

Display Input/Output Facility Version 3
Program Description and Operations Manual

Release 1.0

Document Number SB11-8419-0

May 30, 1989

Editor: Sandy Jacobi

First Edition (April 1989)

This edition applies to Release 1, Modification Level 0, of Display Input/Output Facility Version 3, Program
Number 5785-HAX, and to all subsequent releases and modifications until otherwise indicated in new editions or
Technical Newsletters.

Changes are made periodically to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors: Bibliography of
Industry Systems and Application Programs, GC20-0370, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM program in this publication is not
intended to state or imply that only IBM’s program may be used. Any functionally equivalent program may be
used instead.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your
IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed, comments
may be addressed to:

IBM International Operations
International Field Program Center
P.O. Box 24
1420 AA Uithoorn
The Netherlands

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

K Copyright International Business Machines Corporation 1989. All rights reserved.. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Preface

The IBM Display Input/Output Facility Version 3 (5785-HAX), referred to in this manual
as DIOF-3, enables users to benefit from the functions of IBM 3270 Display Stations
without the need to program them. Potential users are:

� End users writing simple, full-screen EXECs

� Application or system programmers writing full-screen front-ends to application
programs or online Help facilities.

This manual describes DIOF-3, explains how to run it, and guides the reader through the
installation phase. Please note that this manual refers to the main module of DIOF-3 as
IOS3270.

The chapters covered are:

Chapter 1, “Introduction”
Gives a brief presentation of DIOF-3 and explains the purpose of the facility.

Chapter 2, “Understanding DIOF-3”
Describes the input used by and the output returned from the main module of
DIOF-3 (IOS3270).

Chapter 3, “Installation”
Provides a step-by-step description of how to install this program.

Chapter 4, “Running the IOS3270 Program”
Describes, in detail, all actions needed to perform specific functions.

Appendix A, “Questions from IOS3270 Users”
Gives the answers to frequently asked questions.

Appendix B, “Summary of Function Characters”
Summarizes all the function characters used with the IOS3270 program.

Appendix C, “The IOSLIB Program”
Describes a program to create and maintain libraries.

Appendix D, “The GOODIES/GDCSS Package”
Describes a package for shared segment operations.

Appendix E, “The IOSDYNAT EXEC”
Shows the IOSDYNAT EXEC, used for dynamic attribute changes.

Appendix F, “The IOSIVP6 EXEC”
Shows the IOSIVP6 EXEC, provided as an example of using the STEM, FROM,
and FOR options.

An index is provided at the back of the manual.

 Preface iii

iv Display Input/Output Facility Version 3 PDOM

 Contents

Chapter 1. Introduction 1

Chapter 2. Understanding DIOF-3 2
2.1 Input to DIOF-3 2
2.2 Output from DIOF-3 3
2.3 Error Messages 3

Chapter 3. Installation 4
3.1 Installation Prerequisites 4

Machine Requirements 4
Programming Requirements 4

3.2 Dependencies 4
3.3 Machine-readable 5

File 1 5
File 2 5

3.4 Modifying DIOF-3 6

Chapter 4. Running the IOS3270 Program 8
4.1 Invoking The IOS3270 Program 8
4.2 Options 9

Preferred Group 9
Compatibility Group 12

4.3 Return Codes 14
4.4 Function Characters 14

Preferred Group 14
Compatibility Group 28

4.5 Defining Selector Light Pen Fields 32
4.6 Defining Input Fields 33
4.7 Using Variables 33
4.8 Using Variables in Input Fields 34
4.9 IOS3270 Variables 35
4.10 Special Characters 35
4.11 Special Values In Fields 36
4.12 Invoking IOS3270 with In-storage Data 36

Method 1 36
Method 2 37

4.13 Specifying Character Attributes and Dynamic Attributes 40
Non-variable Data 40
Variable Data 40

4.14 Using The IOS3270 Options HNDEXT and HNDINT 42
4.15 Color Aspects 45
4.16 Performance Considerations 45

General 46
Combining IOS3270 and EXEC Files 46
Using Many Panels 49

Appendix A. Questions from IOS3270 Users 50

Appendix B. Summary of Function Characters 51

 Contents v

Appendix C. The IOSLIB Program 52

Appendix D. The GOODIES/GDCSS Package 53
DMSFREE Storage 53
DCSS (or Saved Segment) 53
DCSS 56
Nucleus Extension and no DCSS 56
DMSFREE execution 56

Appendix E. The IOSDYNAT EXEC 57

Appendix F. The IOSIVP6 EXEC 61

Index 70

 Figures

 1. In-core Interface Method 1, Basic 36
 2. In-core Interface Method 1, Return of &IOSx 37
 3. In-core Interface Method 2 39
 4. In-core Interface Method 2, Dynamic Attributes 41
 5. DYNFAMAP DSECT 42
 6. Sample HNDEXT/HNDINT Assemble Code 44
 7. Combining IOS3270 and EXEC Files 46
 8. Combining IOS3270 and EXEC 2 Files 47
 9. Combining IOS3270 and REXX Files 48
10. Prototype Entry in DMKSNT for GOODIES 54
11. IOSDYNAT EXEC 57
12. IOSIVP6 EXEC 61

vi Display Input/Output Facility Version 3 PDOM

Summary of Changes for Version 3

The following changes have been made for Version 3:

Support for New Releases of VM
� VM/SP 3 support added
� VM/XA migration aid support added
� VM/SP 4 support added
� VM/XA SF 2 support added
� VM/XA SP 1 support added
� VM/SP 5 support added (CONSOLE MACRO)
� VM/XA SP 2 support added (CMS5.5 support).

New Device Support
� IBM 3290 information panel support.

Performance Related Changes
� Improved performance on VM/SP 3 using DIAG X'8C'.

� IOSLIB now creates variable record length files to reduce the amount of disk space
required to store libraries. IOS3270 handles both types of IOSLIBs.

Old IOSLIBs for which no source is available can be converted using the IOSLIB
COMP function.

� Improved performance imbedding members of the same IOSLIB.

� Option added to INSTGOOD to specify whether the DCSS should be kept attached
or purged on completion to reduce the (CP) overhead involved in DCSS processing
on systems with many users.

� Performance improvement for repetitive .i.

Added Functions, Options, and Attributes
� System Product Interpreter (REXX) support added.

� Field attribute type Nulls now implies Unprotected.

� Minus prefix handling for function character L similar to XEDIT.

� Field attribute type Tab added to allow use of Tab keys.

� QUERY option added to retrieve DIAG X'8C' info.

� The maximum number of input- and selector light pen fields is increased (was 123).
The maximum number of combined input-, selector light pen fields and .w/x
functions is now (rows*columns/7)-1. Rows and columns refer to the usable area of
the screen, not to the size of the displayed panel.

� Maximum IOSLIB dictionary size doubled to 64K.

� BIND option allows for left margin (like SCRIPT).

� Field attribute type Numeric added.

� FBLOCK support added (a general in-storage interface compatible with
EXECLOAD).

 Summary of Changes for Version 3 vii

� Attribute type Alignment introduced to increase the number of fields which can be
placed on a line by compressing adjacent attribute bytes (Attributes compress) or
dynamic adjustment after variable substitution (Variables float).

� Function character V can now be used to suppress variable substitution.

� Attribute type Scope and .jx Set Mask added to enable the use of character attributes.

� Attribute type Dynamic added to dynamically

1. Redefine field attributes
2. Assign character attributes to the individual characters within a field and
3. Position the cursor under any character within a field.

� The GRAF option added to allow displaying panels on terminals other than the
virtual console (ATTACHed or DIALed).

� Attribute type Etmode added to provide DBCS support (limited).

� STEM option and accompanying FROM and FOR options added. (Similar to
EXECIO.)

viii Display Input/Output Facility Version 3 PDOM

 Chapter 1. Introduction

Display Input/Output Facility Version 3 (DIOF-3) is designed to use the functions
provided by the family of IBM 3270 Display Stations, without the need to program them.

Potential users are end users writing simple full-screen EXECs and applications or system
programmers writing more complicated application programs and online Help facilities.1

Input may be static, for example, a Conversational Monitor System (CMS) file, or created
dynamically in virtual storage (either directly by, for example, an Assemble program or
indirectly in the form of REXX symbols). Most users will be able to find a way to
utilize the capabilities of DIOF-3 to suit their needs.

It is important that new users do not attempt to learn all the functions available until the
need arises. Becoming aware of the various functions provided and referring to the
manual later for specific functions as they are needed is an effective way to familiarize
yourself with the program.

DIOF-3 is primarily written to display data entry panels, also referred to as (selection)
menus. A panel can be used to give explanations or to ask the operator to specify
required parameters to perform a function. Normally, it will be a combination of the two.

With DIOF-3, you can set up a panel and, using the screen, ask questions and provide
information at the same time. You can inform operators about input errors by inserting
an error message in the panel and positioning the cursor in the field in error. Asking
questions and providing information in this way is usually clearer and thus easier to do,
and results in fewer input errors than with a line-by-line mechanism.

1 Where the scope of DIOF Version 1 ranged from simple user EXECs to complex system applications, today it seems
appropriate to redirect complex (high-end), long-term applications requiring full compliance to IBM SAA to more suitable
programs such as IBM’s ISPF and/or GDDM/REXX. For Help-type applications (displaying Help panels), the CMS native
HELP function would be the correct choice.

Where these programs provide significantly more function (such as dialog management in the case of ISPF), they also require
more effort to implement. When applications do not need to fully comply to IBM’s SAA, such as small, short-term (user)
applications and special applications, users will find it beneficial to use DIOF. The short learning curve will quickly allow
users to write small full-screen applications, where adding a full-screen interface would otherwise not have been considered.

 Chapter 1. Introduction 1

 Chapter 2. Understanding DIOF-3

The following steps form the basic flow of DIOF-3:

1. Read caller’s input

2. Process and format the input according to the caller’s specifications

3. Display the result and wait for an interrupt, normally an operator action

4. Process operator input and pass it to the caller according to his/her specifications

5. If there is more than one panel of caller’s input, return to step 1.2 If there is no input
left, return to the caller.

2.1 Input to DIOF-3
There are two types of input:

1. Input from a program using the facility.

2. Input from a panel with data entered by a terminal operator.

Input to DIOF-3 from the calling program may be:

� A CMS file
� An array of REXX variables
� A CMS program stack
� A block of virtual storage using one of the two in-storage interfaces.

or a combination of these.

All types of CMS files can be used as input for DIOF-3. However, it never reads more
than the first 160 characters of a record. These characters are then formatted and as
many as can fit on a screen row (line) are displayed. Because the first position on a row
is used by DIOF-3, this will be the screen width minus one character. If the length of a
formatted line exceeds the screen width, the output line is truncated. This may lead to
incomplete fields, for example, input fields defined with the cursor skip attribute which
do not skip. It is the user’s responsibility to prevent such an occurrence.

Sometimes it is necessary to read more characters than can fit on a screen row. An
example is an input line containing variable names that are longer than their values. The
input line may be 100 characters, but after substitution of the variables, there may only be
60 left.

Input to DIOF-3 consists of three types of records:

1. Records that (with or without formatting) that are to be displayed.

2. Records that contain a label.

A record is considered a label record if it starts with a semicolon (;) in column 1.
(For further details refer to Chapter 4, “Running the IOS3270 Program” on page 8.)

2 Since DIOF-3 is primarily designed as a panel manager and not as a dialog manager, it is not advised to use this mode of
operation for data entry panels. For data output panels, there are some primitive scrolling capabilities.

2 Display Input/Output Facility Version 3 PDOM

3. Records that contain functional information.

A record is considered a function record if it starts with a period (.) in column 1. A
function record contains function characters, discussed in 4.4, “Function Characters”
on page 14.

Records with a semicolon (;) or a period (.) in column 1, are normally not displayed on
the screen.

2.2 Output from DIOF-3
There are two types of output:

� Output displayed on a screen from the program
� Output from the screen entered by the operator.

All rows of a supported IBM 3270 Information Display System screen can be used. The
row length is either one or two characters less than the screen width, depending on the
type of the field that is displayed in the next to the last column in a row.

No default input area is created, and pressing the ENTER key is the signal to continue
processing.

Output from DIOF-3 from data entered on panel input fields may be returned as:

 � Variables
� User’s virtual storage
� A CMS program stack
� A CMS file.

or a combination of these.

 2.3 Error Messages
The IOS3270 program does not generate error messages. Severe error conditions are
reflected to the caller as return codes, explained in 4.3, “Return Codes” on page 14.
Unknown, invalid or conflicting parameters, options, or function characters are simply
ignored and processing continues.

 Chapter 2. Understanding DIOF-3 3

 Chapter 3. Installation

This chapter gives a step-by-step description of how to install Display Input/Output
Facility Version 3 (DIOF-3).

 3.1 Installation Prerequisites

 Machine Requirements
This program is designed to operate on an IBM System/370, 30XX, or 438X host
processor. Display terminals supported are all terminals compatible with 3270 data
stream display. The APL/TEXT character sets are not supported.

 Programming Requirements
Display Input/Output Facility Version 3 is written for assembly by Assembler-H Version
2 (5668-962) and is designed to operate with VM/SP CMS (5664-167) Release 4 or 5 or
VM/XA SP (5664-308) Release 2 with CMS Release 5.5 (Bimodel CMS). Later versions
or releases could affect the functioning of the program. This program, as distributed,
does not require compilation.

Note: Since its creation for VM/370 Release 3, IOS3270 has run on all versions of
VM/CMS, including VM/XA-MA/SF and VM/PC. Installation on earlier versions of
releases is still possible, but may require minor source code modifications. Specifically,
the reference of CMS control blocks added in later versions will have to be handled.
Only installation on the above-mentioned programs is supported.

 3.2 Dependencies
The IOS3270 program has the following dependencies:

1. The data returned from the DIAGNOSE 24 instruction to determine the terminal type
and model. This data has changed twice since the introduction of VM/370 Release 5,
to introduce new codes for the IBM 3278/79 type screens. The last change was
introduced with VM/370 Release 5, PLC 7.

2. The layout of the EXEC interpreter’s (DMSEXT) work area. As there is no external
interface to this area, the DSECT reflecting it must be corrected every time it
changes. Since DIOF-3 was written, it has changed with the introduction of
VM/370, Release 3, PLC 20, and with the introduction of BSEPP 2.1 (VM/370,
Release 6, PLC 1).

3. The EXECCOMM interface introduced with VM/SP Release 2. It has changed with
the introduction of VM/SP Release 3 to add support for REXX symbolic names.

4. The data returned from the DIAGNOSE X'8C' instruction to determine the terminal
characteristics and features. Introduced with VM/SP Release 3.

4 Display Input/Output Facility Version 3 PDOM

 3.3 Machine-readable
DIOF-3 is distributed on a single reel of tape. The files on the tape can be loaded by
mounting the tape on an appropriate tape drive, accessing the required disk as A-disk and
issuing the TAPE LOAD command. The tape contains two files, separated by a tape
mark.

 File 1
IOS3270 MODULE A2
IOS3270 XMOD A2
IOS3270 IOS3270 A2
IOSPAGE IOS3270 A2
IOSLIB MODULE A2
IOSLIB IOS3270 A2
IOSDYNAT EXEC A2

 File 2
IOS3270 ASSEMBLE A1
IOS3270 AUXIOSPL A1
IOS3270 AUXIOSLO A1
IOS3270 TEXT A1
IOSLIB ASSEMBLE A1
IOSLIB TEXT A1
GDCSS ASSEMBLE A1
GDCSS TEXT A1
GOODEND ASSEMBLE A1
GOODEND TEXT A1
GOODIES ASSEMBLE A1
GOODIES TEXT A1
INSTGOOD EXEC A1
IOSEXEC EXEC A1
IOSEXEC2 EXEC A1
IOSREXX EXEC A1
IOSIVP1 EXEC A1
IOSIVP2 EXEC A1
IOSIVP3 EXEC A1
IOSIVP4 EXEC A1
IOSIVP5 EXEC A1
IOSIVP6 EXEC A1
IOS CNTRL A1

The files from File 1 should be placed on a disk that is available for those persons
authorized to use DIOF-3, for example, the system extensions disk, the Y-disk. The files
from File 2 are not needed to run DIOF-3 and may be placed elsewhere for reference
and/or maintenance.

Installation is now complete.

Successful installation can be tested by entering IOS3270 ?, which displays a short online
user’s guide.

 Chapter 3. Installation 5

The file IOS3270 IOS3270 contains this guide and may be used as an example of an
input file. This will test the functional parts of DIOF-3 without using the variable
interface.

If the test runs error-free, installation has been successfully completed.

If you wish to run IOS3270 from a discontiguous shared segment (DCSS) (called saved
segment on VM/XA), refer to Appendix D, “The GOODIES/GDCSS Package” on
page 53 for installation. To improve performance, DCSS installation is highly
recommended.

Notes:

1. A number of EXEC files are available to further test the functioning of the program.
They can also be used as examples of how the various functions can be used. These
files were used during the development of the functions which they address and do
not necessarily comprise complete working programs. None of them need to be
executed to complete the installation process.

