

 PIPEDDR
Dump/Restore a disk using CMS Pipelines

 Description

The PIPEDDR EXEC can dump a disk into a regular CMS file, to an ftp server, to a file in an NFS share

(which is mounted to BFS, the CMS Byte File System), or via TCP/IP directly to a disk on a remote

system. Restore a disk from a PIPEDDR output file via one of the same methods. The data is packed or

can also be compressed further, saving network bandwidth or disk space. The data can also be

encrypted either on disk or as it is sent over the network. A remote disk can be kept in sync with a local

disk using the remote update function.

The PIPEDDR EXEC can save and restore disk images using either the raw disk I/O support available in

CMS Pipelines or the Pipelines interface to the CMS DDR command. The internal structure of each kind

of disk image are different and are not compatible with each other. The Pipelines raw disk I/O support

uses the Pipe stages TRACKREAD and TRACKWRITE (for ECKD disks) or FBAREAD and FBAWRITE

(for FB-512 disks.) These stages are part of either z/VM 6.4 and later or the optional “Runtime Distrib-

ution” of CMS Pipelines. The interface to the CMS DDR command uses the DDR Pipelines stage. This

Pipelines stage amd the updated DDR module are included with z/VM 6.2 and later. If you are on an

older release of z/VM, then you can get the required files from the DRPC package in the VM download

library.

The exec dumps an entire disk into a regular CMS file. The operating system format of the disk or the

type of data on it does not matter. The disk is read in binary track by track or block by block. The output

data by default is written in packed format compatible with the PACK option of the CMS COPYFILE

command and is in fixed record format with 1024 byte records. This allows easier interchange of the

backup files with non-mainframe systems. These files can be used for backups of disks or restored on

another system. There are also options to compress the output to make the file even smaller. See the

notes section of the help file for more information on compressing the output.

The output file created by this exec has meta data about the source disk as the first record. The contents

of the disk follow in the rest of the records. This ensures that the disk is restored to a device of the same

type and size. Data must be restored to the same type of device using the same disk data encoding

method. In other words, ECKD devices (3390) must be restored to ECKD devices and FB-512 devices

must be restored to FB-512 devices. It is not possible to convert the data on one device type to another

device type using this exec.

The first record also contains data about the id that dumped the disk, what kind of compression was used,

if a data verification code such as a CRC or digest value is included, and if the disk data is encrypted.

This allows the exec to correctly restore the data.

The disk can also be transferred over a TCP/IP connection directly to a receiving PIPEDDR exec listening

to an IP port on a remote system. The default is to send the entire disk. If the disk was transferred

previously, a PIPEDDR option will send just the changes to the blocks or tracks to the remote system

instead of the entire disk. Recent updates to CMS Pipelines and TCPIP allow optional secure (TLS)

remote sessions. It is recommended that the same version of the PIPEDDR exec be used on both ends

of the TCP/IP connection. PIPEDDR also supports sending the output file directly to an ftp or ftps (secure

ftp) server. The file created on the ftp server is in the same format as the CMS file. A disk can be

restored from a file hosted by either an ftp server or an HTTP (web) server. Secure connections are

supported.

 1

Byte File System (BFS) paths are also supported, which allows the file of the disk data to be hosted by a

remote NFS server. You must mount the remote NFS share into the BFS filesystem to use this support.

Please see the usage note in the help file about BFS and NFS for more information.

Dump to and restore from a tape is supported by using the TAPE output method and the same operations

using a CMS filedef using the FILEDEF output method.

By default, PIPEDDR will display messages on the console about the progress of the disk operation as it

processes a disk. The default behavior is to display a message for every 10% of disk that has been

processed. No messages are displayed for small disks and more messages may be displayed for larger

disks. The display can be suppressed by using the NOTYPE option or changing the default using the

PIPEDDR SET command.

If the disk contains sensitive data, the disk contents can be encrypted, using the CPACF hardware

encryption processor. You must obtain the KM Package from the VM download library to enable

encryption. Find it at http://www.vm.ibm.com/download/packages/descript.cgi?KM. The KMRTNS CSLLIB

is used from the VMARC file. These CSL routines require your machine to have the CPACF feature

enabled to use the built in hardware encryption and decryption.

The raw disk I/O interface requires either z/VM 6.4 and later or the Princeton Runtime Distribution level of

Pipelines (found at http://vm.marist.edu/%7Epipeline/index.html#Runtime.) at least version 110B0004 (15

May 2002 level) for reading and writing ECKD disks and level 110C0004 (01 Jul 2010 level) or later for

reading and writing FBA disks. PIPEDDR uses the PICKPIPE EXEC to load the runtime distribution level

of Pipelines if it is needed and if it is available. PICKPIPE is also available via the VM download library.

See the PICKPIPE description or get the VMARC file.

The Pipelines interface to CMS DDR requires either z/VM 6.2 or later or the DRPC and DDR modules

from the DRPC package on the VM download library. See the DRPC description or get the VMARC file to

obtain this function. The updated level of CMS Pipelines is not required for CMS DDR support.

Dumping or restoring to FTP supports 3 different FTP pipeline stages. The newest ftp stage is built in to

Pipelines and is available if secure TCP/IP connections are supported by CMS Pipelines. (APAR

VM66365 for z/VM 7.1, included in z/VM 7.2 and later.) This stage supports both secure and unsecured

ftp sessions. The other ftp stages supported by PIPEDDR are not built-in to Pipelines; they are loaded

from a separate module or file. The preferred external ftp stage is found in the FTPREXX package on the

VM downloads page. Get the FTPREXX Package to download this stage.

The final one is supplied with z/VM, but only supported for the installation of z/VM. It requires either the

INSTPIPE MODULE from a modern version of CMS (found on MAINTvrm 4CC or MAINT 193) or the

DRPC MODULE. See the reference to the DRPC MODULE in the previous paragraph about CMS DDR.

Transfers to and from FTP will use a NETRC DATA file stored anywhere in the search order. This file can

supply a password or a userid and password for the connection, so that the password would not be

hardcoded into an exec or displayed on the console.

The exec also supports two other forms of compaction, TERSE and ZLIB. The TERSE option can only be

used if the TERSE Pipelines stage is available. This allows the exec to create output files that are smaller

or send less data over the network. The TERSE Pipelines stage is part of the PIPSYSF filter package

which is now available from the Marist Pipelines page. See the PIPSYSF Filter Package page for more

information and a link to download the module.

The ZLIB compression option requires the zlib Pipeline stage which is found in in the ZLIBSTG MODULE

file. You can download the file "fplgcc.vma" which is a VMARC format file downloadable from John

Hartmann's space on GitHub. The URL is https://github.com/jphartmann/cmslib-exec.

2

http://www.vm.ibm.com/download/packages/descript.cgi?KM
http://www.vm.ibm.com/download/packages/descript.cgi?KM
http://www.vm.ibm.com/download/packages/km.vmarc
http://vm.marist.edu/%7Epipeline/index.html#Runtime
http://vm.marist.edu/%7Epipeline/index.html#Runtime
http://www.vm.ibm.com/download/packages/descript.cgi?pickpipe
http://www.vm.ibm.com/download/packages/pickpipe.vmarc
http://www.vm.ibm.com/download/packages/descript.cgi?drpc
http://www.vm.ibm.com/download/packages/drpc.vmarc
http://www.vm.ibm.com/download/packages/descript.cgi?ftprexx
http://vm.marist.edu/%7Epipeline/pipsysf.html
https://github.com/jphartmann/cmslib-exec
https://github.com/jphartmann/cmslib-exec
https://github.com/jphartmann/cmslib-exec

If the CMS DDR format is used, the DDR module supports 2 compression options, COMPRESS and

LZCOMPACT, which may provide an acceptable level of compression.

There is also a copy option which preforms a disk to disk copy, with automatic linking of the source and

target disks. If the flashcopy option is specified, the exec attempts to copy the disks using the CP

FLASHCOPY command. If that command fails or your user id is not allowed to use this command, the

exec falls back to a disk to disk copy. The copy option is no different than copying a disk using DDR, and

in fact just the DDR module is used if the CMSDDR option is specified on the copy command.

A help file is included in the package and it contains a detailed description of all of the options. Enter

HELP PIPEDDR on the CMS command line for usage information.

 Syntax:

 CMS command

►►─ ─── ──PIPEDDR───(1) ──┬ ┬──┬ ┬─Dump──── ─userid──vaddr──┤ Target ├────────── ──────────────────►
 │ │└ ┘─Restore─
 ├ ┤──┬ ┬─Copy────── ─userid1──vaddr1──userid2──vaddr2─
 │ │└ ┘─FLashcopy─
 │ │┌ ┐─Query───────────────
 └ ┘ ─Set─ ──┼ ┼───────────────────── ───────────────────
 ├ ┤ ─Query─ ──┬ ┬──────────
 │ │└ ┘─EXtended─

└ ┘─┤ Set Operands ├────

►─ ──┬ ┬─── ─────────────────────────────────►◄
 │ │┌ ┐────────────────────────────
 └ ┘─(─ ──┬ ┬──────────── ───▼ ┴┬ ┬─┤ General Options ├────

└ ┘─DEFAULTs───(2) ├ ┤─┤ Remote Options ├─────
├ ┤─┤ FTP Options ├────────
├ ┤─┤ HTTP Options ├───────
└ ┘─┤ Deprecated Options ├─

Notes:
1 Uppercase letters denote the shortest acceptable abbreviation. If a keyword appears entirely in

uppercase letters, it cannot be abbreviated. Options, except for DEFAULTS, can be specified in
any order.

