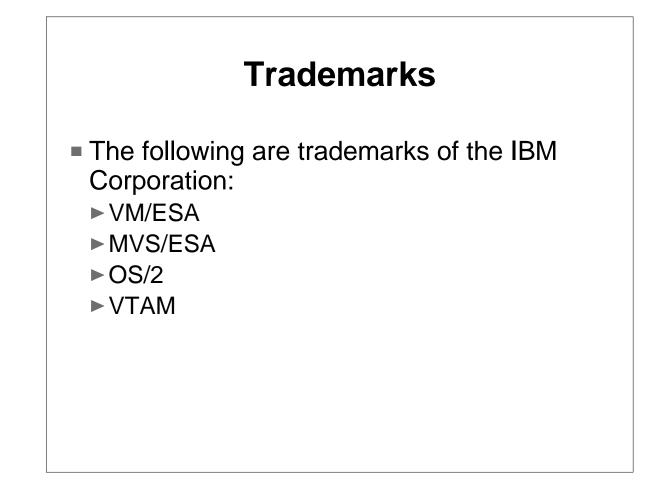
VM/ESA TCP/IP Performance

SHARE 89 - Summer Meeting 1997 Session 9224

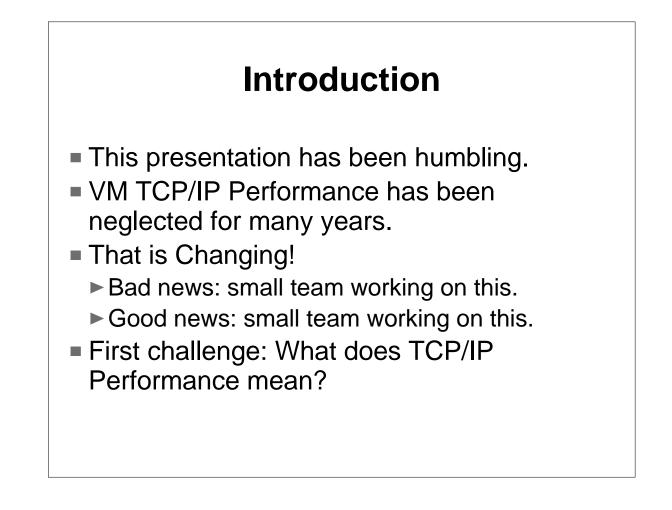
Bill Bitner IBM Corp. 1701 North St. Endicott, NY 13760 (607) 752-6022 bitner@vnet.ibm.com Romney White IBM Corp. 1701 North St. Endicott, NY 13760 (607) 755-8276 romney@vnet.ibm.com

Disclaimer

The information contained in this document has not been submitted to any formal IBM test and is distributed on an "as is" basis without any warranty either express or implied. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate them into the operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environment do so at their own risk.

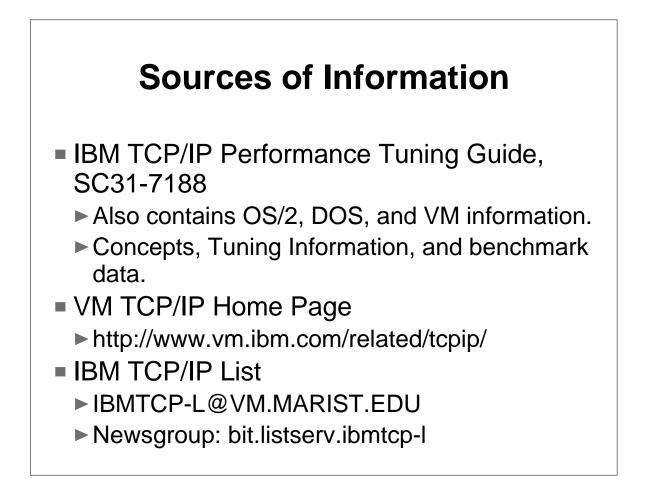

In this document, any references made to an IBM licensed program are not intended to state or imply that only IBM's licensed program may be used; any functionally equivalent program may be used instead.

Any performance data contained in this document was determined in a controlled environment and, therefore, the results which may be obtained in other operating environments may vary significantly.

