What's Going Wrong: LPAR Weights

Brian K. Wade, Ph.D. IBM Corporation bkw@us.ibm.com Version 2022-10-06.1

Abstract

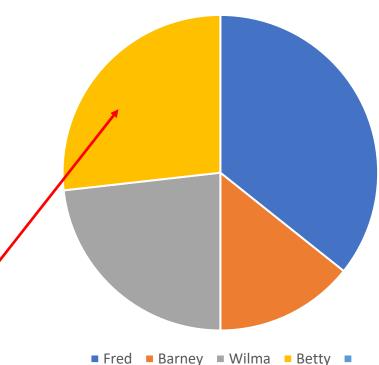
In my job I often look at MONWRITE data from customer systems. Recently I have seen a rash of data showing me CPCs where the LPAR weights were not set correctly. The consequences were less-than-optimal configurations and in some cases just plain poor operation.

In this presentation I review basic concepts about LPAR weight, the notion of entitlement, how to recognize configuration problems, and how to correct them. I also point out some techniques, tools, and references that might help.

Agenda

- Basic concepts: weight, entitlement, polarization
- Ways things go wrong: problems and solutions
- Techniques: suggested practices
- Tools: some gadgets that might help
- Summary

Basics


What Are LPAR Weights?

- The PR/SM hypervisor distributes computing power to the LPARs it is managing
- The weights control how much power each LPAR is guaranteed to be able to use whenever it wants.
- In other words, the weights inform PR/SM of how to compromise when there is not enough power to satisfy all partitions' demands.

Partition	Weight
FRED	100
BARNEY	40
WILMA	65
BETTY	75
Sum	280

Betty% = 100 x (75/280) = 26.8

Power Guarantees, Percent of Total Available

Where Do We Set the Weights? (partition down)

• HMC or SE: Image activation profile

Customize Image Pro	ofiles: AST1 : AST1 : Process	or			
	Group Name https://www.signed.com/signmentstatic-logical Processor Type Dedicated processor Type Central processors z Integrated Information of the second seco	s (CPs) ation Processors (zIIPs) ails 50 er eight 0	11	to 999 🗆 Initial cappin	g

right here!

Where Do We Set the Weights? (partition up)

• HMC or SE: Change LPAR Controls

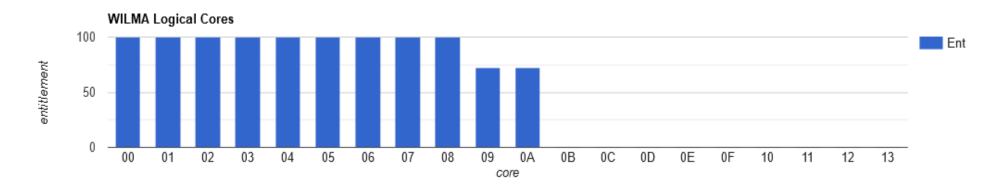
												right her
📕 Chan	ge Logi	cal Partition	Contro	ls - A34								
st reset p	rofile at	empted: iration data se		S): 424 1								
	Connigu		essor	(3).A34_	VIVI							
Ps ICFs	iFLs	zIIPs Time	ing									
		ith Central Proc				 						
Logical Partition	Active	Defined Capacity	WLM	Current Weight		wax Weight	Current Capping	Initial Capping	Absolute Capping	Number of Dedicated Processors	Number of Not dedicated Processors	
ACPX2	Yes	0		10	10		No		None	0	20	
ACPX4	Yes	0		10	10		No		None	0	7	
ACT1	Yes	0		10	10		No		None	0	10	
ACT806	Yes	0		10	10		No		None	0	5	
ACT807	Yes	0		10	10		No		None	0	5	
ACT808	Yes	0		10	10		No		None	0	5	
AEXT1	Yes	0		10	10		No		None	0	5	
AEXT2	Yes	0		10	10		No		None	0	4	
AGT1	Yes	0		10	10		No		None	0	10	
AINS	Yes	0		10	10		No		None	0	5	"Save
ALINUX1		0		10	10		No		None	0	10	to save
ASPX2	Yes	0		10	10		No		None	0	6	activa
ASPXY1		0		10	10		No		None	0	5	
ASPXY2	Yes	0		10	10		No		None	0	5	and ch
AST1	Yes	0		50	50		No		None	0	12	runnin

"Save and Change" to save to image activation profile and change the running system

then this

The Notion of Entitlement

- Entitlement: what you can use whenever you want
- We calculate each LPAR's **entitlement** from:
 - # of shared physical cores, and
 - the LPAR's weight, and
 - the sum of the weights
- Entitlement is expressed in units of cores' worth of power.
- Usually we multiply by 100.