2 This option, if used, must be specified before any other options.

 3

 Target

├─ ──┬ ┬ ──(1)──┬ ┬─FROM─ ──┬ ┬─FILE──┤ CMS File Specification ├─ ─────────────────────────────────┤

│ │└ ┘─TO─── ├ ┤─┤ URL ├──────────────────────────
 │ │├ ┤─FILEDef──filedef─────────────────
 │ │├ ┤─BFS──────────────────────────────
 │ │├ ┤─BFSFile──bfsfilename─────────────
 │ │├ ┤─BFSPath──path────────────────────
 │ │├ ┤─PIPE───(4) ──────────────────────────
 │ ││ │┌ ┐─181───
 │ │└ ┘ ─TAPE─ ──┼ ┼─────── ─────────────────
 │ │└ ┘─vaddr─
 ├ ┤ ─FROM──REMote─ ──┬ ┬──────── ────────────────────────
 │ │└ ┘─port───(2)

 │ │┌ ┐─REMote─
 ├ ┤ ─TO─ ──┼ ┼──────── ──(3)──┬ ┬─ipname:port── ──────────────
 │ │└ ┘─UPDate─ └ ┘ ─ipname──port─

└ ┘─┤ Deprecated Target ├────────────────────────────

Notes:
1 Keyword TO is used with Dump commands and keyword FROM is used with Restore commands.
2 The port can be specified here but the PORT option is preferred.
3 The port number is omitted here if the PORT option is specified.
4 The PIPE keyword is only valid and is the default when PIPEDDR is called as a Pipelines stage.

 Deprecated Target

├─ ──┬ ┬─┤ CMS File Specification ├─ ───┤

├ ┤──── (1, 2) ──ipname:port ───────────
├ ┤──── (1, 2) ─ipname──port─ ──────────

 ├ ┤─port───(3) ────────────────────
 ├ ┤─filedef───(4) ─────────────────
 └ ┘─remotefilename───(4) ──────────

 Notes:
1 The TO and REMOTE keywords must be specified if the ipname does not contain a period or is

the same as another keyword.
2 The port can be omitted if the PORT option is specified.
3 The deprecated LISTEN option allows the port to specified here but the PORT option is better

and FROM REMOTE is preferred.
4 Only valid if one of the deprecated options FTP, HTTP, BFS, or FILEDEF is used.

CMS File Specification

 ┌ ┐─userid─ ──DISKvaddr ─A──────────────────────────────

├─ ──┼ ┼─── ────────────────────────────────┤
 │ │┌ ┐─userid───
 └ ┘ ──┼ ┼─=───(1) ───── ──┬ ┬─────────────────────────────────

└ ┘─filename─ │ │┌ ┐──DISKvaddr
 └ ┘ ──┼ ┼─=───(1) ────── ──┬ ┬──────────────
 └ ┘─filetype── │ │┌ ┐─A────────
 └ ┘ ──┼ ┼─=───(1) ─────
 └ ┘─filemode─

Note:
1 The equals sign means to use the default value for this positional part of the file specification.

4

 URL

url:
├─ ──(1)──┬ ┬─ftp://─── ─┤ remote system ├─ ──┬ ┬─────────────────────────────────────── ─────────┤

 ├ ┤─ftps://── └ ┘ ─/─ ──┬ ┬────────────────── ──┬ ┬──────────
 ├ ┤─http://── │ │┌ ┐─/───────── └ ┘─filename─
 └ ┘─https://─ └ ┘ ───▼ ┴─directory─ ─/─

remote system:
├─ ──┬ ┬────────────────────────── ─host─ ──┬ ┬─────── ──┤

 └ ┘─userid─ ──┬ ┬─────────── ─@─ └ ┘──:port
└ ┘──:password

Note:
1 Do not enter any spaces when entering a url.

 General Options

 ┌ ┐─PACK────(1, 3)──── ┌ ┐─PIPEtrack────(1, 3) ┌ ┐─NOCRC────(1, 3)───────────────

├─ ──┼ ┼───────────── ──┼ ┼────────────── ──┼ ┼───────────────────────── ───────────────────────►
 ├ ┤─NOPAck────── └ ┘─CMSddr─────── ├ ┤─CRC─────────────────────
 ├ ┤─TERse─────── ├ ┤─CKSUM───────────────────
 ├ ┤─COmpact───── │ │┌ ┐─SHA256─
 ├ ┤─LZcompact─── └ ┘ ──┬ ┬─DIGest── ──┼ ┼────────
 └ ┘ ─ZLIB─ ──┬ ┬─── └ ┘─SDIGest─ ├ ┤─MD5────

 └ ┘─n─ ├ ┤─SHA1───
 ├ ┤─SHA384─
 └ ┘─SHA512─

 ┌ ┐─NOCIpher───(1) ── ┌ ┐─TYPE───(1)

►─ ──┼ ┼── ──┼ ┼──────── ───────────►
 │ │┌ ┐─CBC───(1) └ ┘─NOType─
 └ ┘ ─CIpher─ ──┬ ┬─DES── ──┬ ┬──(2) ─KEY──keyvalue─ ────────── ──┼ ┼───────

 ├ ┤─TDES─ └ ┘ ─KEYVARiable──variablename─ └ ┘─NOCBC─
 └ ┘─AES──

►─ ──┬ ┬──────────── ──┬ ┬───────────── ──┬ ┬─────────────── ──┬ ┬─────────────── ──┬ ┬──────── ────►
 └ ┘─NOPRompt───(4) └ ┘─MATCHDisk───(4) └ ┘─NOSIZECheck───(4) └ ┘─TRUNCate──n───(3) └ ┘─STAble─

►─ ──┬ ┬─────────── ──┬ ┬───── ──┬ ┬─────── ──┤
 └ ┘─ONEread───(4) └ ┘─RAW─ └ ┘─DEBUG─

 Notes:
1 The default for this option may change if the SET command is used to specify a different default.
2 The key can be omitted if the key was stored with the SET command.
3 This option is only specified with a Dump command; it is ignored on a Restore or Copy

command.
4 This option is only specified with a Restore command; it is ignored on a Dump command.

 5

 Remote Options

 ┌ ┐─NOSECure───(1) ─────────────────────────

├─ ──┼ ┼───────────────────────────────────── ──┬ ┬──────────────────── ──┬ ┬─────────────── ───┤
 └ ┘ ──┬ ┬─SECure──────────── ──┬ ┬────────── └ ┘─TIMEOut──seconds───(3) └ ┘ ─POrt──portnum─

 └ ┘─TLSLabel──label───(3) └ ┘─UNSAFE───(2)

Notes:
1 The default for this option may change if the SET command is used to specify a different default.
2 This option is only specified with a Dump command; it is invalid or ignored on a Restore

command.
3 This option is only specified with a Restore command; it is invalid or ignored on a Dump

command.

FTP and HTTP Options

FTP Options:
 ┌ ┐─EPASSIve──
├─ ──┬ ┬──────────────────────────────── ──(2)──┼ ┼─────────── ──┬ ┬───────────────── ─────────────►

 └ ┘ ─PASSWORDVARiable──variablename─ ├ ┤─PASSIve─── └ ┘─POrt──portnum───(1)

 └ ┘─NOPASSIve─

►─ ──┬ ┬────────── ──┬ ┬───────────────────── ──┬ ┬───── ───────────────────────────────────────┤
 └ ┘─UNSAFE───(3) ├ ┤─VMFTP─────────────── └ ┘─OLD─

 └ ┘─FTPSITE──siteargs───(4)

HTTP Options:
├─ ──┬ ┬───────────────── ──┬ ┬────────── ──┤

 └ ┘─POrt──portnum───(1) └ ┘─UNSAFE───(3)

Notes:
1 The PORT option is allowed, but a port number in the URL has priority.
2 These options are only valid if the FTP REXX stage is used.
3 This option only applies to secure ftp or http connections.
4 A site command with multiple words can be specified. See the description of FTPSITE command

for more information.

 Deprecated Options

├─ ──(1)──┬ ┬─LIsten────────── ──┤

 ├ ┤─FILEdef─────────
 ├ ┤─FTP──url────────
 ├ ┤─HTTP──url───────
 │ │┌ ┐─181───
 ├ ┤ ─TAPE─ ──┼ ┼───────
 │ │└ ┘─vaddr─
 ├ ┤─BFS─────────────
 └ ┘─BFSPath──path───

Note:
1 These options still function, but the Target operands are recommended.

6

 Set Operands

├─ ──┬ ┬─CBC─ ──┬ ┬─Yes─ ─────────── ──┤

 │ │└ ┘─No──
 ├ ┤ ─CIPHer─ ──┬ ┬─NONE─ ───────
 │ │├ ┤─TDES─
 │ │├ ┤─DES──
 │ │└ ┘─AES──
 ├ ┤ ─COMpact─ ──┬ ┬─PACK────── ─
 │ │├ ┤─NOPACK────
 │ │├ ┤─TERse─────
 │ │├ ┤─COmpact───
 │ │├ ┤─LZcompact─
 │ │├ ┤─ZLIB──────

│ │└ ┘──ZLIBn ────
 ├ ┤ ─CRC─ ──┬ ┬─No────── ───────
 │ │├ ┤─Yes─────
 │ │├ ┤─CKSUM───
 │ │├ ┤─DIGest──
 │ │└ ┘─SDIGest─
 ├ ┤ ──┬ ┬─DIGest── ──┬ ┬─NONE───
 │ │└ ┘─SDIGest─ ├ ┤─MD5────
 │ │├ ┤─SHA1───
 │ │├ ┤─SHA256─
 │ │├ ┤─SHA384─
 │ │└ ┘─SHA512─
 ├ ┤ ─DUMpformat─ ──┬ ┬─PIPE─ ───
 │ │└ ┘─DDR──
 ├ ┤ ─KEY─ ──┬ ┬─NONE─ ──────────
 │ │└ ┘─key──
 ├ ┤ ─PROgress─ ──┬ ┬─Yes─ ──────
 │ │└ ┘─No──
 ├ ┤ ─SECure─ ──┬ ┬─Yes─ ────────
 │ │└ ┘─No──
 └ ┘─TLSLabel──label─────────

 Operands:

Dump

Restore

Dump or Restore a disk. The Dump function only reads the disk. The Restore function overwrites all

of the data on the disk.

userid vaddr

specifies the disk to dump or restore. Specifying a user ID of “*” (an asterisk) will use an existing

linked or attached disk on your user ID. If you dump or restore a disk owned by another user ID, you

must have permission to link the disk or know the appropriate password. Disks are linked read only

for dumps and read/write for restore.