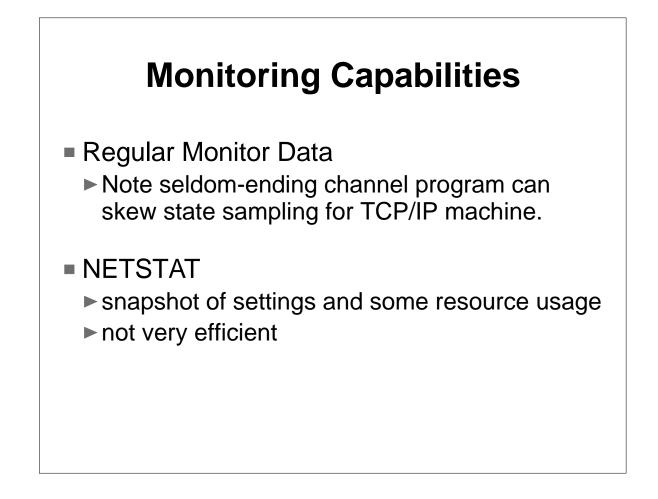

Users of this document should verify the applicable data for their specific environments. It is possible that this material may contain references to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country or not yet announced by IBM. Such references or information should not be construed to mean that IBM intends to announce such IBM products, programming, or services.

Should the speaker start getting too silly, IBM will deny any knowledge of his association with the corporation.

Permission is hereby granted to SHARE to publish an exact copy of this paper in the SHARE proceedings. IBM retains the title to the copyright in this paper, as well as the copyright in all underlying works. IBM retains the right to make derivative works and to republish and distribute this paper to whomever it chooses in any way it chooses.



I'd also like to take this chance to thank everyone who gave me input on this presentation and taught me much along the way. In particular, Wes Ernsberger, Romney White, Angelo Macchiano, Keith Jones, Maryrita Steinhour, Joe Hust, Alan Altmark, John Thornton, and Mark Cibula, and anyone else I missed. I look forward to working more with them and to the continued improvement of TCP/IP.

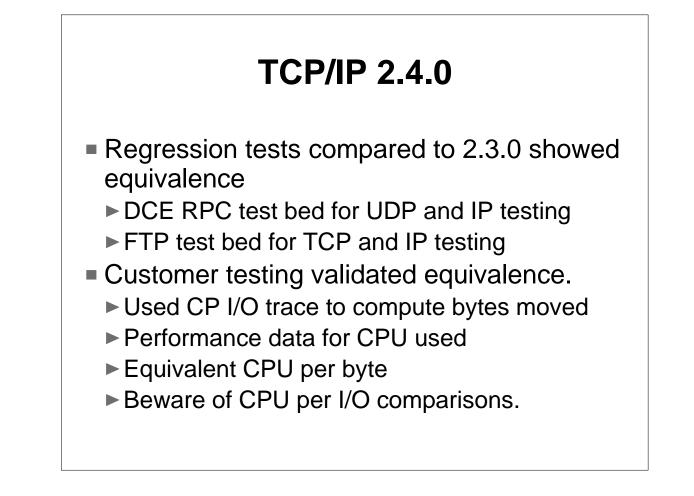

Putting this presentation together and presenting it is a humbling experience. This presentation just scratches the surface of VM TCP/IP performance. I have much to learn. Not to make excuses, but VM TCP/IP performance has been neglected for a number of years. Let me apologize, and let you know that we hope to change that. The bad news is that we only have the resources to have a few people work on improving the performance. The good news is they are good people and work well together.

The first challenge is one of definition. You may have called or sent me a note at one time or another that said you had a performance problem. My immediate response was most likely "What do you mean by performance?". Well now, I find I have to add another qualifier when looking at TCP/IP performance. Does TCP/IP mean the stack? web serving? FTP? TELNET? SMTP? I've had questions in all those areas so far this year.

There is little VM TCP/IP performance information in the VM libraries, but there is a manual which does cover a lot of good performance related information. That is the IBM TCP/IP Performance Tuning Guide (SC31-7188). The PTG contains good background material on TCP/IP concepts that relate to performance and then show application of them to MVS, VM, OS/2, and other environments.

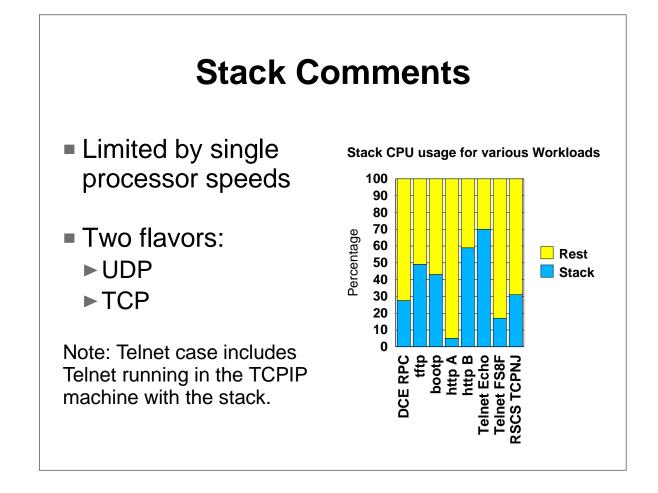
When looking for TCP/IP performance information, why not check out the internet. The VM TCP/IP home page URL is given in the foil. This presentation will be made available there and updated as it is improved. In addition, performance related questions can be asked on various lists on the net.

