
Performance Anal ysis for
VM Applications

SHARE August 1998 - Session 9227

Bill Bitner
IBM Endicott

1701 North St.
Endicott, NY 13760

607-752-6022
bitner@vnet.ibm.com

USIB1E29 at IBMMAIL

(c) Copyright IBM Corporation 1998. All Rights Reserved. 1

The information contained in this document has not been submitted to any formal IBM test and is distributed on
an "as is" basis without any warranty either express or implied. The use of this information or the implementation of
any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the operational environment. While each item may have been reviewed by IBM for accuracy in
a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environment do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or imply that only
IBM's licensed program may be used; any functionally equivalent program may be used instead.

Any performance data contained in this document was determined in a controlled environment and, therefore,
the results which may be obtained in other operating environments may vary significantly.

Users of this document should verify the applicable data for their specific environments.

It is possible that this material may contain references to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country or not yet announced by IBM. Such
references or information should not be construed to mean that IBM intends to announce such IBM products,
programming, or services.

Should the speaker start getting too silly, IBM will deny any knowledge of his association with the corporation.

 Permission is hereby granted to SHARE to publish an exact copy of this paper in the SHARE proceedings. IBM
retains the title to the copyright in this paper, as well as the copyright in all underlying works. IBM retains the right to
make derivative works and to republish and distribute this paper to whomever it chooses in any way it chooses.

Disclaimer

(c) Copyright IBM Corporation 1998. All Rights Reserved. 2

Trademarks

The following are trademarks of the IBM
Corporation:

IBM
OfficeVision
VM/ESA

(c) Copyright IBM Corporation 1998. All Rights Reserved. 3

Introduction

To performance analysis everything looks like
a performance tool
various tools documented/undocumented
goal of better understanding the application or
program
Look at a subset of the tools that exist

(c) Copyright IBM Corporation 1998. All Rights Reserved. 4

I have been accused of being one-minded in that I cannot think
about anything other than performance. That applies to looking at
tools and utilities as well. Whenever a new command or function
is created, I find myself asking "What does this have to do with
performance?".
There are a number of tools with varying degrees of
documentation, that were not created for use in performance
analysis. However, they can be used to gain a better
understanding of an application or program. In this presentation,
we will look at a subset of these tools and discuss how they can
be applied to performance analysis.

What do we want to know?
How many, when, or how much?

Processor Resources

Storage

I/O

System Services
CMS
CP
Servers

112
2
3
45678

9
1011

(c) Copyright IBM Corporation 1998. All Rights Reserved. 5

What are some of the things we care about when it comes to
performance analysis of applications or solutions? The first three
items most commonly mentioned are processor, storage, and
I/O. The fourth item we should remember is system services.
These could include storage management calls, I/O or
communication calls, authorization checking, etc. .

CP INDICATE USER * EXP
snap shot: requires taking delta of two
indicate commands
Covers processor, I/O, and Storage
Use expanded version

avoids anomalies
better storage view

(c) Copyright IBM Corporation 1998. All Rights Reserved. 6

The CP INDICATE command gives a snap shot of various
resource utilization numbers. Since it is only a snap shot, we
often need to bracket what we are measuring with INDICATE
commands and then take the deltas of the two results. I
recommend use of the EXPanded option. It avoids some
anomalies and also provides additional views of storage usage.

Userid=BITNER Mach=XC V=V Attached xstore=NONE
Iplsys=CMS Devnum=32
Spool: Reads=536 Writes=133
Owned spaces: Number=1 Owned size=103M
 Primary space: ID=BITNER:BASE PRIVATE
 Defined size=128M Address limit=814M
 Private spaces: Number=1 Owned size=103M
 Pages: Main=929 Xstore=0 Dasd=0
 Locked=1 WS=908 Reserved=0
 Shared spaces: Number=0 Owned size=0

 Pages: Main=0 Xstore=0 Dasd=0
 Locked=0
 Private paging:
 Xstore: Reads=0 Writes=0 Migrates=0
 Dasd: Reads=0 Writes=0
 Shared paging:
 Xstore: Reads=0 Writes=0 Migrates=0
 Dasd: Reads=0 Writes=0
CPU 00: Ctime=0 04:35:22 Vtime=0 00:00:17 Ttime=0 00:00:19
 Rdr=17634 Prt=439 Pch=901 IO=5516

(c) Copyright IBM Corporation 1998. All Rights Reserved. 7

This is an example of the output returned by the INDICATE
USER command with the EXPanded option. Note that output
would be slightly different if the virtual machine was configured
differently, such as with vectors or multiple virtual processors.