Copy

Make a local copy of a disk, using either the DDR module or Pipelines.

FLashcopy

Make a local copy of a disk, using the CP FLASHCOPY command. If this command is not available

or it fails, the DDR module is used to copy the disk.

userid1 vaddr1

specifies the input disk to be copied.

 7

userid2 vaddr2

specifies the output disk of the copy.

Set

Set a program default which is stored as a global variable. See “SET Command Operands” on

page 10 for details about the defaults that can be selected.

Query

Query EXtended

Display the current settings. This is the default if no operand is specified on a Set command.

QUERY shows all settings except a stored cipher key. QUERY EXTENDED shows all settings,

including the key.

 Target

This section describes the target that the disk data is read from or written to.

FROM

TO

Keywords that describe where the disk data is coming FROM (for a Restore command) or going TO

(for a Dump command.) The FROM or TO keywords can be omitted for some targets so that the exec

remains compatible with its older syntax. However, using these keywords is recommended.

FILE

Keyword that indicates that a CMS file specification follows.

filename

filetype

filemode

The CMS file specification for the input or output file. If the filename is omitted or specified as “=”, it

defaults to the user ID that owns the disk. If the filetype is omitted or specified as “=”, it defaults to

the keyword DISK followed by the 4 digit virtual device address of the input disk (DISKnnnn). If the

filemode is omitted or specified as “=”, it defaults to A. The file specification can also be specified as

“= = fm” (without the quotes) to use the default file naming but with the specified CMS filemode for

input or output.

FROM REMote

The contents of an entire disk are received from a remote system that is also running the PIPEDDR

EXEC. The exec waits for an incoming TCP/IP connection from a remote system running a PIPEDDR

Dump command. If a TCP/IP port is not specified using the PORT option, or with the positional argu-

ments to PIPEDDR, the next available port is obtained and the listening port number is displayed on

the console. PIPEDDR will keep waiting for a connection until one is established or the pipeline is

stopped. If you want PIPEDDR to only wait a limited amount of time, specify the TIMEOUT option.

TO REMote

The contents of the disk are sent to a remote system that is also running the PIPEDDR EXEC. The

remote system is specified by the ipname and port arguments. PIPEDDR must already be running

and waiting for a connection on the remote system. You can specify other general options such as

compression or encryption selections to specify how the data is processed before it is sent over the

network. If only the keyword TO is specified, then the TO REMOTE function is assumed.

TO UPDate

The contents of the remote disk are compared to the local disk using hash values and only changed

tracks or blocks are sent (“updated”) on the remote system. The remote system must be running

PIPEDDR with the FROM REMOTE function specified and waiting for the connection.

8

See “Usage Note 11. More about incrementally updating a remote disk” on page 24 for more informa-

tion about this function.

ipname

ipname:port

ipname port

an IP name or address and optionally a port of a remote system. If a port is specified, it is separated

from the IP name using a colon or a blank. If the PORT option is used, a port that is specified here

as part of the IP name is ignored. If the IP name does not contain any periods, then the keywords TO

REMOTE are required, otherwise the value is assumed to be a file name.

FILEDef filedef

filedef

Dump or restore a disk to a CMS Filedef. The filedef must be defined with the CMS FILEDEF

command before PIPEDDR is invoked. Any type of filedef can be defined that is usable on the Pipe-

lines “qsam” stage. Any error messages shown when using this method are from CMS Pipelines.

The default output record format is Fixed 1024 byte records. The ONEREAD option is implied when

using this method with a Restore command. If the FILEDEF keyword is not specified, then the depre-

cated option FILEDEF must be used to indicate that the argument is a filedef name and not the name

of a file.

remotefilename

a file specification on a remote system. Mixed case and long filenames are allowed. This argument is

only assumed to be a file specification if one of the deprecated options BFS, BFSPATH, FTP, or

HTTP is specified. If one of these options is used and the remote file name is omitted, it defaults to

userid.DISKnnnn with all uppercase characters converted to lower case. If the ftp or http option is

specified and a filename (-f or -filename option) is specified in the parm string or in the ftp or http URL,

the remotefilename is ignored. Otherwise, if one of the ftp, http, or bfs options is specified, the file

specification is taken “as is” and passed to the remote system as the file to dump to or restore from.

url a url specification. An HTTP url is only valid for input and an FTP url is valid for input and output.

See “Usage Note 3. More about the URL argument” on page 19 for more information.

BFS

BFSFile bfsfilename

BFSPath path

The input or output file resides in BFS (the CMS Byte File System) or in an NFS share that is

mounted into the BFS filesystem.

If the argument is BFS, then the input or output file will be the default name of userid.DISKnnnn with

all uppercase characters converted to lower case. It is read from or stored into the current working

directory set via the OPENVM SET DIRECTORY command.

To specify the file name, use the BFSFile argument to specify the name. The bfsfilename can also

include the path to the file. The normal rules for paths in Posix file specifications apply; if the path

starts with a slash (“/”), then it specifies an absolute path; if it does not, then the path is relative to the

current working directory.

The BFSPath argument specifies the path to an input or output file that has the default name. The

path can be a relative or absolute path to the file.

If the bfsfilename or the path contain blanks, the name or path may be enclosed in quotes. Either a

single quote (') or double quote (") can be used. Quotes can be specified as part of the name or

path in the same way they are specified in Rexx strings. The processing of quotes is not extensive. If

the string begins with a quote, PIPEDDR assumes it also ends with one. If you see an error message

from CMS pipelines, check how you have specified the file name or path.

 9

See “Usage Note 5. Using BFS and NFS files for input and output” on page 21 for more information.

Synonyms for these arguments are HFS instead of BFS, HFSFile instead of BFSFile, and HFSPath

instead of BFSPath.

PIPE

The PIPEDDR EXEC is invoked as an argument to the rexx CMS Pipelines stage. When the argu-

ment is DUMP, the disk data is output to the pipeline. When the argument is RESTORE, the disk

data is received as input from the pipeline. Only the DUMP and RESTORE arguments are valid.

When the argument is DUMP, PIPEDDR should be the first stage in the pipeline segment. When the

argument is RESTORE, PIPEDDR should be the last stage in the pipeline segment. It does not pass

any records to its primary output stream. PIPEDDR supports a secondary output stream for both

DUMP and RESTORE. If this stream is connected, progress messages are output to this stream

instead of being shown on the console. No messages are issued if the NOTYPE option is specified or

for a small input or output disk.

Here is an example of using PIPEDDR as a pipelines stage:

PIPE rexx (pipeddr exec) dump maint 190 to pipe (digest | count bytes | console

TAPE

Dump a disk to tape or restore a disk from tape. A tape drive virtual address can be specified after

the TAPE keyword. If no address is specified, it is assumed the tape drive is attached at virtual

address 181. The disk must fit on 1 tape device; multiple tape drives are not supported by this option.

The FILEDEF keyword can be used instead along with the multi-volume tape support available in

CMS. The tape drive is set to compress mode before writing the data using the command “TAPE

MODESET (COMP”.

SET Command Operands

This section describes the valid values for each Set option.

CIPHer

Sets the default to the specified cipher method. Specifying NONE sets the default to NOCIPHER. If a

default cipher key has not been specified, then the cipher key must be included as a command option.

CBC

Sets the default cipher mode. If CBC is Yes or not specified, the default cipher mode is CBC. If CBC

is No, the default mode is ECB. See “Usage Note 10. More about the encryption options” on

page 23 for more about the cipher mode.

COMpact

Sets the default compaction option.

CRC

Sets the default for the type of verification used to ensure that the disk data has not been altered. A

value of Yes sets the default to use the CRC option. A value of No sets the default to no verification

(the NOCRC option.) A value of CKSUM sets the default to the CKSUM option. A value of DIGEST

or SDIGEST set the default to one of those options. The digest type can be set using the DIGEST or

SDIGEST set options. If no digest type is set, the default digest of SHA256 is used.

DIGest

SDIGest

Set the type of verification (the CRC setting) to be the specified keyword and sets the default digest

type. If no default digest type is set, the default type is SHA256. If the CRC setting is changed to one

of the non-digest settings of YES, NO, or CKSUM, the digest type is changed to NONE.

10

DUMpformat

Sets the default dump format. A value of PIPE sets the default to use the Pipeline track read/write

stages for ECKD disks or the fba stages for FBA disks. A value of DDR sets the default to use the

CMS DDR program.

PROgress

Sets the default for the display of progress messages, which are the TYPE and NOTYPE options on

the command. A progress value of Yes sets the default option to TYPE. A value of No sets the

default to NOTYPE.

KEY

Sets the default cipher key. The keyword NONE removes the stored key. The key can be specified

as a hexadecimal string, a single word, or a phrase enclosed in parentheses or quotes (single or

double.) The key is stored as a hex string in GLOBALV. Note that any user that has access to the

LASTING GLOBALV file can read this key. Also see “Usage Note 10. More about the encryption

options” on page 23 for information about storing a key.

SECURE

Sets the default for secure remote connections. YES sets the default to SECURE and NO sets it to

NOSECURE.

TLSLabel

Sets the TLSLABEL used for receiving disk images over secure remote connections. If this value is

set, the SECURE setting is also set to YES. Specifying a blank label will clear the stored label value.

A label must be 1 to 8 alphanumeric characters.