Since various parts of TCP/IP run in server virtual machines on VM, the regular monitor data associated with them can be explored. This can give a good indication of resources used or in demand. One area to watch out for it the traditional user state sampling for the TCPIP machine can be skewed because of the use of seldom-ending channel programs. This results in a large value for waiting for active I/O.

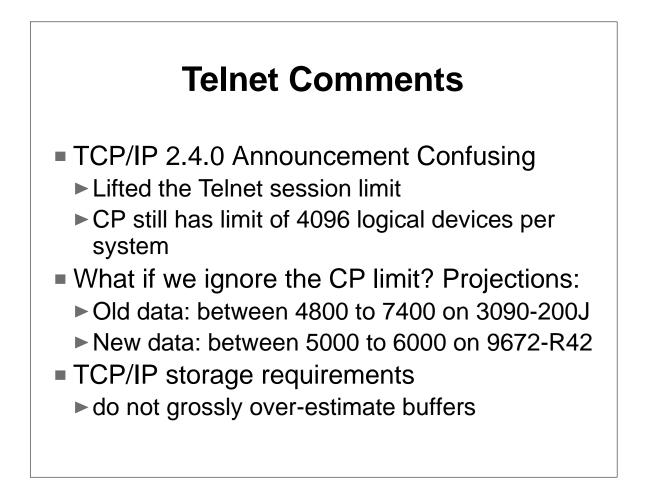

The NETSTAT command is included as part of VM TCP/IP and can be useful for getting a snapshot of resources in use and various settings. However, it is not a very efficient interface, therefore not appropriate for long term trending or history data.

Monitoring Capabilities (continued)

- SNMP (Simple Network Management Protocol)
 - helps manage internet elements including performance data.
 - ► used by other applications to present the data
- TCP/IP server machine use of APPLDATA
 - ► work-in-progress
 - development instrumentation


SNMP (Simple Network Management Protocol) is the architected keep-them-out-of-trouble protocol. It allows for the collection of different types of data including (in some implementations) hardware collected instrumentation. Other applications/products, such as NETVIEW, can be used to retrieve and present the information. All this processing does require resources.

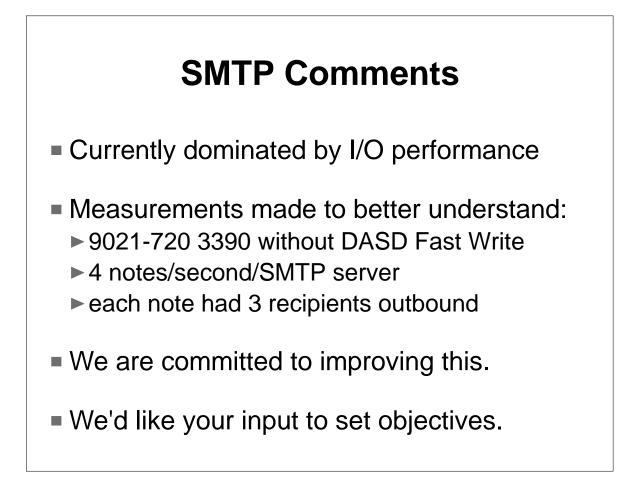
In addition, we are working on having the TCPIP SVM provide performance information through the monitor APPLDATA domain. In short-term, this is for us to better understand where the overhead is and how to lower it. However, we recognize the value of making this generally available.


For VM TCP/IP 2.4.0, a set of measurements were made to compare to the 2.3.0. These measurements included workloads that exercised both the UDP and TCP layers. In both cases, equivalent performance was measured. We also validated this in a customer environment. The customer (Mark Wheeler) used a set of CP I/O traces to get detailed metrics such as number of bytes moved over each hardware connection. Resource usage was then normalized on a per KB basis.