SET RDYMSG LMSG

Gives processor usage with better
granularity
T= Virtual / Total processor time

example
Ready; T=1.40/1.54 18:04:35

(c) Copyright IBM Corporation 1998. All Rights Reserved. 8

Another way of getting some information on processor usage is
by changing the format of the CMS ready message to long
message. The INDICATE USER provides processor time
rounded to the nearest second, while long message displays
processor time in hundredths of seconds. The downside is you
only get this information at the ready prompt.

CP QUERY TIME

Granularity of long ready message

q time
TIME IS 18:46:03 EST SATURDAY 02/14/98
CONNECT= 05:12:43 VIRTCPU= 000:21.09
 TOTCPU= 000:24.00
Ready; T=0.01/0.01 18:46:03

(c) Copyright IBM Corporation 1998. All Rights Reserved. 9

The CP Query Time command gives the same granularity as the
long ready message, but can be issued within a program. The
Query Time command displays the total accumulated processor
time. Therefore, like the Indicate command, you would need to
issue two Query Time commands and compute the delta for a
given function.

CP TRACE command

Use with COUNT option to just count
instructions.
Use with DIAG to count I/Os via diagnose
x'A4' and x'A8'
Could output as input to profiling tools for
both storage and pathlengths
Can slow down the application, depending
on what is being traced.
Tracing IUCVs or diagnose x'68' for server
machine requests.

(c) Copyright IBM Corporation 1998. All Rights Reserved. 10

The CP Trace (or Per) command can gather information about
the virtual pathlength. Especially helpful for performance analysis
is the COUNT option. Instead of gathering all the data, only the
occurrences are counted. Output from the Trace command could
also be used as input to profiling tools for both storage and
pathlengths. Note that tracing can slow down an application
severely.

CMS EXECMAP command

For EXECLOADed execs
Gives a running usage count (2 invocations)
Also gives segment information

execmap example exec
Name Type Usage Records Bytes
EXAMPLE EXEC 2 10 344
Ready;

(c) Copyright IBM Corporation 1998. All Rights Reserved. 11

To get a feel for what execs are being used, you can issue the
CMS EXECMAP command to gather statistics on execs that
have been execloaded. The usage count is a running count, so
again you would need to issue multiple commands and compute
the deltas.

CMS RTNMAP Command
Running usage count for CSL loaded CSL
routines

rtnmap *
Alias Name Library UseCount LoadAddr Size
-------- -------- -------- -------- -------- --------
DMSCOMM DMSCOMM VMLIB 416 20C09F38 0
DMSCLOSE DMSCLOSE VMLIB 349 20C14740 0
DMSPOPWU DMSPOPWU VMLIB 118 20C19450 0
DMSOPEN DMSOPEN VMLIB 349 20C11CD8 0
DMSPUSWU DMSPUSWU VMLIB 118 20C199D0 0
DMSREAD DMSREAD VMLIB 871 20C094E0 0
DMSEXIFI DMSEXIFI VMLIB 67 20C0DF40 0
VMTCPDT VMTCPDT VMMTLIB 67 0123B888 0
DMSERP DMSERP VMLIB 34 20C83400 0
DMSCALLR DMSCALLR VMLIB 64 20C83360 0
VMEVCR VMEVCR VMMTLIB 0 011F83C0 0
Ready;

(c) Copyright IBM Corporation 1998. All Rights Reserved. 12

The CMS RTNMAP command is similar to the EXECMAP
command, except it provides information on CSL routines. In the
example above, you see a size of 0 for all of these routines. A
size of 0 indicates that they are running from a saved segment,
which is good.

CMS Storage Utilities

STDEBUG
monitor OBTAIN and RELEASE requests

STORMAP
maps allocated and unallocated storage within
virtual machine
EXTSET and FILE options

SUBPMAP
maps subpools and associated storage within
your virtual machine
EXTSET and FILE options

(c) Copyright IBM Corporation 1998. All Rights Reserved. 13

We will now move on to CMS storage analysis. There are a
series of storage analysis utilities which have their roots from
former VMer, Steve Jones, affectionately known as Frodo. There
is a great deal of function in these utilities, but we'll only focus on
a small portion which allow you to: monitor storage obtain or
release requests and map storage. Some of these utilities
support the EXTSET option to capture information midstream in
program execution. The EXTSET option allows you to delay the
capture of information until the given code external interrupt
occurs. In addition, some of the commands support the FILE
option so that data is captured to disk for analysis.

