
© 2014 IBM Corporation

Linux on System z -

Automatic CPU and memory resource management
for z/VM Linux guests

Dr. Juergen Doelle

09 May 2014

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

2

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries.

A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

The following are trademarks or registered trademarks of other companies.
 Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
 SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
 Red Hat, Red Hat Enterprise Linux, the Shadowman logo and JBoss are registered trademarks of Red

Hat, Inc.
in the U.S. and other countries.

 Oracle and Java are registered trademarks of Oracle and/or its affiliates in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

http://www.ibm.com/legal/copytrade.shtml

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

3

Agenda

1. Introduction
 Objectives
 cpuplugd.conf
 Environment
 Manual Sizing Results

2. CPU Management
 Known Issues
 Setup
 Results

3. Memory Management
 Known Issues
 Unplugging/Plugging Memory
 Setup
 Results

4. The Update Interval

5. Note!

6. Summary

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

4

Introduction

 The issue
– Sizing of z/VM guests

● Manually sizing can only be optimized specific for one certain workload type and level
● Inadequate sizing might also impact other guests

 The ideal solution
– Use a common sizing for all guests, reflecting the highest resource usage planned for the guests

– Let the guest size itself according to the resources needed within a that range

 The tool: cpuplugd daemon
– Important update: since SUSE Linux Enterprise Server (SLES) 11 SP2 and Red Hat Enterprise

Linux (RHEL) 6.2 which greatly enhances the capability to define rules and the available
performance parameters for the rule set.

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

5

Objectives

 This session
– Compares cpu and memory management capabilities of the cpuplugd with a manually optimized

setup

• Show how close the automatic management can come to the manually optimized setup

– Explains the mechanisms to define rules

– Identifies the differences and capabilities of various rules

 More information
– A detailed discussion and samples can be found in the Paper “Using the Linux cpuplugd Daemon to

manage CPU and memory resources from z/VM Linux guests” at
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_cpuhotplug.html#cpuplugd

– See also “Device Drivers, Features, and Commands” at
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
Chapter “cpuplugd - Control CPUs and memory”

– manpages

• “man cpuplugd.conf”

• “man cpuplugd”

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_cpuhotplug.html#cpuplugd
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

6

cpuplugd configuration

 cpuplugd behavior is controlled by a configuration file
– Default configuration file is /etc/sysconfig/cpuplugd

 Elements of the config file
– Pre-defined static variables (assigns a number), CPU_MIN="1"

– Pre-defined dynamic variables (assigns a formula) CMM_INC="meminfo.MemFree / 40"

– User-defined variables (number or a formula) pgscan_d="cpustat.system + …"

– Rules

 Variables can refer to
– predefined keywords, e.g. user, system, idle

– CPU usage from /proc/stat and /proc/loadavg by specifying cpustat.<name>
• Note: cpustat values are accumulated values since IPL from all CPUs!

– memory usage from /proc/meminfo and /proc/vmstat data via meminfo.<name>, vmstat.<name>

– historical data for variables from cpustat, meminfo, and vmstat
by appending [<history level>] to the name: cpustat.system[3]

 Rules
– HOTPLUG - used to enable CPUs

– HOTUNPLUG - used to disable CPUs

– MEMPLUG - used to increase the available memory

– MEMUNPLUG - used to decrease the amount of memory

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

7

cpuplugd rules - Sample

 Objective: add a CPU when less than 10% of one CPU remains unused

 Define variables to calculate the used CPU ticks as difference from the current and the last interval
→ cpustat.<name> values are accumulative and the sum from all CPUs !

user_0="(cpustat.user[0]–cpustat.user[1])"
nice_0="(cpustat.nice[0]–cpustat.nice[1])"
system_0="(cpustat.system[0]–cpustat.system[1])"

 Calculate the average of the used CPU ticks and devide it by the total amount of ticks from all CPUs to
get the ratio of the CPU load,
→ result value between '0' and '1', where '1' means all CPUs are used

CP_Active0="(user_0+nice_0+system_0)/(cpustat.total_ticks[0]–cpustat.total_ticks[1])"

 Do the same for a another interval in the past, e.g. two periods ago
user_2="(cpustat.user[2]–cpustat.user[3])"
nice_2="(cpustat.nice[2]–cpustat.nice[3])"
system_2="(cpustat.system[2]–cpustat.system[3])"
CP_Active2="(user_2+nice_2+system_2)/(cpustat.total_ticks[2]–cpustat.total_ticks[3])"

 Calculate the average of CPU load from these two intervals
CP_ActiveAVG="(CP_Active0+CP_Active2)/2"

