Reducing Your Software Costs Through Server Consolidation with Linux on System z

Jim Elliott
Advocate – Linux, Open Source, and Virtualization and Manager – System z Operating Systems
IBM Canada Ltd.
1825 – Reducing Your Software Costs Through Server Consolidation with Linux on System z

- Reducing Your Software Costs Through Server Consolidation with Linux on System z
  - Consolidating UNIX and Windows servers onto Linux on System z can dramatically reduce your software costs. This presentation will provide an overview of how this can be accomplished, along with real customer examples where large savings were obtained.

- Credits
  - Marlin Maddy, Executive IT Consultant - Scorpion Consulting in IBM Systems & Technology Group, Infrastructure Solutions
  - David Rhoderick, Mainframe Evangelist in IBM Software Group, Strategy
Have you heard/made these statements?

- “My mainframe cost 2x, 5x, 10x compared to my distributed environment”  
  Mainframe

- “Mainframe software costs are expensive and are driving me off the platform”  
  Mainframe

- “We are on a get off the mainframe strategy”  
  Mainframe

- “We keep adding servers and people”  
  Distributed

- “Our infrastructure can not support our servers”  
  Distributed
Mainframe inhibitors

- **Cost due to perception**
  - Chargeback
  - Latest software contract/negotiation
  - Size of the total spending
  - Size of the smallest unit
- **Application availability**
- **Skill Availability**
  - Addressed in IBM’s Mainframe Charter
Chargeback

- Mainframe chargeback pools are typically 50 – 60% overstated
  - Software contracts
  - People
    - Operations and monitoring
  - Default bucket

- Chargeback methodology cannot be used for comparing the cost of adding or removing a workload
  - Incremental cost is 20 – 25% of the full chargeback cost
    - Hardware price performance
    - Software flat slope, ISVs?
    - Do you need to hire additional people
The cost dynamics of supporting corporate IT infrastructures has changed significantly

- People expense has tripled as a %
- Software expense has doubled as a %
- Hardware is less than 1/3 of its original %
Distributed server annual cost distribution

These are 2 typical customer examples
Traditional mainframe spending distribution

- Software costs are highly visible
- Incremental people costs are minimal
- Facility costs are minimal

Software costs are highly visible with 35-55% of the budget. Incremental people costs are minimal, with less than 5% and facility costs are minimal, with less than 15-30%. The pie chart shows the distribution of spending with 35-55% allocated to software, <20-35% to hardware, <5% to other, and <15-30% to people.
Installed vs. used capacity

Installed capacity: 33M tpms*

Used capacity: 4M tpms*

* System capacity (tpms) is an approximation of the transaction processing capability of each system. It cannot be compared to other commercial ratings or benchmarks and is invalid outside of the context of this IBM study.

Server utilization varies significantly by platform and that needs to be accounted for in the business case. The mainframe environment is used most efficiently, but is it the most or least expensive?

Typical utilization
- Mainframe 80 – 90%
- Unix 10 – 20%
- Wintel 5 – 12
Customers are installing more capacity

CAGR 1997-2000 = 26%
CAGR 2000-2005 = 19%

Source: IBM STG Finance
System z retains market share

Tracking rolling quarters, IBM is the leader while other vendors’ market shares are flat/declining

<table>
<thead>
<tr>
<th></th>
<th>4Q03</th>
<th>1Q04</th>
<th>2Q04</th>
<th>3Q04</th>
<th>4Q04</th>
<th>1Q05</th>
<th>2Q05</th>
<th>3Q05</th>
<th>4Q05</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM System z</td>
<td>33.7%</td>
<td>36.4%</td>
<td>40.4%</td>
<td>42.0%</td>
<td>40.9%</td>
<td>41.0%</td>
<td>37.9%</td>
<td>38.9%</td>
<td>41.4%</td>
</tr>
<tr>
<td>IBM other $250K+</td>
<td>23.1%</td>
<td>23.4%</td>
<td>21.5%</td>
<td>19.9%</td>
<td>20.6%</td>
<td>19.5%</td>
<td>22.0%</td>
<td>23.4%</td>
<td>22.0%</td>
</tr>
<tr>
<td>HP</td>
<td>23.0%</td>
<td>20.3%</td>
<td>19.3%</td>
<td>19.7%</td>
<td>20.3%</td>
<td>20.6%</td>
<td>21.3%</td>
<td>20.1%</td>
<td>19.6%</td>
</tr>
<tr>
<td>Sun</td>
<td>10.1%</td>
<td>9.4%</td>
<td>8.0%</td>
<td>7.8%</td>
<td>6.5%</td>
<td>7.0%</td>
<td>6.8%</td>
<td>6.8%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Other</td>
<td>10.0%</td>
<td>10.5%</td>
<td>10.7%</td>
<td>10.7%</td>
<td>11.7%</td>
<td>11.9%</td>
<td>11.9%</td>
<td>10.7%</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Source: IDC 4Q05 Server Tracker – servers at $250K+
System z business value