Shared Physical Cores	45		
Partition	Weight	% of Sum	Entitlement
FRED	100	35.7	16.1
BARNEY	40	14.3	6.4
WILMA	65	23.2	10.4
BETTY	75	26.8	12.1
sums>	280	100.0	45.0

For example: E(FRED) = 45 * (100/280) = 16.1 (we usually x100 = 1607)

Polarization: Effect of Entitlement on Logical Cores

- PR/SM spreads entitlement unevenly over the logical cores
- PR/SM places the entitled cores in the machine topology in such a way that the partitions are less likely to interfere with one another's caches
- Operating system should try to run on only its entitled cores whenever possible

Partition	Weight	Entitlement	Cores	VHs	VMs	VLs
FRED	100	1607.1	20	15	2@53.6	3
BARNEY	40	642.9	20	5	2@71.4	13
WILMA	65	1044.6	20	9	2@72.3	9
BETTY	75	1205.4	20	11	2@52.7	7

Ways Things Go Wrong

Problem 1: Unusable Entitlement

- LPAR13 has 22 logical cores but entitlement 2667
- It cannot possibly run 2667% core-busy
- Other LPARs are deprived of entitled power
 - Some VLs could have been VMs or VHs
 - Some VMs could have been VHs
- **u** finds these for you right away

From Perfkit FCX306 LSHARACT

Core counts:	CP Z	ZAAP	IFL	ICF	ZIIP
Dedicated	0	0	0	0	0
Shared physical	1	0	108	0	0
Shared logical	1	0	322	0	0

(edited to show IFL cores only)

	Core	Partition	Core	Load	LPAR						<coreto< th=""><th>otal,%></th><th>Core</th><th>2</th></coreto<>	otal,%>	Core	2
	туре	Name	Count	Мах	Weight	Entlment	Сар	AbsCap	GrpCapNm	GrpCap	Busy	Excess	Conf	-
	IFL	LPAR01	64	6400	10	133.3	NO				.2	.0	0	
	IFL	LPAR02	1	100	10	133.3	NO				.1	.0	u <	(
	IFL	lpar03	30	3000	60	800.0	NO				81.8	.0	0	
	IFL	lpar04	20	2000	60	800.0	NO				57.5	.0	0	
	IFL	LPAR05	20	2000	60	800.0	NO				135.3	.0	0	
Ś	IFL	lpar06	20	2000	60	800.0	NO				82.2	.0	0	
	IFL	LPAR07	20	2000	60	800.0	NO				58.9	.0	0	
	IFL	LPAR08	20	2000	60	800.0	No				199.6	.0	0	
	IFL	lpar09	12	1200	60	800.0	NO				1.4	.0	0	
	IFL	LPAR10	30	3000	60	800.0	NO				1.2	.0	0	
	IFL	LPAR11	30	3000	60	800.0	NO				1.4	.0	0	
	IFL	LPAR12	4	400	10	133.3	NO				25.0	.0	0	
	IFL	LPAR13	22	2200	200	2666.7	NO				602.1	.0	u <	(
	IFL	LPAR14	6	600	10	133.3	NO				2.9	.0	0	
	IFL	LPAR15	8	800	10	133.3	NO				176.6	43.3	0	
	IFL	LPAR16	7	700	10	133.3	NO				7.4	.0	0	
	IFL	LPAR17	8	800	10	133.3	NO				1.7	.0	0	