STDEBUG Example
stdebug USER (obtain release con
 thrasher 10 2 1
 19:19:41 * MSG FROM BITNER :
 OBTAINED 0000A000 07EFE000 USER 000100E2
 19:19:43 * MSG FROM BITNER :
 RELEASED 0000A000 07EFE000 USER 000101AA
Ready; T=0.01/0.01 19:19:43

Note subpool name in capitals
Provides

how much/where storage (A000)
address of call (100E2, 0101AA)

(c) Copyright IBM Corporation 1998. All Rights Reserved. 14

STDEBUG can monitor obtain and release requests. In the
above example, we are monitoring obtain and release requests
to the USER subpool with the output directed to the console.
Then the Thrasher program is written. There is one request to
obtain storage and one to release storage. And it is good to note
that both are for the same amount of storage x'A000' bytes.
Note that the subpool (USER) is case sensitive.

SUBPMAP Example
subpmap

Subpool Key Anchor Full Part
DMSINTSP F0 07FFFB44 1487 0
DMSBLOKN F0 07FFFB74 337 31
NUCLEUS F0 07FFFBD4 180 49
DMSIUCV F0 07FFFE74 1 1
DMSSVQUS E0 07FFFE44 1 0
DMSCPIC E0 07FFFE14 0 0
DMSLICMD F0 07FFFDE4 0 0
DMSDCSYS F0 07FFFD84 2304 0
Ready; T=0.01/0.01 19:31:09

(c) Copyright IBM Corporation 1998. All Rights Reserved. 15

Above is an example of the SUBPMAP command. It shows how
many pages are part of each of the subpools and of those pages,
how many are fully allocated and how many are only partially
allocated. This can be used in peeling onion layers. If we
suddenly notice an increase in virtual storage requirements, we
can issue the SUBPMAP and get an idea of which subpool or
trype of activity is worth investigating further. By comparing the
partial and full page count, we can get an idea on storage
fragmentation.

STORMAP Example
stormap (sub DMSIUCV all
 Storage Map
 ------- ---

VMSIZE NUCALPHA NUCSIGMA NUCOMEGA NUCPHI NUCCHI
08000000 00F00000 00F54D60 01400000 01000000 013016C8

 Unallocated Free Storage Queue
 ----------- ---- ------- -----

 <16Mb >16Mb
Total Largest Total Largest Total Unallocated
00920000 0087A000 06580000 05CDE000 06EA0000

Address Range: 00000000 - 07FFFFFF

Subpool Start End Bytes Pages Key Attributes
DMSIUCV 00EF8000 00EF8267 00000268 p F0 UNALLOC
DMSIUCV 00EF8268 00EF8FFF 00000D98 p F0 ALLOC GLOBAL SYSTEM
DMSIUCV 07F3D000 07F3DFFF 00001000 1 F0 ALLOC GLOBAL SYSTEM
Ready; T=0.01/0.01 19:38:51

(c) Copyright IBM Corporation 1998. All Rights Reserved. 16

If we found a suspect subpool with the SUBPMAP command we
can then issue the STORMAP command to see what pages
make up that subpool, We can then go even further by
displaying storage at the given locations.
You can also get information such as the largest available
contiguous area which can highlight fragmentation problems.

Rita

On samples disk
Replace "PIPE" with "RITA"
Shows processor time associated with
various stages, plus pipe overhead for
management
See various papers and info on
http://pucc.princeton.edu/~pipeline/

(c) Copyright IBM Corporation 1998. All Rights Reserved. 17

Rita is a wonderful utility from Melinda Varian of Princeton
University. It is shipped with VM/ESA on the samples disk. It can
be used to analyze a pipeline to understand how processor time
is associated with each stage. To use it, simply replace "PIPE"
with "RITA". More information is available at the website listed in
the foil.
A word of caution, while some stages are more expensive than
other stages, the overhead is greatly impacted by how many
records are being processed in a given stage. We will look at an
example on the next foil.

Rita Example

rita < bitner netlog a | spec 31-45 2 | sort count
 | locate /MORRISDL/ | cons
 2 to MORRISDL
 2 from MORRISDL
 CPU Utilization by Pipeline Specification 14 Feb 1998
19:47:49

 9.399 (9.399) ms in pipeline "NoName001"
 (1 invocation)
 45.052 ms total.

