLAY 'RETCODE OF BINDPARAMETER IS " RETCODE.
IF RETCCDE > ECE THEN
FPERFORM CHECE-ERECR
END-IF.
: @

Execute the
statement

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

COBOL Example

FROCEDURE DIVISION.
MATH-PROGERRAM. -
DISPLAY 'CCESAMPL STARTED'.
* Set the heost variables values and coresponding indicator
. [* * variables:
* + Connect to the DBCLI server and tH = [
= * Bind host wariable FIRSTNAME (text) to the column =2
MOVE '2.152.2.70" TO SEERVER. * Hers we do not spescify the codspags paramseter so we
MOVE 10 TO SERVEER-LEHN. * receive the text data in the default codspage.
MOVE 16172 TO PORT. [+
MOVE 'SZAMFLE' TO DENAME. * MOVE 2 TO COL-IDX.
MOVE & TO DENAME-LEHN. *E MOVE LENGTH OF FIRSTHAME TO FIRSTHAME-LEN.
* *h CALL '"IESDECLI' USING FUNC-BINDCOLUMN ENV-HAMNDLE
* Prgs E— E— = STMT-HANDLE COL-IDX MNATIVE-TYPE-STRING
* + Bind the EMPNO host varial FIRSTHAME FIESTHAME-LEN FIRSTHAME-TIND
+ Here we specify the optiol RETCODE.
+ gepd the eyt dAsts in the DISPLAY 'RETCCDE ©OF BINDCONJMH IS ' RETCCDE.
. * IF EETCCDE > ECE THEN
* Bind the SALARY host PERFORM CHECE-ERROR
* Here we specify the d END-IF.
= wvant te Sfﬂd 1:_?15 nums I BEIVUTIE A TN
* FERFORM CHECE-ERRCR
MOVE 2 TO PARM-IDH END-IF.
MOWVE LENGTH OF SALARY TO SALARY-LEH. \\
MOWVE 2 TO DECPOS.
CALL '"IESDECLI' USING FUNC-BEINDPARAMETER ENV-HAWNDLE
STHMT-HANDLE PARM-ID¥ MNATIVE-TYPE-PACEED-SIGMNED
SALARY SALARY-LEN SALARY-THD
DECPOS RETCCLE.
DISPLAY 'RETCCODE COF BINDPARAMETER IS5 ' RETCODE.
IF RETCCDE > ECE THEN
FERFORM CHECE-ERERCE
END-IF. number 2
g @

Bind host variable
“FIRSTNAME” to
result set column

© 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

COBOL Example

PROCEDURE DIVISION.
HMOTHN-PROGERAM. —
DISPLAY 'COBSAMPL STARTED' s ~
* Set the heost variables values and coresponding indicator
. - * variables:
- * Jonnect te the DBCLI server and tH * ok
* * Bind host warisble FIRSTNAME (text) to the column 2.
HMOVE '9.152.2.70" TO SERVER. * Hex
MOVE 10 TO SERVER-LEN. * ¥4+ Fetch all available rows and display the data.
MOUE TR TO BORT . i * Since columns may be NULL we check the indicator variables
*
F t h II r . * FETCH without an operation argument means FETCH NEXT.
elcn all rOWs |- 9 |
e
- j\\ PERFORM WITH TEST AFTEER UNHTIL EETCODE > EOE
* Prgy E— — ~\"‘\; CALL "IESDECLI' USING FUNC-FETCH ENV-HANDLE
- * Bind the EMPNO host varial STHMT-HANDLE RETCODE
*# gepd the tewt Asts {n the IF RETCODE > ECOKE AND EETCCODE NOT = ENCMOREDATR THEN
= -) PERFOEM CHECE-ERRCE
* Bind the SALARY host FND-IF
* Here we specify the g IF RETCODE = EOK THEN
= T s = FITm
© want to send the numg - DISPLAY 'ROW DATA INFO FOR ROW NUMBER ' ROW-NUMBER
*
_ m IF EMFHO-IND = INDICATE-NULL THEN
MOVE = TO PARM-IDX DISPLAY ' EMPNO IS NULL®
MOVE LENGTH OF SALAEY TO ELSF
H ¢ TO DECEOCS. DISPLAY ' EMENC IS ' EMPHO
CALL '"IESDECLI'" USING FUH END-IF
STMI-HANDLE PARM-IDH IF FIRSTNAME-IND = INDICATE-NULL THEN
SALART SALARY-LEIN SH DISPLAY ' FIRSTNAME IS5 NULL'
DECPOS EETCOLDE. ELSF
"RETCODE] BETET
DISPLAY 'RETCODE COF BINDH DISPLAY ' FIRSTHAME IS5 ' FIRSTHAME
IF RETCODE > EOE THEN END-IF
PERFOEM CHECE-ERERCE
END-IF.
24 @ © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

§ The DBCLI code is

— If running under CICS, any memory allocations are performed using
EXEC CICS GETMAIN instead of using the GETVIS macro

§ When using the DBCLI APl in CICS transactions while CICS operates with storage
protection,
— This is also true for those programs that link to these programs
— TASKDATAKEY(CICS) for the transaction definition is NOT required.

§ When using the DBCLI API in CICS transactions, the (TRUE)
before these transactions can be run

— For details on how to activate this TRUE, refer to "CICS Considerations for the EZA Interfaces" in the
z/VSE TCP/IP Support, SC34-2640

§ Most JDBC drivers will only accept
— They will not accept SQL preprocessor statements that are used for DB2 Server for VSE applications

8 The call to the IESDBCLI function must be a in COBOL
— Do not use the DYNAM compiler option

25 © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

z/VVSE applications accessing Databases

DBCLI

And others ...
/
/7
/
/7
/
DBCLI & /
DRDA
- -~
-
with DB2
Federation
~

DBCLI

26 : @ © 2012 IBM Corporation

IBM System z — z/VSE - Live Virtual Class

27

Mark your calendar:

IBM System z Technical University
Las Vegas, NV, USA
October 1-5, 2012
Caesars Palace

European GSE/IBM

Technical University for

z/VSE, z/VM and Linux on System z
Mainz, Germany

October 22-24, 2012

http://ibm.com/vse/events/

© 2012 IBM Corporation

http://ibm.com/vse/events/