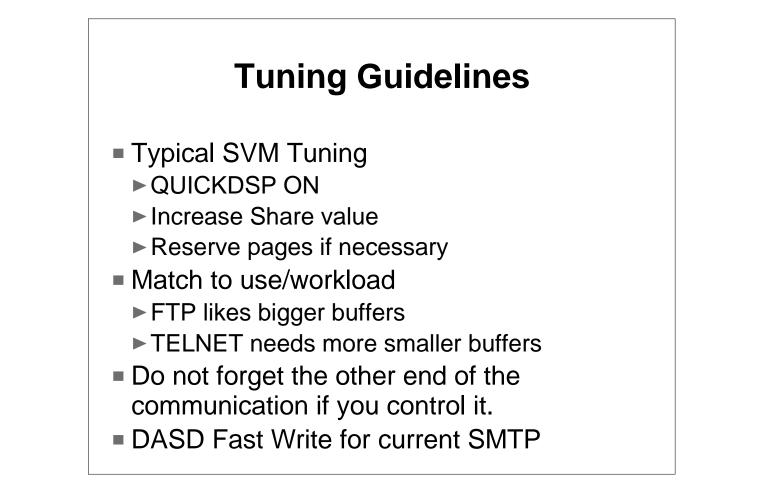
Be careful when making comparisons with other changes. For example, a metric of CPU per I/O would be misleading if there was more, or less, data moved with each I/O as a result of more virtual storage being available or changes in buffer settings.

The TCP/IP stack performance can be a limiting factor. The TCPIP virtual machine is not able to run as a virtual MP, so it is limited by the capacity of a single processor. The stack has two basic types of data flows: UDP (User Datagram Protocol) and TCP (Transmission Control Protocol). UDP does not have the overhead associated with managing a connection-driven environment (like TCP or SNA). However, some applications provide the connection management in themselves (so the overhead is still there, just not in the stack); for example DCE RPC. Also note that Telnet is different in that the Telnet code also runs in the TCPIP server machine along with the stack.

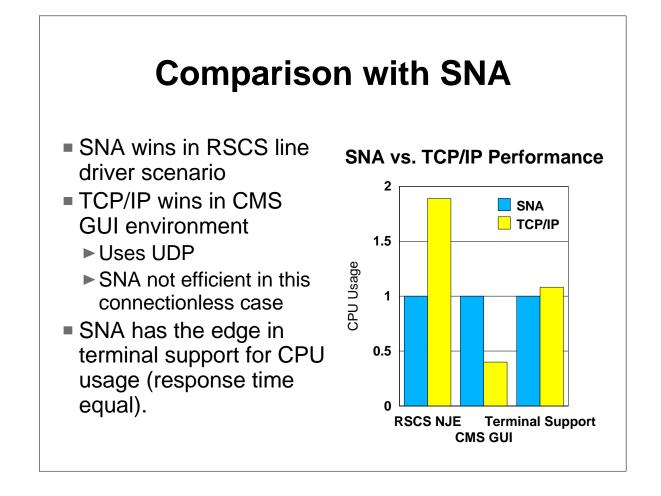
The chart shows how big a part the stack plays in various workloads. It shows the percentage of host resources used by the stack. Remember the single processor limitation. Based on that, this DCE RPC workload would be hard pressed to run on anything above a 4-way. Note, that this is worst case, basically a null RPC.



It appears the announcement material for TCP/IP 2.4.0 added some confusion. While the TELNET session limit of 2000 was removed, and TELNET is now bounded by virtual storage; TELNET uses logical device support and there is a CP limit of 4096 logical devices per system.


We know we need to remove the CP limit, so watch this space. The question has come up, okay what would the limit be. Again, we do not have current data for that, but based on two old studies, projections were made. Unfortunately, the studies show different results, so we end up with a wide range of between 4800 and 7400 users on a 3090-200J. Remember the single processor limit. The Telnet environment is one that is limited by the capacity of a single processor. These old measurements were basically echoes, so TCPIP is a significant percentage of the system resources. We now have some new measurements with our CMS interactive workload. In this environment, TCPIP is a smaller percentage of the total CPU usage, so we would not be limited by single processor speed until around a 4 to 5 way processor. As the number of users gets into the mid to high thousands of users, it is likely that the network will consist of multiple connections. It would be possible to run multiple TCP/IPs and connect them via virtual CTCs. This would increase the capacity even more.

Web or HTTP workloads can vary a great deal. Work to date shows that as the Web servers become more efficient (as they have and will continue to), the stack will need to be improved to keep pace. Besides the wide scope of what makes up a typical page being served out, there are some other challenges in the HTTP world in general. The cost of starting up connections and window size management is unfortunately a large part of the HTTP workload. With this effect, the round trip time becomes a large factor in response time. Seldom is it run to the store and get everything you need.



When looking at which application of TCP/IP needed performance attention, it was clear that SMTP was high on the list. Unlike other areas which tend to be more CPU involved and dependent on the stack, the current SMTP is bounded by I/O. This I/O includes not just moving the data, but lots of I/O to keep track of what has been moved. In that past people got around this by replicating the SMTP servers, using I/O caching, or modifying SMTP for special purposes. We are committed to improving this. So watch this space.