 Options:

 General Options

These options apply to all input and output selections.

DEFAULTs

Ignore any program defaults stored using the Set operand for this execution of the exec. All built-in

program defaults are used unless another option is specified that overrides the default. This option is

useful when PIPEDDR is invoked in an exec or in automation so that the output settings are known

and not changed by saved options. If this option is specified, it must be the first word of the options

string.

PACK

Compress the dumped disk contents using the PACK Pipeline stage. The format of the file is compat-

ible with the PACK option of COPYFILE. This is the default compression method unless a different

default has been specified using the PIPEDDR SET command.

NOPAck

Do not pack the output file when the disk is dumped. The record structure of the data is preserved by

adding a record descriptor word (rdw) to the beginning of each record. If the output is written to a

CMS file, the file may be fixed 1024 byte records or variable, depending on what other options are

specified.

If the RAW option is also specified, no blocking or packing is performed on the data. The intent of this

option is for testing and to be able to view the disk data in an unpacked file. If the input device is

FBA, the output file is created in fixed record format because the logical record length is too large for

a CMS variable format file. The last record is padded with binary zeros; if PIPEDDR is not used to

restore the disk image, an error message may be issued because of this padding.

 11

TERse

Compress the dumped disk contents using the TERSE Pipeline stage. This stage is part of the

PIPSYSF filter package that must be downloaded from the Pipelines Runtime Distribution page. The

format of the file is compatible with the TERSE, FCOPYTRS, and DETERSE modules. See “Usage

Note 6. Notes about compression” on page 21 for more information about compressing data and

alternatives if the TERSE option is not available to you.

COMPact

Compress the dumped disk contents using the COMPACT output option of the CMS DDR command.

This option is only valid if the CMSDDR option is also specified or DDR format dumps are the default.

LZcompact

Compress the dumped disk contents using the LZCOMPACT output option of the CMS DDR

command. This option is only valid if the CMSDDR option is also specified or DDR format dumps are

the default.

ZLIB n

Compress the dumped disk contents with the “compress” algorithm using the ZLIB pipelines stage.

This stage is available in the ZLIBSTG MODULE. See item 3 under “Usage Note 6. Notes about

compression” on page 21 for more information on how to obtain this module. The optional parameter

“n” specifies the compression level from 1 which is no compression to 9, which is the most aggressive.

If no compression level is specified, the default value that is built-in to the module is used. To specify

a default compression value on a Set command, leave out the space between ZLIB and the number.

For example PIPEDDR SET COMP ZLIB5

PIPEtrack

Use Pipelines format for input and output. For ECKD disks, the trackread and trackwrite stages are

used. For FBA disks, fbaread and fbawrite are used. These stages require the updated CMS Pipe-

lines runtime module if your z/VM system is older than z/VM 6.4. See “Usage Note 1. Disk

input/output formats” on page 18 for more information. Other synonyms that are accepted for this

option are PIPEddr and PIPEfba. This format is the default unless a new default is specified using the

PIPEDDR SET DUMPFORMAT command.

CMSddr

Use CMS DDR format for input and output. This support requires the DRPC and DDR modules that

support the Pipelines interface to DDR. The updated modules are a standard part of CMS in z/VM

release 6.2 and later. For older releases, the support is available from the DRPC package available

from the VM download library. See “Usage Note 1. Disk input/output formats” on page 18 for more

information. The CMSDDR option is also assumed if the exec is renamed to CMSDDR EXEC or

VMDDR EXEC, or the exec is invoked via a synonym named CMSDDR or VMDDR.

TYPe

Show the progress messages as the disk is dumped, restored, or copied. If PIPEDDR is called as a

Pipeline stage and a secondary output stream is connected, these messages are output to that stream

instead of being typed on the console.

NOType

Do not show the progress messages as the disk is dumped, restored, or copied. The option QUIET is

accepted as a synonym for this option.

NOCRC

Do not add any verification code (CRC, CKSUM, or DIGEST) to the end of the output.

CRC

Add a 32 bit Cyclic Redundancy Code (CRC) to the end of the data dumped. The CRC value is the

last record of the file. See “Usage Note 8. Ensuring data integrity with CRC, CKSUM, SDIGEST, or

DIGEST” on page 22 for more information about data verification.

12

CKSUM

Compute a checksum (binary value) of the dumped disk image and append it to the end of the data.

This checksum value is compatible with the value computed by the Posix cksum command. The

cksum command is also available on most Linux systems. The checksum is the last record of the

file. See “Usage Note 8. Ensuring data integrity with CRC, CKSUM, SDIGEST, or DIGEST” on

page 22 for more information on data verification and “Usage Note 9. Output file structure with

CKSUM or DIGEST verification” on page 23 for more information when this option is specified. The

file is structured so that the cksum of the disk image can be calculated and verified on a Posix or

Linux system.

DIGest

SDIGest

Compute a message digest (binary value) of the dumped or transferred disk image and append it to

the end of the data. This allows the integrity of the disk image to be verified when the disk is restored

and may allow you to verify the backup file itself. See “Usage Note 8. Ensuring data integrity with

CRC, CKSUM, SDIGEST, or DIGEST” on page 22 for more information on the data verification of a

disk image. The SDIGEST (single digest) option is enabled by default for disks transferred over

TCP/IP. The DIGEST option adds 2 digest values to the output file. See “Usage Note 9. Output file

structure with CKSUM or DIGEST verification” on page 23 for more information. The file is structured

so that the digest of the disk image can be calculated and verified on a Posix or Linux system.

These digest types are supported:

SHA256

Compute a 32-byte message digest according to FIPS 180-2. If no digest format is specified, this

is the default. The message security assist feature is used if it is available on the hardware.

MD5

Compute a 16-byte message digest according to RFC 1321.

SHA1

Compute a 20-byte message digest according to RFC 3174. The message security assist feature

is used if it is available on the hardware.

SHA384

Compute a 48-byte message digest according to FIPS 180-2.

SHA512

Compute a 64-byte message digest according to FIPS 180-2. The message security assist

feature is used if it is available on the hardware.

NOCIpher

Do not encrypt the output.

CIpher

Encrypt the output using the CPACF hardware feature. The argument specifies the cipher method to

use. See “Usage Note 10. More about the encryption options” on page 23 for more information and

information about any additional packages you may need.

These cipher formats are supported:

AES

Use the Advanced Encryption Standard algorithm with a key length of 128, 192, or 256 bits. The

key must be 16, 24, or 32 bytes respectively.

TDES

Use the triple Data Encryption Standard algorithm. The key must be 16 or 24 bytes.

 13

DES

Use the Data Encryption Standard algorithm when an 8 byte key is supplied. If a longer key is

needed, use triple DES.

KEY keyvalue

Specify the cipher key to use. The KEY option is ignored if the Cipher option is not specified. The

keyvalue must be 16, 24, or 32 bytes for the AES method, 8, 16, or 24 bytes for the DES method, and

16 or 24 bytes for the TDES method. The keyvalue can be a single word following the keyword KEY,

a hexadecimal string (2 hex digits for each byte of the key), or a character string enclosed in delim-

iters. The valid delimiters are quotes (single or double) or parentheses. This allows spaces to be

specified as part of the key. The same delimiter must be used at the beginning and end of the key

string. (A closing parenthesis is used to end an opening parenthesis.) Mixed case keys are sup-

ported. Note that if the key itself begins with a quote or parenthesis, then one of the other delimiters

must be used. If the key is a single word that consists of only valid hexadecimal characters, it must

be specified as a hexadecimal string or enclosed in delimiters. For instance, an 8 byte key of

FeeD1caB is specified as either KEY C68585C4F18381C2 or KEY(FeeD1caB). A key value is required if the

CIPHER option is specified. It can be supplied using this option, the KEYVARIABLE option, or stored

in GLOBALV using the SET command. See “Usage Note 10. More about the encryption options” on

page 23 for information about storing a key.

KEYVARiable variablename

If PIPEDDR is being invoked from another Rexx EXEC, specify the name of a variable in that program

that contains the cipher key. If PIPEDDR is invoked from the command line, or the specified variable

is unset or is empty, then a message is issued and the key must be supplied by one of the other

methods. This helps suppress the key from appearing in trace output or console logs. If a key is

obtained from the variable, it has priority over any other method of specifying the key.

NOCBC

Do not use default Cipher Block Chaining mode. If the data is encrypted, Electronic Code Book (EBC)

mode is used. Note that NOCBC mode was the default in older versions of PIPEDDR, so the NOCBC

option may be required to decrypt a file created with an older version.

CBC

Specify that Cipher Block Chaining (CBC) mode is used for encryption or decryption. This is the

default encryption mode. Also see “Usage Note 10. More about the encryption options” on page 23.

NOPRompt

On a Restore command, do not prompt for a Yes or No response to confirm output disk user ID and

address. This option is ignored on a Dump command.

MATCHDisk

On a Restore command, check that the output disk is restored to the same user ID and virtual address

that it was dumped from. Note that the disk does not need to be restored on the same system. If the

user ID and virtual address do not match, an error is displayed and the disk is not restored. This

option is ignored on a Dump command.

ONEread

Normally for a restore from disk, tape, ftp, or http, the exec reads the input file to obtain the disk

metadata information (the first line of the file), processes that data, then reads the input file again from

the beginning to restore the disk. If this option is specified, the input file is only read once. This

option is implied if the FROM FILEDEF or FROM PIPE methods are specified. Using this option may

avoid problems using tape or remote servers, but less error checking of the input data format is done.

It is recommended that this option only be used if errors are encountered. This option is ignored on a

Dump command.

When this option is used or implied, you must supply additional command options that describe how

the disk was dumped originally. These include encryption options, how the data was compacted, and

14

if a verification value is included. Otherwise, it is likely that error messages will be shown when the

exec attempts to restore the data.

