

z/VM CPU Pooling and ILMT

Bill Bitner – bitnerb@us.ibm.com z/VM Development Client Focus & Care IBM Endicott, NY

September 17, 2015

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

BladeCenter* DB2* DS6000* DS8000* ECKD * Registered trademarks	FICON* GDPS* HiperSockets HyperSwap IBM z13* of IBM Corporation	OMEGAMON* Performance Toolkit for VM Power* PowerVM PR/SM	RACF* Storwize* System Storage* System x* System z*	System z9* System z10* Tivoli* zEnterprise* z/OS*	zSecure z/VM* z Systems*
---	--	---	---	---	--------------------------------

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

OpenStack is a trademark of OpenStack LLC. The OpenStack trademark policy is available on the OpenStack website.

TEALEAF is a registered trademark of Tealeaf, an IBM Company.

Windows Server and the Windows logo are trademarks of the Microsoft group of countries.

Worklight is a trademark or registered trademark of Worklight, an IBM Company.

UNIX is a registered trademark of The Open Group in the United States and other countries.

* Other product and service names might be trademarks of IBM or other companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

This information provides only general descriptions of the types and portions of workloads that are eligible for execution on Specialty Engines (e.g., zIIPs, zAAPs, and IFLs) ("SEs"). IBM authorizes customers to use IBM SE only to execute the processing of Eligible Workloads of specific Programs expressly authorized by IBM as specified in the "Authorized Use Table for IBM Machines" provided at www.ibm.com/systems/support/machine_warranties/machine_code/aut.html ("AUT"). No other workload processing is authorized for execution on an SE. IBM offers SE at a lower price than General Processors/Central Processors because customers are authorized to use SEs only to process certain types and/or amounts of workloads as specified by IBM in the AUT.

Notice Regarding Specialty Engines (e.g., zIIPs, zAAPs and IFLs):

Any information contained in this document regarding Specialty Engines ("SEs") and SE eligible workloads provides only general descriptions of the types and portions of workloads that are eligible for execution on Specialty Engines (e.g., zIIPs, zAAPs, and IFLs). IBM authorizes customers to use IBM SE only to execute the processing of Eligible Workloads of specific Programs expressly authorized by IBM as specified in the "Authorized Use Table for IBM Machines" provided at www.ibm.com/systems/support/machine warranties/machine code/aut.html ("AUT").

No other workload processing is authorized for execution on an SE.

IBM offers SEs at a lower price than General Processors/Central Processors because customers are authorized to use SEs only to process certain types and/or amounts of workloads as specified by IBM in the AUT.

Acknowledgements

- The following people have contributed to this presentation:
 - Bill Bitner
 - Ellen Carbarnes
 - David Chase
 - John Franciscovich
 - Damian Osisek
 - Brian Wade
 - Romney White
- The z/VM CPU Pooling and Environment Information Interface teams:
 - Doug BrenemanYanique MoffittIan BroadbentMichel RaicherDean DiTommasoGarrett SchanckLarry HartleyAnn ShepherdCathy HupmanJim SwitzerTracy KreinDon WiltonVirg MeredithIm Suitant

Agenda

- Software pricing methodologies
- Brief review of z/VM scheduling options
- Overview of CPU Pooling on z/VM V6.3
- Update to IBM License Metric Tool (ILMT) 9.0.1
- Software Pricing with CPU Pooling
- Use case examples
- CPU Pooling with IBM z13 and SMT

IBM z Systems

z Systems software pricing methodologies offer:

Price-to-value

- Flexibility to run software where it is most efficient
- Capability to predict software charges
- Help with cost of new applications
- Flexibility to pay for software based on workload requirements

Pricing metrics for z/VM IPLA products:

- z/VM V5 and V6 and certain z/VM related products have pricing based on the number of engines.
 - Engine-based Value Unit pricing allows for a lower cost of incremental growth with additional engine-based licenses purchased.
- Most IBM middleware for Linux is also priced based on the number of engines.
 - The number of engines is converted into
 Processor Value Units (PVUs) under the
 Passport Advantage[®] terms and conditions.
- z/VM 6.3 (with APAR) allows *CPU pooling*.
 ILMT enhancements enable using ILMT with pooling.