IOSEXEC EXEC Tests the EXEC variable interface.

IOSEXEC2 EXEC Tests the EXECCOMM variable interface with EXEC 2.

IOSREXX EXEC Tests the EXECCOMM variable interface with REXX.

IOSIVP1 EXEC Demonstrates the possibilities of the dynamic attribute
functions.

IOSIVP2 EXEC Demonstrates the possibilities of attribute type Alignment.

IOSIVP3 EXEC Demonstrates the possibilities of attribute type Etmode.

IOSIVP4 EXEC Demonstrates the possibilities of the STEM, FROM and FOR
options.

IOSIVP5 EXEC Is a variation of IOSIVP4.

IOSIVP6 EXEC Is a variation of IOSIVP4.

2. The PF key settings for the online user’s guide are defined in file IOSPAGE
IOS3270. If required, this file can be updated to provide those PF key settings that
are generally used on your system.

 3.4 Modifying DIOF-3
DIOF-3 was written for assembly by Assembler-H Version 2 (5668-962).

The IOS3270 source is distributed as an Assemble file and optional update files. The
update files have a file type of FxxxxHAX, where xxxx refers to a unique IOS3270
update number. The update files can be merged with the Assemble file by using the
CMS UPDATE command as described below. For further details on the UPDATE
command, refer to the IBM VM/SP CMS Command and Macro Reference Manual,
SC19-6209, or the IBM VM/XA SP CMS Command Reference Manual, SC23-0354.

To regenerate the IOS3270 MODULE, the following CMS command sequence can be
used:

6 Display Input/Output Facility Version 3 PDOM

 UPDATE IOS327� ASSEMBLE A1 IOS CNTRL A (CTL
 GLOBAL MACLIB DMSSP CMSLIB DMSSP55 OSMACRO
 HASM $IOS327�
 RENAME $IOS327� TEXT A IOS327� = =
 INSTGOOD IOS327�

The DMSSP55 MACLIB is the (renamed) DMSSP MACLIB as distributed with VM/XA
SP Release 2. In order to allow the creation of an execution module that runs on all
supported releases, it is necessary to access the VM/XA SP DMSSP MACLIB as
indicated (renamed to DMSSP55 MACLIB) and perform compilation on a VM/SP
Release 5 system. Compilation cannot be performed without the VM/XA SP macros.

The HASM command is to be substituted by a command (or command sequence),
invoking Assembler-H.

The IOSLIB MODULE can be regenerated by issuing the following CMS commands:

 GLOBAL MACLIB DMSSP CMSLIB DMSSP55 OSMACRO
 HASM IOSLIB
 LOAD IOSLIB (CLEAR
 GENMOD IOSLIB MODULE A2

 Chapter 3. Installation 7

Chapter 4. Running the IOS3270 Program

This chapter describes how to invoke the IOS3270 program and gives a step-by-step
explanation of all function characters used to control program operation. At the end of
this chapter, some performance considerations are mentioned.

4.1 Invoking The IOS3270 Program
The IOS3270 program is called with the following parameter list:

IOS3270 [fn[ft[fm]]] [;sl1[;el1[... ;eln]]][(options[)]]

Where:

fn Is the file name of the file to be displayed.

ft Is the file type of the file to be displayed. The default file type is IOS3270.

fm Is the file mode of the file to be displayed. It defaults to *, which results in
the first file found with specified file name and file type in the standard CMS
search order.

sl1 Is the first start label where processing must begin.

el1 Is the first end label where processing must stop.

eln Is the nth end label.

When processing a CMS file, start and end labels may be specified. A start label
defines the point from which input records have to be processed. An end label defines
the point where processing must be stopped.

Labels may be specified in upper- or lowercase, must start with a semicolon (;), and are
limited to a length of eight (8) characters, including the semicolon. If a start label is
specified, but no end label, the first label found after the start label is treated as if it were
the end label.

Up to ten (10) pairs of start and end labels may be specified.

You may use the same name for start and end labels if they occur several times in the
file. To find a label, IOS3270 simply scans the input from the current line towards the
end of the file. For this reason, a start label that is located in front of the previous end
label will not be found.

If no file name is specified when the IOS3270 program is called, it assumes the input is
in the CMS program stack.

Note: If the input file is EXECLOADed, IOS3270 will automatically process the file
from storage if the file mode is either not specified or specified as “*”. If a file mode is
specified, the file will be read from disk.

8 Display Input/Output Facility Version 3 PDOM

 4.2 Options
Options are divided in two groups, a preferred group and a compatibility group. The
latter is not recommended to be used by new users because similar function can now be
achieved by using native CMS services. Another category of compatible options was
needed to overcome the limited possibilities of EXEC. With the power of REXX, they
do not appear to be required anymore.

 Preferred Group
ALARM Sounds the audible alarm once on display of the first panel.

BIND n Shifts the output n columns to the right. In combination with the
UPDATE option, this allows for pop-up windows leaving data
displayed in columns 1 through n.

FOR numvar Is the number of variables to be processed. To be used in
combination with the STEM option. The default is to process the
number of variables indicated by the variable stem0.

FROM varno Is the number of the first variable to be processed. To be used in
combination with the STEM option. The default is to start
processing variable stem1.

GRAF [c]cuu Specifies that device ccuu is to be used to display the output. The
specified device designates an ATTACHed or DIALed terminal.
The default is to use the console. If specified, the address should
not be the address of the console.

LIB ln Specifies that the input file name refers to a member in an IOSLIB.
Where ln is the file name of the IOSLIB. The file type is always
IOSLIB in this case and does not have to be specified. The
member to be selected is specified by fn in the parameter list. An
IOSLIB can be built and maintained with the IOSLIB program,
discussed in Appendix C.

NOCLEAR Does not clear the screen on entry. If called without the
NOCLEAR option, IOS3270 will first clear (erase the contents of)
the screen and then write the new panel. If already in full-screen
mode (from a previous call to IOS3270 or another full-screen
program), there is no need to clear the screen first. Clearing leads
to unnecessary and irritating blinking because VM always wants to
write its RUNNING status after clearing the screen.

Note: When running in full-screen mode, it is upsetting to be
thrown out of full-screen mode when an ATTN key is pressed and
CP wants to deliver some messages. Also, once in full-screen
mode, the operator does not know there is a message waiting until
he/she presses a key. This is not only an IOS3270 problem, but is
also true for any full-screen function, for example, XEDIT. Both
problems can be prevented by using the CP TERM BREAKIN
GUESTCTL command.

NOSCREEN Specifies that IOS3270 should not check the existence (and
features) of a physical device. Instead, a default screen size of 24
rows of 80 columns is assumed. All features used in a panel
definition are assumed to be present.

 Chapter 4. Running the IOS3270 Program 9

To be used in combination with the SCRIOSD option.

NOQUIT Prevents checking for the IOS3270 quit function. See 4.11,
“Special Values In Fields” on page 36.

PA1 {EXIT | IGNORE}
Specifies the action taken when the PA1 key is pressed. The
default action is no action. CP puts you into CP READ (console
function mode). You can now enter CP commands. Use the CP
BEGIN command to return to IOS3270.

EXIT Causes IOS3270 to terminate immediately.
&IOSK is set to PA1.

IGNORE Resets the SYSTEM (INPUT INHIBITED on
3277) indicator and sounds the audible alarm.

Notes:

1. Because the screen does not return input data when the PA1
key is pressed, all input entered will be lost.

2. From VM/SP Release 5 onward, the CP TERMINAL
BRKKEY should not be assigned to PA1 in order for this
option to work as specified.

PA2 {EXIT | SUBSET}
Specifies the action taken when the PA2 key is pressed.

The default action is no action. The SYSTEM (INPUT
INHIBITED on 3277) indicator is reset and the audible alarm
sounds.

EXIT Causes IOS3270 to terminate immediately.
&IOSK is set to PA2.

SUBSET Places the virtual machine in CMS SUBSET mode.
Use the CMS RETURN command to return to
IOS3270.

Note: As the hardware does not return input data on pressing the
PA2 key, all input entered will be lost.

SCRIOSD Indicates that no data is to be displayed. Instead, the complete
3270 data stream is placed in the variable &IOSD. The data stream
will be based on the features supported by the console or the
specified output device (using the GRAF option), unless the
NOSCREEN option is also specified.

STEM xxxx Indicates that the variables xxxxn are to be used to supply input
data. The variables used are a concatenation of the specified stem
and a number that corresponds to the number of input lines. The
special variable xxxx0 must be set to the number of input lines.
The FROM and FOR options may be used to explicitly specify the
number of the first variable and the total number of variables to be
processed. The default is to start with variable xxxx1 and process
the number of variables indicated by xxxx0. The maximum length
variable name is 8 characters.

Note: The seemingly restrictive short length of the variable name
can be extended by using a symbolic tail, for example, STEM
stem.t. , where t is defined dynamically during execution. For a

10 Display Input/Output Facility Version 3 PDOM

detailed example using this technique, refer to Appendix F, “The
IOSIVP6 EXEC” on page 61.

TIME n Leaves the panel displayed for a maximum of n seconds.

Return to the caller is either by operator request, for example
pressing ENTER, or when the specified time has elapsed.

If return to the caller is by operator request, the effect is the same
as when the TIME option is not specified.

If return to the caller is made when the specified time has elapsed,
&IOSK is set to TIME. All data entered by the operator is returned
to the caller, but care should be taken not to handle this as valid
data. The operator may have been interrupted by the elapsing timer
and had no chance to complete his/her input.

Notes:

1. The TIME option performs a CP SET TIMER REAL/ON
sequence on VM/SP and VM/XA systems running CMS
Release 5 or lower.

2. When the HNDEXT option is used in combination with the
TIME option, the specified routine is not given control when a
timer interrupt occurs.

UPDATE Updates an existing full-screen.

Implies option NOCLEAR. If the display is not in full-screen
mode, IOS3270 exits with a return code of 142 (X'8E').

Notes:

1. Use the .L function to start overwriting the screen at a specific
line.

2. Use the BIND option to start overwriting the screen at a
specific column.

3. When using this function, be prepared to re-construct the
complete panel when you get a 142 return code. IOS3270 is
not aware of any data on the screen other than what it just
wrote, including input fields. Data entered in input fields not
created by the last write is lost.

VERSION Returns the following information about the current level of
IOS3270 in &IOSD (REXX only):

 IOS327� V3.� R5. ppp. ll mm/dd/yy

It lists the version number, the release number, the PLC number
(number of the last fix), the local update number (number of the
last local update), and the compilation date. It can be used to test
whether functions included only at a certain level are available.

Note: Other versions of IOS3270 that do not support the
VERSION option will yield return code 1.

rrcc[c] Is a four- or five-digit decimal number specifying the cursor
address, where rr is the row number and ccc is the column number.

The default cursor position is at the first defined input field or at

 Chapter 4. Running the IOS3270 Program 11

the top left position on the screen (row 1 column 1), if there is no
input field.

If rr is 00, ccc specifies that the cursor is to be set at the ccc’th
input field.

 Compatibility Group
HNDEXT Specifies that the user wants to handle external interrupts.

This option can only be used in combination with the in-storage
interface. For a detailed description, refer to Section 4.14, “Using
The IOS3270 Options HNDEXT and HNDINT” on page 42.

Due to the restructuring of external interrupt handling on Bimodal
CMS systems (CMS 5.5), this option may not work under certain
conditions. Only those interrupts will be handled for which no
specific external interrupt handlers were specified.

See also the TIME option.

HNDINT Specifies that the user wants to handle I/O interrupts other than
from the console.

This option can only be used in combination with the in-storage
interface. For a detailed description, refer to Section 4.14, “Using
The IOS3270 Options HNDEXT and HNDINT” on page 42.

Because the full-screen I/O logic uses the CMS console manager
(when running on VM/SP Release 5 or later), IOS3270 no longer
handles I/O interrupts. Therefore, the HNDINT option is no longer
supported when running on CMS Release 5 or later.

KEEPFILE (fn [ft [fm]])
Specifies a file ID to be used by the keep function.

The default file ID is $IOS3270 $KEEP$ A1.

Note: This option does not force the .K function or override the
NOKEEP option.

LIFO Stacks input fields LIFO (default is FIFO).

This option only applies to those input fields that are specified to be
returned in the CMS program stack.

NOKEEP Does not use saved input fields.

It may seem unnecessary to carefully save input fields and not use
them, but sometimes it is not; for example, for users who wish to
start a dialog with an empty panel but also wish to re-display the
input if an error is made. If input fields are specified as variable
names, this is done automatically. If not, this option can be used
selectively.

NOWAIT Does not wait for operator action; exits immediately after writing to
the screen.

This option may be used to display a panel for a certain period and
continue processing without the need for operator intervention.

12 Display Input/Output Facility Version 3 PDOM

Note: This option is for compatibility with earlier versions of
IOS3270. The TIME option is suggested to accomplish this
function when writing new applications.

QUERY Returns device-dependent information concerning the console, using
DIAG X'8C'. For use with REXX or EXEC 2, it returns the
following string in &IOSD:

www hhh [HIG] [COL] [PSS]

where:

www Defines the screen width, number of columns in a row.
hhh Defines the screen height, number of rows.
HIG Indicates that extended highlighting is supported.
COL Indicates that color is supported.
PSS Indicates that programmable symbol sets are supported.

The following REXX procedure can be used to interpret the
QUERY reply:

/� Subroutine or stand-alone - twa �/
qry_d8c:
 /� Query the console using DIAG X'8C' in IOS327�.

On return, the following variables have been set:
d8c_width - www screen width (#of columns)
d8c_height - hhh screen height (#of rows)
d8c_highl - 1(�) extended highlighting (not)

 supported
d8c_color - 1(�) color (not) supported
d8c_symbl - 1(�) PSS (not) supported

 �/
 Address Command 'IOS327� (QUERY'
 Parse Var iosd d8c_width d8c_height .
 d8c_color=Sign(Find(iosd,'COL'))
 d8c_highl=Sign(Find(iosd,'HIG'))
 d8c_symbl=Sign(Find(iosd,'PSS'))
 Parse Source . how .
 If how='COMMAND' Then Say iosd
 Return

Notes:

1. This option is for compatibility with earlier versions of
IOS3270. Using the REXX function Diag(8c) is suggested to
accomplish this function when writing new applications, as
follows:

/� Set major console characteristics �/
 d8c=Diag(8c)
 scr_cols =C2d(Substr(d8c,3,2))
 scr_rows =C2d(Substr(d8c,5,2))
 scr_color=Bitand('8�'x,Substr(d8c,1,1))='8�'x
 scr_highl=Bitand('4�'x,Substr(d8c,1,1))='4�'x
 scr_pss =Bitand('2�'x,Substr(d8c,1,1))='2�'x

2. As REXX does not allow a device address to be specified, the
QUERY function is still useful for ATTACHed or DIALed
devices.

 Chapter 4. Running the IOS3270 Program 13

 4.3 Return Codes
1 Specified input not found.
2 Unsupported console type or disconnected.
3 Display I/O error. The usual cause of this type of error is invalid data in panel

variables, in many cases originating from a (corrupted) GLOBALV file. All
code points from X'00' through X'3F' and X'FF' are 3270 control characters
and should be avoided as data.

4 “Quit” found in an input, selector light pen or PF key field
5 Insufficient virtual storage.
50 Input stacked. (Other return codes may have been added).
142 The screen was not in full-screen mode while trying to modify it, using the

UPDATE option.
1xxx xxx is the return code from FSREAD reading input file. (Other return codes

may have been added).

 4.4 Function Characters
You may insert function characters in the input stream to control the processing of
IOS3270 in a similar fashion to Document Composition Facility (DCF) control words.
To indicate that a line contains these characters, it should start with a period (.) in column
1. The first blank on a function line (which is not part of a function) ends the scan for
other function characters on that line.

Function characters may be any combination of upper- and lowercase alphabetics
separated by a semicolon (;). After the first function character, semicolons and periods
may be used in any combination or left out. The following are all valid notations:

.p;.s .p.s .p;s .ps

Function characters with an undefined number of parameters, (for example, .D, .F, .I, .J
and .V) must be specified as the last function character on a line.

In most cases, parameters for function characters can be specified as variables. However,
substitution of these variables is restricted to one token only. If, for example, the variable
&FILE has the value TEST FILE A1, only the word TEST is substituted. Exceptions to
this are the functions .V and .&vname.

Like options, function characters are divided in two groups, a preferred group and a
compatibility group. The latter is not recommended to be used when writing new
applications. The primary use of the functions in the compatibility group was to
overcome the limitations of EXEC. With the power of REXX, they do not appear to be
required anymore.

 Preferred Group
 Alarm sounding

.A

The audible alarm sounds whenever this panel is displayed.

14 Display Input/Output Facility Version 3 PDOM

This differs from the ALARM option in that it sounds the alarm every time the panel is
rewritten, whereas the ALARM option only sounds the alarm on the first write.

 Bottom title

.B

The next input line is used as a bottom title and is displayed on the last line of this and
every following panel.

