
1 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z
IBM Z

Rexx Language Coding Techniques

Tracy Dean
IBM
tld1@us.ibm.com

October 2019

2 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Disclaimers

 The information contained in this presentation is provided for
informational purposes only.

 While efforts were made to verify the completeness and accuracy of
the information contained in this presentation, it is provided “as is”,
without warranty of any kind, express or implied.

 In addition, this information is based on IBM’s current product plans
and strategy, which are subject to change by IBM without notice.

 IBM shall not be responsible for any damages arising out of the use
of, or otherwise related to, this presentation or any other
documentation.

 Nothing contained in this presentation is intended to, or shall have
the effect of:

• Creating any warranty or representation from IBM (or its affiliates or
its or their suppliers and/or licensors); or

• Altering the terms and conditions of the applicable license agreement
governing the use of IBM software.

3 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Agenda

 Rexx products
 External environments and interfaces
 Instructions, functions, and subroutines
 Variable visibility
 Parsing
 Rexx compound variables vs. data stack
 I/O
 Troubleshooting
 Programming style and techniques
 Other Rexx products and projects

 Additional material included in hand-out, not covered in session

4 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Agenda

 Part 1
• Rexx products

• External environments and interfaces

• Instructions, functions, and subroutines

• Variable visibility

• Parsing

 Part 2
• Rexx compound variables vs. data stack

• I/O

• Troubleshooting

• Programming style and techniques

• Other Rexx products and projects

 Additional material included in hand-out, not covered in session

5 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Part 1

6 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Rexx Interpreter and Libraries

 A procedural language
 Indicator to operating system that it’s Rexx - first line contains:
/* Comment (if any) */

 The Interpreter executes (interprets) Rexx code “line by line”
• Included in all z/OS and z/VM releases

 A Rexx library is required to execute compiled programs
• Compiled Rexx is not an LE language

 Two Rexx library choices:
• (Runtime) Library – a priced IBM product
• Alternate library – a free IBM download

• Uses the native system’s Rexx interpreter

 At execution, compiled Rexx will use whichever library is
available:

7 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

The Rexx Products

 IBM Compiler for Rexx on zSeries Release 4
• z/VM, z/OS: product number 5695-013

 IBM Library for Rexx on zSeries Release 4
• z/VM, z/OS: product number 5695-014

 z/VSE
• Part of operating system

 IBM Alternate Library for Rexx on zSeries Release 4
• Included in z/OS base operating system (V1.9 and later)

• Free download for z/VM (and z/OS)
• http://www.ibm.com/software/awdtools/rexx/rexxzseries/altlibrary.html

 Rexx Interpreter
• Included in all z/OS and z/VM releases

8 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Why Use a Rexx Compiler?

 Program performance
• Known value propagation
• Assign constants at compile time
• Common sub-expression elimination
• stem.i processing

 Source code protection
• Source code not in deliverables

 Improved productivity and quality
• Syntax checks all code statements

• Trace S provides limited syntax checking
 For example: missing END statements
 Does not catch syntax errors in If Then statements regarding value comparisons)

• Source and cross reference listings
 Compiler control directives

• %include, %page, %copyright, %stub, %sysdate, %systime, %testhalt

© 2014, 2016 IBM Corporation

9 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Rexx External Environments

10 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

External Environments

 ADDRESS instruction is used to define the external
environment to receive host commands

• For example, to set TSO/E as the environment to receive
commands

Address TSO

 Several host command environments available in z/OS

 A few host command environments available in z/VM

11 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/OS

• TSO
• Used to run TSO/E commands like ALLOCATE and TRANSMIT
• Only available to Rexx running in a TSO/E address space
• The default environment in a TSO/E address space
• Example:

Address TSO “ALLOC FI(INDD) DA(‘USERID.SOURCE’) SHR”

• MVS
• Use to run a subset of TSO/E commands like EXECIO
• The default environment in a non-TSO/E address space
• Example:

Address MVS “EXECIO * DISKR MYINDD (FINIS STEM MYVAR”

• Many more

12 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Other z/OS Host Command Environments

• ISPF services

• ISPF edit macros

• CONSOLE

• LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS, ATTCHPGM

• SYSCALL

• SDSF

• DSNREXX

13 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/OS

• ISPEXEC
• Used to invoke ISPF services like DISPLAY and SELECT

• Only available to Rexx running in ISPF

• Example:
Address ISPEXEC “DISPLAY PANEL(APANEL)”

• ISREDIT
• Used to invoke ISPF edit macro commands like FIND and DELETE

• Only available to Rexx running in an ISPF edit session

• Example:
Address ISREDIT “DELETE .ZFIRST .ZLAST”

14 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/OS …

• CONSOLE
• Used to invoke MVS system and subsystem commands
• Only available to Rexx running in a TSO/E address space
• Requires an extended MCS console session
• Requires CONSOLE command authority
• Example:

“CONSOLE ACTIVATE”
Address Console “D A” /* Display system activity */
“CONSOLE DEACTIVATE”

Result:
IEE114I 04.50.01 2011.173 ACTIVITY 602
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM OAS
00002 00014 00002 00032 00005 00001/00020 00010