Solution 1: Change the Weights

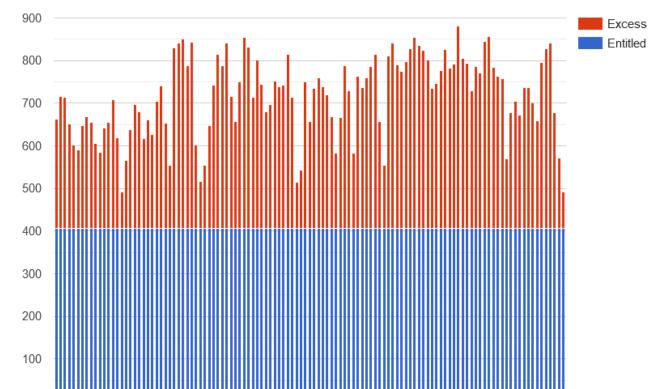
- I changed the weights of several LPARs just a little bit
- This left LPAR02 and LPAR13 fully entitled and increased the entitlements of the other LPARs

New E	New W	Old E	Old W	Cores	LPAR	Phys
143.8083	10	133.3333	10	64	lpar01	108
100.6658	7	133.3333	10	1	lpar02	
848.4687	59	800	60	30	lpar03	
848.4687	59	800	60	20	lpar04	
848.4687	59	800	60	20	lpar05	
848.4687	59	800	60	20	lpar06	
848.4687	59	800	60	20	lpar07	
848.4687	59	800	60	20	lpar08	
848.4687	59	800	60	12	lpar09	
848.4687	59	800	60	30	lpar10	
848.4687	59	800	60	30	lpar11	
143.8083	10	133.3333	10	4	lpar12	
2200.266	153	2666.667	200	22	lpar13	
143.8083	10	133.3333	10	6	lpar14	
143.8083	10	133.3333	10	8	lpar15	
143.8083	10	133.3333	10	7	lpar16	
143.8083	10	133.3333	10	8	lpar17	

Problem 2: Excess Logical Cores

From Perfkit FCX306 LSHARACT

- LPAR03 has 11 logical cores but entitlement of only 406.4
- Its logical cores:
 - 3 VH
 - 2 VM of 53 each
 - 6 VL
- o finds these for you right away


LPAR Data, Col	lected	in Par	tition L	_PAR03					
Core counts	СР	ZAAP	IFL ICF	ZTTP					
Dedicated			0 (
		-		-					
Shared physica	I 0	0	29 () 0					
Shared logica	10	0	42 0) 0					
-									
·	-			-					
Core Partition	Core	Load	LPAR					<coreto< td=""><td>otal,%> (</td></coreto<>	otal,%> (
Type Name	Count	Мах	Weight	Entlment Ca	ıp AbsCap G	irpCapNm	GrpCap	Busy	Excess (
IFL LPAR01	2	200	9	26.1 No)			1.2	.0 0
IFL LPAR02	29	2900	850	2467.5 No)			1507.6	.0 0
IFL LPAR03	11	1100	140	406.4 No)			717.7	311.3 (

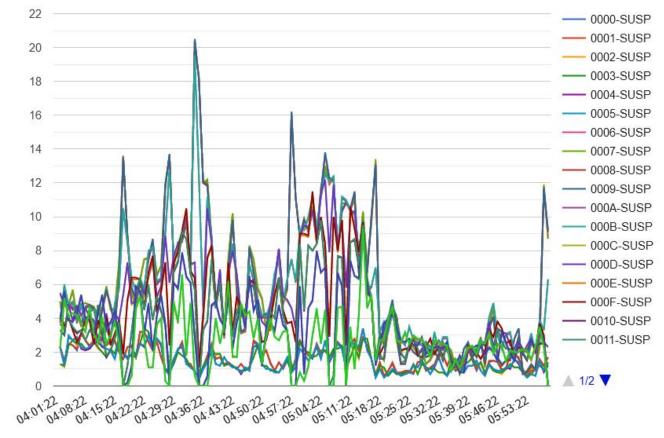
Notice column
 "Excess". LPAR03 is
 nontrivially running
 on unentitled power.