Limiting Single Guests

Existing LIMITHARD option of SET SHARE command bounds guest processor resource consumption

-SET SHARE userid RELATIVE 2000 ABSOLUTE 40% LIMITHARD

- **RELATIVE 2000** defines entitlement: guest is allotted 20 times as much processor resource as the default (RELATIVE 100) user.
- ABSOLUTE 40% LIMITHARD sets the cap: guest cannot consume more than 40% of the processor resource on the z/VM system (e.g. 2 IFLs in a 5-IFL VM partition)
- Applies to processor resource of type where the guest is dispatched
- Scheduler divides this limit evenly among virtual CPUs in a virtual MP —Omits stopped vCPUs (e.g., via *cpuplugd*)

Limiting Single Guests

• SET SHARE LIMITHARD can be used to

- Prevent "runaway" virtual machines
- Limit consumption by less important virtual machines (e.g. test)
- Help to ensure department budgets are not exceeded
- Control resources available to contracting clients (service bureau)

• Some drawbacks:

- Change in number of logical processors (Capacity on Demand, VARY PROCESSOR ON/OFF) affects actual limit imposed
- Imposed at the individual guest level. Limiting a set of guests may require overlimiting of the individuals.
- Not recognized as a means of limiting capacity for IBM sub-capacity software license purposes

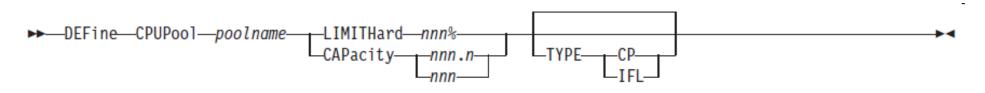
Environment Information Interface

- New interface allows guest to capture execution environment
 - Processor configuration and capacity information
 - Various Levels: Machine, logical partition, hypervisor, virtual machine
- New unprivileged instruction Store Hypervisor Information (STHYI)
- Includes support for CPU Pooling
- Exploited by ILMT 9.0.1 for sub-capacity pricing of Linux on System z middleware
- Support details:
 - z/VM 6.3 with APAR VM65419 (included in RSU 1501)

CPU Pooling with z/VM V6.3

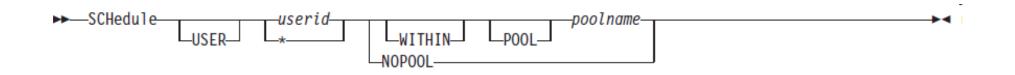
- Create a pool of processor resources available for a group of virtual machines in a z/VM system
- Allows capping of processor utilization for a set of guests to better balance resource utilization
- Allows Live Guest Relocation (LGR) as long as both definitions are compatible
 - Pools are defined and managed independently on each SSI member system
- Available with z/VM V6.3 and APAR VM65418 (in RSU 1501)

Flexible configuration of pools

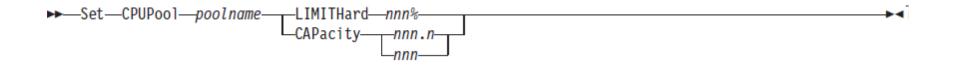


- Define named CPU pools with associated capacity
 - Number of CPUs of particular type (CP, IFL)
 - Percentage of CPUs of particular type
- Associate guests with CPU pools
- Limit aggregate guest consumption to pool capacity
 - Coexists with individual guest LIMITHARD setting; both limits enforced
 - Otherwise, resource allotted to group members on demand ("first come, first served")
- Allows overcommit no restriction on number of pools or aggregate capacity
- New Environment Information Interface obtains pool capacity information
 - Eliminates manual configuration of data collection

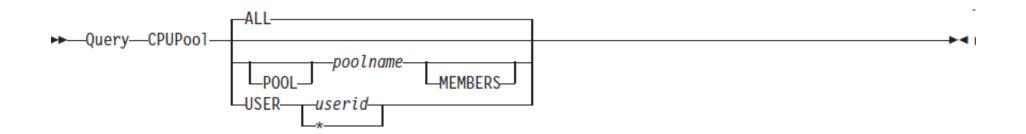
Defining CPU Pools


- Use the **DEFINE CPUPOOL** command to define named pools
 - Define for a particular **TYPE** of core (**CP** or **IFL**)
 - Default is the primary core type (IFL in an IFL-only partition, otherwise CP)
 - CAPACITY number of CPUs' worth of processing power
 - Limit recognized for sub-capacity licensing purposes
 - Can overcommit (i.e. Sum of CPUPOOL CPUs > Logical processors)
 - LIMITHARD % of system CPU resources of that type
 - Same enforcement mechanism as SET SHARE LIMITHARD
 - Does not qualify for sub-capacity licensing