15 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/OS …

 LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS, ATTCHPGM
• Host command environments for linking to and attaching unauthorized programs
• Available to Rexx running in any address space
• LINK & ATTACH – can pass one character string to program
• LINKMVS & ATTCHMVS – pass multiple parameters; half-word length field precedes

each parameter value
• LINKPGM & ATTCHPGM – pass multiple parameters; no half-word length field
• Example:

“FREE FI(SYSOUT SORTIN SORTOUT SYSIN)”
“ALLOC FI(SYSOUT) DA(*)”
“ALLOC FI(SORTIN) DA('VANDYKE.SORTIN') REUSE”
“ALLOC FI(SORTOUT) DA('VANDYKE.SORTOUT') REUSE”
“ALLOC FI(SYSIN) DA('VANDYKE.SORT.STMTS') SHR REUSE”
sortparm = “EQUALS”
Address LINKMVS “SORT sortparm”

16 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/OS …

• SYSCALL
• Used to invoke interfaces to z/OS UNIX callable services
• The default environment for Rexx run from the z/OS UNIX file system
• Use syscalls(‘ON’) function to establish the SYSCALL host environment for a

Rexx run from TSO/E or MVS batch
• Example:

Call Syscalls ‘ON’
Address Syscall ‘readdir / root.’
Do i=1 to root.0
Say root.i

End

Result:
…
bin
dev
etc
…

17 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/OS …

• SDSF
• Used to invoke interfaces to SDSF panels and panel actions
• Use isfcalls(‘ON’) function to establish the SDSF host environment
• Use the ISFEXEC host command to access an SDSF panel
• Panel fields returned in stem variables
• Use the ISFACT host command to take an action or modify a job value

• Example:

rc=ISFCalls(“ON”)
Address SDSF “ISFEXEC ST”
Do ix = 1 to JNAME.0
If Pos(“MYREXX”,JNAME.ix) = 1 Then

Do
say “Cancelling job ID” JOBID.ix “for MYREXX”
Address SDSF “ISFACT ST TOKEN(‘”TOKEN.ix”’) PARM(NP

P)”
End

End
rc=ISFCalls(“OFF”)
Exit

18 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/OS …

• DSNREXX
• Provides access to DB2 application programming interfaces from Rexx
• Any SQL command can be executed from Rexx

 Only dynamic SQL supported from Rexx
• Use RXSUBCOM to make DSNREXX host environment available
• Must CONNECT to required DB2 subsystem
• Can call SQL Stored Procedures

• Example:
RXSUBCOM(‘ADD’,’DSNREXX’,’DSNREXX’)
subSys = ‘DB2PRD’
Address DSNREXX “CONNECT” subsys
owner = ‘PRODTBL’
recordkey = ‘ROW2DEL’
sql_stmt = “DELETE * FROM” owner”.MYTABLE” ,

"WHERE TBLKEY = ‘”recordkey”’”
Address DSNREXX “EXECSQL EXECUTE IMMEDIATE” sql_stmt
Address DSNREXX “DISCONNECT”

19 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Other External Environments in z/OS

 IPCS
• Used to invoke IPCS subcommands from Rexx
• Only available when run from in an IPCS session

 CPICOMM, LU62, and APPCMVS
• Supports the writing of APPC/MVS transaction programs (TPs) in

Rexx
• Programs can communicate using SAA common programming

interface (CPI) communications calls and APPC/MVS calls

20 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Other “Environments” and Interfaces in z/OS

 System Rexx
• A function package that allows Rexx EXECs to be executed outside of

conventional TSO/E and Batch environments
• Can be invoked using assembler macro interface AXREXX or through an

operator command
• Easy way for Web Based Servers to run commands/functions and get

back pertinent details
• EXEC runs in problem state, key 8, in an APF authorized address space

under the MASTER subsystem
• Two modes of execution

• TSO=NO runs in MVS host environment
address space shared with up to 64 other EXECs
limited data set support

• TSO=YES runs isolated in a single address space
can safely allocate data sets
does not support all TSO functionality

21 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Other “Environments” and Interfaces . . .

 RACF Interfaces
• IRRXUTIL

• Rexx interface to R_admin callable service (IRRSEQ00) extract
request

• Stores output from extract request in a set of stem variables
myrc=IRRXUTIL(“EXTRACT”,”FACILITY”,”BPX.DAEMON”,”RACF”,””,”FALSE”)
Say “Profile name: “||RACF.profile
Do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say “ “||RACF.BASE.ACLID.a||”:”||RACF.BASE.ACLACS.a
End

• RACVAR function
• Provides information from the ACEE about the running user

• Arguments: USERID, GROUPID, SECLABEL, ACEESTAT
If racvar(‘ACEESTAT’) <> ‘NO ACEE’ Then
Say “You are connected to group “ racvar(‘GROUPID’)”.”

22 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Other “Environments” and Interfaces . . .