- **Lowest outage costs:**
  - Highest reliability 99.999%+
  - Highest, availability, recoverability, data integrity
  - Strongest disaster recovery

- **Highest scalability & capacity:**
  - On big commercial workloads
  - Now low entry, small steps
  - Non-disruptive growth

- **Reuse/modernization of mainframe application assets:**
  - $TB customer SW assets on mainframe
  - Excellent tools for modernization, integration, reuse

- **Lowest security breach risks/costs:**
  - Never broken security
  - Highest security ratings
  - Dramatic SSL performance

- **Lowest total cost of ownership and cost/user:**
  - For mid-large workloads / user populations
  - <50% TCO/TCU of UNIX or Windows

- **Lowest security breach risks/costs:**
  - Never broken security
  - Highest security ratings
  - Dramatic SSL performance

- **Highest resource use efficiency/utilization:**
  - Best mixed workloads
  - Complete resource virtualization
  - Highest automation

- **Low risk via world-class support:**
  - For hardware & software
  - Stable environment
  - Dependable, global, long-term
  - Preserves customer investment

- **Much-improved system costs:**
  - Dramatically lower hardware prices
  - Improved software price / performance and "pay for use"
  - Dedicated System z engines slash new workload costs

- **Highest performance & quality of service:**
  - Fastest response times
  - Business policy driven QoS
  - Highest commercial workload throughput, I/O capacity

- **Lowest outage costs:**
  - Highest reliability 99.999%+
  - Highest, availability, recoverability, data integrity
  - Strongest disaster recovery

- **Lowest total cost of ownership and cost/user:**
  - For mid-large workloads / user populations
  - <50% TCO/TCU of UNIX or Windows

- **Lowest security breach risks/costs:**
  - Never broken security
  - Highest security ratings
  - Dramatic SSL performance

- **Highest resource use efficiency/utilization:**
  - Best mixed workloads
  - Complete resource virtualization
  - Highest automation

- **Low risk via world-class support:**
  - For hardware & software
  - Stable environment
  - Dependable, global, long-term
  - Preserves customer investment

- **Much-improved system costs:**
  - Dramatically lower hardware prices
  - Improved software price / performance and "pay for use"
  - Dedicated System z engines slash new workload costs

- **Highest performance & quality of service:**
  - Fastest response times
  - Business policy driven QoS
  - Highest commercial workload throughput, I/O capacity

Based on Mercer Survey data.*

+ Relative to other computing platforms
Datacenter reality

- **Mainframe**
  - Well managed
  - Rock solid QoS
  - Expensive (perception)
  - Lowest TCO (reality)

- **UNIX and x86**
  - Proliferation of servers
  - Lower systems utilization
  - Staffing growth
  - Inexpensive hardware (perception)
Server proliferation

- **Describe a current application environment**
  - **Production**
    - Database server? How many?
    - Application server? How many?
    - Messaging server? How many?
    - Failover servers? For each?
  - **Disaster Recovery**
    - Do you have a DR site?
  - **Additional Servers**
    - Development servers? Multiple levels?
    - Test servers? Multiple levels?
    - Systems test? Multiple levels?
    - Quality Assurance servers?
    - Education servers?