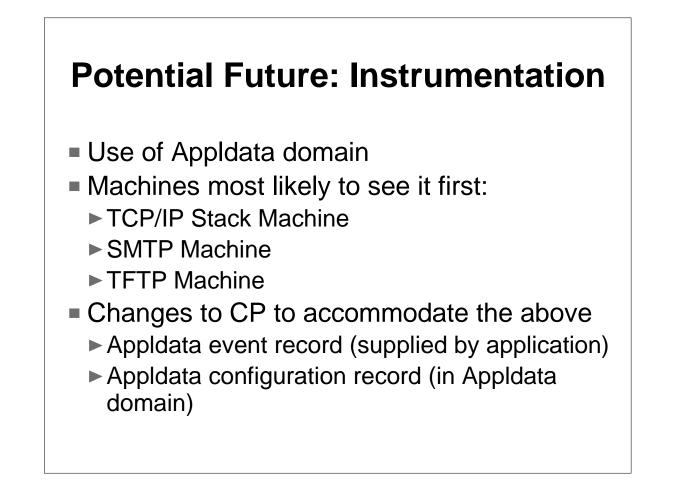
Remember how I mentioned this was a humbling presentation? Well this is the most humbling page of the presentation. All I really have to offer at this time are the traditional tuning we do for all SVMs. Now that would not be bad if that was the end of the story because after all it would be nice to ship a product that does not require a lot of tuning. However, there appears to be a huge number of knobs and levers involved here and it is not clear to me which are attached to what (or if they are even attached).


What I have learned so far, is that with TCP/IP it depends. While larger buffers may help an FTP environment where lots of data is being pushed through the stack, it will not significantly help TELNET environments.

We love comparisons. I have been asked a couple of times about how TCP/IP compares to SNA. I use to reply "I don't know". Now, I stall a bit by asking "what do you mean by TCP/IP?"

I did find some data that allowed rough comparisons to be made. The first was when we did some RSCS testing a while ago where we measured over SNANJE and TCPNJE lines for a RSCS workload of ours. In this case, SNA was the better performer. In the testing of the CMSDESK VM GUI application, we found that better performance was achieved when configured with TCP/IP than in an SNA APPC configuration. This second case showed the use of UDP interface, which avoids some connection overhead. SNA could not shed that part of the processing.

For the TELNET vs. VSCS/VTAM, there are various comparisons we could make. The one shown was measured with TPNS over CTCAs for both with the regular CMS interactive workload. Response time was good in all cases, but SNA required a bit less processor resources.

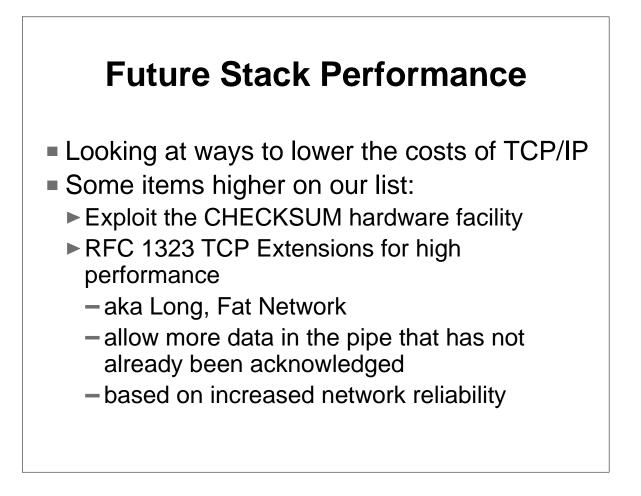


Look at this chart not for details on the network station, but for what we illustrate by using it. (The network station is pretty cool by the way).

In this experiment, there was a net station attached by a 16Mbit IBM token ring to a 9121-320 via a 3172 to a 16 Mbit IBM Token Ring. The TFTP server on VM was used to download a 2 meg kernel file to the net station. The blocksize used for the transfer was varied over time.