Enrolling virtual machines in a pool


- Assign a guest to or remove it from a CPU pool with the SCHEDULE command
 - Specified CPU pool must be already defined
 - Type of CPU in specified CPU pool must match the guest's primary CPU type
 - CPU affinity must be on for the guest
 - If guest is already assigned to a CPU pool it is removed from that pool and added to the specified pool

Changing CPU allocation to a pool


Limits can be changed with the SET CPUPOOL command

Displaying CPU Pool information

 Use QUERY CPUPOOL to see information about the pools defined on your system

Displaying CPU Pool information

Display all pool definitions:

query cpupool all

CPU pool	Limit	Туре	Members
LINUXP2	8.0 CPUs	IFL	0
CPPOOL10	12 %	CP	8
LINUXP3	30 %	IFL	20
LINUXP1	2.5 CPUs	IFL	6

Display one pool definition and member names:

```
query cpupool linuxp1 membersCPU pool LimitTypeLINUXP12.5 CPUsIFL6The following users are members of CPU pool LINUXP1:D70LIN12D79LIN03D79LIN04
```

Display user's pool name:

query cpupool user d79adm User D79ADM is in CPU pool LINUXP1

DELETE CPUPOOL

- Use **DELETE CPUPOOL** to delete a pool definition
- Pool must be empty.
 - Use SCHEDULE ... NOPOOL first to remove each member.

► DELete CPUPool pool name ►

Automating CPU Pool Management

- Complication:
 - At VM IPL, no pools are defined. (Not remembered from prior IPL.)
 - Can't add user's to the pool until the pool is defined.
- One solution:
 - 1. COMMAND statements in directory definition of OPERATOR or AUTOLOG1 to define CPU pools

COMMAND DEFINE CPUPOOL WEBSPH CAPACITY

COMMAND DEFINE CPUPOOL DB2 CAPACITY 3 TYPE IFL COMMAND DEFINE CPUPOOL QADEPT LIMITHARD 10% TYPE CP

...Or include 'CP DEFINE ...' commands in AUTOLOG1's PROFILE EXEC.

5

TYPE

IFL

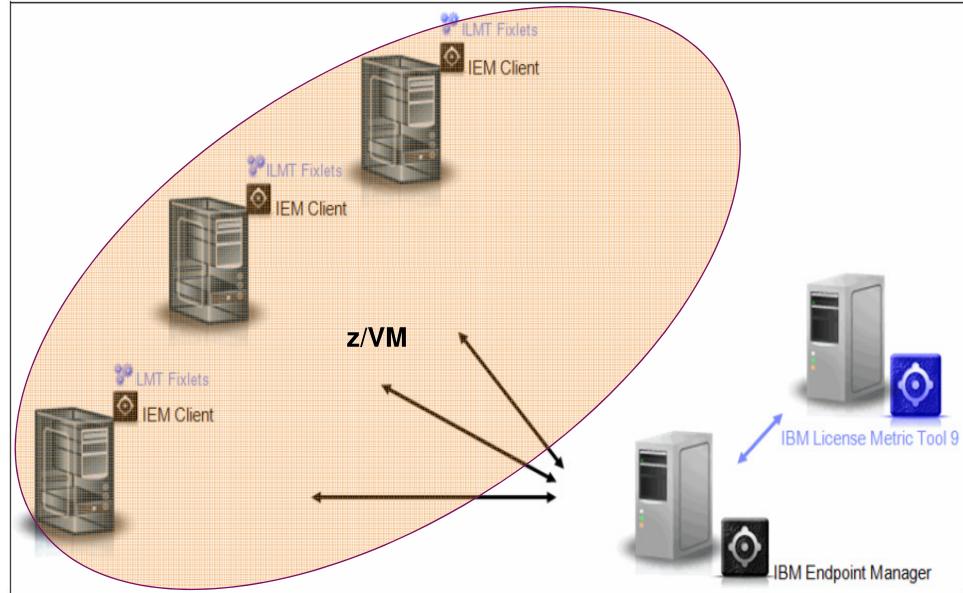
2. COMMAND statements in virtual machine definitions to place them into pools as they log on USER WASPROD1 . . .