- **How many applications/types of workload do you have?**
e-business servers – complexity and cost

- **Web/App**
  - 2-4 way
  - Web/App failover

- **Messaging**
  - 2-4 way
  - Messaging failover

- **Test/Education**
  - 2-4 way

- **Development**
  - 2-4 way

- **Integration**
  - 2-4 way

- **Test**
  - 2-4 way

- **Web/App DR & QA**
  - 2-4 way

- **Web/APP DR failover**
  - 2-4 way

- **Database**
  - 8 way

- **Database failover**
  - 8 way

- **DR & QA**
  - 8 way

- **Hardware**
  - 3 primary production servers
  - 16 total servers
  - 5:1 ratio

- **Software**
  - 32+ processors for database software
    - ~ $1.8M over 3 years
  - 15+ processors for application software

- **Integration**
  - 8 way

- **Database DR & QA**
  - 8 way

- **Database DR failover**
  - 8 way
# Summary of server scorecard metrics

<table>
<thead>
<tr>
<th></th>
<th>Mainframe</th>
<th>UNIX</th>
<th>x86</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>People efficiency</strong></td>
<td>Very good</td>
<td>Average to low</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Tend to be</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cloned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Infrastructure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>applications</td>
</tr>
<tr>
<td><strong>Prime shift</strong></td>
<td>Very high</td>
<td>Fair/good</td>
<td>Very low</td>
</tr>
<tr>
<td><strong>utilization</strong></td>
<td>– 65-85%</td>
<td>– 10-20%</td>
<td>– 1-8%</td>
</tr>
<tr>
<td><strong>Online availability</strong></td>
<td>Excellent</td>
<td>Fair/good</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>– 99.9-99.95%</td>
<td>– 98.5-99.7%</td>
<td>– 97.0-99.0%</td>
</tr>
<tr>
<td><strong>Usual incremental</strong></td>
<td>1.0</td>
<td>1.0 – 1.5x</td>
<td>&lt;1.0 – 4.0x</td>
</tr>
<tr>
<td><strong>cost ratio to</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>mainframe</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Typical incremental</strong></td>
<td>20 – 25%</td>
<td>50 – 60%</td>
<td>50 – 60%</td>
</tr>
<tr>
<td><strong>current cost ratio</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why is utilization low on “distributed” servers?

- Use of response time as a measure of capacity
  - Buy rather than tune
- Backup, development, test, training and integration servers
- Peaked, spiky workloads on dedicated rather than shared hardware
- I/O bound workloads, contention
- Utilization controlled to avoid system stress and outages
- Incompatible release levels
- Incompatible maintenance windows
Customer studies

- **WebSphere customer**
- **Hardware**
  - 5000+ MIPS
  - 1000+ servers (25% UNIX)
- **Software**
  - WebSphere currently on Solaris
  - Oracle and DB2

*Customer perception:*

*Solaris environment is 1/5 the cost of the mainframe*
### Production Sun server architecture

<table>
<thead>
<tr>
<th>E3500</th>
<th>V880</th>
<th>280R</th>
<th>280R</th>
<th>4800</th>
<th>U2</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDB prod2</td>
<td>WebSphere prod1</td>
<td>External HTTP prod1</td>
<td>Internal HTTP prod1</td>
<td>Oracle prod2</td>
<td></td>
</tr>
<tr>
<td>UDB prod1</td>
<td>WebSphere prod2</td>
<td>External HTTP prod2</td>
<td>Internal HTTP prod2</td>
<td>Oracle prod1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WebSphere prod3</td>
<td>External HTTP prod3</td>
<td>Internal HTTP prod3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WebSphere prod4</td>
<td>External HTTP prod4</td>
<td>Internal HTTP prod4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WebSphere prod5</td>
<td>External HTTP prod5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WebSphere prod6</td>
<td>External HTTP prod6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Database prod1</td>
<td>?? webev1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DW prod1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Scorpion Study 1999 - 2004
### Production Sun server reality

