Analyzing CICS TS SOS Problems in z/VSE

Mike Poil CICS L3 Service
The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

* AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA, WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z®®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

© 2015 IBM Corporation
Notice Regarding Specialty Engines (e.g., zIIPs, zAAPs and IFLs):

Any information contained in this document regarding Specialty Engines (“SEs”) and SE eligible workloads provides only general descriptions of the types and portions of workloads that are eligible for execution on Specialty Engines (e.g., zIIPs, zAAPs, and IFLs). IBM authorizes customers to use IBM SE only to execute the processing of Eligible Workloads of specific Programs expressly authorized by IBM as specified in the “Authorized Use Table for IBM Machines” provided at www.ibm.com/systems/support/machine_warranties/machine_code/aut.html (“AUT”).

No other workload processing is authorized for execution on an SE.

IBM offers SEs at a lower price than General Processors/Central Processors because customers are authorized to use SEs only to process certain types and/or amounts of workloads as specified by IBM in the AUT.
References

- CICS TS for VSE/ESA Performance Guide SC33-1667
- CICS TS for VSE/ESA Problem Determination Guide SC33-1663
- CICS TS for VSE/ESA Trace Entries SC33-6108.
- CICS TS for VSE/ESA Enhancements Guide GC34-5763
- CICS TS for VSE/ESA Operations and Utilities Guide SC33-1654
- z/VSE LVC June 2013 How to handle or avoid CICS storage availability problems
- WAVV 2013 CICS Performance Workshop
- WAVV 2014 update for WAVV 2012 How to Monitor and Optimize CICS Storage
- WAVV 2014 Introduction to CICS TS Storage Manager by Gene Hudders
Abstract

This session begins with a short introduction to the design of CICS storage management. It explains what triggers an SOS condition, how it affects CICS processing and introduces a potential workaround. It identifies possible reasons for SOS occurring and actions to resolve them. It explains what is required to be in place to capture the correct diagnostic data for problem determination, and shows how to use DFHPD410 formatted dump output in conjunction with the appropriate CICS manuals to find the root cause and hence pursue the appropriate resolution.
Agenda

- CICS DSA overview.
- CICS subpools.
- CICS storage requests.
- What is Short-On-Storage?
- The SIT MXT parameter and SOS.
- Can I do anything to work around SOS?
- Could I have prevented SOS?
- What can cause SOS?
- A Storage Leak.
- How do I resolve SOS?
- What diagnostic material do I need?
Agenda

- What signs do I look for in a dump or statistics?
- Analyzing SOS problems.
- Problem #1.
- Problem #2.
- Problem #3.
- Q & A.
CICS DSA Overview

- Most of the CICS storage requirement is managed through its DSAs.
- There are 4 types of DSA, with 24-bit (Below 16MB) and "E" 31-bit (Above 16MB) versions.
- The CDSA and ECDSA are for CICS-key storage requirements.
 - CICS control blocks.
 - Non-reentrant CICS nucleus programs.
 - Non-reentrant EXECKEY(CICS) programs.
 - Other CICS-key storage.
 - CICS-key is the protection key of the Partition.
- The RDSA and ERDSA contain reentrant (SVA-eligible) programs when the SVA copies are not being used by CICS (SIT SVA=NO etc.).
 - CICS nucleus and programs defined in the CSD and by Program Autoinstall.
 - SIT RENTPGM=PROTECT is recommended, and uses storage key 0 protection for each phase's code rather than using the less secure CICS-key.
 - Note: *Phase DFHSIP31 needs to be loaded into the SVA and SIT SVA=YES must be used to protect it with key 0 storage.*
CICS DSA Overview

- The SDSA and ESDSA are for shared USER-key storage requirements.
 - EXEC CICS GETMAIN SHARED.
 - Non-reentrant EXECKEY(USER) programs.
 - Other data areas.
 - USER-key access, which is key 9 if SIT STGPROT=YES, and the protection key of the Partition if STGPROT=NO.
 - The use of STGPROT=YES is recommended.
- The UDSA and EUDSA are for non-shared USER-key storage requirements.
 - USER-key program task-related storage.
CICS DSA Overview

- SIT DSALIM (24-bit) and EDSALIM (31-bit) define the limits for DSA storage.
- The amounts are allocated from contiguous Partition GETVIS, and are mapped internally as a series of 256K and 1MB EXTENTs respectively that belong to the "available extent" pool.
- Note: the two GETVIS storage area remain allocated until CICS terminates even if the whole amounts are not allocated for DSAs to use.
- One or a series of contiguous extents are allocated to a DSA when it needs to expand.
- An extent normally remains allocated to a DSA even if it becomes empty, hence the amount of used (E)DSALIM will grow to a peak value based on concurrent demands.
- A DSA's size will contract if an empty extent is transferred to another DSA as part of SOS avoidance, but this will not affect peak (E)DSALIM usage.
- DSALIM and EDSALIM can be increased by CEMT I DSA, but only if there is contiguous free 24-bit or 31-bit (not "ANY") GETVIS storage respectively.
- Note: Over-committing GETVIS is a potentially fatal condition just like SOS.
- Note: You can't start a new CEMT task when CICS is at SOS.
- Reducing then increasing (E)DSALIM by CEMT I DSA may return empty extents to the "available extent" pool, but be careful if you try this at home!
CICS DSA Overview

- A DSA contains SUBPOOLs, each of which has a specific purpose.
- CICS System Subpools are documented in Appendix C of the CICS Performance Guide.
- Every task has 4 TASK subpools allocated for its (E)CDSA and (E)UDSA storage, and the subpool name is based on the DSA (M, C, B or U) and the 7-digit task number.
- A subpool is a series of 4K pages, but EUDSA (Unnnnnn) task subpools use 64K pages.
- A storage request is mapped as an ELEMENT into one or more contiguous pages using First Fit logic.
- However, selected CICS system subpools are mapped as Quick-Cells that contain fixed-length elements of a CICS-determined size - Quick-Cells require less cpu to manage them.
- The CICS design will produce some fragmentation, leaving "holes" that cannot be reused, but this is normal for any product that provides storage management.
- DSA usage is also a function of the way that programs are written, and on the configuration options being used for CICS and its resource definitions.
CICS Subpools

- Examples of 24-bit subpools:
 - LD subpool sizes are based on the number and size of programs that are currently **loaded** in storage; a large amount of storage would normally be a function of what you asked CICS to support.
 - LDNRS - 24-bit CICS key programs that are not SVA-eligible.
 - LDNUC - 24-bit CICS nucleus programs that are not SVA-eligible.
 - LDPGM - 24-bit USER key programs that are not SVA-eligible.
 - LDRES - 24-bit USER key RESIDENT programs that are not SVA-eligible.
 - LDNRSRO - 24-bit CICS key programs that are SVA-eligible.
 - LDNUCRO - 24-bit CICS nucleus programs that are SVA-eligible.
 - LDPGMRO - 24-bit USER key programs that are SVA-eligible.
 - LDRESRO - 24-bit USER key RESIDENT programs that are SVA-eligible.
 - SMSHRU24 - 24-bit GETMAIN SHARED.
CICS Subpools