COMMAND SCHEDULE * WITHIN POOL WEBSPH

Single System Image considerations

- CPU pools are defined and managed independently on each member of an SSI cluster
- A guest in a CPU pool can relocate to another system if a CPU pool with the same name and type is defined on the target system –Need not have the same limits
- Administrator is responsible for adjusting pool limits if needed —May affect software license requirements

Track License Requirements with IBM License Metric Tool



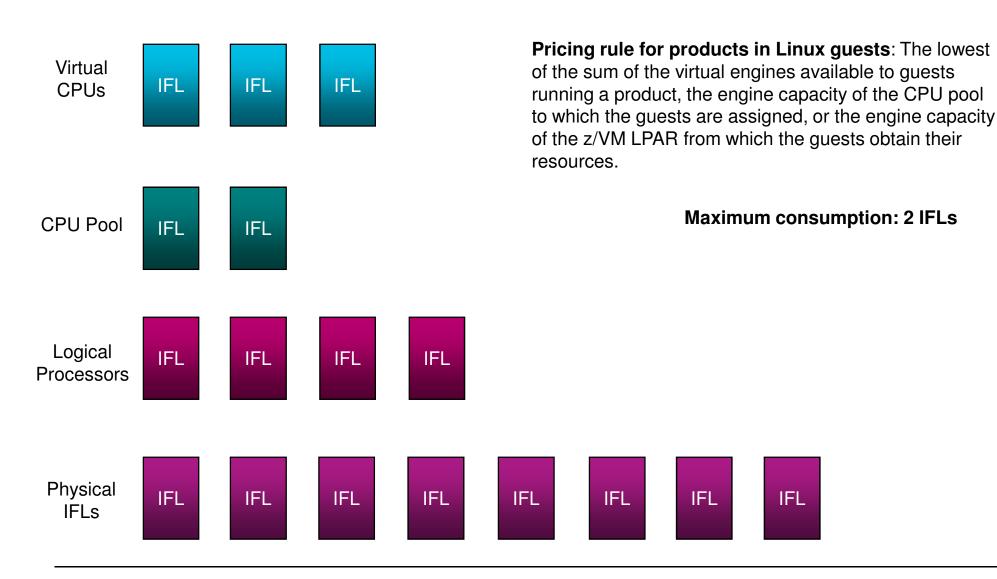
- IBM License Metric Tool (ILMT) is a no-charge tool used to determine PVU licensing requirements
- New Linux interface will be exploited by ILMT to assess software license conformance
 - Invokes z/VM Environment Information Interface
- Ability to track CPU pools available in ILMT 9.0.1 available August 12, 2014
 - Improvements also made to reduce CPU overhead incurred with ILMT
- Using ILMT you are only charged for the CPU pool capacity assigned to Passport Advantage PVU-based software

IBM z Systems

ILMT Architecture Overview

Software Licensing Key Learning Points

- IBM's two Software Categories are z Systems software and Distributed software and the entitlements are not interchangeable
- Value Units (VUs) are used to license z Systems IPLA software and Processor Value Units (PVUs) are used to license Distributed Passport Advantage software
- Distributed Sub-Capacity Terms require customers to keep track of the maximum processor capacity available to a program:
 - IBM License Metric Tool calculates this
 - Customers run the tool and retain the reports
- When running z/VM virtual machines and/or LPARs a customer is required to license for only the real hardware resources actually available to each program, not all the virtual resources
- PVUs are based on the processor family, for example
 - IFL on z114 might be 100 PVUs while IFL on zEC12 could be 120 PVUs
 - See IBM pricing expert for details
- On the z13, licensing granularity is one core's worth of processing power
 - No thread-based licensing

