

VM TCP/IP Routing - Part 1

Session V22

Alan Altmark IBM Corporation

© 1998, 2006 IBM Corporation

Disclaimer

2

This presentation provides in-depth information on configuration of the routing components of VM TCP/IP.

References to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM's product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe on any of the intellectual property rights of IBM may be used instead. The evaluation and verification of operation in conjunction with other products, except those expressly designed by IBM, are the responsibility of the user.

The following terms are trademarks of the International Business Machines Corporation in the United States or other countries or both: IBM IBM logo z/VM

Other company, product, and service names, which may be denoted by double asterisks (**), may be trademarks or service marks of others.

© Copyright International Business Machines Corporation, 1998, 2006

Agenda

- Link-level communications
 - MAC frames
 - ARP
 - Proxy ARP
- IP Addressing
 - Classes
 - Subnets
- Routing basics

Terminology: LAN Segment

More Terminology

- Application data
- TCP Segment
- UDP Datagram
- IP Packet
- Link Frame

5

MTU

Link Level Communication - Unicast

 Frames transmitted using Medium Access Control points and addresses

Only addressed station picks up frame

Link Level Communication - Broadcast

Station can broadcast by using special format frame

All stations will pick up frame

8

Link Level Communication - Multicast

 Station can reach all listening machines on LAN using a special multicast MAC address

 All stations registered for the multicast MAC address will pick up the frame

9

Converting a MAC address to an IP address

- IP hosts are managed and addressed using an IP address
- IP addresses are logical addresses, not physical
- So, how does TCP/IP convert an IP address to a physical MAC address?
- Answer: Address Resolution Protocol (ARP)

ARP Request

- Host broadcasts lookup on local LAN segment
 - Payload contains requested IP address

ARP Response

- Owner of IP address responds with unicast response
 - What happens if two hosts have the same IP address?

ARP Cache

- Hosts maintain a cache of ARP responses to avoid ARP before sending each frame
- ARP cache entries expire so that hosts can discover MAC address changes
 - New adapter

12

 Different box with same IP address e.g. hot standby

Sample cache contents

10.0.1.1	400012345678	Timestamp
10.0.1.2	400055551212	Timestamp
10.0.1.3	400087654321	Timestamp

Proxy ARP: Bending the Rules

In the following network configuration

- Are 10.0.1.1 and 10.0.4.4 in the same subnet?
- What would happen if 10.0.1.1 ARPs for 10.0.4.4?

ARP Request

10.0.1.1 assumes that 10.0.4.4 is on the LAN because it is in the same subnet, so it ARPs

Proxy ARP Response

- 10.0.1.3 pretends it is 10.0.4.4
 - "hidden router"

Proxy ARP Configuration

 AssortedParms ProxyARP EndAssortedParms

- z/VM will respond on behalf of another host
 - Not controllable on a per-interface basis
 - HOST route entry required
 - Host must be same subnet as interface ARP arrives on
- Broadcast and multicast packets will not be forwarded

Local vs. Remote Hosts

- Local hosts are on same LAN segment and can be reached via ARP or proxy ARP
- Remote hosts must be reached through a local gateway or router
 - Each host has a default gateway defined to it
- Proxy ARP blurs the line

- may provide SHORT-TERM alternative
- does not solve all problems

IPv4 Addressing

- 32-bit address, 4 octets
 - High-order bits identify network
 - Low-order bits identify host within network
 - Expressed as a.b.c.d
- Special values for network and host
 - All ones = "everyone"
 - All zeros = "me", "this", or "default"
- Address space divided into classes
 - For convenience only

18

Some defaults are based on class

IPv4 Addressing: Class A

Networks: 0 to 127 Total: 128 networks

19

9	130	57	21		
0x09	0x82	0x82 0x39			
0 000 1001	1000 0010	0011 1001	0001 0101		
Network 9		Host 130.57.21			

9.130.57.21

IPv4 Addressing: Class B

Networks: 128.0 to 191.255
 Total: 16 384 networks

20

148.100.204.3

148	100	204	3
0x94	0x64	CCx 0x03	
1 0 01 0100	1 0 01 0100 0110 0100		0000 0011
Network	148.100	Host 2	204.3

IPv4 Addressing: Class C

21

Networks: 192.0.0 to 223.255.255
 Total: 2 097 152 networks

200 14 64 191 0xC8 0x0E 0x40 0xBF 1100 1000 0000 1110 0100 0000 1011 1111 Network 200.14.64 Host 191

200.14.64.191

IPv4 Addressing: Class D Multicast

- 224.0.0.0 to 239.255.255.255
- provides 28-bit multicast group id
 - Iow-order 23 bits used in ethernet address 01-00-5E-00-00-00
 - ▶ E.g. 224.0.0.9 = 01-00-5E-00-00-09