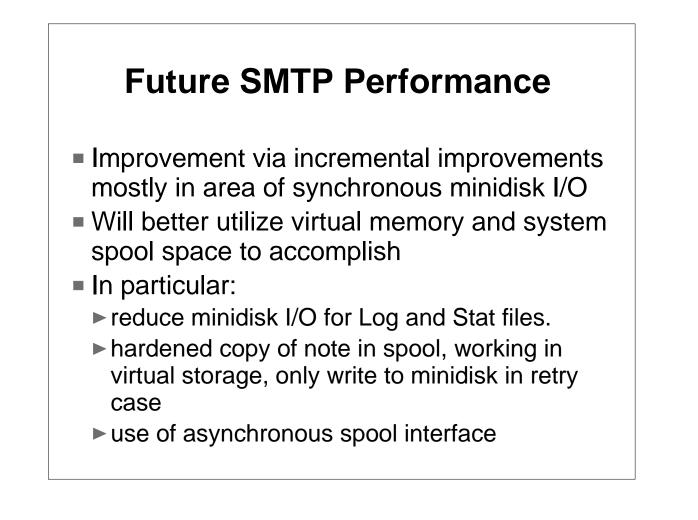
You can see the dramatic effect that the blocksize has in the performance seen here. Now in the Net Station scenario, we are using UDP, but acknowledgments are done handled by the TFTP and Net Station client. The number of requests made to move the 2 meg file is directly proportional to the blocksize, and this leads to the number of roundtrips required for handling the download.

The MTU size in this case was 2000 bytes, but even when the blocksize exceeded the MTU size, the steady improvement continued.

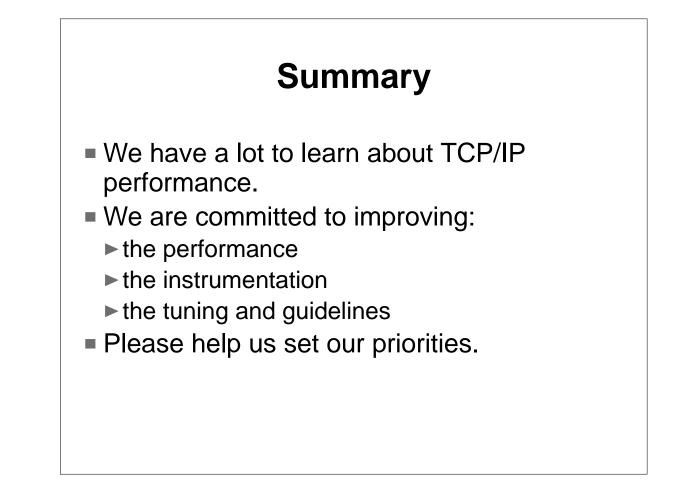


Remember Future is funny word, do not take this to be a commitment on IBM that we are definitely doing this or that it will be released.

The improvement, or addition, of performance instrumentation for TCP/IP has been a requirement for a while. We plan on taking some steps to improve this in the short and long term. The majority of this will, at least initially, be done via the appldata interface of the CP monitor system service. This allows an application in a virtual machine to contribute data to the CP monitor data stream in a very efficient manner. The machines that will be instrumented first include the TCP/IP stack machine, the SMTP machine, and the TFTP machine. We will discuss


each briefly in foils that follow.

We also hope to make some changes to CP in order to improve the type of data that can be generated. Currently, the appldata is used to generate sampled data, not event or config. Though, you can mimic event data by starting and stopping sampled appldata. Changes in the works would allow for true event records and configuration records.


As discussed earlier, the stack can be an important part of TCP/IP performance and it will become increasingly important over time. That is why we are looking to improve it now. We are still collecting data to better understand where to make the improvements, but we have identified some candidates.

Exploiting the CHECKSUM hardware facility is a nice example of where we want to improve our synergy with the hardware. We haven't quantified the overall impact to TCP/IP, but preliminary tests show there is considerable savings in the checksum processing. RFC 1323 is another item we are investigating. At one time, there was the concern of managing the amount of data that was "in the pipe" at any one time because of network failures and the need to resend this data. With increases in network speed and reliability, this is not as great a concern. This RFC describes an extension to TCP that would increase the amount of data pushed into the pipe at one time, and therefore improve network throughput in stable conditions.

The current SMTP performance is greatly bounded by the large amount of synchronous I/O that it does. While other approaches were investigated, the team has chosen making several incremental changes to greatly reduce the I/O requirements. The more effective use of system spool and virtual storage will allow this to happen.

In particular, the minidisk I/O for the Log and Stat files will be greatly reduced. The Stat file I/O will be nearly eliminated, while the Log file I/O will be reduced. The notes themselves will only be written to minidisk in the case of 'a retry' being necessary. We are also investigating the use of asynchronous spool to further improve performance or capacity.

Whew, this presentation is almost over. What? You thought it was over after the Introduction foil? Not funny. The only story I like presenting more than one with great performance is one where performance is improving. And in this case, by performance I mean how fast it is, how well it is instrumented, and how easy is it to tune. If there is a particular area you want us to stress, we want to hear about it. The VM TCP/IP Home Page will have a mailto item on it for feedback.

I look forward to coming back and to this presentation growing. And I'm counting on you to keep me humble.