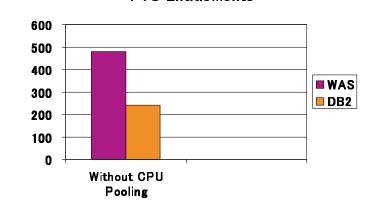

Current Linux Guest Software Pricing

of the sum of the virtual engines available to guests running a product or the engine capacity of the z/VM LPAR from which the guests obtain their resources. Virtual **IFL IFL CPUs** Maximum consumption: 2 IFLs Logical **IFL** IFL IFL **IFL** Processors Physical IFL IFL IFL IFL IFL IFL IFL IFL **CPUs**

Pricing rule for products in Linux guests: The lower

Linux Guest Software Pricing With CPU Pooling

Use cases for CPU Pooling

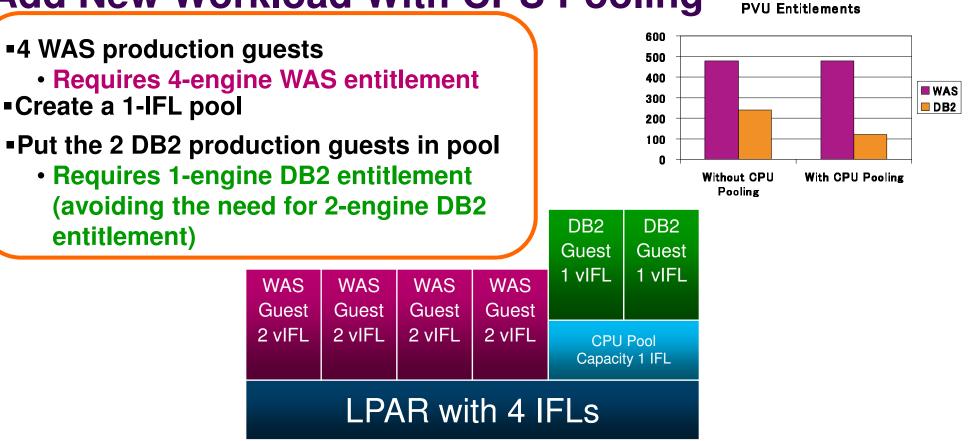


- Department budgeting
 - Assign each department's guests to CPU pool with contracted capacity
- Grow workloads without affecting the budget
 - Add New Workload
 - Add Capacity
 - Combine LPARs
 - Handle fractional workload requirements
- Prevent resource over-consumption
 - Limit aggressive workloads

Add New Workload Without CPU Pooling

- 4 WAS production guests
 - Requires 4-engine WAS entitlement
- Add 2 DB2 production guests
 - Requires 2-engine DB2 entitlement

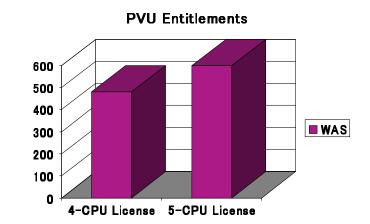
PVU Entitlements


WAS	WAS	WAS	WAS	DB2	DB2				
Guest	Guest	Guest	Guest	Guest	Guest				
2 vIFL	2 vIFL	2 vIFL	2 vIFL	1 vIFL	1 vIFL				
LPAR with 4 IFLs									

Note: All PVU Entitlement examples based on zEC12 (120 PVU per IFL) – will look proportionally the same on zBC12 (100 PVU per IFL)

IBM z Systems

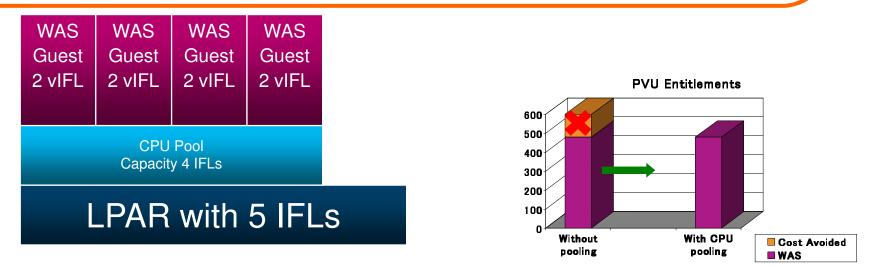
Add New Workload With CPU Pooling



- Allows new workloads to be added cost effectively
- Encourages additional workload consolidation after initial success

Add Capacity Without CPU Pooling

- 4 WAS production guests
 - Requires 4-engine WAS entitlement
- Add another IFL to the LPAR
 - Requires increase to 5-engine WAS
 entitlement