 And now, the CPU plugging rule:
→ scale with the amount of CPUs to get the total load in units of CPUs
HOTPLUG="((1-CP_ActiveAVG)*onumcpus)<0.1"

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

8

The test environment

 System utilization:
– Triplet 1 - low utilization each system < 1 CPU
– Triplet 2 - medium utilization load on WebSphere Application Server > 1 CPU
– Combo1- highly utilized system load around 2 CPUs
– Combo2- highly utilized system load around 2 CPUs

Workload
Generator

Workload
Generator

DB2 UDB
Server

IBM HTTP
Server (IHS)

WebSphere
Application

Server

IBM HTTP
Server (IHS)

WebSphere
Application

Server

DB2 UDB
Server

IBM HTTP Server
WebSphere Application Server

DB2 UDB Server

IBM HTTP Server
WebSphere Application Server

DB2 UDB Server

Triplet 1

Triplet 2

Combo1

Combo2

2 Two-way
 Blades 8-way z/VM with Linux on System z

nnn = z/VM guest

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

9

The manually sized setup

 LPAR size was 8 CPUs and 20GB memory
 Allocated memory is the sum of resident pages in z/VM
 Only the virtual CPUs are overcommitted
 Sizing consideration:

– The combos have 3 virtual CPUs, the CPU load is in average 2 IFLs, there are peaks > 2 IFLs
– lnwas2 uses slightly more than 1 IFL
– All other systems are low utilized

Guest

lnweb1 1 0.1 342 160
lnwas1 1 0.7 1,600 1,342
lnudb1 1 0.2 512 490

lnweb2 1 0.2 342 151
lnwas2 2 1.1 1,600 1,388
lnudb2 1 0.4 512 490

lncombo1 3 2.0 2,300 1,919
lncombo2 3 2.0 2,300 1,916

Total 13 6.8 9,508 7,857
virtual/physical 163% 85% 46% 38%
Overcommitment yes no no no

configured
CPUs

CPU LOAD
[IFL]

Configured
Memory [MB]

Allocated
Memory [MB]

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

10

Agenda

1. Introduction
 Objectives
 cpuplugd.conf
 Environment
 Manual Sizing Results

2. CPU Management
 Known Issues
 Setup
 Results

3. Memory Management
 Known Issues
 Unplugging/Plugging Memory
 Setup
 Results

4. The Update Interval

5. Note!

6. Summary

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

11

CPU management - known issues and limitations

 It might happen that a system managed by cpuplugd at high CPUs loads using
FCP disks the database hangs
– Symptoms: all processes accessing files in /proc hang and can not be terminated by kill -9

– Logging off the guest and restart resolves the hang situation

– Concerns RHEL 6 and SLES11, related with CPU plugging

 Fix
– fix is released for

• SLES11 SP3 kernel level 3.0.93-0.8.2

• SLES11 SP2 kernel level 3.0.93-0.5.1

• RHEL 6.5 kernel level 2.6.32-393

 The usage of cpuset and taskset is not compatible with the usage of cpuplugd!
– These tools could be used to bind processes/tasks to certain CPUs

– cpuplugd is not aware of these sets

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

12

The cpuplugd setup for CPU management

Manually sizing
 Adapt workload and guest size to maximize the throughput and minimize resources

used
 The LPAR load is around 85% from 8 IFLs

cpuplugd sizing
 Size all guests with 4 virtual CPUs and same guest size as in the manually sized

setup
 Use cpu plugging/unplugging rules to manage the active CPUs based on

– Parameter loadavg or

– Real CPU load (user, system, nice, idle, iowait etc)

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

13

CPU management
 Results

 Objectives are the key!

 CPU plugging rules based on
loadavg provide

– A slower reacting system which
adds CPUs restrictively

→Appropriate for high levels of
CPU overcommitment

 CPU plugging rules based on
real cpuload provide
– A fast reacting system

→Appropriate for short response
times

0

1

2

3

4

CPU management with cpuplugd - loadavg based

lnwas1 lnwas2 lncombo1

#
 C

P
U

s

0

1

2

3

4

CPU management with cpuplugd - real CPU load based

lnwas1 lnwas2 lncombo1

#
 C

P
U

s

Rules TPS*

88% 84%

96% 96%

higher is better lower is better

*100% is the manual-sized run

Relative
CPU load*

loadavg based

cpu load based

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

14

Agenda

1. Introduction
 Objectives
 cpuplugd.conf
 Environment
 Manual Sizing Results

2. CPU Management
 Known Issues
 Setup
 Results

3. Memory Management
 Known Issues
 Unplugging/Plugging Memory
 Setup
 Results

4. The Update Interval

5. Note!

6. Summary

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

15

Memory management using cpuplugd

 The cpuplugd daemon puts memory pages into the 'balloon' (cmm pool)
 cmm module signals z/VM the availability of eligible pages frames via Diag X'10
 z/VM can easily take these page frames to serve memory requests from any guest
 Pages taken back from the balloon to Linux memory by cpuplugd daemon result in page fault at

access, then a page frame is provided by z/VM

Linux Guest 1 Linux Guest M

. . .