 Other ISPF Interfaces
• Panel Rexx

• Allows Rexx to be run in a panel procedure
• *REXX statement used to invoke it
• Rexx can be coded directly in the procedure or taken from a

SYSEXEC or SYSPROC DD member
• Rexx can modify the values of ISPF variables

• File Tailoring Skeleton Ress
• Allows Rexx to be run in a skeleton
•)REXX control statement used to invoke it
• Rexx can be coded directly in the procedure or taken from a

SYSEXEC or SYSPROC DD member
• Rexx can modify the values of ISPF variables

23 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/VM

 CMS (default)
• Commands treated as if entered on the CMS command line

• Translation of parameter list
 Uppercasing and tokenizing

• Same search order as CMS command line

 COMMAND
• Basic CMS CMSCALL command resolution

• No translation of parameter list
 No uppercasing of tokenized parameter lists

• To call an EXEC, prefix the command with the word EXEC
• To send a command to CP, use the prefix CP

 CPICOMM, CPIRR, OPENVM
 Generally, best practice is to use “Address Command” at the

top of Rexx EXECs that will be run in CMS environment

24 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Multiple Methods to Specify External Environment

• Initial value, later changed:
• MYTEST is another Rexx EXEC I’m calling from this program:

/* Sample Rexx program */
Address Command
…
“EXEC MYTEST”
…
Address CMS
…
“MYTEST”

• All future commands are treated as Address CMS unless specified
otherwise

Run under
Address

Command

Run under
Address CMS

25 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Multiple Methods to Specify External Environment

• Initial value used as default
• All calls requiring a different value have Address statement

• MYTEST is another Rexx EXEC I’m calling from this program:

/* Sample Rexx program */
Address Command
…
“EXEC MYTEST”
…
Address CMS “MYTEST”
…
“EXEC MYTEST”

Run under
Address

Command

Run under
Address CMS

26 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Instructions, Functions, and Subroutines

27 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Instructions vs Functions vs Subroutines

 Keyword instruction
• One or more clauses
• First word is a keyword that identifies the instruction

Arg, Do, If, Parse, …

 Instruction
• Statement that performs an assignment of a value to a variable

counter = 1

 Function
• Must return a single result string (i.e. often on the right side of an equal

sign)
• Built-in - provided as part of the Rexx language
• Internal - create your own within the same program
• External – create your own outside this program

 Subroutine
• Called (similar to a function) but may not return data
• Returns data in special variable: Result

28 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Functions

 Must return a single result string
• Often on the right side of an equal sign

 Built-in functions – too many to list, so a few examples
• Absolute value of a number
total = -3
newtotal = Abs(total)
 3

• Left justify a string
fullname = Left(‘Tracy Dean’,20)
 ‘Tracy Dean ‘

• Determine the type of data
If Datatype(amtowed,N)=1

Then amtowed = amtowed * 1.1
Else Say ‘Amount owed is invalid’

• Today’s date or day of the week
today = Date()
 28 July 2019

todaydow = Date(‘W’)
 Friday

• Find a string within another string
startcol = Pos(‘day’,’Tuesday’)
 5
startcol = Pos(‘x’,’Tuesday’)
 0

29 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Subroutines

 Multi-step task to execute multiple times
• Write once, use multiple times

• Make code easier to read

 Call a subroutine, pass and return variables
…
Call CalcInterest amountborrowed
amountdue = Result
…

 Define a subroutine
• After Exit instruction of main program

• Start with name of subroutine followed by colon

• End with Return instruction
CalcInterest:
Parse Arg principal
…
total = principal + (principal * rate)
Return total

Value from Return
instruction in

special variable
called “Result”

30 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Declaration and Visibility of Variables

31 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Variable Declaration

 Rexx is a procedural language

 Variables are not declared
• Initial value is same as variable name in uppercase

• Seen as a string unless perform mathematical operation
• Requires the value at the time be valid for the operation

• Type of data assigned to a variable can change within a program

• Valid:
total = ‘Here is some text’
Say ‘Here is the original total:’ total
total = 5+3
newtotal = 1.5 * total
Say ‘Here is the new total:’ newtotal

• Result:
Here is the original total: Here is some text
Here is the new total: 12.0

32 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Visibility of Variables

 Variables can be visible throughout a program
• Visible within Functions and Subroutines you create within the

program
• No need to pass, declare or expose them

• Not visible in Procedures unless specifically exposed

 Programming practice
• Functions, Subroutines, and Procedures use different variable

names for reusability

• Pass the value of variables on the call

• Function, Subroutine or Procedure will parse the value and assign
to its own variables

• Pass values back to main program via Return statement
• For subroutines, values are visible to calling routine via Result variable

33 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Visibility of Variables in Functions and Subroutines

• Using existing variables
• In a function

principal = 100
interest = 0.10
total = CalcTotalDue()

…
Exit
…
CalcTotalDue:
total = principal*(1 + interest)
Return total

• Creating new variables
• In a subroutine

loan = 100
rate = 0.10
Call CalcTotalDue(loan rate)
totaldue = Result
…
Exit
…
CalcTotalDue:
Parse Arg principal interest .
total = principal*(1 + interest)
Return total

More common to use
separate variables in the
function or subroutine

Both are valid for
functions and
subroutines

34 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

total = 855
…
loan = 100
rate = 0.10
Call CalcTotalDue(loan rate)
Say ‘This is your total due:’ Result
Say ‘Principal & interest:’ principal interest
…
Exit
…
CalcTotalDue: Procedure
Parse Arg principal interest .
total = principal*(1 + interest)
Return total