<table>
<thead>
<tr>
<th></th>
<th>E3500</th>
<th>V880</th>
<th>V880</th>
<th>280R</th>
<th>280R</th>
<th>4800</th>
<th>U2</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDB prod2</td>
<td>DR</td>
<td>WebSphere prod1</td>
<td>External HTTP prod1</td>
<td>Internal HTTP prod1</td>
<td>Oracle prod2</td>
<td>Test</td>
<td></td>
</tr>
<tr>
<td>UDB prod1</td>
<td>DR</td>
<td>WebSphere prod2</td>
<td>External HTTP prod2</td>
<td>Internal HTTP prod2</td>
<td>Oracle prod1</td>
<td>Test</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>DR</td>
<td>WebSphere prod3</td>
<td>External HTTP prod3</td>
<td>Internal HTTP prod3</td>
<td>Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>DR</td>
<td>WebSphere prod4</td>
<td>External HTTP prod4</td>
<td>Internal HTTP prod4</td>
<td>Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>WebSphere prod5</td>
<td>External HTTP prod5</td>
<td>Test</td>
<td>Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>WebSphere prod6</td>
<td>External HTTP prod6</td>
<td>Test</td>
<td>Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>Database prod1</td>
<td>?? webev1</td>
<td>DR</td>
<td>Development</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E250</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW prod1</td>
<td>Test</td>
</tr>
<tr>
<td>Test</td>
<td>Test</td>
</tr>
<tr>
<td>Test</td>
<td>DR</td>
</tr>
<tr>
<td>Test</td>
<td>Development</td>
</tr>
<tr>
<td>Test</td>
<td>Development</td>
</tr>
<tr>
<td>Test</td>
<td>Development</td>
</tr>
</tbody>
</table>

### E1000 Domains

- Development
- Development
- Development
- Development
Integrated Facility for Linux (IFL) makes Linux consolidation even more attractive

- **Same as general purpose processor**
  - Specifically limited to Linux workloads

- **Attractive pricing**
  - Hardware is much lower than general purpose price
  - IBM Linux middleware is charged one license per IFL
    - The same rate as a distributed processor

- **IFL capacity increases “just happen” when you do a mainframe hardware upgrade**
  - zAAPs and zIIPs also

- **Requirements**
  - z9 EC, z9 BC, z990, z900, z890 or z800 server
  - No z/OS requirements
  - No limit on the number of IFLs
Unique value of Integrated Facility for Linux (IFL)

- IFL price has remained constant (or dropped!)
- IFLs move with upgrades
- zAAP/zIIP follows same model
- Distributed model over same time:
  - 2 technology refreshes (new hardware)
  - 2 system migrations
TCO impact of mainframe consolidations

- **TCO impact of Mainframe consolidations**
  - Sun engines lag in capacity
  - 50% reduction in power and cooling costs typical
  - How many Person Years are spent fighting fires?
  - Reliability Matters: z9 30 yr MTBF - others are 10 - 20 years

- **Per engine software costs on under utilized engines**
- **Intel engines saturate at low utilization**

Source: Capricorn whitepaper

Workload consolidation using Linux on a mainframe can result in significant TCO savings, up to 80%!
Savings from Linux consolidation on System z

$1.8M saving over 3 years

<table>
<thead>
<tr>
<th>Distributed Linux/Intel @ low utilization</th>
<th>Mainframe IFL @ high utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Unit cost</strong></td>
<td><strong>Sub Total</strong></td>
</tr>
<tr>
<td>Hardware &amp; OS - every 3 years</td>
<td>$4,000</td>
</tr>
<tr>
<td>HW Maintenance</td>
<td>Included</td>
</tr>
<tr>
<td>VM virtualization</td>
<td>N/A</td>
</tr>
<tr>
<td>VM S&amp;S (25%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Annual Linux support</td>
<td>$1,000</td>
</tr>
<tr>
<td>OTC Software license – WAS*</td>
<td>$4,000</td>
</tr>
<tr>
<td>WAS S&amp;S for 2 years</td>
<td>$800</td>
</tr>
<tr>
<td>Annual labor for support</td>
<td>$6,500</td>
</tr>
<tr>
<td>Annual power &amp; cooling</td>
<td>$920</td>
</tr>
</tbody>
</table>

Grand Total | **$2,091,564** | **$274,122**

* IBM WebSphere Application Server for Linux
Background to Linux financial case study