A bottom title is automatically displayed intensified (brighter), unless .C is active and .H
not. Although you can change a bottom title by inserting another .B, there is no way to
completely reset it.

To insure that a line is displayed on the last row of the screen, you may also use .L-1.

 Ctlchar activation

.C

Indicates the start of data to be scanned for field definition or control characters
(Ctlchars). A Ctlchar marks the start of a field.

These characters and their functions are:

$ Input field normal intensity
¬ Input field intensified
Input field intensified with automatic skip
¢ Input field non-displayed
@ Selector light pen field
! Selector light pen field intensified
% Intensified field
& Variable name.

The characters shown above are the default characters used. They can be reset or
redefined with the .JX and .J functions. In addition, the .JX function allows you to define
field definition characters with attributes not provided by the default characters.

A field is delimited by an end delimiter. The default end delimiter is a blank (). The .E
function may be used to change the ending delimiter.

A dash (-) in a field is translated to a null (X'00'). This allows you to chain fields and
allows the 3270 insert mode function to be used in input fields. Also, see the description
of the .E function below.

The next function record (a line starting with a period) resets the .C function. It doesn’t
matter whether anything else is on the line after the period or not.

Note: Substitution of variables in function records is carried out regardless of a .C
setting.

 Chapter 4. Running the IOS3270 Program 15

 Ending delimiter

.Ex

Defines ending delimiter for fields.

x is the character defining the end of a field. If the delimiter is not a blank (), dashes
(-) are not translated to nulls. Using this function allows you to have blanks and dashes
in a field, which is particularly useful in input fields.

If an input field is in the user’s virtual storage (using the in-storage interface to
IOS3270), if the input is to be returned to the user’s virtual storage, and if the ending
delimiter is not a blank (), then leading blanks are not deleted. No check is made for
any special characters or strings, like > or quit. In addition, the special character " is not
recognized. This effectively means that input fields are returned to the caller exactly as
they are typed in by the operator.

To make sure that the operator cannot influence the length of an input field, a
hexadecimal value that cannot be entered by the operator should be used as the delimiter
character. A useful value normally is in the range X'FA' to X'FE'.

For example, the input stream:

 .ce!
 Address:%===>!¬Toystreet, 3461 GP Joytown, Funnystate -!

will generate the following output line:

 Address: ===> Toystreet, 3461 GP Joytown, Funnystate -

Note that there are two fields which are both ended by the specified ending delimiter (!).

Function key setting

.F[2] [func1[func2 [...[funcn]]]]

Sets program function (PF) keys.

The .F function must be the last one on a function line.

func1, func2, ... funcn are assigned to PF keys 1-n, respectively. Functions are limited to
eight characters. All function fields may be specified as variable names. All PF key
functions must first be cleared, then set. The first field is set into PF key 1, the second
field is set into PF key 2, and so on.

To leave a particular PF key unassigned, use the percent (%) character. For example, the
input stream:

 .f funca % % funcb

would only set PF key 1 and PF key 4 and clear all other PF keys.

To set PF keys 13 to 24, specify .F2. The two groups of PF keys (1-12 and 13-24) are
cleared and set independently.

16 Display Input/Output Facility Version 3 PDOM

If IOS3270 is called from an EXEC, PF key usage is returned as follows: &IOSK is set
to the associated PF key used and &IOSD contains the string as specified with the .F
function.

If IOS3270 is not called from an EXEC, the string is put in the program stack as a
separate line. An exception to this is described in 4.12, “Invoking IOS3270 with
In-storage Data” on page 36.

If the .Y function is used, input fields are also processed.

Note: If none of the PF keys 13 to 24 are set, the functions of PF keys 1 to 12 are
automatically assigned to them. In this case, &IOSK is set to PF01 when PF key 13 is
used. So, if PF keys 13 to 24 are to be handled exactly like PF keys 1 to 12, you just
code as if you only had to handle PF keys 1 to 12. Mapping of PF 13 to PF 1, and so
on, is automatic and transparent.

High-intensity display of lines

.H[n]

Displays next line(s) intensified.

n specifies the number of lines to be displayed (with a higher intensity, (brighter)). If not
specified, only one line is displayed intensified. Substitution of fields is done depending
on the .C setting.

On color screens, intensified lines (or fields) are displayed in white, or with the attributes
(color, highlighting, and programmable symbol set) specified in the last .JX Set
High-intensity function. This allows you to define panels that look good on both color
and monochrome screens. For example, the input lines below display the error message
(&msg) in red on a color screen and intensified on a monochrome screen.

 .jx Set Norm col=yel, High col=red PS=Bold
 Please complete this questionnaire
 .ch
 &msg

In addition, on screens equipped with programmable symbol sets, the character set with
an LCID of B is used, if loaded. Data with normal intensity is displayed in yellow on a
color screen.

 Imbed

.I [IOS3270 parameter list]

Imbeds input data.

The imbed function must be the last one on a function line.

Parameters and options may be specified as variable names. Recursive imbed is
supported.

A typical use of this function is to imbed PF key functions and titles that are to be the
same on many panels. If they must be changed, this need only be done once, in the

 Chapter 4. Running the IOS3270 Program 17

imbedded file. An example can be seen in the file IOS3270 IOS3270, which contains a
short online user’s guide, displayed when IOS3270 ? is entered. The imbedded file,
IOSPAGE IOS3270, contains the PF key settings and the bottom title.

Note: If the data to be imbedded cannot be found, IOS3270 just continues processing.
This allows relevant information to be displayed, depending on the data available to a
particular operator. The same can be accomplished using the .Q and .R functions, but
with .I it is not necessary to keep track of the number of lines. The .I function also
allows for function records, which are not processed with the .Q and .R functions.

 Extended define

 .JX Set Normal-intensity option1
 High-intensity option1
 Ctlchar c option1 option2
 Mask option3

 Option1:
 OFF
 Alignment=
 Color=
 Etmode=
 Highlight=
 PSid=
 ,

 Option2:
 Dynamic
 Scope=
 Type=
 ,

 Option3:
 n
 Reuse
 ,

Extended define.

The .JX function must be the last one on a function line.

The .JX function is designed to use the extended attribute support provided by most
newer model display stations. It is also used as a replacement for the .J function to
define field definition characters (Ctlchars) with attribute combinations not provided by
the .J function.

Operands

Set Normal-intensity
Defines the default attribute values to be used for data displayed with
normal intensity.

18 Display Input/Output Facility Version 3 PDOM

Only those attribute types defined will be set. Other previously defined
types remain in effect. Invalid attribute values cause the affected attribute
type to be set to the default value.

Example:

 .jx Set Norm col=red highl=rev

This will display data in reverse video red.

Set High-intensity
Defines the default attribute values to be used for data displayed with high
intensity (lines with .H and fields with type=high).

Only attribute types that are defined will be set. Other previously defined
types remain in effect. Invalid attribute values cause the affected attribute
type to be set to “not specified”.

Attribute types that are not specified are inherited from the last .JX Set
Normal-intensity.

Example:

 .jx Set Norm col=yel highl=rev, High col=red PS=Bold

This will display data with a high-intensity attribute in reverse red, using a
character set with an ID of B, if loaded. Note that the highlight value is
taken from the Set Norm.

Set Ctlchar Defines a field definition character. When displayed, the field following
this character has the attributes specified. Attribute types that are not
specified are inherited from the last Set Norm function or from the last Set
High function if the field has attribute typ=high.

Note that there is a difference here in not specifying an attribute type or
specifying a value of Default. Invalid attribute values cause the affected
attribute type to be set to “not specified”.

Example:

 .jx Set Norm col=yel, Ctl $ hig=und typ=(unp skip)
 .jx Set Ctl @ col=gre typ=unp
 Please enter input%==> $fld1 %==> @fld2

This displays the line Please ... in yellow. The characters ==> are
displayed in white. The word fld1 becomes an input field with a highlight
value of underscore, and the color is yellow. In addition, the cursor
automatically jumps to the next input field when the operator enters a
character in the last position of the field. The word fld2 becomes an input
field. The color is green.

Set Mask Specifies that the following input line is to be treated as a mask, changing
the attributes of the characters in the line following the mask that
correspond to the position of the mask characters. A mask consists of
Ctlchars which define the attributes that need to be applied.

Example:

 .jx Set Norm col=whi, Ctl @ col=gre
 .jx Set Mask
 @ @ @
 1 Help 3 End 7 Next

 Chapter 4. Running the IOS3270 Program 19

This displays the line 1 Help ... in white, except for the numbers, which
are displayed in green. For a detailed description, refer to 4.13,
“Specifying Character Attributes and Dynamic Attributes” on page 40.

Options

To aid reading, an equal sign (=) may be used to connect attribute type and value, for
example, col=red or typ=(unp inv ski).

Multiple Set functions may be separated by a comma (,), for example:

 .jx Set Norm col=pin, Ctl # col=yel

OFF Resets all extended attributes to their default values, or resets a Ctlchar.

Alignment Defines output alignment, relative to the input data.

(May be omitted. Can be used to pair with a closing parenthesis.
As multiple Alignment keywords may be specified, a closing
parenthesis is required when followed by other JX Set functions.

Attributes Defines output alignment for attribute bytes.

Align Explicitly aligns attribute bytes with input data.

Compress Compresses attribute bytes when they are preceded
by another attribute byte or a blank (X'40'). This
allows you to separate two fields by only one
character instead of at least two.

Off Specifies that alignment is to be with input data (if
defined with Set Norm or Set High) or is to be
inherited from Set Norm or Set High (if defined with
Set Ctl). This is the default setting.

, May be used to separate multiple Alignment keywords.

Variables Defines output alignment for variables with a length denominator,
as used in input fields.

Align Explicitly aligns with input data.

Float Specifies that an input field will occupy the number
of characters specified by the length denominator.
The default number of characters is equal to the
length of the variable name + 1.

Off Specifies that alignment is to be with input data (if
defined with Set Norm or Set High) or is to be
inherited from Set Norm or Set High (if defined with
Set Ctl). This is the default setting.

) Marks the end of Alignment specifications. May be omitted if
there is no data is following on this line.

Color Defines the color value. Valid values are:

 Blue
 Default
 Green
 Pink
 Red

20 Display Input/Output Facility Version 3 PDOM

 Turquoise
 White
 Yellow.

See also 4.15, “Color Aspects” on page 45.

Dynamic Specifies that field attributes, character attributes and a cursor position may
be specified dynamically. For a detailed description, refer to 4.13,
“Specifying Character Attributes and Dynamic Attributes” on page 40.

Etmode Specifies whether the operator is allowed to create DBCS subfields in an
input field (SO/SI creation).

Yes Enables SO/SI creation by operator. Used to selectively enable
fields.

No Disables SO/SI creation by operator. Used to selectively disable
fields which are globally enabled with .jx Set Norm or Set High.
This is the default setting.

Notes:

1. DBCS validity checking is not performed by IOS3270. It is the user’s
responsibility to ensure that DBCS subfields are properly enclosed in
SO/SI. (A DBCS subfield is a DBCS field (string) enclosed by SO/SI.)
DBCS fields requiring truncation are not validated and may give
unpredictable results. DBCS subfields requiring truncation are truncated
at the SO.

2. Output containing DBCS subfields is handled automatically.

Highlight Defines the highlight value. Valid values are:

 Blink
 Default
 Reverse-video
 Underscore.

PSid Defines the Local Character set ID (LCID) of the symbol set to be used.

This may be either a programmable symbol set (RWS) or a read-only (ROS)
character set, for example, PSid=1 for APL/Text. The ID can be specified as
a single character, for example, B, or as a three-digit decimal number, for
example, 194. If specified as a single character, the value will be ORed with
X'40' (for alphabetic characters this is the uppercase value of a character).
This means that b refers to the same set as B.

If a character set with the specified ID is not currently loaded, the default
character set is used.

Notes:

1. A symbol set ID can be attached to a programmable symbol set when it
is loaded. Loading of programmable symbol sets is not supported by
IOS3270. The Graphical Data Display Manager (GDDM) function
PSLSS(C) may be used to do this.

2. Since an ID can only be either a single character or a three-digit numeric
value, you are allowed to extend the definition somewhat to make it
more readable. Suppose you have loaded a character set BOLD with an
LCID of 194 and a set SCRIPT with an LCID of 226. You can refer to
these sets by PSid=194 and PSid=226, or PSid=B and PSid=S. However,

 Chapter 4. Running the IOS3270 Program 21

this is not very readable. Using a notation PS=194-Bold, PS=B-Bold or
simply PS=Bold (PS=226-Script, PS=S-Script, PS=Script) makes it a lot
easier to quickly see what is actually wanted. Note that this example
only works because B=194 (S=226).

Scope Defines the scope of the attributes to be applied.

Character Specifies that character attributes should be used.

Field Specifies that field attributes should be used. This is the default
setting.

Type Defines field attributes.

(
May be omitted. Can be used to pair with a closing parenthesis.

Detectable
Defines the field as a selector light pen field. (See 4.5, “Defining
Selector Light Pen Fields” on page 32.) To ease the use of the
Cursor-Select key, define Tab as well so the operator can make
use of the Tab keys.

Escape
Defines an escape character. The character following the escape
character is unconditionally displayed on the screen. Use an
escape character if you want to display a Ctlchar. You can also
use the escape character to display a period (.) or semicolon (;)
in column 1.

High-intensity
Displays the field with a higher intensity (brighter). If extended
highlighting is also specified and supported by the display, the
high intensity value is ignored.

Note: Intensity and highlighting are easily confused:

Intensity is supported only on monochrome, but emulated in
white on color screens. Binary value: high|low. In IOS3270, it
is specified with H for lines and with .JX Set Ctl ... typ=high
for fields.

Highlighting is supported on most newer type display stations,
color or monochrome. Values: underscore, blink, reverse-video.
In IOS3270, it is specified with .JX Set ... High=value for both
lines and fields. If specified and supported by the display,
intensity is ignored.

Invisible
Data in the field is not displayed. This value should be used for
input fields intended for password entry.

Nulls
Specifies that input fields are to be left padded with nulls
(X'00'). This allows the use of the 3270 INSERT MODE
function.

Nulls implies (forces) Unprotected.

22 Display Input/Output Facility Version 3 PDOM

NUMeric
Specifies that input fields should have the Numeric Lock Feature
activated, when installed.

NUmeric implies (forces) Unprotected.

Skip
When a character is entered in the last position of the field, the
cursor automatically jumps to the first position of the next input
field. To be used in combination with Unprotected.

Tab
Defines the field as an unprotected field to allow the use of the
Tab keys by the operator. This attribute is useful in combination
with Detectable to allow easy use of the Cursor Select key. It
can also be used in combination with other attributes or on its
own for programs using the cursor position as a selection
mechanism.

Note that although these fields are unprotected and thus can be
modified by the operator, they are never returned to the calling
program as being operator input fields.

Unprotected
Defines the field as an input field. For input fields which are
used to enter passwords, the attribute type Invisible should be
specified as well.

)
Marks the end of Type attribute values. May be omitted if there
is no data following on the line.

n Defines the number of input lines to which the mask should be applied. The
default is one.

Reuse Specifies that a previously defined mask should be used. The next input line
is not treated as a mask in this case.

Notes:

1. The .j and the .jx Set Ctlchar functions can be used in combination. Use of either
form resets previously defined attributes for the same character.

2. For input fields, the FILL character is omitted when:

� A FILL character '_' has been specified
� Extended highlighting is supported
� The field has been specified with a highlight value of underscore.

This reduces the amount of data sent to the screen and produces a clearer indication
on terminals supporting extended highlighting.

Automatic insertion of a FILL character _ for devices not supporting extended
highlighting, while underscore was requested, is deliberately not done to reduce the
amount of data sent to the screen.

3. Currently, only the first character of each token is inspected (except for NUMeric).
Thus, each of the following has the same effect:

 .jx Set Norm col=red high=rev PSid=i, Ctl � OFF

or

 Chapter 4. Running the IOS3270 Program 23

 .jx S nor c=r h=r PS=i, Ctl � o

or

 .jx s n c r h r p i , c � o

Besides the fact that the last notation is unreadable, it may be necessary to compare
more than one character in future versions. Therefore, you are advised not to invent
your own abbreviations. Using a minimum of three characters is strongly
recommended.

4. Depending on the VM Release it is running on, IOS3270 uses the following
techniques to find out about the features supported by the device.

VM/SP Release 3 and upward and all Releases of VM/XA SP: A DIAGNOSE
X'8C' is issued during initialization, providing information about the availability of
extended highlighting, color, and programmable symbol sets (PSS). When use of
programmable symbol sets is requested and PSS is available, a write structured fields
(WSF) query (using DIAG X'58' or CONSOLE) is issued to retrieve the symbol set
IDs (PSIDs) of the loaded programmable symbol sets (if any).

DIAG X'58' requires the console to be in full-screen mode before it allows the
WSF. This normally means the screen has to be cleared and an Erase Write has to
be issued before data containing extended attributes can be written.