WAS	WAS	WAS	WAS					
Guest	Guest	Guest	Guest					
2 vIFL	2 vIFL	2 vIFL	2 vIFL					
LPAR with 5 IFLs								

Add Capacity With CPU Pooling

- LPAR with 4 IFLs
- Set up CPU Pooling for 4 IFLs
 - 4 WAS production guests require 4-engine WAS entitlement
- Add another IFL to the LPAR
- Avoids an incremental WAS entitlement license allows capacity to be added without increasing software license charges
- Encourages adding capacity for other workloads
 - (e.g., open source applications)

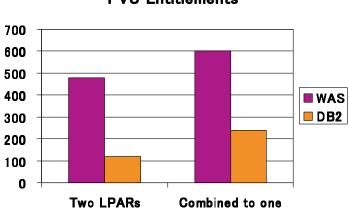
Note: All PVU Entitlement examples based on zEC12 (120 PVU per IFL) – will look proportionally the same on zBC12 (100 PVU per IFL)

Combine LPARs Without CPU Pooling

LPAR with 4 IFLs and 4 WAS production guests

- Requires 4-engine WAS entitlement
- LPAR with 1 IFL and 2 DB2 production guests
 - Requires 1-engine DB2 entitlement

WAS Guest 2 vIFL	WAS Guest 2 vIFL	WAS Guest 2 vIFL	WAS Guest 2 vIFL				DB2 Guest 1 vIFL	DB2 Guest 1 vIFL
LPAR with 4 IFLs							11	FL


Note: All PVU Entitlement examples based on zEC12 (120 PVU per IFL) – will look proportionally the same on zBC12 (100 PVU per IFL)

Combine LPARs Without CPU Pooling

LPAR with 4 IFLs and 4 WAS production guests

- Requires 4-engine WAS entitlement
- •LPAR with 1 IFL and 2 DB2 production guests
 - Requires 1-engine DB2 entitlement
- •LPARs merge to one LPAR with 5 IFLs
 - Requires increase to 5-engine WAS
 entitlement
 - Requires increase to 2-engine DB2 entitlement

WAS	WAS	WAS	WAS		DB2	DB2			
Guest	Guest	Guest	Guest		Guest	Guest			
2 vIFL	2 vIFL	2 vIFL	2 vIFL		1 vIFL	1 vIFL			
LPAR with 5 IFLs									

Note: All PVU Entitlement examples based on zEC12 (120 PVU per IFL) – will look proportionally the same on zBC12 (100 PVU per IFL)

Combine LPARs With CPU Pooling

- LPAR with 5 IFLs
- Create 2 Pools one with 4-IFLs and one with 1-IFL
- Place the four WAS guests in the 4-IFL pool and the two DB2 guests in the 1-IFL pool
 - Requires 4-engine WAS entitlement
 - Requires 1-engine DB2 entitlement

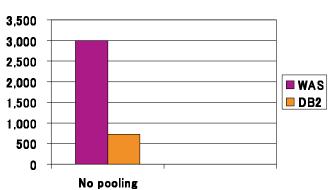
- Avoids increase in software license requirements (and costs)
- Reduces z/VM system management and maintenance workload
- Consolidates resources (memory, paging, network) for greater efficiency

Note: All PVU Entitlement examples based on zEC12 (120 PVU per IFL) – will look proportionally the same on zBC12 (100 PVU per IFL)

IBM z Systems

CPU Pools that Overcommit

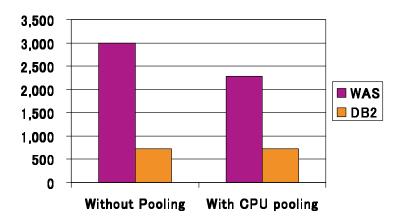
- •LPAR with 5 IFLs
- Create 2 Pools one with 4-IFLs and one with 2-IFLs
- Place the four WAS guests in the 4-IFL pool and the two DB2 guests in the 2-IFL pool
 - Requires 4-engine WAS entitlement
 - Requires 2-engine DB2 entitlement



Avoids increase in software license requirements (and costs)
 Reduces z/VM system management and maintenance workload