NOSIZECheck

NOSIZEChk

Do not check that the original input disk and the specified restore disk are the same size. This option

is ignored on a Dump command. Normally, the input and output disk sizes are checked to verify that

they match, and if they do not match, error messages are issued and the output disk is not changed.

If this option is specified, the check is still performed and messages are issued, but the disk is

restored anyway. Other error messages may be displayed if PIPEDDR attempts to write beyond the

end of the output disk. See “Usage Note 7. Restoring data to a disk of a different size than the

original disk” on page 22 for additional information about using this option.

TRUNCate n

Only dump a partial number of cylinders or blocks. This option is ignored on a Restore command.

The value n specifies the last cylinder or block of the disk that is dumped to the file or sent to a

remote system. Note that the numbering of cylinders or blocks on a disk begins with zero, so the total

number of cylinders or blocks that are dumped is one more than the truncate value. The data must be

restored to a disk with the same number of cylinders or blocks that were dumped, which means the

size of the disk must be one more than the truncate value. Or, the NOSIZECHECK option must be

specified on the restore command to restore to a disk of a different size. Be sure you understand the

format of the partial data you are dumping, otherwise the restored disk may not be usable.

STAble

On a Dump command, attempt to use the “SR” (stable read) link option to access the source disk. If

the user is not allowed to use this link mode, then use link mode “R”, which will fail if any other user

has a R/W link to the disk. On a Restore command, attempt to use the “EW” (exclusive write) link

option to access the target disk. If the user is not allowed to use this link mode, then use link mode

“W” instead, which will fail if any other user has a link to the disk. On a Copy command, use the

modes described above to link both the source and target disks. The intent of this option is to prevent

dumping a disk another user may be updating or want to update and to prevent restoring to a disk

another user may be reading or wants to read before it is restored. For any command, if a disk is

already linked by the user, this option does not attempt to re-link the disk. The existing link is used.

RAW

On a Dump command, create an output file with no header or footer data added to the disk image.

Normally, PIPEDDR adds a header line to the output file to document the size, disk type, and which

options were specified to dump the input disk. The CRC, CKSUM, or DIGEST options add a footer

record with a CRC or digest value. If the RAW option is specified, no header is added and the CRC,

CKSUM, or DIGEST options are not valid. The data can be compressed if one of those options are

specified. The CIPHER option cannot be specified with this option. On a Restore command, the

same options used to dump a disk with RAW must also be specified. See “Usage Note 7. Restoring

data to a disk of a different size than the original disk” on page 22 for additional information about

using this option.

DEBUG

Show the version of the PIPEDDR EXEC. If no function is specified, just show the version and exit.

For example, entering PIPEDDR (DEBUG shows the version and exits with return code 1. If a function is

entered and ftp or http parameters are specified for the transfer, display additional information about

the transfer. For ftp, the trace option is passed to the ftp stage. For http, the sent and received

header information is displayed.

 15

 Remote Options

These options apply to remote connections.

SECure

Use a secure (SSL/TLS) socket for the connection used to perform a remote dump or restore. If the

VM SSL server is not configured on both the sending and receiving system, the connection will fail.

TLSLabel label

Specify the label of the certificate defined in the VM system SSL certificate database that is used to

secure the connection. The TLSLABEL option implies the SECURE option. A TLS label can only be

specified the server (receiving) side of a remote transfer, therefore this option is only valid with the

FROM REMOTE keywords on a Restore command or with the deprecated LISTEN option. A label

must be 1 to 8 alphanumeric characters.

UNSAFE

Add the keyword UNSAFE to the secure tcpclient connection to the receiving system. This option is

only valid if one of the SECURE or TLSLABEL options are also specified on a DUMP command to a

remote system. For secure connections, normally tcpclient verifies that the destination name matches

the identity of the server stated in the server certificate. This only done when the destination is speci-

fied as host name or host name with domain. To skip this verification, specify UNSAFE.

TIMEOut seconds

This option is only valid with the FROM REMOTE keywords on a Restore command or with the depre-

cated LISTEN option. It specifies the number of seconds PIPEDDR will wait for an incoming con-

nection. After the specified number of seconds, if no incoming connection is established, the exec

ends with an error and a non-zero return code.

POrt portnum

Specify the TCP/IP port used to listen for a connection from a remote system or the listening port

number on the remote system where PIPEDDR is waiting. The PORT option is optional on a Restore

command but required on a Dump command. The TCP/IP port can also be supplied as a positional

argument to PIPEDDR, but that value is ignored if the PORT option is also specified.

FTP and HTTP Options

These options apply to FTP and HTTP selections.

PASSWORDVARiable variablename

If PIPEDDR is being invoked from another Rexx exec, specify the name of a variable in that program

that contains the ftp password. If PIPEDDR is invoked from the command line, or the specified vari-

able is unset or is empty, then a message is issued and PIPEDDR will prompt for the ftp password.

This helps suppress the password from appearing in trace output or console logs. If a password is

specified in the url or in the ftp command options, it is used instead of the password in this variable.

EPASSIve

EPSV

If the input or output file is on an FTP server, and the FTP REXX stage is available and used, add the

EPASSIVE option to the arguments to that stage. The FTP stage will attempt to establish the con-

nection using Extended Passive mode. EPSV is a synonym for EPASSIVE. This option only applies

when an FTP source or destination is used and only for the FTP REXX stage. See “Usage Note 2.

FTP support in Pipelines” on page 19 for more information.

16

PASSIve

PASV

If the input or output file is on an FTP server, and the FTP REXX stage is available and used, add the

PASSIVE option to the arguments to that stage. The FTP stage will attempt to establish the con-

nection using Passive mode. PASV is a synonym for PASSIVE. This option only applies when an

FTP source or destination is used and only for the FTP REXX stage. See “Usage Note 2. FTP

support in Pipelines” on page 19 for more information.

NOPASSIve

NOPASV

NPASV

If the input or output file is on an FTP server, and the FTP REXX stage is available and used, allow

that stage to use its default connection mode, which uses the FTP PORT command. NOPASV and

NPASV are synonyms for the NOPASSIVE option. This option only applies when an FTP source or

destination is used and only for the FTP REXX stage. See “Usage Note 2. FTP support in Pipelines”

on page 19 for more information.

VMFTP

Specify this option if the receiving FTP server is hosted by z/VM. This option adds the correct “site”

option to the ftp stage so that the disk image file is created with the correct record format.

FTPSITE siteargs

Specifies an optional SITE command that is issued by the FTP client. The command is issued before

data transfer, after navigating to the correct directory. It is not translated to upper case. If the SITE

command is multiple words, enclose the command in delimters. The valid delimters are quotes (single

or double) or parentheses. The same delimiter must be used at the beginning and end of the string.

A closing parenthesis is used to end an opening parenthesis. For example: FTPSITE (umask 022)

UNSAFE

Add the keyword UNSAFE to the secure ftp connection to the server. This option is only valid for an

“ftps” connection. When the connection is made, the ftp pipelines stage verifies that the destination

name matches the identity of the server stated in the server certificate. This only done when the

destination is specified as host name or host name with domain. To skip this verification, specify

UNSAFE.

OLD

Force the exec to use an old option or method. See “Usage Note 2. FTP support in Pipelines” on

page 19 for a description of the 3 different ftp stages that PIPEDDR may use. If Pipelines supports

the built in FTP stage, it is always used and this option is ignored. If the FTP REXX pipeline stage is

available, it is used unless the OLD option is specified. This option forces the exec to use the alter-

nate ftpget and ftpput FTP pipeline stages instead of FTP REXX.

POrt portnum

Specify the TCP/IP port on the server used for the connection. If a port is specified as part of the url,

this option is ignored. A port specification in the URL is the preferred way to specify the port.

 Deprecated Options

These options remain functional but the Target arguments are recommended.

FILEdef

Dump or restore a disk to a CMS Filedef. The filedef must be defined with the CMS FILEDEF

command before PIPEDDR is invoked. Any type of filedef can be defined that is usable on the Pipe-

lines “qsam” stage. Any error messages shown when using this method are from CMS Pipelines.

The default output record format is Fixed 1024 byte records. The ONEREAD option is implied when

using this option with a Restore command.

 17

LIsten

On a Restore command, wait for an incoming TCP/IP connection from a remote system running a

PIPEDDR Dump TO REMOTE command. If a TCP/IP port is not specified using the PORT option or

with the positional arguments to PIPEDDR, the next available port is obtained and the listening port

number is displayed on the console. PIPEDDR will keep waiting for a connection until one is estab-

lished or the pipeline is stopped.

FTP

Dump to or restore from a file on an ftp server. If an FTP URL is specified (ftp://) as the option, then

the FTP option is implied. See “Usage Note 4. FTP and HTTP options” on page 20 for more about

this option.

HTTP

Restore from a file located on an http server. This option is invalid on a Dump command. If an HTTP

URL is specified, the HTTP option is implied. The file may be placed on the server via ftp, a CMS file

of the dumped disk was transferred to the server in binary format, or the CMS file is hosted by a

HTTP server running on CMS.

url is either a list of options to the ftp pipeline stage (which can also be used for an HTTP transfer, except

the -userid and -password options are ignored), or a normal web URL. It must be enclosed in paren-

theses if a URL is not used or other options follow. See “Usage Note 4. FTP and HTTP options” on

page 20 for more information about specifying a URL.

TAPE

Dump a disk to tape or restore a disk from tape. A tape drive virtual address can be specified after

the TAPE keyword. If no address is specified, it is assumed the tape drive is attached at virtual

address 181.

BFSPath path

Specify the path in the BFS filesystem where the input or output file resides. The path must already

be mounted before running PIPEDDR. The synonym HFSPath can be specified instead of BFSPath.

The BFS option is implied when the BFSPATH option is specified.