Other Releases of VM/SP o r VM/370: Since DIAG X'8C' is not available before
VM/SP Release 3, IOS3270 has to get all the information itself, using the WSF
Query function. If the device is a 3277, no attempt is made to query, as these
devices don’t support extended attributes. If the device is not a 3277, the WSF
Query is issued. If the control unit does not support this function, this will result in
a PROG471 on the affected device. In VM/SP 1.1, DIAG X'58' checks
RDEVADVF to determine whether the device has either extended highlight, color or
PSS support. If not, it rejects the DIAG X'58' WSF with a UC and COMMAND
REJECT.

Line (row) definition

.L[-]n

Skips to a specific row (line).

n is a one- or two-digit row number where writing is to continue. If prefixed by a minus
sign (-), the next line is displayed n lines from the bottom of the screen. Be aware that
specifying .l-1 allows only one additional text line to be read. After that, the screen is
considered “full” and IOS3270 displays all data up to that point only.

This function allows for a certain amount of space to be reserved on the panel for
optionally imbedded parts that occupy a different number of rows. For example, the
following call and file could be used:

24 Display Input/Output Facility Version 3 PDOM

 IOS327� X ;TOP ;TOPEND &L1 &L2 ;END
 ;TOP
 This is the first line displayed.
 .ssss
 ;TOPEND
 ;MSG1
 This is a message
 ;MSGEND
 ;END
 .l15
 This is the last line.

If &L1 and &L2 are not set, this call results in displaying the top and bottom parts of the
file. If &L1 and &L2 are set to ;MSG1 and ;MSGEND respectively, this inserts the
message part in the right place. The last line is always on row 15.

Maximum screen size use

.M

This function instructs IOS3270 to use the maximum number of rows and columns that
are available on a particular model display station. The default panel (page) size is 24
rows of 80 columns for all models.

Note: The .M function takes effect from the point where it is processed. IOS3270 uses
this information to calculate relative screen coordinates. Therefore, the .M function
should be specified as one of the first functions to prevent misalignment on display
stations which have a different number of columns.

 No edit

.N

Skips editing data from input fields which are defined as variable names. Normally,
leading and trailing blanks are removed and uppercase translation is done. Note that
EXEC variable values cannot start with a blank and can only contain one token. This
function is primarily meant for programs using the EXECCOMM interface introduced
with CMS for VM/SP Release 2.

Note: The .N function also affects variable values set by the .V function.

 Page eject

.P

Skips to next panel.

Displays everything processed up to this function character. If there are more function
characters after the .P, these will be processed after the operator has caused IOS3270 to
continue processing. This is only done if a page eject is explicitly specified by .P. If a
page eject is implicitly done while processing a function line, the part of the line
following the page eject will not be processed.

 Chapter 4. Running the IOS3270 Program 25

Top titles (defined with .T) and a bottom title (defined with .B) are used to format the
screen following an implicit or explicit page eject.

Note: Not recommended for panels containing input fields.

 Qualified Read/Reserve

.Q

This function is equivalent to the .R function below, but it also allows input and selector
light pen fields to be generated.

The reason for this extra function is that additional input from the screen is likely to
influence the logic of the calling program. If this is not wanted, it can be prevented by
using the .R function instead.

Read/Reserve panel space

.R

Includes data from the program stack or from a file other than the input file without
losing control over the panel layout.

This means you can reserve some space on a panel where the operator may include
his/her own comments by putting them in a file on one of his/her own disks.

Some space for memos can also be reserved as a kind of log message or “hot news”.
(Use the .D function to specify a file to be used.)

Under control of .C, the input is checked for fields other than input and selector light pen.
You can allow for input and selector light pen fields by using the .Q function. For every
.R, one record is read. If there are no more records, a blank line is inserted for every .R.

Note that function records (.xxxx) and labels (;xxxx) are treated as data when read by the
.R or .Q functions.

 Space

.S

Spaces a line; displays a blank line.

Note: When the UPDATE option is specified, space is treated as a skip, thus leaving
displayed data untouched.

 Top title

.T

Specifies ending or reset of top titles.

This function is only useful for multi-panel output applications.

26 Display Input/Output Facility Version 3 PDOM

It is possible to have as many top titles as required. Top-title processing is activated
when a .T is found on a function line. All lines processed for a page up to the .T will be
used as top titles. Whenever a .T is found, a check is made to see if any line was
formatted after a page eject. If not, current top titles are reset. The way to reset top
titles is to specify .PT. To add lines to existing top titles, first force a page eject (by .P),
insert the lines that should be added to the top title(s), and insert a .T.

 Variable setting

.V &n1 v1 [&n2 v2 ... [&nn vn]]
 Off

Stores variable values.

The .V function must be the last one on a function line.

v1 is assigned to &n1, v2 to &n2, and so on. Values may be specified as variable names.
Values not specified as variable names are translated to uppercase. If a lowercase value
is needed, specify the value as the name of a variable containing the lowercase value, or
use the .N function.

Specifying .V Off suppresses variable substitution in the remainder of the input data.
Note that this should be used with care as it also prevents the setting of the &IOSx group
of variables.

.Y

Processes input fields after handling a PF key interrupt.

Normally only the function defined for a PF key is processed. Inserting a .Y instructs
IOS3270 to process input fields as well.

.&vname

Substitutes this line with the value of variable vname.

The input line is replaced by the value of specified variable and treated as if it were the
original input line. If the variable does not exist or has a null value, the input line is
simply ignored. This allows you to make dynamic changes to the input file. The
variable value can be data, an IOS3270 label, an IOS3270 function record, or even
another .& statement. (IOS3270 goes into a loop if the value of a variable is set to its
own name, preceded by a period.)

With some functions it is possible to have parameters specified as variable names. This
function is practically equivalent to having that possibility with every function.

With the introduction of EXEC 2, it is now possible to have more than eight characters
assigned to a variable value, including blanks. This allows you to put a complete
function record in a variable.

 Chapter 4. Running the IOS3270 Program 27

Note: This function is basically superseded by the STEM option, which provides even
greater flexibility and has the advantage that a (dummy) input file need not be specified.

 Compatibility Group
 Define I/O

.D fn [ft [fm]] [(recno [)]]

Specifies an input or output file to be used with the .Q, .R or .W function, where:

fn Is the file name. If *, it resets a previously specified .D function.

ft Is the file type. Defaults to IOS3270.

fm Is the file mode. Defaults to * if used with .R and to A1 if used with .W.

recno Is the record number where reading or writing has to start. Defaults to record
1 for read and to the next available record for write.

All parameters may be specified as variable names.

The .D function may start anywhere on a function line but must be the last one on that
line.

If both input and output files are to be specified, insert the definition for output after the
last .R or .Q, using the input definition.

Several files may be specified to be used as input files with .R, but only the last one is
used for the .W function.

Always specify a file ID as completely as possible, especially if it is used to pick up
selective records from a file by resetting the starting record number. If the complete file
ID is not specified, this can lead to severe performance degradation due to closing and
opening of the same file.

.J [..........]

Redefines field definition characters (Ctlchars).

The .J function must be the last one on a function line.

Field definition characters are used to define the start of fields, as explained in the
description of the .C function. The .J function allows you to reset or redefine these
characters.

The string of characters following the first blank after the .J is positional. Every position
represents a field type. If a position is a blank (X'40') or not specified, the Ctlchar
remains unchanged. The ampersand (&) may be used to reset a Ctlchar.

The .J function is processed as follows. The character string is translated to uppercase
(ORed with X'40'). Then the character string is scanned, and every character is set up
to define a field with the following attributes:

28 Display Input/Output Facility Version 3 PDOM

1 (%) Intensify
2 ($) Input
3 (¬) Input, intensified
4 (#) Input, intensified, automatic skip
5 (¢) Input, non-displayed
6 (@) Selector light pen
7 (!) Selector light pen, intensified
8 (.) Place holder in variable names
9 () Fill character for input fields
10 () Input, automatic skip

The numbers refer to the relative position in the string; the character between parentheses
is the default Ctlchar used to define the field.

Examples:

� If the Ctlchar to identify an intensified field must be changed to), the statement .j)
will do that. All other Ctlchars remain unchanged.

� If : is to be used to define input fields, and no other Ctlchars are wanted, the
statement .j &:&&&&&& will accomplish this.

� Position nine (9) can be used to define a FILL character. This character will replace
trailing blank characters in input fields. It is not returned to the caller.

Input : .j _|
: #---- |---- |aa---- ¬a_b----

Displayed on screen : ____ ____ aa____ a_b____

Modified by operator: ____ x___ __a___ a_b c__

Returned to caller : x __a a_b c

See the note about FILL characters in the description of the .JX function.

 Keep input

.K[(&index)]

Saves (keeps) input field values and displays them the next time this panel is displayed.

This function saves data entered in input fields. The data is saved in the file, $IOS3270
$KEEP$. The file mode number is 1. The file mode letter may differ. The KEEPFILE
option may be used to specify a different file ID. IOS3270 searches all disks in the
standard CMS search order to find a keep file. The first one found will be scanned for a
matching entry. When IOS3270 wants to write the input fields back to the keep file, it
first tries to write it on the disk where the file was found. If that disk is accessed in
read-only (R/O) mode, and this disk is not the A-disk, an attempt is made to create a new
file on the A-disk.

Kept input on the bottom two lines may be erased with the .Z function. (See also the
NOKEEP option.)

A keep entry has four fields to identify a panel:

 1. File name
 2. File type

 Chapter 4. Running the IOS3270 Program 29

3. If the file type is IOSLIB, the member name
4. A user index (&index).

Fields 1 to 3 are the identifiers of the primary input file. Field 4, the user index, is
optional and can be used if the same file is used by different EXECs to identify which
keep entry should be used. In this example, &index could be specified as &0 to relate
the keep entry directly to the calling EXEC’s name.

Notes:

1. The Keep function originates from the time when REXX was not available. Input
fields longer than eight characters and input fields with imbedded blanks were
difficult to process. Keep, at that time, provided a reasonably general way to
remember things. Today it seems more effective to have the function handled by the
calling program, using GLOBALV. GLOBALV will usually be faster, automatically
handles file maintenance, and allows you to use the same input data on different
panels.

2. The Keep function cannot be used if the input results in a display of more than one
(1) panel.

3. If the layout of a panel is changed, input fields may occur where they are least
expected to. In this case, press the ERASE INPUT and ENTER keys to update the
keep file to the new panel layout.

4. Keep should only be used when it is needed. As keep data is appended to the keep
file, the size of this file increases when new functions are added. This may lead to
unexpected performance degradation. To avoid this, the KEEPFILE option may be
used to spread the data over different files. From time to time, you may also want to
erase large keep files which contain data from functions no longer used.

 Omission character

.O x

Specifies a character (x) to be inserted in the program stack or assigned to a variable for
input fields in which no data is entered by the operator. The function character and the
specified omission character should be separated by one (1) blank.

This function is used to make it easier to check input fields returned in the program stack.
For example, there are four input fields:

 1=#----- 2=#---- 3=#----- 4=¬----

If the operator inserts values A and B in fields 2 and 4, the following appears in the
program stack:

 A B

This is fine if it is of no importance in which field data is entered, but useless
information if a relation between the input field and the data entered is needed.

Now assume that .O * function is inserted. The program stack will now contain:

 � A � B

giving the relation between entered data and input fields.

30 Display Input/Output Facility Version 3 PDOM

There is no indication for trailing empty fields if they should be stacked. If this is
required, the special input character " can be used. This effectively results in a forced
stack of all input fields prior to this field including the field itself. Variables are always
set to either the omission character or blanks for unused input fields.

Note: As discussed with the keep function, this function also originates from pre-REXX
time. Today, using REXX variables seems to provide an easier method.

Write panel input

.W

Writes all input from the panel up to this line to a file defined with .D.

The file must be fixed, LRECL 80. If a starting record number was specified with .D,
the file is (over)written starting at that record number. If a starting record number was
not specified, the file will be created (if it does not exist) or appended to (if it does.)
Insert a .W for every record to be written. See also the .X function.

Notes:

1. As IOS3270 stops reading input as soon as the panel is full, it is not possible to use
the .W function for input fields defined in the last line on the screen.

2. As discussed with the Keep function, this function also originates from pre-REXX
time. Today, using REXX variables and EXECIO seems to provide a more flexible
method.

eXtend input buffer

.X

Processes all input fields up to here.

When processing input data from the panel, IOS3270 moves all input data that must go
into the program stack (or must be written into a file) into a 132 byte buffer. If this
buffer is full, it is put in the program stack and IOS3270 continues processing. Input that
could not be put in the buffer is lost.

If you have many input fields on a panel, 132 bytes may be not enough to contain all the
entered data. Inserting .X forces IOS3270 to stack all data processed so far and start with
an empty buffer again. There will be one line in the program stack for every .X.

Note: As discussed with the Keep function, this function also originates from pre-REXX
time. Today, using REXX variables seems to provide a more flexible method.

Zero out (clear) input fields

.Z

Clears input fields on bottom two lines.

If the Keep function is used or an input field is defined as a variable, the input fields
entered previously are made available. If an input field defines a special function to be

 Chapter 4. Running the IOS3270 Program 31

performed, this field can be omitted to relieve the operator from erasing it every time.
This can be done by using the .Z function and placing this field on one of the bottom two
lines.

4.5 Defining Selector Light Pen Fields
The first character of a selector light pen field is the designator character. Designator
characters are used to define two types of selector light pen fields: selection fields and
attention fields. Each type of field performs a different selector light pen operation.
Both types of selector light pen fields may be specified as variable names.

Note: Selector light pen fields can also be detected by the Cursor-Select key, which is a
basic feature on newer model display stations.

The selection field is defined by a question mark (?) designator character, for example
!?select. When the selector light pen detects on a selection field, the designator character
is automatically changed to a greater-than (>) sign to provide a visible indication to the
operator that the detection was successful. If a mistake was made and the operator again
detects on that same field, the > changes to a ? and thus resets the erroneous selection.
Selected fields are handled as input fields and are returned through the CMS program
stack. The fields are stacked left to right, top to bottom.

The attention field is defined by a space () designator character, for example ! attn. A
detection on an attention field normally results in a return to the caller. The value of the
detected field is put in &IOSD if called from an EXEC, or in the program stack if not
called from an EXEC. Input entered by the operator will not be processed. See the next
section if this is required.

A second type of attention field is defined by the ampersand (&) designator character. A
selector light pen detection on a field containing an ampersand designator character has
exactly the same result as pressing the ENTER key. Note that it is not possible to
differentiate between multiple attention fields. Only selected fields and keyboard input is
returned to the caller. Selected fields are handled as input fields and are returned through
the CMS program stack.

The 3270 hardware puts restrictions on the number of selector light pen fields with an
attention designator character that may be defined on one screen. For example, a
maximum of 12 detectable fields may precede the last detectable field on any given line.
When mixing detectable and non-detectable fields, a maximum of 14 mixed fields may
precede the last detectable field on any given line.

The 3270 hardware requires a selector light pen field to have three blank or null
characters before and after the field to guarantee good selection. Fields longer than three
characters (or fields intended to be used for cursor select only) can do without these
requirements. Short fields, for panel selection, for example, must use the IOS3270 null
character (-) to make selection possible, for example, ! -1-.

32 Display Input/Output Facility Version 3 PDOM

4.6 Defining Input Fields
A dash (-) in an input field is replaced by a null (X'00').

Trailing omitted input fields are normally not reflected to the caller.

If you do not want the field to be displayed on the screen, use the non-display Ctlchar
(¢).

If a check on intermediate empty input fields is required, use the .O function. In
conjunction with the .O function you may want to use the special character ". If this
character is the first character of an input field, it becomes a protected field. The field is
always returned to the caller. To effectively use it in combination with the .O function, it
should be defined after the last input field which is to be affected by the .O function.

Input fields are returned to the caller as:

� A variable value
� Values in virtual storage
� CMS program stack
� A file (use .W and .D)

(See also 4.8, “Using Variables in Input Fields” on page 34, and the .E and .J functions
in 4.4, “Function Characters” on page 14.

 4.7 Using Variables
Variable names (often called symbols in REXX) must start with an ampersand (&).

Variable names are always translated to uppercase.

IOS3270 handles both types of variables that are used within CMS. The first type,
referred to as EXEC variables, are used by the CMS EXEC interpreter. The length of the
names and values of these variables is restricted to eight (8) characters. A value always
consists of a single token.

The second type of variable is used by the EXEC 2 interpreter, introduced with VM/SP
Release 1, and the System Product Interpreter (REXX), introduced with VM/SP Release
3. VM/SP Release 2 introduces an interface for this type of variable, referred to as the
shared variable interface, accessible through the subcommand EXECCOMM. IOS3270
cannot handle variables whose names or values exceed 160 characters. Names that are
longer are simply not found, and values are truncated.