Large system with virtual machines that require fractional IFL capacity

- LPAR with 25 IFLs
- DB2 production guests
 - Requires 6-engine DB2 entitlement
- 3 WAS production guests and 12 small WAS test guests
 - Requires 25-engine WAS entitlement


PVU Entitlements

	DB2 Guest		WAS Guest													
3 vIFL	3 vIFL	6 vIFL	6 vIFL	6 vIFL	Guest	WAS Guest 2 vIFL	Guest									
LPAR with 25 IFLs																

Note: All PVU Entitlement examples based on zEC12 (120 PVU per IFL) - will look proportionally the same on zBC12 (100 PVU per IFL)

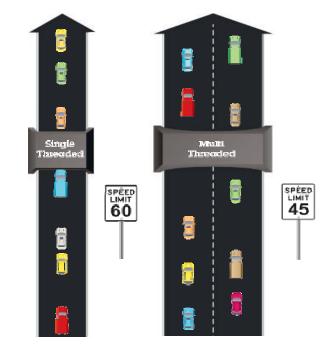
Align fractional capacity virtual machines to small CPU pools

- LPAR with 25-IFLs
- Set up a 1-IFL pool
- DB2 production guests
 - Requires 6-engine DB2 entitlement
- 3 WAS production guests and 1-IFL pool with 12 small WAS test guests
 - Requires 19-engine WAS entitlement

PVU Entitlements

Note: All PVU Entitlement examples based on zEC12 (120 PVU per IFL) – will look proportionally the same on zBC12 (100 PVU per IFL)

- LPAR with 18-IFLs
- 2 DB2 production guests and 3 WAS production guests are sharing the 18-IFLs
- Month-end processing or nightly backup uses any available capacity – could take from production guests
- Set up a 1 IFL CPU pool for running these tasks



Note: All PVU Entitlement examples based on zEC12 (120 PVU per IFL) – will look proportionally the same on zBC12 (100 PVU per IFL)

Simultaneous Multithreading (SMT)

- Objective is to improve capacity, not performance.
- Allows z/VM to dispatch work on up to two threads of a z13 IFL
- VM65586 for z/VM 6.3 only
 PTFs available March 13, 2015
- At least z13 millicode bundle 11
- Transparent to virtual machine

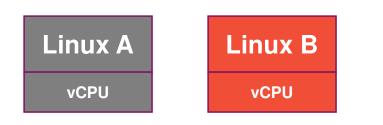
 Guest does not need to be SMT aware
 SMT is not virtualized to the guest
- z13 SMT support limited to IFLs and zIIPs -z/VM support is only for IFLs
- SMT is disabled by default
 - -Requires a System Configuration setting and re-IPL
 - -When enabled, applies to the entire z/VM partition
- Potential to increase the overall capacity of the system —Workload dependent

Which approach is designed for the higher volume of traffic? Which road is faster?

*Illustrative numbers only

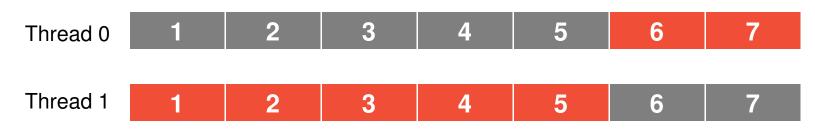
Additional Work Capacity

IFL (SMT disabled) – Instruction Execution Rate: 10

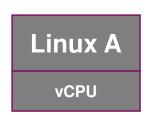


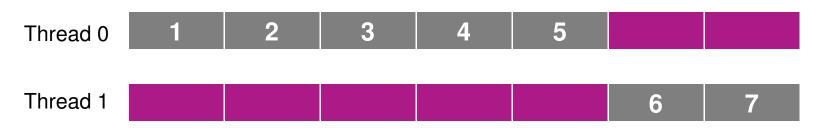
Thread 0	1	2	3	4	5	6	7
Thread 1	1	2	3	4	5	6	7

- Numbers are just for illustrative purposes
- Without SMT, 10 / second
- With SMT, 7 / second but two threads yields capacity of 14 / second