BFS

Specify that the input or output file resides in BFS, but no path is specified. The file will be read from

or written to the current working directory set via the OPENVM SET DIRECTORY command. See the

description of the BFSPath option for more information. The synonym HFS can be specified instead

of BFS.

 Usage Notes:

Usage Note 1. Disk input/output formats

The PIPEDDR EXEC supports 2 different methods for directly reading from and writing to disks. The

first method uses PIPE's TRACKREAD and TRACKWRITE stages for ECKD disks and the FBAREAD

and FBAWRITE stages for FB-512 disks. This is the default input and output method. z/VM 6.4 and

later already have the necessary levels of these stages. z/VM 6.4 with APAR VM66139 (and later)

also support extended address volumes, which are disks larger than 65520 cylinders.

In z/VM 6.3 and earlier, these stages are not included with the level of Pipelines that is available by

default on z/VM. They require the Runtime Distribution level of Pipelines available from

http://vm.marist.edu/%7Epipeline/index.html#Runtime at version 110B0004 (15 May 2002 level) or later

for reading and writing ECKD disks (level 110C000A (24 Jul 2012 level) for ECKD disks larger than

32767 cylinders) and level 110C0004 (01 Jul 2010 level) or later for reading and writing FBA disks.

18

http://vm.marist.edu/%7Epipeline/index.html#Runtime
http://vm.marist.edu/%7Epipeline/index.html#Runtime

The second method is used for dump and restore if the CMSDDR or VMDDR option is specified or

defaulted; or if the exec is renamed to CMSDDR or VMDDR (or invoked using a synonym of either

CMSDDR or VMDDR.) This method uses the Pipelines interface to DDR available with z/VM 6.2 and

later. This interface diverts records that would normally be written to tape to the pipeline. The control

records that are written include the current time of day clock. Dumping the same disk image multiple

times will result in files with slightly different contents. Older releases can obtain the modified DDR

module and DDR pipe stage from the DRPC package on the VM download page. (See

http://www.vm.ibm.com/download/packages/descript.cgi?drpc). Both the DRPC MODULE and the

correct DDR MODULE must be available when the CMSDDR option is specified. Unless you are on

z/VM 6.2 or later, the DDR MODULE on the S disk of your z/VM system will not work.

Usage Note 2. FTP support in Pipelines

PIPEDDR can use 3 different ftp stages. The newest ftp stage is built in to Pipelines and is available

if secure TCP/IP connections are supported by CMS Pipelines. (APAR VM66365 for z/VM 7.1,

included in z/VM 7.2 and later.) This stage supports both secure and unsecured ftp sessions. The

other ftp stages supported by PIPEDDR are not built-in to Pipelines; they are loaded from a separate

module or file. If the built in stage is not available, the preferred external ftp stage is the FTP REXX

stage downloaded from the VM download page. The other external stage is an ftp stage supplied with

z/VM that are part of the install process. Neither of these stages support secure ftp sessions.

The FTP REXX stage can be found in the FTPREXX package on the VM downloads page. See

http://www.vm.ibm.com/download/packages/descript.cgi?ftprexx to obtain the package. If FTP REXX

is available, you can still force PIPEDDR to use the other ftp stages (described in the next paragraph)

by adding the OLD option. The source code for the FTP REXX stage is provided, although still a tool

without any formal support.

The stages supplied with the z/VM install process are contained in either the DRPC MODULE which

found on the S (190) disk or from the INSTPIPE MODULE (normally found on either MAINTvrm 222,

4CC, or MAINT 193). The DRPC module is also part of the DRPC package. on the VM download

page, if your level of VM does not have it. See

http://www.vm.ibm.com/download/packages/descript.cgi?drpc. If the ftp stage is built into Pipelines, it

is used. Otherwise, FTP REXX is used if it is found. If it is not found or the OLD option is specified,

then if the ftp stages are not already loaded before the exec is started, PIPEDDR will look for DRPC

MODULE first and then INSTPIPE MODULE if DRPC is not found. If the ftp stages can't be found,

the exec ends with an error. These installation FTP stages are not part of PIPEDDR, are not officially

supported by IBM, and no source code is provided.

Usage Note 3. More about the URL argument

A url is used to refer to a file on a remote system using a standard convention. PIPEDDR supports

reading from an HTTP server and reading and writing to an FTP server if an FTP pipeline stage is

available. Secure connections (HTTPS, FTPS) are only supported if your level of Pipelines supports

secure connections. SFTP connections are not supported.

A basic URL or URI has this structure:

<scheme>://<user>:<password>@<host>:<port>/<url-path>

PIPEDDR supports a <scheme> of HTTP, HTTPS, FTP, or FTPS. (Secure connections are only sup-

ported if Pipelines supports these connections.) The remote server is found on host <host>. If the

<port> is specified in the url, then that is the port used instead of the standard port.

For FTP, the user ID <user> is used to authenticate to this host, using password <password>. The

user ID must be specified, even if the “anonymous” user ID is used. In the URL, special characters

 19

http://www.vm.ibm.com/download/packages/descript.cgi?drpc
http://www.vm.ibm.com/download/packages/descript.cgi?ftprexx
http://www.vm.ibm.com/download/packages/descript.cgi?ftprexx
http://www.vm.ibm.com/download/packages/descript.cgi?drpc
http://www.vm.ibm.com/download/packages/descript.cgi?drpc

are encoded using the percent sign such as %2f to represent a forward slash (“/”) character. The

hexadecimal value after the percent sign is the ASCII code for the character. No user ID or password

is supported for HTTP requests. If the password is not supplied and the user is not “anonymous”,

then PIPEDDR prompts for the password. A NETRC DATA file can be used to supply the user ID and

password (see number 1 under “Notes for FTP transfers”) or the PASSWORDVARiable option can be

used to supply the password. Do not use percent encoding of special characters in the password

unless the password is part of the URL.

The <url-path> can specify just a path to a directory or a path and a file name. If no filename is

specified, the default file name of <userid>.DISK<nnnn> is used. All uppercase characters are trans-

lated to lower case and <nnnn> is replaced by the virtual address of the source disk.

Notes for FTP transfers

1. User IDs and passwords for ftp servers can be stored in a NETRC DATA file instead of specifying

one or both of them on the command line, passing a password via a variable, or responding to

password prompts. The format of the NETRC DATA file is documented in the z/VM TCP/IP User's

Guide, “Appendix B. Using the NETRC DATA File.” The format of each line is:

machine foreign_host login user_id password password

PIPEDDR only reads the first NETRC DATA file it finds in the search order. It finds the first match

of either the hostname and user ID or just the hostname, depending on if a user ID was specified

as part of the URL. The password in NETRC DATA is ignored if the password is included in the

URL or supplied in a variable.

2. If a user ID of anonymous is not used, and a password is not specified in the url, is not available

via a variable, or in a NETRC DATA file, the PIPEDDR exec prompts for the FTP password. The

password will not appear when typed, and will not appear in any spooled console log. The pass-

word prompting that is built-in to the ftp pipeline stages is avoided. Note that to use anonymous

ftp login, the user ID must be specified as “anonymous”. If the user ID is not specified, the exec

ends with an error.

Notes for HTTP transfers

1. If the DEBUG option is specified, the http request record and all headers returned by the server

are displayed on the console. This may be useful to debug problems with http transfers.

2. The HTTP option does not use additional pipeline modules, only stages already built-in to the

minimum required pipeline level are used.

Usage Note 4. FTP and HTTP options

Note: These options are deprecated, the preferred specification is a url as a target argument that

follows the keyword FROM or TO. Secure connections cannot be specified using these options.

The ftp arguments or an ftp url are passed to the ftp pipeline stage by the FTP option. This option

can be specified as “FTP (<ftp arguments>)” with other options following it, as the last option on the

command line as “FTP <ftp arguments>”, or as a URL in standard form that starts with “ftp://”.

HTTP arguments can be specified the same way using the keyword HTTP instead of FTP, or using a

standard HTTP URL.

The FTP arguments are any parameters valid for the ftpget or ftpput pipe stages. Even if the FTP

REXX pipeline stage is available, the same arguments can be used. The exception is the -debug

option. Use the DEBUG option to get additional output from any ftp pipeline stage. The same argu-

ments are valid for HTTP, but it is more common to use an HTTP URL for HTTP transfers. The ftp

parameters usable for PIPEDDR are:

20

-h,-host,-hostname hostname

hostname or IP address to connect to

-u,-user,-userid userid

user ID to connect to - defaults to 'anonymous'

-p,-pw,-pwd,-password password

will prompt if not supplied

-port nnnn

FTP port - defaults to 21

-d,-dir,-directory directory

directory to change to before file transfer

-f,-file,-filename filename

name of the file to be written onto the FTP server

-debug

turns on debugging output

Some notes about these options:

� PIPEDDR always writes files sent to FTP in Fixed 1024 format, so the FTP option -fixed 1024 is

automatically added to the ftp argument string for the restore command if the ftpget pipeline stage

is used.

� When using FTP for the restore command, the ftp file name will be displayed by the ftpget stage 2

times on the console unless the ONEREAD option is also specified. If the ONEREAD option is

specified, the input file is only read 1 time.

� If the -debug argument is specified as an ftp argument or with the DEBUG command option, the

ftp user ID and password may be displayed as part of the debug output.

� If an HTTP URL is not used and ftp parameters are used instead, the only ftp arguments valid for

http are -hostname, -port, -directory, and -filename. Any of the other ftp options are ignored.

Usage Note 5. Using BFS and NFS files for input and output

PIPEDDR can read and write OpenExtensions files, which are found in the Byte File System (BFS),

using the CMS Pipelines HFS stage. The most useful aspect about this support is that the CMS NFS

client can be used to mount NFS filesystems on remote servers into the byte file system. This allows

PIPEDDR to dump or restore disks from files on remote NFS servers. To use this support, your user

ID must be allowed to mount the root BFS filesystem and you must be allowed to either write data in

BFS or mount an NFS file into BFS. For example:

OPENVM MOUNT /../NFS:vmsys.example.com/export /bfshome (ANONYMOUS NOTRANSLATE
For more information, see the z/VM documentation OpenExtensions Commands Reference and the

OpenExtensions User's Guide. You can find these documents on the z/VM Library Overview web

page at http://www.vm.ibm.com/library/.