Variables are substituted under control of the .C function, except when they are found as
parameters for function characters. In this case, substitution is always performed.
However, substitution of these variables is restricted to one token only. If, for example,
the variable &FILE has the value TEST FILE A1, only the value TEST is substituted.
Exceptions to this are the functions .V and .&vname. For EXEC, all user variables and
the internal EXEC variables &0-&30 may be referenced but not &INDEX, &RETCODE,
&EXEC, &GLOBALn, and so on. Compound substitution is not performed; for example,
if &A=X, &X=1 and &A1=B, &A&X will be displayed as X1 and not as B, as the
EXEC interpreter would do.

Variables are recognized:

 Chapter 4. Running the IOS3270 Program 33

� As a separate field, for example:

 %==> &var1 %<==

� In an input field, for example:

 #3&var1 ¬&var2

� In a selector light-pen field, for example:

 ! &attn !?&select

� As parameters for function characters
� As (part of) an intensified field, for example:

 %&var1-&var2.&var3

In the above examples, several ways to end a variable are shown:

� A blank delimiter
� A period (.) which acts as a place holder for output alignment. (Default for input

fields)
� An ampersand (&) which starts a next variable (output only)
� A dash (-) to chain fields.

A variable that has no value or has a null value does not take a place on the screen,
except when it ends with a period (.). Dashes (-) in chained fields are replaced by blanks
(), unless the field is defined with attribute type Dynamic.

4.8 Using Variables in Input Fields
The following rules apply to variables used in input fields:

� Only one variable can be used in an input field.

Note: & and - cannot be used in names in input fields. Output alignment is done
automatically. The place holding character (.) should not be used.

� The default length of the input field generated is eight (8) characters if EXEC
variables are used. For REXX and EXEC 2 variables, the length is equal to the
length of the variable name, including the leading &. A length denominator
preceding the & may be used to explicitly define the length.

Examples:

¬&vname - length = 6 (or 8 for EXEC)
¬3&vname - length = 3
¬45&vname - length = 45

� No shifting of input fields is done (panel input/output alignment).

� A variable overlays the next field if its value is longer than its name (EXEC only).

� If a variable does not exist (is unassigned), it is created.

� If periods (.) are to be used in variable names (for REXX compound symbols), use
the .J function to redefine the default place-holding character.

� Function character N controls editing of data in input fields, defined as a variable
name as follows:

.N not specified

34 Display Input/Output Facility Version 3 PDOM

– Uppercase translation of value
– Leading/trailing blanks removed
– One token only (data up to first blank in input field)

.N specified

– No editing performed, allowing for leading blanks, multiple tokens, and
lowercase characters.

 4.9 IOS3270 Variables
There are three variables which are automatically set by IOS3270 if called from an
EXEC:

&IOSK Contains a value indicating the last key used before exit:

ENTER The ENTER key was pressed.

PA1 PA1 key was pressed. (And the PA1 EXIT option has been
specified.)

PA2 PA2 key was pressed. (And the PA2 EXIT option has been
specified.)

PFnn PF key nn was pressed.

PEN The selector light pen was used.

TIME The time specified with the TIME option has elapsed.

&IOSC Contains a four- or five-character decimal number representing the cursor
position in the RRCCC form, where RR is the row number (00-99) and CCC
the column number (00-999). CCC is 3 digits if the screen width (number of
columns) exceeds 99.

&IOSD Contains the value assigned to a PF key with .F if that PF key was pressed or
the first eight bytes of a selector light pen field with an attn designator
character, causing IOS3270 to exit. If the ENTER key was used, the variable
will be blank, unless it was used to define an input field and data was entered
in that field.

 4.10 Special Characters
There are two characters that have a special meaning if they are the first character from a
PF key value or a selector light pen field with an attn designator character. These
characters are:

) To simulate a null line (ENTER with no data). If this character is detected,
processing continues. Other input on the screen is not processed.

¬ The field following this character is put in &IOSD or in the program stack, and
IOS3270 returns control to the calling program. If the input was from the program
stack and there was input left, it is first cleared. This function can be used with
multi-panel files if immediate return to the caller is required.

 Chapter 4. Running the IOS3270 Program 35

4.11 Special Values In Fields
Some values have special meanings if they are used to define a PF key function or a
selector light pen field with an attn designator character, for example:

QUIT Immediate exit RC=4 (also if entered in any input field). The stack is cleared
first.

BACK Scroll back one (1) panel (not possible if input is stack).

4.12 Invoking IOS3270 with In-storage Data
Instead of feeding IOS3270 with CMS files or a CMS program stack, it is possible to
dynamically create a panel in virtual storage and have it processed by IOS3270. There
are two ways to present in-storage data.

Note: As IOS3270 runs in XA-toleration mode only (RMODE 24), all storage areas
must reside below the 16M boundary.

 Method 1
The following Assembler code is an example of the first method:

 . .
 DISPLAY DS �H
 LA R1,IOSPLIST
 SVC 2�2
 DC AL4(ERROR)
 B .
 ERROR . .
 IOSPLIST DS �D
 DC CL8'IOS327�',AL4(�),AL4(IOSDATA)

DC CL8'other parameters and/or options'
 DC 8X'FF'
 . .
 IOSDATA DC AL1(L'LINE1)
LINE1 DC C'.cf help % quit'
 DC AL1(L'LINE2)
LINE2 DC C'Specify input%==> ¬_________'
 . .
 DC AL1(L'LINEn)
LINEn DC C'PF1=! HELP PF3=! QUIT'
 DC AL1(�)
 . .
 . .

Figure 1. In-core Interface Method 1, Basic

If byte 1 of the first parameter is X'00', bytes 4 to 8 are assumed to contain a pointer to a
block of virtual storage containing the input lines. Every logical record should start with
a byte defining the length of the text to follow. If a length byte of zero (X'00') is
found, this is treated as an end-of-file indicator.

Calling IOS3270 as described above allows for the easy modification of existing panels,
but input fields are returned in the CMS program stack (if .D and .W are not used).
Returning input fields to virtual storage is not only faster and easier than reading the

36 Display Input/Output Facility Version 3 PDOM

CMS program stack, but is in fact the only way to correctly interpret returned input fields
if more than one input field is on a single line. (This restriction is removed with the
VM/SP 2 version of EXEC 2.) This is also supported by IOS3270. To indicate that this
way of operation is required, bytes 2 to 4 of the first parameter should contain a pointer
to a 24 byte buffer. This buffer is used to return the variable values &IOSK, &IOSC and
&IOSD (in this sequence). The PLIST in the previous Assembler example would then
look like this:

 . .
 . .
 IOSPLIST DS �D
 DC CL8'IOS327�'
 DC AL1(�),AL3(IOSXLIST)
 DC AL4(IOSDATA)
 . .
 IOSXLIST DS �C
 IOSK DC CL8' '
 IOSC DC CL8' '
 IOSD DC CL8' '
 . .
 . .

Figure 2. In-core Interface Method 1, Return of &IOSx

On return from IOS3270, virtual storage has been modified as follows:

� The fields at IOSXLIST are set as described in 4.9, “IOS3270 Variables” on
page 35.

� All unused input fields contain blanks (X'40'). If the .O function was used, the first
byte of the field is set to the omission character specified. Using .O seems useless in
this case, though, as input entered by the operator is directly stored in the
corresponding input field in the user’s virtual storage.

Note: A blank (X'40') is used as an ending delimiter for an input field. A blank can
be entered by the operator. Particular care has to be paid to this, otherwise the input field
will suddenly be shorter than intended. (See the .E function, which can be used in most
cases to prevent this problem. See also the .J function, which allows you to define a
FILL character.)

 Method 2
The second in-storage interface is based on the method used by the System Product
Interpreter and the EXECLOAD command, introduced with VM/SP Release 4, called File
Block (FBLOCK) support. A description can be found in the System Product Interpreter
Reference, SC24-5239, under “System Interfaces”.

The bits of the high order byte of the descriptor list length fields can be used as follows:

“xxxxxx00” Reserved, must be set to 0.

“000000x0” When on, indicates that the address points to another descriptor list. The
length field specifies the length (in bytes) of the descriptor list. Acts as an
imbed. Indirect addressing in combination with the skip bit can be used as
a paging mechanism.

 Chapter 4. Running the IOS3270 Program 37

“0000000x” When on, indicates that this entry should not be processed. Can be used to
selectively include or exclude lines from a panel.

To indicate that operator input is to be returned to storage, the IOSXLIST pointer must be
set. The IOSDATA pointer must be set to zeros.

Note: If the input file is EXECLOADed, IOS3270 will automatically process the file
from storage if the file mode is either not specified or specified as “*”. If a file mode is
specified, the file will be read from disk.

Finally, a short example using the FBLOCK support:

38 Display Input/Output Facility Version 3 PDOM

 . .
LA R�,EPLIST Set EPLIST ptr
LA R1,IOS327� Set PLIST ptr
ICM R1,B'1���',=X'�1' Set EPLIST flag

 SVC 2�2 Call IOS327�
DC AL4(1) We handle errors

 . .
 � The extended Plist.
 EPLIST DS �A
 DC A(IOS327�,�,�,FBLOCK)
 � The tokenized Plist.
 IOS327� DS �D
 DC CL8'IOS327�'
 @IOSXLST DC AL4(�)
 @IOSDATA DC AL4(�)
 DC CL8'('
 DC CL8'NOCLEAR'
 DC CL8'ALARM'
 DC 8X'FF'
 � The File Block.
 FBLOCK DS �F
 DC CL8' ' Filename
 DC CL8' ' Filetype
 DC CL2' ' Filemode

DC H'2' Extension length in words
 DC AL4(DLIST1,DLIST1E-DLIST1)
 � Descriptor list flags (HO length byte)
 $DLSKIP EQU B'�������1' Skip
$DLIDA EQU B'������1�' Indirect descriptor list
 � Descriptor list 1.
 DLIST1 DS �A

DC A(LINE1,L'LINE1) Data line 1
DC A(LINE2,L'LINE2) Data line 2
DC A(DLIST2) Descriptor list 2

 DC AL1($DLIDA),AL3(DLIST2E-DLIST2)
 DLIST1E EQU �
 � Data lines 1.
LINE1 DC C'.cjx Set Ctl @ Col=tur Hig=rev'
LINE2 DC C'Testing@FBLOCK support 1'
 � Descriptor list 2.
 DLIST2 DS �A

DC A(LINE3,L'LINE3) Data line 3
DC A(LINE4,L'LINE4) Data line 4

 DLIST2E EQU �
 � Data lines 2.
LINE3 DC C'.cjx Set N Co=tu Hi=re, Ctl @ Col=pu Hig=un'
LINE4 DC C'Testing@FBLOCK support 3'
 . .

Figure 3. In-core Interface Method 2

 Chapter 4. Running the IOS3270 Program 39

4.13 Specifying Character Attributes and Dynamic Attributes
This section describes how to define

 � Character attributes
� Dynamic character attributes
� Dynamic field attributes
� Dynamic cursor positioning.

Character attributes are those assigned to a character when written into the display buffer.
They are not associated with the character position. When a character is altered or
deleted, the attributes associated with that character are destroyed. When a character is
altered (even if overtyped with the same character) the attributes assigned to the replacing
character are inherited from the field attributes.

IOS3270 allows you to assign character attributes to non-variable and variable data.

 Non-variable Data
To assign character attributes to this type of data you have 2 options.

1. External from the data, providing full WYSIWYG, using .jx Set Mask as follows:

.cjx Set Mask, Ctl @ Color=Yellow
 @@@@
The word following the arrow is yellow ===> word

The line following the .jx Set Mask is used as a mask to parse the data line
following the mask. A mask consists of Ctlchars and blanks. A blank causes field
attributes to be assigned to the associated data character. A Ctlchar causes the
character attributes associated with that Ctlchar to be assigned to the corresponding
data character.

2. In-line with the data using .jx Set Ctl ... Scope=Character to define a pseudo field as
follows:

.cjx Set Ctl @ Color=Yellow Scope=Character
The word following the arrow is yellow ===> @word

Data between the Ctlchar and the delimiter will have the character attributes
specified, the Ctlchar and the delimiter are removed from the input stream, thus
causing a 2 position left shift.

 Variable Data
.jx Set Mask cannot be used for variables as there is no input/output relation to the
variable value. If a mask is specified for a variable, it is ignored. If character attributes
are to be assigned to the value of a variable, the variable has to be defined as a (pseudo)
field. Scope=char can be used to suppress leading and trailing blanks. The mask to be
used for variable data is specified in another variable. The Dynamic attribute (.jx Set Ctl
... Dynamic) is used to indicate that a reference has to be made to such a variable,
specifying

� A Ctlchar defining alternate (dynamic) field attributes
� An indication as to where the cursor has to be placed
� (A) Ctlchar(s) defining character attributes (a mask).

A reference variable is defined as an array variable with the following format (REXX
notation):

40 Display Input/Output Facility Version 3 PDOM

'A'C2x(Ctl)'.$name'='Ctlf||cursor||[Ctlc||s||l]||...||[Ctlc||s||l]'

Ctl Is the Ctlchar defining the field (with the Dynamic attribute).

name Is the variable name used to define the field value. Only one variable name
(with or without a length denominator) may be used. For example,
¬8&filename or %&mode. The format %123&fielda-&fieldb (chained fields)
is not supported for fields defined with a Ctlchar having the Dynamic
attribute. This is necessary in order to support the length denominator in
output fields (dynamic field attribute change).

Ctlf (CL1) is a Ctlchar defining alternate field attributes (or '00'x for no change).

cursor (XL1) is the position in this field where the cursor should be placed. If '00'x,
the cursor is not positioned.

Ctlc (CL1) is a Ctlchar defining character attributes to be assigned to
Substring(Value(name),s,l).

s (XL1) The start of the sub-string. Defaults to 1

l (XL1) The length of the sub-string. Defaults to the rest of the field.

As a help to the user (and to allow changing the format when required), the IOSDYNAT
EXEC is supplied to build and set the reference variable containing the dynamic
attributes. For the calling syntax, refer to Appendix E, “The IOSDYNAT EXEC” on
page 57.

It is recommended to call the IOSDYNAT EXEC to build the reference variable, even
though this will degrade performance.

The variable is used to dynamically build the mask described above. The descriptors are
processed left to right, each storing a sub-string of Ctlchars into the mask. Note that
overlapping sub-strings containing attribute values that are not specified will inherit their
value from the preceding character.

Example:

The field @12&in1 and call
Interpret iosdynat('@,in1;;;#,2,7;$,3,3;%,5,3')
builds the following mask (shown per processing step):
1: ' ####### '
2: ' #$$$### '
3: ' #$$%%%# '

The dynamic attribute support can be used from the in-storage interface (FBLOCK only)
as follows. IOSDATA points to an FBLOCK-like extension area (REFBLOCK):

REFBLOCK DC AL4(INPLIST,INPLISTE-INPLIST)
INPLIST DS �A
 DC AL4(DYNA1,FIELD1)
 DC AL4(DYNA2,FIELD2)
INPLISTE EQU �
DYNA1 DS XL(DYNFALNG+L'FIELD1)
DYNA2 DS XL(DYNFALNG+L'FIELD2)

Figure 4. In-core Interface Method 2, Dynamic Attributes

 Chapter 4. Running the IOS3270 Program 41

The first two bytes of each field DYNAn are the alternate field attribute and the cursor
position, the remainder is the mask, as described above.

As usual, the skip bit in the second word of the descriptor list can be used to activate or
deactivate an entry.

�
� This DSECTs describe the format of the Refer variable as used
� for dynamic attribute support.
�
DYNFAMAP DSECT Dynamic field attributes
DYNFACTL DS CL1 The Ctlchar to be used for this

field or '��'x for no change.
DYNFACUR DS AL1 The absolute position in the field

where the cursor should be placed.
If �, the cursor is not positioned.

DYNFACH EQU � Start of character attribute
descriptor list (DYNCAMAPs)

DYNMASK EQU � Start of mask for FBLOCK support
DYNFALNG EQU �-DYNFAMAP Size in bytes

DYNCAMAP DSECT Dynamic character attributes
DYNCACTL DS CL1 The Ctlchar defining character attr
DYNCASUS DS AL1 The starting position of the substr
DYNCASUL DS XL1 The length of the substring
DYNCALNG EQU �-DYNCAMAP Size in bytes

Figure 5. DYNFAMAP DSECT

Notes:

1. The easiest format for the reference variable would have been “Ctlchar.name”.

a. It allows an exact description of the Ctlchar/name combination.
b. It allows a reset of all reference variables relating to one Ctlchar using the stem

only.

2. The alternative was derived because REXX does not allow

a. Setting stem.name when name is a variable. One would need to use another
variable, set to “name”.

b. characters usually used as Ctlchars in variable names.
c. variables to start with a number.

4.14 Using The IOS3270 Options HNDEXT and HNDINT
When IOS3270 is used as a panel manager in office or database systems used by clerical
personnel, the terminal will often be left in a certain state for a longer period of time, for
example, displaying a selection panel. If we take an office system as an example, there
may be occasions where we want to present another panel to the operator, for example to
inform him or her of the arrival of a file in his/her virtual reader, or to display a message
from the office system master Virtual Machine, sent with the VMCF or IUCV interface.
Trapping such situations by stealing PSWs is not too difficult. The problem is in
preserving what is on the screen at the moment of the interrupt, and simulating a screen

42 Display Input/Output Facility Version 3 PDOM

interrupt (like pressing ENTER) to let IOS3270 finish processing and return control to the
caller.

