
The z/VM product has its roots in an IBM product named VM/370, released in August 1972. VM/370 
grew from earlier unsold versions of virtual machine technology dating back to 1967. This article 
explores some of the current product’s constructs and concepts. Let’s start with the basics.

Virtual Machines
    The IBM System z processors operate according to a data processing machine architecture defined 
in z/Architecture Principles of Operation. This book explains the machine’s instruction set, its I/O pro-
cessing rules, and how it runs programs. Engineers implement z/Architecture in IBM System z machines 
such as those in the IBM z9 family.
    The role of  many operating system kernels is to create well-defined program execution con-
texts in which applications can run concurrently without interfering with one another. For z/VM, 
these execution contexts are called virtual machines. Where an ordinary operating system might 
create execution contexts for application programs, z/VM creates execution contexts for System z 
operating systems. In other words, z/VM’s task is to create virtual machines adhering to 
z/Architecture. z/VM can create nearly any virtual configuration that could legitimately exist in the 
real hardware. Further, z/VM lets many such virtual machines exist and operate simultaneously on 
one instance of  real hardware; in fact, in the most interesting cases, z/VM overcommits the real 
hardware. A virtual machine also is often known as a VM user ID, a VM logon, a VM guest, or a 
virtual server. 
    Just as a real System z machine consists of real processors, real memory, and real I/O devices, a 
virtual machine consists of virtual processors, virtual memory, and virtual I/O devices. For example, 
z/VM might equip a virtual machine with two virtual processors, 1GB of virtual memory, a virtual 
Ethernet card, and a virtual 3270 terminal device. Because of the histories of z/VM and its guests, some 
of the virtual devices found in a typical virtual machine’s configuration correspond to real devices IBM no 
longer manufactures. For example, each virtual machine will typically have a virtual card reader, >
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virtual card punch, and virtual printer. 
Many guests still effectively use these 
antiquated virtual devices even today.
	 Various System z operating systems 
can run in virtual machines. One, 
Conversational Monitor System (CMS), 
is sold as part of z/VM. CMS is an inter-
active, single-user operating system 
meant to run in a virtual machine. 
Though for many years CMS and its 
applications were a mainstay of IBM’s 
offerings in interactive general-purpose 
computing, CMS recently has found its 
niche in supporting applications meant 
to help manage the z/VM system. The 
z/VM TCP/IP stack, for example, runs 
in a CMS virtual machine. CMS isn’t the 
only System z operating system that can 
run virtually. Other System z operating 
systems, such as z/OS, z/VSE, z/TPF, 
and Linux for System z, can all run in 
virtual machines on z/VM.
	 The heart of z/VM is a multi-pro-
gramming, multi-processing operating 
system kernel known as the Control 
Program (CP). (Be careful when using 
the term “CP,” for in some communities, 
“CP” means “central processor.”) CP is 
the component of z/VM that creates 
and dispatches virtual machines on the 
real System z hardware.
	 CP supports hundreds of com-
mands. Some control the configura-
tion of the virtual machine. For 
example, the CP DEFINE command 
lets a customer create a virtual device 
and add it to a virtual machine’s con-
figuration. Though CP lets customers 
change virtual machine configurations 
nearly at will, customers usually define 
their virtual machines ahead of time 
in a user enrollment and definition file 
called the CP directory. The CP direc-
tory describes virtual machines and 
sets attributes for each one, such as 
number of virtual processors, amount 
of virtual memory, and complement of 
disk devices.
	 Because of the nesting capabilities of 
IBM’s System z virtualization technolo-
gy, the System z computer on which  
z/VM perceives it’s running might itself 
be mythical. A commonly seen nesting 
situation is the one where z/VM runs in 
a Logical Partition (LPAR) of a System z 
computer. A System z hardware facility 
called the LPAR hypervisor creates and 
manages logical partitions in much the 
same way that z/VM creates and man-
ages virtual machines. System z 
machines contain special hardware that 
lets this commonly found two-level 
nesting arrangement run with almost 
no performance penalty.