Usage Note 6. Notes about compression

1. The TERSE option can only be used if the TERSE Pipelines stage is available. This allows the

exec to create output files that are smaller or send less data over the network. The TERSE Pipe-

lines stage is part of the PIPSYSF Pipelines filter package which must be downloaded from the

Pipelines Runtime Distribution page. See http://vm.marist.edu/%7Epipeline/pipsysf.html for this

package.

 21

http://www.vm.ibm.com/library/
http://www.vm.ibm.com/library/
http://vm.marist.edu/%7Epipeline/pipsysf.html

2. The DDR module supports LZCOMPACT compression, which uses hardware instructions to

compact the data. This format is not compatible with the TERSE format, but can be used to

create more compact output.

3. The ZLIB option can only be used if the ZLIB Pipelines stage is available. This stage is found in

the ZLIBSTG MODULE file. You can extract this module from a VMARC format file downloaded

from John Hartmann's space on GitHub. Go to https://github.com/jphartmann/cmslib-exec and

download the file “fplgcc.vma”. Upload it to z/VM as FPLGCC VMARC in binary with file format

Fixed 80. Use the command VMARC UNPK FPLGCC VMARC A ZLIBSTG MODULE A to obtain the module

file. PIPEDDR will automatically load the module when the ZLIB option is specified or when a

ZLIB compressed disk is restored. More information about zlib compression can be found at

http://zlib.net/

Usage Note 7. Restoring data to a disk of a different size than the original disk

If the NOSIZECHECK or RAW options are used, PIPEDDR does not check that the size of the output

disk is the same size as the original input disk. Using the RAW option means that there is no disk

information header on the file and all processing options must be specified when the disk is restored.

The NOSIZECHECK option performs all other checking except checking that the size of the output

disk is the same as the actual input disk. If the TRUNCATE option is used to dump the disk, the data

must be restored to a disk that matches the specified truncated size unless the NOSIZECHECK option

is specified. This allows you to restore a disk image or perform a copy on a disk that is larger or

smaller than the original disk or the truncation value. Restoring to a smaller disk will lose some of the

data. Restoring to a larger disk will write all of the data, but the disk may appear to only be the size

of the original input disk.

Usage Note 8. Ensuring data integrity with CRC, CKSUM, SDIGEST, or DIGEST

The intent of these options is to compute a value based on the disk image and append that value to

the output file. When the file is read to restore the disk, the value is computed again and compared to

the original value. If the values do not match exactly, the data in the disk image file has changed and

the disk will not restore correctly. These options use the corresponding Pipelines stage (CRC or

DIGEST) and more information about the algorithms used are found in the help information for those

stages.

Specifying one of these options is normally not needed on a restore command because a keyword is

added to the header record which automatically enables verification of the data during a restore.

However, if the ONEREAD option is specified on a restore and the input data includes a verification

value, the corresponding option must be specified so that the proper check is performed. Note that if

an older level of PIPEDDR that does not support one of these options is used to restore a disk, an

error message is displayed because the older levels do not recognize the keyword in the header.

Here is a short description of each type:

CRC and CKSUM - Calculate a 32 bit (4 byte) Cyclic Redundancy Code of the data. The CRC option

uses the “CRC-32” calculation and the CKSUM option uses the CKSUM calculation. Also see “Usage

Note 9. Output file structure with CKSUM or DIGEST verification” on page 23 for more information.

The CRC option appends the CRC value to the end of the original input data, before any compression

or encryption processing.

SDIGEST and DIGEST - Calculate a message digest. This is a more modern and longer value that

should ensure that the data has not been altered. The result of the calculation is a binary digest value

from 16 to 64 bytes long. The length depends on which digest type is selected. The SDIGEST

(single digest) option appends a single digest value to the file in the same way a CRC value is added

as described above. The DIGEST option adds 2 digest values to the output file. The first is the single

22

https://github.com/jphartmann/cmslib-exec
http://zlib.net/

digest value that was just described. The second is computed after any compression and encryption

is performed. Both of these are recalculated and checked when the disk is restored. Also see “Usage

Note 9. Output file structure with CKSUM or DIGEST verification” on page 23 for more information

about DIGEST.

If the SDIGEST or DIGEST options are specified without selecting a type, the default SHA256 digest

is computed which produces a 32 byte result. This default was chosen because it uses hardware

instructions when the machine feature is installed. The DIGEST stage does not support hardware

calculation of SHA384 and SHA512 message digests. The choices, along with their digest lengths (in

bytes) are: MD5 (16), SHA1 (20), SHA256 (32), SHA384 (48), and SHA512 (64). For more informa-

tion see http://enwp.org/SHA-1 and http://enwp.org/SHA-2. Also see “Usage Note 9. Output file struc-

ture with CKSUM or DIGEST verification” for more information about verifying the data using the

digest value. “Usage Note 11. More about incrementally updating a remote disk” on page 24

describes how a digest value is used to update a remote disk.

Usage Note 9. Output file structure with CKSUM or DIGEST verification

The intent of the CKSUM or DIGEST options is to allow the verification of the checksum or message

digest of the disk image when the file is stored on other platforms. If the CKSUM option is specified,

the checksum of the disk image can be verified using the Posix cksum command. If one of the

DIGEST methods is selected, many platforms have the necessary commands to calculate the

message digest value of the disk image. For example, a disk image sent to a Linux ftp server by

PIPEDDR can be validated on that server that it is unchanged.

The output file created by PIPEDDR when one of these options is specified has a 1024 byte header

that contains metadata about the disk image that was dumped and a 1024 byte footer with the vali-

dation values. The remaining data between the header and the footer is the actual contents of the

disk after compressing and/or encrypting the disk. If the file is stored in the CMS filesystem, it

remains a fixed length file with 1024 byte records.

The header contains metadata about the dumped disk in both EBCDIC and ASCII with a hex x'0A'

character before and after the ASCII formatted data. There are binary zeros in the rest of the record.

If the eighth blank delimited word of the header is “CKSUM” then the verification record is in

checksum format. In this format, the footer contains the binary cksum in the first 4 bytes and the

length of the input file in the next 8 bytes. The length of a checksum is 12 bytes, indicated by a 12 in

the twelfth word of the header. If the eighth word of the header is “DDIGEST” (or “DIGEST”) then the

eleventh word indicates the digest format and the twelfth word indicates the length of the digest in

bytes. After the checksum or digest value in the footer, a readable hexadecimal version of the same

value is translated to ASCII and placed in the record. There are binary zeros in the rest of the record.

For example, the length of the default SHA256 digest is 32 bytes, so the first 32 bytes of the final

1024 byte record is the digest in binary. The next 64 bytes are the ASCII translation of the digest

value. Binary zeros fill in the rest of the record.

More information about how to use the cksum or digest information to verify the contents of a file can

be found in the section “How to verify a file” on page 26.

Usage Note 10. More about the encryption options

To encrypt or decrypt data, your system must have the “CPACF” feature enabled. The KM package

contains CSL routines that interface to the hardware instructions that actually do the encryption and

decryption. Go to http://www.vm.ibm.com/download/packages/descript.cgi?KM and download the

VMARC archive to obtain the CSL routine. PIPEDDR only requires the KMRTNS CSLLIB file from the

package.

 23

http://enwp.org/SHA-1
http://enwp.org/SHA-2
http://www.vm.ibm.com/download/packages/descript.cgi?KM

The default encryption mode of operation (not the encryption type) is CBC, Cipher Block Chaining

mode. The encryption of each cipher block depends on the encryption of the previous block. A

random initial block, called the Initialization Vector, is used to ensure that encrypting the same input

data again will result in different output (ciphertext.) If the NOCBC option is specified, EBC (Electronic

Code Book) mode is used. Each block of a message is encrypted separately and the output will be

the same each time the same input data is encrypted. See

http://enwp.org/Block_cipher_mode_of_operation for more information.

If a cipher stage is available in CMS Pipelines, it will be used to for symmetric encryption or decryption

of data. Data encrypted by the Pipelines stage can be decrypted by the KM CSL routines and vice

versa. Both methods use the same hardware instructions.

Previous versions of PIPEDDR defaulted to the EBC encryption method. The default is now the CBC

method. To decrypt a file created by a previous version, you may need to specify the NOCBC option

to force it to use ECB mode for the decryption.

There is no method available in CMS to securely store an encrypted or secure key, so be aware that

the key will appear in memory and possibly on the console and/or on disk in clear text. PIPEDDR

allows you to pass the key via a variable in the calling program or store the key in GLOBALV using

the PIPEDDR SET KEY command. The key is stored as a hexadecimal string. To view the stored

key, enter PIPEDDR SET QUERY EXT. You may store the key in temporary (in memory only)

GLOBALV by any means you choose so that the key does not appear on the command line and is not

stored on disk. Make sure the key you create is the correct length for the encryption method you

select. A Rexx example:

keyvalue='this IS my key!!'
'GLOBALV SELECT $PIPEDDR PUT KEYVALUE'

Or, using the KEYVARIABLE option:

/\ Call a routine that returns a password protected key \/
secretkey=GetKey()
'EXEC PIPEDDR DUMP MAINT 190 (CIPHER AES KEYVARIABLE SECRETKEY'

Usage Note 11. More about incrementally updating a remote disk

The TO REMOTE function of PIPEDDR sends the complete contents of a disk to a remote system

over the TCP/IP network. The disk is sent track by track or a set of blocks at a time. If the disk was

copied at an earlier time to the remote system and has not had extensive changes, the TO UPDATE

function can be used to only update the changed tracks or blocks. When PIPEDDR operates this

way, the remote system reads part of the existing disk and generates a hash value (using the Pipe-

lines digest stage) of each track or set of blocks and sends that value to the sending system. The

sending system also reads the same part of the disk and generates the same type of hash value from

it. If the values are different, then the track or blocks are sent to the remote system and written to the

disk. Only changed tracks or blocks are sent. The encryption options are supported, so the disk data

that changed can be encrypted before it is sent to the remote system.