LPAR03 and Unentitled Power

core utilization

- I produced this from FCX306 INTERIM LSHARACT, plotting the "Entlment" and "Excess" values for LPAR03
- We can see LPAR03 is habitually getting its work done on VLs
- This is bad because VLs are exposed to:
 - PR/SM dispatch delay
 - Suddenly having no power at all
- This partition probably needs more entitlement

LPAR03 Core Consumption as f(time)


04.02.22 09.22 16.22 23.04.30 24.31 22 14.22 04.58 22 05.05.22 12.22 19.22 05.23 25.40 25.41 25.54.22

Hazard of Running on Unentitled Power

Metric

- PR/SM does not guarantee a VM or VL a premium dispatch experience
- Workload suffers
 "suspend time"
- "Suspend time" is time the logical core wanted to run but PR/SM didn't run it
- The workload gets delayed

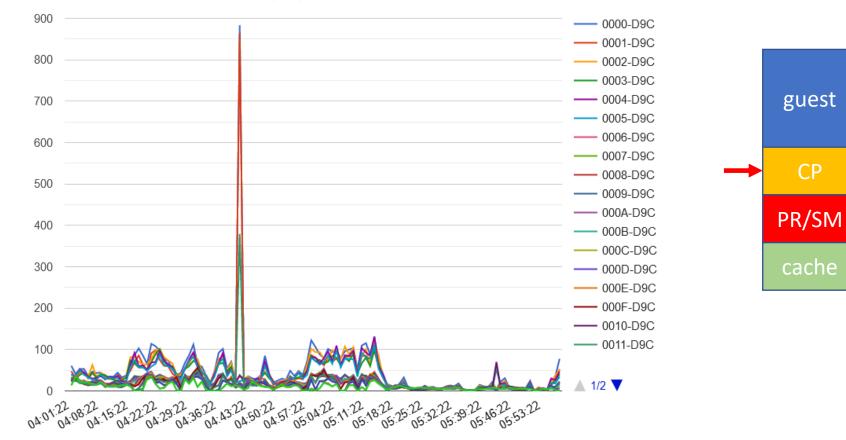

Suspend Time: Consequence for Guests

D050622B User Diag Rate as f(time)

- The guest Diag x'9C' rate peak exactly lines up with the moment at which logical CPUs 06, 07, 08, and 09 experienced a suspend peak
- Those logical CPUs are vertical-mediums
- One or more virtual CPUs were stuck on those logical CPUs
- Their friends tried to unstick them
- This is pure overhead
 - Guest overhead: looping and issuing Diag x'9C'

User diag rate, /sec

• CP overhead: excess simulation

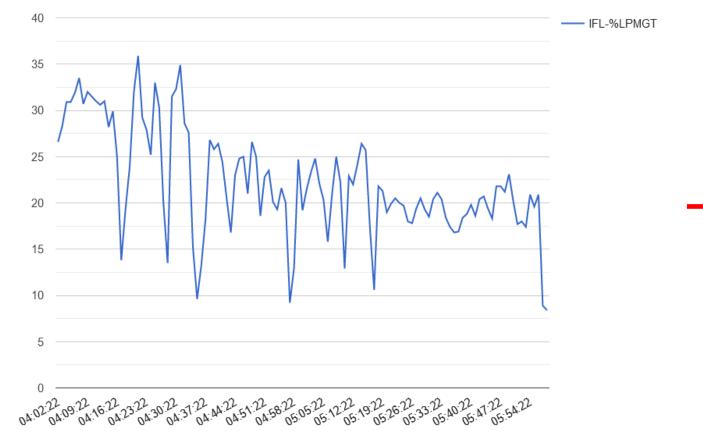

time

Suspend Time: Consequence for CP

- CP has spin locks too and itself issues Diag x'9C' to wake up nonrunning holders
- In a partition running on entitled power, the CP Diag x'9C' rates are usually near zero
- When CP has to use Diag x'9C' nontrivially, CP efficiency drops
- This is pure overhead
 - CP spinning and issuing Diag x'9C'

Metric

 PR/SM handling the excess simulation


D050622B FCX304 CPU Behavior as f(time)

Suspend Time: Consequence for PR/SM

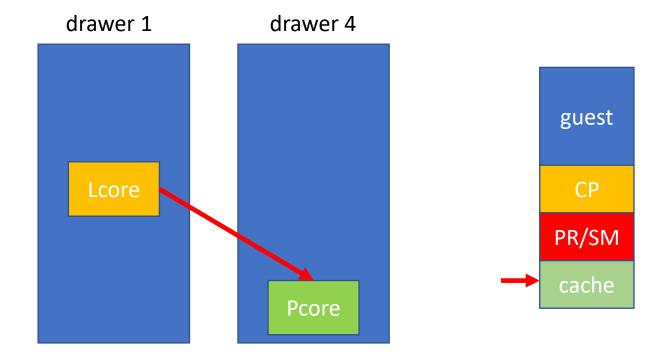
- PR/SM has to field all those Diag x'9C' invocations CP is doing
- Dispatching VLs is more complex than dispatching VHs