- Examples of 31-bit subpools:
 - LDExxxxx Loader Domain subpools.
 - ARI0OLRM - used for DB2/VSE.
 - DFHTDG31 - Transient Data general storage and control blocks based on SIT TD=.
 - DFHTDIOB - Transient Data buffers based on SIT TD=.
 - JCDYNLOG - CICS Dynamic Log for backout of recoverable resources; the lifetime of this type of storage for a task is syncpoint-related.
 - SMTP - Terminal I/O areas based on the number of terminals and activity.
 - SMSHRU31 - 31-bit GETMAIN SHARED.
 - TSBUFFRS - Temporary Storage buffers based on SIT TS=.
 - TSGENRAL - Temporary Storage general usage based on SIT TS= and the DFHTEMP CISZ.
 - TSMAIN - Temporary Storage main storage areas based on usage.
CICS Subpools

- Special subpools:
 - KESTK24E and KESTK31E - every CICS nucleus module active in the task execution hierarchy needs an amount of "STACK" storage, and CICS may need to expand what was allocated at initialisation time in its "Stack Extension" subpools; they use Partition GETVIS and not DSA storage, and only DFHPD410 DATA KE=1 and a dump will show their usage.
 - ZCTCTUA - TCTUA storage based on the number of terminals, which will exist in 24-bit or 31-bit subpools according to SIT TCTUALOC=BETLOW|ANY, and the DSA used will depend on SIT TCTUAKEY=USER|CICS; I fixed one customer SOS Below by telling them to switch to TCTUALOC=ANY.
 - The SM domain control blocks are allocated in Partition GETVIS and not in DSA storage in order to reduce the risk of them being accidentally overlaid.
CICS Storage Requests

- DSA storage is managed by CICS GETMAIN/FREEMAIN.
- Application EXEC CICS GETMAIN/FREEMAIN acquires and frees element storage.
- Note: CSFE storage freeze means that FREEMAIN does not free storage until end-of-task.
- CICS and other products will use GETMAIN/FREEMAIN services.
- A GETMAIN will result in CICS SUSPEND (a WAIT) on xDSA or ExDSA if the storage is not available, although specifying NOSUSPEND will result in a NOSTG response.
- A transaction defined with a non-zero DTIMOUT value and SPURGE=YES will be purged if there is a long task xDSA or ExDSA wait.
- Task-related storage is automatically freed at end-of-task.
- However, GETMAIN SHARED storage must be explicitly freed.
- You will see most GETMAIN/FREEMAIN activity with SM level 1 trace active.
- However, Quick-Cell trace activity requires SM level 3 trace to be active, e.g. CETR SM=1-3 or SIT STNTRSM=(1,3).
What is Short-On-Storage (SOS)?

- *The clue is in the name!*
- The DFHSM0131 or DFHSM0133 message is telling you that what you are asking CICS to do means that the available Below (24-bit) or Above (31-bit) storage is not enough for it to confident that it can continue without a problem.
- CICS either hasn't the necessary extents to fulfil a request, or thinks that it might need an available extent in the future and there aren't any.
- Before it got to this state, CICS will have noticed that storage usage was starting to show signs of "stress", and will have been proactively trying to free some unused storage, e.g.
 - Program Compression is used to progressively delete unused programs.
 - CICS will lower the priority of new tasks to reduce the possibility of them adding to the problem while helping older tasks to terminate more quickly and free their storage.
- At SOS, CICS will not allow new tasks to be attached.
- If CICS can recover, it will tell you with a DFHSM0132 or a DFHSM0134 message.
- You may end up with CICS going in and out of SOS a number of times, and it may hang.
The SIT MXT parameter and SOS

- MXT determines how many user tasks can be under the control of the CICS Dispatcher at any one time - CICS system tasks are not subject to MXT.
- At MXT, new tasks will be suspended in an MXT wait until other user tasks terminate.
- Setting MXT lower than you might want trades MXT wait time for SOS, and may be the only way to resolve DSALIM issues, however, you should aim to fix the underlying problem.
- The larger the MXT value, the more storage that can be used at any one time and the more likely that SOS will occur if DSALIM or EDSALIM are not sized to match it.
- If you want a simple way to size (E)DSALIM, try to use sets of CICS Statistics to get "normal" values for what you see being used:
 - Required DSALIM = (MXT/Normal Peak MXT) * Normal Peak DSALIM.
 - Do the same for EDSALIM.
- Note: A user transaction is subject to any TCLASS limit before the MXT limit.
Can I get do anything to work around SOS?

- If you keep a CEMT task running permanently, you can take some action while CICS is actually in the SOS state.
- The main problem is that you often don't know what the root cause is.
- Possible actions:
 - Using CEMT I DSA to add (E)DSALIM storage may provide relief.
 - Using CEMT I TA to purge one or more tasks may provide relief, but it does not identify the root cause - a task in (E)xDSA wait may be the victim.
 - Use CEMT I SYS to reduce MXT.
- Vendor transaction displays show more about the tasks and even the CICS system as a whole, so you might have more information to help you, but trying to start a new Vendor transaction inside the CICS at SOS won't work!
Could I have prevented SOS?

- Regularly track peak (E)DSALIM and MXT using DFH0STAT, DFHSTUP or a Vendor product so that you know what is "normal".
- Trigger a warning when peak usage exceeds something like 80% of maximum, and when it triggers, try to identify the cause(s) and make changes if that is appropriate.
- However, a rogue application change, a bug or an capacity issue can catch you by surprise.
- The next three slides show DFH0STAT output produced after CICS had been SOS several times; a red highlight shows data values that may be of interest.
- In terms of the SOS conditions, we see the CICS system a long time after it happened and it does not appear to be under any stress now - statistics alone normally won't give us enough information to tell us what the root cause of SOS is.
- Adding 512K (the difference between DSALIM and the sum of 4 Peak DSA values) may be what is required to avoid SOS, but that would depend on having more than 512K in the GETVIS "largest free area", which we do not have.
- Note: DFH0STAT shows actual 31-bit GETVIS storage and NOT the "ANY" 24-bit plus 31-bit values shown by GETVIS AR command output.
Could I have prevented SOS?

<table>
<thead>
<tr>
<th>Partition size established from ALLOC parameter</th>
<th>122,879K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage BELOW 16MB</td>
<td></td>
</tr>
<tr>
<td>Partition GETVIS area size under 16 Mb</td>
<td>11,260K</td>
</tr>
<tr>
<td>Partition GETVIS used area below 16 Mb</td>
<td>11,032K</td>
</tr>
<tr>
<td>Partition GETVIS free area below 16 Mb</td>
<td>228K</td>
</tr>
<tr>
<td>Partition GETVIS maximum used below 16 Mb</td>
<td>11,048K</td>
</tr>
<tr>
<td>Partition GETVIS largest free area below 16 Mb</td>
<td>216K</td>
</tr>
</tbody>
</table>

... continued on the next slide
Could I have prevented SOS?

<table>
<thead>
<tr>
<th>Current DSA Limit</th>
<th>9,216K</th>
<th>9MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Allocation for DSAs</td>
<td>9,216K</td>
<td></td>
</tr>
<tr>
<td>Peak Allocation for DSAs</td>
<td>9,216K</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDSA</th>
<th>UDSA</th>
<th>SDSA</th>
<th>RDSA</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,352K</td>
<td>2,560K</td>
<td>1,792K</td>
<td>512K</td>
<td>9,216K</td>
</tr>
<tr>
<td>2,580K</td>
<td>28K</td>
<td>1,656K</td>
<td>456K</td>
<td>4,720K</td>
</tr>
</tbody>
</table>

| Current DSA Used as % of DSA | 59% | 1% | 92% | 89% | 51% of DSA Size |
| Peak DSA Size | 4,444K | 2,496K | 1,744K | 460K | The total is 9.5MB |

Cushion Size	64K	64K	64K	64K
Free Storage (inc. Cushion)	1,772K	2,532K	136K	56K
Peak Free Storage	1,812K	2,532K	256K	288K

| Lowest Free Storage | 208K | 64K | 48K | 52K |
| Largest Free Area | 256K | 256K | 48K | 32K |

Largest Free Area as % of DSA	5%	10%	2%	6%
Current number of extents	17	10	6	35
Number of extents added	20	13	6	2
Number of extents released	3	3	0	0

Getmain Requests	3,546,391	41,640,453	831	25
Freemain Requests	3,545,994	41,640,445	727	3
Current number of Subpools	39	11	6	4
Add Subpool Requests	293,675	293,647	6	4
Delete Subpool Requests	293,636	293,636	0	0
Times no storage returned	0	0	0	0
Times request suspended	24	54	0	0
Current requests suspended	0	0	0	0
Peak requests suspended	4	8	0	0
Requests purged while waiting	0	2	0	0
Times Cushion released	349	215	0	832
Times Short-On-Storage	6	15	0	19

| Total time Short-On-Storage | 00:01:54.40254 | 00:00:50.97460 | 00:00:00.00000 | 00:02:02.41115 |
| Average Short-On-Storage time | 00:00:19.06708 | 00:00:03.39831 | 00:00:00.00000 | 00:00:06.44269 |
Could I have prevented SOS?

<table>
<thead>
<tr>
<th>Loader</th>
<th>Programs Removed by compression:</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time on the Not-In-Use Queue</td>
<td>16:37:44.18565</td>
</tr>
<tr>
<td></td>
<td>Average Time on the Not-In-Use Queue</td>
<td>00:04:55.17636</td>
</tr>
<tr>
<td></td>
<td>Programs Reclaimed from the Not-In-Use Queue</td>
<td>1,184</td>
</tr>
<tr>
<td></td>
<td>Programs Loaded - now on the Not-In-Use Queue</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDSA</th>
<th>Programs Removed by compression:</th>
<th>298</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time on the Not-In-Use Queue</td>
<td>15:39:38.02778</td>
</tr>
<tr>
<td></td>
<td>Average Time on the Not-In-Use Queue</td>
<td>00:00:41.41425</td>
</tr>
<tr>
<td></td>
<td>Programs Reclaimed from the Not-In-Use Queue</td>
<td>1,230,968</td>
</tr>
<tr>
<td></td>
<td>Programs Loaded - now on the Not-In-Use Queue</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RDSA</th>
<th>Programs Removed by compression:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time on the Not-In-Use Queue</td>
<td>06:05:34.04108</td>
</tr>
<tr>
<td></td>
<td>Average Time on the Not-In-Use Queue</td>
<td>02:01:51.34702</td>
</tr>
<tr>
<td></td>
<td>Programs Reclaimed from the Not-In-Use Queue</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Programs Loaded - now on the Not-In-Use Queue</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Program Uses	1,678,077
Program Use to Load Ratio	65.44
Average Not-In-Use program size	23K

<table>
<thead>
<tr>
<th>Programs Removed by compression:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time on the Not-In-Use Queue</td>
<td>00:00:00.00000</td>
</tr>
<tr>
<td>Average Time on the Not-In-Use Queue</td>
<td>00:00:00.00000</td>
</tr>
<tr>
<td>Programs Reclaimed from the Not-In-Use Queue</td>
<td>20,886</td>
</tr>
<tr>
<td>Programs Loaded - now on the Not-In-Use Queue</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESDA</th>
<th>Programs Removed by compression:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time on the Not-In-Use Queue</td>
<td>00:00:00.00000</td>
<td></td>
</tr>
<tr>
<td>Average Time on the Not-In-Use Queue</td>
<td>00:00:00.00000</td>
<td></td>
</tr>
<tr>
<td>Programs Reclaimed from the Not-In-Use Queue</td>
<td>334,720</td>
<td></td>
</tr>
<tr>
<td>Programs Loaded - now on the Not-In-Use Queue</td>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERDSA</th>
<th>Programs Removed by compression:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time on the Not-In-Use Queue</td>
<td>00:00:00.00000</td>
<td></td>
</tr>
<tr>
<td>Average Time on the Not-In-Use Queue</td>
<td>00:00:00.00000</td>
<td></td>
</tr>
<tr>
<td>Programs Reclaimed from the Not-In-Use Queue</td>
<td>2,599</td>
<td></td>
</tr>
<tr>
<td>Programs Loaded - now on the Not-In-Use Queue</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
What can cause SOS?

- Inappropriate configuration options somewhere in the tier of products being used, e.g. using SIT TCTUALOC=BELOW when ANY could be used.
- A workload that CICS cannot process fast enough, pushing MXT past its normal peak and increasing the storage requirements; perhaps CICS or even z/VSE does not have the capacity (cpu/storage/dasd) to cope with the workload at that time.
- An unusual combination of task suspend (wait) states that cause a build up of tasks and their storage - this would also be reflected in a high current/peak MXT value.
- An application bug resulting in more storage being used than expected, e.g. a loop or a poor design that results in a build up of VSAM file backout data, or a very large GETMAIN; it could even be due to an application-generated Storage Leak.
- Bugs in z/VM, z/VSE, Vendor, CICS or other IBM products creating unexpected waits or a Storage Leak. (Although not as SOS issue, I saw a recent z/VM bug stop it dispatching one of the z/VSE Virtual Cpus and causing CICS hangs!)
- A recent change somewhere, which could be anywhere in what is often a very complex environment!
A Storage Leak

- A leak will cause a continuous build up in one or more related types of storage due to unpaired GETMAINs and FREEMAINs.
- However, a large amount of a particular type of storage may be "normal" and not a leak.
- Given enough time, it will always result in an SOS or similar out-of-storage condition.
- Adding more storage will just allow CICS to run longer than it was able to before.
- Fragmentation due to the sizes and patterns of GETMAIN/FREEMAIN may look like a leak, but this is correctly known as "Storage Creep" - I haven't seen this affect CICS yet.

Note: You may have leaks already, but not run CICS long enough to cause SOS!
How do I resolve SOS?

- It depends on what you will find as the root cause, and could include one or more of:
 - Find fixes for IBM or Vendor software.
 - Fix the application program(s).
 - Increase (E)DSALIM, and re-configure the partition and/or z/VSE as required.
 - Decrease MXT.
 - Use TCLASS to limit transactions that use a lot of resource to a maximum number.
 - Tune and/or change configuration options in Vendor products, CICS, z/VSE or z/VM.
 - Provide extra cpu or storage capacity and/or faster dasd.
What diagnostic material do I need?

- You want a dump at the time CICS says it is SOS, for this you need to use CEMT S SYD(SM0131) ADD SYS MAX(1) and/or CEMT S SYD(SM0133) ADD SYS MAX(1) or a PLT program to add both system dump codes; a WARM start will retain the setting.
- A dump after CICS has recovered may not be able to identify the root cause accurately.
- Allocate a trace table of at least 4096K and use SIT STNTR=1.
- IBM may ask for extra trace levels to be set if we need the problem to be recreated.
- If CICS is hung, a CANCEL dump should be OK, or take a synchronous AR DUMP:
 - SUSPEND xx
 - DUMP xx,0-7FFFFFFFF,cuu
 - RESUME xx
 - CANCEL xx,NODUMP
- If you want to look at the problem, run INFOANA with:
 CALL DFHPD410 DATA AP=1,DS=1,LD=1,SM=1,TR=3,XM=1
What diagnostic material do I need?

- If the analysis indicates that there might be a performance problem, it may help for you to have detailed task performance data for half an hour or more leading up to the SOS.
- It is also helpful for you to know what is "normal" for the transactions that appear in the task performance data so that you can identify when there are problems and what they are.
- You may need z/VSE and even z/VM performance data.
- If you decide that CICS Service needs to look at it:
 - Open a PMR against CICS and tell us which z/VSE release you are on (SIR SYSTEM output is always welcomed).
 - Add background information about what is "normal" if you know that.
 - CICS L2 will give you FTP instructions.
 - FTP the raw dump in binary, with CICS SYSLST and PRINTLOG that includes all related messages in ASCII (this applies to any type of CICS problem).
 - Don't FTP DFHPD410 output, we will format the raw dump whichever way we need to.
 - Please don't send file formats that you can't look at with e.g. Open Office!
What signs do I look for in a dump or statistics?

- What you will see depends on when the dump was taken relative to the SOS condition.
- The obvious sign in Storage Management SM=1 output is SOS below or above, with a DSA flagged as SOS, but this may be the victim and not the culprit.
- SM=1 output and/or statistics shows the number of NOSTG responses, the number of suspended requests and the number of times DSA cushions were released.
 - Each DSA has a "Storage Cushion", which is the minimum amount of contiguous storage that CICS should keep to avoid SOS.
 - When CICS uses some of this, it is a warning of a potential SOS in the near future.
 - The cushion sizes are 64K for the xDSAs, 0K for the EUDSA, 256K for the ERDSA and 128K for the ECDSA and ESDSA.
- The end of the SM=1 domain dump output will show any tasks waiting for xDSA or ExDSA storage and how much they requested.
- The DS=1 domain output may not show a DSA wait, because SMSY may be trying to free storage in case the failing GETMAIN can be retried.
- Loader Domain statistics provide counts for programs removed by Program Compression.
Analyzing SOS Problems

- I will use examples that are similar to real problems, but with a reduced amount of DFHPD410 output to give you an idea of what to look for.
- This may be an unusual number of task waits, e.g. many tasks in FCCIWAIT for a file, which means they are all waiting for one CI split to complete, or LQUEUE waits waiting for locked resources; when there is a slowdown, it will often result in more tasks running concurrently, pushing up peak MXT and total storage usage.
- It could be an abnormal amount of storage allocated to a CICS subpool, which could also be due to a slowdown, an application bug or even a storage leak.
- Knowing what is "normal" for your system will help.
- Note: Being at SOS does not mean that there is no storage available in CICS.
- Note: CICS Service have seen many SOS problems and will often spot a potential problem relatively quickly, however, there could be some guesswork as we don't know what is "normal".
Problem #1

- SOS above occurred several times, CICS recovered, and an SM0133 dump was produced.
- SOS has not occurred before in this CICS system.
- No changes were made recently.
- This is a typical symptom of a capacity issue, but is that what it is?
- XM=1 output shows that CICS is close to MXT.
- *The typical peak MXT for this CICS is approximately 230 compared to the 295 here.*

$$=XM: \text{ MXT SUMMARY}$$

- Maximum user tasks (MXT): 310
- System currently at MXT: No
- Current active user tasks: 295
- Current queued user tasks: 0
- Peak active user tasks: 295
- Peak queued user tasks: 0
- Times at MXT limit: 0

- DFHPD410 XM=1 output shows task information and any TCLASS/MXT waits.
Problem #1

- DS=1 is a *snapshot* of task activity at the time of the dump, but it can provide an interesting insight into what was happening before SOS occurred and possibly the root cause.

- Each task that can be dispatched has a state, and you normally see one of three values:
 - "R" for Running - the task is being dispatched by CICS; in an SM013n dump this will be SMSY. (The SM CICS system task SMSY is used to look for and deal with SOS, and normally runs every 3 minutes to check storage conditions, but every 2 seconds or less when CICS is under stress).
 - "D" for Dispatchable - this is an implied wait for access to the cpu, and seeing many of them waiting for QR could indicate a cpu availability problem
 - "S" means the task is in a Suspend (wait) state, optionally with a purge timeout.

- The CICS Problem Determination Guide Chapter 6 describes each "S" state.

- It may show a "normal" wait, e.g. FCIOWAIT is when you are waiting for VSAM I/O to complete (*but it should be for a short duration*), or an ICWAIT for "n" seconds.

- It may show contention, e.g. FCCIWAIT says that the task's VSAM I/O is being delayed because an active I/O is performing a CI (and possibly a CA) split; only when this is finished does this task get a chance to retry its VSAM request.
Problem #1

- DS=1 shows CICS System Tasks in normal waits with the SM System Task (AD=SM) running as expected during SOS; the dump time was 12:56:04.
- There are many FCPSWAITs for file MAST001, which is the FILE definition STRINGS wait (not LSR string wait); this could be a bad choice for STRINGS or be due to a slowdown stopping them being released fast enough for another task to use.
- There are a small number of FCIOWAITs - *the one below shows a 2-second I/O wait!*
- No other significant types of FCIOWAITs - *the one below shows a 2-second I/O wait!*

KEY FOR SUMMARY

<table>
<thead>
<tr>
<th>TYPE OF TASK</th>
<th>SYSTEM</th>
<th>NON-SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>D</td>
<td>U</td>
</tr>
<tr>
<td>STATE OF TASK</td>
<td>DISPATCHABLE</td>
<td>SUSPENDED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DS_TOKEN</th>
<th>KE_TASK</th>
<th>T</th>
<th>S</th>
<th>P</th>
<th>TT</th>
<th>RESOURCE</th>
<th>RESOURCE_NAME</th>
<th>W</th>
<th>TIME OF</th>
<th>TIMEOUT</th>
<th>AD</th>
<th>XM_TXN_TOKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- 00940001 03F1D080 S R SM
- 0112157D 046D8B00 N S P N - FCPSWAIT MAST001 C 12:56:02.210 - XM 06D255000058761C
- 02161329 046DDB00 N S N N - FCIOWAIT MAST001 W 12:56:02.216 - XM 06D255000058773C
Problem #1

- SM=1 summarises the status of CICS DSA storage.
- CICS is at SOS above with no EDSALIM expansion possible.
- 1MB of DSALIM expansion is available (4 * 256K extents).
- Typical peak EDSALIM usage for this CICS is 90MB.

<table>
<thead>
<tr>
<th>SM Domain status:</th>
<th>INITIALISED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage recovery:</td>
<td>YES</td>
</tr>
<tr>
<td>Storage protection requested:</td>
<td>YES</td>
</tr>
<tr>
<td>Storage protection active:</td>
<td>YES</td>
</tr>
<tr>
<td>Reentrant program option:</td>
<td>PROTECT</td>
</tr>
<tr>
<td>Current DSA limit:</td>
<td>9216K</td>
</tr>
<tr>
<td>Current DSA total:</td>
<td>8192K</td>
</tr>
<tr>
<td>Currently SOS below 16M:</td>
<td>NO</td>
</tr>
<tr>
<td>Current EDSA limit:</td>
<td>110M</td>
</tr>
<tr>
<td>Current EDSA total:</td>
<td>110M</td>
</tr>
<tr>
<td>Currently SOS above 16M:</td>
<td>YES</td>
</tr>
</tbody>
</table>
Problem #1