Use this method if you believe that only a limited number of changes have been made to the disk. If

a large number of changes have been made, the entire disk should be sent with one of the com-

pression options enabled.

This function was inspired by Rob van der Heij's Sir Rob the Plumber blog entries on remote disk

copies. Please see the first blog entry at

https://rvdheij.wordpress.com/2019/03/17/disk-copy-introduction/ for the introduction and the later

entries on the implementation. The ideas and examples were adapted to work with the existing

PIPEDDR functions.

24

http://enwp.org/Block_cipher_mode_of_operation
https://rvdheij.wordpress.com/2019/03/17/disk-copy-introduction/

 Errors:

PIPEDDR issues messages with message numbers and a suffix character indicating the type of message.

The format of the message number is PDDRMSnnnt where nnn is the message number and t is the type.

The type is similar to z/VM message types of E for error, W for warning, I for informational, R for

response, and S for severe.

Some examples of how to use PIPEDDR

To dump a minidisk to a file with the default name:

PIPEDDR DUMP MAINT 19E

This creates a file named MAINT DISK019E A

To dump a minidisk to a file and terse the output:

PIPEDDR DUMP MAINT 19E (TERSE

Another way is to set the default compression format to TERSE and then dump the disk:

PIPEDDR SET COMPACT TERSE
PIPEDDR DUMP MAINT 19E

To dump a minidisk to a file including the CRC:

PIPEDDR DUMP MAINT 19E (CRC

To dump the same disk to a different filemode:

PIPEDDR DUMP MAINT 19E TO FILE = = E

To dump a minidisk to a file in CMS DDR format:

PIPEDDR DUMP MAINT 19E (CMSDDR

To restore the file to the same disk:

PIPEDDR RESTORE MAINT 19E

To restore the file to a different disk and skip the prompt:

PIPEDDR RESTORE CMSUSER 191 FROM FILE MAINT DISK019E A (NOPROMPT

To dump a minidisk to a file and encrypt the data:

PIPEDDR DUMP MAINT 19E (CIPHER AES KEY(Super Secret KEY)

To restore it:

PIPEDDR RESTORE MAINT 19E (CIPHER AES KEY(Super Secret KEY)

To send an entire minidisk over the network On the receiving node, enter:

PIPEDDR RESTORE MAINT 19E FROM REMOTE

This will display the port number it is using. To force the port to 12345:

PIPEDDR RESTORE MAINT 19E FROM REMOTE (PORT 12345

On the sending system use (where pppp is the listening port):

PIPEDDR DUMP MAINT 19E TO REMOTE nodeid.example.com:pppp

 25

To just update a disk that was copied previouslly:

PIPEDDR DUMP MAINT 19E TO UPDATE nodeid.example.com:pppp

The connection should be made and the disk sent over.

To send a minidisk to a file named maint.disk019e on an ftp server:

PIPEDDR DUMP MAINT 19E TO ftp://hayden:password@server.example.com

To restore a minidisk from file disk.dump on an ftp server:

PIPEDDR RESTORE MAINT 19E FROM ftp://hayden:password@server.example.com/disks/disk.dump

To do the same thing but from an http server:

PIPEDDR RESTORE MAINT 19E FROM http://server.example.com/disks/disk.dump

To dump a minidisk to a file named maint.disk019e on an NFS server, first the nfs directory must be

mounted to your virtual machine using OPENVM MOUNT. Assuming it is mounted at /home/maint/mnt,

the command is:

PIPEDDR DUMP MAINT 19E TO BFSPATH /home/maint/mnt

How to verify a file

The CKSUM and DIGEST options are designed to allow a disk image file stored on a Posix compatible

platform (such as Linux) can be validated (checked that no change has occurred) on that platform.

The file created by PIPEDDR has a 1024 byte header and a 1024 byte trailer before and after the actual

disk image. The header has data in blank delimited words about the input disk in both EBCDIC and

ASCII, with an X'0A' byte in between the EBCDIC and ASCII translations. The ASCII translation is termi-

nated with an X'0A' byte. The remaining data of the 1024 byte header is binary zeros.

The trailer contains the verification data which is either the cksum value or the digest value. A cksum

value is always 12 bytes, but a digest value has different lengths for each type of digest. The length of

the binary digest or cksum value is the twelfth word of the header. Following the binary digest or cksum

value is the same value translated to ASCII text. The length of this value is twice the binary length. The

remaining data of the 1024 byte trailer is binary zeros.

A simple script, such as this example, shows the ASCII header:

#!/bin/bash
echo "Show header (ascii version)"
It is in the 1024 byte header, the second "line" found in there
head -c +1024 $1 | cat | head -n 2 | tail -n 1

The digest or cksum of the disk image part of the file can be calculated with one of these scripts:

#!/bin/bash
echo "Show cksum of disk contents (decimal cksum and byte count)"
Take the 1024 byte header and trailer off and input to cksum
tail -c +1025 $1 | head -c -1024 | cksum

#!/bin/bash
echo "Show sha256 digest of disk contents"
Take the 1024 byte header and trailer off and input to sha256
tail -c +1025 $1 | head -c -1024 | sha256sum

26

These examples can be combined into a single script that verifies the disk image has not changed. An

example script named pipeddr-verifydump.sh is included in the same zip file as the documentation PDF

file. The example script that is shown here is similar to the example included in the zip file. If you attempt

to copy and paste this example, be aware that some characters may not be translated correctly.

à@ ð
#!/bin/bash
Verify that a disk image created by PIPEDDR has not been altered.
file=$1
fileheader=$(head -c +1024 $file | cat | head -n 2 | tail -n 1)
if [-z "$fileheader"]; then

echo "File $file is not in the correct format."
 exit
fi
echo "Header: $fileheader"
Break file header into positional parameters
set $fileheader
len=${12}
hostdigest=$(tail -c 1024 $file | tail -c +$(($len+1)) | head -c $((len\2)))
if ["$8" = "CKSUM"]; then
 verifypgm="cksum"
Convert the hexadecimal CRC-32 value and length to decimal
 hostdigest="$((16#${hostdigest:0:8})) $((16#${hostdigest:9:16}))"
else

verifypgm=$(echo ${11} | tr [:upper:] [:lower:])sum
Add filename " -" to end to match command output
 hostdigest="$hostdigest -"
fi
echo "Computing $verifypgm of the disk contents"
Take the 1024 byte header and trailer off to compute digest or cksum
localdigest=$(tail -c +1025 $file | head -c -1024 | $verifypgm)
if ["$hostdigest" != "$localdigest"]; then

echo $verifypgm "verification failed."
echo "Value from PIPEDDR is:" $hostdigest
echo "Local value is:" $localdigest

else
echo "Digest values match"

fi
exit

á ñ

These examples should help you create a more complete program to verify disk images that reside on a

Posix compatible system.

 Contact:

Please send any comments or problems to the author:

Bruce Hayden, email: bjhayden@us.ibm.com

Change log of recent changes, latest changes first

Version Change Description
------- ------------------
V1.7.13 Add some options to help testing.
V1.7.12 Handle encoded urls, encode password for ftp stage.
V1.7.11 Add FTPSITE option to send FTP site command
V1.7.10 Allow delimiters of ' or " for cipher key string, fix 3380.
V1.7.9 Check that a dump is the first Pipe stage or restore has no output.

Allow secondary output for PIPE for progress messages.
V1.7.8 Add option TRUNCATE nnn to only dump or copy part of a disk.

 27

V1.7.7 Ignore SECURE option instead of exiting, show level with DEBUG.
V1.7.6 Add special first option DEFAULTS to ignore all preset options.
V1.7.5 Add SDIGEST (single digest) option which works like crc.
V1.7.4 Allow exec to be called as a Pipeline stage.
V1.7.3 Support new ftp stage which supports ftps.

Add VMFTP option, to send proper SITE command for VM FTP.
V1.7.2 Support secure SSL/TLS sockets for remote dump/restore.
V1.7.1 Fix port number in error message and some spelling.

Validate some of the fields in the file header.
Ensure valid values for crc or digest check.
If no input with oneread, issue error.
RAW option supersedes ONEREAD option.

V1.7.0 Don't restrict NOPACK, and don't force it to be blocked.
Show fewer progress messages with large disks.
Add digest or cksum in ascii after binary value in last record.
For remote receive or update, verify cipher key.

28

	PIPEDDR Dump/Restore a disk using CMS Pipelines
	Description
	Syntax:
	Operands:
	Target
	SET Command Operands

	Options:
	General Options
	Remote Options
	FTP and HTTP Options
	Deprecated Options

	Usage Notes:
	Usage Note 1. Disk input/output formats
	Usage Note 2. FTP support in Pipelines
	Usage Note 3. More about the URL argument
	Usage Note 4. FTP and HTTP options
	Usage Note 5. Using BFS and NFS files for input and output
	Usage Note 6. Notes about compression
	Usage Note 7. Restoring data to a disk of a different size than the original disk
	Usage Note 8. Ensuring data integrity with CRC, CKSUM, SDIGEST, or DIGEST
	Usage Note 9. Output file structure with CKSUM or DIGEST verification
	Usage Note 10. More about the encryption options
	Usage Note 11. More about incrementally updating a remote disk

	Errors:
	Some examples of how to use PIPEDDR
	How to verify a file

	Contact:

