
The z/VM product has its roots in an IBM product named VM/370, released in August 1972. VM/370
grew from earlier unsold versions of virtual machine technology dating back to 1967. This article
explores some of the current product’s constructs and concepts. Let’s start with the basics.

Virtual Machines
   The IBM System z processors operate according to a data processing machine architecture defined
in z/Architecture Principles of Operation. This book explains the machine’s instruction set, its I/O pro-
cessing rules, and how it runs programs. Engineers implement z/Architecture in IBM System z machines
such as those in the IBM z9 family.
   The role of many operating system kernels is to create well-defined program execution con-
texts in which applications can run concurrently without interfering with one another. For z/VM,
these execution contexts are called virtual machines. Where an ordinary operating system might
create execution contexts for application programs, z/VM creates execution contexts for System z
operating systems. In other words, z/VM’s task is to create virtual machines adhering to
z/Architecture. z/VM can create nearly any virtual configuration that could legitimately exist in the
real hardware. Further, z/VM lets many such virtual machines exist and operate simultaneously on
one instance of real hardware; in fact, in the most interesting cases, z/VM overcommits the real
hardware. A virtual machine also is often known as a VM user ID, a VM logon, a VM guest, or a
virtual server.
   Just as a real System z machine consists of real processors, real memory, and real I/O devices, a
virtual machine consists of virtual processors, virtual memory, and virtual I/O devices. For example,
z/VM might equip a virtual machine with two virtual processors, 1GB of virtual memory, a virtual
Ethernet card, and a virtual 3270 terminal device. Because of the histories of z/VM and its guests, some
of the virtual devices found in a typical virtual machine’s configuration correspond to real devices IBM no
longer manufactures. For example, each virtual machine will typically have a virtual card reader, >

z / J o u r n a l   •   F e b r u a r y / M a r c h 2 0 0 8   •   3 9

By Bill Bitner & Brian Wade, Ph.D.

virtual card punch, and virtual printer.
Many guests still effectively use these
antiquated virtual devices even today.
	 Various System z operating systems
can run in virtual machines. One,
Conversational Monitor System (CMS),
is sold as part of z/VM. CMS is an inter-
active, single-user operating system
meant to run in a virtual machine.
Though for many years CMS and its
applications were a mainstay of IBM’s
offerings in interactive general-purpose
computing, CMS recently has found its
niche in supporting applications meant
to help manage the z/VM system. The
z/VM TCP/IP stack, for example, runs
in a CMS virtual machine. CMS isn’t the
only System z operating system that can
run virtually. Other System z operating
systems, such as z/OS, z/VSE, z/TPF,
and Linux for System z, can all run in
virtual machines on z/VM.
	 The heart of z/VM is a multi-pro-
gramming, multi-processing operating
system kernel known as the Control
Program (CP). (Be careful when using
the term “CP,” for in some communities,
“CP” means “central processor.”) CP is
the component of z/VM that creates
and dispatches virtual machines on the
real System z hardware.
	 CP supports hundreds of com-
mands. Some control the configura-
tion of the virtual machine. For
example, the CP DEFINE command
lets a customer create a virtual device
and add it to a virtual machine’s con-
figuration. Though CP lets customers
change virtual machine configurations
nearly at will, customers usually define
their virtual machines ahead of time
in a user enrollment and definition file
called the CP directory. The CP direc-
tory describes virtual machines and
sets attributes for each one, such as
number of virtual processors, amount
of virtual memory, and complement of
disk devices.
	 Because of the nesting capabilities of
IBM’s System z virtualization technolo-
gy, the System z computer on which
z/VM perceives it’s running might itself
be mythical. A commonly seen nesting
situation is the one where z/VM runs in
a Logical Partition (LPAR) of a System z
computer. A System z hardware facility
called the LPAR hypervisor creates and
manages logical partitions in much the
same way that z/VM creates and man-
ages virtual machines. System z
machines contain special hardware that
lets this commonly found two-level
nesting arrangement run with almost
no performance penalty.

Virtualization of Processors
	 Because z/Architecture defines that
a System z data processing system can
house one to 64 processors, each virtual
machine z/VM creates can have one to
64 virtual processors. Usually, these are
all general-purpose instruction proces-
sors. However, z/VM does let the cus-
tomer define some of a guest’s virtual
processors to be specialty processors
such as System z Application Assist
Processors (zAAPs), System z Integrated
Information Processors (zIIPs), or
System z Integrated Facility for Linux
(IFL) processors. z/VM dispatches
guests’ virtual processors on the proces-
sors of the System z machine it’s con-
trolling.
	 z/VM provides control over processor
resources by letting a system administra-
tor assign a share value to each virtual
machine. This share value typically sets
the minimum amount of processor
resource a virtual machine can expect CP
to allocate to it. z/VM also lets the system
administrator define a maximum share
value to prevent a guest from excessively
consuming processor resource. The
z/VM system administrator or system
operator can adjust share settings while
virtual machines are running.

The Heart of Virtualization
	 System z virtualization depends on a
hardware instruction called Start
Interpretive Execution (SIE, pronounced
“sigh”). This instruction gives CP a
means to tell System z hardware to run
a virtual processor. CP and the System z
hardware cooperate in their use of a
memory-resident control structure—
called the SIE State Descriptor or the
SIE Block—to track the state of the vir-
tual processor. The SIE block contains
such things as the virtual processor’s
last register values, the pointers to the
owning guest’s DAT tables, and other
state information that lets a virtual pro-
cessor continue to run instructions. The
address of the SIE block is an operand
of the SIE instruction.
	 Owing to the completeness of the
virtual processor description stored in
the SIE block, the System z hardware
can handle many of the virtual proces-
sor’s needs without requiring the help of
CP. However, some conditions, such as
occurrence of a page fault or the guest’s
use of an I/O instruction, are too com-
plex for the hardware to handle on its
own. When the System z hardware
encounters such a condition, it ends the
virtual processor’s time in SIE and gives
control back to CP. This phenomenon is

called a SIE exit or a SIE break. CP
responds to the SIE break by handling
the condition and eventually redispatch-
ing the virtual processor by issuing
another SIE instruction.
	 A customer obtains best utility from
a System z machine when the machine
spends its time in SIE running guests,
instead of outside of SIE running CP.
z/VM performance engineers have
means to keep track of CPU time spent
inside and outside of SIE and to keep
track of the reasons why virtual proces-
sors leave SIE. An important aspect of
z/VM performance management is
building guest operating systems and
their applications to be aware they’re
running virtually and to accomplish
their work using techniques that tend to
promote remaining in SIE. IBM has
spent many years tuning its long-lived
System z operating systems, such as
CMS, z/OS, and z/VSE, to use SIE-
friendly techniques. Linux for System z,
being comparatively young, is still
evolving.

Virtualization of Memory
	 Memory can be defined in the CP
directory or can be changed with the
CP DEFINE command. The virtual
machine memory is usually defined as a
contiguous range. However, one can
define gaps in the memory. This can be
helpful in some situations.
	 Of course, all guest memory is vir-
tual. To virtualize memory, z/VM har-
nesses the System z processor’s Dynamic
Address Translation (DAT) facility.
With DAT, the System z processor trans-
lates each instruction address or oper-
and address from virtual to real, using
translation tables CP maintains. CP
overcommits physical memory by keep-
ing resident only those guest pages that
appear to have been needed in the
recent past, constantly adjusting the
DAT tables to preserve the memory
illusion for the guests. When physical
memory is scarce, CP moves stagnant
guest pages first to expanded storage (a
high-speed page storage buffer) and
eventually to disk. CP brings these pages
back to memory if the guest ever needs
them again.
	 CP manages the level of physical
memory overcommitment by consider-
ing a guest’s apparent memory need as
part of deciding whether to run (dis-
patch) the guest. If CP determines that
letting a virtual machine run could
cause the system to enter a thrashing
condition because of an insurmountable
lack of physical memory, CP prohibits

4 0   •   z / J o u r n a l   • F e b r u a r y / M a r c h 2 0 0 8

http://www.csi-international.com

the virtual machine from being dis-
patched for a period of time. Instead of
moving the virtual machine to the dis-
patch list to run, CP places the virtual
machine on the eligible list, which is a
list of virtual machines that are ready to
run, but which CP is holding back
because there appears to be too little
physical resource available to run them.
	 The tendency of a virtual machine to
incur page faults is directly related to
the amount of physical memory CP has
set aside for the virtual machine’s pages.
Usually, CP makes this determination
on its own. However, the CP SET
RESERVE command lets the operator
influence the determination, telling CP
to reserve at least said minimum num-
ber of real frames to hold the guest’s
pages. When the operator uses SET
RESERVE, he’s offering a guest favored
status with respect to memory con-
sumption. Using SET RESERVE is a
valuable performance tuning technique.
	 z/VM lets virtual machines share
memory, which helps reduce memory
requirements. z/VM has three kinds of
shared memory. The first, a
Discontiguous Saved Segment (DCSS),
is a range of guest memory addresses
for which all participating guests see the
same physical memory pages. A z/VM
systems programmer can place com-
monly used data or programs in a DCSS,
letting many virtual machines share one
physical copy.
	 With the second type of shared
memory, a Named Saved System (NSS),
participating guests share a physical
copy of the data; in addition, the “data”
is typically a bootable operating system.
This lets many guests share, for exam-
ple, a single copy of the Linux kernel or
CMS nucleus. Booting from memory
offers speed advantages as well as mem-
ory economy.
	 The third type of shared memory, a
VM Data Space, is similar to a DCSS,
but offers much more addressability.
With VM Data Spaces, the shared data
are in one or more distinct address
spaces, each address space being entire-
ly available for sharing. The participat-
ing guests access those address spaces
using a System z operand addressing
architecture called Access Register (AR)
mode. With AR mode, a single System z
instruction can refer to operands locat-
ed in more than one address space.

Virtualization of I/O Devices
	 z/VM uses various methods to pro-
vide devices to virtual machines. First,
CP can dedicate, or attach, a real device

to a virtual machine. This gives the vir-
tual machine exclusive use of the entire
real device. Tape drives are typically
attached to virtual machines. CP also
can virtualize a device, which means it
gives a guest a portion of a real device.
This can be a portion in time, such as
of a processor, or a portion of the
device’s storage capacity, such as of a
disk drive. Simulation of devices is a
third approach. Earlier we discussed
devices such as a virtual card reader.
This is an example of a device where
real hardware isn’t present, but CP sim-
ulates it using memory and disk. The
last approach we’ll mention, emulation,
is when CP uses hardware of one type
to create the illusion of a similar type.
For example, CP uses modern SCSI
disks to cause guests to believe that an
older, no-longer-manufactured style of
disk, called Fixed Block Architecture
(FBA), is present.
	 z/VM provides disks to guests in
various ways. While CP can dedicate
entire disk volumes to virtual machines,
more common is for CP to divide real
disk volumes into disjoint, contiguous
cylinder or block ranges called min-
idisks, thereby letting many guests each
use some fraction of a real volume’s
storage capacity. Minidisks can be exclu-
sive to virtual machines, or many virtual
machines can use a single minidisk
simultaneously, thereby sharing data.
	 One particularly interesting kind of
disk z/VM can provide for a guest is the
Virtual Disk in Storage or VDISK. A
VDISK appears to the guest as an FBA
disk drive with extremely fast perfor-
mance. The VDISK performs well
because z/VM backs the VDISK in
paged memory instead of on real disk
hardware. Because CP doesn’t back a
VDISK with permanent disk, the data is
volatile. Even so, VDISKs are handy in
several situations. In particular, VDISKs
are an especially good choice for Linux
swap space.
	 One last disk feature worth mention-
ing is Temporary Disk (TDISK). The
system administrator can assign CP a
pool of disk volumes it can use to instan-
tiate minidisks users need for only a
short time. The CP DEFINE command
lets the z/VM user define such a min-
idisk; when a user does so, CP finds
some free space in the pool and uses it
to create the minidisk. When the user
no longer needs the minidisk, he issues
the CP DETACH command to dispose
of it, and CP clears the space and returns
it to the pool.
	 Because CP mediates access to min-

idisks, it can use memory to improve
their performance. Central to z/VM’s
minidisk strategy is the CP Minidisk
Cache (MDC). With MDC, CP uses
real memory or expanded memory to
cache recently read portions of min-
idisks. This greatly improves perfor-
mance for minidisks that are frequently
read, such as those containing object
code libraries or frequently used bina-
ries. The minidisk cache is a write-
through cache, which means that if a
guest writes to blocks that are cached,
CP updates the cache and commits the
change to the minidisk before inform-
ing the guest that the write is complete.
A z/VM system administrator or opera-
tor can use the CP SET MDCACHE
command to control or configure the
minidisk cache.
	 Network connectivity is an impor-
tant concern in many environments.
z/VM meets customers’ network needs
by offering several networking options.
CP can dedicate network devices to
virtual machines. The dedicated device
can be a channel-to-channel adapter, an
IBM Open Systems Adapter (OSA) that
provides Ethernet connectivity, or a
HiperSockets device, a kind of network
adapter that connects one LPAR to
another. z/VM also has its own TCP/IP
stack, which guests can use as if it were
an IP router. A common network
option used today is the virtual switch.
Here, CP equips each virtual machine
with a simulated IBM OSA and con-
nects all those simulated OSAs to a
simulated LAN segment called a guest
LAN. Also connected to the guest LAN
is a real OSA that CP manages. With
this configuration established, CP can
provide packet- or frame-switching
functions for the guests, just as a real
switch would in a real external net-
work. In this way, the guest LAN
becomes an extension of a real external
LAN segment.

Diagnostic and Programming Services
	 z/VM offers a variety of debug facili-
ties, making it invaluable for developing
operating systems for System z.
Commands exist to display, search, or
modify virtual machine memory. In
displaying memory, CP can display the
memory in hexadecimal, ASCII,
EBCDIC, or even as disassembled
assembler instructions.
	 The tracing facility, whose documen-
tation exceeds 40 pages, is extensive. CP
TRACE can trap references to memory,
changes to registers, use of specific
instructions, or arrival of interrupts, to

42   •   z / J o u r n a l   • F e b r u a r y / M a r c h 2 0 0 8

Best-of-Breed z/OS
IP Management
•	Locate performance-sapping glitches.

•	Avoid resource-hog monitoring
techniques.

•	Maintain OSA and Enterprise
Extender at peak performance.

•	Perform live traces with ease.

SDS FTP Manager
Transforming z/OS FTP
•	Automate batch transfers to gain

optimum throughput.

•	Eliminate FTP-related productivity
shortfalls.

•	Thwart security violations.

•	Expedite transfer tracking.

Putting your time and MIPS to best use.

Free test drives available.
www.sdsusa.com • 800-443-6183

S av e e n e rgy

USe SDS

www.sdsusa.com

name a few. CP TRACE also includes
the ability to issue commands when cer-
tain trace points are hit. The software
developer can conduct tracing interac-
tively, or let the trace run, collecting the
trace records for later analysis.
	 z/VM provides several programming
interfaces to let guests interact with CP.
The System z architecture provides a spe-
cial assembler instruction, Diagnose,
which on real hardware performs diag-
nostic functions. Recognizing the utility
of such a trappable instruction, CP imple-
ments an entire Application Programming
Interface (API) built on Diagnose. To use
the API, a guest builds a parameter list in
memory, puts the address of the parame-
ter list into a register, and then issues the
Diagnose instruction. CP performs the
requested operation and returns control
to the guest.
	 CP provides more than 50 different
functions through Diagnose. These
functions include interrogating real
device characteristics, performing I/O,
or managing memory segments. CP
also provides various communication
APIs that connect virtual machines to
one another. One of these methods, the

Inter-User Communication Vehicle
(IUCV), also lets a virtual machine
communicate with CP. Over an IUCV
connection to CP, a trusted virtual
machine can help CP accomplish cer-
tain important system management
functions such as accounting, perfor-
mance monitoring, or security.

The Future
	 IBM’s VM product family has
thrived for four decades because IBM
has constantly improved VM to match
the market’s virtualization needs. In
the early ’70s, VM hosted a small
number of ordinary guest operating
systems. In the late ’70s and early ’80s,
the number grew modestly. In the
mid-80s, CMS became popular as a
general-purpose interactive comput-
ing platform, owing largely to a CMS-
based email and calendar package
known as Professional Office System
(PROFS). To handle the growth, IBM
sharpened VM’s ability to run many
lightweight, single-user interactive vir-
tual machines; some customers ran
20,000 office users concurrently on a
single hardware footprint. The late ’90s

saw CMS wither as a general-purpose
interactive environment, while Linux
ascended. At the turn of the century,
Linux on the mainframe gained a foot-
hold, again bringing VM’s virtualiza-
tion capabilities to the forefront. In
response to the Linux boom, IBM
again changed z/VM, improving its
virtualization capabilities so that CP
could begin to handle a large number
of Linux guests as easily as it once
handled many CMS guests. z/VM’s
ability to adapt to the needs of the sys-
tems running in its virtual machines is
a strength that should carry it forward
in the next three decades. Z

About the Authors
Bill Bitner is a senior software engineer in the IBM
Systems and Technology Group in Endicott, NY. He
joined IBM in 1985, and has worked on performance
in various areas of VM. He currently leads the VM
Performance team.
Email: bitnerb@us.ibm.com
Brian Wade is a senior software engineer in the
IBM Systems and Technology Group in Endicott, NY. He
joined IBM in 1986 after earning his Ph.D. in Electrical
Engineering from the University of Notre Dame. He
currently works in z/VM Performance.
Email: bkw@us.ibm.com

44   •   z / J o u r n a l   • F e b r u a r y / M a r c h 2 0 0 8

BLUEPHOENIX

With Migration Plus, BluePhoenix helps you to move
into the future with confidence.

BluePhoenix Migration Plus

www.bphx.com

Modernize your legacy mainframe

databases and applications and cut

growing maintenance costs now!

� Enhance user interfaces

� Update business processes

� Expand and improve mission

critical applications

www.bphx.com