 No visibility of variables from main program unless
specifically requested – most common

Visibility of Variables in Procedures

Variable used for
something else in

the program

Does not
effect variable
of same name

in main
program

Value of anything
here becomes

value of “Result”
variable

Indicates no exposure of
variables from main program

Value from Return
statement in
Procedure

35 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

total = 855
…
loan = 100
rate = 0.10
Call CalcTotalDue(loan rate)
Say ‘This is your total due:’ result
Say ‘Principal & interest:’ principal interest
…
Exit
…
CalcTotalDue: Procedure
Parse Arg principal interest .
total = principal*(1 + interest)
Return total

 No visibility of variables from main program unless
specifically requested

Visibility of Variables in Procedures

Variable used for
something else in

the program

Does not
effect variable
of same name

in main
program

Value of anything
here becomes

value of “Result”
variable

Output:
This is your total due: 110.00
Principal & interest: PRINCIPAL INTEREST

36 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

loan = 100
rate = 0.10
Call CalcTotalDue(loan rate)
Say ‘This is your total due:’ total
Say ‘Principal & interest:’ principal interest
…
Exit
…
CalcTotalDue: Procedure Expose total
Parse Arg principal interest .
total = principal*(1 + interest)
Return

 Exposing variables from main program to a Procedure

Visibility of Variables in Procedures

No need to
Return “total”

as “Result”

Brings in value
of this variable

from main
program

BEWARE:
Also

changes
value in main

program

Never set in main
program, only set

in Procedure

37 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

loan = 100
rate = 0.10
Call CalcTotalDue(loan rate)
Say ‘This is your total due:’ total
Say ‘Principal & interest:’ principal interest
…
Exit
…
CalcTotalDue: Procedure Expose total
Parse Arg principal interest .
total = principal*(1 + interest)
Return

 Exposing variables from main program to a Procedure

Visibility of Variables in Procedures

No need to
Return “total”

as “result”

Brings in value
of this variable

from main
program

BEWARE:
Also

changes
value in main

program

Note never set in
main program,

only set in
Procedure

Same output:
This is your total due: 110.00
Principal & interest: PRINCIPAL INTEREST

38 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

loan = 100
rate = 0.10
Call CalcTotalDue(loan rate)
totaldue = Result
Say totaldue
…
Exit
…
CalcTotalDue: Procedure
Parse Arg principal interest .
total = principal*(1 + interest)
Return ‘Total due:’ total

 Returning variables from a Procedure to the main program

Returning Variables from Functions and Procedures

Can return any
expression (literals,

variables, etc.)

All data from “Return”
statement is assigned
as a string to “Result”

variable

39 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

loan = 100
rate = 0.10
Call CalcTotalDue(loan rate)
totaldue = Result
Say totaldue
…
Exit
…
CalcTotalDue: Procedure
Parse Arg principal interest .
total = principal*(1 + interest)
Return ‘Total due:’ total

 Returning variables from a Procedure to the main program

Returning Variables from Functions and Procedures

Can return any
expression (literals,

variables, etc.)

All data from “Return”
statement is assigned
as a string to “result”

variable

Output:
Total due: 110.00

40 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Parsing

41 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Keyword Instruction: Parse

 Parse
• Allows the use of a template to split a source string into multiple

components
• Syntax:

 Short forms to some of these commands exist
• NOT RECOMMENDED
• But you may see them in another user’s code you must maintain

• ARG
 Short form for Parse Upper Arg

• PULL
 Short form for Parse Upper Pull

42 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates

 Simple template

• Divides the source string into blank-delimited words and assigns them to the
variables named in the template

• The last variable gets the rest of the string exactly as entered

datastring = ‘ Write the blank-delimited string ’
Parse Var datastring firstvar secondvar thirdvar fourthvar

firstvar -> ‘Write’
secondvar -> ‘the’
thirdvar -> ‘blank-delimited’
fourthvar -> ‘ string ’

43 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates – Blank Delimiter

 Simple template
• A period (aka a dot) is a placeholder in a template

• A “dummy” variable used to collect unwanted data
• Notice the consecutive single quotes so the single quote is recognized as part of the string

datastring = ‘Last one gets what’’s left’
Parse Var datastring firstvar . secondvar

firstvar -> “Last”
secondvar -> “gets what’s left”

• Often used at the end of Parse statement to take “the rest of the data”

datastring = ‘Last one gets what’’s left’
Parse Var datastring firstvar secondvar .

firstvar -> “Last”
secondvar -> “one”

• Causes the last variable to get the last word without leading and trailing blanks

datastring = ‘ Write the blank-delimited string ’
Parse Var datastring firstvar secondvar thirdvar fourthvar .
firstvar -> ‘Write’
secondvar -> ‘the’
thirdvar -> ‘blank-delimited’
fourthvar -> ‘string’

44 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates – Literal or Variable Delimiter

 String pattern template
• A literal or variable string pattern indicating where the source string

should be split
• Assumes blank-delimited if no other pattern specified

datastring = ‘ Write the blank-delimited string ’

Literal:

Parse Var datastring firstvar ‘-’ secondvar .