Hardware facility

 Limited broadcast reduces unnecessary processing by uninterested parties

Used by RIPv2 and OSPF routers, and IPv6

Subnetting

- Class A and B networks provide for 16M and 64K hosts, respectively
- LAN segments do not contain anywhere near that many hosts
- Divide host id portion of address into manageable groups called subnets
- In general, classes are used for convenience
 - CIDR Classless Internet Domain Routing
 - Everything uses subnet masks

Subnetting

- Hosts that are members of the same subnet are considered to be in the same LAN segment
- Point-to-point is a "LAN segment" with exactly two hosts
- Multiple subnets may share same LAN segment
 - a.k.a "multinet"

Subnet = LAN Segment

Subnetting

26

- The subnet mask defines which bits of the host id are used for the subnet number
- Subnet number = bitand(address, mask)

Perform logical AND of destination address and subnet mask to get subnet number

bitand(9.130.3.157, 255.255.255.240) = 9.130.3.144

IPv4 Subnet Addressing

27

Subnet mask = 255.255.255.0 (/24) IP address = 9.130.57.21

Subnet = 9.130.57.0

IPv4 Subnet Addressing

28

Subnet mask = 255.255.255.192 (/26) IP address = 9.130.1.181

Subnet value = 9.130.1.128 (How was this determined?)

IPv4 Subnet Addressing

29

Subnet mask = 255.255.255.192 (/26) IP address = 9.130.1.181

	0000 1001	1000 0010	0000 0001	1011 0101
&	1111 1111	1111 1111	1111 1111	1100 0000
=	0000 1001	1000 0010	0000 0001	1000 0000
=	9	130	1	128

30

IPv4 Addressing Quick Reference

Class	First octet	Network
А	0-127	a.0.0.0
В	128-191	a.b.0.0
С	192-223	a.b.c.0
D	224-239	n/a

Mask	Last	hinary	subnetwork	#
size	octet	Dinary	SUDICIWUIK	hosts
/25	128	1000 0000	2: 0 128	126
/26	192	1100 0000	4: 0 64 128 192	62
/27	224	1110 0000	8: 0 32 64 96 128 160 192 224	30
/28	240	1111 0000	16: 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240	14
/29	248	1111 1000	32: 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248	6
/30	252	1111 1100	64: 0 4 8 16 20 24 28 32 36	2

Special IPv4 Addresses

31

net ID	subnet ID	host ID	Source	Destination	Description
0		C	yes	no	this host on this net
C		hostid	yes	no	specific host on this net
127		any	yes	yes	Loopback
-1		-1	no	yes	local media broadcast
netid		-1	no	yes	network-directed broadcast
netid	subnetid	-1	no	yes	subnet-directed broadcast
netid	-1	-1	no	ok	all-subnets-directed broadcast

Local broadcasts are not bridged or routed to other LAN segments

Networks on the Internet

endicott.ibm.com

IP Packet Routing

- Occurs whenever an IP packet is received or sent by a host
 - Sometimes trivial Only one possible route
 - Sometimes complex Multi-homed host
- Like a game of "Hot Potato"
 - If not mine, make it someone else's problem ASAP!
 - Logic:

- If it's for me, kick it upstairs
- If it's for a host on a network to which I'm connected, send it (point to point) or ARP (LAN)
- If for some other network, forward to someone else
- Otherwise, drop it

Multi-homed Host

Routing

- The magic is in selecting the right host in order to reach some other network
- Failing to follow IP addressing rules regarding subnets and LANs result in "host unreachable" or timeouts.
- Describing the local network topology to your system involves learning arcane specification rules
- You will be considered wise and learned!

The Adventure Continues...

- Stay tuned for Routing Part 2 Don't touch that dial!
- We'll get into VM TCP/IP host configuration specifics
 - Static routing
 - Dynamic routing
 - VIPA Virtual IP Addressing
 - Virtual Switching

Read More About It...

- z/VM TCP/IP Planning and Customization
- TCP/IP Illustrated, Vol. 1 Addison Wesley

39

Internetworking with TCP/IP
 Prentice Hall

SC24-6019

W. Richard Stevens ISBN 0-201-63346-9

Douglas P. Comer ISBN 0-13-216987-8

Contact Information

- By e-mail: Alan_Altmark@us.ibm.com
- In person: USA 607.429.3323
- On the Web: http://ibm.com/vm/devpages/altmarka

Mailing lists:

40

IBMTCP-L@vm.marist.edu VMESA-L@listserv.uark.edu LINUX-390@vm.marist.edu

http://ibm.com/vm/techinfo/listserv.html