**Approach**
- Compared the costs of 60 distributed Lintel servers doing Web (including some J2EE), File and Print Serving and one IFL
  - 60 distributed servers to 1 IFL is a typical ratio according to customer studies
- Included hardware maintenance and software support

**Assumptions**
- PC service included in the price
- Base WAS used, 1st year’s service included in license
- Used z/VM to optimize virtualization
- 24 by 7 hour operation
- PC servers consume 400W each, 15¢/kWh
  - Cooling costs ~ power costs
- Cost of capital/inflation ignored
Facility costs

- “The data center utility bill exceeds the cost of acquiring new computers for some companies”
  - Annual electric bill for a high-end server is $8760 - IDC
- “The cost of datacenter floor space is inconsequential compared with the cost of operating and cooling a datacenter”
  - “Modern computing hardware requires 3 sq ft of cooling infrastructure for every sq ft of floor space”
  - For example, $20/sq ft for space and $60/sq ft for cooling
  - That is 6x the ratio of 10 years ago
- “The average annual utility cost for a 100,000 sq ft datacenter has reached $5.9M”
- “You pay once to power the systems and again to cool them”
  - And again and again for redundancy
- “Businesses paid about 20% more last year than in 2004, with rates jumping as much as 40% is some parts of the country”

Source: Information Week 2/27/06
Distributed power costs now a major issue

- According to the Wall Street Journal, distributed servers generate 10x more heat than System z
  - 3,800 watts per square foot in 2005
    - In 1992 was 250 watts/sq foot
  - z9 heat output is 107 – 312 watts per square foot
    - Switching on an IFL processor consumes only 60-75 watts

- “Power-related problems in 2005 will cause 4 of the 20 major failures, up from 2 of 20 last year” (The Uptime Institute)

Costly outcomes:
- 4 – 5 times increase in power utility bills
  - “Big businesses can spend up to 17% of their IT operating expenses on power and cooling” says John Humphreys of IDC
- Major reconstructions and electrical/air-conditioning upgrades
  - Sometimes building new facilities
- Erratic machine behavior from high room temperatures (92°F +)
  - Reducing raised-floor occupancy
Putting this in perspective

- An average distributed system consumes about 400W
- 1,000 servers cost about $840K annually to power and cool
  - >$35K electric power per month
  - Another $21K - $35K in cooling capacity of 400kW
Arcati: Much lower mainframe staff costs compared with UNIX or x86 servers

- Mainframes have dropped in support costs (10-fold in 7 years)
  - Will halve again in the next 5 years
  - Major advances in self-healing, self-managing, self-protecting, autonomic technologies
- Distributed requires much more hardware and software than System z
  - 2.5 – 3 times more staff for similar workloads

Arcati Research Note ‘Dinosaur Myth 2004 Update’ can be found at ftp.software.ibm.com/s390/audio/pdfs/newdino.pdf
Downtime and security are significant unexpected costs

- **Mainframes run at 99.999% availability**
  - Average unplanned downtime ~ 5 minutes/year

- **Downtime and security issues can mean more than economic loss**
  - Regulatory compliance
  - Fines
  - Other penalties
  - Market competitiveness
  - Customer loyalty
  - Business image and reputation

---

### Financial impact of downtime per hour

<table>
<thead>
<tr>
<th>Industry segment</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>$2,818K</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>$2,066K</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>$1,611K</td>
</tr>
<tr>
<td>Financial</td>
<td>$1,495K</td>
</tr>
<tr>
<td>Information Technology</td>
<td>$1,345K</td>
</tr>
<tr>
<td>Insurance</td>
<td>$1,202K</td>
</tr>
<tr>
<td>Retail</td>
<td>$1,107K</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>$1,082K</td>
</tr>
<tr>
<td>Banking</td>
<td>$997K</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>$786K</td>
</tr>
<tr>
<td>Chemicals</td>
<td>$704K</td>
</tr>
<tr>
<td>Transportation</td>
<td>$669K</td>
</tr>
</tbody>
</table>

Source: Robert Frances Group 2005
First National Bank of Omaha

- Although core banking and credit-card operations were running on a z900, other processes and applications, such as Web-based banking and back-office software, were assigned various standalone boxes, including more than 30 Sun machines and more than 560 Intel technology-based servers.