Variable:

delim = ‘-’
Parse Var datastring firstvar (delim) secondvar .

Result (the same in both cases):

firstvar -> ‘ Write the blank’
secondvar -> ‘delimited’

Literal
delimited

Blank
delimited

45 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates – Positional Delimiter

 Positional pattern template
• Use numeric values to identify the character positions at which to split data in the source

string
• An absolute positional pattern is a number or a number preceded by an equal sign

----+----1----+----2----+----3----+----4----+
datastring = ‘Cowlishaw Mike UK ’
Parse Var datastring =1 surname =20 chrname =35 country =46 .

surname -> ‘Cowlishaw ’
chrname -> ‘Mike ’
country -> ‘UK ’

• A relative positional pattern is a number preceded by a plus or minus sign
• Plus or minus indicates movement right or left, respectively, from the last match

----+----1----+----2----+----3----+----4----+
datastring = ‘Cowlishaw Mike UK ’
Parse Var datastring =1 surname +19 chrname +15 country +11 .

surname -> ‘Cowlishaw ’
chrname -> ‘Mike ’
country -> ‘UK ’

46 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates . . .

 Positional pattern template – removing blanks
• Specify an absolute positional pattern
• Insert periods to strip blanks

----+----1----+----2----+----3----+----4----+
datastring = ‘Cowlishaw Mike UK ’
Parse Var datastring =1 surname . =20 chrname . =35 country .

surname -> ‘Cowlishaw’
chrname -> ‘Mike’
country -> ‘UK’

If data starts in column 1 and is blank-delimited, this is the same as
Parse Var datastring surname chrname country

• Warning – won’t work if any of the data has more than one “word”
• ----+----1----+----2----+----3----+----4----+

datastring = ‘Cowlishaw, Jr. Mike UK ’
Parse Var datastring =1 surname . =20 chrname . =35 country .

surname -> ‘Cowlishaw,’
chrname -> ‘Mike’
country -> ‘UK’ Blank

delimited

47 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Summary

 Part 1
• Rexx products

• External environments and interfaces

• Instructions, functions, and subroutines

• Variable visibility

• Parsing

 Part 2
• Rexx compound variables vs. data stack

• I/O

• Troubleshooting

• Programming style and techniques

• Other Rexx products and projects

 Additional material included in hand-out, not covered in session

48 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Thank You

Merci

Grazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

GermanItalian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Tamil

Thai

Korean
Hindi

Ndzi khense ngopfu
Tsonga

Ke a leboha
Tswana

49 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Part 2

50 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Agenda

 Part 1
• Rexx products

• External environments and interfaces

• Instructions, functions, and subroutines

• Variable visibility

• Parsing

 Part 2
• Rexx compound variables vs. data stack

• I/O

• Troubleshooting

• Programming style and techniques

• Other Rexx products and projects

 Additional material included in hand-out, not covered in session

51 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Compound Variables and Data Stack

52 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

What is a Compound Variable?

 A way to reference a collection of related values

• Also called a stem variable or stem array

 Variable name is stem followed by zero or more tails

• stem must be simple variable ending in a period

• tail must be simple variable or decimal integer

• Multiple tails are separated by periods

 Each tail variable is replaced by its value

• Default value of stem and tail is the variable names used for stem and tail

• Each tail references a dimension of the collection

 The resulting derived name is used to access a specific value from the collection

 Tails which are variables are replaced by their respective values

• If no value assigned, takes on the uppercase value of the variable name

day.1 stem: DAY.
tail: 1

array.j stem: ARRAY.
tail: J

name = ‘Smith’
phone = 12345

employee.name.phone stem: EMPLOYEE.
tail: Smith.12345

53 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Compound Variable Values

 Initializing a stem to some value automatically initializes every compound variable
with the same stem to the same value

Say month.12 MONTH.12
month. = ‘Unknown’
month.3 = ‘March’
month.6 = ‘June’

Say month.12 Unknown
monthnum = 3
Say month.monthnum March

 Easy way to reset the values of compound variables

month. = ‘’
Say month.6 ‘’

 Drop instruction can be used to restore compound variables to their uninitialized state

Drop month.
Say month.6 MONTH.6 • Useful in memory constrained

environments
• Avoids “No Value” errors

54 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Processing Compound Variables

 Compound variables provide the ability to process one-dimensional arrays

• Use a numeric value for the tail

• Good practice - store the number of array entries in the compound variable with a tail of
0 (zero)

• Often processed in a Do loop using the tail as the loop control variable

invitee.0 = 10
Do j = 1 to invitee.0

Say ‘Enter the name for invitee’ j
Parse Pull invitee.j

End

 Stems can be used with I/O functions to read data from and write data to a file on
z/VM or data set on z/OS

• Stream I/O
• EXECIO
• PIPE

 Stems can also be used with the external function OUTTRAP (z/OS) or PIPE (z/VM)
to capture output from commands

55 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Processing Compound Variables . . .

 The tail for a compound variable can be used as an index to related data
 The tail (index) and data can contain blanks
 Given the following input data:

----+----1----+----2----+----3----+----4----+
Employee# Name Location
A1234 M Cowlishaw United Kingdom
B5678 T Dean Portland
C9012 V Hein Austin
. . .