- The ECDSA large and is close to SOS, with only the cushion of contiguous storage left.

```plaintext
==SM: ECDSA Summary

Size: 40960K
Cushion size: 128K
Current free space: 1112K (2%) (some fragmentation)
* Lwm free space: 68K (0%)
* Hwm free space: 2212K (5%)

Largest free area: 128K (at cushion size)

* Times nostg returned: 0
* Times request suspended: 0
  Current suspended: 0
* Hwm suspended: 0
* Times cushion released: 0
  Currently SOS: NO
* Times went SOS: 0
* Time at SOS: 00:00:00.000
```
Problem #1

- The EUDSA is large and is at SOS, with a suspended GETMAIN request.

```plaintext
==SM: EUDSA Summary

  Size: 63488K
  Cushion size: 0K
  Current free space: 128K (0%) (no fragmentation)
  * Lwm free space: 128K (0%)
  * Hwm free space: 1152K (1%)
  Largest free area: 128K (maximum contiguous storage)

  * Times nostg returned: 0
  * Times request suspended: 1
  Current suspended: 1
  * Hwm suspended: 1
  * Times cushion released: 0
  Currently SOS: YES
  * Times went SOS: 1
  * Time at SOS: 00:00:00.000
```
Problem #1

- Although not relevant to this SOS analysis, SM=1 provides an extent summary.
- The EUDSA has 57 extents and only the last one has free storage, which shows no obvious signs of fragmentation.

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>06300000</td>
<td>063FFFFF</td>
<td>1024K</td>
<td>0K</td>
</tr>
<tr>
<td>06800000</td>
<td>069FFFFF</td>
<td>2048K</td>
<td>0K</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0A800000</td>
<td>0A8FFFFF</td>
<td>1024K</td>
<td>0K</td>
</tr>
<tr>
<td>0A900000</td>
<td>0A9FFFFF</td>
<td>1024K</td>
<td>0K</td>
</tr>
<tr>
<td>0AA00000</td>
<td>0AAFFFFF</td>
<td>1024K</td>
<td>0K</td>
</tr>
<tr>
<td>0AB00000</td>
<td>0ABFFFFF</td>
<td>1024K</td>
<td>0K</td>
</tr>
<tr>
<td>0AC00000</td>
<td>0ACFFFFF</td>
<td>1024K</td>
<td>128K</td>
</tr>
</tbody>
</table>
Problem #1

==SM: ESDSA Summary

Size: 4096K (insignificant)
Cushion size: 128K
Current free space: 2620K (63%)
* Lwm free space: 336K (8%)
* Hwm free space: 2620K (63%)
Largest free area: 772K
* Times nostg returned: 0
* Times request suspended: 0
 Current suspended: 0
* Hwm suspended: 0
* Times cushion released: 0
 Currently SOS: NO
* Times went SOS: 0
* Time at SOS: 00:00:00.000
Problem #1

SM: ERDSA Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>4096K</td>
<td>(insignificant)</td>
</tr>
<tr>
<td>Cushion size</td>
<td>256K</td>
<td></td>
</tr>
<tr>
<td>Current free space</td>
<td>312K (7%)</td>
<td></td>
</tr>
<tr>
<td>Lwm free space</td>
<td>312K (7%)</td>
<td></td>
</tr>
<tr>
<td>Hwm free space</td>
<td>2628K (64%)</td>
<td></td>
</tr>
<tr>
<td>Largest free area</td>
<td>312K</td>
<td></td>
</tr>
<tr>
<td>Times nostg returned</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Times request suspended</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Current suspended</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hwm suspended</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Times cushion released</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Currently SOS</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Times went SOS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Time at SOS</td>
<td>00:00:00.000</td>
<td></td>
</tr>
</tbody>
</table>
Problem #1

- An analysis of the task subpools showed that tasks 38 and 141 use a lot of storage, the XM domain has the transaction ids and the usage will need to be validated.
- You can see the difference between element storage (actual usage) and the page storage 4K or 64K multiples suballocated from the DSA extent storage.
- Other user tasks show EUDSA usage from 64K to 320K.

<table>
<thead>
<tr>
<th>SMX Addr</th>
<th>Name</th>
<th>Id</th>
<th>Loc</th>
<th>Acc</th>
<th>Gets</th>
<th>Frees</th>
<th>Elems</th>
<th>Elemstg</th>
<th>Pagestg</th>
</tr>
</thead>
<tbody>
<tr>
<td>03E8A2C4</td>
<td>M0000038 01</td>
<td>B</td>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0K (CDSA)</td>
<td></td>
</tr>
<tr>
<td>0000038 03</td>
<td>A</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0K (ECDSA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000038 02</td>
<td>B</td>
<td>U</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1584</td>
<td>4K (UDSA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000038 04</td>
<td>A</td>
<td>U</td>
<td>130</td>
<td>94</td>
<td>36</td>
<td>1432128</td>
<td>1472K (EUDSA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(task 38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1398.5K)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SM: Task subpool summary

Current number of tasks: 303 (includes system tasks)
Problem #1

03E8A498 M0000141 01 B C 0 0 0 0 0K
C0000141 03 A C 1 0 1 48 4K
B0000141 02 B U 520 518 2 9056 12K
U0000141 04 A U 62317 62312 5 5085616 5056K

... (58770 is having the issue with EUDSA storage)

03E8DB3C M0058770 01 B C 0 0 0 0 0K
C0058770 03 A C 0 0 0 0 0K
B0058770 02 B U 1 1 0 0 0K
U0058770 04 A U 2 0 2 15680 64K

(task 85812 is an example of a "normal" task in terms of EUDSA usage)
Problem #1

- The CICS subpools show that DFHTDG31 (Transient Data general storage) and DFHTDIOB (Transient Data I/O buffers) use more than 50% of the 40MB of ECDSA storage.
- This could be "normal", but the SIT TD= parameter may be over-allocated.
- No other CICS subpool usage is significant.

<table>
<thead>
<tr>
<th>Name</th>
<th>Id</th>
<th>Chn</th>
<th>Initf</th>
<th>Bndry</th>
<th>Fxlen</th>
<th>Q-c</th>
<th>Gets</th>
<th>Frees</th>
<th>Elems</th>
<th>Elemstg</th>
<th>Pagestg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AITM_TAB</td>
<td>B3</td>
<td>4K</td>
<td>8</td>
<td>592</td>
<td>Y</td>
<td>60</td>
<td>0</td>
<td>60</td>
<td>35520</td>
<td>128K</td>
<td>40K</td>
</tr>
<tr>
<td>AP_AFCTE</td>
<td>C7</td>
<td>4K</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>286</td>
<td>0</td>
<td>286</td>
<td>9968</td>
<td>12K</td>
</tr>
<tr>
<td>AP_TCA31</td>
<td>4D</td>
<td>128K</td>
<td>128</td>
<td>1536</td>
<td>Y</td>
<td>27032</td>
<td>26750</td>
<td>282</td>
<td>433152</td>
<td>564K</td>
<td></td>
</tr>
<tr>
<td>DFHTDG31</td>
<td>81</td>
<td>16</td>
<td>6006</td>
<td>0</td>
<td>6006</td>
<td>578544</td>
<td>568K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHTDIOB</td>
<td>84</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>24576000</td>
<td>24000K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHTDWC</td>
<td>85</td>
<td>4K</td>
<td>16</td>
<td>64</td>
<td>Y</td>
<td>77707</td>
<td>77707</td>
<td>0</td>
<td>0</td>
<td>4K</td>
<td></td>
</tr>
</tbody>
</table>

(23MB+)
Problem #1

- DSA waits are shown at the end of SM=1.
- A request for 180912 bytes (177K), which will not fit in the 128K of contiguous storage that is available, and will probably require 192K or 3 * 64K.
- If 192K was added to the existing 64K for task 58770, it would result in 256K, which is a size often seen for transactions in this CICS system and appears to be reasonable.