- This disparate computing environment was becoming extremely expensive, requiring FNBO to hire more people as more boxes were brought online.

- First National Bank Omaha (FNBO) is using the onboard Linux capabilities of an IBM zSeries server and the dense computing capabilities of the IBM BladeCenter to replace approximately 600 standalone Intel and UNIX technology-based servers. As a result, FNBO is now poised to save $1.8 million in operating expenses this year alone.

Source: eServer magazine, May 2005
# First National Bank of Omaha

<table>
<thead>
<tr>
<th></th>
<th>Servers</th>
<th>Reliability</th>
<th>Utilization</th>
<th>Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First move:</strong> Implemented distributed computing architecture that became <strong>too difficult to monitor, maintain, upgrade and scale</strong></td>
<td>30+ Sun Solaris servers</td>
<td>Un-acceptable</td>
<td>12%</td>
<td>24 people growing at 30% year</td>
</tr>
<tr>
<td><strong>Next move:</strong> Consolidated back on the mainframe</td>
<td>z990</td>
<td><strong>Much improved</strong></td>
<td>84% with additional reserve capacity on demand</td>
<td>Reduced to 8 people</td>
</tr>
</tbody>
</table>

- Seven times better utilization also reduces software licensing, labor, power, and air conditioning costs accordingly.
System z – Can help modernize and integrate applications quickly and at a low cost

**Challenge**
- Improve Customer responsive and reduce business costs.
- Provide scalability, enhance flexibility and eliminate single points of failure in the SAP environment.
- Provide rock solid availability.

**Solution**
- Baldor Electric consolidated several UNIX-based servers onto one IBM System z9
- Deployed all of its SAP Enterprise Portal, Supply Chain and Business Warehouse solutions on System z9 and Linux
- The company relies on SAP solutions running on System z9 to power its entire business – including sales and distribution, manufacturing, payroll and finance – supporting the work of 3,800 employees worldwide.

**Benefits**
- According to Mark Shackleford, director of Information Systems, this has allowed Baldor to increase application performance by 40% and cut IT expenditures from 1.7% of total sales to less than 1% versus the manufacturing industry norm of 4%.
### A tale of two customers

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Baldor</th>
<th>Welch's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moved from</td>
<td>3 Mainframes and 8 UNIX Servers</td>
<td>S/390 and AS/400</td>
</tr>
<tr>
<td>Moved to</td>
<td>1 z990 System z Server</td>
<td>100 Intel Servers</td>
</tr>
<tr>
<td>Virtualization</td>
<td>z/VM</td>
<td>VMware</td>
</tr>
<tr>
<td>Decision to completion time</td>
<td>Approximately 6 months</td>
<td>Started sometime before June 2005 &quot;...project will continue into 2007&quot;</td>
</tr>
<tr>
<td>IT staff</td>
<td>Down to 38</td>
<td>50</td>
</tr>
<tr>
<td>IT spending</td>
<td>1.2% of Sales (and still declining … now down to 0.9%)</td>
<td>About 2.5% of Sales</td>
</tr>
<tr>
<td>Max power consumption</td>
<td>15.8 kW</td>
<td>48.4 kW</td>
</tr>
</tbody>
</table>

Three years ago, Baldor's IT director had investigated migrating to a Windows server environment with cluster fail-over. "**We thought we were going to save a ton of money,**" but the systems crashed all the time, he noted, and the idea was quickly abandoned. "**We have a very stringent requirement of being up all the time ... Weighing heavily in support of the mainframe was its track record. There hadn’t been any mainframe downtime since 1997**"
What makes the best fit for System z

- **Leverage classic strengths of the mainframe**
  - High availability
  - High i/o bandwidth capabilities
  - Flexibility to run disparate workloads concurrently
  - Requirement for excellent disaster recovery capabilities
  - Security
  - Facilities – 15 yrs ago did you think facilities would be a mainframe strength?