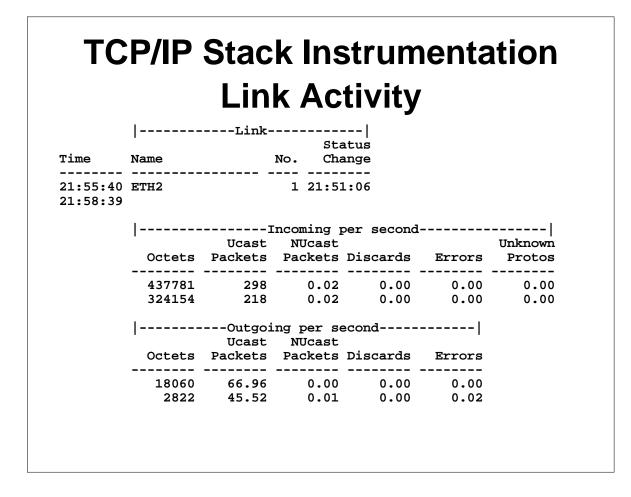
Thanks.

Questions and Comments

- Now is your time to let us know:
 - ► If you think we are heading in the right direction
 - what questions you have about TCP/IP performance that you need instrumentation data to answer
 - what objectives we should set in terms of how fast TCP/IP on VM needs to be to meet your business objectives.
- The floor is yours.

The diagram above shows models three potential interactions of the TCP/IP stack. As far as the stack is concerned servers could be clients and clients could be servers. So for this discussion, consider everything that communicates with TCP/IP to be a client. The first model shows the case where a request is presented to the stack, is queued briefly, processed, and then the stack replies. The second model adds another component of defer time, perhaps where the stack needs to do I/O or is actually waiting to handle a receive request for the client where nothing has been received yet. The third model is similar to the first, except that so time after the reply to the client, the stack receives some sort of notice from the client's other end (perhaps over the network) and then turns around and presents that to the client. This could give an indication of network delay.

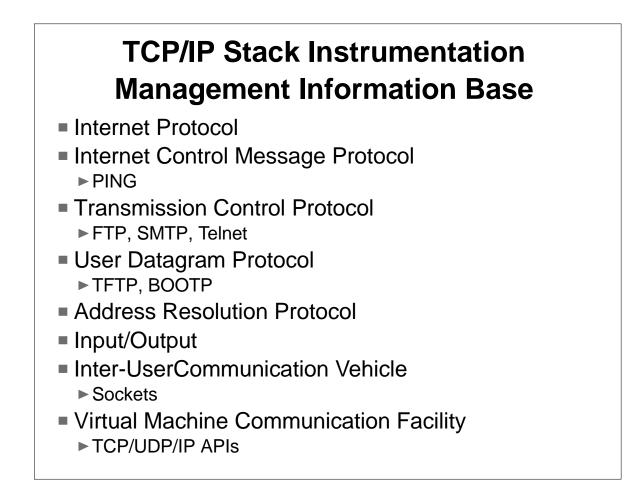
_	P/IP Stack Instrumentation Suffer Pool Configuration
Time	CCB CCB Count Limit Warn Size Count Limit Warn Size
21:51:01	800 40 80 75.0K 150 0 10 31.1H
	UCB Total Count Limit Warn Size Storage 100 0 6 23.9K 11.7M


This and several of the following reports are examples of data generated from the prototype stack instrumentation we have running. The reports are simple ones generated with REXX programs looking just at this new data. Eventually, we hope to have formal reports. These are for illustration purposes. This first report shows how the buffer pools are configured for TCP/IP. The "count" is number of defined, "limit" is the number we hold for emergencies, "warn" is the number at which warnings are issued, and the "size" is the total amount of bytes allocated.

TCP/IP Stack Instrumentation Buffer Pool Activity									
			CC		Da	ta	Sma	11	
_	ACI	B	CC	B	Buf	fer-	-Enve	lope	
Time	Size	Min	Size	Min	Size	Min	Size	Min	
21:52:39 21:55:40 21:58:39 22:01:39 22:04:34 22:07:38 22:10:36 22:13:39	797 796 796 795	792 792	140 140 139 138 138 138 138 138 138	140 139 138 138 138	198 197 196 196 195	198 197 194 194 194	749 749 749 749 749 749 749	747 747 747 747 747 747	
Summary:	787	749	138	138	183	132	747	671	

This report in combination with the previous report can be used to determine if the appropriate number of buffer pools have been defined.