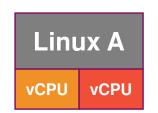

Interleaving Virtual CPUs of Guests

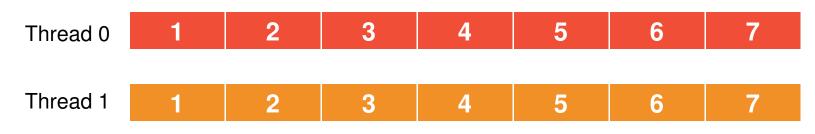
- In single core, we time slice access with each guest getting 5 ops completed.
- With SMT, each guest gets 7 ops completed for total of 14


IFL (SMT disabled) – Instruction Execution Rate: 10


Potential Need to Increase Virtual CPUs

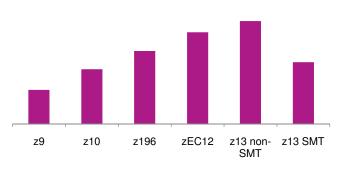
- Lets look at a single guest that hits maximum of its virtual resources
- In single core, it can execute 10 ops, but only 7 with SMT as there is only one virtual CPU to dispatch.


IFL (SMT disabled) – Instruction Execution Rate: 10


Potential Need to Increase Virtual CPUs

 Taking that guest and giving it a second virtual CPU allows additional work to be completed (if guest can exploit multiple virtual CPUs)

IFL (SMT disabled) – Instruction Execution Rate: 10



SMT - CPU Pooling Implications

- With SMT enabled
 - CAPACITY limit for CPU pools is defined as processing power of a number of IFL cores but limit enforcement is based on thread utilization (raw time)
 - In some cases, guests in a CPU pool will not be able to complete the same amount of work as before SMT with the same capacity limit
 - Capacity limits for CPU pools might need to be increased
 - More problematic when trying to match experience from zEC12 processor than older, slower processors

Work per Virtual CPU-second

Prorated Core Time (Available September 2015)

- Prorated core time will divide the time a core is dispatched proportionally among the threads dispatched in that interval
 - Full time charged while a vCPU runs alongside an idle thread
 - Half time charged while a vCPU is dispatched beside another active thread
- Therefore:
 - CPU pool capacity consumed as if by cores
 - Suitable for core-based software licensing
- When SMT is enabled, prorated core time will be calculated for users who are
 - In a CPU pool limited by the CAPACITY or LIMITHARD option
 - Limited by the SET SHARE LIMITHARD command (currently raw time is used; raw time will continue to be used when SMT is disabled)
- Only CAPACITY-based CPU pools meet requirements for sub-capacity pricing
- QUERY CPUPOOL will report capacity in terms of cores' worth of processing power instead of CPUs'
- Prorated core time will be reported in monitor records and the new Type F accounting record.
- APAR VM65680 is available now.

Summary

- CPU Pooling offers greater control over resource allocation
 - By workload
 - By department
 - By software product
- With ILMT 9.0.1, can limit software license costs, particularly where multiple software products are run in the same z/VM system
 - Enables organic growth of individual workloads
 - Avoids paying for capacity not used for a software product
 - Broadens options for workload consolidation, lowering overhead and administrative costs
- New implications for capacity and licensing with IBM z13 and Simultaneous Multithreading
 - Use Prorated Core Time enhancement

More information

- IBM z Systems Software Pricing
 - http://www-03.ibm.com/systems/z/resources/swprice/subcap/linux.html
- Processor Value Unit (PVU) Licensing for Distributed Software
 - http://www-01.ibm.com/software/passportadvantage/pvu_licensing_for_customers.html
- Passport Advantage Sub-Capacity FAQ:
 - http://www.ibm.com/software/passportadvantage/subcapfaqov.html
- Virtualization Capacity License Counting Rules
 - <u>http://www.ibm.com/software/passportadvantage/Counting_Software_licenses_using</u> <u>specific_virtualization_technologies.html</u>
- ILMT 9.0.1 Blog on August Update with new CPU pooling support <u>http://ibm.biz/cpupoolilmt</u>
- IBM Redpaper Simplify Software Audits and Cut Costs by Using the IBM License Metric Tool (September 2014)
 - http://www.redbooks.ibm.com/abstracts/redp5107.html?Open
- ILMT Youtube page
 - https://www.youtube.com/user/IBMLicenseMetricTool

Thanks!

Bill Bitner

IBM

z/VM Development Lab

Endicott, NY

bitnerb@us.ibm.com