Core busy, percent

- All of this increases PR/SM overhead
- In a well-configured system the PR/SM overhead is about zero
- This CPC is using about 0.23 of a core on PR/SM overhead

guest

CP


PR/SM

cache

D050622B CPC Physical Type Utilization as f(time)

Cache Impact of Using Unentitled Power

- Non-VH logical cores:
 - Have a preferred dispatch location, but
 - They are exposed to being dragged elsewhere to be run
- This dragging can decrease cache effectiveness, thereby increasing CPI, thereby decreasing efficiency
- This too is pure overhead

Solution 2: Adjust Something!

• Are weights too small?

- Partitions should be getting their work done on entitled power
- Set entitlements correctly for demands of workload
- Are logical core counts too large?
 - Set logical core counts according to entitlements
 - No more than 1-2 VL logical cores per partition
- Maybe move some weight from LPAR02 to LPAR03

From Perfkit FCX306 LSHARACT

LPAR Data, Collected in Partition LPAR03

Core counts:	CP Z	AAP	IFL	ICF	ZIIP
Dedicated	0	0	0	0	0
Shared physical	0	0	29	0	0
Shared logical	0	0	42	0	0

•	•	•	•	•	•	•	•	•	•	•	•
Core Partition	Core	Load	LPAR						<coreto< td=""><td>otal,%></td><td>Core</td></coreto<>	otal,%>	Core
Туре Name	Count	Мах	Weight	Entlment C	ар	AbsCap	GrpCapNm	GrpCap	Busy	Excess	Conf
IFL LPAR01	2	200	9	<u>26.1 N</u>	0		<u></u>		<u>1.2</u>	.0	0
IFL LPAR02	29	2900	850	2467.5 N	0				1507.6	.0	0
IFL LPAR03	11	1100	140	406.4 N	0				717.7	311.3	0

LPAR02: high E, low util LPAR03: low E, high util Maybe move some weight?

Techniques

Technique: Use Obvious, Intuitive Weights

- Some people just assign weights based on "feel"
 - They do what "feels right"
- Some people try for sum=1000
 - This makes the weights portray percentages
 - They think this helps
- Both techniques hurt us because we can't immediately see entitlement problems
- Make sum of weights = 10 * (# of shared physical cores)
- This makes each entitlement = weight/10

Shared Physical				
Cores	45			
Partition	Logical Cores	Weight	% of Sum	Entitlement
FRED	20	161	35.7	16.1
BARNEY	20	64	14.3	6.4
WILMA	5	104	23.2	10.4
BETTY	20	121	26.8	12.1
sums>		450	100.0	45.0

BARNEY might have a problem WILMA definitely has a problem

Technique: Change When Needed

right here

 HMC or SE: Change Logical Partition Controls

			empted ration d)S):a1 A3	4							
CPs	ICFs	IFLs	zIIPs	Proces Running Time	sor									
Logic Logic Partit	cal	titions wi	th Centra Defined Capaci	t	wLM	Current Weight		Mi Weight	Max Weight		Initial Capping	Absolute Capping	Number of Dedicated Processors	Number of Not dedicate Processors
ACP	X2	Yes	0			10	10			No		None	0	20
ACP	X4	Yes	0			10	10			No		None	0	7
ACT	1	Yes	0			10	10			No		None	0	10
ACT	806	Yes	0			10	10			No		None	0	5
ACT	807	Yes	0			10	10			No		None	0	5
ACT	808	Yes	0			10	10			No		None	0	5
AEX	T1	Yes	0			10	10			No		None	0	5
AEX	T2	Yes	0			10	10			No		None	0	4
AGT	1	Yes	0			10	10			No		None	0	10
AINS	6	Yes	0			10	10			No		None	0	5
ALIN	IUX1	No	0			0	10			No		None	0	10
ASP	X2	Yes	0			10	10			No		None	0	6
ASP	XY1	Yes	0			10	10			No		None	0	5
ASP	XY2	Yes	0			10	10			No		None	0	5
AST	1	Yes	0			50	50			No		None	0	16