Virtualization of Processors
	 Because z/Architecture defines that 
a System z data processing system can 
house one to 64 processors, each virtual 
machine z/VM creates can have one to 
64 virtual processors. Usually, these are 
all general-purpose instruction proces-
sors. However, z/VM does let the cus-
tomer define some of a guest’s virtual 
processors to be specialty processors 
such as System z Application Assist 
Processors (zAAPs), System z Integrated 
Information Processors (zIIPs), or 
System z Integrated Facility for Linux 
(IFL) processors. z/VM dispatches 
guests’ virtual processors on the proces-
sors of the System z machine it’s con-
trolling.
	 z/VM provides control over processor 
resources by letting a system administra-
tor assign a share value to each virtual 
machine. This share value typically sets 
the minimum amount of processor 
resource a virtual machine can expect CP 
to allocate to it. z/VM also lets the system 
administrator define a maximum share 
value to prevent a guest from excessively 
consuming processor resource. The  
z/VM system administrator or system 
operator can adjust share settings while 
virtual machines are running.

The Heart of Virtualization
	 System z virtualization depends on a 
hardware instruction called Start 
Interpretive Execution (SIE, pronounced 
“sigh”). This instruction gives CP a 
means to tell System z hardware to run 
a virtual processor. CP and the System z 
hardware cooperate in their use of a 
memory-resident control structure—
called the SIE State Descriptor or the 
SIE Block—to track the state of the vir-
tual processor. The SIE block contains 
such things as the virtual processor’s 
last register values, the pointers to the 
owning guest’s DAT tables, and other 
state information that lets a virtual pro-
cessor continue to run instructions. The 
address of the SIE block is an operand 
of the SIE instruction.
	 Owing to the completeness of the 
virtual processor description stored in 
the SIE block, the System z hardware 
can handle many of the virtual proces-
sor’s needs without requiring the help of 
CP. However, some conditions, such as 
occurrence of a page fault or the guest’s 
use of an I/O instruction, are too com-
plex for the hardware to handle on its 
own. When the System z hardware 
encounters such a condition, it ends the 
virtual processor’s time in SIE and gives 
control back to CP. This phenomenon is 

called a SIE exit or a SIE break. CP 
responds to the SIE break by handling 
the condition and eventually redispatch-
ing the virtual processor by issuing 
another SIE instruction.
	 A customer obtains best utility from 
a System z machine when the machine 
spends its time in SIE running guests, 
instead of outside of SIE running CP. 
z/VM performance engineers have 
means to keep track of CPU time spent 
inside and outside of SIE and to keep 
track of the reasons why virtual proces-
sors leave SIE. An important aspect of 
z/VM performance management is 
building guest operating systems and 
their applications to be aware they’re 
running virtually and to accomplish 
their work using techniques that tend to 
promote remaining in SIE. IBM has 
spent many years tuning its long-lived 
System z operating systems, such as 
CMS, z/OS, and z/VSE, to use SIE-
friendly techniques. Linux for System z, 
being comparatively young, is still 
evolving. 

Virtualization of Memory
	 Memory can be defined in the CP 
directory or can be changed with the 
CP DEFINE command. The virtual 
machine memory is usually defined as a 
contiguous range. However, one can 
define gaps in the memory. This can be 
helpful in some situations.
	 Of course, all guest memory is vir-
tual. To virtualize memory, z/VM har-
nesses the System z processor’s Dynamic 
Address Translation (DAT) facility. 
With DAT, the System z processor trans-
lates each instruction address or oper-
and address from virtual to real, using 
translation tables CP maintains. CP 
overcommits physical memory by keep-
ing resident only those guest pages that 
appear to have been needed in the 
recent past, constantly adjusting the 
DAT tables to preserve the memory 
illusion for the guests. When physical 
memory is scarce, CP moves stagnant 
guest pages first to expanded storage (a 
high-speed page storage buffer) and 
eventually to disk. CP brings these pages 
back to memory if the guest ever needs 
them again.
	 CP manages the level of physical 
memory overcommitment by consider-
ing a guest’s apparent memory need as 
part of deciding whether to run (dis-
patch) the guest. If CP determines that 
letting a virtual machine run could 
cause the system to enter a thrashing 
condition because of an insurmountable 
lack of physical memory, CP prohibits 
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the virtual machine from being dis-
patched for a period of time. Instead of 
moving the virtual machine to the dis-
patch list to run, CP places the virtual 
machine on the eligible list, which is a 
list of virtual machines that are ready to 
run, but which CP is holding back 
because there appears to be too little 
physical resource available to run them.
	 The tendency of a virtual machine to 
incur page faults is directly related to 
the amount of physical memory CP has 
set aside for the virtual machine’s pages. 
Usually, CP makes this determination 
on its own. However, the CP SET 
RESERVE command lets the operator 
influence the determination, telling CP 
to reserve at least said minimum num-
ber of real frames to hold the guest’s 
pages. When the operator uses SET 
RESERVE, he’s offering a guest favored 
status with respect to memory con-
sumption. Using SET RESERVE is a 
valuable performance tuning technique.
	 z/VM lets virtual machines share 
memory, which helps reduce memory 
requirements. z/VM has three kinds of 
shared memory. The first, a 
Discontiguous Saved Segment (DCSS), 
is a range of guest memory addresses 
for which all participating guests see the 
same physical memory pages. A z/VM 
systems programmer can place com-
monly used data or programs in a DCSS, 
letting many virtual machines share one 
physical copy. 
	 With the second type of shared 
memory, a Named Saved System (NSS), 
participating guests share a physical 
copy of the data; in addition, the “data” 
is typically a bootable operating system. 
This lets many guests share, for exam-
ple, a single copy of the Linux kernel or 
CMS nucleus. Booting from memory 
offers speed advantages as well as mem-
ory economy. 
	 The third type of shared memory, a 
VM Data Space, is similar to a DCSS, 
but offers much more addressability. 
With VM Data Spaces, the shared data 
are in one or more distinct address 
spaces, each address space being entire-
ly available for sharing. The participat-
ing guests access those address spaces 
using a System z operand addressing 
architecture called Access Register (AR) 
mode. With AR mode, a single System z 
instruction can refer to operands locat-
ed in more than one address space.