The IOS3270 options, HNDEXT and HNDINT, allow you to handle the above situations.
The logic behind it is as follows: Together with the option, you provide the address of a
routine that should receive control when an interrupt occurs. This routine inspects the
interrupt and signals through register 15 (R15) whether IOS3270 should read the data on
the screen and return control to you. If you decide to handle the interrupt, you may start
working on it once you regain control from IOS3270. In the interrupt-handling routine,
you should not perform any action causing the screen contents to change. Preferably, you
should not do anything at all except remember that you must do something on return
from IOS3270. In the Assemble example below, the only action performed is the setting
of a flag.

The following rules apply when the user interrupt routine gets control:

� R15 entry point address.

� R14 return address.

� R13 72 bytes save area (18 FWs).

� Storage protection is NUCLEUS key.

� The user is responsible for saving and restoring R0-R13. The save area pointed to
by R13 may be used for this purpose.

� If, on return to IOS3270, R15 is 0, the screen is processed and control is returned to
the caller.

The following piece of Assemble code is an example of how the options can be used:

 Chapter 4. Running the IOS3270 Program 43

 . .
 DISPLAY DS �H

LA R1,IOSPLIST set PLIST ptr
 SVC 2�2 call IOS327�
 . .

TM SW1,$1EXTINT did an external int. occur?
 BO . br, yes

TM SW1,$1IOINT did we have an I/O interrupt?
 BO . br, yes
 . .
 IOSPLIST DS �D
 DC CL8'IOS327�' command name
 DC AL4(IOSXLIST) IOSX list
 DC AL4(IOSDATA) data list
 DC CL8'(' option starter

DC CL8'HNDINT' handle I/O interrupts
DC AL4(HNDIOI) our I/O inter.handler

 DC AL4(�) DW filler
DC CL8'HNDEXT' handle ext.interrupts
DC AL4(HNDEXT) our ext.inter.handler

 DC AL4(�) DW filler
 DC 8X'FF' PLIST end
 . .
 � External interrupt handler.
 USING HNDEXT,R15
 HNDEXT . . examine ext. interrupt (EXTOPSW)

BNER R14 br, no, do not handle
OI SW1,$1EXTINT handle this ext.int
SLR R15,R15 indicate we want control
BR R14 return to IOS327�

 DROP R15 from HNDEXT
 . .
 � I/O interrupt handler.
 USING HNDIOI,R15
 HNDIOI . . examine I/O inter.(CSW & IOOPSW)

BNER R14 br, no, do not handle
OI SW1,$1IOINT handle this I/O.int
SLR R15,R15 indicate we want control
BR R14 return to IOS327�

 DROP R15 from HNDIOI
 . .
 SW1 DS XL1 switch byte
 $1EXTINT EQU X'8�' ext.int. to handle
 $1IOINT EQU X'4�' I/O int. to handle
 . .

Figure 6. Sample HNDEXT/HNDINT Assemble Code

Note: Due to the restructuring of CMS interrupt handing in CMS 5.5 (Bimodal CMS),
the HNDEXT and HNDINT options can no longer be fully supported on this level of
CMS. Refer also to the descriptions of the options.

44 Display Input/Output Facility Version 3 PDOM

 4.15 Color Aspects
This section describes the behavior of color screens (like the IBM 3279) with respect to
using the .JX functions.

Without any additional programming, the 3279 Color Display Station displays data in
four different colors. The color of a field is dependent on the attributes of the field
according to the following matrix:

 base color (oooo) protected unprotected

 normal intensity blue green

 high intensity white red

This mode of operation is called base color mode enabled. The 3279 has a two-position
switch, called the base color switch. The (oooo) position of this switch enables base
color mode with the effect described above. Switching to the (oo) position disables base
color mode; now there are only two colors:

 base color (oo) protected unprotected

 normal intensity green green

 high intensity white white

Whenever a color other than the base color is displayed anywhere on a panel, the position
of the base color switch is ignored. However, the screen behaves as if the base color
switch is placed in the (oo) position!

What does this mean in practice? Suppose you have a panel with normal and intensified
fields, both input and output. This shows up nicely in four colors. However, if you
decide to bring some more color into this panel and, for example, change the color of one
field into yellow, the colors blue and red will change to green and white.

It is important to understand that this is done by the screen and not by IOS3270. No
attempt is made to simulate base color mode for those fields that will change color,
because the position of the base color switch cannot be retrieved. Simulating base color
mode enabled would have an opposite effect for those users that normally have the switch
in the disabled position (oo).

 4.16 Performance Considerations
This section discusses some points that are useful to keep in mind while using IOS3270.
It is not possible to give an all-purpose solution guaranteeing good performance since
there are too many factors that can influence performance. These hints are written to
help the IOS3270 user avoid situations which are likely to cause performance
degradation.

 Chapter 4. Running the IOS3270 Program 45

 General
A general rule which applies to all computing processes is to find a balance between
CPU and I/O load. Applied to IOS3270, this means that you must decide where you
want to place your input data and in what format it should be. For example, if your input
data has to be read from disk, this means overhead from CMS and CP and (usually)
physical disk I/O. If disk caching is not available on your system, you may want to use
EXECLOAD to place heavily used disk files in storage. If, on the other hand, you decide
to use the STEM option and build all input data dynamically, this involves CPU load to
build the input data and CMS overhead to retrieve the variables through the
EXECCOMM interface. Whether to use one method or another (or a combination) is
dependent on factors like:

� How many times the same panel will be used
� Whether the panels are static or dynamic
� How many panels are involved
� Availability of disk caching.

The preferred method of operation for DIOF-3 is with REXX. If performance is not
acceptable, you may want to consider using the in-storage interface, but only as a last
resort as the investment required to produce the same function will be much higher than
with using REXX. Changes will require comparably higher investments.

Combining IOS3270 and EXEC Files
This section applies to very small (end user) applications, typically the ones that basically
consist of one EXEC and one or a few panels.

If run from an EXEC, there is no need to have a separate file for the panel. It can be put
at the end of the normal EXEC logic preceded by a label as shown in the next example:

 &TRACE
&IF &N EQ � &GOTO -explain
&IN = &1

 -check_input
&UPPER VAR &IN
&IF /&IN EQ /TEST &EXIT
&ALARM = ALARM
&MSG = &STRING OF You should enter 'TEST', not &IN .

 -explain
IOS327� &� EXEC ;EXPLAIN (&NOCLEAR &ALARM
&NOCLEAR = NOCLEAR

 &ALARM =
&IF &IOSK NE ENTER &EXIT

 &GOTO -check_input
 ;EXPLAIN
 .ch2
 &�.------------------ Explanation --------------------- HELP
 ===> &msg
 .ssc
 Enter%TEST ,- press%PF1 or light pen select to exit.
 %===> ¬4&in
 .l24cf test
 PF: 1=! test 3=! quit

Figure 7. Combining IOS3270 and EXEC Files

46 Display Input/Output Facility Version 3 PDOM

When using this technique of combined EXEC and IOS3270 files, and the file is on a
disk formatted with 800-byte blocks, it is advisable to use fixed files only, to prevent
performance degradation. If the file is on a disk formatted with 1K, 2K or 4K blocks,
there is not much difference. To save disk space, you may very well use a file of
variable format here.

If the EXEC is large, and the panel is likely to be displayed often, there is a possibility of
considerable I/O overhead caused by IOS3270 searching for the start label. You may
reduce this overhead by putting the panel in front of the file and by optimizing the EXEC
logic by using line number references rather than labels. XEDIT’s VMFOPT macro may
be used to accomplish this as shown in the next example.

 &TRACE
 �%OPTIMIZED AT 14:13:21 ON 82/�5/26
 �% N O T I C E:
 �% THIS STATEMENT IS NECESSARY FOR THE OPTIMIZATION PROGRAM - VMFOPT
 �% DE-OPTIMIZE THIS MACRO BEFORE MAKING ANY CHANGES USING - VMFDEOPT

&GOTO 17 -exec
 ;EXPLAIN
 .ch2
 &�.------------------ Explanation --------------------- HELP
 ===> &msg
 .ssc
 Enter%TEST ,- press%PF1 or light pen select to exit.
 %===> ¬4&in
 .l24cf test
 PF: 1=! test 3=! quit
 ;EXEC
 -exec

&IF &N EQ � &GOTO 25 -explain
&IN = &1

 -check_input
&UPPER VAR &IN
&IF /&IN EQ /TEST &EXIT
&ALARM = ALARM
&MSG = &STRING OF You should enter 'TEST', not &IN .

 -explain
IOS327� &� EXEC ;EXPLAIN (&NOCLEAR &ALARM
&NOCLEAR = NOCLEAR

 &ALARM =
&IF &IOSK NE ENTER &EXIT
&GOTO 2� -check_input

Figure 8. Combining IOS3270 and EXEC 2 Files

 Chapter 4. Running the IOS3270 Program 47

Finally, the same EXEC in REXX format:

 /� Simple IOS327�/REXX example �/
 /� Start of IOS327� panel definition
 ;explain
 .jx Set Norm col=tur, High col=Yel typ=(hig),
 .jx Set Ctl | col=red typ=(hig), Ctl ! typ=(det tab hig)
 .jx Set Ctl ¬ col=gre hig=und typ=(unp null skip)
 .mch
 &fn.------------------ Explanation --------------------- HELP
 |&msg
 .cnjx Set High col=whi
 %===> ¬4&in
 .sc
 Enter%TEST ,- press%PF1 or light pen (CURSR) select to exit.
 .l-1cf test % quit
 PF: 1=! test 3=! quit
 ;exec End of IOS327� panel definition �/
 Trace N
Parse Source . . fn .

 out=�
Parse Value '' With noclear alarm

 Address Command
Do n=1 While ¬out
'IOS327�' fn 'EXEC ;EXPLAIN (' noclear alarm

 noclear='NOCLEAR'
 alarm=''

If iosk¬='ENTER' Then out=1
If in¬='' Then Do

 chk=in
 Upper chk
 If chk='TEST'
 Then out=1
 Else Do
 alarm='ALARM'

msg='Please enter "TEST", not' in'.'
 End
 End
 End n
 Exit

Figure 9. Combining IOS3270 and REXX Files

Note that the panel is at the start of the EXEC, enclosed by REXX comment delimiters.
If the EXEC is EXECLOADed, IOS3270 will automatically process the in-storage
version.

Note: Disk I/O can be avoided completely by using the STEM option. The IOSIVP4,
IOSIVP5, or IOSIVP6 EXECs can be used as a base for this technique. For
details, refer to Appendix F, “The IOSIVP6 EXEC” on page 61.

Using the STEM option is also recommended when IOS3270 is called from
EXECs compiled with the VM REXX Compiler for CMS (5664-390).

48 Display Input/Output Facility Version 3 PDOM

Using Many Panels
If IOS3270 is used to write an application program or an online information (Help)
system, it is likely that many panels are to be generated. All these panels must be stored
somewhere and retrieved by IOS3270 when the information is needed. There are several
ways to put all the panels on disk. A separate file can be made for every panel, which
amounts to a large number of files in the end.

Another way is to put them (either grouped by function or not) into one large file and use
the IOS3270 start/end label facility to selectively retrieve a panel. Working this way
creates a lot of I/O overhead if the file becomes large. The CMS system has a solution
in the form of the MACLIB and TXTLIB facilities. To take advantage of the IOS3270
label processing, a modified version of the CMS MACLIB program, called IOSLIB, is
distributed with the IOS3270 package. It is discussed in Appendix C.

As from Version 3, IOSLIBs are created with variable records (RECFM=V). This will in
most cases reduce the amount of disk space required to store the library. However, it
requires IOSLIBs to be stored on CMS minidisks not formatted with BLKSIZE=800 to
reach an acceptable level of performance.

It is difficult to define when to use separate files or a large file with label indexes or an
IOSLIB. By experimenting and keeping in mind the points discussed above, the user will
soon discover what suits his or her needs best.

 Chapter 4. Running the IOS3270 Program 49

Appendix A. Questions from IOS3270 Users

1. Does IOS3270 run in Bimodal-CMS?

� Yes, but in toleration-mode (RMODE 24, AMODE 24) only.

2. Why doesn’t IOS3270 substitute variable names containing a period (.)?

� It does, but you should use the .J function (position 8) to respecify the variable
place holder character.

3. How do I get more than one token back in a variable?

� Use the .N function.

4. I used .N and now my input fields are truncated at the first blank on re-display.

� Use the .E function to redefine the ending delimiter.

5. How do I get mixed case input in a variable?

� Use the .N function.

6. I have a 3278 model 3 but IOS3270 only uses 24 lines. How can I use all 32 lines?

� Use the .M function.

7. Why do I lose all my input data using a PF key?

� Use the .Y function.

8. I only have a simple 3277 screen, should I use .J or .JX?

� Use .JX where possible. .JX works on all screen types. When you get a newer
screen, you will be ready for it.

9. Can I use the .I function to imbed in-storage data?

 � No.

10. Not all input data from the panel is returned in the program stack.

� You probably have more than 130 characters of input. Use the .X function.

50 Display Input/Output Facility Version 3 PDOM

Appendix B. Summary of Function Characters

The following is a summary of all the available function characters. This summary can
be referenced by entering IOS3270 ?.

.A Sounds audible alarm whenever this panel is displayed.

.B Next data line is a bottom title.

.C Next lines may contain field definition characters (Ctlchars).

.D Defines or resets secondary input/output.

.E Defines the field ending delimiter.

.F Sets PF key functions.

.H Displays next line(s) intensified.

.I Imbeds.

.J Redefines field definition characters.

.JX Extended define.

.K Saves input fields in keep file.

.L Skips to a specified line on the screen.

.M Maximum screen size to be used.

.N Do not edit input field variable values.

.O Defines an omission character.

.P Page (panel) eject.

.Q Like .R, but allows input and/or selector light pen fields to be defined.

.R Reads a record from secondary input.

.S Spaces a line.

.T Defines or resets top title(s).

.V Stores variable values.

.W Writes all input entered up to this line to a file, defined with .D.

.X Puts all input entered up to this line in the program stack.

.Y Processes input fields when a PF key is pressed.

.Z Clears input fields on bottom two lines.

.&name Substitutes this line by the value of symbol name.

 Appendix B. Summary of Function Characters 51

Appendix C. The IOSLIB Program

The IOSLIB program is a modified version of the CMS MACLIB program (from
VM/370 Release 3). An online explanation of the command syntax and the functions
available is provided by entering IOSLIB ?. Modifications are in the following areas:

� Creating libraries with RECFM V to reduce disk space. In addition, the complete
dictionary is written as one record. To reach an acceptable level of performance,
IOSLIBs should not be stored on 800B formatted disks.

Old IOSLIB files (RECFM F) for which no source is available can be converted to
RECFM V using the IOSLIB COMP function.

� Creating dictionary entries for IOS3270 labels found in input file(s), thus reducing
I/O overhead.

� Adding RET function to retrieve members from a library.

� Allowing input file(s) to be RECFM V, thus reducing disk space needed to store
input files.

For further details on the CMS MACLIB command, refer to the IBM VM/SP CMS
Command and Macro Reference Manual, SC19-6209, or the IBM VM/XA SP CMS
Command Reference Manual, SC23-0354.

A suggested procedure for creating IOSLIBs is to have all members in one large file
containing *COPY statements in front of each member. If a member is to be updated,
edit the file and update it. Then use the IOSLIB GEN function to create a new library.
This seems to be a most effective way to keep libraries up-to-date and as small as
possible.

52 Display Input/Output Facility Version 3 PDOM

Appendix D. The GOODIES/GDCSS Package

The GOODIES/GDCSS package was developed with the following objectives:

� Allow programs that have outgrown the transient area and cannot run in the user area
for one reason or another to run:
– From DMSFREE storage
– As a nucleus extension
– From a discontiguous shared segment (DCSS) (called a saved segment on

VM/XA SP).
� Minimize the number of shared segments by allowing several independent programs

to be saved in and run from the same DCSS, combined with a bootstrap, which
transfers control to the correct function.

� Relieve the programs from taking care of DCSS interfaces, DMSFREE clean-up and
NUCXLOAD.

The GOODIES/GDCSS package contains all the functions necessary to generate the
bootstraps, relocatable modules, and DCSS. DCSS bootstraps may also be run as nucleus
extensions using NUCXLOAD with the SYSTEM option.

GOODIES refers to the DCSS containing tools, often called “goodies”. GDCSS stands
for Generalized DCSS interface.

GOODIES ASSEMBLE contains the names of all functions to be part of the DCSS and,
the DCSS bootstrap. GDCSS ASSEMBLE contains the code which forms the function
bootstrap and is what is first executed when the desired function is called. GOODEND
ASSEMBLE is just a stub to show the end of the DCSS in the LOADMAP.