TCP/IP Stack Instrumentation Link Configuration						
Time	 Name	Device Type	 Addresses			
21:50:57	LCS2 LCS3 LCS4		0D42-0D43 0722-0723 0200-0201			
	Link Name No		e Description	Max Trans Unit Speed		
	ЕТНЗ		IBM LCS IBM LCS IBM LCS IBM LCS			


This report provides configuration information on the various links. Note that the "speed" field is not a measured speed, but the typical speed associated with the link type.

Along with the link configuration, we can also tell how much data is being moved across each link. Octets is TCP/IP for bytes. Indications of problems can also be seen in high counts for Errors or Unknown protos.

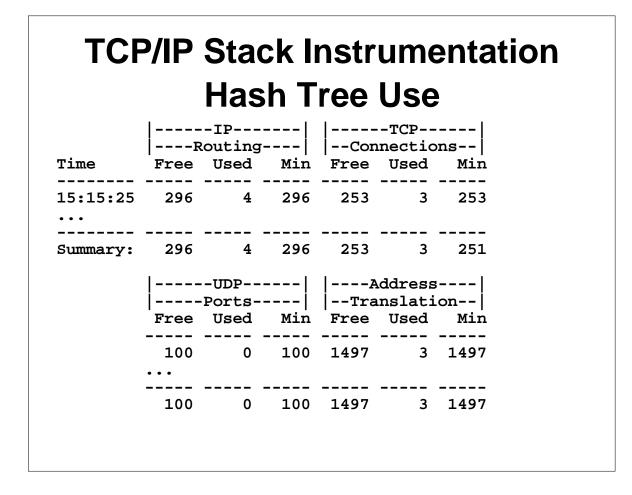
TCP/IP Stack Instrumentation CPU Activity									
	•			Time Virtual	e (second	s)			
Time	Virt CPU			CPU	Wait	Other			
21.55.40		100 0		0.0	180 2				
21:55:40					179.9				
• • •									
				73.0					
05:49:34	34.3	43.8	22.0	60.0	76.6	38.5			
05:52:39	37.1	39.5	23.4	68.5	73.1	43.2			
05:55:35	33.4	47.8	18.8	58.5	83.9	32.9			
05:58:40	36.5	43.1	20.4	67.4	79.8	37.8			
Summary:	23.3	62.3	14.4	6780.8	18179.0	4200.4			

By instrumenting the stack itself, we can also get a measure of the utilization of the server.

The standard information available through SNMP will also be available through the stack instrumentation. This includes the MIB or Management Information Base.

	Scheduler Data								
mal Maximum	Norn Size	sizes prity Maximum	Queue Pric Size	Now Maximum	Right Right Size	Time			
4	0	0	0	3	0	21:55:40			
4	0	0	0	3	0	21:58:39			
Socket	Activity Internal Client	Con-	•	Moved to	Process	Queues			
106		65	0.24 215 138			0.17			
51/	0.01	0.02				0.22			

The TCP/IP Stack Scheduler Data is detailed information that is of more interest for ourselves in making design decisions.


ТС	TCP/IP Stack Instrumentation Client Activity							
Start Time	Client	Reque	rate ests Repi ived s	lies F	eceives	Noti	 .ces Sent	
23:17:32	3 CLIENT1 2 CLIENT2 3 CLIENT3		9.5	0.4	9.1		9.2	
(I	per reque nicrosecon cocess	ds)-İ	Delay	De	lay		Request	Time Active
	135.4 38.9 130.1	207.1	9.9		3.6	0.23	9.14	

The Client Activity data can help determine if performance problems are system-wide or related to a particular client. And also if they are related to network delays.

TCP/IP Stack Instrumentation TCP Connection Activity

Start Time	Client	Applicatio			reign		
17:47:00	INTCLIEN	Telnet 000	 4 10	.0.0.2		1027	23
		FTP				21 3	-
17:47:31		FTP Transf	er 10	.0.0.1		20 2	L025
	Max Ma	kimum :	Recei	ve	B	vtes	
	Seg	Send -Win	dow L	imits-	per	second	
		indow Mini					
		28.0K 10					
		28.0K 30					
	1452 2	28.0K 30	.6K	32.0K	225.6	K (0.8
	Maximum	ACKs	Mean	-Round	Trip-	Effec-	
		Received					Session
		/sec					
		 1.38		1 2 5		 Е 1	
		0.37					
		160.35					
	15	T00.32	49	54	13	0.1	0:01.310

This report has a wealth of information on the various client connection and the performance seen by each. We can get some idea of who we are communicating, the data rate, round trip time, window size, and session duration. "Effectiveness" is a computed number to give a relative idea of performance; the smaller the number, the better.

This last report is low level information, but could be important. The stack uses a series of hash tables of a fixed size. If the stack runs out of entries in any of these tables, things stop working. That would be bad.