 The unique employee number value can be used as the tail of compound variables that hold the
rest of the person’s data

'PIPE < EMPLOYEE INFO A | STEM rec.'
Do j = 2 To rec.0
Parse Var rec.j =1 empnum name.empnum =25 location.empnum

End j
Say 'Which employee number do you want to learn about?'
Parse Upper Pull empnum
Say 'The name of employee' empnum 'is' Strip(name.empnum)'.'
Say 'The location of employee' empnum 'is' Strip(location.empnum)'.’
Exit

56 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

What is a Data Stack?

 An expandable data structure used to temporarily hold data items (elements) until
needed

 When an element is needed it is always removed from the top of the stack
 A new element can be added either to the top (LIFO) or the bottom (FIFO) of the

stack
• FIFO stack is often called a queue

LIFO

Stack

FIFO

Stack

(Queue)

57 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Manipulating the Data Stack

 3 basic Rexx instructions
• Push - put one element on the top of the stack

elemone = ‘new top element’
Push elemone

• Queue - put one element on the bottom of the stack

elemtwo = ‘new bottom element’
Queue elemtwo

• Parse Pull - remove an element from the (top) of the stack

Parse Pull nextthing

• Result:

nextthing ‘new top element’

 1 Rexx function
• Queued() - returns the number of elements in the stack

num_elems = Queued()

58 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Why Use the Data Stack?

 Pass a large or unknown number of arguments between EXECs or
routines

 To store a large number of data items for later use
• Size may be unpredictable or unknown

 Specify commands to be run when the EXEC ends
• Elements left on the data stack when an EXEC ends are treated as

commands
Queue “TSOLIB RESET QUIET”
Queue “ALLOC FI(ISPLLIB) DA(‘ISP.SISPLOAD’
'SYS1.DFQLLIB‘) SHR REUSE”
Queue “TSOLIB ACTIVATE FILE(ISPLLIB) QUIET”
Queue “ISPF”

 Pass responses to an interactive command that runs when the
EXEC ends

• Example: z/VM DDR program

59 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Quick Example of Processing the Data Stack

 A receiving (or called) program collects data from the stack
• Passed from sending/calling program

/* Sample stack processing */
Address Command
element.0 = Queued()
Do i = 1 To element.0

Parse Pull element.i
…

End
…

Full parsing capability

60 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

More Stack Functions and Options

 Buffers

 Additional stacks

 Some functions are z/OS only

 See more details in the handout

61 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Using Buffers in the Data Stack

 An EXEC can create a buffer in a data stack using the Makebuf
command

 All elements added after a Makebuf command are placed in the new
buffer

• Makebuf changes where the Queue instruction inserts new elements
• Remember Queue inserts at the “bottom” of the stack (or buffer)

62 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Using Buffers in the Data Stack . . .

 An EXEC can use Makebuf to create multiple buffers in the data
stack

• Makebuf returns in the RC variable the number identifying the newly
created buffer

 Dropbuf command is used to remove a buffer from the data stack
• Allows an EXEC to easily remove temporary storage assigned to the

data stack
• A buffer number can be specified with Dropbuf to identify the buffer to

remove
• Default is to remove the most recently created buffer

• Dropbuf 0 results in an empty data stack (use with caution)
 z/OS only

• The Qbuf command is used to find out how many buffers have been
created

• The Qelem command is used to find out the number of elements in
the most recently created buffer

63 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Using Buffers in the Data Stack . . .

 Important notes
• When the buffer is empty

• Next Pull automatically pulls the next item on the stack

• Technically that item was in the next buffer

• No error or indication

• Creating a buffer only changes the insert point of a FIFO stack

• Keep track of where you are in buffers within the stack
• Use Queued() to find the total number of elements in the stack

• To remove a buffer that still contains elements
• Issue Dropbuf

• The next request to pull an element will move
 To the next buffer if there is one (including buffer 0)
 To the external input queue if the stack (all buffers) are empty

64 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Protecting Elements in the Data Stack – z/OS Only

 Rexx code can use the stack, but protect itself from inadvertently
removing someone else’s data stack elements

• Create a new private data stack using the NEWSTACK command
 All elements added after a NEWSTACK command are placed in the

new data stack
• Elements on the original data stack cannot be accessed by an EXEC or any

called routines until the new stack is removed (not just emptied)
• When there are no more elements in the new data stack, information is taken

from the terminal (not the original data stack)

65 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Protecting Elements in the Data Stack - z/OS Only

 DELSTACK - removes a data stack
• Removes the most recently created data stack

• Including all remaining elements in the stack

• Caution
• If no stack previously created with NEWSTACK, then DELSTACK

removes all the elements from the original stack

 QSTACK - returns the number of data stacks
• Including the original stack

• Puts the value in the variable RC

 Note: For z/OS, the QUEUED() function returns the number of
elements in the current data stack.