Technique: Use Medium Unparking

- z/VM 6.4 and 7.1 were *too aggressive* in unparking VLs
- Unnecessary use of VLs contributes to suspend time and PR/SM overhead
- On z/VM 7.1, configure for *medium unparking*
 - In system configuration file, code SRM UNPARKING MEDIUM
 - Via CP command, issue CP SET SRM UNPARKING MEDIUM
- z/VM 7.2 and later use medium unparking by default

Technique: Best Practices

- Know your workloads' needs for power
 - This requires observation and iteration
- Set entitlements to match workloads' needs
- Use obvious, intuitive weights
- Define only 1-2 VL cores per partition
- Check your work: FCX306 LSHARACT
- Run with medium unparking (if z/VM 7.1 or earlier, you must set this)
 - Keeps unnecessary VLs parked
- Measure and adjust as needed
 - Do not be afraid to change

Tools

Tool: LPAR Entitlement Calculator

 www.vm.ibm.com hosts an entitlement calculator Fill out the form, then click here --> Calculate
Number of shared physical cores: 45

Tell us about your LPARs:

- Tool for you to do what-ifs
- Type in some basic data
- Click "Calculate"

Name	Cores	Weight	Polarity
fred	20	100	Vertical∨
barney	20	40	Vertical∨
wilma	8	65	Vertical∨
betty	20	75	Vertical∨
			Vertical∨

<-- 8 cores on purpose

The tool is here: https://www.vm.ibm.com/perf/tips/calcent.cgi

LPAR Entitlement Calculator: Output

LPAR Entitlement Calculator

Here is the result of your what-if.

To try another what-if, just use the browser's BACK button, change your form, and calculate again.

Shared physical cores: 45

Name	Cores	Weight	Polarity	Entitlement	# VHs	# VMs or HZs	Ent(VM or HZ)	# VLs	Unusable Ent
fred	20	100	V	1607.1	15	2	53.6	3	0.0
barney	20	40	V	642.9	5	2	71.4	13	0.0
wilma	8	65	V	1044.6	8	0	0.0	0	244.6
betty	20	75	V	1205.4	11	2	52.7	7	0.0
Totals ->	68	280		4500.0	39	6		23	244.6

In this case we see Wilma has too few logical cores for its entitlement.

Tool: CALCENT, A Better FCX306 LSHARACT

For type IFL: 29 physical cores, 0 dedicated, 29 in shared pool, 42 shared logical cores, WS 999

TypeLPAR l	_ogCores	_Weight_	Entlment	CD	WC	GP	МΤ	IC	AC	AC-value	GC	GC-name_	GC-value P	_HZ_	_VH_	_VM_	EVM	_VL_	_E-left_
IFL LPAR01	2	9	26.1	0	0	1	1	0	0	0.0	0		0.0 V	0	0	1	26.1	1	0.0
IFL LPAR02	29	850	2467.5	0	0	1	1	0	0	0.0	0		0.0 V	0	24	1	67.5	4	0.0
IFL LPAR03	11	140	406.4	1	0	1	1	0	0	0.0	0		0.0 V	0	3	2	53.2	6	0.0

CD	collected the data
WC	wait-completion assist
GP	Global Performance Data Control setting
MT	multithreading enabled?
IC	initial cap?
AC	absolute cap?
GC	group cap?
Р	polarization, H or V
HZ, VH, etc.	numbers of logical cores of these types
EVM	entitlement of a VM or HZ
E-left	leftover (excess) entitlement

https://www.vm.ibm.com/download/packages/descript.cgi?CALCENT

• Uses MONWRITE file as input

Writes a nice table

Shows core polarities

•

٠

Tool: DOR16TOP, Machine Topology

- Uses MONWRITE file as input
- Displays actual locations of Pcores
- Displays preferred dispatch locations of Lcores
- Requires z16 or later and CP with VM66532