z/VM LPARfree memory

free memory

cpuplugd managed

free memory

cpuplugd managed

Linux
cmm module

sends
Diag X'10

cmm pool cmm pool

Linux Guest N

free memory

VMRM CMM

✘only 1(!)
cmm pool
manager

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

16

Memory management - known issues and limitations

 CMM
– The Linux cmm module must be loaded, because it provides the memory pool

– cpuplugd and VMRM-CMM are two independent managers for the same resources

➢ Do not manage a cpuplud managed system additionally with VMRM-CMM!

 For memory management with cpuplugd, APAR VM65060 is highly recommended.
– otherwise Linux experiences extreme high CPU steal values (up to 100%) when the cmm pool

increases

– Execution of Diag X'10' without APAR VM65060 blocks (all CPUs of) the virtual machine!

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

17

Linux memory management – unplugging memory

 Objective: release free memory to z/VM, but what is free memory?

 Page cache
– Calculate page cache as the difference between cache and shared memory:

meminfo.Cached – meminfo.Shmem

– Consider Page Cache as 'nearly' free, except for file system intensive workloads like TSM

Memory category

yes
no

Buffers* no!

often
no!
no

consider
 as free

Free memory
Used memory

Cache, consist of
- Page cache
- Shared memory in 4KB pages**
Large pages or Huge pages (pages > 4 KB, e.g. 1 MB) ***

* Buffers → used by the kernel, a shortage here may lead to unpredictable ef fects
** Shared memory→ very critical: used database buffer pools
*** Huge pages def ined via vm.nr_hugepages count for the 'normal' Linux memory
 management always as used (even they are not really in use)

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

18

Memory management mechanisms – plugging memory

Memory pressure Actions to provide new pages

none

no more volatile memory available

free memory available

asynchronously scanning
the page lists (page scans)

start the OOM killer

underrun low watermark

underrun min watermark start synchronously scanning
the page lists (direct page scans)

Application impact

start swapping pages out

none

swap in is related with
noticeable application waits

application gets terminated

none

application waits for new pages

 With increasing level of memory pressure, the kernel mechanisms change
– from asynchronously scanning the page lists for freeable memory pages

– to synchronously scans (called direct scans) and increasing swapping activities

 With the occurrence of direct scans the application impact starts
– Latest when swap in occurs the application experience noticeable waits

 The last possibility, when no memory can be found, is the out-out-memory killer
(OOM) which terminates applications

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

19

The cpuplugd setup for CPU + memory management

 cpuplugd sizing
– Size all guests with 4 virtual CPUs and and 5 GB memory
– Use cpu plugging/unplugging rules to manage the active CPUs based on real CPU load (user,

system, nice, idle,iowait etc)

 Common setup
– minimum cmm pool size: 0 (CMM_MIN="0")
– maximum cmm pool size: the system size (5 GB) minus 256 MiB (CMM_MAX="1245184")

→ allows the cmm pool to grow to the maximal possible size.
– Reserving 256 MiB for the kernel was intended as a safety net,

→ if our rules work well the size of the cmm pool should never approach the maximum value.

 Use memory plugging/unplugging rules to manage the amount of available memory
based on
– Normal page scan rates
– Direct page scan rates
– Various definitions for memory eligible for the cmm pool (free memory, page cache, etc)

 Asymmetric CMM pool management!
– Decrement the pool fast when memory is required
– Increment the pool slowly to avoid high frequent size changes

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

20

Memory plugging – identify suitable parameters

 Optimization only possible with respect to one goal: throughput or memory size
 For unpluging memory

– free memory + page cache was a good indicator for free memory

 For plugging memory
– Optimize for transactional Throughput

• Use page scans as trigger to plug memory, allow 10% or more free memory
• Leads to larger guests

– Memory size
• Use direct page scans as trigger to increase memory size
• Throughput is only slightly lower than for rules with page scans
• The lower the limit for free memory, the smaller gets the guest and the worse the throughput

Plug memory (Increase), if Unplug memory (shrink), if

Parameter Linux z/VM

page scans > 20

97% 99% 132% 115%

free > 10% 97% 98% 131% 107%

free + page cache > 10% 96% 99% 120% 114%

direct scans > 20
free + page cache > 10% 96% 99% 109% 105%

f ree + page cache > 5% 93% 98% 97% 99%
higher is better lower is better closer to 100% is better

*100% is the manually sized run

Relative
TPS*

Relative
LPAR CPU

load*

Guest size [MiB]*

Rate
[pages/sec]

considered Memory
type

% of total
memory

f ree
(cache + buf fers)

> 10% or
> 50%

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

21

Memory plugging – page scans vs direct page scans

 Throughput variation is moderate
 Guest size varies heavily, the impact of the rules is server type dependent

– WebServer and Database server: rules could be even more restrictive
– WebSphere Application Server: direct scan based rule is good
– Combo Systems: prefer page scan based rules (lncombo1 was swapping)

 Consider a setup with server type specific rules, like

Server type CMM_INC [pages] CMM_DEC [pages] Plug memory, when Unplug memory, when

Web server free memory /40 total memory/40 direct scans > 20
free memory /40 total memory/40 direct scans > 20

Database server total memory/40 direct scans > 20
Combo free memory /40 total memory/40 normal scans > 20

(free mem+page cache) > 5%
WebSphere Apps. Server (free mem+page cache) > 5%

(free mem+page cache)/40 (free mem+page cache) > 5%
(free mem+page cache) > 10%

lnweb1 lnwas1 lnudb1 lncombo1 lncombo2
0

500

1000

1500

2000

2500

Linux memory sizes managed via cpuplugd

manual page scans direct page scans

m
e

m
o

ry
 s

iz
e

 [M
iB

]

Triplet1 Triplet2 Combo1 Combo2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Throughput, Linux managed via cpuplugd

page scans direct page scans

th
ro

u
g

h
pu

t r
e

la
tiv

e
 to

 m
a

n
u

a
l s

iz
e

d

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

22

Agenda

1. Introduction
 Objectives
 cpuplugd.conf
 Environment
 Manual Sizing Results

2. CPU Management
 Known Issues
 Setup
 Results

3. Memory Management
 Known Issues
 Unplugging/Plugging Memory
 Setup
 Results

4. The Update Interval

5. Note!

6. Summary

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

23

Update interval

 Update interval was scaled from 1 – 5 seconds
 CPU cost per transaction is in the same order as the manual sized run (w/o

cpuplugd) for all cases
– CPU cost of cpuplugd management is ignorable, when there are no high frequent changes

 CMM pool behavior: the longer the update interval the smoother are the changes
 Small intervals provide a fast reacting, sensitive system
 Large intervals provide a slow reacting system

– How fast reactions are required?

manual sized 1 5
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Scaling the Update Interval of cpuplugd

t ransact ions/CPU

UPDATE Interval [seconds]

n
o

rm
a

liz
e

d
 T

P
S

/C
P

U

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

CMM Pool size over time

Combo System1

Update Interval: 1 sec 5sec

#
 P

a
g

e
s

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

24

Agenda

1. Introduction
 Objectives
 cpuplugd.conf
 Environment
 Manual Sizing Results

2. CPU Management
 Known Issues
 Setup
 Results

3. Memory Management
 Known Issues
 Unplugging/Plugging Memory
 Setup
 Results

4. The Update Interval

5. Note!

6. Summary

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

25

Note!

 Middleware typically determines the available resources on startup
– Amount of CPUs

– Amount of memory

 Performance relevant decisions are based on that
– Degree of parallelism

– Buffer sizes

 Recommendation: Start the servers first and cpuplugd later!

 More details to the Oracle database
– The database becomes aware when the amount of available CPUs is changing

• The number of available CPUs is determined several times per second

– To avoid throughput limitation, the plugging rule should always keeps more than one CPU free, for
example: HOTPLUG="((1 - CP_Active) * onumcpus) < 1.1"

 More details to the WebSphere Application Servers
– Many WebSphere Application Server workloads run better with 2 CPUs than with one.

– Consider defining CPU_MIN=2 and stack multiple JVM

 Treating page cache as free memory might be not appropriate for file system
intensive workloads like TSM

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

26

Summary

 The new version of cpuplugd introduces a new systems management based on
system resource usage.
– Start gathering experiences in a test environment and monitor the system to verify the impact of

your rules.

– Install APAR VM65060 and the upcoming Linux kernel updates

– Do not manage a system with cpuplugd which is also managed by VMRM-CMM, or has cpuset or
taskset defined

– Plugging rules have a higher priority than the unplugging rules. That protects the system if the
unplug rule is too aggressive.

► The tested automated sizing results in a sizing nearly as good as manually sized,
but adding the possibility to react on changes in load and resource requirements
– The manually optimized setup fits for only one workload scenario

– The automated management can react on workload changes and adjust the used resources as
needed

► The cpuplugd simplifies the setup of z/VM guests significantly and provides
accurate sizing according to the load of the Linux guest

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

27

Recommendations

 The presentation/paper suggests one set of rules which works well for all used
server types

– The result can be improved further with middleware specific modifications

– It seems that single server guests are easier to manage than mixed server guests

 Be aware of middleware specific requirements, e.g. middleware may vary the
amount of work scheduled depending on the amount of available CPUs

 Recommendation is to use 1 second as update interval
– If a slowly reacting system behavior is the target, build averages over larger interval

– The overhead for evaluating the rules is very small even at the shortest Udate interval value

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

28

Questions ?

 Further information is located at
– More details and samples in the Paper

“Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests”
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_cpuhotplug.html#cpuplugd

– Linux on System z – Tuning hints and tips
http://www.ibm.com/developerworks/linux/linux390/perf/index.html

– Live Virtual Classes for z/VM and Linux
http://www.vm.ibm.com/education/lvc/

IBM Deutschland Research
& Development
Schoenaicher Strasse 220
71032 Boeblingen, Germany

Dr. Juergen Doelle

Linux on System z
System Software
Performance Analyst

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_cpuhotplug.html#cpuplugd
http://www.ibm.com/developerworks/linux/linux390/perf/index.html
http://www.vm.ibm.com/education/lvc/

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

29

Backup

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

30

 Execution of Diag X'10' without APAR VM65060 blocks (all CPUs of) the virtual machine
– Diag X'10 is used from Linux to inform z/VM that a memory page is free and can be 'stolen'

– Applies for z/VM 5.4, 6.1, and 6.2

 The fix reduced the steal time from above 80% to mostly below 4%

Memory plugging and kernel compile – Apar VM65060

0

20

40

60

80

100

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Managing the CMM Balloon - avg Linux Steal Time vs Pool Size, kernel compile

cmm pool

% steal

Time [mm:ss]

%
 S

te
a

l
T

im
e

P
a

g
e

s

0
1
2
3
4
5
6
7
8

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Managing the CMM Balloon, z/VM Fix installed, avg Linux Steal Time vs Pool Size

#CPUs

% steal

cmm pool

Time [mm:ss]

%
 S

te
a

l
T

im
e

 o
r

#
C

P
U

s

P
a

g
e

s

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

31

Dynamic behavior
 Use two sets of guests in the existing setup

– 2 x (2 Triplets + 2 Combos) = 16 guests

 Test sequence

 This test should show, how the automated sizing with cpuplugd reacts on the workload shifts

Time Guest Set 1 Guest Set 2

all guest are idling

all guest are idling

all guest are idling

- - - - - - - - - - - - - - - - Start all guests and cpuplugd ----------------

► Start the server software

► Run the test workload

► Stop the server software

10 minutes break to stabilize the cmm pools

► Start the server software

► Run the test workload

► Stop the server software

10 minutes break to stabilize the cmm pools

► Start the server software

► Run the test workload

► Stop the server software

© 2014 IBM Corporation

Automatic CPU and memory resource management for z/VM Linux guests

32

Dynamic behavior - results

 in the z/VM view
– The cpuplugd environment wins after the first switch, it needs about 1.5 GB less memory

 in the Linux view
– The major part of the memory is given back! About 1GB stays allocated → page cache

 Conclusion
– The memory is given to the cmm pool from the cpuplugd daemon, but z/VM has sufficient free

memory for new requirements

– In Linux the memory must actively be given back from the application, e.g. terminating the
application or shrinking buffers

0

5,000

10,000

15,000

20,000

cpuplugd - switching the Load (Set 1 → Set 2 → Set 1)

f ree z/VM memory (AVAILLOG)

manually sized cpuplugd managed

time [mm:ss]

Load on: |---------- Set 1 ---------| |--------- Set 2 ----------| |-------- Set 1 --------|

m
e

m
o

ry
 s

iz
e

 [M
B

]

0

1,000

2,000

3,000

4,000

5,000

cpuplugd - switching the Load (Set 1 → Set 2 → Set 1)

Linux memory (5GB - CMM Pool size)

lncombo2 (Set 1) lncombo4 (Set 2)

time [mm:ss]
Load on: |--------- Set 1 --------| |--------- Set 2 --------| |--------- Set 1 -------|

m
e

m
o

ry
 s

iz
e

 M
B

	IBM Enterprise2013 Presentation Template — Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