66 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Data Stack vs Buffers

 Data Stack
• Advantages

• Protects data in the original stack
 Never defaults back to the “previous” stack in the chain
 Must specifically delete current stack to move to previous stack
 Can easily request terminal input if also have items in the stack

 Just create a new stack with nothing on it and issue “Pull”

• Disadvantages
• Only available on z/OS

 z/VM must issue “Parse External” to request terminal input if data is in
the stack

67 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Data Stack vs Buffers

 Buffers
• Advantages

• z/VM and z/OS supported

• Create a “stack” on top of the existing stack for new list of items

• Ability to insert at the bottom of the new “stack”

• Use “QElem” (z/OS only) to keep track of how many items in this
buffer

• Disadvantages
• No guaranteed protection of previous stack in the chain

 If current stack is empty, will proceed to next one automatically

68 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Compound Variables vs Data Stack

 Compound Variables
• Advantages

• Basically variables - Rexx will manage them like other variables

• Only one step required to assign a value

• Provide opportunities for clever and imaginative processing

• Disadvantages
• Can not be used to pass data between external routines

 Conclusion
• Try to use compound variables whenever appropriate

• They are simpler

69 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Compound Variables vs Data Stack

 Data Stack
• Advantages

• Can be used to pass data to external routines

• Able to specify commands to be run when the EXEC ends

• Can provide response(s) to an interactive command that runs when
the EXEC ends

• Disadvantages
• Program logic required for stack management

• Processing needs 2 steps
 Take data from input source and store in stack
 Read from stack into variables

• Stack attributes and commands are operating system dependent

70 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

I/O and Troubleshooting

71 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

EXECIO Command – z/OS

 A TSO/E Rexx command that provides record-based
processing

• Used to read and write records from/to a z/OS sequential data set
or z/OS partitioned data set member

• Requires a DDNAME to be specified
• Use ALLOC command to allocate data set or member to a DD

 Records can be read into or written from compound variables
or the data stack

 Can also be used to:
• Open a data set without reading or writing any records
• Empty a data set
• Copy records from one data set to another
• Add records to the end of a sequential data set
• Update data in a data set, one record at a time

72 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

EXECIO Command – z/VM

 CMS EXECIO command provides record-based processing

 Recommend using CMS Pipelines (PIPE command) instead
• Simpler to use
‘EXECIO * DISKR EMPLOYEE INFO A (STEM REC. FINIS’
vs
‘PIPE < EMPLOYEE INFO A | STEM rec.’

 PIPEs has much more function

73 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Special Variables

 RC variable
• Return code from external commands and special Rexx

commands/statements

 RESULT variable
• Value of an expression returned by a subroutine

74 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Troubleshooting – Condition Trapping

 Signal On and Call On instructions
• Used to trap exception conditions

• Signal On goes to label and does not return

• Call On goes to label and returns

 Syntax:

 Condition types:
– ERROR - error upon return (positive return code)

– FAILURE - failure upon return (negative return code)

– HALT - an external attempt was made to interrupt and end execution

– NOVALUE - attempt was made to use an uninitialized variable

– SYNTAX - language processing error found during execution

– NOTREADY - z/VM only. Error during input or output operation

75 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Troubleshooting – Condition Trapping. . .

 Good practice to enable condition handling to process unexpected errors
• Specifically Signal On NoValue Name error-routine

 Use Rexx provided functions and variables to identify and report on exceptions
• CONDITION function – returns information on the current condition

• Name and description of the current condition
• Indication of whether the condition was trapped by SIGNAL or CALL
• Status of the current trapped condition

• RC variable
• For ERROR and FAILURE - ontains the command return code
• For SYNTAX - contains the syntax error number

• SIGL variable – line number of the clause that caused the condition

• ERRORTEXT function – returns Rexx error message for a SYNTAX condition
Say ErrorText(rc)

• SOURCELINE function – returns a line of source from the Rexx EXEC
Say Sourceline(sigl)

76 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Troubleshooting – Trace Facility

 Provides powerful debugging capabilities
• Displays the results of expression evaluations
• Displays the variable values
• Follows the execution path
• Interactively pauses execution and runs Rexx statements

 Activated using the Trace instruction and function
 Syntax:

77 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Troubleshooting – Trace Facility . . .

 Code example:

A = 1
B = 2
C = 3
D = 4
Trace R
If (A > B) | (C < 2 * D) Then
Say 'At least one expression was true.'

Else
Say 'Neither expression was true.'

 Result:

7 *-* If (A > B) | (C < 2 * D)

>>> "1"

- Then

8 *-* Say 'At least one expression was true.'

>>> "At least one expression was true."

At least one expression was true.

Trace
Results

78 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Troubleshooting – Trace Facility . . .

 Code example:

A = 1
B = 2
C = 3
D = 4
Trace I
If (A > B) | (C < 2 * D) Then
Say 'At least one expression was true.'

Else
Say 'Neither expression was true.'

 Result:

6 *-* If (A > B) | (C < 2 * D)
>V> "1"
>V> "2"
>O> "0"
>V> "3"
>L> "2"
>V> "4"
>O> "8"
>O> "1"
>O> "1"
- Then

7 *-* Say 'At least one expression was true.‘
>L> "At least one expression was true."

At least one expression was true.

Trace
Intermediates

79 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Troubleshooting – Trace Facility . . .