- **Shortening end to end path length for applications**
  - Collocation of applications
  - Consolidation of applications from distributed servers
  - Reduction in network traffic
  - Simplification of support model

- **IBM middleware**
  - WebSphere MQ Series
  - DB2 Connect
  - CICS Transaction Gateway
  - IMS Connect for Java
  - WebSphere

- **Applications requiring top end disaster recovery model**

- **LDAP security services**

- **IBI Web Focus**

- **Oracle DB**
Full range of TCO factors considerations – often ignored

- **Availability**
  - High availability
  - Hours of operation

- **Backup / Restore / Site Recovery**
  - Backup / Restore
  - Disaster Scenario
  - Effort for Complete Site Recovery
  - SAN effort

- **Infrastructure Cost**
  - Space and Power
  - Network Infrastructure
  - Storage Infrastructure

- **Additional development and implementation**
  - Investment for one platform – reproduction for others

- **Controlling and Accounting**
  - Analyzing the systems
  - Cost

- **Operations Effort**
  - Monitoring, Operating
  - Problem Determination
  - Server Management Tools
  - Integrated Server Management – Enterprise Wide

- **Security**
  - Authentication / Authorization
  - User Administration
  - Data Security
  - Server and OS Security
  - RACF vs. other solutions

- **Deployment and Support**
  - System Programming
  - Middleware
  - Application

- **Operating Concept**
  - Development of an operating procedure
  - Feasibility of the developed procedure
  - Automation

- **Resource Utilization and Performance**
  - Mixed Workload / Batch
  - Resource Sharing
  - Parallel Sysplex vs. Other Concepts
  - Response Time
  - Performance Management
  - Peak handling / scalability

- **Integration**
  - Integrated Functionality vs. Functionality to be implemented (possibly with 3rd party tools)
  - Balanced System
  - Integration of / into Standards

- **Further Availability Aspects**
  - Planned outages
  - Unplanned outages
  - Automated Take Over
  - Uninterrupted Take Over (especially for DB)
  - Workload Management across physical borders
  - Business continuity
  - Availability effects for other applications / projects
  - End User Service
  - End User Productivity
  - Virtualization

- **Skills and Resources**
  - Personnel Education
  - Availability of Resources
Reducing TCO with System z

- Chargeback methodology works against the mainframe
  - It feeds the “expensive” perception
- Specialty engines can significantly lower the total cost of the mainframe
- The typical total server to production server ratio is between 3:1 or 5:1 for a distributed app.
- The incremental cost of capacity on a zSeries is less expensive than distributed servers
  - UNIX – 1.0 – 1.5 x compared to mainframes
  - Windows – <1.0 - 4.0 x compared to mainframes
- System z (z/OS) has a significant business case advantage in people, availability, and utilization
- System z (Linux on System z with z/VM) has a significant business case advantage in people, software, utilization, and failover
Summary

- The proper comparison between mainframe and distributed is not a single application benchmark.
- The proper comparison is a distributed data center versus a mainframe, running high volume mixed workloads.
- Under this comparison, mainframes have significant cost advantages.
Thank you

Jim Elliott
Advocate – Linux, Open Source, and Virtualization
Manager – System z Operating Systems
IBM Canada Ltd.
jim_elliott@ca.ibm.com
905-316-5813

ibm.com/linux
ibm.com/systems/z
ibm.com/vm/devpages/jelliott
linux.ca/drupal/blog/58
Notices

- © Copyright IBM Corporation 2000, 2006. All rights reserved.
- This document contains words and/or phrases that are trademarks or registered trademarks of the International Business Machines Corporation in the United States and/or other countries. For information on IBM trademarks go to http://www.ibm.com/legal/copytrade.shtml.
- The following are trademarks or registered trademarks of other companies.
  - Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
  - UNIX is a registered trademark of The Open Group in the United States and other countries.
  - Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
  - Red Hat, the Red Hat "Shadow Man" logo, and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc., in the United States and other countries.
  - Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
  - All other products may be trademarks or registered trademarks of their respective companies.
- Notes:
  - This publication was produced in Canada. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
  - All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
  - Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
  - Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
- Permission is hereby granted to SHARE to publish an exact copy of this paper in the SHARE proceedings. IBM retains the title to the copyright in this paper as well as title to the copyright in all underlying works. IBM retains the right to make derivative works and to republish and distribute this paper to whomever it chooses in any way it chooses.