Detailed output from Rita in UNNAMED RITA002.
Ready; T=0.08/0.10 19:47:49

(c) Copyright IBM Corporation 1998. All Rights Reserved. 18

I need to measure how much communication I have with my
manager. I do this by analyzing my Netlog file with the above
pipeline. So in the example above, I replace "PIPE" with "RITA",
followed by the regular stages. The pipeline completes with the
two output lines from the normal pipeline of "2 to MORRISDL"
and "2 from MORRISDL". Some summary information is also
output at this time along with a pointer to the file which contains
the detailed information, UNNAMED RITA002 in this case.

Rita Output
CPU Utilization by Pipeline Specification from: 14 Feb 1998 19:47:49
 to: 14 Feb 1998 19:47:49

CPU utilization of pipeline "NoName001":
 0.635 (0.635) ms (33K) in stage 1 of segment 1: < bitner netlog a
 4.248 (4.248) ms (4K) in stage 2 of segment 1: spec 31-45 2
 4.011 (4.011) ms (16K) in stage 3 of segment 1: sort count
 0.486 (0.486) ms (1K) in stage 4 of segment 1: locate /MORRISDL/

 0.019 (0.019) ms (2K) in stage 5 of segment 1: cons
 9.399 (9.399) ms in pipeline "NoName001" (1 invocation) <=====

 9.399 ms attributed to stages; 82 virtual I/Os.

 0.016 ms in general overhead.
 0.460 ms in scanner.
 3.792 ms in dispatcher.
 31.385 ms in accounting overhead.

 45.052 ms total.

(c) Copyright IBM Corporation 1998. All Rights Reserved. 19

The detailed output file provides a line of output for each stage
which reports processor and storage usage. A summary line of
the processor time for all stages and virtual I/Os comes next.
Lastly, a breakdown of management overhead between various
pipeline processes is given. In our example, we can see that a
large portion of our overhead is in the management of the
pipeline with just over 20% of the overhead in the actual stages.
The bulk of the stage overhead is in SPEC and SORT.

Improved Pipe

rita < bitner netlog a | locate /MORRISDL/
 | spec 31-45 2 | sort count | cons
 2 to MORRISDL
 2 from MORRISDL
 CPU Utilization by Pipeline Specification
14 Feb 1998 19:55:13

 3.841 (3.841) ms in pipeline "NoName001"
 (1 invocation)

 37.201 ms total.

Detailed output from Rita in UNNAMED RITA004.
Ready; T=0.07/0.09 19:55:13

(c) Copyright IBM Corporation 1998. All Rights Reserved. 20

You might have realized that a possible improvement was to
move the Locate up earlier in the pipeline so as to minimize the
number of records that need to be processed later on. When we
run the pipeline again with Rita, we see that we have saved
about 17% of the processor time. Not bad for a simple change.

Improved Pipe Rita Output

CPU utilization of pipeline "NoName001":
 0.609 (0.609) ms (33K) in stage 1 of segment 1: < bitner netlog
a
 3.024 (3.024) ms (1K) in stage 2 of segment 1: locate
/MORRISDL/
 0.135 (0.135) ms (4K) in stage 3 of segment 1: spec 31-45 2
 0.053 (0.053) ms (16K) in stage 4 of segment 1: sort count
 0.020 (0.020) ms (2K) in stage 5 of segment 1: cons
 3.841 (3.841) ms in pipeline "NoName001" (1 invocation) <=====

 3.841 ms attributed to stages; 82 virtual I/Os.

 0.019 ms in general overhead.
 0.477 ms in scanner.
 1.808 ms in dispatcher.
31.056 ms in accounting overhead.

37.201 ms total.

(c) Copyright IBM Corporation 1998. All Rights Reserved. 21

The detailed report with the new pipe shows that overall pipeline
management time is about the same (37.056 compared to the
previous 31.385), but processing time in the stages decreased
dramatically. Now the Locate stage is the most expensive and
Spec and Count are considerable smaller. You may also notice
that there is some run variability. The disk read stage that starts
the pipeline did not change, but the processor time is different.