The interface between CMS and a function is provided by the program GDCSS. GDCSS
only exists as a TEXT deck and is executed to create a DCSS bootstrap and an eXecution
MODule (XMOD). The INSTGOOD EXEC does all module generation and builds the
DCSS if requested to do so. The interface bootstrap ensures that the target program
receives the proper control for correct operation, be it as a DCSS, a nucleus extension, or
DMSFREE storage. When necessary, the bootstrap interface automatically loads the
relocatable (ADCON free) program into DMSFREE storage. At program termination, the
bootstrap does all necessary clean-up before returning to the caller. The target program
need never concern itself with which mode of operation is being used.

To install IOS3270, you have the following options:

 DMSFREE Storage
Just place the IOS3270 MODULE and XMOD file, generated by the INSTGOOD EXEC,
on the support disk. Specify no DCSS name and N to the questions asked. The
interface module will not find the DCSS and loads the XMOD into DMSFREE storage,
permitting IOS3270 to run.

DCSS (or Saved Segment)
On VM/SP systems: Re-SYSGEN your VM system, setting aside a DCSS to hold
IOS3270. You may use any name you wish for this DCSS. The default (assigned in the
INSTGOOD EXEC) is GOODIES. The starting address for this DCSS is determined by
the specification provided in the DMKSNT entry.

 Appendix D. The GOODIES/GDCSS Package 53

 GOODIES NAMESYS SYSSIZE=64K, �
 SYSNAME=GOODIES, �
 SYSSTRT=(361,1), �
 SYSVOL=SYSRES, �
 SYSPGCT=16, �
 SYSPGNM=1632-1647, �
 SYSHRSG=(1�2), �
 VSYSADDR=IGNORE

Figure 10. Prototype Entry in DMKSNT for GOODIES

On VM/XA systems: You theoretically have 4 options.

1. Install IOS3270 in its own 1M saved segment

2. Install IOS3270 as a part of saved segment GOODIES (1M)

3. Install IOS3270 as a member using segment packing

4. Install IOS3270 as a part of member GOODIES using segment packing.

Options 1 and 2 are impractical due to the large amount of wasted storage. Option 3
would require a change in the GDCSS interface to dual path the code, depending on
whether it is running on VM/SP or VM/XA, including the necessary options in
INSTGOOD to specify which mode of operation is wanted (option 3 or 4). So, for
practical reasons only option 4 can be used. If no other programs are to be included in
GOODIES, a member size of 24K (six 4K pages) is sufficient.

Create a GOODIES member in segment space space1 by using the DEFSEG command,
for example:

DEFSEG GOODIES 66�-666 SR SPACE space1

On VM/SP and VM/XA systems: Ensure that your virtual storage is large enough to
hold the DCSS before running INSTGOOD. When running INSTGOOD, specify the
name of this DCSS and respond Y to the question asking if a DCSS should be generated.
Copy the created MODULE and XMOD to your support disk. The interface module uses
the DCSS unless virtual storage is too large, in which case the XMOD is loaded into
DMSFREE storage and executed.

To run the bootstrap as a nucleus extension, the user must issue the command
NUCXLOAD IOS3270 (SYSTEM. This is independent of whether the DCSS or XMOD
is eventually used. If the DCSS cannot be used, the bootstrap loads the XMOD into
DMSFREE TYPE=NUCLEUS storage and replaces itself by the XMOD, thus making it
the nucleus extension for this function.

To include other modules in the DCSS, modify GOODIES ASSEMBLE and run
INSTGOOD to include them. Functions included must be relocatable (ADCON free) and
not larger than 64K. This limit is assumed by both the INSTGOOD EXEC and the
GDCSS bootstrap interface. INSTGOOD simply copies the second record from the
GENMODed function and calls it function XMOD. GDCSS reads only one record into
DMSFREE storage. This technique was devised for programs which had outgrown the
8K CMS transient area. Since XMODs are placed into DMSFREE storage, a free storage
problem could easily result if the function programs were permitted to be any size.
Consequently, a 64K limit was chosen. It is relatively simple to change INSTGOOD and
GDCSS to increase these limits, if desired.

54 Display Input/Output Facility Version 3 PDOM

Remember that the GDCSS interface gives all modules a NUCLEUS protect key when
they receive control.

The following information is provided for those who wish to write programs to take
advantage of the GDCSS interface or to better understand how this interface operates.

GDCSS permits any program which is reentrant and ADCON free to run in DMSFREE
storage, in a DCSS, or as a nucleus extension. All programs are run with a nucleus
protect key.

In addition, GDCSS can be used to interface to programs only in a DCSS, only as
nucleus extensions, or only to be run in DMSFREE storage. Although maximum
flexibility is obtained if the program can run in either way, the following are supported in
any desired combination:

 � DCSS: reentrant

� Nucleus Extension: relocatable (ADCON free) and serially reusable

� DMSFREE storage: relocatable (ADCON free).

As long as the program observes the restrictions for the environment in which it is to run,
it need not do anything to interface with GDCSS.

GDCSS itself runs either from the CMS transient area or as a nucleus extension and is
always GENMODed with the SYSTEM option.

A function consists of a bootstrap and an ADCON free XMOD. The bootstrap is called
function MODULE (for example, function = IOS3270). This module contains the
function name and, if specified during creation, the DCSS name. Calling the function
gives control to the bootstrap which transfers control to the bootstrap in the DCSS, which
in turn transfers control to the correct function. Return is made to the function bootstrap,
if clean-up is needed, or directly to the caller, following normal CMS conventions.

If the DCSS cannot be attached, or if it was not specified during creation, the bootstrap
loads the XMOD into DMSFREE storage and transfers control thereto.

When the DCSS or XMOD terminates, control initially comes back to the bootstrap,
which ensures that proper clean-up is done before returning control to the caller. For a
DCSS, the bootstrap will do a PURGESYS only for those invocations where it had to do
a LOADSYS and if that has been specified during creation of the bootstrap. For an
XMOD, the bootstrap will DMSFRET the storage into which the XMOD was loaded. In
either case, the bootstrap also releases any dynamic storage needed for its own use before
returning to the caller.

When used as a nucleus extension, the bootstrap is all that is really loaded into
nucleus-free storage. If the bootstrap determines that the DCSS cannot be utilized, it
replaces itself with the XMOD and is no longer used. The current implementation
requires that the end user issues the NUCXLOAD command to load these functions as
nucleus extensions. One possible way of doing this is to NUCXLOAD these functions
with an EXEC that is executed by all users during CMS initialization, such as the
SYSPROF EXEC, introduced with VM/SP Release 5. To prevent storage fragmentation
at a later stage, it may be a good idea to include a call to IOS3270 here in case the
XMOD needs to be loaded. A way to load IOS3270 without generating error messages
or have the screen cleared is by using a simple IOS3270 (VERSION call.

 Appendix D. The GOODIES/GDCSS Package 55

The various interfaces are accomplished as follows:

 DCSS
This interface is independent of how GDCSS was loaded. GDCSS checks for the
existence of the specified DCSS, and if necessary, loads it. Control is transferred to the
interface module at the start of the DCSS (GOODIES), which then finds the specified
routine and transfers control to it. If the DCSS was not loaded, return is made directly to
the caller. If the DCSS could not be used for any reason, GDCSS checks to see if it is
transient or a nucleus extension and continues appropriately. If the DCSS had to be
loaded, GDCSS sets up a tail-end processing routine to PURGESYS the DCSS on
completion, if specified during creation. On systems with many users, it will usually be
cheaper to keep the DCSS attached. This mode of operation is the default.

Nucleus Extension and no DCSS
R2 points to the NXBLOCK. GDCSS loads the XMOD into DMSFREE
TYPE=NUCLEUS storage and then updates the NXBLOCK to indicate that this copy of
the specified command is the nucleus extension. GDCSS then releases its own storage
and is no longer involved in future calls to this function.

The following register content is required for programs to run as nucleus extensions:

R0 As set by caller, points to new form PLIST

R1 As set by caller, points to old form PLIST

R2 A(NXBLOCK)

R12 Entry address

R13 A(general register save area)

R14 Return address

R15 Entry address

R3-R11 Are UNPREDICTABLE

 DMSFREE execution
If GDCSS cannot use a DCSS and is not itself a nucleus extension, then it loads the
relocatable XMOD into DMSFREE storage. It also places a small “tail” of its own code
into DMSFREE storage and provides this as the return address. When return is made, the
tail section of GDCSS does appropriate clean-up, including the release of the DMSFREE
storage.

The actual address of the function in the DCSS is contained in the DCSS bootstrap
(GOODIES ASSEMBLE). This means that a change in one of the programs does not
affect any other program as long as the DCSS is re-saved. The INSTGOOD EXEC
creates the function bootstraps each time, but these only have to be replaced on the
system disk if GDCSS has been changed. You can change the function code and, if you
have not changed GDCSS, the old interface bootstrap module still works perfectly.

Similarly, if you change only GDCSS, you just have to replace the interface bootstrap
module on the system disk. The XMOD does not have to be replaced, nor does the
DCSS have to be saved. An option has been added to INSTGOOD to permit creation of
the interface bootstrap without requiring the creation of the corresponding XMOD.

56 Display Input/Output Facility Version 3 PDOM

Appendix E. The IOSDYNAT EXEC

The IOSDYNAT EXEC shown below can be used to dynamically change the attributes of
fields and for cursor positioning. It is included here as reference material to explain the
calling syntax.

/�� eupdate: Do not modify this file. It was built by the EUPDATE procedure.
� eupdate: The source file was: IOSDYNAT �EXEC A1
� eupdate: Built by Theo W.H. Alkema - 1���188� at UITHONE
� eupdate: Date: �5/19/87 - Time: 16:55:42 - DST �/

/� Set dynamic field and/or character attributes and position cursor �/
/� Calling format:

Interpret iosdynat(Arg1; <Arg2>; <Arg3>; <Arg4 <... ;Argn>>

Arg1 defines the affected field(s)
Format: Parm1 <,Parm2>

 Parm1: Ctlchar
Ctlchar is the Ctlchar with which this field is defined.

 Parm2: name
Specifies the variable name following the Ctlchar.
The name may be preceded by a length denominator.

Arg2 defines a dynamic field attribute or a function
 Format: <Parm1>

Parm1: Ctlchar | 'RESET' | 'DROP'
Ctlchar defines the Ctlchar to be used for this field.

Defaults to Ctlchar from Arg(1).
RESET specifies to assign the null value to the

variable(s) containing the dynamic attributes as
defined by Arg(1).

DROP specifies to drop the variable(s) containing the
dynamic attributes as defined by Arg(1).

Arg3 defines the cursor position within the field
 Format: <Parm1>

Parm1: Cursor position; absolute location in this field.
Do not specify if the cursor should not be positioned.

Arg4-n define character attributes
Format: Parm1 <... <;Parmn>>
Parmx: Ctlchar <,start <,length>>

Ctlchar specifies the Ctlchar to be used. The extended
attributes associated with this Ctlchar are applied
to the substring defined by start and length.

start defines the absolute starting position of the
substring within the field. Defaults to 1.

length defines the length of the substring. Defaults to
the remainder of the field.

 �/

Figure 11 (Part 1 of 4). IOSDYNAT EXEC

 Appendix E. The IOSDYNAT EXEC 57

iosdynat:
 maxl=16�
 Parse Arg input
 Parse Value input with arg1 ';' arg2 ';' arg3 ';' arg4
 Parse Value('') With stem suffix val
 /� Need at least 2 arguments �/
 If arg1='' Then Signal noargs
 If (arg2='' & arg3='' & arg4='') Then Signal noargs

 /� Process arg1 �/
 Parse Value arg1 With ctl ',' name
 /� Check the Ctlchar �/
 If Length(ctl)¬=1 Then Signal invctl
 stem='A'C2x(ctl)'.'
 If name¬='' Then suffix='$'name

 /� Process arg2 �/
 ctl=arg2
 /� Check for functions �/
 If Length(ctl)>1 Then Do
 Upper ctl
 Select

When ctl='RESET' Then Return stem||suffix"=''"
When ctl='DROP' Then Return "Drop" stem||suffix
Otherwise Signal invfunc

 End
 End
 If ctl='' Then ctl='��'x
 val=ctl

 /� To continue we need a field name �/
 If name='' Then Signal noname

 /� Process arg3 �/
 d='��'x
 If arg3¬='' Then Call cknum arg3
 val=val||d

Figure 11 (Part 2 of 4). IOSDYNAT EXEC

58 Display Input/Output Facility Version 3 PDOM

 /� Process arg4 �/
 /� Parse the character attribute definition �/
 Do While arg4¬=''

Parse Value arg4 With parm ';' arg4
Parse Value parm With ctl ',' start ',' lng .
If ctl='' Then Leave
If Length(ctl)¬=1 Then Signal invctl
If start='' Then d='�1'x
Else Call cknum start

 val=val||ctl||d
If lng='' Then d='��'x
Else Call cknum lng

 val=val||d
 End

 /� Finally, check & return the assignment �/
 If Length(val)>maxl Then Signal toomany
 Return stem||suffix'="'val'"'

cknum:
 Arg d
 If Datatype(d)¬='NUM' Then Signal notnum
 If d<1 Then Signal toosmall
 If d>maxl Then Signal toomuch
 d=D2c(d)
 Return

Figure 11 (Part 3 of 4). IOSDYNAT EXEC

 Appendix E. The IOSDYNAT EXEC 59

noargs:
 Say 'Insufficient number of arguments given'
 Exit
noname:
 Say 'No field name specified'
 Exit
invctl:
 Say 'Invalid Ctlchar:'''ctl''''
 Exit
notnum:
 Say 'Numeric value expected:'''d''''
 Exit
toosmall:
 Say 'Minimum value is 1:'''d''''
 Exit
toomuch:
 Say 'Maximum value('maxl') exceeded:'''d''''
 Exit
toomany:
 Say 'Maximum range('maxl') exceeded'
 Exit
invfunc:
 Say 'Unknown function:' ctl
 Exit

Figure 11 (Part 4 of 4). IOSDYNAT EXEC

60 Display Input/Output Facility Version 3 PDOM

Appendix F. The IOSIVP6 EXEC

The IOSIVP6 EXEC below is included as an example of how the STEM, FROM, and
FOR options can effectively be used. It is included here as reference material only.
Similar programs are available as IOSIVP4 and IOSIVP5 EXEC. Basically, the three are
slight variations on a similar theme, only the input source is different, or differently
handled. These programs can be used (after sufficient tailoring) by applications requiring
their functions.

/� Basic functional test/demo of the following IOS327� options:
 STEM stem - ala EXECIO
 FROM m - start at stem||m

FOR n - process n records
VERSION - query version

 - General notes:
1.This code handles the dynamic model where only the first panel
is dynamically build before presenting it. Higher levels are
dynamically build when selected. Once build, they are retained.
Panel nesting is done on row (line) basis.
A static model (where all information is pre-generated and
available in an IOSLIB for example, typically HELP menus)
is not yet available. The main differences with the dynamic

 model are:
a.the data has to be put into variables first (EXECIO (STEM)??
b.come to think of it, why shouldn&csq.t you use standard HELP????

 - Application notes:
1.Keep it SIMPLE by creating logical arrays which you
imbed selectively, using FROM and FOR options where needed.

2.This procedure handles &�q.&$CONT
floating” pages. A page can start

on any line (by using the cursor point function '/').
It also automatically adjusts the page size to the number
of rows available on the used screen.
It also keeps track of “lines” versus “records”, meaning
it recognizes whether a logical record results in a physically
displayed line on a panel.
The logic could be considerably simplified by using fixed
pages but then it would, of course, not be general. All in
all, the method used here does not appear to be very costly
and handles all situations.
A possible problem arises scrolling the screen to a point
where attributes have been changed from the default (as
defined in the header section) when the control records that
set the new attributes are not included in the body part.
This code does not contain logic to keep track of that
situation. For now we expect the user to point at the start
of a logical section on a panel.

Figure 12 (Part 1 of 9). IOSIVP6 EXEC

 Appendix F. The IOSIVP6 EXEC 61

 - Performance notes:
1.Avoid variable substitution by IOS327� when possible.
As the panels are build dynamically anyway, let REXX
do the work, it is better equipped for that.
Note: IOS327� issues an SVC 2�2 (EXECCOMM) for each variable!

 �/

 Address COMMAND
 Call init /� initialize �/
 Call bld_pnl /� build main panel lines �/
 Call bld_hdr /� build header lines �/
 Call bld_body /� build body lines �/
 Call bld_bot /� build bottom lines �/
 Call display /� get it displayed �/
 Return /� all done �/

display: /� Display panels �/
 Do Until done
 stem=stem.lvl

for=rows2for(body_cnt,start.lvl) /� get # of body itnos �/
If (for¬=� & d.stem.�>start.lvl+for-1) Then more='more ...'