Virtualization of I/O Devices
	 z/VM uses various methods to pro-
vide devices to virtual machines. First, 
CP can dedicate, or attach, a real device 

to a virtual machine. This gives the vir-
tual machine exclusive use of the entire 
real device. Tape drives are typically 
attached to virtual machines. CP also 
can virtualize a device, which means it 
gives a guest a portion of a real device. 
This can be a portion in time, such as 
of a processor, or a portion of the 
device’s storage capacity, such as of a 
disk drive. Simulation of devices is a 
third approach. Earlier we discussed 
devices such as a virtual card reader. 
This is an example of a device where 
real hardware isn’t present, but CP sim-
ulates it using memory and disk. The 
last approach we’ll mention, emulation, 
is when CP uses hardware of one type 
to create the illusion of a similar type. 
For example, CP uses modern SCSI 
disks to cause guests to believe that an 
older, no-longer-manufactured style of 
disk, called Fixed Block Architecture 
(FBA), is present. 
	 z/VM provides disks to guests in 
various ways. While CP can dedicate 
entire disk volumes to virtual machines, 
more common is for CP to divide real 
disk volumes into disjoint, contiguous 
cylinder or block ranges called min-
idisks, thereby letting many guests each 
use some fraction of a real volume’s 
storage capacity. Minidisks can be exclu-
sive to virtual machines, or many virtual 
machines can use a single minidisk 
simultaneously, thereby sharing data.
	 One particularly interesting kind of 
disk z/VM can provide for a guest is the 
Virtual Disk in Storage or VDISK. A 
VDISK appears to the guest as an FBA 
disk drive with extremely fast perfor-
mance. The VDISK performs well 
because z/VM backs the VDISK in 
paged memory instead of on real disk 
hardware. Because CP doesn’t back a 
VDISK with permanent disk, the data is 
volatile. Even so, VDISKs are handy in 
several situations. In particular, VDISKs 
are an especially good choice for Linux 
swap space.
	 One last disk feature worth mention-
ing is Temporary Disk (TDISK). The 
system administrator can assign CP a 
pool of disk volumes it can use to instan-
tiate minidisks users need for only a 
short time.  The CP DEFINE command 
lets the z/VM user define such a min-
idisk; when a user does so, CP finds 
some free space in the pool and uses it 
to create the minidisk. When the user 
no longer needs the minidisk, he issues 
the CP DETACH command to dispose 
of it, and CP clears the space and returns 
it to the pool.
	 Because CP mediates access to min-