==SM: Suspend queue summary

<table>
<thead>
<tr>
<th>KE Task</th>
<th>Tran #</th>
<th>Susptok</th>
<th>Subpool</th>
<th>DSA</th>
<th>Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>04416780</td>
<td>0058770</td>
<td>0416139B</td>
<td>U0058770</td>
<td>EUDSA</td>
<td>180912</td>
</tr>
</tbody>
</table>
Problem #1

- The trace shows more than 1,000 FCIOWAITs in a short time.
- A Rexx program analyzed the trace and showed that CICS was dispatched more than 80% of the time, a level of activity that could definitely be causing a slowdown.
- These trace entries lead up to the SOS.
- The X'2C298' byte request is for LE RUWA 31-bit working storage, and CICS was looking for additional 64K subpool pages.
Problem #1

SM 1206 SMPQ *EXC* - Insufficient storage to satisfy request - FUNCTION(ALLOCATE_PAGEPOOL_STORAGE) SUBPOOL_TOKEN(03089E30)
GET_LENGTH(2C2BO) SUSPEND(YES)

TASK-58770 KE_NUM-0020 TCB-004E5000 RET-88B8D4714 TIME-12:56:02.2605378776 INTERVAL-00.00000034375 =098284=
1-0000 00380000 0000010A 00000000 00000000 BEF00000 00000000 01000201 03089E30 *.................0.............*
 0020 0002C280 03012332 0441DF10 00000040 0B882284 01882284 *B............._h.d.h..*
 2-0000 E4F0F0F5 F8F7F7F0 *U0058770*
 3-0000 C5E4C4E2 C1404040 *EUDSA*

SM 1001 SMSQ ENTRY - FUNCTION(SUSPEND_REQUEST) GET_LENGTH(2C2BO) SUBPOOL_TOKEN(03089E30) RETRY(NO)

TASK-58770 KE_NUM-0020 TCB-004E5000 RET-88B8D65D6 TIME-12:56:02.2605390026 INTERVAL-00.00000112575 =098285=
1-0000 00300000 00000090 00000000 00000000 BC800000 00000000 02000101 0002C280 *..............................B.***
 0020 03089E30 03012332 0441DF10 02000040 *.............*

SM 080A SMSY *EXC* - Short on storage in the EUDSA

TASK-SM KE_NUM-001D TCB-004E5000 RET-8888A816 TIME-12:56:02.2605576276 INTERVAL-00.00000025000 =098321=
1-0000 C5E4C4E2 C1404040 *EUDSA*
 2-0000 00020000 *.... *
 3-0000 00000000 *.... *
 4-0000 00000001 *.... *
Problem #1 Conclusion

- The large task and TD storage usage was "normal".
- Nothing else was observed to be "abnormal" in this CICS system.
- No changes were made before the SOS occurred.
- SOS is not a common problem.
- This is a match for a short-term capacity problem.
- One option is to increase EDSALIM.
 - The typical peak MXT is 230 and peak EDSALIM usage is 90MB, therefore the suggested new EDSALIM value is \((310/230) \times 90\text{MB} = 121\text{MB}\).
 - With 1MB still available in DSALIM, SOS below is unlikely to occur.
- Another option would be to reduce MXT to a bit less than 295.
- However, I would suggest a review of the performance of the z/VSE and CICS system to ensure that it has the capacity to handle the workload during times of peak load with appropriate response times.
Problem #2

- DSA usage grows quickly in size until an SOS below occurs and CICS does not recover.
- This happens every time CICS is started.
- This is the classic symptom of a Storage Leak, and should be easy to diagnose.
- Being at MXT may or may not be significant.

==XM: MXT SUMMARY

- **Maximum user tasks (MXT):** 60
- **System currently at MXT:** Yes
- **Current active user tasks:** 60
- **Current queued user tasks:** 3
- **Peak active user tasks:** 50
- **Peak queued user tasks:** 6
- **Times at MXT limit:** 4

- DS=1 shows no obvious sign of any problems, so I will not include any output from it.
Problem #2

- SM=1 shows SOS Below.

==SM: STORAGE MANAGER DOMAIN - SUMMARY

SM Domain status: INITIALISED
Storage recovery: NO
Storage protection requested: YES
Storage protection active: YES
Reentrant program option: PROTECT
Current DSA limit: 7424K
Current DSA total: 7424K
Currently SOS below 16M: YES

Current EDSA limit: 55M
Current EDSA total: 40M
Currently SOS above 16M: NO
Problem #2

==SM: UDSA Summary

<table>
<thead>
<tr>
<th>Size:</th>
<th>512K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushion size:</td>
<td>64K</td>
</tr>
<tr>
<td>Current free space:</td>
<td>212K (41%)</td>
</tr>
<tr>
<td>Lwm free space:</td>
<td>140K (27%)</td>
</tr>
<tr>
<td>Hwm free space:</td>
<td>496K (96%)</td>
</tr>
<tr>
<td>Largest free area:</td>
<td>152K</td>
</tr>
<tr>
<td>Times nostg returned:</td>
<td>0</td>
</tr>
<tr>
<td>Times request suspended:</td>
<td>0</td>
</tr>
<tr>
<td>Current suspended:</td>
<td>0</td>
</tr>
<tr>
<td>Hwm suspended:</td>
<td>0</td>
</tr>
<tr>
<td>Times cushion released:</td>
<td>0</td>
</tr>
<tr>
<td>Currently SOS:</td>
<td>NO</td>
</tr>
<tr>
<td>Times went SOS:</td>
<td>0</td>
</tr>
</tbody>
</table>
Problem #2

---SM: CDSA Summary

<table>
<thead>
<tr>
<th>Size:</th>
<th>1280K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushion size:</td>
<td>64K</td>
</tr>
<tr>
<td>Current free space:</td>
<td>688K (53%)</td>
</tr>
<tr>
<td>* Lwm free space:</td>
<td>120K (9%)</td>
</tr>
<tr>
<td>* Hwm free space:</td>
<td>688K (53%)</td>
</tr>
<tr>
<td>Largest free area:</td>
<td>240K</td>
</tr>
<tr>
<td>* Times nostg returned:</td>
<td>0</td>
</tr>
<tr>
<td>* Times request suspended:</td>
<td>0</td>
</tr>
<tr>
<td>Current suspended:</td>
<td>0</td>
</tr>
<tr>
<td>* Hwm suspended:</td>
<td>0</td>
</tr>
<tr>
<td>* Times cushion released:</td>
<td>0</td>
</tr>
<tr>
<td>Currently SOS:</td>
<td>NO</td>
</tr>
<tr>
<td>* Times went SOS:</td>
<td>0</td>
</tr>
</tbody>
</table>
Problem #2

==SM: SDSA Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>5120K</td>
<td>(the biggest usage)</td>
</tr>
<tr>
<td>Cushion size:</td>
<td>64K</td>
<td></td>
</tr>
<tr>
<td>Current free space:</td>
<td>60K (1%)</td>
<td></td>
</tr>
<tr>
<td>* Lwm free space:</td>
<td>60K (1%)</td>
<td></td>
</tr>
<tr>
<td>* Hwm free space:</td>
<td>256K (5%)</td>
<td></td>
</tr>
<tr>
<td>Largest free area:</td>
<td>60K</td>
<td></td>
</tr>
<tr>
<td>* Times nostg returned:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>* Times request suspended:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Current suspended:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>* Hwm suspended:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>* Times cushion released:</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Currently SOS:</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>* Times went SOS:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>* Time at SOS:</td>
<td>00:00:00:00.000</td>
<td></td>
</tr>
</tbody>
</table>
Problem #2

---SM: RDSA Summary

<table>
<thead>
<tr>
<th>Size:</th>
<th>512K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushion size:</td>
<td>64K</td>
</tr>
<tr>
<td>Current free space:</td>
<td>216K (42%)</td>
</tr>
<tr>
<td>* Lwm free space:</td>
<td>216K (42%)</td>
</tr>
<tr>
<td>* Hwm free space:</td>
<td>292K (57%)</td>
</tr>
<tr>
<td>Largest free area:</td>
<td>216K</td>
</tr>
<tr>
<td>* Times nostg returned:</td>
<td>0</td>
</tr>
<tr>
<td>* Times request suspended:</td>
<td>0</td>
</tr>
<tr>
<td>Current suspended:</td>
<td>0</td>
</tr>
<tr>
<td>* Hwm suspended:</td>
<td>0</td>
</tr>
<tr>
<td>* Times cushion released:</td>
<td>0</td>
</tr>
<tr>
<td>Currently SOS:</td>
<td>NO</td>
</tr>
<tr>
<td>* Times went SOS:</td>
<td>0</td>
</tr>
<tr>
<td>* Time at SOS:</td>
<td>00:00:00.000</td>
</tr>
</tbody>
</table>
Problem #2

- The issue is related to the size of the SDSA.
- Look at the big difference between Gets and Frees and the number of elements, and is a typical sign of a leak!
- GETMAIN SHARED has no task-related information maintained, so who is requesting it?

==SM: Domain subpool summary (SDSA)==

<table>
<thead>
<tr>
<th>Name</th>
<th>Id</th>
<th>Chn</th>
<th>Initf</th>
<th>Bndry</th>
<th>Fxlen</th>
<th>Q-c</th>
<th>Gets</th>
<th>Frees</th>
<th>Elems</th>
<th>Elemstg</th>
<th>Pagestg</th>
</tr>
</thead>
<tbody>
<tr>
<td>APECA</td>
<td>5D</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0K</td>
</tr>
<tr>
<td>DFHAPU24</td>
<td>46</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3584</td>
<td>4K</td>
</tr>
<tr>
<td>LDPGM</td>
<td>28</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>14</td>
<td>6</td>
<td>100128</td>
<td>108K</td>
<td></td>
</tr>
<tr>
<td>LDRES</td>
<td>24</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>23952</td>
<td>24K</td>
</tr>
<tr>
<td>SMSHRU24</td>
<td>60</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14087</td>
<td>2</td>
<td>14085</td>
<td>5032704</td>
<td>4924K</td>
</tr>
</tbody>
</table>
Problem #2

- Perhaps there is some evidence in the trace, if not, auxtrace might be an option.
- There are more than 300 abbreviated trace entries for GETMAIN SHARED that are identical apart from the task number.
- This one shows the EXEC CICS request for task 14656, it was successful and returned the address EAFF40.

```
14656 1 AP 00E1 EIP ENTRY GETMAIN
      0004, 05F95B08 .9$, 09000C02 .... =174462=
.
14656 1 SM 0C01 SM$G ENTRY GETMAIN
      154, NO, SHARED_USER24, EXEC =174465=
.
14656 1 SM 0C02 SM$G EXIT GETMAIN/OK
      00E4FF40 =174468=
14656 1 AP 00E1 EIP EXIT GETMAIN
      OK 00F4, 00000000 ...., 00000C02 .... =174469=
```
Problem #2

- If we look at the full trace, we see more information.

```
AP 00E1 EIP ENTRY GETMAIN  
    REQ(0004) FIELD-A(05F95B08 .9$.) FIELD-B(09000C02 ....)

    TASK-14656 KE_NUM=001F TCB=00472000 RET=85881138 TIME-09:39:15.3141357197 INTERVAL=00.000003125   =174462=

    ...  

    *** The EXEC CICS return address is 05881138 when you remove the 31-bit addressing 8 bit ***

    SM 0C01 SMMG ENTRY - FUNCTION(GETMAIN) GET_LENGTH(154) SUSPEND(NO) STORAGE_CLASS(SHARED_USER24) CALLER(EXEC)

    TASK-14656 KE_NUM=001F TCB=00472000 RET=851FEFCC TIME-09:39:15.3141391884 INTERVAL=00.000003437  =174465=

    1-0000  00780000 00000011 00000000 00000000 B6580000 00000000 0208016C 05B81B8E  *.........................%.%....*

    0020  05F95B70 0508FB6C 00000154 80000000 05B81B8E 027F2001 007F0BD2 00000000  *9$...%..."""""K....%

    0040  0508F988 0508FB68 85220FC4 050657A8 00000000 05221FC4 0508FB6C 00000004  *9h..e...D...y.....D...%....*

    0060  00000000 80000080 44040140 07010000 00680000 00000028  *..................*  

    ...  

    SM 0C02 SMMG EXIT - FUNCTION(GETMAIN) RESPONSE(OK) ADDRESS(00EAFF40)

    TASK-14656 KE_NUM=001F TCB=00472000 RET=851FEFCC TIME-09:39:15.3141476572 INTERVAL=00.000000937  =174468=

    1-0000  00780000 00000011 00000000 00000000 B6580000 00000000 0208016C 05B81B8E  *.........................%.%....*

    0020  05F95B70 00EAFF40 00000154 80000000 05B81B8E 027F2001 007F0BD2 00000000  *9$...%..."""""K....%

    0040  0508F988 0508FB68 85220FC4 050657A8 00000000 05221FC4 0508FB6C 00000004  *9h..e...D...y.....D...%....*

    0060  00000000 80000080 44040140 07010000 00680000 00000028  *..................*  
```
Problem #2

- This is what I see when I use an internal IBM dump browser and go backwards from the EXEC CICS return address -2 to look for a program eye-catcher.

```
05B80EA8  -290  C4C6C8E8  C9F4F1F1  58F00014  58F0F0B4 | DFHYI411.0...00. |
05B80EB8  -280  58F0F00C  58FF000C  07FF0000  00000000 | .00................ |
05B80EC8  -270  47F0F028  00C3C5C5  00000000  00000014 | .00.CEE......... | (LE program)
05B80ED8  -260  47F0F001  4ACEAC00  05B8790C  00000000 | .00.$........... |
05B80EE8  -250  00000000  00000000  90ECD00C  4110F038 | ...........0. |
05B80EF8  -240  98EF04C  07FF0000  05B87860  05B87954 | q.0<............. |
05B80F08  -230  05B8A330  05B878C0  05B87860  05B87E20 | ..t........-=- |
05B80F18  -220  05B8AAD0  05B87920  00000000  00000008 | ................. |
05B80F28  -210  C3C9C3E2  D6E2E4D4  F2F0F1F4  F0F7F1F9 | CICSPG0120140719 | ← the actual program
05B80F38  -200  F1F0F2F2  F1F8F0F1  F0F1F0F1  00000000 | 102218010101.... |
... 
05B81118  -20  01544110  D06841E0  80AE41F0  D1704100 | ............OJ... |
05B81128  -10  805290E0  10009680  100858F0  CF8405EF | .......o.....0.d.. | (the EXEC CICS call)
```
Problem #2

- The same return address can be found in the other trace entries for SHARED-24.
- I can also see the program in the LD=1 output shown below.
- Using the return address 05B81138, find the next higher Load Point and go back one program.
- If the return address is not found in LD=1 OUTPUT, you will need to use eye-catcher information to identify whose code it is.