 Else more=''
/� describe the body part �/
pnl.2='.ci (stem d.stem. from' start.lvl 'for' for
'IOS327� (STEM PNL.' alarm clear iosc.lvl
If rc¬=� Then Leave
cur_row=Substr(iosc,1,2) /� save the cursor row �/
cur_col=Substr(iosc,3) /� save the cursor column �/
iosc.lvl=iosc /� save the cursor position �/
clear='NOCLEAR' /� don't clear next round �/
alarm= /� reset possible alarm �/
msg='' /� clear possible msg �/
Select /� determine what to do �/
When iosk='ENTER' Then Call pr_enter
When Substr(iosk,1,2)='PF' Then Call pr_pfk

 Otherwise Nop
 End
 Call pr_input
 End
 Return

Figure 12 (Part 2 of 9). IOSIVP6 EXEC

62 Display Input/Output Facility Version 3 PDOM

pr_pfk: /� PFkey pressed �/
 Select

When iosd='N' Then Call foreward
When iosd='P' Then Call backward
When iosd='S' Then Call lvl_select
When iosd='E' Then Call lvl_end
When iosd='/' Then Call point
When iosd='?' Then Call retrieve
When iosd='H' Then Call help

 Otherwise done=1
 End
 Return

pr_enter: /� ENTER key pressed �/
 If on_body() Then Call lvl_next /� if on body line select �/
 Else iosc.lvl=inpc.
 Return

lvl_select: /� SELECT key pressed �/
 If on_body() Then Call lvl_next /� if on body line select �/
 Else call invcur
 Return

lvl_next:
 If Verify(Substr(d.stem.t,1,1),'|','M') Then Do/� if more levels�/

h2.lvl=hdr.2 /� save header �/
Parse Value Substr(d.stem.t,2) With hdr.2 ' more' ./� new ... �/

 hdr.2='From' hdr.2 /� ... header �/
lvl=lvl+1 /� bump level count �/
stem.lvl=stem'.'t /� set new stem �/
stem=stem'.'t /� set new stem �/
start.lvl=1 /� set new start �/
iosc.lvl='' /� set cursor �/

 If Symbol('d.stem.�')='LIT' Then Call create_lines
/� create next level info �/

 End
 Else Call emsg 'No further details available'
 Return

lvl_end: /� END function �/
 lvl=lvl-1 /� bump level count �/
 If lvl=� Then done=1 /� if not last level �/
 hdr.2=h2.lvl /� restore header �/
 Return

Figure 12 (Part 3 of 9). IOSIVP6 EXEC

 Appendix F. The IOSIVP6 EXEC 63

foreward: /� FORWARD function �/
 n=row2recf(body_cnt,start.lvl+1) /� get itno of next page �/
 If n¬=start.lvl Then Do /� if not same as current �/

If n<start.lvl Then Call emsg 'Wrap around from last page'
start.lvl=n /� set new start �/
iosc.lvl='' /� and position cursor �/

 End
 Else Call emsg 'This is the last page'
 Return

backward: /� BACKWARD function �/
 n=row2recf(-body_cnt,start.lvl-1) /� get itno of previous pg �/
 If n¬=start.lvl Then Do /� if we can go back �/

start.lvl=n /� restore start itno �/
iosc.lvl='' /� set cursor �/

 End
 Else Call emsg 'This is the first page'
 Return

point: /� Cursor scroll function �/
 If on_body() Then Do /� If on body line then �/

t=row2recf(-1,t) /� get 1st record number �/
start.lvl=t /� start there �/
iosc.lvl='�3'cur_col /� set cursor (leave column)�/

 End
 Else Call invcur
 Return

retrieve: /� Display previous command �/
 inp_rr=
 inp=inp.inpr#
 iosc.lvl=inpc.inpr#
 inpr#=inpr#-1
 If inpr#=� Then inpr#=inp.�
 If inp.inpr#='' Then inpr#=inp#-1
 If inpr#=� Then inpr#=1
 Return

Figure 12 (Part 4 of 9). IOSIVP6 EXEC

64 Display Input/Output Facility Version 3 PDOM

pr_input:
 If iosd='?' Then Return
 If inp¬='' Then Select /� command available �/

When inp='?' Then Call retrieve
When inp=inp_rr Then Do /� reset command in error �/

 inp_rr=
 inp=
 iosc.lvl=
 End

Otherwise Call pr_cmd /� process the command �/
 End
 Return

pr_cmd: /� process a command �/
 inp_rr=
 If inp¬=inp.inp# Then Do /� save the command �/
 inp.inp#=inp
 inpc.inp#=iosc
 inpr#=inp#
 inp#=inp#+1

If inp#>inp.� Then inp#=1
 End
 Trace O /� execute the command �/
 If Substr(inp,1,1)='&' Then Address CMS Substr(inp,2)
 Else Address CMS inp
 Trace N
 If rc¬=� Then Do

If rc=-3 Then msg='Unknown Command'
Else msg='Return code' rc

 alarm='ALARM'
 inp_rr=inp
 iosc.lvl=iosc
 End
 Else Do

If Substr(inp,1,1)¬='&' Then Do
 inp=''
 iosc.lvl=inpc.
 End
 End
 Return

on_body: /� Determine whether the cursor is on a body line �/
 t=cur_row-2 /� convert row to body line �/
 If (t>� & t<=body_cnt) Then Do /� if pointing in body part �/

t=row2rec(t,start.lvl) /� convert row to record �/
If t¬=� Then Return 1 /� ok if within body part �/

 End
 Return �

Figure 12 (Part 5 of 9). IOSIVP6 EXEC

 Appendix F. The IOSIVP6 EXEC 65

invcur:
 Call emsg 'Cursor position not valid for requested operation'
 Return

help: /� provide cursor dependent help information �/
 Select

When cur_row=1 Then Call emsg 'You are pointing at the header line'
When cur_row=2 Then Call emsg 'You are pointing at the message line'
When cur_row=rows Then Call emsg 'You are pointing at the PFkey line'
When cur_row=rows-1 Then Call emsg ,

'You can execute any CP/CMS command from this line'
 Otherwise Do

If on_body() Then Do
 If Verify(Substr(d.stem.t,1,1),'|','M')

Then Call emsg 'Press the ENTER/PF2 key to display more',
'information about this item'

Else Call emsg 'There is nothing more to say about this item'
 End

Else Call emsg 'This is just a blank line, nothing more'
 End
 End
 Return

emsg:
 msg=Arg(1)
 alarm='ALARM'
 Return

rows2for: /�rows, start
 rows = the number of rows (within the body)

For example, 3 meaning 3 body lines.
start = the starting record number
Determine the number of records to be processed to display
'rows' rows of data, starting at record 'start'.

 �/
 v=row2rec(Arg(1), Arg(2))
 If v=� Then Return d.stem.�-Arg(2)+1
 Return v-Arg(2)+1

Figure 12 (Part 6 of 9). IOSIVP6 EXEC

66 Display Input/Output Facility Version 3 PDOM

row2recf: /�row, start
row = the displayed data row number (within the body)

For example, 3 meaning the 3rd body line.
start = the starting record number
Convert a row number to first record number.
The last qualifier of the current array of variables is
what we call a record number here.
The first record of row n is considered to be the record
following row n-1. This may be an IOS327� control record
setting color, for example.

 �/
 v=row2rec(Arg(1), Arg(2)-1)
 If v¬<d.stem.� Then Return start.lvl
 Return v+1

row2rec: /� row, start
Convert a row number to a record number.
(compensates IOS327� control records and null assignments)
Required for paging and record count calculations when data
records (displayed lines) are intermixed with IOS327� control

 records.
 �/
 Arg target
 If target<� Then Do
 incr=-1
 stop=1
 target=Abs(target)
 End
 Else Do
 incr=1
 stop=d.stem.�
 target=target
 End
 u=�
 Do v=Arg(2) To stop By incr

If Symbol('d.stem.v')='LIT' Then Iterate v
If Substr(d.stem.v,1,1)='.' Then Iterate v

 u=u+1
If u=target Then Return v

 End v
 Return �

bld_pnl: /� Build the panel lines �/
 pnl.1='.i (stem hdr.'
 pnl.2='.ci (stem d.stem.'
 pnl.3='.i (stem bot.'
 pnl.�=3
 Return

Figure 12 (Part 7 of 9). IOSIVP6 EXEC

 Appendix F. The IOSIVP6 EXEC 67

bld_hdr: /� Build the header lines �/
 hdr.1='.mnyhjx Set Norm Col=whi Ali=att comp'
 hdr.2='Use the cursor TAB and ENTER/PF2 keys to display selective entries'
 hdr.3='.j &&&&&&&'
 hdr.4='.chjx Set Norm Col=tur, High Col=red, Ctl Col=yel'
 hdr.5='&msg'
 hdr.6='.e jx Set Ctl | Typ=tab'
 hdr.�=6
 Return

bld_bot: /� Build the bottom lines �/
 bot.1='.l-2f H S E % / ? P N % % % Q'
 bot.2='.ch2jx Set Hig Col=whi, Ctl | hig=und col=gre typ=unp'
 bot.3='===>|65&inp ',
 ' &more',
 bot.4='.jx Set Mask'
 bot.5=' ' ,
 ' '
 bot.6='PF 1=Help 2=Select 3=End 5=/ 6=? 7=Prev 8=Next',
 ' 12=Quit'
 bot.�=6
 Return

bld_body: /� Build arrays of body lines �/
 lvls=9
 lines=34
 Call create_lines
 Return

create_lines:
 n=�
 Do r=1 To lines By lvl
 n=n+1

If (lvl<lvls & n//(lvls-lvl+1)=�)
Then d.stem.r='| Info level 'lvl 'record' r 'line' n ' more ...'
Else d.stem.r=' Info level 'lvl 'record' r 'line' n

 End r
 d.stem.�=r-lvl
 Return

Figure 12 (Part 8 of 9). IOSIVP6 EXEC

68 Display Input/Output Facility Version 3 PDOM

init: /� Initialize for first round �/
 'IOS327� (VERSION' /� iosd='IOS327� V2.1 R4.1�1.�1 �7/13/88' �/
 Parse Value iosd With . 'R' . '.' iosd '.' .
 If (rc=1 | iosd<1�1) Then Do

Say 'Sorry, your IOS327� is outdated'
 Exit 4
 End
 rows=C2d(Substr(Diag(8c),5,2)) /� get number of screen rows�/
 body_cnt=rows-4 /� number of body lines �/
 alarm=
 stem=
 stem.=
 iosc.=
 clear=
 lvl=1
 start.=1
 done=�
 inp= /� input �/
 inp.= /� areas �/
 inp.�=1� /� # of retrieve buffers �/
 inp#=1 /� 1st input area �/
 inpr#=1 /� 1st retrieve buffer �/
 inpc.=Right(rows-1,2,'�')||�7 /� cursor on command line �/
 Return

Figure 12 (Part 9 of 9). IOSIVP6 EXEC

 Appendix F. The IOSIVP6 EXEC 69

 Index

Special Characters
&vname function 27

A
A function 14
ALARM option 9
aligning output 20
APL character set 4

B
B function 15
BIND option 9
blanks in input fields 16
blinking of the screen 9

C
C function 15
character attributes 40
character sets 21
CMS files

$IOS3270 $KEEP$ 12, 29
 GDCSS ASSEMBLE 53

GOODEND ASSEMBLE 53
GOODIES ASSEMBLE 53
INSTGOOD EXEC 7, 53
IOS3270 IOS3270 6, 18
IOSEXEC EXEC 6
IOSEXEC2 EXEC 6
IOSIVP1 EXEC 6
IOSIVP2 EXEC 6
IOSIVP3 EXEC 6
IOSIVP4 EXEC 6
IOSIVP5 EXEC 6
IOSIVP6 EXEC 6
IOSPAGE IOS3270 6, 18
IOSREXX EXEC 6

CMS SUBSET 10
color 20, 45
combining IOS3270 and EXEC files 46
compound substitution 33
console, querying 13
Ctlchars 15
cursor position

&I2@CURSPOS.
default 11

dynamic 40
cursor select 22, 32

D
D function 28
DCSS installation 6
defining

character attributes 22
Ctlchars 19
DBCS input fields 21
dynamic attributes 21
Etmode 21
field attributes 22
field definition characters 19
mask 19
output alignment 20

dynamic attributes 40
dynamic cursor positioning 40

E
E function 16
editing of input 34
error messages 3
escape character 22
EXEC 2 33
EXECCOMM 4, 6, 25, 33
EXECLOAD 8, 38
extended attributes

color 20
highlight 21
symbol set 21

F
F function 16
FBLOCK 37
field definition characters 15
File Block 37
files, CMS

See CMS files
FOR option 9
FROM option 9
function characters

.A 14

.B 15

.C 15

.D 28

.E 16

.F 16

.H 17

.I 17

.J 28

.JX 18

.K 29

70 Display Input/Output Facility Version 3 PDOM

function characters (continued)
.L 24
.M 25
.N 25
.O 30
.P 25
.Q 26
.R 26
.S 26
.T 26
.V 27
.W 31
.X 31
.Y 27
.Z 31

G
GDCSS 53
GOODIES 53
GRAF option 9

H
H function 17
highlight, extended 21
highlighting 22
HNDEXT option 12
HNDINT option 12

I
I function 17
imbedding files 17
input editing 34
intensity 22
IOS3270 variables

&I2@VARIOS.
&IOSK 10, 11

&IOSC 35, 37
&IOSD 17, 32, 35, 37
&IOSK 16, 17, 35, 37

IUCV 42

J
J function 28
JX function 18

K
K function 29
KEEPFILE option 12

L
L function 24
label processing of IOS3270 8
large screens 25
LIB option 9
LIFO option 12

M
M function 25
maximum input length 2
maximum output width 2

N
N function 25
NOCLEAR option 9
NOKEEP option 12
NOQUIT option 10
NOSCREEN option 9
NOWAIT option 12

O
O function 30
options

compatibility 12
HNDEXT 12
HNDINT 12
KEEPFILE 12
LIFO 12
NOKEEP 12
NOWAIT 12
QUERY 13
usage 42

preferred 9
ALARM 9
BIND 9
FOR 9
FROM 9
GRAF 9
LIB 9
NOCLEAR 9
NOQUIT 10
NOSCREEN 9
PA1 10
PA2 10
rrccc 11
SCRIOSD 10
STEM 10
TIME 11
UPDATE 11
VERSION 11

 output alignment 20

 Index 71

P
P function 25
PA1 key action 10
PA1 option 10
PA2 key action 10
PA2 option 10
panels within EXECs 46
period, display in column 1 22, 26
periods in variable names 34
Programmable Symbol Sets 21
PSS 21

Q
Q function 26
QUERY option 13
query the console 13

R
R function 26
rrccc option 11

S
S function 26
screen blinking 9
SCRIOSD option 10
semicolon, display in column 1 22, 26
SO/SI 21
special characters in input fields 16
STEM option 10
SUBSET, CMS 10
symbol sets 21

T
T function 26
TEXT character set 4
TIME option 11
TIMER, CP SET command 11

U
UPDATE option 11

V
V function 27
variable processing

general 33
in input fields 34
special variables 35

variables, set by IOS3270
See IOS3270 variables

VERSION option 11
VMCF 42

W
W function 31

X
X function 31

Y
Y function 27

Z
Z function 31

72 Display Input/Output Facility Version 3 PDOM

Program Number
5785-HAX

File Number
S370-30

Printed in Denmark

	Chapter 1. Introduction
	Chapter 2. Understanding DIOF-3
	2.1 Input to DIOF-3
	2.2 Output from DIOF-3
	2.3 Error Messages

	Chapter 3. Installation
	3.1 Installation Prerequisites
	Machine Requirements
	Programming Requirements

	3.2 Dependencies
	3.3 Machine-readable
	File 1
	File 2

	3.4 Modifying DIOF-3

	Chapter 4. Running the IOS3270 Program
	4.1 Invoking The IOS3270 Program
	4.2 Options
	Preferred Group
	Compatibility Group

	4.3 Return Codes
	4.4 Function Characters
	Preferred Group
	Compatibility Group

	4.5 Defining Selector Light Pen Fields
	4.6 Defining Input Fields
	4.7 Using Variables
	4.8 Using Variables in Input Fields
	4.9 IOS3270 Variables
	4.10 Special Characters
	4.11 Special Values In Fields
	4.12 Invoking IOS3270 with In-storage Data
	Method 1
	Method 2

	4.13 Specifying Character Attributes and Dynamic Attributes
	Non-variable Data
	Variable Data

	4.14 Using The IOS3270 Options HNDEXT and HNDINT
	4.15 Color Aspects
	4.16 Performance Considerations
	General
	Combining IOS3270 and EXEC Files
	Using Many Panels

	Appendix A. Questions from IOS3270 Users
	Appendix B. Summary of Function Characters
	Appendix C. The IOSLIB Program
	Appendix D. The GOODIES/GDCSS Package
	DMSFREE Storage
	DCSS (or Saved Segment)
	DCSS
	Nucleus Extension and no DCSS
	DMSFREE execution

	Appendix E. The IOSDYNAT EXEC
	Appendix F. The IOSIVP6 EXEC
	Index