idisks, it can use memory to improve 
their performance. Central to z/VM’s 
minidisk strategy is the CP Minidisk 
Cache (MDC). With MDC, CP uses 
real memory or expanded memory to 
cache recently read portions of min-
idisks. This greatly improves perfor-
mance for minidisks that are frequently 
read, such as those containing object 
code libraries or frequently used bina-
ries. The minidisk cache is a write-
through cache, which means that if a 
guest writes to blocks that are cached, 
CP updates the cache and commits the 
change to the minidisk before inform-
ing the guest that the write is complete. 
A z/VM system administrator or opera-
tor can use the CP SET MDCACHE 
command to control or configure the 
minidisk cache.
	 Network connectivity is an impor-
tant concern in many environments. 
z/VM meets customers’ network needs 
by offering several networking options. 
CP can dedicate network devices to 
virtual machines. The dedicated device 
can be a channel-to-channel adapter, an 
IBM Open Systems Adapter (OSA) that 
provides Ethernet connectivity, or a 
HiperSockets device, a kind of network 
adapter that connects one LPAR to 
another. z/VM also has its own TCP/IP 
stack, which guests can use as if it were 
an IP router. A common network 
option used today is the virtual switch. 
Here, CP equips each virtual machine 
with a simulated IBM OSA and con-
nects all those simulated OSAs to a 
simulated LAN segment called a guest 
LAN. Also connected to the guest LAN 
is a real OSA that CP manages. With 
this configuration established, CP can 
provide packet- or frame-switching 
functions for the guests, just as a real 
switch would in a real external net-
work. In this way, the guest LAN 
becomes an extension of a real external 
LAN segment.

Diagnostic and Programming Services 
	 z/VM offers a variety of debug facili-
ties, making it invaluable for developing 
operating systems for System z. 
Commands exist to display, search, or 
modify virtual machine memory. In 
displaying memory, CP can display the 
memory in hexadecimal, ASCII, 
EBCDIC, or even as disassembled 
assembler instructions.
	 The tracing facility, whose documen-
tation exceeds 40 pages, is extensive. CP 
TRACE can trap references to memory, 
changes to registers, use of specific 
instructions, or arrival of interrupts, to 
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name a few. CP TRACE also includes 
the ability to issue commands when cer-
tain trace points are hit. The software 
developer can conduct tracing interac-
tively, or let the trace run, collecting the 
trace records for later analysis.
	 z/VM provides several programming 
interfaces to let guests interact with CP. 
The System z architecture provides a spe-
cial assembler instruction, Diagnose, 
which on real hardware performs diag-
nostic functions. Recognizing the utility 
of such a trappable instruction, CP imple-
ments an entire Application Programming 
Interface (API) built on Diagnose. To use 
the API, a guest builds a parameter list in 
memory, puts the address of the parame-
ter list into a register, and then issues the 
Diagnose instruction. CP performs the 
requested operation and returns control 
to the guest. 
	 CP provides more than 50 different 
functions through Diagnose. These 
functions include interrogating real 
device characteristics, performing I/O, 
or managing memory segments. CP 
also provides various communication 
APIs that connect virtual machines to 
one another. One of these methods, the 

Inter-User Communication Vehicle 
(IUCV), also lets a virtual machine 
communicate with CP. Over an IUCV 
connection to CP, a trusted virtual 
machine can help CP accomplish cer-
tain important system management 
functions such as accounting, perfor-
mance monitoring, or security.

The Future
	 IBM’s VM product family has 
thrived for four decades because IBM 
has constantly improved VM to match 
the market’s virtualization needs. In 
the early ’70s, VM hosted a small 
number of ordinary guest operating 
systems. In the late ’70s and early ’80s, 
the number grew modestly. In the 
mid-80s, CMS became popular as a 
general-purpose interactive comput-
ing platform, owing largely to a CMS-
based email and calendar package 
known as Professional Office System 
(PROFS). To handle the growth, IBM 
sharpened VM’s ability to run many 
lightweight, single-user interactive vir-
tual machines; some customers ran 
20,000 office users concurrently on a 
single hardware footprint. The late ’90s 

saw CMS wither as a general-purpose 
interactive environment, while Linux 
ascended. At the turn of the century, 
Linux on the mainframe gained a foot-
hold, again bringing VM’s virtualiza-
tion capabilities to the forefront. In 
response to the Linux boom, IBM 
again changed z/VM, improving its 
virtualization capabilities so that CP 
could begin to handle a large number 
of Linux guests as easily as it once 
handled many CMS guests. z/VM’s 
ability to adapt to the needs of the sys-
tems running in its virtual machines is 
a strength that should carry it forward 
in the next three decades. Z
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