Report of Core Placement 2021-12-16	08:01:00 system local time
Top-level ctr 1	Top-level ctr 2
Container 1.1.1 1.1.1 PCore 0002.CP 1.1.1 PCore 0003.CP 1.1.1 PCore 0004.CP 1.1.1 PCore 0005.CP 1.1.1 PCore 0006.CP 1.1.1 PCore 0007.CP 1.1.1 LCore ACT1.0000.CP.Vh 1.1.1 LCore ACT1.0001.CP.Vh 1.1.1 LCore ACT1.0003.CP.Vh 1.1.1 LCore ACT1.0003.CP.Vm 1.1.1 LCore ACT1.0004.CP.Vm 1.1.1 LCore ACT1.0005.CP.Vm	Container 2.1.1 2.1.1 PCore 0030.CP 2.1.1 PCore 0031.CP 2.1.1 PCore 003F.CP 2.1.1 PCore 0048.CP 2.1.1 PCore 0049.CP 2.1.1 LCore AGT1.0006.CP.V1 2.1.1 LCore AGT1.0007.CP.V1 2.1.1 LCore AGT1.0008.CP.V1 2.1.1 LCore AGT1.0009.CP.V1 2.1.1 LCore AST3.0000.CP.Hz 2.1.1 LCore AST3.0001.CP.Hz 2.1.1 LCore AST3.0002.CP.Hz
1.1.1 LCore ACPX2.0004.CP.Vm 1.1.1 LCore ACPX2.0006.CP.Vl	2.1.1 LCore AST3.0003.CP.Hz 2.1.1 LCore AST3.0004.CP.Hz

much longer

https://www.vm.ibm.com/download/packages/descript.cgi?D0R16TOP

much wider

When Using SMT-2, Remember This

"Core" Is Not The Same As "CPU"

Core

- Machine has physical **cores**
 - Two CPUs per core
- Partition has logical cores
 - Two CPUs per core
- In the image activation profile, you are giving the partition **logical cores**
- Entitlements are in terms of cores' worth of power
- PR/SM dispatches logical cores onto physical cores
- z/VM parks cores based on core utilization and available core power
- These utilizations are **core** utilization:
 - FCX302 PHYSLOG
 - FCX126 LPAR
 - FCX202 LPARLOG
 - FCX306 LSHARACT
 - FCX299 PUCFGLOG

CPU

- These utilizations are CPU utilization:
 - FCX100 CPU
 - FCX144 PROCLOG
 - FCX225 SYSSUMLG
 - FCX304 PRCLOG
 - All the user utilization reports (FCX112 USER, FCX162 USERLOG, FCX288 USRMPLOG, etc.)

References:

- "SMT Vocabulary Tips", https://www.vm.ibm.com/perf/tips/smtvocab.html
- "CPU Utilization in an SMT World", https://www.vm.ibm.com/perf/tips/smtutil.html

Core-Busy vs. CPU-Busy

Example 1: Logical Processor Busy as f(time)

4 • While the core — Core — Processor-0 is dispatched, Processor-1 its CPUs go in and out of 3 busy The curves are separated by height only as a visual aid. Look only at the • Core Busy or not square wave shapes: running vs. utilization is 2 waiting. not the same as CPU 60 busy intervals Core: utilization Processor 0: 40 busy intervals Processor 1: 30 busy intervals 1 Use the correct Perfkit reports 0 0 20 40 60 80 100

Summary

Summary

- Know what LPAR weight is and where to change it
- Know what entitlement is
- Know how entitlement relates to logical core count
- Know the common pitfalls
- Do not be afraid to make changes

References

- "Topics in LPAR Performance", https://www.vm.ibm.com/library/presentations/lparperf.pdf
- "Brian's z/VM Performance Best Practices", https://www.vm.ibm.com/perf/tips/bestp.html
- "Controlling Vertical-Low Logical Cores", https://www.vm.ibm.com/perf/tips/unpark.html
- "LPAR Entitlement Calculator", https://www.vm.ibm.com/perf/tips/calcent.cgi
- "Understanding z/VM HiperDispatch", https://www.vm.ibm.com/perf/tips/zvmhd.html
- "Understanding z/VM CPU Utilization", https://www.vm.ibm.com/perf/tips/lparinfo.html
- "SMT Vocabulary Tips", https://www.vm.ibm.com/perf/tips/smtvocab.html
- "CPU Utilization in an SMT World", https://www.vm.ibm.com/perf/tips/smtutil.html