TRACEXEC

Written by Kent Fiala of SAS Institute
SASKLF@VM.SAS.COM

Analyze and debug EXEC applications
Available at
http://ukcc.uky.edu:80/~tools.1998/
Statistical processor usage at Exec level
Profiling and debug capabilities
Handles execs calling other execs

(c) Copyright IBM Corporation 1998. All Rights Reserved. 22

TRACEXEC is a powerful tool for collecting processor usage for
execs. It was written by Kent Fiala of SAS and is available on the
VM Workshop virtual tools tape.
It has various functions, but the one we will look at here is for
collecting processor usage at the exec level, including handling
the case where one exec calls another exec.

TRACEXEC Example
tracexec on
Ready;
gohome
TRACEXEC: Enter GOHOME EXEC * gohome
TRACEXEC: Enter NQ EXEC * NQ DOUG
TRACEXEC: Exit NQ 0.007782 seconds, rc= 0
TRACEXEC: Enter NQ EXEC * NQ RON
TRACEXEC: Exit NQ 0.007742 seconds, rc= 0
TRACEXEC: Enter QSTOCK EXEC * QSTOCK
TRACEXEC: Exit QSTOCK 0.024401 seconds, rc= 0
TRACEXEC: Enter QCPU EXEC * QCPU
TRACEXEC: Exit QCPU 0.004249 seconds, rc= 0
TRACEXEC: Exit GOHOME 0.052223 seconds, rc= 0

Ready;

(c) Copyright IBM Corporation 1998. All Rights Reserved. 23

In this example, we simply turn on Tracexec with the TRACEXEC
ON command. This will result in enter and
exit messages to be displayed for each exec that is run. The
QUIET option can be used to suppress these messages.
The basic flow is that the GOHOME exec calls three other execs:
NQ, QSTOCK, and QCPU. Note that the NQ exec is called
twice.

TRACEXEC Stats Command

tracexec stats
QCPU EXEC n=1 0.004249 secs 0.004249 secs.
QSTOCK EXEC n=1 0.024401 secs 0.024401 secs.
NQ EXEC n=2 0.015524 secs 0.015524 secs.
GOHOME EXEC n=1 0.052223 secs 0.008049 secs.

Ready;

(c) Copyright IBM Corporation 1998. All Rights Reserved. 24

For scenarios where many execs are called, the QUIET option
can be used when enabling Tracexec. Statistics can be displayed
with the TRACEXEC STATS command. These statistics are also
shown when the TRACEXEC OFF command is issued.
Three items are given for each exec: the number of times the
exec was invoked, the accumulated cpu time for execution of the
exec, and the accumulated cpu time spent exclusively in the
given exec. Since GOHOME is the only exec shown here that
calls other execs, it is the only one where the two cpu numbers
differ. The NQ exec was called twice, so the average cpu time
used would be 0.015524 / 2 = .007762. The majority of the cost
of GOHOME (0.052223) is in the other execs. GOHOME is only
0.008049 by itself.

Other Possibilities

CMS Commands
SVCTRACE
QUERY FILEPOOL

Other CP Commands
CP TRACE TABLE
TRSOURCE DATA trace

(c) Copyright IBM Corporation 1998. All Rights Reserved. 25

Some other possible commands for insight into your applications
include the CMS SVCTRACE command and various flavors of
the Query Filepool command. For most of the Query Filepool
information you will again need to issue the command twice and
then take deltas. The CP trace table can be a wonderful source
of information and for really specific things you can use
TRSOURCE data traces.

Instrumenting Applications

Monitor Application Data
Diagnose x'DC'

Diagnose x'70'
Internal trace tables or footprints
Accounting Data

(c) Copyright IBM Corporation 1998. All Rights Reserved. 26

I could spend a whole session on how to instrument applications.
There are various methods of accomplishing this. The hardest
part tends to be determining what data to capture in the first
place. I could also do a whole session on that.

Summary

There are a number of tools in VM that were
not meant for performance analysis
That does not mean you cannot use them
Be careful of

skewing results
repeatable environments
multiple changes between measurements

(c) Copyright IBM Corporation 1998. All Rights Reserved. 27

I hope this brief review of using nonperformance tools for
performance work was helpful. There are a few things to
remember when doing analysis of this type. Be careful that by
monitoring or using tools to analyze a system that you do not
impact the system in the process or you will need to deal with the
possible skew in the measurements. Try to make the
environments as repeatable as possible. The order of
commands, first time execution, and virtual machine
configuration can all be factors. When measuring changes you
make to your application, it is best to make only independent
changes. Otherwise one change could improve performance and
another could degrade performance, but your measurements
might show no change in performance.