<table>
<thead>
<tr>
<th>PROGRAM STORAGE MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM NAME ENTRY PT</td>
</tr>
<tr>
<td>CICSPG01 85B80EC8</td>
</tr>
<tr>
<td>CICSPG05 85B817E8</td>
</tr>
</tbody>
</table>
Problem #2 Conclusion

- It is a leak of 154-byte requests in the SDSA.
- Program CICSPG01 is performing a GETMAIN SHARED but there appears to be no code that is issuing a FREEMAIN.
- Something needs to be fixed in the application.
Problem #3

- There will not be time to look at this problem's dump information, but I have provided it as an example of the kind of symptoms that may be seen and how a different type of SOS problem would be handled by CICS Service.
- After a CICS/VSE 2.3 and a z/VSE migration (with testing), recoverable SOS conditions started to occur and SM0131 SOS Below dumps were produced.
- SM=1 showed DSALIM=8192K, the UDSA had 4.75MB with 326K contiguous free, the CDSA had 1.5MB with 244K contiguous free, the SDSA had 1.25MB with 44K contiguous free and was SOS due to the 64K cushion having been released, the RDSA had 0.5MB with 148K contiguous free.
- XM showed MXT=150 user tasks, current active 139 with peak active 149.
- These symptoms suggest a capacity problem, and GETVIS availability suggested that it would not be difficult to add another 256K or 512K to DSALIM.
- But a migration was also involved, and making a diagnosis based only on symptoms can be very dangerous, so we needed to do more analysis.
Problem #3

- The DS domain showed:
 - More than 50 FCCIWAIT for the same file, with one task in FCIOWAIT and a few FCPSWAITs - the culprit or a victim? (Trace analysis shows it is the victim.)
 - More than 40 tasks in a Dispatchable state - a significant backlog of tasks that could be running - it is cpu availability or something else? (Trace analysis shows the cause.)
 - Other task states are "normal".
- A trace analysis showed that CICS was very busy (and an unusual amount of elapsed time was captured), that could explain why there were Dispatchable states, but is more than 40 of 139 tasks reasonable? (My experience would say "no".)

Trace elapsed time 35.0872540312 (seconds)
Task dispatch time 35.0501192200
Task idle time 0.0371348112
Task elapsed utilisation 99.89%
Problem #3

- The analysis showed that some tasks ran quickly and completed, but others ran very slowly, and two of the tasks with low task numbers (i.e. they started before many of the others in the reported interval) were dispatched for more than 34 seconds and did not even finish.

Task 32009 *** Response 35.0872540312 Total Dispatched 16.8256172195 Total Wait 18.2616368117 Elapsed:Dispatch ratio = 2.09
Task 32077 *** Response 35.0816723125 Total Dispatched 17.6481242812 Total Wait 17.4335480313 Elapsed:Dispatch ratio = 1.99

- The execution summary is not "normal", and GEMAST is not the file with the FCCIWAIT states; here is a part of the task summary showing some very long times.

Task 32077 Dispatched Elapsed: 0.2544422187 Start: =003323= 10:18:56.528236262 End: =003425= 10:18:56.7826658449
Task 32077 wait Elapsed: 0.0026335313 Possible dispatch delay (high priority TCP task is dispatched)
Task 32077 Dispatched Elapsed: 0.2656721875 Start: =003801= 10:18:56.7852993762 End: =003903= 10:18:56.7859715637
Task 32077 wait Elapsed: 0.0356217500 Possible dispatch delay (so many VSAM requests that CICS let another task run)
Task 32077 Dispatched Elapsed: 0.2733920937 Start: =005394= 10:18:57.0865933137 End: =005496= 10:18:57.3599854074
Task 32077 wait Elapsed: 0.2659688125 Possible dispatch delay (same as the previous reason)
Task 32077 Dispatched Elapsed: 0.2625850938 Start: =005914= 10:18:57.6259542199 End: =006016= 10:18:57.8885393137
Task 32077 wait Elapsed: 0.2664264375 Possible dispatch delay (same as the previous reason)
Task 32077 Dispatched Elapsed: 0.0000440000 Start: =006482= 10:18:58.1549657512 End: =006484= 10:18:58.1550097512
Task 32077 wait Elapsed: 0.5313980000 FUNCTION(WAIT_OLDW) RESOURCE_NAME(GEMAST) RESOURCE_TYPE(FCIOWAIT)
Problem #3

- The full trace showed more than 13,000 VSAM exception *EXC* trace entries.
- The exception entry was repeated in the long dispatch times when the start and end trace sequence number are used to view the full trace output.

```
AP 04B7 FCVS *EXC* VSAM EXCEPTION - VSAM RPL
                             TASK-32077 KE_NUM-0079 TCB-0031A000 RET-8D49EDE2 TIME-10:18:54.421 D879074 INTERVAL-00.0000003977 *003324=
 1-0000 00780000 00000038 00000000 00000000 04278C3C 00000000 00500100 00000000 *..............................*
 0200 00000000 04157B00 00000000 00000000 00000000 00000000 00000000 00000000 *..............................*
 0400 04157B00 00000000 0677C2E0 0677C2E0 00000092 041CB700 00000000 00000000 *.........................B...B...k....*
 0600 00140000 00000000 00000102 02010000 02000012 00000000 *..............................*
 2-0000 0011003C 00000000 0677C2E0 0677C2E0 00000092 00000004 0057B210 07100000 *.........................B...B...k....*
 0020 98100000 60080014 00000000 00000000 00003710 0677D4B8 00800000 *q..................M.....*
```

- The second data area is the RPL, and offset X'24' contains the return code and error code.
- z/VSE Messages Volume 2 says X'08' and X'14' is a VSAM CI exclusive control issue, and is significant when found in almost every exception trace.
- If you saw something like X'08' and X'10', it is a No Record Found, which is a "normal" exception in most cases (unless it repeats in a program loop).
Problem #3 Conclusion

- CICS and VSAM are looping on an exclusive control conflict until it is resolved and the I/O can actually be started.
- This is not how they are designed to work together, so we would work with VSAM Service.
- One or more tasks monopolising CICS will have an impact on its ability to run normally, there will be a build up of tasks and their storage requirements until it is resolved, and even then it will take time to get back to normal as CICS will probably have a backlog of work to deal with.
- Interestingly, CICS detects when a task performs many consecutive VSAM requests to the same file, and does a CHANGE_PRIORITY to recalculate (i.e. lower) its dispatch priority and allow other user tasks to do some work.
- This will also affect lower PRTY z/VSE partitions while it is happening.
- CICS Monitoring task performance records would show a large ratio of VSAM requests to application EXEC CICS requests in this situation - look at my WAVV presentations to see this and see how a different (but long-since fixed) VSAM bug affected performance and why.
Thank You

Questions?

Please forward your questions or remarks to
PoilMike@uk.ibm.com
zvse@de.ibm.com

© 2015 IBM Corporation
z/VSE Live Virtual Classes

z/VSE @ http://www.ibm.com/zvse/education/
LINUX + z/VM + z/VSE @ http://www.vm.ibm.com/education/lvc/

Read about upcoming LVCs on @ http://twitter.com/IBMzVSE
Join the LVC distribution list by sending a short mail to zvse@de.ibm.com