 Interactive trace provides additional debugging power
• Pause execution at specified points

• Insert instructions

• Re-execute the previous instruction

• Continue to the next traced instruction

• Change or terminate interactive tracing
• Issue Trace command with desired parameters at next prompt

 Starting interactive trace
• ? option with the TRACE instruction

• In TSO, use EXECUTIL TS command (Trace Start)
• Code in your Rexx EXEC

• Issue from the command line to debug next Rexx EXEC run

• Cause an attention interrupt and enter TS

80 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Programming Style and Techniques

 Be consistent with your style
• Helps others read and maintain your code

• Having style rules will make the job of coding easier

 Indentation
• Improves readability

• Helps identify unbalanced or incomplete structures
• Do - End pairs

 Comments
• Provide them!

• Choices:
• In blocks

• To the right of the code

81 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Programming Style and Techniques . . .

 Capitalization
• Can improve readability
• Suggestions

• Use all lowercase for variables
• Use mixed case (capitalize the first letter) for keywords, labels, calls

to internal subroutines
• Use upper case for calls to external routines (commands)

 Variable names
• Try to use meaningful names

• Helps understanding and readability
• Avoid 1 character names

• Easy to type but difficult to manage and understand
• Exception – indices to compound variables

• Avoid ending names with letter O or lowercase L
• Hard to distinguish between numbers 0 and 1

82 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Programming Style and Techniques . . .

 Comparisons
• Rexx supports exact (e.g. “==“) and inexact (e.g. “=“) operators

• Only use exact operators when appropriate
if action == ‘SAVE’ then …

• Above comparison will fail if variable action is "SAVE "

• Avoid using non-standard NOT characters: “¬” and “/”
• Portability problem when transferring code to an ASCII platform

• Use “\=“, or less commonly used “\>“ “\<=

Extra blank

83 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Programming Style and Techniques . . .

 Semicolons

• Can be used to combine multiple statements in one line
• DON’T – detracts from readability

• Languages like C and PL/I require a “;” to terminate a line
• Can also be done in Rexx
• DON’T – doubles internal logic statement count for interpreted Rexx

 Conditions

• For complex statements, Rexx evaluates all Boolean expressions, even if
first fails:
If 1 = 2 & 3 = 4 & 5 = 5 Then Say 'Impossible‘
• Divide-by-zero can still occur if a=0

If a \== 0 & b/a > 1 Then ...
• Can be avoided by nesting IF statements:

If a \== 0 Then
If b/a > 1 Then ...

Rexx error

84 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Programming Style and Techniques . . .

 Literals
• Important to use literals where appropriate

• For example: external commands

• Lazy programming can lead to unfortunate results
• For uninitialized variables: value=name

control errors cancel

• This usually works
 Breaks if any of the 3 words is a variable with value already assigned

• Also a performance cost for unnecessary variable lookups
 Up to 20%+ more CPU

• Instead enclose literals in quotation marks
‘CONTROL ERRORS CANCEL’

85 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Programming Style and Techniques . . .

 External commands
• Best practices

• Enclose in quotation marks

• Use uppercase

• Fully spell out the command
 Don’t assume any abbreviations that may not be present if the EXEC is

moved to another system
 Preface with the external environment as needed

86 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Related Programs

87 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

CMS and TSO Pipelines

 A powerful method of processing or manipulating data
 Can be called within Rexx programs
 A collection of data processing elements connected in a

series
• Output of one element becomes the input to the next element
• For example, on z/VM
’PIPE CP QUERY DASD | STEM dasd.‘

• Issues the CP command QUERY DASD
• Response is written into the pipeline
• Next stage (STEM) receives the input and places it into the stem

variable “dasd”, setting dasd.0 to the number of lines of data

 Included in all current releases of z/VM
 Available as a separate product for TSO

• Batchpipes (5655-D45)

88 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Open Object REXX

 Open Object REXX is available via open source community
• Runs on Linux on z Systems

• Many other (distributed) platforms

 www.oorexx.org
• Managed by Rexx Language Association

 99% compatible with other IBM Z Rexx programs

 Comparison of PERL and OOREXX
• Informal testing with SLES on memory and CPU constrained system

• OOREXX is much faster!

• Memory footprint of OOREXX similar to PERL with several modules
loaded

89 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

NetRexx

 An object oriented Rexx for the Java Virtual Machine (JVM)
• Write in Rexx (or Rexx-like)

• Compiler converts to Java source statements and bytecode

 Available via open source community since 2011

 netrexx.org
• Managed by Rexx Language Association

90 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Additional Information

 IBM Rexx Website
https://www.ibm.com/us-en/marketplace/compiler-and-library-for-rexx-on-ibm-z

91 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Summary

 Part 1
• Rexx products
• External environments and interfaces
• Instructions, functions, and subroutines
• Variable visibility
• Parsing

 Part 2
• Rexx compound variables vs. data stack
• I/O
• Troubleshooting
• Programming style and techniques
• Other Rexx products and projects

 Additional material included in hand-out, not covered in
session

92 © 2014, 2019 IBM CorporationRexx Language Coding Techniques

IBM Z

Thank You

Merci

Grazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

GermanItalian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Tamil

Thai

Korean
Hindi

Ndzi khense ngopfu
Tsonga

Ke a leboha
Tswana

